# 2302263 – Organic Chemistry I – Part III Lecture 2-2

# **Alkenes** – Properties and Preparations



Instructor: Asst. Prof. Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

#### **Recommended Textbook:**

Chapter 7 in *Organic Chemistry*, 8th Edition, L. G. Wade, Jr., **2010**, Prentice Hall (Pearson Education)

Alkene energies are often compared by measuring the **heat of hydrogenation**: the heat given off ( $\Delta H^{\circ}$ ) during catalytic hydrogenation.

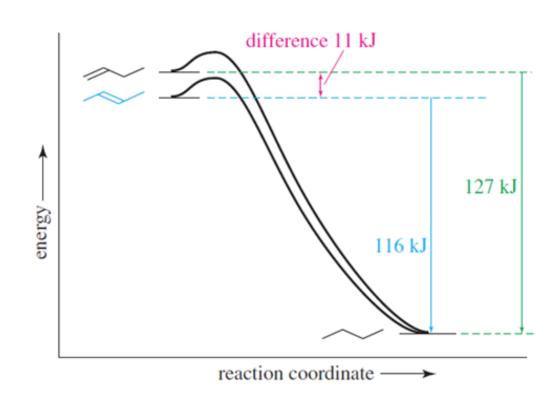
$$H_2C = CH - CH_2 - CH_3 + H_2$$

$$\begin{array}{c} H & H \\ | & | \\ CH_2 - CH - CH_2 - CH_3 \\ \text{but-1-ene} \\ \text{(monosubstituted)} \end{array}$$

$$\begin{array}{c} D_1 & H & H \\ | & | \\ CH_2 - CH - CH_2 - CH_3 \\ \text{butane} \end{array}$$

$$\begin{array}{c} D_1 & D_2 \\ D_2 & D_3 \\ D_3 & D_4 \\ D_4 & D_5 \end{array}$$

H H


CH<sub>2</sub>—CH—CH<sub>2</sub>—CH

butane

$$\Delta H^{\circ} = -127 \text{ kJ/mol}$$

$$H_3C$$
 $H$ 
 $C=C$ 
 $H$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_4$ 
 $CH_3$ 
 $CH_4$ 
 $CH_5$ 
 $CH_5$ 
 $CH_5$ 
 $CH_5$ 
 $CH_6$ 
 $CH_7$ 
 $CH_7$ 

$$H$$
  $H$   $H$   $CH_3$   $-CH$   $-CH$   $-CH_3$  butane
$$\Delta H^{\circ} = -116 \text{ kJ/mol}$$



**Stability: Disubstituted > Monosubstituted (11 kJ/mol)** 

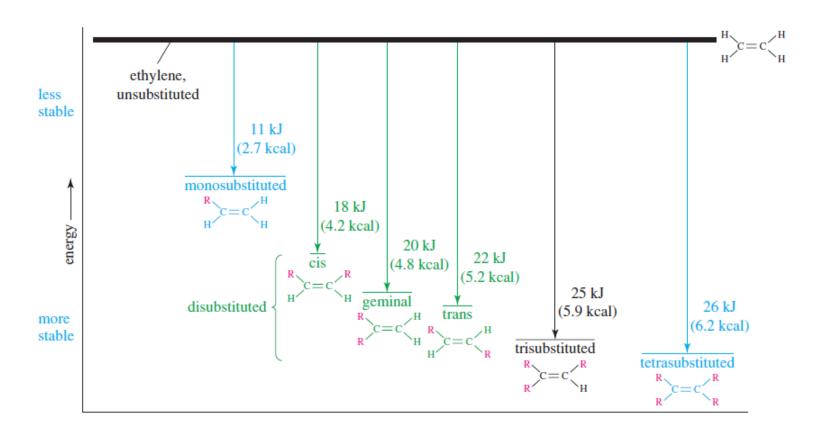
$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{2} = \text{CH} - \text{CH} - \text{CH}_{3} \\ \text{3-methylbut-1-ene} \\ \text{(monosubstituted)} \end{array} \xrightarrow{\begin{array}{c} \text{H}_{2}, \text{Pt} \\ \text{2-methylbutane} \end{array}} \begin{array}{c} \text{CH}_{3} \\ \text{2-methylbutane} \end{array}$$

$$\begin{array}{c} \text{CH}_{3} \\ \text{2-methylbut-2-ene} \\ \text{(trisubstituted)} \end{array} \xrightarrow{\begin{array}{c} \text{CH}_{3} \\ \text{2-methylbut-2-ene} \\ \text{(trisubstituted)} \end{array}} \xrightarrow{\begin{array}{c} \text{CH}_{3} \\ \text{2-methylbutane} \end{array}} \begin{array}{c} \text{CH}_{3} \\ \text{2-methylbutane} \end{array}$$

#### Stability: Trisubstituted > Monosubstituted (16 kJ/mol)

|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                       | Molar Heat of<br>Hydrogenation (–∆ <i>H</i> °) |                                              |                                                    |  |  |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|----------------------------------------------------|--|--|
| Name                                                                                                      | Structure                                                                                                                                                                                                                                                                                                                                                             | kJ                                             | kcal                                         | General Structure                                  |  |  |
| ethene (ethylene)                                                                                         | $H_2C = CH_2$                                                                                                                                                                                                                                                                                                                                                         | 137                                            | 32.8}                                        | unsubstituted                                      |  |  |
| propene (propylene)<br>but-1-ene<br>pent-1-ene<br>hex-1-ene<br>3-methylbut-1-ene<br>3,3-dimethylbut-1-ene | $\begin{array}{l} \text{CH}_{3}\text{CH}\text{=-}\text{CH}_{2} \\ \text{CH}_{3}\text{CH}_{2}\text{CH}\text{CH}_{2} \\ \text{CH}_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}\text{CH}_{2} \\ \text{CH}_{3}(\text{CH}_{2})_{3}\text{CH}\text{CH}_{2} \\ \text{(CH}_{3})_{2}\text{CH}\text{CH}\text{CH}_{2} \\ \text{(CH}_{3})_{3}\text{C}\text{CH}\text{CH}_{2} \end{array}$ | 126<br>127<br>126<br>126<br>127<br>127         | 30.1<br>30.3<br>30.1<br>30.1<br>30.3<br>30.3 | monosubstituted R—CH=CH <sub>2</sub>               |  |  |
| cis-but-2-ene                                                                                             | CH <sub>3</sub> C=C CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                   | 120                                            | 28.6                                         | disubstituted (cis)                                |  |  |
| cis-pent-2-ene                                                                                            | $CH_3$ — $CH_2$ $C=C$ $H$                                                                                                                                                                                                                                                                                                                                             | 120                                            | 28.6                                         | Н Н                                                |  |  |
| 2-methylpropene<br>(isobutylene)                                                                          | $(CH_3)_2C = CH_2$                                                                                                                                                                                                                                                                                                                                                    | 117                                            | 28.0                                         |                                                    |  |  |
| 2-methylbut-1-ene                                                                                         | CH <sub>3</sub> —CH <sub>2</sub> —C=CH <sub>2</sub><br> <br>  CH <sub>3</sub>                                                                                                                                                                                                                                                                                         | 119                                            | 28.5                                         | disubstituted (geminal)                            |  |  |
| 2,3-dimethylbut-1-ene                                                                                     | $(CH_3)_2CH$ — $C$ — $CH_2$ $CH_3$                                                                                                                                                                                                                                                                                                                                    | 117                                            | 28.0                                         | $C$ = $CH_2$                                       |  |  |
| trans-but-2-ene                                                                                           | $CH_3$ $C=C$ $CH_3$                                                                                                                                                                                                                                                                                                                                                   | 116                                            | 27.6                                         | disubstituted (trans)                              |  |  |
| trans-pent-2-ene                                                                                          | $CH_3$ — $CH_2$ $C=C$ $CH_3$                                                                                                                                                                                                                                                                                                                                          | 116                                            | 27.6                                         | C=C R                                              |  |  |
| 2-methylbut-2-ene                                                                                         | CH <sub>3</sub> —C=CH—CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                 | 113                                            | 26.9                                         | trisubstituted<br>R <sub>2</sub> C≔CHR             |  |  |
| 2,3-dimethylbut-2-ene                                                                                     | $(CH_3)_2C = C(CH_3)_2$                                                                                                                                                                                                                                                                                                                                               | 111                                            | 26.6                                         | tetrasubstituted R <sub>2</sub> C==CR <sub>2</sub> |  |  |

More substituted double bonds are usually more stable.


1) Electronic

2) Steric

closer groups

wider separation

trans isomers are generally more stable than the corresponding cis isomers



### **Stability of Cycloalkenes**

Most cycloalkenes react like acyclic (noncyclic) alkenes.

3 and 4-membered rings show evidence of ring strain

HH H H 
$$H_2$$
 Pt  $H_1$   $H_2$   $H_3$   $H_4$   $H_4$   $H_4$   $H_5$   $H_6$   $H_7$   $H_8$   $H_8$ 

cyclopropene

H

propene

#### Stability of Cycloalkenes

For acyclic systems, trans alkenes are usually more stable than cis isomers.

#### For *trans* cycloalkenes:

- 3 6 membered ring = unable to complete the ring systems
- 7 9 membered ring = **less stable** than *cis* isomer

>10 membered ring = nearly as stable as the cis isomer

#### **Example 1** Predict which member of each pair is more stable

(a) 2-methylbut-1-ene

(b) cis, cis-hexa-2,4-diene

or 3-methylbut-1-ene

or trans,trans-hexa-2,4-diene

(c) 1,2-dimethylcyclopropene

(d) trans-1,2-dimethylcyclodecene

or 1,2-dimethylcyclopentene

or trans-1,2-dimethylcycloheptene

# **Physical Properties of Alkenes**

#### Boiling Points, Densities, and Polarity: similar to those of the corresponding alkanes

| Name                          | Structure                                        | Carbons | Boiling Point (°C) | Density (g/cm <sup>3</sup> ) |
|-------------------------------|--------------------------------------------------|---------|--------------------|------------------------------|
| ethene (ethylene)             | $CH_2 = CH_2$                                    | 2       | -104               |                              |
| propene (propylene)           | $CH_3CH = CH_2$                                  | 3       | -47                | 0.52                         |
| 2-methylpropene (isobutylene) | $(CH_3)_2C = CH_2$                               | 4       | -7                 | 0.59                         |
| but-1-ene                     | $CH_3CH_2CH = CH_2$                              | 4       | -6                 | 0.59                         |
|                               | H <sub>3</sub> C H                               |         |                    |                              |
| trans-but-2-ene               | C = C                                            | 4       | 1                  | 0.60                         |
| irans-bat-2-che               | H CH <sub>3</sub>                                | 7       | 1                  | 0.00                         |
|                               | H <sub>3</sub> C CH <sub>3</sub>                 |         |                    |                              |
| cis-but-2-ene                 | C = C                                            | 4       | 4                  | 0.62                         |
| cus out 2 one                 | "                                                | •       | 7                  | 0.02                         |
| 2                             |                                                  | 5       | 25                 | 0.65                         |
| 3-methylbut-1-ene             | $(CH_3)_2CH$ — $CH$ = $CH_2$                     | 5<br>5  | 25                 | 0.65                         |
| pent-1-ene                    | $CH_3CH_2CH_2$ — $CH$ = $CH_2$                   | 3       | 30                 | 0.64                         |
|                               | H <sub>3</sub> C H                               |         |                    |                              |
| trans-pent-2-ene              | C=C(                                             | 5       | 36                 | 0.65                         |
|                               | H CH <sub>2</sub> CH <sub>3</sub>                |         |                    |                              |
|                               | H <sub>3</sub> C CH <sub>2</sub> CH <sub>3</sub> |         |                    |                              |
| -i                            |                                                  | 5       | 37                 | 0.66                         |
| cis-pent-2-ene                | c=c                                              | 5       | 37                 | 0.66                         |
|                               | Н Н                                              |         |                    |                              |
| 2-methylbut-2-ene             | $(CH_3)_2C = CH - CH_3$                          | 5       | 39                 | 0.66                         |
| hex-1-ene                     | $CH_3(CH_2)_3$ — $CH$ = $CH_2$                   | 6       | 64                 | 0.68                         |
| 2,3-dimethylbut-2-ene         | $(CH_3)_2C = C(CH_3)_2$                          | 6       | 73                 | 0.71                         |
| hept-1-ene                    | $CH_3(CH_2)_4$ — $CH$ = $CH_2$                   | 7       | 93                 | 0.70                         |
| oct-1-ene                     | $CH_3(CH_2)_5$ — $CH$ = $CH_2$                   | 8       | 122                | 0.72                         |
| non-1-ene                     | $CH_3(CH_2)_6$ — $CH$ = $CH_2$                   | 9       | 146                | 0.73                         |
| dec-1-ene                     | $CH_3(CH_2)_7$ — $CH$ = $CH_2$                   | 10      | 171                | 0.74                         |

Elimination of Alkyl Halides – E2

Use of a Bulky Base: If the substrate is prone to substitution, a bulky base can minimize the amount of substitution.

$$\begin{array}{c|c} H \\ Br \\ H \end{array} \xrightarrow{(i-Pr)_2\ddot{N}H, \text{ heat}} \begin{array}{c} H \\ + [(CH_3)_2CH]_2\ddot{N}H_2 Br^{-1} \end{array}$$

Elimination of Alkyl Halides – E2

Zaitsev vs. Hofmann product:

$$C = C$$
 $CH_3$ 
 $C = C$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 

Zaitsev product

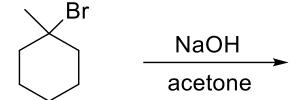
72%

Hofmann product

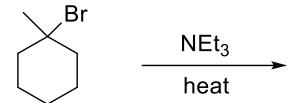
$$CH_{3} - C - C - CH_{2}$$

$$H Br H$$

$$CH_{3} - C - C - CH_{2}$$


$$H Br H$$

$$CH_{3} - C - C - CH_{2}$$


$$CH_{3} - C - C - CH_{3}$$

**Example 2** For each reaction, decide whether substitution or elimination (or both) is possible, and predict the products you expect. Label the major products.

(a)



(b)



(c)



(d)

Elimination of Alkyl Halides – E1

#### Elimination by the E1 mechanism

#### Accompanied by $S_N$ 1 substitution

#### **Example 3** Propose mechanisms for the following reactions.

Dehydration of alcohol

The mechanism of dehydration resembles the **E1 mechanism**. The **hydroxyl group** of the alcohol is a **poor leaving group (OH-)** but **protonation** by the acidic catalyst converts it to a **good leaving group (H<sub>2</sub>O)** 

#### **High temperature Industrial Methods**



Catalytic Cracking of Alkanes

Catalytic Dehydrogenation of Alkanes