2302263 – Organic Chemistry I – Part III

Lecture 2-1

Alkenes – Structures and Nomenclature

Instructor: Asst. Prof. Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

Recommended Textbook:

Chapter 7 in Organic Chemistry, 8th Edition, L. G. Wade, Jr., **2010**, Prentice Hall (Pearson Education)

What is alkene?

Preparation of polyethylene and a variety of other industrial and consumer chemicals.

Major component of turpentine, the paint solvent distilled from extracts of evergreen trees

CH3

double-bond dissociation energy	611 kJ/mol
subtract sigma bond dissociation energy	(-)347 kJ/mol
pi bond dissociation energy	264 kJ/mol

Sex attractant pheromone of the common housefly.

Alkenes L2-1 1

Orbital Description of the Alkene Double Bond

Orbital Description of the Alkene Double Bond

Orbital Description of the Alkene Double Bond

2) Pi bond

Unlike single bonds, a carbon–carbon double bond **does not permit rotation**. **Six atoms**, including the double-bonded carbon atoms and the four atoms bonded to them, must **remain in the same plane**.

Cis - trans isomerism

If two groups are on the **same side** of a double bond (*cis*), they cannot rotate to **opposite sides** (*trans*) without breaking the pi bond.

Degree of Unsaturation in Hydrocarbons

An alkane, is called saturated because it cannot react with any more hydrogen

The presence of a **pi bond** of an alkene (or an alkyne) or the **ring** of a cyclic compound decreases the **number of hydrogen atoms** in a molecular formula. = "**Degree / Element of unsaturation**"

Each degree of unsaturation corresponds to two fewer hydrogen atoms than in the "saturated" formula.

 $CH_3 - C \equiv C - H$

propyne, C₃H₄ two elements of unsaturation

Calculate the maximum number of hydrogen atoms from the saturated formula " $C_n H_{2n+2}$ " and see how many are missing.

Degree of Unsaturation in Hydrocarbons

Example 1

Determine the number of elements of unsaturation in the molecular formula C_4H_6 . Give all 9 possible structures having this formula.

*Note 1 double bond = 1 degree of unsaturation 1 ring = 1 degree of unsaturation 1 triple bond = 2 degree of unsaturation

Degree of Unsaturation with Heteroatoms

 C_2H_6 , saturated

Heteroatoms = any atoms other than carbon and hydrogen

Halogens: Halogens can substitute for hydrogen atoms in the molecular formula: count ۲ halogens as hydrogen atoms

 $\begin{array}{c} CH_2 - CBr_2 \\ | & | \\ CH_2 - CHBr \end{array}$ CH_3 — CHF_2 CH_3 —CH=CH— CBr_3 $CH_3 - CH_3$ C_2H_6 , saturated $C_2H_4F_2$ $C_4H_5Br_3$ $C_4H_5Br_3$ one element of unsaturation one element of unsaturation saturated

Oxygens: An oxygen atom can be added to the chain without changing the number of ۲ hydrogen atoms or carbon atoms: *ignore the oxygen atoms*

Degree of Unsaturation with Heteroatoms

• Nitrogen: A nitrogen atom can take the place of a carbon atom, but nitrogen has only one additional hydrogen atom (compared with two hydrogens for each additional carbon atom): count nitrogen as half a carbon atom.

examples of formula C4H9N, one element of unsaturation

Degree of Unsaturation in Hydrocarbons

Example 2 Draw at least four compounds of formula C₄H₆NOCI

*Note*Notehalogen = counts as H1 double bond = 1 degree of unsaturationoxygen = ignores1 ring = 1 degree of unsaturationnitrogen = counts as ½ C1 triple bond = 2 degree of unsaturation

IUPAC Nomenclature

IUPAC Nomenclature and *cis-trans*

IUPAC Nomenclature and *cis-trans* **nomenclature**

IUPAC Nomenclature and E-Z nomenclature

Use Cahn–Ingold–Prelog convention

If the two first-priority atoms are **together on the same side** of the double bond, you have the **Z** isomer. If the two first-priority atoms are on **opposite sides** of the double bond, you have the **E** isomer.

IUPAC Nomenclature and E-Z nomenclature

