
2302263 – Organic Chemistry I – Part III Lecture 1-4

Alkyl Halides – E1 and E2 Reactions

Instructor: Asst. Prof. Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

Recommended Textbook:

Chapter 6 in *Organic Chemistry*, 8th Edition, L. G. Wade, Jr., **2010**, Prentice Hall (Pearson Education)

$$\begin{array}{c|c}
H & CH_2CH_3 \\
 & | & | \\
 H - C - C - CH_2CH_3 & \xrightarrow{CH_3 \overset{\circ}{\bigcirc}H} \\
 & | & | & | & | \\
 CH_3 & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & |$$

$$H_3C$$
 CH_2C CH_3 \ddot{O} \ddot{O} H

E2

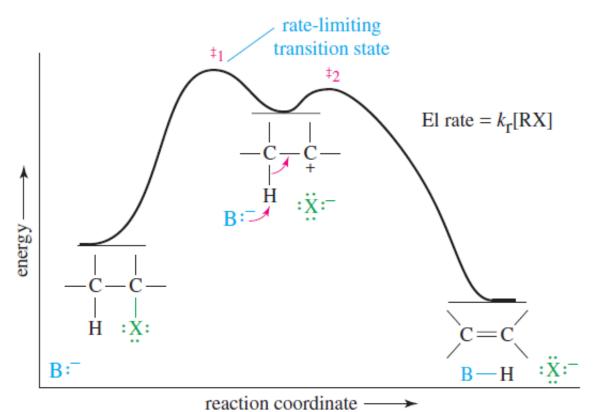
$$CH_3$$
 C $-H$
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3

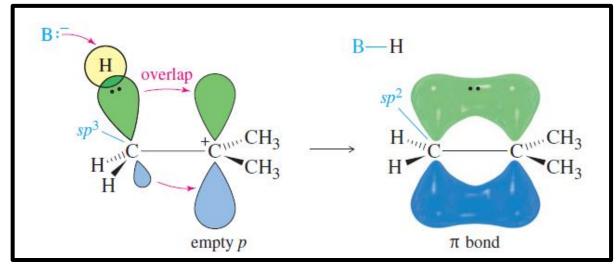
First-Order Elimination (E1)

Mechanism

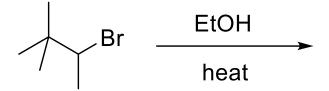
10

E1: Competition with the S_N 1 Reaction

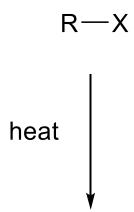

The E1 reaction almost always competes with the S_N1 reaction


E1: Orbitals and Energetics

$$\begin{array}{c} CH_{3} \\ CH_{3} - C - Br \\ CH_{3} \\ CH_{3} \\ \end{array} + \begin{array}{c} CH_{3} - CH_{2} - OH \\ \end{array} \xrightarrow{\begin{array}{c} \text{heat} \\ \text{heat} \end{array}} \begin{array}{c} CH_{3} \\ CH_{3} \\ \end{array}$$


$$\begin{array}{c} CH_{3} \\ CH_{3} \\ \end{array}$$

$$\begin{array}{c} \text{tert-butyl bromide} \\ \end{array} \begin{array}{c} \text{ethanol} \\ \end{array} \begin{array}{c} \text{2-methylpropene} \\ \end{array} \begin{array}{c} \text{(E1 product)} \\ \end{array}$$



E1: Rearrangements

Example 1 When the following compound is heated in methanol, several different products are formed. Propose mechanisms to account for the four products shown.

Summary of Carbocation Reactions

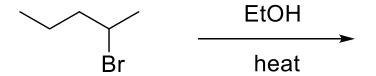
Example 2 Give the substitution and elimination products

Regioselectivity of E1: Zaitsev's Rule

Many compounds can eliminate in more than one way, to give mixtures of alkenes.

the product with the _____ substituted double bond will predominate

tetrasubstituted


trisubstituted

monosubstituted

disubstituted

Example 3 When 3-iodo-2,2-dimethylbutane is treated with silver nitrate in ethanol, three elimination products are formed. Give their structures and predict which one is the major product.

Stereochemistry of E1

Newman projection:

Second-Order Elimination (E2)

Eliminations can also take place under second-order conditions with a **strong base** present.

Rate =

Second-Order Elimination (E2)

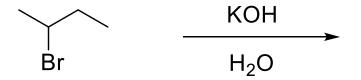
Mechanism

The concerted E2 reaction takes place in a **single step**. A strong base abstracts a proton on a carbon next to the leaving group, and the leaving group leaves. The product is an alkene.

B:-
$$H$$

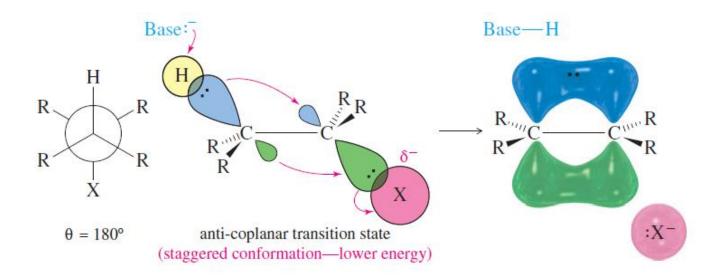
$$X \longrightarrow \begin{bmatrix} B & --H \\ \delta & -X \end{bmatrix}$$

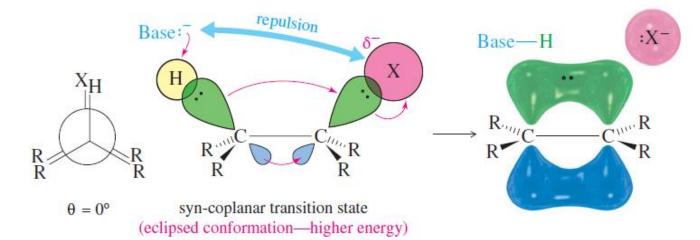
$$C = C^{\text{min}} + B - H + X$$


$$\text{transition state}$$

Reactivity of the Substrate in the E2:

Reactivity of the Substrate in the S_N2 : **3**° 10

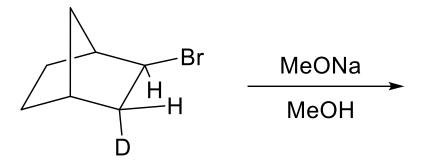

Regioselectivity of E2

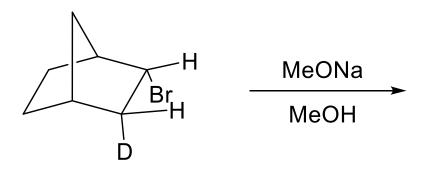

Concerted mechanisms require **specific geometric arrangements** so that the orbitals of the bonds being broken can **overlap** with those being formed and the electrons can flow smoothly from one bond to another.

2 possible conformations:

Anti-periplanar

Syn-periplanar

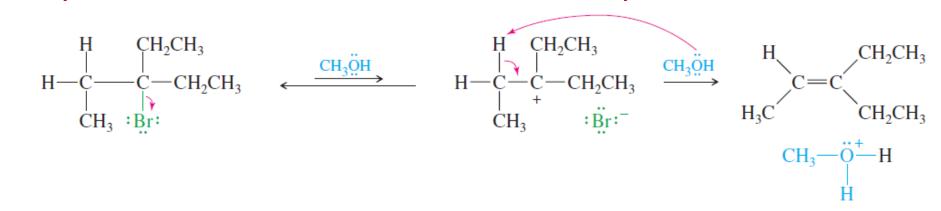

Stereospecific


Stereochemistry of E2

Example 4 Predict the outcome of the following reaction

Example 4

Predict the outcome of the following reaction



Comparison of E1 vs. E2 Reactions

1) Kinetic

$$\begin{array}{c|c} H & CH_2CH_3 \\ | & | \\ H-C-C-C+CH_2CH_3 & \longleftarrow \\ | & | \\ CH_3 : Br: \end{array}$$

2) Base

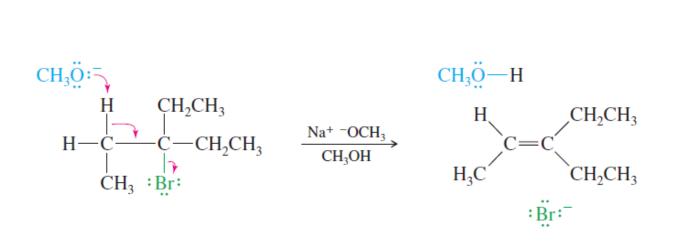
3) Solvent

E2
$$CH_3\ddot{O}:$$
 $CH_3\ddot{O}-H$
 $H CH_2CH_3$
 $H - C - CH_2CH_3$
 CH_3OH
 H_3C
 CH_2CH_3
 H_3C
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_3CH_3
 CH_3CH_3
 CH_3CH_3

Comparison of E1 vs. E2 Reactions

4) Substrate

5) Rearrangements


E2
$$CH_3\ddot{O}:\overline{}$$
 $CH_3\ddot{O}-H$
 $H CH_2CH_3$
 $H - C - CH_2CH_3$
 CH_3OH
 H_3C
 CH_2CH_3
 H_3C
 CH_2CH_3
 CH_2CH_3
 CH_3CH_3
 CH_3CH_3
 CH_3CH_3
 CH_3CH_3
 CH_3CH_3

$$CH_3\ddot{O}$$
— H
 H
 $C=C$
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3

6) Regioselectivity

$$\begin{array}{c|cccc}
H & CH_2CH_3 \\
H - C & C - CH_2CH_3 \\
CH_3 & :Br: -
\end{array}$$

$$H$$
 $C=C$
 CH_2CH_3
 CH_2CH_3
 $CH_3-\ddot{O}^+$
 CH_3

$$CH_3\ddot{O}$$
— H
 CH_2CH_3
 $C=C$
 CH_2CH_3
 CH_2CH_3

7) Stereochemistry

SUMMARY Elimination Reactions

	E 1	E2
Promoting factors		
base	weak bases work	strong base required
solvent	good ionizing solvent	wide variety of solvents
substrate	$3^{\circ} > 2^{\circ}$	$3^{\circ} > 2^{\circ} > 1^{\circ}$
leaving group	good one required	good one required
Characteristics		
kinetics	first order, $k_r[RX]$	second order, $k_{\rm r}[{\rm RX}][{\rm B:}^-]$
orientation	most substituted alkene	most substituted alkene
stereochemistry	no special geometry	coplanar transition state required
rearrangements	common	impossible