2302263 – Organic Chemistry I – Part III

Lecture 1-1

Alkyl Halides - Structures Properties Preparations

Instructor: Asst. Prof. Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

Recommended Textbook:

Chapter 6 in Organic Chemistry, 8th Edition, L. G. Wade, Jr., **2010**, Prentice Hall (Pearson Education)

What is alkyl halide?

Alkyl halides L1-1 2

IUPAC Nomenclature

Prefixes	
F =	
CI =	
Br =	
l =	

IUPAC Nomenclature

Alkyl halides L1-1 3

R

Common Uses

1) Solvents 2) Reagents R-X CH_2CI_2 CHCl₃ o^{Θ} trichloromethane dichloromethane CCI_4 CH₃CCl₃ 1,1,1-trichloroethane tetrachloromethane 3) Anesthetics CHCl₃ trichloromethane Н SOLVENT Br

2-bromo-2-chloro-1,1,1-trifluoroethane

Common Uses

4) Refrigerants & Foaming Agents

freons / chlorofluorocarbons

 CF_2CI_2 dichlorodifluoromethane

CHFCI₂ dichlorofluoromethane

DDT (**D**ichloro**D**iphenylTrichloroethane) 1,1,1-trichloro-2,2-bis-(*p*-chlorophenyl)ethane

lindane

Structure – Dipole moment (µ) Unit = debyes (D)

δ is the amount of charge separation						d is the bond length.									
electronegativity:	I 2.7	<	Br 3.0	<	Cl 3.2	<	F 4.0	bond length:	С—F 1.38 Å	<	C—Cl 1.78 Å	<	C—Br 1.94 Å	<	С—І 2.14 Å

$$C-I < C-Br < C-F < C-CI$$

dipole moment, μ : 1.29 D 1.48 D 1.51 D 1.56 D

Structure – Dipole moment (µ)

Molecular dipole moments

х	CH ₃ X	CH ₂ X ₂	CHX ₃	CX4
F	1.82 D	1.97 D	1.65 D	0
Cl	1.94 D	1.60 D	1.03 D	0
Br	1.79 D	1.45 D	1.02 D	0
Ι	1.64 D	1.11 D	1.00 D	0

Structure – Dipole moment (µ)

Example 1

For each pair of compounds, predict which one has the higher molecular dipole moment

(a) chloroethane or iodoethane

(b) 1-bromopropane or cyclopropane

Physical Properties – Boiling Points

Intermolecular forces

1) London force

2) Dipole-dipole attractions

3) Hydrogen bonding

Physical Properties – Boiling Points

ethyl fluoride, bp -38 °C

ethyl chloride, bp 12 °C

ethyl bromide, bp 38 °C

ethyl iodide, bp 72 °C

Halogen	van der Waals Radius (10 ⁻⁸ cm)
F	1.35
Cl	1.8
Br	1.95
Ι	2.15
H (for comparison)	1.2

Physical Properties – Boiling Points

1

1

	Compound	Molecular Weight	Boiling Point (°C)
ſ	CH ₃ —F	34	-78
	CH ₃ —Cl	50.5	-24
ן י	CH ₃ —Br	95	4
	CH ₃ —I	142	42
	CH ₂ Cl ₂	85	40
	CHCl ₃	119	61
	CCl ₄	154	77
ſ	CH ₃ CH ₂ -F	48	-38
	CH ₃ CH ₂ —Cl	64.5	12
۲	CH ₃ CH ₂ —Br 5	109	38
	сн ₃ сн ₂ —і 6	156	72

	Compound	Molecular Weight	Boiling Point (°C)
	CH ₃ CH ₂ CH ₂ -F	62	3
J	$CH_3CH_2CH_2-Cl$ 2	78.5	47
	CH ₃ CH ₂ CH ₂ -Br 3	123	71
U	CH ₃ CH ₂ CH ₂ -I	4 170	102
-	(CH ₃) ₂ CH-Cl 2	78.5	36
	$(CH_3)_2CH-Br$ 3	123	59
	(CH ₃) ₂ CH-I	4 170	89
ſ	CH ₃ CH ₂ CH ₂ CH ₂ -F	76	33
J	$CH_3CH_2CH_2CH_2-Cl$ 5	92.5	78
	$CH_3CH_2CH_2CH_2$ Br 6	137	102
U	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ -I	184	131
-	(CH ₃) ₃ C-Cl	92.5	52
	(CH ₃) ₃ C-Br	137	73
	(CH ₃) ₃ C-I	184	100

Physical Properties – Density

Compound	Density (g/mL)
CH ₃ —F	
CH ₃ —Cl	0.92
CH ₃ —Br	1.68
CH ₃ —I	2.28
CH ₂ Cl ₂	1.34
CHCl ₃	1.50
CCl ₄	1.60
CH ₃ CH ₂ —F	0.72
CH ₃ CH ₂ —Cl	0.90
CH ₃ CH ₂ —Br	1.46
CH ₃ CH ₂ —I	1.94

Compound	Density (g/mL)
CH ₃ CH ₂ CH ₂ -F	0.80
CH ₃ CH ₂ CH ₂ -Cl	0.89
CH ₃ CH ₂ CH ₂ -Br	1.35
CH ₃ CH ₂ CH ₂ -I	1.75
(CH ₃) ₂ CH—Cl	0.86
(CH ₃) ₂ CH—Br	1.31
(CH ₃) ₂ CH—I	1.70
CH ₃ CH ₂ CH ₂ CH ₂ -F	0.78
CH ₃ CH ₂ CH ₂ CH ₂ -Cl	0.89
CH ₃ CH ₂ CH ₂ CH ₂ -Br	1.28
CH ₃ CH ₂ CH ₂ CH ₂ -I	1.62
(CH ₃) ₃ C—Cl	0.84

Physical Properties

Example 2

For each pair of compounds, predict which compound has the higher boiling point.

(a) 2-bromopropane and 1-bromobutane

(b) 2-chloroopropane and 2-bromo-2-methylpropane

(c) 1-bromobutane and 1-chlorobutane

Physical Properties

Example 3

- When water is shaken with hexane, the two liquids separate into two phases. Which compound is present in the top phase, and which is present in the bottom phase?
- When water is shaken with chloroform, a similar two-phase system results. Again, which compound is present in each phase?
- What do you expect to happen when water is shaken with ethanol (CH₃CH₂OH)?

Alkyl halides L1-115

Synthesis of Alkyl Halides

(a) from alkanes: Free-Radical Halogenation (revision)

(b) from alkenes & alkynes: Addition (in the following topic) $\xrightarrow{Br_2} \xrightarrow{Br} \xrightarrow{Br}$

 \searrow $\xrightarrow{|_{\bigcirc}}$ \swarrow_{1}

Ю

PBr₃ → Br

(c) from alcohols: Substitution (in the following topic)

(d) from other halides: Substitution (in the Synthesis part)

- ٠
- Poor selectivity
 Multiple substitution ٠

Mixture of products ---- Poor yield

Successful reactions:

• Equivalent hydrogens

• Tertiary free-radical intermediate

Successful reactions:

• Allylic bromination

• Allylic bromination – side reactions

• Solution: using *N*-bromosuccinimide (NBS)

Successful reactions:

• Benzylic bromination

Example 4

Show how free-radical halogenation might be used to synthesize the following compounds. In each case, explain why we expect to get a single major product.

(a) 1-chloro-2,2-dimethylpropane

(b) 2-bromo-2-methylbutane

