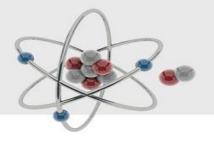
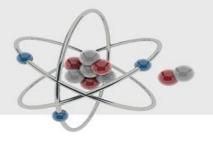
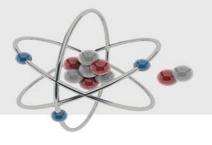
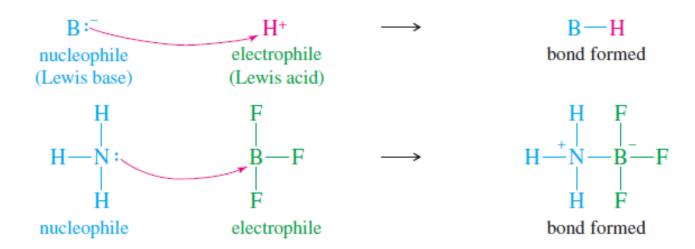

2302263 – Organic Chemistry I – Part III Lecture 0

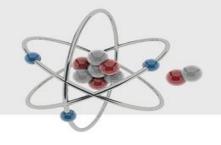
Recap


Instructor: Asst. Prof. Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th

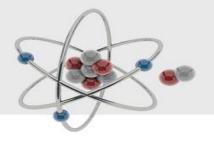

Draw Line-angle formula of the following compound


Draw Line-angle formula of the following compound


How many hydrogen atom is attached to the specified carbons?

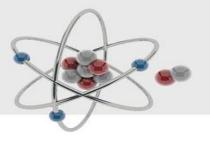


How many hydrogen atom is attached to the specified carbons?


- **Nucleophile** (lover of nuclei) = **Lewis bases** = species with available electrons that can be donated to form new bonds.
- **Electrophile** (lover of electrons) = **Lewis acids** = species that can accept these electron pairs to form new bonds.

The **curved-arrow formalism** is used to show the **flow of an electron pair from the electron donor to the electron acceptor**.

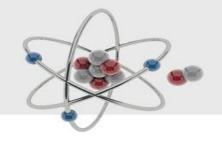
The **movement** of each pair of electrons involved in making or breaking bonds is indicated by its own separate arrow



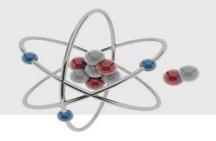
Basic Concept

Nucleophiles

Electrophiles

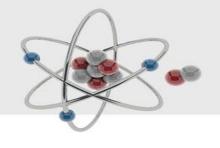

Leaving groups

In the following reactions

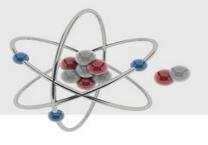

- 1) Use the curved-arrow formalism to show the movement of electron pairs in these reactions
- 2) Determine which species are acting as Electrophiles (E) and which are acting as Nucleophiles (Nu)

(a) O
$$O^{+}H$$

 $CH_{3}-C-H + HCl \longrightarrow CH_{3}-C-H + Cl^{-}$
acetaldehyde


(b)
$$O$$
 CH_3 — C — H + CH_3 — O —
 CH_3 — C — H
acetaldehyde
 O — CH_3

(c)
$$BH_3 + CH_3 - O - CH_3 \longrightarrow CH_3 - O - CH_3$$


(d)
$$CH_3$$
— C — H + $-OH$ \longrightarrow CH_3 — C — H

OH

(f)
$$CH_3$$
— NH_2 + CH_3 — Cl \longrightarrow CH_3 — NH_2 — CH_3 + Cl

(g)
$$CH_3$$
— CH = CH_2 + BF_3 \longrightarrow CH_3 — $\overset{+}{C}H$ — CH_2 — $\overset{-}{B}F_3$

In the following reactions

- 1) Use the **curved-arrow formalism** to show the movement of electron pairs in these reactions
- 2) Determine which species are acting as Electrophiles (E) and which are acting as Nucleophiles (Nu)

a)
$$\xrightarrow{\Theta}$$
 OH $\xrightarrow{H^{\Theta}}$ $\xrightarrow{\Theta}$ O $^{\Theta}$ + H₂

b)
$$OH \longrightarrow OH_2 \longrightarrow CI \longrightarrow CI$$