
2 
 

 

 

UNIT II    INTRODUCTION TO DEEP LEARNING  

History of Deep Learning- A Probabilistic Theory of Deep Learning- Backpropagation and 

regularization, batch normalization- VC Dimension and Neural Nets-Deep Vs Shallow Networks 

Convolutional Networks- Generative Adversarial Networks (GAN), Semi-supervised Learning 

 

2 History of Deep Learning [DL]: 

 The chain rule that underlies the back-propagation algorithm was invented in the 
seventeenth century (Leibniz, 1676; L’Hôpital, 1696) 

 Beginning in the 1940s, the function approximation techniques were used to motivate 
machine learning models such as the perceptron 

 The earliest models were based on linear models. Critics including Marvin Minsky 
pointed out several of the flaws of the linear model family, such as its inability to learn 
the XOR function, which led to a backlash against the entire neural network approach 

 Efficient applications of the chain rule based on dynamic programming began to appear 
in the 1960s and 1970s 

 Werbos (1981) proposed applying chain rule techniques for training artificial neural 
networks. The idea was finally developed in practice after being independently 
rediscovered in different ways (LeCun, 1985; Parker, 1985; Rumelhart et al., 1986a) 

 Following the success of back-propagation, neural network research gained popularity 
and reached a peak in the early 1990s. Afterwards, other machine learning techniques 
became more popular until the modern deep learning renaissance that began in 2006 

 The core ideas behind modern feedforward networks have not changed substantially 
since the 1980s. The same back-propagation algorithm and the same approaches to 
gradient descent are still in use. 

Most of the improvement in neural network performance from 1986 to 2015 can be 

attributed to two factors. First, larger datasets have reduced the degree to which statistical 

generalization is a challenge for neural networks. Second, neural networks have become much 

larger, because of more powerful computers and better software infrastructure.A small 

number of algorithmic changes have also improved the performance of neural networks 

noticeably. One of these algorithmic changes was the replacement of mean squared error with 

the cross-entropy family of loss functions. Mean squared error was popular in the 1980s and 

1990s but was gradually replaced by cross-entropy losses and the principle of maximum 

likelihood as ideas spread between the statistics community and the machine learning 

community. 

The other major algorithmic change that has greatly improved the performance of 

feedforward networks was the replacement of sigmoid hidden units with piecewise linear 

hidden units, such as rectified linear units. Rectification using the max{0, z} function was 

introduced in early neural network models and dates back at least as far as the Cognitron and 

Neo-Cognitron (Fukushima, 1975, 1980). 

For small datasets, Jarrett et al. (2009) observed that using rectifying nonlinearities is 

even more important than learning the weights of the hidden layers. Random weights are 



3 
 

sufficient to propagate useful information through a rectified linear network, enabling the 

classifier layer at the top to learn how to map different feature vectors to class identities. When 

more data is available, learning begins to extract enough useful knowledge to exceed the 

performance of randomly chosen parameters. Glorot et al. (2011a) showed that learning is far 

easier in deep rectified linear networks than in deep networks that have curvature or two-sided 

saturation in their activation functions.  

When the modern resurgence of deep learning began in 2006, feedforward networks 

continued to have a bad reputation. From about 2006 to 2012, it was widely believed that 

feedforward networks would not perform well unless they were assisted by other models, 

such as probabilistic models. Today, it is now known that with the right resources and 

engineering practices, feedforward networks perform very well. Today, gradient-based 

learning in feedforward networks is used as a tool to develop probabilistic models. 

Feedforward networks continue to have unfulfilled potential. In the future, we expect they 

will be applied to many more tasks, and that advances in optimization algorithms and model 

design will improve their performance even further. 

 

      

 

2.1 A Probabilistic Theory of Deep Learning 

Probability is the science of quantifying uncertain things. Most of machine learning and deep 

learning systems utilize a lot of data to learn about patterns in the data. Whenever data is utilized 

in a system rather than sole logic, uncertainty grows up and whenever uncertainty  grows up, 

probability becomes relevant. 

  By introducing probability to a deep learning system, we introduce common sense to the 

system. In deep learning, several models like Bayesian models, probabilistic graphical models, 

Hidden Markov models       are used. They depend entirely on probability concepts. 

Real world data is chaotic. Since deep learning systems utilize real world data, they 

require a tool to handle the chaoticness. 

 



4 
 

 

2.2 Back Propagation Networks (BPN) 

    2.2.1. Need for Multilayer Networks  

 Single Layer networks cannot used to solve Linear Inseparable problems & 

can only be used to solve linear separable problems 

 Single layer networks cannot solve complex problems 

 Single layer networks cannot be used when large input-output data set is 

available 

 Single layer networks cannot capture the complex information’s available in 

the training pairs  

Hence to overcome the above said Limitations we use Multi-Layer Networks. 

2.2.2. Multi-Layer Networks 

  Any neural network which has at least one layer in between input and output 

layers is called Multi-Layer Networks 

  Layers present in between the input and out layers are called Hidden Layers 

  Input layer neural unit just collects the inputs and forwards them to the next 

higher layer 

  Hidden layer and output layer neural units process the information’s feed to 

them and produce an appropriate output 

  Multi -layer networks provide optimal solution for arbitrary classification 

problems 

  Multi -layer networks use linear discriminants, where the inputs are non 

linear 

2.2.3. Back Propagation Networks (BPN) 

  Introduced by Rumelhart, Hinton, & Williams in 1986. BPN is a Multi-

layer Feedforward Network but error is back propagated, Hence the name Back 

Propagation Network (BPN). It uses Supervised Training process; it has a 

systematic procedure for training the network and is used in Error Detection and 

Correction.  Generalized Delta Law /Continuous Perceptron Law/ Gradient Descent 

Law is used in this network. Generalized Delta rule minimizes the mean squared 

error of the output calculated from the output. Delta law has faster convergence rate 

when compared with Perceptron Law. It is the extended version of Perceptron 

Training Law. Limitations of this law is the Local minima problem. Due to this the 

convergence speed reduces, but it is better than perceptron’s. Figure 1 represents a 

BPN network architecture. Even though Multi level perceptron’s can be used they 

are flexible and efficient that BPN. In figure 1 the weights between input and the 

hidden portion is considered as Wij and the weight between first hidden to the next 

layer is considered as Vjk. This network is valid only for Differential Output 

functions. The Training process used in backpropagation involves three stages, 

which are listed as below 

       1. Feedforward of input training pair 



5 
 

       2. Calculation and backpropagation of associated error 

       3. Adjustments of weights 

 

                                              Figure 1: Back Propagation Network 

2.2.4. BPN Algorithm 

The algorithm for BPN is as classified int four major steps as follows: 

1. Initialization of Bias, Weights 

2. Feedforward process 

3. Back Propagation of Errors 

4. Updating of weights & biases                  

Algorithm: 

 I. Initialization of weights: 

Step 1: Initialize the weights to small random values near zero 

Step 2: While stop condition is false , Do steps 3 to 10 

Step 3: For each training pair do steps 4 to 9 

     II.  Feed forward of inputs 

 Step 4: Each input xi is received and forwarded to higher layers (next 

hidden) 

 Step 5: Hidden unit sums its weighted inputs as follows 

                                    Zinj = Woj + Σxiwij 

                     Applying Activation function 

                                     Zj = f(Zinj) 

                              This value is passed to the output layer 

            Step 6: Output unit sums it’s weighted inputs 

   yink= Voj + Σ ZjVjk 

                  Applying Activation function 



6 
 

                                          Yk = f(yink) 

                   III. Backpropagation of Errors 

 Step 7:   δk = (tk – Yk)f(yink ) 

 Step 8:   δinj = Σ δjVjk 

IV. Updating of Weights & Biases 

            Step 8:  Weight correction  is  Δwij = αδkZj 

                                        bias Correction is   Δwoj = αδk 

V. Updating of Weights & Biases 

          Step 9: continued: 

     New Weight is   

   Wij(new) = Wij(old) + Δwij 

    Vjk(new) = Vjk(old) + ΔVjk 

      New bias is 

   Woj(new) = Woj(old) + Δwoj 

                                             Vok(new) = Vok(old) + ΔVok  

  

Step 10:  Test for Stop Condition 

 

2.2.5 Merits 

• Has smooth effect on weight correction 

• Computing time is less if weight’s are small 

• 100 times faster than perceptron model 

•  Has a systematic weight updating procedure 

 

2.2.6. Demerits 

• Learning phase requires intensive calculations 

• Selection of number of Hidden layer neurons is an issue 

• Selection of number of Hidden layers is also an issue 

• Network gets trapped in Local Minima 

• Temporal Instability 

• Network Paralysis 

• Training time is more for Complex problems  

2.3 Regularization 

  A fundamental problem in machine learning is how to make an algorithm that 

will perform well not just on the training data, but also on new inputs. Many strategies 

used in machine learning are explicitly designed to reduce the test error, possibly at 

the expense of increased training error. These strategies are known collectively as 

regularization. 

Definition: - “any modification we make to a learning algorithm that is intended to 

reduce its generalization error but not its training error.” 

 In the context of deep learning, most regularization strategies are based on 

regularizing estimators.  

 Regularization of an estimator works by trading increased bias for reduced 

variance.  



7 
 

An effective regularizer is one that makes a profitable trade, reducing variance 

significantly while not overly increasing the bias. 

 Many regularization approaches are based on limiting the capacity of models, such as 

neural networks, linear regression, or logistic regression, by adding a parameter norm 

penalty Ω(θ) to the objective function J. We denote the regularized objective function 

by J˜ 

                                            J˜(θ; X, y) = J(θ; X, y) + αΩ(θ) 

 

where α ∈ [0, ∞) is a hyperparameter that weights the relative contribution of the norm 

penalty term, Ω, relative to the standard objective function J. Setting α to 0 results in no 

regularization.  Larger values of α correspond to more regularization. 

 The parameter norm penalty Ω that penalizes only the weights of the affine transformation at 

each layer and leaves the biases unregularized.  

      2.3.1 L2 Regularization 

One of the simplest and most common kind of parameter norm penalty is L2 parameter & it’s 

also called  commonly as weight decay. This regularization strategy drives the weights closer 

to the origin by adding a regularization term      . L2 

regularization is also known as ridge regression or Tikhonov regularization. To simplify, we 

assume no bias parameter, so θ is just w. Such a model has the following total objective 

function. 

      

 

 We can see that the addition of the weight decay term has modified the learning rule to 

multiplicatively shrink the weight vector by a constant factor on each step, just before 

performing the usual gradient update. This describes what happens in a single step. 

 The approximation ^J is Given by

 

           Where H is the Hessian matrix of J with respect to w evaluated at w∗. 



8 
 

The minimum of ˆJ occurs where its gradient   ∇wˆJ(w) = H(w − w∗) is equal to ‘0’ 

To study the eff ect of weight decay, 

 

 As α approaches 0, the regularized solution ˜w approaches w*. But what happens as α grows? 

Because H is real and symmetric, we can decompose it into a diagonal matrix Λ and an 

orthonormal basis of eigenvectors, Q, such that   H = QΛQT. Applying Decomposition to the 

above equation, We Obtain  

 

                                                                 

                                      Figure 2: Weight updation effect 

The solid ellipses represent contours of equal value of the unregularized objective. The dotted 

circles represent contours of equal value of the L 2 regularizer. At the point w˜, these competing 

objectives reach an equilibrium. In the first dimension, the eigenvalue of the Hessian of J is small. 

The objective function does not increase much when moving horizontally away from w∗ . Because 

the objective function does not express a strong preference along this direction, the regularizer has a 

strong effect on this axis. The regularizer pulls w1 close to zero. In the second dimension, the 

objective function is very sensitive to movements away from w∗ . The corresponding eigenvalue is 

large, indicating high curvature. As a result, weight decay affects the position of w2 relatively little. 

2.3.2 L1 Regularization 

While L2 weight decay is the most common form of weight decay, there are other ways to 

penalize the size of the model parameters. Another option is to use L1 regularization. 



9 
 

     L1 regularization on the model parameter w is defined as the sum of absolute values of the 

individual parameters. 

                           

 L1 weight decay controls the strength of the regularization by scaling the penalty Ω using a 

positive hyperparameter α. Thus, the regularized objective function J˜(w; X, y) is given by 

 

By inspecting equation 1, we can see immediately that the effect of L 1 regularization is quite 

different from that of L 2 regularization. Specifically, we can see that the regularization 

contribution to the gradient no longer scales linearly with each wi ; instead it is a constant factor 

with a sign equal to sign(wi). 

 

 

2.3.3 Difference between L1 & L2 Parameter Regularization 

 L1 regularization attempts to estimate the median of data, L2 regularization makes estimation 

for the mean of the data in order to evade overfitting. 



10 
 

 L1 regularization can add the penalty term in cost function. But L2 regularization appends the 

squared value of weights in the cost function. 

 L1 regularization can be helpful in features selection by eradicating the unimportant features, 

whereas, L2 regularization is not recommended for feature selection 

 L1 doesn’t have a closed form solution since it includes an absolute value and it is a non-

differentiable function, while L2 has a solution in closed form as it’s a square of a weight 

 

2.4 Batch Normalization: 

 

It is a method of adaptive reparameterization, motivated by the difficulty of training 

very deep models.In Deep networks, the weights are updated for each layer. So the output 

will no longer be on the same scale as the input (even though input is 

normalized).Normalization - is a data pre-processing tool used to bring the numerical data to 

a common scale without distorting its shape.when we input the data to a machine or deep 

learning algorithm we tend to change the values to a  balanced scale because, we  ensure that 

our model can generalize appropriately.(Normalization is used to bring the input into a 

balanced scale/ Range). 

      

 



11 
 

 

 

 

  Even though the input X was normalized but the output is  no longer on the same scale. The 

data passes through multiple layers of network with multiple times(sigmoidal) activation functions 

are applied, which leads to an internal co-variate shift in the data. 

This motivates us to move towards Batch Normalization 

Normalization is the process of altering the input data to have mean as zero and standard deviation 

value as one. 

2.4.1 Procedure to do Batch Normalization: 

(1) Consider the batch input from layer h, for this layer we need to calculate the mean of this hidden 

activation. 

(2) After calculating the mean the next step is to calculate the standard deviation of the hidden 

activations. 

(3) Now we normalize the hidden activations using these Mean & Standard Deviation values. To do 

this, we subtract the mean from each input and divide the whole value with the sum of standard 

deviation and the smoothing term (ε). 

(4) As the final stage, the re-scaling and offsetting of the input is performed. Here two components 

of the BN algorithm is used, γ(gamma) and β (beta). These parameters are used for re-scaling (γ) and 

shifting(β) the vector contains values from the previous operations. 

These two parameters are learnable parameters, Hence during the training of  neural network, 

the optimal values of γ and β are obtained and used. Hence we get the accurate normalization of each 

batch. 

 

Image Source: https://www.analyticsvidhya.com/blog/2021/03/introduction-to-batch-normalization/ 



12 
 

 

2.5. Shallow Networks 

Shallow neural networks give us basic idea about deep neural network which consist 

of only 1 or 2 hidden layers. Understanding a shallow neural network gives us an 

understanding into what exactly is going on inside a deep neural network A neural network 

is built using various hidden layers. Now that we know the computations that occur in a 

particular layer, let us understand how the whole neural network computes the output for a 

given input X. These can also be called the forward-propagation equations. 

 

                                                                   

                                 

 

Figure 2:Shallow Networks – Generic Model 



13 
 

 

 

2.5.1 Difference Between a Shallow Net & Deep Learning Net: 

Sl.No             Shallow Net’s         Deep Learning Net’s 

1 One Hidden layer(or very less no. of 

Hidden Layers) 

Deep Net’s has many layers of Hidden 

layers with more no. of neurons in 

each layers 

2 Takes input only as VECTORS DL can have raw data like image, text 

as inputs 

3 Shallow net’s needs more parameters 

to have better fit 

DL can fit functions better with less 

parameters than a shallow network 

4 Shallow networks with one Hidden 

layer (same no of neurons as DL) 

cannot place complex functions over 

the input space 

DL can compactly express highly 

complex functions over input space  

5 The number of units in a shallow 

network grows exponentially with 

task complexity. 

DL don’t need to increase it 

size(neurons) for complex problems 

6 Shallow network is more difficult to 

train with our current algorithms (e.g. 

it has issues of local minima etc) 

Training in DL is easy and no issue of 

local minima in DL 

              

Reference Books: 

1. B. Yegnanarayana, “Artificial Neural Networks” Prentice Hall Publications.  

2. Simon Haykin, “Artificial Neural Networks”, Second Edition, Pearson Education. 

3. Laurene Fausett, “Fundamentals of Neural Networks, Architectures, Algorithms and 

Applications”, Prentice Hall publications. 

4. Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015. 

5. 2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013. 

6. 3. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016. 

7. 4. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015. 

 

Note: For further reference, kindly refer the class notes, PPTs, Video lectures 

available in the Learning Management System (Moodle) 

 

*************************** ALL THE BEST ************************************* 


