
 
Gradient-based learning 

 

Gradient-based learning is the workhorse behind training deep learning models. It's 
an optimization technique that helps adjust internal parameters, like weights and 
biases, to improve the model's performance on a given task. Here's a breakdown of 
the key elements: 

Key Concepts: 

• Gradient: Imagine a hilly landscape. The gradient points downhill, indicating 
the direction of steepest descent. Similarly, in deep learning, the gradient 
shows how much each parameter change affects the model's error. 

• Cost Function: This measures how well the model performs on a specific 
task. Think of it as the height on the hilly landscape. Gradient-based learning 
aims to minimize the cost function. 

• Optimization Algorithm: This tool uses the gradient information to adjust the 
parameters iteratively. Popular algorithms include: 

o Batch Gradient Descent: Updates parameters after processing all 
training data, good for small datasets. 

o Stochastic Gradient Descent (SGD): Updates parameters after each 
data point, faster for large datasets but prone to oscillations. 

o Adam, RMSprop: Advanced algorithms that address SGD's drawbacks. 

How it Works: 

1. Feed data through the model: The model generates an output and compares 
it to the desired output (ground truth). 

2. Calculate the cost function: This measures the error between the predicted 
and desired outputs. 

3. Compute the gradient: This shows how much each parameter change affects 
the cost function. 

4. Update parameters: The optimization algorithm uses the gradient to adjust the 
parameters in a direction that reduces the cost function. 

5. Repeat steps 1-4: This iterative process continues until the model converges 
to a good performance level. 

Benefits: 

• Efficiently trains complex deep learning models. 
• Adaptable to various tasks and architectures. 
• Well-understood and widely implemented. 

Limitations: 

• Can get stuck in local minima, not reaching the best possible solution. 
• Tuning learning rate and other hyperparameters requires expertise. 
• May not be suitable for all problems, like non-convex optimization. 


