June9

09 June 2020 02:11

Stack in Python

A stack is a linear data structure that stores items in a Last-In/First-Out (LIFO) or First-
In/Last-Out (FILO) manner. In stack, a new element is added at one end and an element is
removed from that end only. The insert and delete operations are often called push and pop.

. Push
< Last in, first out
Stack ,
Insertion and Deletion e ™
happen on same end Uyt uyuuy \
'#np h Pop

The functions associated with stack are:
e empty() — Returns whether the stack is empty — Time Complexity : O(1)
e size() — Returns the size of the stack — Time Complexity : O(1)
e top() — Returns a reference to the top most element of the stack — Time Complexity :
O(1)
e push(g) — Adds the element ‘g’ at the top of the stack — Time Complexity : O(1)
e pop() — Deletes the top most element of the stack — Time Complexity : O(1)

Implementation
There are various ways from which a stack can be implemented in Python. This article covers
the implementation of stack using data structures and modules from Python library.

Stack in Python can be implemented using following ways:
e list
e collections.deque
e queue.LifoQueue

Implementation using list

Python’s builin data structure list can be used as a stack. Instead of push(), append() is used
to add elements to the top of stack while pop() removes the element in LIFO order.

Drawback: The biggest issue is that it can run into speed issue as it grows. The items in list
are stored next to each other in memory, if the stack grows bigger than the block of memory
that currently hold it, then Python needs to do some memory allocations.

Implementation using collections.deque

Python stack can be implemented using deque class from collections module.

Advantage: Deque is preferred over list in the cases where we need quicker append and pop
operations from both the ends of the container, as deque provides an O(1) time complexity
for append and pop operations as compared to list which provides O(n) time complexity.

¢+ Same methods on deque as seen in list are used, append() and pop().

Implementation using queue module

Queue module also has a LIFO Queue, which is basically a Stack. Data is inserted into
Queue using put() function and get() takes data out from the Queue.

There are various functions available in this module:

= maxsize — Number of items allowed in the queue.

= empty() — Return True if the queue is empty, False otherwise.

= full() — Return True if there are maxsize items in the queue. If the queue was initialized
with maxsize=0 (the default), then full() never returns True.

= get() — Remove and return an item from the queue. If queue is empty, wait until an item
is available.

= get_nowait() — Return an item if one is immediately available, else raise QueueEmpty.

= put(item) — Put an item into the queue. If the queue is full, wait until a free slot is
available before adding the item.

= put_nowait(item) — Put an item into the queue without blocking.

= (size() — Return the number of items in the queue. If no free slot is immediately
available, raise QueueFull.

Applications of stack:
1. Expression Handling —

= Infix to Postfix or Infix to Prefix Conversion —

The stack can be used to convert some infix expression into its postfix equivalent, or
prefix equivalent. These postfix or prefix notations are used in computers to express
some expressions. These expressions are not so much familiar to the infix expression,
but they have some great advantages also. We do not need to maintain operator
ordering, and parenthesis.

= Postfix or Prefix Evaluation —

After converting into prefix or postfix notations, we have to evaluate the expression to
get the result. For that purpose, also we need the help of stack data structure.

2. Backtracking Procedure —

Backtracking is one of the algorithm designing technique. For that purpose, we dive
into some way, if that way is not efficient, we come back to the previous state and go
into some other paths. To get back from current state, we need to store the previous
state. For that purpose, we need stack. Some examples of backtracking is finding the
solution for Knight Tour problem or N-Queen Problem etc.

3. Another great use of stack is during the function call and return process. When we call
a function from one other function, that function call statement may not be the first
statement. After calling the function, we also have to come back from the function area
to the place, where we have left our control. So we want to resume our task, not restart.
For that reason, we store the address of the program counter into the stack, then go to
the function body to execute it. After completion of the execution, it pops out the
address from stack and assign it into the program counter to resume the task again.

= Expression Handling

Infix Expression Prefix Expression Postfix Expression
A+B*C+D ++A*BCD ABC*+D+
(A+B)*(C +D) *+AB+CD AB+CD+*
A*B+C*D +*AB*CD AB*CD*+
A+B+C+D +++ABCD AB+C+D+

Infix to Postfix
Infix expression: The expression of the form a op b. When an operator is in-between every
pair of operands.

Postfix expression: The expression of the form a b op. When an operator is followed for
every pair of operands.

Moving Operators to the Right for Postfix Notation

- Moving Operators to the Left for Prefix Notation

Why postfix representation of the expression?
The compiler scans the expression either from left to right or from right to left.

Consider the below expression: a opl b op2 ¢ op3 d
Ifopl =+, op2="*,0p3 =+

The compiler first scans the expression to evaluate the expression b * ¢, then again scan the

expression to add a to it. The result is then added to d after another scan.

The repeated scanning makes it very in-efficient. It is better to convert the expression to
postfix(or prefix) form before evaluation.

The corresponding expression in postfix form is: abc*+d+. The postfix expressions can be
evaluated easily using a stack.

Algorithm

1. Scan the infix expression from left to right.

2. If the scanned character is an operand, output it.

3. Else,

..... 3.1 If the precedence of the scanned operator is greater than the precedence of the
operator in the stack(or the stack is empty or the stack contains a ‘(*), push it.

..... 3.2 Else, Pop all the operators from the stack which are greater than or equal to in
precedence than that of the scanned operator. After doing that Push the scanned operator to
the stack. (If you encounter parenthesis while popping then stop there and push the scanned
operator in the stack.)

4. If the scanned character is ‘(‘, push it to the stack.

5. If the scanned character is)’, pop the stack until ‘(‘ is encountered, and discard both the
parenthesis.

6. Repeat steps 2-6 until infix expression is scanned.

7. Print the output

8. Pop and output from the stack until it is not empty.

Evaluation of Postfix Expression

The Postfix notation is used to represent algebraic expressions. The expressions written in
postfix form are evaluated faster compared to infix notation as parenthesis are not required in
postfix.

Algorithm:

1) Create a stack to store operands (or values).

2) Scan the given expression and do following for every scanned element.

.....a) If the element is a number, push it into the stack

.....b) If the element is a operator, pop operands for the operator from stack. Evaluate the
operator and push the result back to the stack

3) When the expression is ended, the number in the stack is the final answer

Example:

Let the given expression be “2 3 1 * + 9 -“. We scan all elements one by one.

= Scan ‘2’, it’s a number, so push it to stack. Stack contains ‘2’

= Scan ‘3’, again a number, push it to stack, stack now contains ‘2 3’ (from bottom to
top)

= Scan ‘1’, again a number, push it to stack, stack now contains 23 1’

= Scan ‘*’, it’s an operator, pop two operands from stack, apply the * operator on
operands, we get 3*1 which results in 3. We push the result ‘3’ to stack. Stack now
becomes 2 3’.

= Scan ‘+’, it’s an operator, pop two operands from stack, apply the + operator on
operands, we get 3 + 2 which results in 5. We push the result 5’ to stack. Stack now

becomes 5°.

= Scan ‘9’, it’s a number, we push it to the stack. Stack now becomes ‘5 9°.
= Scan ‘-, it’s an operator, pop two operands from stack, apply the — operator on

operands, we get 5 — 9 which results in -4. We push the result ‘-4’ to stack. Stack now
becomes ‘-4’.

= There are no more elements to scan, we return the top element from stack (which is the

only element left in stack).

Questions to implement

1.
2.

3.

Infix to Postfix Conversion, and postfix evaluation using stack.

Given a stack, how to reverse the elements of the stack using only stack operations
(push & pop)

Given n non-negative integers representing the histogram's bar height where the
width of each bar is 1, find the area of largest rectangle in the histogram. For
example, consider the following histogram with 7 bars of heights {6, 2, 5, 4, 5, 1, 6}.
The largest possible rectangle possible is 12 (see the below figure, the max area
rectangle is highlighted in red) Note: Solve the problem in both complexity
O(nlog) and O(n)

Max Area=3x4 =12

Given a non-negative integer num represented as a string, remove k digits from
the number so that the new number is the smallest possible. Note: The length of
num is less than 10002 and will be > k. The given num does not contain any
leading zero.

Example 1:

Input: num = "143221¢", k = 3

Output: "1219"

Explanation: Remcve the three digits 4, 3, and 2 toc form the new
number 1219 which is the smallest.

Example 2:

Input: num = "10200", k = 1

Output: "200"

Explanation: Remove the leading 1 and the number is 200. Note that
the cutput must not contain leading zeroes.

Example 3:

Input: num = "10", k = 2

Output: "0O"

Explanation: Remove all the digits from the number and it is left
with nothing which is 0.

