June8

07 June 2020 01:34

Link List

Linked lists are an ordered collection of objects.

Like arrays, Linked List is a linear data structure.

Unlike arrays, linked list elements are not stored at a contiguous location but are linked using
pointers.

Head

A Ha

Data Next

C _)I D _) NULL

N

what makes them different from normal lists?

Linked lists differ from lists in the way that they store elements in memory. While lists use a
contiguous memory block to store references to their data, linked lists store references as part of
their own elements.

Why Linked List?

Arrays can be used to store linear data of similar types, but arrays have the following limitations.
1) The size of the arrays is fixed: So we must know the upper limit on the number of elements in
advance. Also, generally, the allocated memory is equal to the upper limit irrespective of the
usage.

2) Inserting a new element in an array of elements is expensive because the room has to be
created for the new elements and to create room existing elements have to be shifted.

Advantage- Ease of insertion/deletion

Drawbacks:

1) Random access is not allowed. We have to access elements sequentially starting from the first
node. So we cannot do binary search with linked lists efficiently with its default implementation.
2) Extra memory space for a pointer is required with each element of the list.

3) Not cache friendly. Since array elements are contiguous locations, there is locality of
reference which is not there in case of linked lists.

Main Concept -

Each element of a linked list is called a node, and every node has two different fields:
1. Data contains the value to be stored in the node.
2. Next contains a reference to the next node on the list.

what a typical node looks like:
Data Next

A linked list is a collection of nodes. The first node is called the head, and it’s used as the
starting point for any iteration through the list. The last node must have its next reference
pointing to None to determine the end of the list.

3 —» 1 —» 4 |—> 10 —» None

Linked List

How to Create a Linked List?
First things first, create a class to represent your linked list:

class LinkedList:
def __init__ (self):
self.head = None

The only information you need to store for a linked list is where the list starts (the head of the
list). Next, create another class to represent each node of the linked list:

class Node:
def _init_ (self, data):
self.data = data
self.next = None

In the above class definition, you can see the two main elements of every single node: data and
next.
Youcanalsoadda repr to both classes to have a more helpful representation of the objects

class Node:
def __init_ (self, data):
self.data = data
self.next = None

def _ _repr__ (self):
return self.data

class LinkedList:
def __init__ (self):
self.head = None

def __repr__(self):

node = self.head

nodes = []

while node is not None:
nodes.append(node.data)
node = node.next

nodes.append(“None™)

return " -> ".join(nodes)

Using above classes lets create Linked List with three nodes

llist = LinkedList() #Empty Linked List
print(llist)

Node("monday™)
first_node # Linked List with head

first_node
1list.head
print(llist)

second_node = Node("Tuesday"™)

third_node = Node("Wednesday")

first_node.next = second_node

second_node.next = third_node # Linked List with end
print(llist)

> None
monday -> None
monday -> Tuesday -> Wednesday -> None

How to Traverse a Linked List?

One of the most common things you will do with a linked list is to traverse it. Traversing means
going through every single node, starting with the head of the linked list and ending on the node

that has a next value of None.

Traversing is just a fancier way to say iterating.

#for traversal
def printlList(self):

node = self.head

while (node):
print (node.data)
node = node.next

The method above goes through the list and yields every single node. The most important thing
to remember about this is that you need to always validate that the current node is not None.
When that condition is True, it means you’ve reached the end of your linked list.

After yielding the current node, you want to move to the next node on the list.
That’s why you add node = node.next.

Questions to implement

1.

2.

Given a linked list consists of data, a next pointer and also a random pointer which points
to random node of the list. Write code for cloning the list.

Find modular node from the end: Given a singly linked list, write a function to find the first
from the end whose n%k= =0, where n is the number of elements in the list and k is an
integer constant. If n = 19 and k = 3 then we should return 16th node.

Reversing a linked list in pairs If you have a linked list that holds 1 -> 2 --> 3->4->X then
after reverse it should return 2->1->4->3->X

Suppose there are two singly linked lists both of which intersect at some point and become
a

single linked list. The head or start pointers of both the lists are known, but the intersecting
node is not known. Also, the number of nodes in each of the lists before they intersect is
unknown and may be different in each list. list 1 may have n nodes before it reaches the
intersection point, and list 2. might have m nodes before it reaches the intersection point
where m and n may be m =n, m <n orm > n.

