June?2

01 June 2020 10:50

Search Algorithms

Searching Algorithms are designed to check for an element or retrieve an element from any data structure where
it is stored. Based on the type of search operation, these algorithms are generally classified into two categories:

1. Sequential Search: In this, the list or array is traversed sequentially and every element is checked. For
example: Linear Search.

2. Interval Search: These algorithms are specifically designed for searching in sorted data-structures. These
type of searching algorithms are much more efficient than Linear Search as they repeatedly target the
centre of the search structure and divide the search space in half. For Example: Binary Search.

e Linear Search
e Binary Search

Linear Search -:

Linear Search
Find '20'

N N

0 1 2 3 - - 6 I 8
10]50]30]70] 80] 60[20[90 40

Algorithm .

¢ Start from the leftmost element of arr[] and one by one compare x with each element of arr[]
¢ If x matches with an element, return the index.
e If x doesn’t match with any of elements, return -1

The time complexity of above algorithm is O(n)

Binary Search -:

Search a sorted array by repeatedly dividing the search interval in half. Begin with an interval covering the
whole array. If the value of the search key is less than the item in the middle of the interval, narrow the interval
to the lower half. Otherwise narrow it to the upper half. Repeatedly check until the value is found or the interval
is empty.

Binary Search

%% [2]5 [[12]16]2s 3856 72] o1
0 1 2 3 4 L=5 6 M= 8 H=9
%% [2[5 [s [12[16 23]38]88 72 o1]

=5,M=5 H=6
R0 [2]5 & [12 16 [@a] 38] 56] 72] o1

Algorithm

e Compare x with the middle element.
¢ [f x matches with middle element, we return the mid index.

e Else If x is greater than the mid element, then x can only lie in right half subarray after the mid element.
So we recur for right half.
¢ Else (x is smaller) recur for the left half.

The idea of binary search is to use the information that the array is sorted and reduce the time complexity to
O(Log n).

Linear Search vs Binary Search

A linear search scans one item at a time, without jumping to any item .

1. The worst case complexity is O(n), sometimes known an O(n) search
2. Time taken to search elements keep increasing as the number of elements are increased.
Find 'J'

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
A B CDEFGH I J K L MNUOWP QRS TUV WX

A binary search however, cut down your search to half as soon as you find middle of a sorted list.

1. The middle element is looked to check if it is greater than or less than the value to be searched.
2. Accordingly, search is done to either half of the given list

Find 'J’

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
A B C D EF GH I J KL MNUOWPOAQWRS T UV WX

Important Differences

» Input data needs to be sorted in Binary Search and not in Linear Search

» Linear search does the sequential access whereas Binary search access data randomly.

o Time complexity of linear search O(n) , Binary search has time complexity O(log n).

e Linear search performs equality comparisons and Binary search performs ordering comparisons

Search an element in a sorted and rotated array

An element in a sorted array can be found in O(log n) time via binary search. But suppose we rotate an
ascending order sorted array at some pivot unknown to you beforehand. So for instance, 1 2 3 4 5 might become
3451 2. Devise a way to find an element in the rotated array in O(log n) time.

3 4 S 1 2

Examples for reference -

Input : arr[] = {5, 6, 7, 8, 9, 10, 1, 2, 3};
key = 3
Output : Found at index 8

Input : arr[] = {5, 6, 7, 8, 9, 10, 1, 2, 3};
key = 30
Output : Not found

Input : arr[] = {30, 40, 50, 10, 20}
key = 10
Output : Found at index 3

The idea is to find the pivot point, divide the array in two sub-arrays and call binary search.
The main idea for finding pivot is — for a sorted (in increasing order) and pivoted array, pivot element is the only element
for which next element to it is smaller than it.

Using above criteria and binary search methodology we can get pivot element in O(logn) time

Algorithm

Input arr[] = {3, 4, 5, 1, 2}
Element to Search =1
1) Find out pivot point and divide the array in two
sub-arrays. (pivot = 2) /*Index of 5*/
2) Now call binary search for one of the two sub-arrays.
(a) If element is greater than Oth element then
search in left array
(b) Else Search in right array
(1 will go in else as 1 < @th element(3))
3) If element is found in selected sub-array then return index
Else return -1.

Questions to be completed

1. Given an array of positive integers. All numbers occur even number of times except one number which
occurs odd number of times. Find the number in O(n) time & constant space.

2. Given a sorted array of n integers that has been rotated an unknown number of times, give a O(logn)
algorithm that finds an clement in the array. Example: Find 7 in array (15 16 19202513457 10 14)
Output: 8 (the index of 7 in the array)

3. Implement Recursive and Iterative binary search an element in a given array

