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Preface

This book is devoted to a rapidly developing branch of the qualitative theory
of differential equations with or without delays. It summarizes the most recent
contributions of the authors and their colleagues in this area and will be a stimulus
to its further development.

There are eight chapters in this book. After the preliminaries in Chapter 1,
we present oscillatory and nonoscillatory properties of first order delay differential
equations and first order neutral delay differential equations in Chapters 2 and 3,
respectively. Classification schemes and existence of positive solutions of neutral
delay differential equations with variable coefficients are also considered. In Chap-
ter 4, oscillation and nonoscillation of second order nonlinear differential equations
without delays is investigated. Chapter 5 is devoted to classification schemes and
existence of positive solutions of second order delay differential equations with or
without neutral terms. Nonoscillation and oscillation of higher order delay dif-
ferential equations is considered in Chapter 6. Chapter 7 features oscillation and
nonoscillation for two-dimensional systems of nonlinear differential equations. Fi-
nally, in Chapter 8, we give some first results on the oscillation of dynamic equations
on time scales. Time scales have been introduced in order to unify continuous and
discrete analysis and to extend those theories to cases “in between”. Many results
given in the first seven chapters of this book may be generalized within the time
scales setting (hence accommodating differential equations and difference equations
simultaneously), and in this final chapter we present some of those results.

This book is addressed to a wide audience of specialists such as mathematicians,
physicists, engineers and biologists. It can be used as a textbook at the graduate
level and as a reference book for several disciplines.

Thanks are due to Xiao-Yun Cao for her assistance in typing portions of the
book and a very special thank you to Dr. Murat Adıvar, Dr. Elvan Akın-Bohner,
Dr. Xiang-Li Fei, and Dr. Hai-Feng Huo for their help in proofreading. Finally, we
wish to express our thanks to the staff of Marcel Dekker, Inc., in particular Maria
Allegra and Elizabeth Draper, for their cooperation during the preparation of this
book for publication.

Ravi Agarwal
Martin Bohner
Wan-Tong Li
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CHAPTER 1

Preliminaries

1.1. Introduction

This chapter is essentially introductory in nature. Its main purpose is to present
some basic concepts from the theory of delay differential equations and to sketch
some preliminary results which will be used throughout the book. In this respect,
this is almost a self-contained monograph. The reader may glance at the material
covered in this chapter and then proceed to Chapter 2.

Section 1.2 is concerned with the statement of the basic initial value problems
and classification of equations with delays. In Section 1.3 we provide definition
of oscillation of solutions with or without delays. Section 1.4 states some fixed
point theorems which are important tools in oscillation theory, especially, when
one proves the existence of nonoscillatory solutions.

1.2. Initial Value Problems

Let us consider the ordinary differential equation (ODE)

(1.1) x′(t) = f(t, x)

together with the initial condition

(1.2) x(t0) = x0.

It is well known that under certain assumptions on f the initial value problem (1.1)
and (1.2) has a unique solution and is equivalent to the integral equation

x(t) = x(t0) +
∫ t

t0

f
(
s, x(s)
)

ds for t ≥ t0.

Next, we consider a differential equation of the form

(1.3) x′(t) = f
(
t, x(t), x(t − τ)

)
with τ > 0 and t ≥ t0,

in which the right-hand side depends not only on the instantaneous position x(t),
but also on x(t − τ), the position at τ units back, that is to say, the equation has
past memory. Such an equation is called an ordinary differential equation with delay
or delay differential equation. Whenever necessary, we shall consider the integral
equation

x(t) = x(t0) +
∫ t

t0

f
(
s, x(s), x(s − τ)

)
ds,

which is equivalent to (1.3). In order to define a solution of (1.3), we need to have
a known function ϕ on [t0 − τ, t0], instead of just the initial condition x(t0) = x0.

1

 



2 1. PRELIMINARIES

The basic initial value problem for a delay differential equation is posed as
follows: On the interval [t0, T ], T ≤ ∞, we seek a continuous function x that
satisfies (1.3) and an initial condition

(1.4) x(t) = ϕ(t) for all t ∈ Et0 ,

where t0 is an initial point, Et0 = [t0 − τ, t0] is the initial set; the known function ϕ
on Et0 is called the initial function. Usually, it is assumed that ϕ(t0 + 0) = ϕ(t0).
We always mean a one-sided derivative when we speak of the derivative at an
endpoint of an interval.

Under general assumptions, the existence and uniqueness of solutions to the
initial value problem (1.3) and (1.4) can be established (see, for example, Győri
and Ladas [118]). The solution sometimes is denoted by x(t, ϕ). In the case of a
variable delay τ = τ(t) > 0 in (1.3), it is also required to find a solution of this
equation for t > t0 such that on the initial set

Et0 = t0 ∪
{

t − τ(t) : t − τ(t) < t0, t ≥ t0

}
,

x coincides with the given initial function ϕ. If it is required to determine the
solution on the interval [t0, T ], then the initial set is

Et0T = {t0} ∪
{

t − τ(t) : t − τ(t) < t0, t0 ≤ t ≤ T
}

.

Example 1.2.1. For the equation

y′(t) = f
(
t, y(t), y(t − cos2 t)

)
,

t0 = 0, E0 = [−1, 0], and the initial function ϕ must be given on the interval [−1, 0].

The initial set Et0 depends on the initial point t0, as can be seen from the
following example.

Example 1.2.2. For the equation

y′(t) = ay(t/2),

we have τ(t) = t/2 so that

E0 = {0} and E1 = [1/2, 1].

Now we consider the differential equation of nth order with l deviating argu-
ments, of the form

(1.5) y(m0)(t) = f
(
t, y(t), . . . , y(m0−1)(t), y(t − τ1(t)), . . . , y(m1−1)(t − τ1(t)), . . . ,

y(t − τl(t)), . . . , y(ml−1)(t − τl(t))
)

,

where the deviations τi(t) > 0, and max0≤i≤l mi = n.

In order to formulate the initial value problem for (1.5), we shall need the
following notation. Let t0 be the given initial point. Each deviation τi(t) defines
the initial set E

(i)
t0 given by

E
(i)
t0 = {t0} ∪

{
t − τi(t) : t − τi(t) < t0, t ≥ t0

}
.
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We denote Et0 = ∪l
i=1E

(i)
t0 , and on Et0 continuous functions ϕk, k = 0, 1, . . . , μ,

must be given, with μ = max0≤i≤l mi. In applications, it is most natural to consider
the case where on Et0 ,

ϕk(t) = ϕ
(k)
0 (t) for k = 0, 1, . . . , μ,

but it is not generally necessary.

For the nth order differential equation, there should be given initial values y
(k)
0 ,

k = 0, 1, 2, . . . , n − 1. Now let y
(k)
0 = ϕk(t0), k = 0, 1, 2, . . . , μ. If μ < n − 1, then,

in addition, the numbers y
(μ+1)
0 , ..., y

(n−1)
0 are given. If the point t0 is an isolated

point of Et0 , then y
(0)
0 , . . . , y

(n)
0 are also given.

For (1.5), the basic initial value problem consists of the determination of an
(n − 1) times continuously differentiable function y that satisfies (1.5) for t > t0
and the conditions

y(k)(t0 + 0) = y
(k)
0

for k = 0, 1, . . . , n − 1, and

y(k)(t − τi(t)) = ϕk(t − τi(t)) if t − τi(t) < t0

for k = 0, 1, . . . , μ and i = 1, 2, . . . , l. At the point t0 + (k − 1)τ the derivative
y(k)(t), generally speaking, is discontinuous, but the derivatives of lower order are
continuous.

Example 1.2.3. Consider

(1.6) y′′(t) = f

(
t, y(t), y′(t), y(t − cos2 t), y

(
t

2

))
.

For t0 = 0, we have n = 2, l = 2, μ = 0, the initial sets E
(1)
0 = [−1, 0], E

(2)
0 = {0},

and E0 = [−1, 0], on which is given the initial function ϕ0, y
(0)
0 = ϕ0(0), and y

(1)
0

is any given number.

For (1.5) a classification method was proposed by Kamenskĭı [141]. We let
λ = m0 − μ. If λ > 0, (1.5) is called an equation with retarded arguments or with
delay. If λ = 0, it is called an equation of neutral type. If λ < 0, it is called an
equation of advanced type.

Example 1.2.4. The equations

y′(t) + a(t)y(t − τ) = 0 with τ > 0,

y′(t) + a(t)y(t + τ) = 0 with τ > 0,

and

y′(t) + a(t)y(t) + b(t)y′(t − τ) = 0 with τ > 0

are of retarded type (λ = 1), advanced type (λ = −1), and neutral type (λ = 0),
respectively.

In applications, the equation with retarded arguments is most important; the
theory of such equations has been developed extensively. In this book we study
mainly equations with or without delays.
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1.3. Definition of Oscillation

Before we define oscillation of solutions, let us consider some simple examples.

Example 1.3.1. The equation

y′′ + y = 0

has periodic solutions y1(t) = cos t and y2(t) = sin t.

Example 1.3.2. Consider the equation

y′′(t) − 1
t
y′(t) + 4t2y(t) = 0,

whose solution is y(t) = sin t2. This solution is not periodic but has an oscillatory
property.

Example 1.3.3. Consider the equation

(1.7) y′′(t) +
1
2
y′(t) − 1

2
y(t − π) = 0 for t ≥ 0,

whose solution y(t) = 1 − sin t has an infinite sequence of multiple zeros. This
solution also has an oscillatory property.

Example 1.3.4. Consider the equation

y′′(t) − y(−t) = 0.

This equation has an oscillatory solution y1(t) = sin t and a nonoscillatory solution
y2(t) = et + e−t.

Let us now restrict our discussion to those solutions y of the equation

(1.8) y′′(t) + a(t)y(t − τ(t)) = 0

which exist on some ray [Ty,∞) and satisfy sup{|y(t)| : t ≥ T} > 0 for every
T ≥ Ty. In other words, |y(t)| �≡ 0 on any infinite interval [T,∞). Such a solution
sometimes is said to be a regular solution.

We usually assume that a(t) ≥ 0 or a(t) ≤ 0 in (1.8), and in doing so we mean
to imply that a(t) �≡ 0 on any infinite interval [T,∞).

There are various possibilities of defining oscillation of solutions of ODEs (with
or without delays). In this section, we give two definitions of oscillation, which
are used in the rest of the book; these are the ones most frequently used in the
literature.

As we see from the above examples, the definition of oscillation of regular solu-
tions can have two different forms.

Definition 1.3.5. A nontrivial solution y (implying a regular solution always) is
said to be oscillatory if it has arbitrarily large zeros for t ≥ t0, that is, there exists a
sequence of zeros {tn} (i.e., y(tn) = 0) of y such that limn→∞ tn = ∞. Otherwise,
y is said to be nonoscillatory.

For nonoscillatory solutions there exists t1 such that

y(t) �= 0 for all t ≥ t1.

Definition 1.3.6. A nontrivial solution y is said to be oscillatory if it changes sign
on (T,∞), where T is any number.
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When τ(t) ≡ 0 and a(t) is continuous in (1.8), the two definitions given above
are equivalent. This is because of the fact that the uniqueness of the solution
makes multiple zeros impossible. However, as Example 1.2.3 suggests, a differential
equation with delay can have solutions with multiple zeros. Then the two definitions
are different, especially for higher order ordinary differential equations which may
have solutions with multiple zeros.

Definition 1.3.5 is more general than Definition 1.3.6. The solution y(t) = 1−sin t
of (1.7) is oscillatory according to Definition 1.3.5 and is nonoscillatory according
to Definition 1.3.6.

In Example 1.3.3, the possibility of multiple zeros of nontrivial solutions is a
consequence of the retardation, since if τ(t) ≡ 0, the corresponding equation has
no solutions with multiple zeros.

For the system of first order equations with deviating arguments{
x′ = f1(t, x, x ◦ τ1, y, y ◦ τ2),
y′ = f2(t, x, x ◦ τ1, y, y ◦ τ2),

the solution (x, y) is said to be strongly (weakly) oscillatory if each (at least one) of
its components is oscillatory. Otherwise, it is said to be strongly (weakly) nonoscil-
latory if each (at least one) of its nontrivial components is nonoscillatory.

1.4. Some Fixed Point Theorems

Fixed point theorems are important tools in proving the existence of nonoscil-
latory solutions. In this section we state some fixed point theorems that we need
later. Let us begin with the following notation.

Let S be any fixed set and CS be the relation of strict inclusion on subsets of S:

CS =
{

(A,B) : A ⊆ B ⊆ S and A �= B
}

We write A ⊂S B instead of the notation (A,B) ∈ CS .
For the set of real numbers, we have the usual ordering relation <. For any

distinct real numbers x and y, either x < y or y < x.

Definition 1.4.1. A partial ordering is a relation R satisfying

(i) if xRy and yRz, then xRz (i.e., R is transitive),
(ii) if xRy and yRx, then x = y (i.e., R is antisymmetric).

If < is such a relation, then we can define x ≤ y if either x < y or x = y. It is
easy to see that x ≤ y < z implies x < z.

Lemma 1.4.2. Assume that < is a partial ordering. Then for any x, y, and z, at
most one of the three alternatives

x < y, x = y, y < x

can hold. Also, x ≤ y ≤ x implies x = y.

Definition 1.4.3. Suppose that < is a partial ordering on A, and consider a subset
C of A. An upper bound of C is an element b ∈ A such that x ≤ b for all x ∈ C.
Here b may or may not belong to C. If b is the least element of the set of all upper
bounds for C, then b is called the least upper bound (or supremum) of C. We write

 



6 1. PRELIMINARIES

b = sup C. Similarly we define the greatest lower bound or infimum a of C and
write a = inf C.

Example 1.4.4. Consider a fixed set S. The set consisting of all subsets of S is
denoted by P(S). Let the partial ordering be ⊂S on S. For A and B in P(S), the
set {A,B} has a least upper bound (w.r.t. ⊂S), namely A ∪ B.

Theorem 1.4.5. Let < be a partial ordering relative to a field A, and suppose that
every B ⊆ A has a least upper bound and that inf A ∈ A. Suppose that F maps A
into A in such a way that for all x, y ∈ A,

x ≤ y implies Fx ≤ Fy.

Then F has a fixed point in A, i.e., Fx = x for some x ∈ A.

Definition 1.4.6. A subset S of a normed space X is called bounded if there is a
number M such that ‖x‖ ≤ M for all x ∈ S.

Definition 1.4.7. A set S in a vector space X is called convex if, for any x, y ∈ S,
λx + (1 − λ)y ∈ S for all λ ∈ [0, 1].

Definition 1.4.8. Let M,N be normed linear spaces, and X ⊂ N . An operator
T : X → M is called continuous at a point x ∈ X if for any ε > 0 there exists δ > 0
such that ‖Tx − Ty‖ < ε whenever y ∈ X with ‖x − y‖ < δ. The operator T is
called continuous on X, or simply continuous, if it is continuous at all points of X.

Theorem 1.4.9. Every continuous mapping of a closed bounded convex set in Rn

into itself has a fixed point.

Definition 1.4.10. A subset S of a normed space B is called compact if every
infinite sequence of elements of S has a subsequence which converges to an element
of S.

We can prove that compact sets are closed and bounded, but vice versa this is
in general not true.

Lemma 1.4.11. Continuous mappings take compact sets into compact sets. In
other words, if M,N are normed linear spaces, X ⊂ M is compact, and T : X → N
is continuous, then the image of X under T , i.e., the set T (X) = {Tx : x ∈ X}, is
compact.

Definition 1.4.12. A subset S of a normed linear space N is called relatively
compact if every sequence in S has a subsequence converging to an element of N .

It is obvious that every subset of a compact or relatively compact set is relatively
compact.

Lemma 1.4.13. The closure of a relatively compact set is compact, and a closed
and relatively compact set is compact.

Definition 1.4.14. A function f : R → C is called bounded on an interval I ⊂ R

if there exists M > 0 such that |f(x)| ≤ M for all x ∈ I. A family F of functions
is called uniformly bounded on I if there exists M > 0 such that |f(x)| ≤ M for all
x ∈ I and all f ∈ F .

Lemma 1.4.15. Continuous mappings on compact sets are uniformly continuous.
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Definition 1.4.16. A family F of functions is called equicontinuous on an interval
I ⊂ R if for every ε > 0 there exists δ > 0 such that for all f ∈ F , |f(x) − f(y)| < ε
whenever x, y ∈ I with |x − y| < δ.

Theorem 1.4.17 (Arzelà–Ascoli). A set of functions in C[a, b] with

‖f‖ = sup
x∈[a,b]

|f(x)|

is relatively compact iff it is uniformly bounded and equicontinuous on [a, b].

Theorem 1.4.18 (Schauder’s First Fixed Point Theorem). If S is a convex and
compact subset of a normed linear space, then every continuous mapping of S into
itself has a fixed point.

Theorem 1.4.19 (Schauder’s Second Fixed Point Theorem). If S is a convex
closed subset of a normed linear space and R a relatively compact subset of S, then
every continuous mapping of S into R has a fixed point.

Theorem 1.4.19 is the more useful form for the theory of ordinary differential
equations or delay differential equations.

Remark 1.4.20. We should point out that we need to use Theorem 1.4.17 care-
fully, because we usually discuss problems on the infinite interval [t0,∞) in the
qualitative theory of ODEs. That is, we usually want to prove that the family
of functions is uniformly bounded and equicontinuous on [t0,∞). Levitan’s result
[168] provides a correct formulation. According to his result, the family of func-
tions is equicontinuous on [t0,∞) if for any given ε > 0, the interval [t0,∞) can
be decomposed into a finite number of subintervals in such a way that on each
subinterval all functions of the family have oscillations less than ε.

Definition 1.4.21. A real-valued function ρ defined on a linear space X is called
a seminorm on X if

(i) ρ(x + y) ≤ ρ(x) + ρ(y) for all x, y ∈ X,
(ii) ρ(αx) = |α| ρ(x) for all x ∈ X and all scalars α.

From this definition, we can prove that a seminorm ρ satisfies ρ(0) = 0,

ρ(x1 − x2) ≥ |ρ(x1) − ρ(x2)| ,
and in particular ρ(x) ≥ 0. However, it may happen that ρ(x) = 0 for x �= 0.

Definition 1.4.22. A family P of semimorms on X is said to be separating if to
each x �= 0 there corresponds at least one ρ ∈ P with ρ(x) �= 0.

For a separating seminorm family P, if ρ(x) = 0 for every ρ ∈ P, then x = 0.

Definition 1.4.23. A topology T on a linear space E is called locally convex if
every neighborhood of the element 0 includes a convex neighborhood of 0.

A locally convex topology T on a linear space E is determined by a family of
seminorms {ρα : α ∈ I}, I being the index set.

Let E be a locally convex space, x ∈ E, {xn} ⊂ E. We say that xn → x in E if
ρα(xn − x) → 0 as n → ∞ for every α ∈ I.

A set S ⊂ E is bounded if and only if the set of numbers {ρα(x) : x ∈ S} is
bounded for every α ∈ I.
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Definition 1.4.24. A complete metrizable locally convex space is called a Fréchet
space.

Theorem 1.4.25 (Schauder–Tychonov Theorem). Let X be a locally convex topo-
logical linear space, C a compact convex subset of X, and f : C → C a continuous
mapping such that f(C) is compact. Then f has a fixed point in C.

For example, C([t0,∞), R) is a locally convex space consisting of the set of all
continuous functions. The topology of C is the topology of uniform convergence
on every compact interval of [t0,∞). The seminorm of the space C([t0,∞), R) is
defined by

ρα(x) = max
t∈[t0,α]

|x(t)| for x ∈ C and α ∈ [t0,∞).

Let X be any set. A metric in X is a function d : X × X → R having the
following properties for all x, y, z ∈ X:

(i) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, z) ≤ d(x, y) + d(y, z).

A metric space is a set X together with a given metric in X. A complete metric
space is a metric space X in which every Cauchy sequence converges to a point in
X. A Banach space is a normed space that is complete with respect to the metric
d(x, y) = ‖x − y‖ defined by the norm.

Let (X, d) be a metric space and let T : X → X. If there exists a number
L ∈ [0, 1) such that

d(Tx, Ty) ≤ Ld(x, y) for all x, y ∈ X,

then we say that T is a contraction mapping on X.

Theorem 1.4.26 (Banach’s Contraction Mapping Principle). A contraction map-
ping on a complete metric space has exactly one fixed point.

Theorem 1.4.27 (Krasnosel′skĭı’s Fixed Point Theorem). Let X be a Banach
space, let Ω be a bounded closed convex subset of X, and let A,B be maps of Ω into
X such that Ax + By ∈ Ω for every pair x, y ∈ Ω. If A is a contraction and B is
completely continuous, then the equation

Ax + Bx = x

has a solution in Ω.

A nonempty and closed subset K of a Banach space X is called a cone if it
possesses the following properties:

(i) If α ∈ R+ and x ∈ K, then αx ∈ K;
(ii) if x, y ∈ K, then x + y ∈ K;
(iii) if x ∈ K \ {0}, then −x /∈ K.

Theorem 1.4.28 (Knaster’s Fixed Point Theorem). Let X be a partially ordered
Banach space with ordering ≤. Let M be a subset of X with the following properties:
The infimum of M belongs to M and every nonempty subset of M has a supremum
which belongs to M . Let T : M → M be an increasing mapping, i.e., x ≤ y implies
Tx ≤ Ty. Then T has a fixed point in M .
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Let X be a Banach space, let K be a cone in X, and let ≤ be the ordering in
X induced by K, i.e., x ≤ y if and only if y − x ∈ K. Let D be a subset of K and
T : D → K a mapping.

We denote by 〈x, y〉 the closed ordered interval between x and y, i.e.,

〈x, y〉 =
{

z ∈ X : x ≤ z ≤ y
}

.

We assume that the cone K is normal in X, which implies that ordered intervals
are norm bounded. The cones of nonnegative functions are normal in the space of
continuous functions with supremum norm and in the space Lp.

Theorem 1.4.29. Let X be a Banach space, K a normal cone in X, D a subset
of K such that if x, y ∈ D with x ≤ y, then 〈x, y〉 ⊂ D, and let T : D → K be
a continuous decreasing mapping which is compact on any closed ordered interval
contained in D. Suppose that there exists x0 ∈ D such that T 2x0 is defined (where
T 2x0 = T (Tx0)) and furthermore Tx0, T 2x0 are (order) comparable to x0. Then
T has a fixed point in D provided that either

(i) Tx0 ≤ x0 and T 2x0 ≤ x0, or Tx0 ≥ x0 and T 2x0 ≥ x0, or
(ii) the complete sequence of iterates {Tnx0}∞n=0 is bounded and there exists

y0 ∈ D such that Ty0 ∈ D and y0 ≤ Tnx0 for all n ∈ N0.

Theorem 1.4.30. Let X be a Banach space and A : X → X a completely con-
tinuous mapping such that I − A is one-to-one. Let Ω be a bounded set with
0 ∈ (I − A)(Ω). Then the completely continuous mapping S : Ω → X has a
fixed point in the closure Ω if for any λ ∈ (0, 1), the equation

x = λSx + (1 − λ)Ax

has no solution x on the boundary ∂Ω of Ω.

1.5. Notes

The material in Chapter 1 is based on Erbe, Kong, and Zhang [92], Ladde,
Lakshmikantham, and Zhang [166], and Zhong, Fan, and Chen [304].

 



CHAPTER 2

First Order Delay Differential Equations

2.1. Introduction

In this chapter, we will describe some of the recent developments in oscillation
theory of first order delay differential equations. This theory is interesting from the
theoretical as well as the practical point of view. It is well known that homogeneous
ordinary differential equations (ODEs) of first order do not possess oscillatory solu-
tions. But the presence of deviating arguments can cause oscillation of solutions. In
this chapter we will see these phenomena and we will show various techniques used
in oscillation and nonoscillation theory of differential equations with delays. We
will present some criteria for oscillation and for the existence of positive solutions
of delay differential equations of first order.

2.2. Equations with a Single Delay: General Case

We consider linear delay differential inequalities and equations of the form

x′(t) + p(t)x (τ(t)) ≤ 0,(2.1)

x′(t) + p(t)x (τ(t)) ≥ 0,(2.2)

and

x′(t) + p(t)x (τ(t)) = 0,(2.3)

where p, τ ∈ C([t0,∞), R+), τ(t) ≤ t, and limt→∞ τ(t) = ∞. Set

(2.4) m = lim inf
t→∞

∫ t

τ(t)

p(s)ds and M = lim sup
t→∞

∫ t

τ(t)

p(s)ds.

The following lemmas will be used to prove the main results of this section. All in-
equalities in this section and in the later parts hold eventually if it is not mentioned
specifically.

Lemma 2.2.1. Suppose that m > 0 and set

δ(t) = max
{

τ(s) : s ∈ [t0, t]
}

.

Then we have

(2.5) lim inf
t→∞

∫ t

δ(t)

p(s)ds = lim inf
t→∞

∫ t

τ(t)

p(s)ds = m.

Proof. Clearly, δ(t) ≥ τ(t) and so∫ t

δ(t)

p(s)ds ≤
∫ t

τ(t)

p(s)ds.

11
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Hence

lim inf
t→∞

∫ t

δ(t)

p(s)ds ≤ lim inf
t→∞

∫ t

τ(t)

p(s)ds.

If (2.5) does not hold, then there exist m′ > 0 and a sequence {tn} such that
tn → ∞ as n → ∞ and

lim
n→∞

∫ tn

δ(tn)

p(s)ds < m′ < m.

By definition, δ(tn) = max{τ(s) : s ∈ [t0, tn]}, and hence there exists t′n ∈ [t0, tn]
such that δ(tn) = τ(t′n). Hence∫ tn

δ(tn)

p(s)ds =
∫ tn

τ(t′n)

p(s)ds >

∫ t′n

τ(t′n)

p(s)ds.

It follows that
{∫ t′n

τ(t′n)
p(s)ds
}∞

n=1
is a bounded sequence having a convergent sub-

sequence, say ∫ t′nk

τ(t′nk
)

p(s)ds → c ≤ m′ as k → ∞,

which implies that

lim inf
t→∞

∫ t

τ(t)

p(s)ds ≤ m′,

contradicting the first definition in (2.4).

Lemma 2.2.2. Let x be an eventually positive solution of (2.1).

(i) If m > 1
e , then

(2.6) lim
t→∞

x(τ(t))
x(t)

= ∞.

(ii) If m ≤ 1
e , then

lim
t→∞

x(τ(t))
x(t)

≥ λ,

where λ is the smallest positive root of the equation

(2.7) λ = emλ.

Proof. Let t1 be a sufficiently large number so that x(τ(t)) > 0 for t ≥ t1. Hence x
is decreasing on [t1,∞) and

(2.8)
x′(t)
x(t)

≤ −p(t)
x(τ(t))
x(t)

≤ −p(t).

Integrating (2.8) from τ(t) to t we have that eventually

x(τ(t))
x(t)

≥ exp

(∫ t

τ(t)

p(s)ds

)
.

Then, for any ε > 0, there exists Tε such that

(2.9)
x(τ(t))
x(t)

≥ em − ε for all t ≥ Tε.
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Substituting (2.9) into (2.8) we have x′(t)
x(t) ≤ −(em − ε)p(t) for t ≥ Tε, and hence

lim inf
t→∞

x(τ(t))
x(t)

≥ exp (mem) .

Set λ0 = 1 and recursively λn = exp(mλn−1) for all n ∈ N. For a sequence {εn}
with εn > 0 and εn → 0 as n → ∞, there exists a sequence {tn} such that tn → ∞
as n → ∞ and

x(τ(t))
x(t)

≥ λn − εn for all t ≥ tn.

If m > 1
e , then limn→∞ λn = ∞, and (2.6) holds. If m = 1

e , then limn→∞ λn = e,
and if m < 1

e , then λn tends to the smallest root of (2.7).

Remark 2.2.3. From Theorem 2.2.6 we will see that (2.1) has no eventually pos-
itive solutions if m > 1

e .

Lemma 2.2.4. Assume τ is nondecreasing, 0 ≤ m ≤ 1
e , and x is an eventually

positive solution of (2.1). Set

r = lim inf
t→∞

x(t)
x(τ(t))

.

Then

(2.10) A(m) :=
1 − m −

√
1 − 2m − m2

2
≤ r ≤ 1.

Proof. Assume that x(t) > 0 for t > T1 ≥ t0 and that there exists a sequence {Tn}
such that T1 < T2 < T3 < . . . and τ(t) > Tn for t > Tn+1, n ∈ N. Hence x(τ(t)) > 0
for t > T2. In view of (2.1), x′(t) ≤ 0 on (T2,∞). Clearly, (2.10) holds for m = 0.
If 0 < m ≤ 1

e , for any ε ∈ (0,m), there exists Nε such that

(2.11)
∫ t

τ(t)

p(s)ds > m − ε for t > Nε.

Let ε > 0 and t > Nε. Then

f(λ) :=
∫ λ

t

p(s)ds is continuous and lim
λ→∞

f(λ) > m − ε > 0 = f(t).

Hence there exists λt > t such that f(λt) = m − ε, i.e.,∫ λt

t

p(s)ds = m − ε

holds. From (2.11) we have∫ λt

τ(λt)

p(s)ds > m − ε =
∫ λt

t

p(s)ds

and therefore τ(λt) < t.

Integrating (2.1) from t > max{T4, Nε} to λt we have

(2.12) x(t) − x(λt) ≥
∫ λt

t

p(y)x(τ(y))dy.

We see that τ(t) ≤ τ(y) ≤ τ(λt) < t for t ≤ y ≤ λt.
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Integrating (2.1) from τ(y) to t we have that for t ≤ y ≤ λt

x(τ(y)) − x(t) ≥
∫ t

τ(y)

p(u)x(τ(u))du(2.13)

≥ x(τ(t))
∫ t

τ(y)

p(u)du

= x(τ(t))

(∫ y

τ(y)

p(u)du −
∫ y

t

p(u)du

)

> x(τ(t))
[
(m − ε) −

∫ y

t

p(u)du

]
.

From (2.12) and (2.13) we have

x(t) ≥ x(λt) +
∫ λt

t

p(y)x(τ(y))dy(2.14)

> x(λt) +
∫ λt

t

p(y)
{

x(t) + x(τ(t))
[
(m − ε) −

∫ y

t

p(u) du

]}
dy

= x(λt) + x(t)(m − ε) + x(τ(t))

[
(m − ε)2 −

∫ λt

t

p(y)
∫ y

t

p(u)dudy

]
.

Noting the known formula∫ λt

t

∫ y

t

p(y)p(u)dudy =
∫ λt

t

∫ λt

u

p(y)p(u)dydu =
∫ λt

t

∫ λt

y

p(y)p(u)dudy,

we have∫ λt

t

∫ y

t

p(y)p(u)dudy =
1
2

[∫ λt

t

∫ y

t

p(y)p(u)dudy +
∫ λt

t

∫ λt

y

p(y)p(u)dudy

]

=
1
2

∫ λt

t

∫ λt

t

p(y)p(u)dudy

=
1
2

[∫ λt

t

p(s)ds

]2
=

1
2
(m − ε)2.

Substituting this into (2.14) we have

(2.15) x(t) > x(λt) + (m − ε)x(t) +
1
2
(m − ε)2x(τ(t)).

Hence (note that 1 − m + ε > 0)

(2.16)
x(t)

x(τ(t))
>

(m − ε)2

2(1 − m + ε)
=: d1,

and then

x(λt) >
(m − ε)2

2(1 − m + ε)
x(τ(λt)) = d1x(τ(λt)) ≥ d1x(t).

Substituting this into (2.15) we obtain

x(t) > (m + d1 − ε)x(t) +
1
2
(m − ε)2x(τ(t)),
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and hence
x(t)

x(τ(t))
>

(m − ε)2

2(1 − m − d1 + ε)
=: d2.

In general we have

x(t)
x(τ(t))

>
(m − ε)2

2(1 − m − dn + ε)
=: dn+1 for n ∈ N.

It is not difficult to see that if ε is small enough, then 1 ≥ dn+1 > dn for all n ∈ N.
Hence limn→∞ dn = d exists and satisfies

−2d2 + 2d(1 − m + ε) = (m − ε)2,

i.e.,

d =
1 − m + ε ±

√
1 − 2(m − ε) − (m − ε)2

2
.

Therefore, for all large t,

x(t)
x(τ(t))

≥ 1 − m + ε −
√

1 − 2(m − ε) − (m − ε)2

2
.

Letting ε → 0, we obtain that

x(t)
x(τ(t))

≥ 1 − m −
√

1 − 2m − m2

2
= A(m).

This shows that (2.10) holds.

Lemma 2.2.5. Assume that M ∈ (0, 1] and that τ is nondecreasing. Let x be an
eventually positive solution of (2.1). Set

lim inf
t→∞

x(τ(t))
x(t)

= l.

Then

(2.17) l ≤ B(M) :=
(

1 +
√

1 − M

M

)2

.

Proof. For a given ε ∈ (0,M), there exists a sequence {tn} such that tn → ∞ as
n → ∞ and ∫ tn

τ(tn)

p(s)ds > M − ε, tn > T, n ∈ N.

Set θε = 1 −
√

1 − (M − ε). It is easy to see that 0 < θε < M − ε for small ε.
Hence there exists {λn} such that τ(tn) < λn < tn and∫ tn

λn

p(s)ds = θε for n ∈ N.

Integrating (2.1) from λn to tn, we obtain

x(λn) − x(tn) ≥
∫ tn

λn

p(s)x(τ(s))ds ≥ x(τ(tn))
∫ tn

λn

p(s)ds = θεx(τ(tn)).
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Similarly, we have

x(τ(tn)) − x(λn) ≥
∫ λn

τ(tn)

p(s)x(τ(s))ds

≥ x(τ(λn))
∫ λn

τ(tn)

p(s)ds

= x(τ(λn))

[∫ tn

τ(tn)

p(s)ds −
∫ tn

λn

p(s)ds

]
> x(τ(λn))(M − ε − θε).

From the above inequalities we get

x(λn) > θεx(τ(tn)) > θε

(
x(λn) + x(τ(λn))(M − ε − θε)

)
and then

x(τ(λn))
x(λn)

<
1 − θε

θε(M − ε − θε)
for n ∈ N,

which implies that

l ≤ 1 − θε

θε(M − ε − θε)
for all ε ∈ (0,M).

Now, θε → 1 −
√

1 − M as ε → 0, and then we obtain

l ≤
√

1 − M

(1 −
√

1 − M)(M − 1 +
√

1 − M)
=
(

1 +
√

1 − M

M

)2

,

which is (2.17).

We are now in a position to state oscillation criteria for (2.3).

Theorem 2.2.6. Assume m > 1
e . Then

(i) (2.1) has no eventually positive solutions;
(ii) (2.2) has no eventually negative solutions;
(iii) every solution of (2.3) is oscillatory.

Proof. It is sufficient to prove (i) as (ii) and (iii) follow from (i). Suppose the
contrary is true, and let x be an eventually positive solution of (2.1). In view of
Lemma 2.2.1, we may assume that τ is nondecreasing. By Lemma 2.2.2,

lim inf
t→∞

x(τ(t))
x(t)

= ∞.

On the other hand, from (2.16), x(τ(t))
x(t) is bounded above. This contradiction proves

(i).

Remark 2.2.7. If τ is nondecreasing and M ∈ (0, 1], then the condition m > 1
e in

Theorem 2.2.6 can be replaced by

(2.18) m >
ln b

b
with b = min{e,B(M)},

where B(M) is defined in (2.17).
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Proof. To see this, let x be a positive solution of (2.1). Set w(t) = x(τ(t))
x(t) . By

Lemma 2.2.5, lim inft→∞ w(t) = l ≤ B(M). From (2.1), we obtain

−x′(t)
x(t)

≥ p(t)w(t) for all t ≥ T,

where T is sufficiently large. Integrating from τ(t) to t we obtain

lnw(t) ≥
∫ t

τ(t)

p(s)w(s)ds = w(ξt)
∫ t

τ(t)

p(s)ds

for some ξt ∈ [τ(t), t] and hence

ln l = lim inf
t→∞ lnw(t) ≥ lm

and

m ≤ ln l

l
≤ ln b

b
which contradicts (2.18). Therefore (2.1) has no eventually positive solutions.

Theorem 2.2.8. Assume 0 ≤ m ≤ 1
e and τ is nondecreasing. Furthermore, sup-

pose

(2.19) M > 1 − A(m),

where A(m) is defined in (2.10), or

(2.20) M >
lnλ + 1

λ
,

where λ is the smallest positive root of the equation (2.7). Then the conclusions of
Theorem 2.2.6 are true.

Proof. As in Theorem 2.2.6, it is sufficient to show that under our assumptions (2.1)
has no eventually positive solutions. We assume that x is an eventually positive
solution of (2.1). Integrating (2.1) from τ(t) to t we obtain

x(τ(t)) − x(t) ≥
∫ t

τ(t)

p(s)x(τ(s))ds ≥ x(τ(t))
∫ t

τ(t)

p(s)ds.

Then if (2.19) holds, by Lemma 2.2.4, we have

M = lim sup
t→∞

∫ t

τ(t)

p(s)ds ≤ lim sup
t→∞

[
1 − x(t)

x(τ(t))

]
(2.21)

= 1 − lim inf
t→∞

x(t)
x(τ(t))

= 1 − r ≤ 1 − A(m),

which contradicts (2.10).
If (2.20) holds, choose m′ < m sufficiently close to m such that

(2.22) M = lim sup
t→∞

∫ t

τ(t)

p(s)ds >
lnλ′ + 1

λ′ ,

where λ′ is the smallest root of the equation λ = em′λ.

Clearly, λ′ < λ and hence ln λ′+1
λ′ > ln λ+1

λ . By Lemma 2.2.2, we have

(2.23)
x(τ(t))
x(t)

> λ′ for all large t.
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From (2.22), there exists t1 so that (2.23) holds for all t > τ(τ(t1)), and

(2.24)
∫ t1

τ(t1)

p(s)ds >
lnλ′ + 1

λ′ .

Without loss of generality denote t0 = τ(t1). We shall show that x(t) > 0 on
[t0, t1] will lead to a contradiction. In fact, let t2 ∈ [t0, t1] be a point at which
x(t0)/x(t2) = λ′. If such a point does not exist, take t2 = t1. Integrating (2.1) over
[t2, t1] and noting that x(τ(t)) ≥ x(t0), we have

(2.25)
∫ t1

t2

p(s)ds ≤ 1
λ′ .

On the other hand, dividing (2.1) by x(t) and integrating it over [t0, t2] we find

(2.26)
∫ t2

t0

p(s)ds ≤ − 1
λ′

∫ t2

t0

x′(s)
x(s)

ds =
lnλ′

λ′ .

Combining (2.25) and (2.26) we get∫ t1

t0

p(s)ds ≤ lnλ′ + 1
λ′ ,

which contradicts (2.24).

Example 2.2.9. Consider the equation

(2.27) x′(t) +
0.85

aπ +
√

2
(2a + cos t) x

(
t − π

2

)
= 0,

where a = 1.137. Then (2.27) is in the form (2.3) with

p(t) =
0.85

aπ +
√

2
(2a + cos t) and τ(t) = t − π

2
.

We have ∫ t

τ(t)

p(s)ds =
0.85

aπ +
√

2

(
aπ +

√
2 cos
(
t − π

4

))
.

Hence

m = lim inf
t→∞

∫ t

τ(t)

p(s)ds = 0.85
aπ −

√
2

aπ +
√

2
= 0.367837 <

1
e

and

M = lim sup
t→∞

∫ t

τ(t)

p(s)ds = 0.85.

It is easy to see that (2.19) holds. Therefore every solution of (2.27) is oscillatory.

In the following we will consider the existence of positive solutions of a linear
delay differential equation of the form

(2.28) x′(t) + x (t − τ(t)) = 0,

where τ ∈ C([t0,∞), R+) and limt→∞(t − τ(t)) = ∞. Set T0 = inft≥t0{t − τ(t)}.

Definition 2.2.10. A solution x is called positive with respect to the initial point
t0, if x is a solution of (2.28) on (t0,∞) and x(t) > 0 for all t ∈ [T0,∞).
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Theorem 2.2.11. Equation (2.28) has a positive solution with respect to t0 if and
only if there exists a real continuous function λ0 on [T0,∞) such that λ0(t) > 0 for
all t ≥ t0 and

(2.29) τ(t) ≤ t − Λ−1
0

(
Λ0(t) − lnλ0(t)

)
for all t ≥ t0,

where Λ0(t) =
∫ t

T0
λ0(s)ds, and Λ−1

0 denotes the inverse function of Λ0.

Proof. We first prove necessity. Let x0 be a positive solution of (2.28) with respect
to t0. Then x0(t) > 0 for all t ∈ [T0,∞). Set

λ0(t) =
x0(t − τ(t))

x0(t)
for all t ≥ T0.

Clearly, λ0(t) > 0 for all t ≥ t0 and hence Λ0(t) =
∫ t

T0
λ0(s)ds defines a function

Λ0 on [T0,∞), which is strictly increasing on [t0,∞). We have for t ≥ t0

lnλ0(t) = ln
(

x0(t − τ(t))
x0(t)

)
= −
∫ t

t−τ(t)

x′
0(s)

x0(s)
ds

=
∫ t

t−τ(t)

λ0(s)ds = Λ0(t) − Λ0(t − τ(t))

and therefore
t − τ(t) = Λ−1

0

(
Λ0(t) − lnλ0(t)

)
.

Then
τ(t) = t − Λ−1

0

(
Λ0(t) − lnλ0(t)

)
so that (2.29) holds.

Now we prove sufficiency. If there exists a function λ0 such that (2.29) holds,
then

Λ0 (t − τ(t)) ≥ Λ0(t) − lnλ0(t)

and

λ0(t) ≥ exp

(∫ t

t−τ(t)

λ0(s)ds

)
.

Define

λ1(t) =

⎧⎪⎪⎨⎪⎪⎩
exp

(∫ t

t−τ(t)

λ0(s)ds

)
if t ≥ t0

λ1(t0) + λ0(t) − λ0(t0) if t ∈ [T0, t0).

Clearly, λ1(t) ≤ λ0(t) for t ≥ T0 and 0 ≤ λ1(t) ≤ λ0(t) for t ≥ t0. In general, we
define

λn(t) =

⎧⎪⎪⎨⎪⎪⎩
exp

(∫ t

t−τ(t)

λn−1(s)ds

)
a if t ≥ t0

λn(t0) + λ0(t) − λ0(t0) if t ∈ [T0, t0).

Thus

λ0(t) − λ0(t0) ≤ λn(t) ≤ λn−1(t) ≤ . . . ≤ λ0(t) for all t ≥ T0
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and λn(t) ≥ 0 for all t ≥ t0. Then limn→∞ λn(t) = λ(t) exists for t ≥ T0 and

lim
n→∞

∫ t

t−τ(t)

λn(s)ds =
∫ t

t−τ(t)

λ(s)ds for all t ≥ t0.

Hence

λ(t) = exp

(∫ t

t−τ(t)

λ(s)ds

)
for all t ≥ t0.

Set

x(t) = exp
(
−
∫ t

T0

λ(s)ds

)
for t ≥ T0.

Then x is a positive solution of (2.28) with respect to t0.

Remark 2.2.12. If we take λ0(t) ≡ λ > 0 in Theorem 2.2.11, then condition (2.29)
becomes

(2.30) τ(t) ≤ lnλ

λ
for all t ≥ t0.

In particular, if λ = e, then (2.30) becomes

(2.31) τ(t) ≤ 1
e

for all t ≥ t0,

i.e., (2.31) is a sufficient condition for the existence of positive solutions of (2.28).

Let t0 = 1
2 and λ0(t) = 2t. Then by Theorem 2.2.11, if

τ(t) = t −
√

t2 − ln 2t,

then (2.28) has a positive solution with respect to t0 = 1
2 . In fact, x(t) = e−t2 is

such a solution. We note that

τ
(e

2

)
=

e

2
−
√(e

2

)2
− 1 >

1
e
.

This example shows that (2.31) is not necessary for the existence of a positive
solution of (2.28).

We now consider the linear equation of the form

(2.32) x′(t) + p(t)x (t − τ(t)) = 0,

where p, τ ∈ C([t0,∞), R+), τ(t) ≤ t, and limt→∞(t − τ(t)) = ∞. As before, set
T0 = inft≥t0{t − τ(t)}. Similarly as in Theorem 2.2.11 we can prove the following
result.

Theorem 2.2.13. Equation (2.32) has a positive solution with respect to t0 if and
only if there exists a continuous function λ0 on [T0,∞) such that λ0(t) > 0 for
t ≥ t0 and

(2.33) λ0(t) ≥ p(t) exp

(∫ t

t−τ(t)

λ0(s)ds

)
for all t ≥ t0.

Remark 2.2.14. If p(t) > 0, then (2.33) can be replaced by

τ(t) ≤ t − Λ−1
0

(
Λ0(t) − ln

λ0(t)
p(t)

)
for all t ≥ t0.
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Corollary 2.2.15. If ∫ t

t−τ(t)

p(s)ds ≤ 1
e

for all t ≥ t0,

then (2.32) has a positive solution with respect to t0.

Proof. If we take λ0(t) = ep(t), then (2.33) is satisfied. Then the corollary follows
from Theorem 2.2.13.

Theorem 2.2.16. Assume that τ(t) ≡ τ > 0 and
∫∞

t0
p(t)dt = ∞. Then (2.32)

has a positive solution with respect to t0 if and only if there exists a continuous
function λ0 on [t0 − τ,∞) such that

(2.34)
∫ t

t−τ

p(s)ds ≤ t − Λ−1
0

(
Λ0(t) − lnλ0(t)

)
for all t ≥ t0.

Proof. Set u = P (t) =
∫ t

t0
p(s)ds for t ≥ t0. Then

t − τ = P−1

(
u −
∫ P−1(u)

P−1(u)−τ

p(s)ds

)
.

Denote
z(u) = x

(
P−1(u)

)
.

Then (2.32) becomes

(2.35) z′(u) + z

(
u −
∫ P−1(u)

P−1(u)−τ

p(s)ds

)
= 0.

By Theorem 2.2.11, (2.34) is a necessary and sufficient condition for (2.35) to have
a positive solution with respect to 0. From the transformation, it is equivalent to
(2.32) having a positive solution with respect to t0.

Remark 2.2.17. If we choose λ0(t) ≡ e in (2.34), then we obtain

(2.36)
∫ t

t−τ

p(s)ds ≤ 1
e

for all t ≥ t0.

As we have mentioned, (2.36) is a sufficient condition and is not a necessary condi-
tion for the existence of a positive solution of (2.32).

Combining Theorem 2.2.6 and (2.36), we obtain the following corollary.

Corollary 2.2.18. Let p(t) ≡ p > 0 and τ(t) ≡ τ > 0. Then a necessary and
sufficient condition for all solutions of (2.32) to be oscillatory is that pτe > 1.

Remark 2.2.19. The above techniques can be used on the first order advanced
type equations

(2.37) x′(t) = x (t + τ(t))

and

(2.38) x′(t) = p(t)x (t + τ(t)) ,
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where p, τ ∈ C([t0,∞), R+). For example, (2.37) has a positive solution if and only
if there exists a continuous function λ ∈ C([T0,∞), R) such that

(2.39) τ(t) ≤ Λ−1
(
Λ(t) + lnλ(t)

)
− t,

where Λ(t) =
∫ t

t0
λ(s)ds. If we let λ(t) ≡ λ > 0, then (2.39) becomes τ(t) ≤ 1

e ,
which is a sufficient condition for the existence of a positive solution of (2.37).

For (2.38), assume

lim inf
t→∞

∫ t+τ(t)

t

p(s)ds >
1
e
.

Then every solution of (2.38) oscillates.
If τ(t) ≡ τ > 0, then (2.38) has a positive solution if and only if there exists a

continuous function λ such that∫ t+τ

t

p(s)ds ≤ Λ−1
(
Λ(t) + lnλ(t)

)
− t.

Corollary 2.2.18 is also true for (2.38).

2.3. Equations with Variable Delay: Critical Case

In this section we will consider oscillatory solutions of (2.3) in the critical case

lim
t→∞

∫ t

τ(t)

p(s)ds =
1
e

under the assumption

(2.40)
∫ t

τ(t)

p(s)ds ≥ 1
e
.

We suppose that the delay function τ in (2.3) is strictly increasing on [t0,∞) with
τ(t) < t and limt→∞ τ(t) = ∞, and define recursively

tk+1 := τ−1(tk) for all k ∈ N0.

Clearly tk → ∞ as k → ∞. Moreover, the coefficient p is assumed to be a piecewise
continuous function satisfying (2.40). We define a set Aλ for 0 < λ ≤ 1 as follows.

Definition 2.3.1. The piecewise continuous function p : [t0,∞] → [0,∞] belongs
to Aλ if (2.40) holds for all t ≥ t1 and

(2.41)
∫ t

τ(t)

p(s)ds ≥ 1
e

+ λk

(∫ tk+1

tk

p(s)ds − 1
e

)
, t ∈ (tk, tk+1], k ∈ N

for some λk ≥ 0 with
lim inf
k→∞

λk = λ > 0.

Remark 2.3.2. If
∫ t

τ(t)
p(s)ds is a nonincreasing function and

∫ t

τ(t)
p(s)ds ≥ 1

e ,
then p ∈ A1, since we may choose λk = 1 in (2.41). However, the monotonicity
is not a necessary condition; e.g., in the case τ(t) = t − 1, the condition that the
function

(2.42) p(s) =
1
e

+ K
sin2(πs)

sα
with K > 0 and 0 ≤ α ≤ 2
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belongs to A1 becomes the condition that
∫ t

t−1
sin2(πs)/sαds is a nonincreasing

function.

Lemma 2.3.3. Assume that x is a positive solution of (2.3) on [tk−2, tk+1] for
some k ≥ 2. Let N be defined by

N = min
tk≤t≤tk+1

x(τ(t))
x(t)

.

Then N < (2e)2.

Proof. Let L be the integral

L :=
∫ tk+1

tk

p(s)ds ≥ 1
e
.

By Lemma 2.2.5, we obtain

N <

(
1 +

√
1 − L

L

)2

.

Since the right-hand side is a decreasing function of L, we get

N <

⎛⎝1 +
√

1 − 1
e

1
e

⎞⎠2

< (2e)2.

The proof is complete.

Lemma 2.3.4. Assume that x is a positive solution of (2.3) on [tk−3, tk−1] for
some k ≥ 3 and p ∈ Aλ. Let M and N be defined by

M = min
tk−1≤t≤tk

x(τ(t))
x(t)

and N = min
tk≤t≤tk+1

x(τ(t))
x(t)

.

Then

M > 1 and N ≥ exp
(

M

[
1
e

+ λk

(∫ tk+1

tk

p(s)ds − 1
e

)])
≥ M.

Proof. Following the lines of the proof of Elbert and Stavroulakis [82, Lemma 1],
we have min{M,N} = M , and by (2.41) for tk < t ≤ tk+1

x(τ(t))
x(t)

≥ exp

(
M

∫ t

τ(t)

p(s)ds

)
≥ exp
(

M

[
1
e

+ λk

(∫ tk+1

tk

p(s)ds − 1
e

)])
,

which implies the inequality concerning N . On the other hand, x is a strictly de-
creasing function on [tk−2, tk+1]. Hence x(τ(t))/x(t) > 1 on [tk−1, tk], and therefore
M > 1. The proof is complete.

The next lemma deals with some properties of the sequence {ri}∞i=0 defined
recursively by

(2.43) r0 = 1 and ri+1 = eri/e for i ∈ N0.

Lemma 2.3.5. For the sequence {ri}∞i=0 defined in (2.43) we have:

(i) ri < ri+1;
(ii) ri < e;
(iii) limi→∞ ri = e;
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(iv) ri > e − 2e/(i + 2).

Proof. The first two relations can be proved by induction. As a consequence of (i)
and (ii), limi→∞ ri = r exists and is finite. Then by (2.43) we have

r = er/e.

It is easy to check that

(2.44) ex/e > x for x �= e.

This inequality implies that the limit r is equal to e.

Now we give the proof of (iv). For i = 0 and i = 1 it is immediate. For i ∈ N

the proof can be done induction, so we have

ri+1 = eri/e > e1−2/(i+2),

and it is sufficient to show

e1−2/(i+2) > e − 2e

i + 3
or

f(i + 2) > 1, where f(x) = e−2/x +
2

x + 1
.

Since

f ′(x) =
2
x2

(
e−1/x +

x

x + 1

)(
e−1/x − x

x + 1

)
and

e1/x > 1 +
1
x

=
x + 1

x
,

we have f ′(x) < 0 and f(i + 2) > limx→∞ f(x) = 1, which was to be shown. The
proof is complete.

Theorem 2.3.6. Assume p ∈ Aλ for some λ ∈ (0, 1]. If

(2.45)
∞∑

i=1

(∫ ti

ti−1

p(s)ds − 1
e

)
= ∞,

then every solution of (2.3) oscillates.

Proof. Suppose the contrary. Then we may assume that, without loss of generality,
there exists a solution x such that x(t) > 0 for t ≥ tk−3 for some k ≥ 3. Let the
sequence {Ni}∞i=0 be defined by

(2.46) Ni = min
tk+i−1≤t≤tk+i

x(τ(t))
x(t)

.

By Lemma 2.3.4 we have N0 > 1 and

(2.47) Ni+1 ≥ exp
(

Ni

e

)
exp

(
Niλk+i

(∫ tk+i+1

tk+i

p(s)ds − 1
e

))
≥ Ni,

therefore the sequence {Ni}∞i=0 is nondecreasing. On the other hand, it is bounded
by Lemma 2.3.3. Consequently the sequence converges. Let

lim
i→∞

Ni = N.
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Then (2.47) implies

N ≥ exp
(

N

e

)
.

Hence by (2.44) we have N = e and

(2.48) 1 < N0 < N1 < . . . < e.

From (2.47), in view of (2.44), we obtain

Ni+1 > Ni

(
1 + Niλk+1

(∫ tk+i+1

tk+i

p(s)ds − 1
e

))
.

Thus

(2.49) Ni+1 − Ni > N2
i λk+1

(∫ tk+i+1

tk+i

p(s)ds − 1
e

)
.

From the definition of Aλ we know that λ = lim infk→∞ λk > 0, so for any suffi-
ciently small ε > 0 there exists a value cε such that λk+i > λ − ε for k + i > cε.
Thus, for such indices i, from (2.49) and (2.48) we have

Ni+1 − Ni > N2
i (λ − ε)

(∫ tk+i+1

tk+i

p(s)ds − 1
e

)
and

Ni+2 − Ni+1 > N2
i+1(λ − ε)

(∫ tk+i+2

tk+i+1

p(s)ds − 1
e

)

> N2
i (λ − ε)

(∫ tk+i+2

tk+i+1

p(s)ds − 1
e

)
.

Summing up the inequalities above, we obtain for k + i ≥ cε

(2.50) e − 1 > e − Ni > N2
i (λ − ε)

∞∑
j=1

(∫ tk+i+j

tk+i+j−1

p(s)ds − 1
e

)
.

This last inequality contradicts assumption (2.45). The proof is complete.

In the next theorem we consider the case where the sum in (2.45) is convergent.

Theorem 2.3.7. Assume p ∈ Aλ for some 0 < λ ≤ 1 and either

(2.51) λ lim sup
k→∞

k
∞∑

i=k

(∫ ti

ti−1

p(s)ds − 1
e

)
>

2
e

or

(2.52) λ lim inf
k→∞

k
∞∑

i=k

(∫ ti

ti−1

p(s)ds − 1
e

)
>

1
2e

.

Then every solution of (2.3) oscillates.

 



26 2. FIRST ORDER DELAY DIFFERENTIAL EQUATIONS

Proof. Suppose the contrary. Then, as in the proof of Theorem 2.3.6, the sequence
{Ni}∞i=0 defined by (2.46) satisfies the inequalities (2.47)–(2.50). In particular, from
(2.47) we have

Ni+1 ≥ exp
(

Ni

e

)
.

Comparing the last inequality with (2.43), we obtain by induction

N0 > r0 = 1 and Ni > ri for i ∈ N.

Then by Lemma 2.3.5 (iv) we have

(2.53) e − Ni < e − ri <
2e

i + 2
.

Multiplying (2.50) by k + i ≥ cε, we obtain from (2.53)

(k + i)
2e

i + 2
> N2

i (λ − ε)(k + i)
∞∑

j=k+i

(∫ tj+1

tj

p(s)ds − 1
e

)
.

Taking the limit as i → ∞, we get

2e ≥ e2λ lim sup
k→∞

k
∞∑

j=k

(∫ tj+1

tj

p(s)ds − 1
e

)
,

which contradicts (2.51).

Now let A be defined by

A = lim inf
k→∞

k
∞∑

j=k

(∫ tj+1

tj

p(s)ds − 1
e

)
.

If A = ∞, then every solution oscillates by (2.51). Therefore we consider the case
0 < A < ∞. For any sufficiently small ε > 0 there exists a value c̄ε such that for
λ̄ = λ − ε > 0 and Ā = A − ε > 0

λk > λ̄ and
∞∑

j=k

(∫ tj+1

tj

p(s)ds − 1
e

)
>

Ā

k
for k ≥ c̄ε.

If we use the inequality

exp
(x

e

)
> x +

1
2

exp
(

ξ

e

)(
1 − x

e

)2
for ξ < x < e

in (2.47), then we obtain for Ni > ξ and k + i > c̄ε

Ni+1 ≥ exp
(

Ni

e

)
exp

(
Niλ̄

(∫ tk+i+1

tk+i

p(s)ds − 1
e

))

>

[
Ni +

1
2

exp
(

ξ

e

)(
1 − Ni

e

)2
][

1 + Niλ̄

(∫ tk+i+1

tk+i

p(s)ds − 1
e

)]
.

Consequently

Ni+1 − Ni >
1
2

exp
(

ξ

e

)(
1 − Ni

e

)2

+ ξ2λ̄

(∫ tk+i+1

tk+i

p(s)ds − 1
e

)
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and summing up,

e − Ni >
1
2

exp
(

ξ

e

) ∞∑
j=i

(
1 − Nj

e

)2

+ ξ2λ̄

∞∑
j=k+i

(∫ tj+1

tj

p(s)ds − 1
e

)

>
1
2

exp
(

ξ

e

) ∞∑
j=i

(
1 − Nj

e

)2

+
ξ2λ̄Ā

k + i
.(2.54)

In particular,

e − Ni >
U0

k + i
with U0 = ξ2λ̄Ā.

By iteration we can improve this inequality to

(2.55) e − Ni >
Un

k + i
for n ∈ N0.

Namely by (2.54) we have

e − Ni >
1
2

exp
(

ξ

e

) ∞∑
j=i

(
Un

e (k + j)

)2

+
U0

k + i

>
U2

n

2e2
exp
(

ξ

e

)
1

k + i
+

U0

k + i
=

Un+1

k + i
,

where

Un+1 =
U2

n

2e2
exp
(

ξ

e

)
+ U0 for n ∈ N0.

From this it is clear that the sequence {Un}∞n=0 is increasing. Moreover, comparing
inequalities (2.53) and (2.55), we see that Un ≤ 2e. Therefore the sequence has a
limit, say U , which satisfies the equation

U =
U2

2e2
exp
(

ξ

e

)
+ ξ2λ̄Ā.

This is a quadratic equation with real roots and therefore the discriminant is not
negative, i.e.,

1 − 2 exp
(

ξ

e
− 2
)

ξ2λ̄Ā ≥ 0.

Let ε → 0 and ξ → e. Then the last inequality becomes

1 − 2eλA ≥ 0,

which contradicts (2.52). The proof is complete.

Remark 2.3.8. If the function
∫ t

τ(t)
p(s)ds is monotone, then the value of λ in

conditions (2.51) and (2.52) of Theorem 2.3.7 is equal to one.

In the following theorem we give a criterion for nonoscillation.

Theorem 2.3.9. Let τ(t) = t − 1, p(t) = 1
e + a(t), and t0 = 1 in (2.3), i.e., (2.3)

has the form

(2.56) x′(t) +
(

1
e

+ a(t)
)

x(t − 1) = 0, t ≥ 1.

Assume that
a(t) ≤ 1

8et2
.
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Then (2.56) has a solution x satisfying x(t) ≥
√

te−t.

Proof. The proof is based on known comparison theorems (see Myšhkis [230]). Let
the functions A, B, and C on (1,∞) be defined by

A(t) =
1
e

+ a(t), B(t) =
1
e

+
1

8et2
, and C(t) =

1
e

1 − 1
2t√

1 − 1
t

.

By the assumption we have A(t) ≤ B(t). We are going to show that the inequality
B(t) < C(t) also holds. Namely, for θ = 1

2t ∈ (0, 1/2), we have

C(t) − B(t) =
θ3
(

1
2θ2 − 1

4θ + 2
)

e
√

1 − 2θ
[
1 − θ +

(
1 + 1

2θ2
)√

1 − 2θ
] > 0.

Now we will compare the differential equations

x′(t) + A(t)x(t − 1) = 0,

z′(t) + B(t)z(t − 1) = 0,

u′(t) + C(t)u(t − 1) = 0.

Let us observe that the function u(t) =
√

te−t is a solution of the last differential
equation. Let the initial function ϕ be the function defined by ϕ(t) =

√
te−t on

[0, 1], and let x and z be the solutions of the first and the second differential equa-
tions, respectively, associated with this initial function ϕ. Then by the comparison
theorems mentioned above we have

x(t) ≥ z(t) > u(t) =
√

te−t for t > 1,

which was to be shown. The proof is complete.

Remark 2.3.10. For (2.56) we have tk = k + 1 and

lim sup
k→∞

k
∞∑

i=k

(∫ ti

ti−1

p(s)ds − 1
e

)
= lim sup

k→∞
k

∫ ∞

k

a(s)ds ≤ 1
8e

.

Now the question arises naturally whether or not the bounds in conditions (2.51)
and (2.52) of Theorem 2.3.7 can be replaced by smaller ones.

Remark 2.3.11. It is to be emphasized that in Theorem 2.3.9 we require

neither p(t) ≥ 0 nor
∫ t

τ(t)

p(s)ds ≥ 1
e
.

Remark 2.3.12. Applying Theorems 2.3.6 and 2.3.7, we see that, under (2.42),
(2.3) oscillates for any K > 0 if 0 ≤ α < 2 and K > 1

e if α = 2. On the other hand,
it has a nonoscillatory solution for K < 1

8e if α = 2.

2.4. Equations with Constant Delay

Consider the delay differential equation

(2.57) x′(t) + p(t)x(t − τ) = 0, t ≥ t0,

where

(2.58) p ∈ C([t0,∞), [0,∞)) and τ is a positive constant.
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Theorem 2.4.1. Assume that (2.58) holds and that there exists t̄0 > t0 + τ such
that

(2.59)
∫ t

t−τ

p(s)ds ≥ 1
e

for all t ≥ t̄0

and

(2.60)
∫ ∞

t0+τ

p(t)
[
exp
(∫ t

t−τ

p(s)ds − 1
e

)
− 1
]

dt = ∞.

Then every solution of (2.57) oscillates.

Proof. Assume, for the sake of contradiction, that (2.57) has an eventually positive
solution x. Then there exists t1 ≥ t̄0 such that for t ≥ t1

x(t) > 0, x(t − τ) > 0, x′(t) ≤ 0, x(t − τ) ≥ x(t).

Set

(2.61) w(t) =
x(t − τ)

x(t)
for t ≥ t1.

Then

(2.62) w(t) ≥ 1 for all t ≥ t1.

Dividing both sides of (2.57) by x(t), we obtain

(2.63)
x′(t)
x(t)

+ p(t)w(t) = 0 for t ≥ t1.

Integrating both sides of (2.63) from t − τ to t yields

(2.64) w(t) = exp
(∫ t

t−τ

p(s)w(s)ds

)
for t ≥ t1 + τ.

By (2.59), for t ≥ t1 + τ , there exists γ(t) with 0 < γ(t) ≤ τ , such that

(2.65)
∫ t

t−γ(t)

p(s)ds =
1
e

for t ≥ t1 + τ.

It follows that, for t ≥ t1 + τ ,

w(t) = exp

(∫ t

t−γ(t)

p(s)w(s)ds +
∫ t−γ(t)

t−τ

p(s)w(s)ds

)

≥ exp

(∫ t

t−γ(t)

p(s)w(s)ds +
∫ t−γ(t)

t−τ

p(s)ds

)

= exp

(∫ t

t−γ(t)

p(s)w(s)ds +
∫ t

t−τ

p(s)ds − 1
e

)

= exp

(∫ t

t−γ(t)

p(s)w(s)ds

)
exp
(∫ t

t−τ

p(s)ds − 1
e

)
.

One can easily show that

ex ≥ ex for all x > 0,
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and so

(2.66) w(t) ≥ e

(∫ t

t−γ(t)

p(s)w(s)ds

)
exp
(∫ t

t−τ

p(s)ds − 1
e

)
for t ≥ t1 + τ or

p(t)w(t) ≥ ep(t)

(∫ t

t−γ(t)

p(s)w(s)ds

)
exp
(∫ t

t−τ

p(s)ds − 1
e

)
for t ≥ t1 + τ or by (2.59), (2.62), and (2.65), for t ≥ t1 + τ ,

p(t)

(
w(t) − e

∫ t

t−γ(t)

p(s)w(s)ds

)

≥ ep(t)

(∫ t

t−γ(t)

p(s)w(s)ds

)[
exp
(∫ t

t−τ

p(s)ds − 1
e

)
− 1
]

≥ p(t)
[
exp
(∫ t

t−τ

p(s)ds − 1
e

)
− 1
]

.

By integrating both sides from t2 = t1 + 2τ to T > t2, we find∫ T

t2

p(t)

(
w(t) − e

∫ t

t−γ(t)

p(s)w(s)ds

)
dt(2.67)

≥
∫ T

t2

p(t)
[
exp
(∫ t

t−τ

p(s)ds − 1
e

)
− 1
]

dt.

We select a function N ∈ C1([t1,∞), (0,∞)) such that

(2.68) N ′(t) = max
t1≤s≤t+τ

p(s).

From (2.59) and (2.68), we have

N ′(t) ≥ 1
e

for t ≥ t1.

Thus N is increasing on [t1,∞) and limt→∞ N(t) = ∞. One can easily show that

(2.69)
∫ ∞

t1

exp (−N(t)) dt < ∞

and

(2.70)
∫ ∞

t1+τ

p(t) exp
(
−N(t − τ)

)
dt < ∞.

Set

q(t) = p(t) + exp(−N(t)) for t ≥ t1.

In view of (2.66),

w(t) − e

∫ t

t−γ(t)

p(s)w(s)ds ≥ 0 for t ≥ t1 + τ.
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It follows that ∫ T

t2

p(t)

[
w(t) − e

∫ t

t−γ(t)

p(s)w(s)ds

]
dt(2.71)

≤
∫ T

t2

q(t)

[
w(t) − e

∫ t

t−γ(t)

p(s)w(s)ds

]
dt

=
∫ T

t2

q(t)

[
w(t) − e

∫ t

t−γ(t)

q(s)w(s)ds

]
dt

+e

∫ T

t2

q(t)

[∫ t

t−γ(t)

exp(−N(s))w(s)ds

]
dt.

Now we claim that

(2.72) lim sup
t→∞

w(t) = ∞.

Otherwise, there exists an M > 0 such that

(2.73) w(t) ≤ M for all t ≥ t1.

Then, by using the decreasing nature of exp(−N(t)), we have∫ T

t2

q(t)

[∫ t

t−γ(t)

exp (−N(s))w(s)ds

]
dt ≤ τM

∫ T

t2

q(t) exp (−N(t − τ)) dt.

From this, (2.60), (2.67), (2.68), (2.69), (2.70), and (2.71), we have

(2.74) lim
T→∞

∫ T

t2

q(t)

[
w(t) − e

∫ t

t−γ(t)

q(s)w(s)ds

]
dt = ∞.

Set

(2.75) u = Q(t) :=
∫ t

t2−τ

q(s)ds for t ≥ t2 − τ.

Then Q(t) → ∞ as t → ∞, Q is strictly increasing and thus Q−1 exists. Set

z(u) = w
(
Q−1(u)

)
.

Then ∫ T

t2

q(t)

[
w(t) − e

∫ t

t−γ(t)

q(s)w(s)ds

]
dt

=
∫ Q(T )

Q(t2)

[
w
(
Q−1(u)

)
− e

∫ Q−1(u)

Q−1(u)−γ(Q−1(u))

q(s)w(s)ds

]
du

=
∫ Q(T )

Q(t2)

[
w
(
Q−1(u)

)
− e

∫ Q(Q−1(u))

Q(Q−1(u)−γ(Q−1(u)))

w
(
Q−1(ξ)

)
dξ

]
du

=
∫ Q(T )

Q(t2)

[
z(u) − e

∫ u

Q(Q−1(u)−γ(Q−1(u)))

z(ξ)dξ

]
du.

≤
∫ Q(T )

Q(t2)

[
z(u) − e

∫ u

u− 1
e

z(s)ds

]
du,(2.76)
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where the last inequality (2.76) is true because of

Q
(
Q−1(u) − γ

(
Q−1(u)

) )
= Q (t − γ(t)) =

∫ t−γ(t)

t2−τ

q(s)ds

≤
∫ t

t2−τ

q(s)ds −
∫ t

t−γ(t)

p(s)ds ≤ u − 1
e
.

From (2.74), (2.75), and (2.76), we obtain

(2.77) lim
A→∞

∫ A

Q(t2)

(
z(u) − e

∫ u

u− 1
e

z(s)ds

)
du = ∞.

By interchanging the order of integration, we obtain that for A > Q(t2),∫ A

Q(t2)

e

(∫ u

u− 1
e

z(s)ds

)
du =

∫ Q(t2)

Q(t2)− 1
e

e

(∫ s+ 1
e

Q(t2)

z(s)du

)
ds

+
∫ A− 1

e

Q(t2)

e

(∫ s+ 1
e

s

z(s)du

)
ds +
∫ A

A− 1
e

e

(∫ A

s

z(s)du

)
ds

=
∫ Q(t2)

Q(t2)− 1
e

(
es + 1 − eQ(t2)

)
z(s)ds(2.78)

+
∫ A

Q(t2)

z(s)ds +
∫ A

A− 1
e

e(A − s)z(s)ds.

On the right-hand side of (2.78), the first term is a constant independent of A and
the last term is positive. From (2.77) and (2.78), we obtain

lim
A→∞

∫ A

A− 1
e

z(s)ds = ∞.

This shows that
lim sup

u→∞
z(u) = ∞

and thus
lim sup

t→∞
w(t) = ∞

which contradicts (2.73). Hence, (2.72) holds.

Because of (2.59), for any t ≥ t1 + τ , there exists ξ ∈ (t − τ, t) such that

(2.79)
∫ t

ξ

p(s)ds ≥ 1
2e

and
∫ ξ+τ

t

p(s)ds ≥ 1
2e

.

By integrating (2.57) over the intervals [ξ, t] and [t, ξ + τ ], we find that

(2.80) x(t) − x(ξ) +
∫ t

ξ

p(s)x(s − τ)ds = 0

and

(2.81) x(ξ + τ) − x(t) +
∫ ξ+τ

t

p(s)x(s − τ)ds = 0.
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By omitting the first terms in (2.80) and (2.81) and using the decreasing nature of
x and (2.79), we find that

−x(ξ) +
1
2e

x(t − τ) < 0 and − x(t) +
1
2e

x(ξ) < 0,

i.e.,

x(t) >
1
2e

x(ξ) >

(
1
2e

)2

x(t − τ),

i.e.,
w(t) < (2e)2 for all t ≥ t1 + τ.

This contradicts (2.72) and completes the proof.

Corollary 2.4.2. Suppose that (2.58) holds. If

(2.82) lim inf
t→∞

∫ t

t−τ

p(s)ds >
1
e
,

then every solution of (2.57) oscillates.

Proof. From (2.82) one can easily see that∫ ∞

t0

p(t)dt = ∞

and that there exists c > 0 such that for sufficiently large t,∫ t

t−τ

p(s)ds − 1
e

> c.

Hence condition (2.60) is satisfied. By Theorem 2.4.1, every solution of (2.57)
oscillates.

Corollary 2.4.3. Suppose that (2.58) holds. If (2.59) holds and

(2.83)
∫ ∞

t0+τ

p(t)
(∫ t

t−τ

p(s)ds − 1
e

)
dt = ∞,

then every solution of (2.57) oscillates.

Proof. By using (2.59) and the fact that ec − 1 ≥ c for c ≥ 0, we obtain

exp
(∫ t

t−τ

p(s)ds − 1
e

)
− 1 ≥
∫ t

t−τ

p(s)ds − 1
e

for all t ≥ t1.

Therefore (2.83) implies (2.60). By Theorem 2.4.1, every solution of (2.57) oscil-
lates.

Example 2.4.4. Consider the delay differential equation

(2.84) x′(t) +
(

1
1 + t

+
1
e

)
x(t − 1) = 0 for t ≥ 0.

Clearly, for t ≥ 1, ∫ t

t−1

(
1

1 + t
+

1
e

)
dt = ln

1 + t

t
+

1
e

>
1
e

and

lim
t→∞

∫ t

t−1

(
1

1 + t
+

1
e

)
dt =

1
e
.
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Hence (2.82) is not satisfied. But for any T > 1,∫ T

1

(
1

1 + t
+

1
e

)
ln

1 + t

t
dt ≥ 1

e

∫ T

1

ln
1 + t

t
dt → ∞ as T → ∞.

Therefore, by Corollary 2.4.3, every solution of (2.84) oscillates.

Next, in order to improve conditions (2.59) and (2.60), we use a different method
to obtain new sufficient conditions for oscillation of (2.57).

Assume (2.58) and define the following sequences of functions:

(2.85)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1(t) =
∫ t

t−τ

p(s)ds, t ≥ t0 + τ,

pk+1(t) =
∫ t

t−τ

p(s)pk(s)ds, t ≥ t0 + (k + 1)τ for k ∈ N,

p̄1(t) =
∫ t+τ

t

p(s)ds, t ≥ t0,

p̄k+1(t) =
∫ t+τ

t

pk(s)p̄k(s)ds, t ≥ t0 for k ∈ N.

Theorem 2.4.5. Suppose that (2.58) holds. If there exist t1 > t0 + τ and n ∈ N

such that

(2.86) pn(t) ≥ 1
en

and p̄n(t) ≥ 1
en

for all t ≥ t1

(where pn and p̄n are defined by (2.85)) and

(2.87)
∫ ∞

t0+nτ

p(t)
[
exp
(

en−1pn(t) − 1
e

)
− 1
]

dt = ∞,

then every solution of (2.57) oscillates.

Proof. Assume, for the sake of contradiction, that (2.57) has an eventually positive
solution x. Then there exists t2 ≥ t1 such that

x(t − τ) ≥ x(t) > 0 and x′(t) ≤ 0 for all t ≥ t2.

Let w be defined by (2.61). As in the proof of Theorem 2.4.1, we have that (2.64)
holds. It is easy to show that ec ≥ ec for all c ≥ 0 and so

(2.88) w(t) ≥ e

∫ t

t−τ

p(s)w(s)ds for all t ≥ t2 + τ.

Set w0 = w and for 1 ≤ k ≤ n,

wk(t) =
∫ t

t−τ

p(s)wk−1(s)ds for t ≥ t2 + kτ,

v0 = v := w − 1 and for 1 ≤ k ≤ n,

(2.89) vk(t) =
∫ t

t−τ

p(s)vk−1(s)ds for t ≥ t2 + kτ.

By (2.62),

(2.90) vk(t) ≥ 0, t ≥ t2 + kτ for 0 ≤ k ≤ n.
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From (2.64) and (2.88), we easily obtain

w(t) ≥ en−1wn−1(t) for t ≥ t2 + (n − 1)τ

and

(2.91) w(t) ≥ exp
(

en−1

∫ t

t−τ

p(s)wn−1(s)ds

)
for t ≥ t2 + nτ.

In view of (2.85), (2.89), and (2.90), (2.91) can be written as

w(t) ≥ exp
(

en−1

∫ t

t−τ

p(s)vn−1(s)ds + en−1pn(t)
)

= exp
(

en−1

∫ t

t−τ

p(s)vn−1(s)ds +
1
e

)
exp
(

en−1pn(t) − 1
e

)
for t ≥ t2 + nτ , and so

w(t) ≥
(

en

∫ t

t−τ

p(s)vn−1(s)ds + 1
)

exp
(

en−1pn(t) − 1
e

)
for t ≥ t2 + nτ . By (2.86) and (2.90),

p(t)
(
v(t) − envn(t)

)
≥ p(t)

[
w(t) − en

(∫ t

t−τ

p(s)vn−1(s)ds + 1
)]

≥ p(t)
[
en

∫ t

t−τ

p(s)vn−1(s)ds + 1
] [

exp
(

en−1pn(t) − 1
e

)
− 1
]

≥ p(t)
[
exp
(

en−1pn(t) − 1
e

)
− 1
]

for t ≥ t2 + nτ . By integrating both sides from t3 = t2 + nτ to T > t3 + nτ , we
obtain∫ T

t3

p(t)
(
v(t) − envn(t)

)
dt ≥
∫ T

t3

p(t)
[
exp
(

en−1pn(t) − 1
e

)
− 1
]

dt.

From this and (2.87), we have

(2.92) lim
T→∞

∫ T

t3

p(t)
(
v(t) − envn(t)

)
dt = ∞.

Since

en

∫ T

t3

p(t)vn(t)dt = en

∫ T

t3

p(t)dt

∫ t

t−τ

p(s)vn−1(s)ds

≥ en

∫ T−τ

t3

p(s)vn−1(s)ds

∫ s+τ

s

p(t)dt

= en

∫ T−τ

t3

p(t)p̄1(t)dt

∫ t

t−τ

p(s)vn−2(s)ds

≥ en

∫ T−2τ

t3

p(s)vn−2(s)ds

∫ s+τ

s

p(t)p̄1(t)dt

= en

∫ T−2τ

t3

p(t)p̄2(t)vn−2(s)ds,
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we have by induction

en

∫ T

t3

p(t)vn(t)dt ≥ en

∫ T−nτ

t3

p(t)v(t)p̄n(t)dt ≥
∫ T−nτ

t3

p(t)v(t)dt.

Thus, ∫ T

t3

p(t)
(
v(t) − envn(t)

)
dt ≤

∫ T

t3

p(t)v(t)dt −
∫ T−nτ

t3

p(t)v(t)dt

=
∫ T

T−nτ

p(t)v(t)dt.

In view of (2.92), we have

lim
T→∞

∫ T

T−nτ

p(t)v(t)dt = ∞.

This shows that either

(2.93) lim
T→∞

∫ T

T−nτ

p(t)dt = ∞

or

(2.94) lim sup
t→∞

v(t) = ∞.

If (2.93) holds, then

lim sup
t→∞

∫ t

t−τ

p(s)ds = ∞.

By a known result in [166], every solution of (2.57) oscillates. Next, if (2.94) holds,
then

(2.95) lim sup
t→∞

w(t) = ∞.

On the other hand, integrating both sides of (2.57) from t − τ to t, we have

x(t) − x(t − τ) +
∫ t

t−τ

p(s)x(s − τ)ds = 0 for all t ≥ t2,

and so

x(t − τ) >

∫ t

t−τ

p(s)x(s − τ)ds for all t ≥ t2.

From this, by successively substituting (n−2) times and using the decreasing nature
of x, it follows that

x(t − τ) >

∫ t

t−τ

p(s)pn−2(s)x(s − τ)ds > x(t − τ)
∫ t

t−τ

p(s)pn−2(s)ds,

and so

(2.96) x(t − τ) > x(t − τ)pn−1(t) for all t ≥ t2 + (n − 2)τ.

By (2.86), for any t ≥ t1 + τ there exists ξ ∈ (t − τ, t) such that

(2.97)
∫ t

ξ

p(s)pn−1(s)ds ≥ 1
2en

and
∫ ξ+τ

t

p(s)pn−1(s)ds ≥ 1
2en

.
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By integrating both sides of (2.57) over [ξ, t] and [t, ξ + τ ], we have

(2.98) x(t) − x(ξ) +
∫ t

ξ

p(s)x(s − τ)ds = 0, t ≥ t2 + (n − 1)τ

and

(2.99) x(ξ + τ) − x(t) +
∫ ξ+τ

t

p(s)x(s − τ)ds = 0, t ≥ t2 + (n − 1)τ.

Substituting (2.96) into (2.98) and (2.99), omitting the first term in (2.98) and
(2.99), and using the decreasing nature of x and (2.97), we find

x(t) >
1

4e2n
x(t − τ),

i.e.,
w(t) < 4e2n for all t ≥ t2 + (n − 1)τ.

This contradicts (2.95) and completes the proof.

Theorem 2.4.6. Suppose that (2.58) holds. If there exists t > t0 + τ such that
(2.59) and (2.87) hold, then every solution of (2.57) oscillates.

Proof. Because (2.59) implies (2.86), Theorem 2.4.5 implies Theorem 2.4.6.

Corollary 2.4.7. Suppose that (2.58) holds and that, for some n ∈ N,

lim inf
t→∞ pn(t) >

1
en

and lim inf
t→∞ p̄n(t) >

1
en

,

where pn and p̄n are defined by (2.85). Then every solution of (2.57) oscillates.

Corollary 2.4.8. Suppose that (2.58) holds. If (2.59) holds, and for some n ∈ N,

(2.100)
∫ ∞

t0+nτ

p(t)
(

en−1pn(t) − 1
e

)
dt = ∞,

where pn is defined by (2.85), then every solution of (2.57) oscillates.

Corollary 2.4.9. Suppose that (2.58) holds. If (2.86) and (2.100) hold, then every
solution of (2.57) oscillates.

Example 2.4.10. Consider the delay differential equation

(2.101) x′(t) +
1
2e

(1 + cos t) x(t − π) = 0, t ≥ 0.

Clearly, for t ≥ π,

p1(t) =
∫ t

t−π

1
2e

(1 + cos s) ds =
1
2e

(π + 2 sin t)

and

lim inf
t→∞

∫ t

t−π

1
2e

(1 + cos s) ds =
1
2e

(π − 2) <
1
e
.

This shows that (2.82) and (2.59) do not hold. But

p2(t) =
∫ t

t−π

p(s)p1(s)ds =
1

4e2

∫ t

t−π

(1 + cos s) (π + 2 sin s) ds

=
1

4e2

(
π2 + 2π sin t − 4 cos t

)
,
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p3(t) =
∫ t

t−π

p(s)p2(s)ds =
1

8e3

(
π3 − 2π + (2π2 − 8) sin t − 4π cos t

)
,

p4(t) =
∫ t

t−π

p(s)p3(s)ds

=
1

16e4

(
π4 − 4π2 + 2(π3 − 6π) sin t − 4(π2 − 4) cos t

)
,

lim inf
t→∞ p4(t) =

1
16e4

(
π4 − 4π2 − 2

√
(π3 − 6π)2 + 4(π2 − 4)2

)
>

22
16e4

,

and

p̄1(t) =
∫ t+π

t

1
2e

(1 + cos s)ds =
1
2e

(π − 2 sin t),

p̄2(t) =
∫ t+π

t

p(s)p̄1(s)ds =
1

4e2

(
π2 − 2π sin t − 4 cos t

)
,

p̄3(t) =
∫ t+π

t

p(s)p̄2(s)ds =
1

8e3

(
π3 − 2π − (2π2 − 8) sin t − 4π cos t

)
,

p̄4(t) =
∫ t+π

t

p(s)p̄3(s)ds

=
1

16e4

(
π4 − 4π2 − 2(π3 − 6π) sin t − 4(π2 − 4) cos t

)
,

lim inf
t→∞ p̄4(t) =

1
16e4

(
π4 − 4π2 − 2

√
(π3 − 6π)2 + 4(π2 − 4)2

)
>

22
16e4

.

Then, by Corollary 2.4.7, every solution of (2.101) oscillates.

Next, we will present a criterion for oscillation of (2.57) which indicates that
conditions (2.59) or (2.82) or even the condition

lim inf
t→∞

∫ t

t−τ

p(s)ds > 0

is no longer necessary.

Before stating the main results, we need the following lemmas which are appli-
cable to equations with several delays of the form

(2.102) x′(t) +
n∑

i=1

pi(t)x(t − τi) = 0, t ≥ t0.

Lemma 2.4.11. If

lim sup
t→∞

∫ t+τi

t

pi(s)ds > 0 for some i ∈ {1, . . . , n}

and x is an eventually positive solution of (2.102), then

lim inf
t→∞

x(t − τi)
x(t)

< ∞.
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Proof. In view of the assumption, there exist a constant d > 0 and a sequence {tk}
such that tk → ∞ as k → ∞ and∫ tk+τi

tk

pi(s)ds ≥ d for k ∈ N.

Then for every k ∈ N there exists ξk ∈ (tk, tk + τi) such that

(2.103)
∫ ξk

tk

pi(s)ds ≥ d

2
and

∫ tk+τi

ξk

pi(s)ds ≥ d

2
.

On the other hand, (2.102) implies

(2.104) x′(t) + pi(t)x(t − τi) ≤ 0

eventually. By integrating (2.104) over the intervals [tk, ξk] and [ξk, tk + τi], we find

(2.105) x(ξk) − x(tk) +
∫ ξk

tk

pi(s)x(s − τi)ds ≤ 0

and

(2.106) x(tk + τi) − x(ξk) +
∫ tk+τi

ξk

pi(s)x(s − τi)ds ≤ 0.

By omitting the first terms in (2.105) and (2.106) and by using the decreasing
nature of x and (2.103), we find

x(ξk − τi)
x(ξk)

≤
(

2
d

)2

.

The proof is complete.

Lemma 2.4.12. If (2.102) has an eventually positive solution, then eventually∫ t+τi

t

p(s)ds ≤ 1 for all i ∈ {1, . . . , n}.

Proof. See the proof of [166, Theorem 2.1.3].

Theorem 2.4.13. Suppose that (2.58) holds and that
∫ t+τ

t
p(s)ds > 0 for t ≥ t0

for some t0 > 0 and

(2.107)
∫ ∞

t0

p(t) ln
(

e

∫ t+τ

t

p(s)ds

)
dt = ∞.

Then every solution of (2.57) oscillates.

Proof. Assume the contrary. Then there exists an eventually positive solution x of
(2.57). Obviously x is eventually monotone decreasing. Let λ = −x′/x. Clearly,
the function λ is eventually nonnegative and continuous, and

x(t) = x(t1) exp
(
−
∫ t

t1

λ(s)ds

)
,

where x(t1) > 0 for some t1 ≥ t0. Furthermore, λ satisfies the generalized charac-
teristic equation

λ(t) = p(t) exp
(∫ t

t−τ

λ(s)ds

)
.
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One can easily show that

erx ≥ x +
ln(er)

r
for r > 0,

and thus

λ(t) = p(t) exp
(

A(t) · 1
A(t)

∫ t

t−τ

λ(s)ds

)
≥ p(t)

(
1

A(t)

∫ t

t−τ

λ(s)ds +
ln (eA(t))

A(t)

)
,

where A(t) =
∫ t+τ

t
p(s)ds. It follows that

(2.108) λ(t)
∫ t+τ

t

p(s)ds − p(t)
∫ t

t−τ

λ(s)ds ≥ p(t) ln
(

e

∫ t+τ

t

p(s)ds

)
.

Then, for N > T , note that the inequality∫ N

T

∫ t

t−τ

p(t)λ(s)dsdt ≥
∫ N−τ

T

∫ s+τ

s

p(t)λ(s)dtds

can be derived by interchanging the order of integration, and use this together with
(2.108) to obtain∫ N

T

p(t) ln
(

e

∫ t+τ

t

p(s)ds

)
dt ≤
∫ N

T

∫ t+τ

t

λ(t)p(s)dsdt −
∫ N

T

∫ τ

t−τ

p(t)λ(s)dsdt

≤
∫ N

T

∫ t+τ

t

λ(t)p(s)dsdt −
∫ N−τ

T

∫ s+τ

s

p(t)λ(s)dtds

=
∫ N

N−τ

∫ t+τ

t

λ(t)p(s)dsdt ≤
∫ N

N−τ

λ(t)dt = ln
x(N − τ)

x(N)
,

where we have used Lemma 2.4.12 for the last inequality. In view of (2.107),

(2.109) lim
t→∞

x(t − τ)
x(t)

= ∞.

On the other hand, (2.107) implies that there exists a sequence {tn} with tn → ∞
as n → ∞ such that ∫ tn+τ

tn

p(s)ds ≥ 1
e

for all n ∈ N.

Hence by Lemma 2.4.11, we obtain

lim
t→∞

x(t − τ)
x(t)

< ∞.

This contradicts (2.109) and completes the proof.

Remark 2.4.14. Theorem 2.4.13 substantially improves condition (2.82). In fact,
if (2.82) holds, then

(2.110)
∫ ∞

t0

p(s)ds = ∞

and there exists c > 0 such that for large t,

(2.111) ln
(

e

∫ t+τ

t

p(s)ds

)
≥ c.

 



2.5. EQUATIONS WITH SEVERAL DELAYS 41

Note that (2.110) and (2.111) imply (2.107). Condition (2.107) is an evaluation
of p(t) and

∫ t+τ

t
p(s)ds in an infinite interval. Obviously,

∫ t+τ

t
p(s)ds > 0 is a

necessary condition for (2.107).

Example 2.4.15. Consider the delay differential equation

(2.112) x′(t) + exp (k sin t − 1) x(t − 1) = 0,

where p(t) = exp (k sin t − 1) and k is a constant. Clearly,

lim inf
t→∞

∫ t

t−1

p(s)ds <
1
e
.

So condition (2.82) is not satisfied. By Jensen’s inequality,∫ ∞

0

p(t) ln
(

e

∫ t+1

t

p(s)ds

)
dt ≥

∫ ∞

0

p(t)
∫ t+1

t

k sin sdsdt

=
2k sin 1

2

2

∫ ∞

0

exp(k sin t) sin
(

t +
1
2

)
dt.

On the other hand, it is easy to see that
∫ t0
0

exp(k sin t) cos tdt is bounded and∫ 2π

0

exp(k sin t) sin tdt > 0.

It follows that ∫ ∞

0

p(t) ln
(

e

∫ t+1

t

p(s)ds

)
dt = ∞.

By Theorem 2.4.13, every solution of (2.112) oscillates.

2.5. Equations with Several Delays

Consider the delay differential equation

(2.113) x′(t) +
n∑

i=1

pi(t)x(t − τi) = 0,

where pi are continuous and nonnegative functions and τi are positive constants,
1 ≤ i ≤ n. In the following we give sufficient conditions for the oscillation of all
solutions of (2.113).

Theorem 2.5.1. Assume τn = max{τ1, τ2, . . . , τn}. Suppose that
n∑

i=1

∫ t+τi

t

pi(s)ds > 0

for t ≥ t0 for some t0 > 0 and that

lim sup
t→∞

∫ t+τn

t

pn(s)ds > 0.

If, in addition,

(2.114)
∫ ∞

t0

(
n∑

i=1

pi(t)

)
ln

(
e

n∑
i=1

∫ t+τi

t

pi(s)ds

)
dt = ∞,

then every solution of (2.113) oscillates.
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Proof. Assume the contrary. Then (2.113) has an eventually positive and decreasing
solution x. Let λ = −x′/x. Then λ is nonnegative and continuous, and there exists
t1 ≥ t0 with x(t1) > 0 such that x(t) = x(t1) exp

(
−
∫ t

t1
λ(s)ds
)
. Furthermore, λ

satisfies the generalized characteristic equation

λ(t) =
n∑

i=1

pi(t) exp
(∫ t

t−τi

λ(s)ds

)
.

Let

B(t) =
n∑

i=1

∫ t+τi

t

pi(s)ds.

By using erx ≥ x + ln(er)
r for r > 0, we find

λ(t) =
n∑

i=1

pi(t) exp
(

B(t) · 1
B(t)

∫ t

t−τi

λ(s)ds

)

≥
n∑

i=1

pi(t)
(

1
B(t)

∫ t

t−τi

λ(s)ds +
ln(eB(t))

B(t)

)
and hence

λ(t)

(
n∑

i=1

∫ t+τi

t

pi(s)ds

)
−

n∑
i=1

pi(t)
∫ t

t−τi

λ(s)ds

≥
n∑

i=1

pi(t) ln

(
e

n∑
i=1

∫ t+τi

t

pi(s)ds

)
.

Then for N ≥ T ,∫ N

T

(
n∑

i=1

pi(t)

)
ln

(
e

n∑
i=1

∫ t+τi

t

pi(s)ds

)
dt

≤
∫ N

T

(
n∑

i=1

∫ t+τi

t

pi(s)ds

)
λ(t)dt −

n∑
i=1

∫ N

T

pi(t)
∫ t

t−τi

λ(s)dsdt

≤
n∑

i=1

∫ N

T

∫ t+τi

t

pi(s)λ(t)dsdt −
n∑

i=1

∫ N−τi

T

∫ s+τi

s

pi(t)λ(s)dtds

=
n∑

i=1

∫ N

N−τi

∫ t+τi

t

λ(t)pi(s)dsdt

≤
n∑

i=1

∫ N

N−τi

λ(t)dt =
n∑

i=1

ln
x(N − τi)

x(N)
= ln

(
n∏

i=1

x(N − τi)
x(N)

)
,

where we also used Lemma 2.4.12. In view of (2.114),

lim
t→∞

n∏
i=1

x(t − τi)
x(t)

= ∞.

This implies

(2.115) lim
t→∞

x(t − τn)
x(t)

= ∞.
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However, by Lemma 2.4.11, we have

lim inf
t→∞

x(t − τn)
x(t)

< ∞.

This contradicts (2.115) and completes the proof.

Corollary 2.5.2. If

(2.116) lim inf
t→∞

n∑
i=1

∫ t+τi

t

pi(s)ds >
1
e
,

then every solution of (2.113) oscillates.

Proof. Let τ1 < τ2 < . . . < τn. Then it follows from (2.116) that there is an m with
1 ≤ m ≤ n such that

lim sup
t→∞

∫ t+τm

t

pm(s)ds > 0

and

(2.117) lim inf
t→∞

m∑
i=1

∫ t+τi

t

pi(s)ds >
1
e
.

Now assume, for the sake of contradiction, that (2.113) has an eventually positive
solution x. Then x is also an eventually positive solution of the inequality

x′(t) +
m∑

i=1

pi(t)x(t − τi) ≤ 0.

So, by [118, Corollary 3.2.2], we know that the equation

y′(t) +
m∑

i=1

pi(t)y(t − τi) = 0

has an eventually positive solution as well. On the other hand, from (2.117) we see
that for some t0 > 0,∫ ∞

t0

(
m∑

i=1

pi(t)

)
ln

(
e

m∑
i=1

∫ t+τi

t

pi(s)ds

)
dt = ∞.

Then by Theorem 2.5.1, every solution of (2.113) oscillates.

2.6. Equations with Piecewise Constant Argument

Consider the linear delay differential equation with piecewise constant deviating
argument of the form

(2.118) x′(t) + a(t)x(t) + b(t)x ([t − 1]) = 0, t ≥ 0,

where a and b are continuous functions on [−1,∞), b(t) ≥ 0 (but not identically
zero) for t ≥ 0, and [·] denotes the greatest integer function.

By a solution of (2.118) we mean a function x which is defined on the set
{−1, 0} ∪ (0,∞) and which satisfies the conditions

(i) x is continuous on [0,∞);
(ii) the derivative x′(t) exists at each point t ∈ [0,∞) with the possible exception

of the points t ∈ N0, where one-sided derivatives exist;
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(iii) (2.118) is satisfied on each interval [n, n + 1] for n ∈ N0.

Definition 2.6.1. For n0 ∈ N0 we define N(n0) := {n0, n0 + 1, n0 + 2, . . .}. A
nontrivial sequence {An}∞n=n0

is called oscillatory if for every n1 ∈ N(n0) there
exists n ≥ n1 such that An · An+1 ≤ 0. Otherwise, it is called nonoscillatory.

Let A−1, A0 ∈ R. Then the following lemma shows that (2.118) has a unique
solution x satisfying the conditions

(2.119) x(−1) = A−1 and x(0) = A0.

Lemma 2.6.2. Let A−1 and A0 be given. Then (2.118) and (2.119) has a unique
solution x given on [n, n + 1], n ∈ N0 by

(2.120) x(t) = An exp
(
−
∫ t

n

a(s)ds

)
− An−1

∫ t

n

b(s) exp
(
−
∫ t

s

a(u)du

)
ds,

where the sequence {An} satisfies the difference (recurrence) equation

(2.121) An−1 = An exp
(∫ n

n−1

a(s)ds

)
+ An−2

∫ n

n−1

b(t) exp
(∫ t

n−1

a(s)ds

)
dt

for n ∈ N.

Proof. Let x be a solution of (2.118) and (2.119). Then on [n, n+1) for any n ∈ N0,
(2.118) can be written in the form

(2.122) x′(t) + a(t)x(t) + b(t)An−1 = 0, t ∈ [n, n + 1),

where we used the notation

An = x(n) for n ∈ N(−1).

Equation (2.122) can be rewritten as(
x(t) exp

(∫ t

n

a(s)ds

))′
+ b(t) exp

(∫ t

n

a(s)ds

)
An−1 = 0, t ∈ [n, n + 1).

Integrating from n to t ∈ [n, n + 1), we have

(2.123) x(t) exp
(∫ t

n

a(s)ds

)
− An +

[∫ t

n

b(s) exp
(∫ s

n

a(u)du

)
ds

]
An−1 = 0.

This implies (2.120). From (2.120) and by continuity, letting t → n+1 and replacing
n by n − 1, we obtain (2.121).

Conversely, let {An} be the solution of (2.121) and define x on {−1, 0}∪ (0,∞)
by (2.119) and (2.120). Then, clearly, for every n ∈ N0 and t ∈ [n, n + 1), (2.120)
implies (2.122) and, in turn, (2.122) is equivalent to (2.118) in the interval [n, n+1).
The proof is complete.

Lemma 2.6.3. Equation (2.118) has a nonoscillatory solution if and only if the
difference equation (2.121) has a nonoscillatory solution.

Proof. Assume that x is a nonoscillatory solution of (2.118). Then {An = x(n)} is
a nonoscillatory solution of (2.121).
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Conversely, assume that {An} is a nonoscillatory solution of (2.121) such that
eventually An > 0 (the case where eventually An < 0 is similar and is omitted).
From (2.123), letting t → n + 1 and by continuity, we have for n sufficiently large

An+1 exp
(∫ n+1

n

a(u)du

)
= An − An−1

∫ n+1

n

b(s) exp
(∫ s

n

a(u)du

)
ds > 0.

Then, by (2.123), we obtain for n ≤ t < n + 1 with n sufficiently large

x(t) exp
(∫ t

n

a(s)ds

)
= An − An−1

∫ t

n

b(s) exp
(∫ s

n

a(u)du

)
ds

≥ An − An−1

∫ n+1

n

b(s) exp
(∫ s

n

a(u)du

)
ds > 0.

This shows that eventually x(t) > 0, and so x is a nonoscillatory solution of (2.118).
The proof is complete.

Theorem 2.6.4. Equation (2.118) is nonoscillatory if and only if it has a nonoscil-
latory solution. This also implies that (2.118) is oscillatory if and only if it has an
oscillatory solution.

Proof. From the proof of Lemma 2.6.3, we also can see that if all solutions of (2.121)
are nonoscillatory, then all solutions of (2.118) are nonoscillatory. Since (2.121) is
a second order linear difference (recurrence) equation, by the known result in Fort
[97], we see that if one solution of (2.121) is nonoscillatory, then all its solutions are
nonoscillatory. On the basis of this discussion and by Lemma 2.6.3 and a simple
analysis, we see that Theorem 2.6.4 is true.

In the following, for convenience, we let for any n ∈ N0

(2.124) Pn = exp
(∫ n

n−1

a(t)dt

)
and Qn =

∫ n

n−1

b(t) exp
(∫ t

n−1

a(s)ds

)
dt.

Then

QnPn−1 =
∫ n

n−1

b(t) exp
(∫ t

n−2

a(s)ds

)
dt.

Observe that, by (2.124), the difference equation (2.121) can be rewritten as

(2.125) An−1 = PnAn + QnAn−2, n ∈ N,

and, by Lemma 2.6.2, if x is a solution of (2.118), then An = x(n) satisfies (2.125).
In the following we will assume that all occurring inequalities involving values of
functions or sequences are satisfied eventually for all large t or n.

Lemma 2.6.5. Assume that there exists h ∈ [0, 1/4] such that

(2.126) QnPn−1 ≥ h for large n.

Let {An} be an eventually positive solution of (2.125). Set for n ∈ N

W (1)
n =

An−1

An−2
Pn−1 and W (2)

n =
An−2

An−1
Qn.

Then

(2.127) lim sup
n→∞

W (i)
n ≤ 1 +

√
1 − 4h

2
for i ∈ {1, 2}.
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Proof. We first prove (2.127) for i = 1. From (2.125), we have

(2.128) An−2 ≥ Pn−1An−1.

This implies lim supn→∞ W
(1)
n ≤ 1, and so (2.127) holds for h = 0. We now consider

the case when 0 < h ≤ 1/4. From (2.128), it follows that
An−1

An−2
Pn−1 ≤ 1 =: λ1,

i.e.,

(2.129)
An−2

An−1
≥ Pn−1

λ1
.

Dividing both sides of (2.125) by An−1, then using (2.129) and (2.126), we find

1 ≥ Pn
An

An−1
+

QnPn−1

λ1
≥ Pn

An

An−1
+

h

λ1
.

This yields

W
(1)
n+1 ≤ λ1 − h

λ1
=: λ2.

Following this iterative procedure, we obtain

W
(1)
n+m ≤ λm − h

λm
=: λm+1 for all m ∈ N.

It is not difficult to see that 1 = λ1 ≥ λ2 ≥ . . . ≥ λm ≥ λm+1 > 0 for m ∈ N. Hence
the limit limm→∞ λm =: λ exists and satisfies λ2 − λ + h = 0. Therefore we have

lim sup
n→∞

W (1)
n ≤ 1 +

√
1 − 4h

2
.

This shows (2.127) for i = 1. Next we prove (2.127) for i = 2. From (2.125), we
have

(2.130) An−1 ≥ QnAn−2

and

(2.131) An−2 = Pn−1An−1 + Qn−1An−3.

Inequality (2.130) yields

(2.132) W (2)
n =

An−2

An−1
Qn ≤ 1 =: λ1.

Thus (2.127) holds for h = 0. In the case when 0 < h ≤ 1/4, from (2.131), (2.132),
and (2.126), we have

1 = Pn−1
An−1

An−2
+ Qn−1

An−3

An−2
≥ Pn−1

Qn

λ1
+ Qn−1

An−3

An−2
≥ h

λ1
+ Qn−1

An−3

An−2
.

This leads to
W

(2)
n+1 ≤ λ1 − h

λ1
=: λ2.

Following this iterative procedure, we have

W
(2)
n+m ≤ λm − h

λm
=: λm+1 for all m ∈ N.

Now the conclusion follows from the above inequalities and by the same arguments
as in the case when i = 1.
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Lemma 2.6.6. Let An satisfy (2.125). Then the equality

An−2 = Pn−1An−1 + An−k−4

k+1∏
j=0

Qn−j−1(2.133)

+
k∑

i=0

An−i−2Pn−i−2

i∏
j=0

Qn−j−1

holds for any k ∈ N0.

Proof. Clearly,

Pn−1An−1 + An−4Qn−1Qn−2 + Pn−2An−2Qn−1 = Pn−1An−1 + Qn−1An−3

= An−2

by applying (2.125) first for n−2 and then for n−1. Hence (2.133) holds for k = 0.
Now we assume that (2.133) holds for some k ∈ N0. Then

Pn−1An−1 + An−k−5

k+2∏
j=0

Qn−j−1 +
k+1∑
i=0

Pn−i−2An−i−2

i∏
j=0

Qn−j−1

= Pn−1An−1 + An−k−5Qn−k−3

k+1∏
j=0

Qn−j−1 +
k∑

i=0

Pn−i−2An−i−2

i∏
j=0

Qn−j−1

+Pn−k−3An−k−3

k+1∏
j=0

Qn−j−1

= Pn−1An−1 + An−k−4

k+1∏
j=0

Qn−j−1 +
k∑

i=0

Pn−i−2An−i−2

i∏
j=0

Qn−j−1

= An−2

(we used (2.125) for n − k − 3), i.e., (2.133) holds for k + 1. Hence, by induction,
(2.133) holds for all k ∈ N0.

Theorem 2.6.7. Equation (2.118) is oscillatory if

(2.134) lim inf
n→∞ (QnPn−1) >

1
4

and nonoscillatory if

(2.135) QnPn−1 ≤ 1
4

for large n ∈ N.

Proof. We first prove that if (2.134) holds, then (2.118) is oscillatory. Suppose to
the contrary that (2.118) has an eventually positive solution x. Then, by (2.124)
and Lemma 2.6.3, An = x(n) satisfies (2.125). Let

Rn =
An−1

PnAn
.

Then (2.125) reduces to

1 =
1

Rn
+ QnPn−1Rn−1,
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and hence

(2.136) Qn+1PnRn =
Qn+1Pn

1 − QnPn−1Rn−1
.

Let

(2.137) αn = QnPn−1Rn−1

so that αn = 1 − 1/Rn and αn+1(1 − αn) = Qn+1Pn. Hence 0 < αn < 1. This
implies αn(1 − αn) ≤ 1/4 because of max0≤x≤1 x(1 − x) = 1/4. From (2.136) and
(2.137), we have

Qn+1Pn = αn+1(1 − αn) =
αn+1

αn
αn(1 − αn)

≤ αn+1

4αn
=

Qn+1PnRn

4QnPn−1Rn−1

=
1

4QnPn−1

(
An−1

An
Qn+1

)(
An−1

An−2
Pn−1

)
.

By (2.134), there exists a number c such that

(2.138) QnPn−1 ≥ c >
1
4

for large n ∈ N.

Note that (2.126) is satisfied with h = 1/4. Then, by Lemma 2.6.5, for any number
ε ∈ (0, 1/4), we have for large n

An−1

An
Qn+1 ≤ 1

2 − ε
and

An−1

An−2
Pn−1 ≤ 1

2 − ε
.

We choose such an ε with 1/(2 − ε)2 < c. Thus we obtain

Qn+1Pn ≤ 1
4QnPn−1

· 1
(2 − ε)2

≤ 1
4(2 − ε)2c

<
1
4
.

This contradicts (2.138). Hence (2.118) is oscillatory.

Next we prove that (2.135) implies that (2.118) is nonoscillatory. To this end,
we first show that the difference equation

(2.139) xn =
1

1 − anxn−1
, n ∈ N

has an eventually positive solution {xn}, where

an = QnPn−1, n ∈ N.

By (2.135), without loss of generality, we may assume

(2.140) 0 ≤ an ≤ 1
4
, n ∈ N.

Set

(2.141) γ =

⎧⎨⎩
1 −√

1 − 4a1

2a1
if a1 > 0,

1 if a1 = 0.

Then γ satisfies

γ =
1

1 − a1γ
.
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We claim that

(2.142) 1 ≤ γ ≤ 2.

Indeed, let

f(x) =
1 −

√
1 − 4x

2x
, 0 < x ≤ 1

4
.

Then

f ′(x) =
1 − 2x −

√
1 − 4x

2x2
√

1 − 4x
, 0 < x <

1
4
.

Set
F (x) = 1 − 2x −

√
1 − 4x, 0 ≤ x ≤ 1

4
.

Then

F ′(x) = 2
(

1√
1 − 4x

− 1
)

> 0, 0 < x <
1
4
.

Thus, F is strictly increasing on (0, 1/4). Since F (0) = 0, it follows that F (x) > 0
for 0 < x < 1/4. Therefore f ′(x) > 0 for 0 < x < 1/4. Hence f is strictly increasing
on (0, 1/4). Notice that f(1/4) = 2 and

lim
x→0+

f(x) = lim
x→0+

1 −
√

1 − 4x

2x
= lim

x→0+

1√
1 − 4x

= 1,

and therefore we have 1 < f(x) < 2 for 0 < x < 1/4. This and (2.141) lead to
(2.142). Now we define a sequence {xn} by

x0 = γ and xn =
1

1 − anxn−1
, n ∈ N.

It is clear that 1 ≤ x0 ≤ 2 and

1 ≤ x1 =
1

1 − a1x0
=

1
1 − a1γ

= γ ≤ 2.

Thus, by (2.140), we have

1 ≤ x2 =
1

1 − a2x1
≤ 1

1 − 1
4 · 2 = 2.

By induction, we have 1 ≤ xn ≤ 2 for n ∈ N. This shows that (2.139) has a solution
{xn} such that xn > 0, n ∈ N, and {xn} satisfies

(2.143) xn =
1

1 − QnPn−1xn−1
, n ∈ N.

Next we define

A−1 = 1 and An = (Pnxn)−1An−1, n ∈ N0.

Clearly, An > 0 for n ∈ N(−1). Substituting xn = An−1/(PnAn) into (2.143), we
obtain

An−1

PnAn

(
1 − QnPn−1

An−2

Pn−1An−1

)
= 1,

i.e.,
An−1 = PnAn + QnAn−2, n ∈ N.

This proves that {An} is a nonoscillatory solution of (2.125). By Lemma 2.6.3 and
Theorem 2.6.4, we see that (2.118) is ocillatory.
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Theorem 2.6.8. Assume that for some k ∈ N0,

(2.144) lim sup
n→∞

⎛⎝QnPn−1 +
k∑

i=0

i∏
j=0

Qn−j−1Pn−j−2

⎞⎠ > 1.

Then every solution of (2.118) oscillates.

Proof. Assume, for the sake of contradiction, that (2.118) has an eventually positive
solution x. Then, by Lemma 2.6.3, An = x(n) satisfies (2.125). So An−1 ≥ PnAn.
By induction, the iterative formula

(2.145) An−i ≥ An

i−1∏
j=0

Pn−j for all i ∈ N

holds. By Lemma 2.6.6, An satisfies (2.133). Now using An−1 ≥ QnAn−2 and
(2.145) in (2.133), we obtain

An−2 ≥ QnPn−1An−2 +
k∑

i=0

i∏
j=0

Qn−j−1Pn−j−2An−2.

Dividing both sides of the above inequality by An−2, we arrive at

1 ≥ lim sup
n→∞

⎛⎝QnPn−1 +
k∑

i=0

i∏
j=0

Qn−j−1Pn−j−2

⎞⎠ .

This contradicts (2.144). The proof is complete.

In the following we establish other type (also “best possible”) oscillation criteria
for (2.118). The results are formulated in terms of the numbers m and M defined
by

m = lim inf
n→∞ (QnPn−1) and M = lim sup

n→∞
(QnPn−1) .

Theorem 2.6.9. Assume that 0 ≤ m ≤ 1/4 and that for some k ∈ N0,

(2.146) lim sup
n→∞

⎛⎝LQnPn−1 +
k∑

i=0

Li
i∏

j=0

Qn−j−1Pn−j−2

⎞⎠ > 1,

where

L =
(

1 +
√

1 − 4m

2

)−1

.

Then (2.118) is oscillatory.

Proof. By Theorem 2.6.8, the conclusion holds when m = 0. To prove the conclu-
sion when 0 < m ≤ 1/4, suppose to the contrary that (2.118) has an eventually
positive solution x. Then, by Lemma 2.6.3, An = x(n) satisfies (2.125). Since for
any η ∈ (0,m) we have QnPn−1 ≥ m − η for large n, by Lemma 2.6.5, we have

lim sup
n→∞

An−1

An−2
Pn−1 ≤ 1 +

√
1 − 4(m − η)

2
and

lim sup
n→∞

An−2

An−1
Qn ≤ 1 +

√
1 − 4(m − η)

2
.
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Letting η → 0, we see that the above two inequalities hold for η = 0. Thus, for any
sufficiently small ε > 0, the inequalities

(2.147) An−1 ≥ LεPnAn,

and

(2.148) An−1 ≥ LεQnAn−2

hold for sufficiently large n, where

Lε =
(

1 +
√

1 − 4m

2
+ ε

)−1

.

From (2.147), by induction, we have the iterative formula

(2.149) An−1 ≥ Li
ε

i−1∏
j=0

Pn−jAn for all i ∈ N.

By Lemma 2.6.6, An satisfies (2.133). Now using (2.148) and (2.149) in (2.133), we
have

An−2 ≥ LεQnPn−1An−2 + An−2

k∑
i=0

Pn−i−2L
i
ε

i−1∏
j=0

Pn−j−2

i∏
j=0

Qn−j−1

= LεQnPn−1An−2 + An−2

k∑
i=0

Li
ε

i∏
j=0

Qn−j−1Pn−j−2.

Dividing both sides of the above inequality by An−2 and taking the limit, we obtain

1 ≥ lim sup
n→∞

⎛⎝LεQnPn−1 +
k∑

i=0

Li
ε

i∏
j=0

Qn−j−1Pn−j−2

⎞⎠ .

Letting ε → 0 we have Lε → L so that (2.146) and the above inequality lead to the
contradiction

1 ≥ lim sup
n→∞

⎛⎝LQnPn−1 +
k∑

i=0

Li
i∏

j=0

Qn−j−1Pn−j−2

⎞⎠ > 1.

The proof is complete.

Corollary 2.6.10. Assume that 0 ≤ m ≤ 1/4 and

(2.150) M >

(
1 +

√
1 − 4m

2

)2

.

Then (2.118) is oscillatory.

Proof. If m = 0, then the conclusion holds (see [118]). Let 0 < m ≤ 1/4. It suffices
to prove that (2.150) implies (2.146). Indeed, notice

1 +
√

1 − 4m

2
= 1 − m

1 − Lm
,

and by (2.150), there exists ε ∈ (0,m) such that QnPn−1 ≥ m − ε and

L lim sup
n→∞

(QnPn−1) > 1 − m − ε

1 − L(m − ε)
.
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From this and the fact that [L(m − ε)]n → 0 as n → ∞, we have

L lim sup
n→∞

(QnPn−1) > 1 − (m − ε) [1 − L(m − ε)]k+1

1 − L(m − ε)

= 1 − (m − ε)
k∑

i=0

[L(m − ε)]i,

where k ∈ N is sufficiently large. The last inequality leads to (2.146) because

k∑
i=0

Li
i∏

j=0

Qn−j−1Pn−j−2 ≥ (m − ε)
k∑

i=0

[L(m − ε)]i.

The proof is complete.

Remark 2.6.11. Observe that 0 ≤ m ≤ 1/4 implies L ≥ 1 and that L = 1 if
and only if m = 0. Also note that when m → 0, condition (2.146) reduces to
(2.144). However, it is clear that (2.146) improves (2.144) when 0 ≤ m ≤ 1/4. It is
interesting to observe that when m → 1/4, condition (2.150) reduces to M > 1/4,
which cannot be improved in the sense that the lower bound 1/4 cannot be replaced
by a smaller number (cf. (2.135)).

The following is an illustrative example.

Example 2.6.12. Consider the equation

(2.151) x′(t) +
1

2 + t
x(t) + b

(
1 + cos

πt

2

)
x([t − 1]) = 0, t ≥ 0,

where b = π/(5(π − 2)). It is not difficult to see that∫ n

n−1

b(t) exp
(∫ t

n−2

a(s)ds

)
dt = b

∫ n

n−1

(
1 + cos

πt

2

)
t + 2

n
dt

=
b

n

{
2n + 3

2
+

2
π

[
(2 + n) sin

nπ

2
− (1 + n) sin

(n − 1)π
2

]}
+

4b

nπ2

(
cos

nπ

2
− cos

(n − 1)π
2

)
,

and so

m = lim inf
n→∞

∫ n

n−1

b(t) exp
(∫ t

n−2

a(s)ds

)
dt =

b(π − 2)
π

=
1
5

<
1
4

and

lim sup
n→∞

∫ n

n−1

b(t) exp
(∫ t

n−2

a(s)ds

)
dt =

b(π + 2)
π

=
π + 2

5(π − 2)
< 1.

Thus, it is easy to see that condition (2.150) is satisfied. So, by Corollary 2.6.10,
(2.151) is oscillatory.
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2.7. Notes

The results in Section 2.2 are taken from Erbe, Kong, and Zhang [92], and
Section 2.3 is taken from Elbert and Stavroulakis [83]. Theorems 2.4.1, 2.4.5, 2.4.6,
and 2.4.13 are due to Li [169], Tang and Shen [259], and Li [170], respectively,
while Theorem 2.5.1 is proved by Li [170]. The contents of Section 2.6 is taken
from Shen and Stavroulakis [252].

 



CHAPTER 3

First Order Neutral Differential Equations

3.1. Introduction

In general, the theory of neutral delay differential equations is more complicated
than the theory of delay differential equations without neutral terms. For example,

the characteristic roots of a neutral differential equation may all have negative real
parts, it is still possible for some solutions to be unbounded.

In this chapter, we will present some recent results in the oscillation theory of
first order neutral delay differential equations, and consequently this will be a useful
source for researchers in this field.

In Section 3.2, we consider nonlinear neutral delay differential equations. We
first present a comparison theorem for oscillation, and then some sufficient con-
ditions for oscillation are established. Section 3.3 is concerned with oscillation of
neutral delay differential equations with positive and negative coefficients by using
generalized characteristic equations. Some oscillation criteria are given. In Section
3.4, we deal with neutral delay differential equations with positive and negative
coefficients; here the comparison method plays an important rôle. In Section 3.5,
we consider nonoscillation of neutral delay differential equations with positive and
negative coefficients. Some criteria for existence of positive solutions are given. In
Section 3.6, we give classification schemes of eventually positive solutions of neutral
differential equations in terms of their asymptotic magnitude, and provide neces-
sary and/or sufficient conditions for the existence of solutions. Finally, Section 3.7
is concerned with the existence of positive solutions of neutral perturbed differential
equations.

3.2. Comparison Theorems and Oscillation

We consider a first order neutral delay nonlinear differential equations of the
form

(3.1)
(
x(t) − R(t)x(t − r)

)′
+ P (t)

m∏
i=1

∣∣∣x(t − τi)
∣∣∣αi

sgn x(t − τi) = 0

along with the corresponding inequality

(3.2)
(
x(t) − R(t)x(t − r)

)′
+ P (t)

m∏
i=1

∣∣∣x(t − τi)
∣∣∣αi

sgn x(t − τi) ≤ 0,

where P,R ∈ C([t0,∞), R+), r ∈ (0,∞) and τ1, τ2, . . . , τm are nonnegative num-
bers, R(t) ≥ 0, and P (t) ≥ 0 for t ≥ t0 such that P (t) is not identically zero for
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all large t, and each αi is a positive number for 1 ≤ i ≤ m such that
∑m

i=1 αi = 1.
When m = 1, (3.1) reduces to the linear equation(

x(t) − R(t)x(t − r)
)′

+ P (t)x(t − τ) = 0.

Let T0 = max{r, τ1, . . . , τm}. By a solution of the equation (3.1) we mean a function
x ∈ C([t0 − T0,∞), R) such that x(t) − R(t)x(t − r) is continuously differentiable
and satisfies (3.1) on [t0,∞). Let φ ∈ C([t0 − T0, t0], R) be a given initial function.
One can easily see by the method of steps that the equation (3.1) has a unique
solution x ∈ C([t0 − T0,∞), R) such that x(t) = φ(t) for t0 − T0 ≤ t ≤ t0.

Lemma 3.2.1. Assume that there exists t∗ ≥ t0 such that

(3.3) R(t∗ + mr) ≤ 1 for all m ∈ N0.

Then for any eventually positive solution x of (3.2), the function y defined by

(3.4) y(t) = x(t) − R(t)x(t − r)

satisfies
y′(t) ≤ 0 and y(t) > 0.

Proof. It is clear from (3.1) that y′(t) ≤ 0 and is not identically zero for all large t.
Thus y(t) is eventually positive or eventually negative. If x(t) > 0, y′(t) ≤ 0 and
y(t) < 0 for t ≥ T , then y(t) ≤ y(T ) < 0 for t > T . By choosing n so large that
t∗ + nr ≥ T , we claim that

(3.5) x(t∗ + nr + kr) ≤ ky(T ) + x(t∗ + nr)

holds for all k ∈ N0. In fact, (3.5) is clear for k = 0, and if (3.5) holds for some
k ∈ N0, then by (3.4)

x
(
t∗ + nr + (k + 1)r

)
= y
(
t∗ + nr + (k + 1)r

)
+R
(
t∗ + nr + (k + 1)r

)
x(t∗ + nr + kr)

≤ y(T ) + x(t∗ + nr + kr)
≤ (k + 1)y(T ) + x(t∗ + nr).

Hence (3.5) holds for k + 1, and by induction it holds for all k ∈ N0. By letting k
in (3.5) tend to infinity, we see that the right-hand side diverges to −∞, which is
contrary to our assumption that x(t) > 0. The proof is complete.

Theorem 3.2.2. Assume that (3.3) holds and that either

(3.6) R(t) + P (t)r > 0

or

(3.7) r > 0 and P (s) �≡ 0 for s ∈ [t, t + r].

Then every solution of (3.1) oscillates if and only if the corresponding differential
inequality (3.2) has no eventually positive solution.

Proof. The sufficiency is obvious. To prove the necessity, we assume that x is an
eventually positive solution of (3.2). Define y as in (3.4). Then by Lemma 3.2.1,
we find

y(t) ≥
∫ ∞

t

P (s)
m∏

i=1

[x(s − τi)]
αi ds,
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i.e.,

(3.8) x(t) ≥ R(t)x(t − r) +
∫ ∞

t

P (s)
m∏

i=1

[x(s − τi)]
αi ds.

Let T > t0 be fixed so that (3.8) holds for all t ≥ T . Now we consider the set of
functions

E =
{

u ∈ C([T − T0,∞), R+) : 0 ≤ u(t) ≤ 1 for t ≥ T − T0

}
and define a mapping F on E as

(Fu)(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
x(t)

[
R(t)u(t − r)x(t − r) +

∫ ∞

t

P (s)
m∏

i=1

[u(s − τi)x(s − τi)]
αi ds

]
if t ≥ T,

t − T + T0

T0
(Fu)(T ) +

(
1 − t − T + T0

T0

)
if T − T0 ≤ t < T.

It is easy to see, using (3.8), that F maps E into itself. Moreover, for any u ∈ E
we have (Fu)(t) > 0 for T −T0 ≤ t < T . Next we define the sequence {uk} ⊂ E by

u0(t) = 1 for t ≥ T − T0, uk+1 = Fuk for k ∈ N0.

Then, by using (3.8) and a simple induction, we can easily see that

0 ≤ uk+1(t) ≤ uk(t) ≤ 1 for t ≥ T − T0 and k ∈ N0.

Set
u(t) = lim

k→∞
uk(t), t ≥ T − T0.

Then it follows from Lebesgue’s dominated convergence theorem that u satisfies

u(t) =
1

x(t)

[
R(t)u(t − r)x(t − r) +

∫ ∞

t

P (s)
m∏

i=1

[u(s − τi)x(s − τi)]
αi ds

]
for t ≥ T and

u(t) =
t − T + T0

T0
(Fu)(T ) +

(
1 − t − T + T0

T0

)
for T − T0 ≤ t ≤ T . Now set

w = ux.

Then w satisfies w(t) > 0 for T − T0 ≤ t < T and

(3.9) w(t) = R(t)w(t − r) +
∫ ∞

t

P (s)
m∏

i=1

[w(s − τi)]
αi ds, t ≥ T.

Hence w solves (3.1). Clearly, w is continuous on [T − T0,∞).

It remains to show that w(t) is positive for all t ≥ T − T0. Assume that there
exists t∗ ≥ T − T0 such that w(t) > 0 for T − T0 ≤ t < t∗ and w(t∗) = 0. Then
t∗ ≥ T , and by (3.9) we get

0 = w(t∗) = R(t∗)w(t∗ − r) +
∫ ∞

t∗
P (s)

m∏
i=1

[w(s − τi)]
αi ds,
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which implies

R(t∗) = 0 and P (t)
m∏

i=1

[w(t − τi)]
αi ≡ 0 for t ≥ t∗.

This contradicts (3.6) or (3.7). Therefore w(t) is positive on [T − T0,∞).

We now compare (3.1) with the equation

(3.10)
(
x(t) − R∗(t)x(t − r)

)′
+ P ∗(t)

m∏
i=1

∣∣∣x(t − τi)
∣∣∣αi

sgn x(t − τi) = 0

to obtain the following comparison theorem.

Theorem 3.2.3. Assume that (3.3) holds and that (3.6) or (3.7) holds for P ∗(t)
and Q∗(t). Further assume that

(3.11) R(t) ≥ R∗(t) and P (t) ≥ P ∗(t).

If every solution of (3.10) oscillates, then every solution of (3.1) oscillates as well.

Proof. Suppose the contrary and let x be an eventually positive solution of (3.1).
Set y as in (3.4). Then by Lemma 3.2.1 we have eventually

y′(t) ≤ 0 and y(t) > 0.

Thus, by integrating (3.1) from t to T > t, we obtain

y(t) = y(T ) +
∫ T

t

P (s)
m∏

i=1

[x(s − τi)]
αi ds ≥

∫ T

t

P (s)
m∏

i=1

[x(s − τi)]
αi ds.

Therefore y(t) ≥
∫∞

t
P (s)
∏m

i=1[x(s − τi)]αids, and noting (3.11), we obtain

x(t) ≥ R(t)x(t − r) +
∫ ∞

t

P (s)
m∏

i=1

[x(s − τi)]
αi ds

≥ R∗(t)x(t − r) +
∫ ∞

t

P ∗(s)
m∏

i=1

[x(s − τi)]
αi ds

which (note that (3.11) implies that (3.3) also holds for R∗) implies in view of Theo-
rem 3.2.2 that (3.11) also has an eventually positive solution. This is a contradiction
and the proof is complete.

We now turn to the question as to when (3.1) is oscillatory. This question is
important if we want to apply Theorem 3.2.3.

Lemma 3.2.4. Assume that R(t) ≥ 1 for t ≥ t0 and

(3.12)
∫ ∞

t0

P (s) exp
(

1
r

∫ s

t0

uP (u)du

)
ds = ∞.

Let x be an eventually positive solution of (3.1) and define y by (3.4). Then even-
tually

(3.13) y′(t) ≤ 0 and y(t) < 0.
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Proof. From (3.1) and (3.4), we have

y′(t) = −P (t)
m∏

i=1

[x(t − τi)]
αi ≤ 0.

Therefore, if (3.13) does not hold, then eventually y(t) > 0, i.e.,

x(t) ≥ R(t)x(t − r) ≥ x(t − r).

Let t1 ≥ t0 be such that x(t− r) > 0 for t ≥ t1 and such that (3.8) holds for t ≥ t1.
Define

M = min
{

x(t) : t ∈ [t1 − r, t1]
}

.

Then x(t) ≥ M for t ≥ t1. Set τ∗ = max{r, τ1, . . . , τm}, and we have

x(t) ≥ M for t ≥ t1 + τ∗ = t2.

For convenience, we denote

N(t) =
[
t − t2

r

]
,

where [(t − t2)/r] is the greatest integer part of (t − t2)/r. We claim that

(3.14) x(t) ≥
n−1∑
k=0

y(t − kr) + x(t − nr), t ≥ t2

holds for all 0 ≤ n ≤ N(t). Clearly, (3.14) is true for n = 0. If (3.14) is true for
some 0 ≤ n < N(t), then

x(t) ≥
n−1∑
k=0

y(t − kr) + x(t − nr)

=
n−1∑
k=0

y(t − kr) + y(t − nr) + R(t − nr)x(t − nr − r)

=
n∑

k=0

y(t − kr) + R(t − nr)x
(
t − (n + 1)r

)
≥

n∑
k=0

y(t − kr) + x
(
t − (n + 1)r

)
for t ≥ t2 and so (3.14) is true for n + 1. Hence (3.14) is true for all 0 ≤ n ≤ N(t).
We note that y is decreasing and x(t − N(t)r) ≥ M for t ≥ t2. Thus, by (3.10) we
obtain from (3.14) with n = N(t)

x(t) ≥ N(t)y(t) + M, t ≥ t2.

Substituting this into (3.1), we have

y′(t) + P (t)
m∏

i=1

(
N(t − τi)y(t − τi) + M

)αi

≤ 0, t ≥ t2 + τ0 = t3,

where τ0 = max{τ1, . . . , τm}. By Hölder’s inequality [118], we have
m∏

i=1

(
N(t − τi)y(t − τi) + M

)αi

≥
m∏

i=1

[N(t − τi)]
αi

m∏
i=1

[y(t − τi)]
αi + M
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and so

y′(t) + P (t)
m∏

i=1

[N(t − τi)]
αi y(t) + P (t)M ≤ 0, t ≥ t3.

Therefore[
y(t) exp

(∫ t

t3

P (s)
m∏

i=1

[N(s − τi)]
αi ds

)]′

+ MP (t) exp

(∫ t

t3

P (s)
m∏

i=1

[N(s − τi)]
αi ds

)
≤ 0, t ≥ t3.

Integrating this inequality from t3 to t ≥ t3, we find

(3.15) y(t) exp

(∫ t

t3

P (s)
m∏

i=1

[N(s − τi)]
αi ds

)
− y(t3)

+ M

∫ t

t3

P (s) exp

(∫ s

t3

P (u)
m∏

i=1

[N(u − τi)]
αi du

)
ds ≤ 0, t ≥ t3.

If the condition ∫ ∞

t0

P (s)ds = ∞

is satisfied, then it is easy to see that every solution of (3.1) oscillates. Hence we
assume ∫ ∞

t0

P (s)ds < ∞.

Noting
∏m

i=1 [N(t − τi)]
αi /t → 1/r as t → ∞, it is easy to see that∫ ∞

t3

P (s)

{
s

r
−

m∏
i=1

[N(s − τi)]
αi

}
ds

is absolutely convergent and

lim
s→∞

exp

(∫ s

t3

P (u)
m∏

i=1

[N(u − τi)]
αi du

)

exp
(

1
r

∫ s

t3

uP (u)du

)
exists. By condition (3.12), we obtain∫ ∞

t3

P (s) exp

(∫ s

t3

P (u)
m∏

i=1

[N(u − τi)]
αi du

)
ds = ∞.

Letting t → ∞ in (3.15), we obtain a contradiction.

In view of Lemmas 3.2.1 and 3.2.4, it is now easy to obtain the following result.

Theorem 3.2.5. Assume that (3.12) holds and

R(t) ≡ 1.

Then every solution of (3.1) oscillates.
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Example 3.2.6. Consider the neutral delay differential equation

(3.16)
(
x(t) − x(t − r)

)′
+ t−αx(t − τ) = 0,

where r > 0, τ > 0, and 1 < α < 2. Note that (3.16) satisfies all conditions of
Theorem 3.2.5. Hence all solutions of (3.16) oscillate. On the other hand, we see

if α > 2. Therefore, it remains an open problem to determine the oscillation of
all solutions of (3.16) with α = 2.

Theorem 3.2.7. Assume that (3.3) and (3.12) hold, and that

(3.17)
m∏

i=1

[R(t − τi)]
αi P (t) ≥ P (t − r).

Then every solution of (3.1) oscillates.

Proof. Otherwise, (3.1) would have an eventually positive solution x. Let y be
defined by (3.4). Then by Lemma 3.2.1, we have eventually

y′(t) ≤ 0 and y(t) > 0.

From (3.1), (3.4), and (3.17), we find

y′(t) = −P (t)
m∏

i=1

[x(t − τi)]
αi

= −P (t)
m∏

i=1

(
y(t − τi) + R(t − τi)x(t − r − τi)

)αi

≤ −P (t)
m∏

i=1

[y(t − τi)]
αi + y′(t − r),

where we have used Hölder’s inequality in the last step. This implies that y is a
positive solution of the inequality

(3.18) y′(t) − y′(t − r) + P (t)
m∏

i=1

[y(t − τi)]
αi ≤ 0,

which satisfies all conditions of Lemma 3.2.1, hence u(t) = y(t) − y(t − r) > 0
eventually. On the other hand, since (3.18) satisfies all conditions of Lemma 3.2.4,
u(t) = y(t) − y(t − r) < 0 eventually, which is a contradiction.

In case the assumption (3.17) is not satisfied, we may check to see if there is
some number c ∈ [0, 1) such that cP (t− r) ≤ P (t)

∏m
i=1 [R(t − τi)]

αi for all large t.

Theorem 3.2.8. Assume that (3.3) and (3.12) hold and that there is some number
c ∈ [0, 1) such that

cP (t − r) ≤ P (t)
m∏

i=1

[R(t − τi)]
αi for all large t.

Then (3.1) is oscillatory provided that the inequality

(3.19) z′(t) +
c

1 − c
P (t)z(t − r − τ) ≤ 0 with τ = min{τ1, . . . , τm}

does not have an eventually positive solution.

 

by [301, Theorem 1] that (3.16) has a bounded nonoscillatory solution if and only
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Proof. Suppose to the contrary that x is an eventually positive solution of (3.1).
Then by means of Lemma 3.2.1, the function y defined by (3.4) satisfies y(t) > 0
and y′(t) ≤ 0 for all large t. Then, as in the proof of Theorem 3.2.7, we see that

y′(t) − cy′(t − r) + P (t)
m∏

i=1

[y(t − τi)]
αi ≤ 0

for all large t. Since y is nonincreasing, we have

y′(t) − cy′(t − r) + P (t)y(t − τ) ≤ y′(t) − cy′(t − r) + P (t)
m∏

i=1

[y(t − τi)]
αi ≤ 0

for all large t, where τ = min{τ1, . . . , τm}. Let z(t) = y(t) − cy(t − r) for t ≥ t0.
By means of Lemma 3.2.1, it is clear that z′(t) ≤ 0 and z(t) > 0 for t greater than
or equal to some number T . Without loss of generality, we may also assume that
y(t) > 0 for t ≥ T . Now

y(t) = z(t) + cy(t − r)

≥ z(t) + cz(t − r) + . . . + cjz(t − jr) + cj+1y
(
t − (j + 1)r

)
>
(
c + c2 + . . . + cj+1

)
z(t − r)

=
c(1 − cj+1)

1 − c
z(t − r)

for t > (j + 1)r + T + τ and hence

0 ≥ y′(t) − cy′(t − r) + P (t)y(t − τ) = z′(t) + P (t)y(t − τ)

> z′(t) +
c

1 − c
P (t)z(t − r − τ)

for all large t, which is contrary to our hypothesis.

Remark 3.2.9. Several explicit conditions ensuring that (3.19) cannot have an
eventually positive solution have already been established. A sample of these con-
ditions can be found in the book by Győri and Ladas [118].

Theorem 3.2.10. Suppose P (t) ≥ p > 0, R(t) ≥ 0 for t ≥ t0 such that (3.3) holds.
Suppose further that τi ∈ (0,∞), 1 ≤ i ≤ m and

(3.20) inf
t≥t0,λ>0

{
P (t)

P (t − r)

m∏
i=1

[R(t − τi)]
αi erλ +

1
lλ

eλ
∑m

i=1 αiτi

∫ t+l

t

P (s)ds

}
> 1

for all l ∈ {r, τ1, . . . , τm}. Then (3.1) is oscillatory.

Proof. Suppose to the contrary that x is an eventually positive solution of (3.1).
Then arguments similar to those used in the proof of Theorem 3.2.7 show that the
function y defined by (3.4) is positive, nonincreasing, and satisfies

y′(t) − P (t)
P (t − r)

m∏
i=1

[R(t − τi)]
αi y′(t − r) + P (t)

m∏
i=1

[y(t − τi)]
αi ≤ 0

for t ≥ t0. For the sake of convenience, let us write

Q(t) =
P (t)

P (t − r)

m∏
i=1

[R(t − τi)]
αi , t ≥ t0.
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Let w(t) = −y′(t)
y(t) for t ≥ t0. Then w(t) > 0 for t ≥ t0 and

w(t) ≥ Q(t)w(t − r) exp
(∫ t

t−r

w(s)ds

)
+ P (t)

m∏
i=1

[
exp
(∫ t

t−τi

w(s)ds

)]αi

for t ≥ t0 + τ∗, where τ∗ = max{r, τ1, . . . , τm}.
The rest of the proof of Theorem 3.2.10 is similar to that of [91, Theorem 2.1]

and hence will be omitted.

Remark 3.2.11. When m = 1 and R(t) ≡ R > 0, P (t) ≡ P for t ≥ t0, the
condition (3.20) is sharp.

3.3. Oscillation of Equations with Variable Coefficients (I)

Consider first order neutral delay differential equations with positive and nega-
tive coefficients of the form

(3.21)
(
x(t) − R(t)x(t − r)

)′
+ P (t)x(t − τ) − Q(t)x(t − δ) = 0,

where

(3.22) P,Q,R ∈ C([t0,∞), R+), r ∈ (0,∞) and τ, δ ∈ R+

and

(3.23) τ > δ, P̄ (t) = P (t) − Q(t − τ + δ) ≥ 0 and not identically zero.

Let T0 = max{r, τ, δ}. By a solution of the equation (3.21) we mean a function
x ∈ C([t0−T0,∞), R), for some t1 ≥ t0 such that x(t)−R(t)x(t−r) is continuously
differentiable on [t1,∞) and such that (3.21) is satisfied for t ≥ t1.

In this section we give some sharp sufficient conditions for the oscillation of all
solutions of (3.21). Before stating our main results, we need the following lemmas.

Lemma 3.3.1. Assume that (3.22) and (3.23) hold and

(3.24) R(t) +
∫ t

t−τ+δ

Q(s)ds ≤ 1 for t ≥ t1 ≥ t0.

Let x be an eventually positive solution of (3.21) and set

(3.25) y(t) = x(t) − R(t)x(t − r) −
∫ t

t−τ+δ

Q(s)x(s − δ)ds.

Then eventually

(3.26) y′(t) ≤ 0 and y(t) > 0.

Proof. From (3.21), (3.23), and (3.25), we see that

y′(t) = −P̄ (t)x(t − τ) ≤ 0, t ≥ t2 ≥ t1.

Denote limt→∞ y(t) = l. We show that l ≥ 0.

 



64 3. FIRST ORDER NEUTRAL DIFFERENTIAL EQUATIONS

First we consider the case that x is unbounded, i.e., lim supt→∞ x(t) = ∞.
Then there exists a sequence {sn} with limn→∞ sn = ∞, limn→∞ x(sn) = ∞, and
x(sn) = max{x(t) : t2 ≤ t ≤ sn} for n ∈ N. Hence from (3.23) and (3.24)

y(sn) = x(sn) − R(sn)x(sn − r) −
∫ sn

sn−τ+δ

Q(s)x(s − δ)ds

≥ x(sn)
[
1 − R(sn) −

∫ sn

sn−τ+δ

Q(s)ds

]
≥ 0

for n ∈ N. Therefore l = limt→∞ y(t) = limn→∞ y(sn) ≥ 0.

Next we consider the case that x is bounded. Set lim supt→∞ x(t) = l̄ < ∞.
Then there exists a sequence {s̄n} such that limn→∞ s̄n = ∞, limn→∞ x(s̄n) = l̄.
Denote r1 = min{r, δ}, r2 = max{r, τ}, and

x(ξn) = max
{

x(s) : s̄n − r2 ≤ s ≤ s̄n − r1

}
, n ∈ N.

Clearly, limn→∞ ξn = ∞ and limn→∞ x(ξn) ≤ l̄. From (3.23) and (3.24),

x(s̄n) − y(s̄n) = R(s̄n)x(s̄n − r) +
∫ s̄n

s̄n−τ+δ

Q(s)x(s − δ)ds

≤ x(ξn)
[
R(s̄n) +

∫ s̄n

s̄n−τ+δ

Q(s)ds

]
≤ x(ξn).

Taking limit superior on both sides as n → ∞, we obtain l̄ − l ≤ l̄, and so l ≥ 0.
Then y(t) > l ≥ 0 for t ≥ t2.

Lemma 3.3.2. Assume that δ > 0, Q ∈ C([t0,∞), R+), λ ∈ C([t0 − δ,∞), R+),
and

(3.27) λ(t) ≥ Q(t) exp
(∫ t

t−δ

λ(s)ds

)
, t ≥ t0.

Then the condition

(3.28) lim inf
t→∞

∫ t

t−δ

Q(s)ds > 0

implies that

(3.29) lim inf
t→∞

∫ t

t−δ

λ(s)ds < ∞.

Proof. Define

Q̄(t) =
∫ t

t0

Q(s)ds, t ≥ t0.

The condition (3.28) implies that limt→∞ Q̄(t) = ∞, and Q̄(t) is strictly increasing.
Then Q̄−1(t) is well defined, strictly increasing, and limt→∞ Q̄−1(t) = ∞. The
condition (3.28) implies that there exist c > 0 and T1 ≥ t0 such that

Q̄(t) − Q̄(t − δ) ≥ c

2
for t ≥ T1

and thus
Q̄−1
(
Q̄(t) − c

2

)
≥ t − δ for t ≥ T1.
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Set

Λ(t) = exp
(
−
∫ t

T1

λ(s)ds

)
.

Now (3.27) implies that

Λ′(t) ≤ −Q(t)Λ(t − δ), t ≥ t0.

By [92, Lemma 2.1.3], Λ(t − δ)/Λ(t) is bounded above under the condition (3.28).
Then (3.29) is true.

Theorem 3.3.3. Assume that (3.22), (3.23), and (3.24) hold and

(3.30) lim inf
t→∞

∫ t

t−τ

P̄ (s)ds > 0.

Assume moreover that there exists a positive continuous function H such that

(3.31) lim
t→∞

∫ t

t−τ

H(s)ds > 0

and that either

1 < inf
λ>0,t≥T

{
R(t − τ)P̄ (t)H(t − r)

P̄ (t − r)H(t)
exp
(

λ

∫ t

t−r

H(s)ds

)
(3.32)

+
P̄ (t)

H(t)λ
exp
(

λ

∫ t

t−τ

H(s)ds

)
+

P̄ (t)
H(t)

∫ t

t−τ+δ

Q(s − τ)H(s − δ)
P̄ (s − δ)

exp
(

λ

∫ t

s−δ

H(u)du

)
ds

}
or

1 < inf
λ>0,t≥T

{
1

H(t)λ
exp
(

λ

∫ t

t−τ

H(s)P̄ (s)ds

)
(3.33)

+
H(t − r)R(t − τ)

H(t)
exp
(

λ

∫ t

t−r

H(s)P̄ (s)ds

)
+

1
H(t)

∫ t

t−τ+δ

Q(s − τ)H(s − δ) exp
(

λ

∫ t

s−δ

H(u)P̄ (u)du

)
ds

}
.

Then every solution of (3.21) is oscillatory.

Proof. Without loss of generality, assume that (3.21) has an eventually positive
solution x. Let y be defined by (3.25). Then by Lemma 3.3.1 we have

y′(t) ≤ 0 and y(t) > 0 for t ≥ t1 ≥ t0.

From (3.21) we have

y′(t) = −P̄ (t)x(t − τ)(3.34)

= −P̄ (t)
[
y(t − τ) + R(t − τ)x(t − τ − r) +

∫ t

t−τ+δ

Q(s − τ)x(s − τ − δ)ds

]
= −P̄ (t)y(t − τ) +

R(t − τ)P̄ (t)
P̄ (t − r)

y′(t − r) + P̄ (t)
∫ t

t−τ+δ

Q(s − τ)
P̄ (s − δ)

y′(s − δ)ds.

Set

λ(t)H(t) = −y′(t)
y(t)

.
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Then (3.34) reduces to

λ(t)H(t) ≥ P̄ (t) exp
(∫ t

t−τ

λ(s)H(s)ds

)
(3.35)

+λ(t − r)H(t − r)
R(t − τ)P̄ (t)

P̄ (t − r)
exp
(∫ t

t−r

λ(s)H(s)ds

)
+P̄ (t)
∫ t

t−τ+δ

Q(s − τ)
P̄ (s − δ)

λ(s − δ)H(s − δ) exp
(∫ t

s−δ

λ(u)H(u)du

)
ds.

It is obvious that λ(t)H(t) > 0 for t ≥ t0. From (3.35) we have

λ(t)H(t) ≥ P̄ (t) exp
(∫ t

t−τ

λ(s)H(s)ds

)
.

In view of (3.30) and Lemma 3.3.2, we get

lim inf
t→∞

∫ t

t−τ

λ(s)H(s)ds < ∞,

which implies, by using (3.31), that lim inft→∞ λ(t) < ∞. Now we show that

lim inf
t→∞ λ(t) > 0.

In fact, if lim inft→∞ λ(t) = 0, then there exists a sequence {tn} such that tn ≥ t1,
tn → ∞ as n → ∞, and λ(tn) ≤ λ(t) for t ∈ [t1, tn]. From (3.35) we have

λ(tn)H(tn) ≥ P̄ (tn) exp
(

λ(tn)
∫ tn

tn−τ

H(s)ds

)
+λ(tn)H(tn − r)

R(tn − τ)P̄ (tn)
P̄ (tn − r)

exp
(

λ(tn)
∫ tn

tn−r

H(s)ds

)
+P̄ (tn)

∫ tn

tn−τ+δ

Q(s − τ)
P̄ (s − δ)

λ(tn)H(s − δ) exp
(

λ(tn)
∫ tn

s−δ

H(u)du

)
ds.

Hence

1 ≥ P̄ (tn)
λ(tn)H(tn)

exp
(

λ(tn)
∫ tn

tn−τ

H(s)ds

)
+

H(tn − r)R(tn − τ)P̄ (tn)
H(tn)P̄ (tn − r)

exp
(

λ(tn)
∫ tn

tn−r

H(s)ds

)
+

P̄ (tn)
H(tn)

∫ tn

tn−τ+δ

Q(s − τ)H(s − δ)
P̄ (s − δ)

exp
(

λ(tn)
∫ tn

s−δ

H(u)du

)
ds,

which contradicts (3.32). Now, let us first assume that (3.32) holds. Then

(3.36) lim inf
t→∞ λ(t) = h ∈ (0,∞).
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By (3.32), there exists an α ∈ (0, 1) such that

1 < α inf
λ>0,t≥T

{
R(t − τ)P̄ (t)H(t − r)

P̄ (t − r)H(t)
exp
(

λ

∫ t

t−r

H(s)ds

)
(3.37)

+
P̄ (t)

H(t)λ
exp
(

λ

∫ t

t−τ

H(s)ds

)
+

P̄ (t)
H(t)

∫ t

t−τ+δ

Q(s − τ)H(s − δ)
P̄ (s − δ)

exp
(

λ

∫ t

s−δ

H(u)du

)
ds

}
.

In view of (3.36), there exists t2 > t1 such that

λ(t) > αh for all t ≥ t2.

Substituting (3.37) into (3.35), we obtain

λ(t)H(t) ≥ P̄ (t) exp
(

hα

∫ t

t−τ

H(s)ds

)
+hα

H(t − r)R(t − τ)P̄ (t)
P̄ (t − r)

exp
(

hα

∫ t

t−r

H(s)ds

)
+P̄ (t)αh

∫ t

t−τ+δ

Q(s − τ)H(s − δ)
P̄ (s − δ)

exp
(

hα

∫ t

s−δ

H(u)du

)
ds

for t ≥ t2 + T0. Hence

h ≥ lim inf
t→∞

{
P̄ (t)
H(t)

exp
(

αh

∫ t

t−τ

H(s)ds

)
+αh

H(t − r)R(t − τ)P̄ (t)
H(t)P̄ (t − r)

exp
(

αh

∫ t

t−r

H(s)ds

)
+

P̄ (t)
H(t)

αh

∫ t

t−τ+δ

Q(s − τ)H(s − δ)
P̄ (s − δ)

exp
(

αh

∫ t

s−δ

H(u)du

)
ds

}
,

which implies that there exists a sequence {t̄n} such that t̄n ≥ max{T, t2 + T0},
t̄n → ∞ as n → ∞, and

h ≥ lim
n→∞

{
P̄ (t̄n)
H(t̄n)

exp

(
αh

∫ t̄n

t̄n−τ

H(s)ds

)

+αh
H(t̄n − r)R(t̄n − τ)P̄ (t̄n)

H(t̄n)P̄ (t̄n − r)
exp

(
αh

∫ t̄n

t̄n−r

H(s)ds

)

+
P̄ (t̄n)
H(t̄n)

αh

∫ t̄n

t̄n−τ+δ

Q(s − τ)H(s − δ)
P̄ (s − δ)

exp

(
αh

∫ t̄n

s−δ

H(u)du

)
ds

}
.

If we set λ = hα, then

1 ≥ α lim
n→∞

{
P̄ (t̄n)

H(t̄n)λ
exp

(
λ

∫ t̄n

t̄n−τ

H(s)ds

)

+
H(t̄n − r)R(t̄n − τ)P̄ (t̄n)

H(t̄n)P̄ (t̄n − r)
exp

(
λ

∫ t̄n

t̄n−r

H(s)ds

)

+
P̄ (t̄n)
H(t̄n)

∫ t̄n

t̄n−τ+δ

Q(s − τ)H(s − δ)
P̄ (s − δ)

exp

(
λ

∫ t̄n

s−δ

H(u)du

)
ds

}
,
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which contradicts (3.37) and completes the proof of this theorem under condition
(3.32).

Now we assume that condition (3.33) holds. Let

λ(t)H(t)P̄ (t) = −y′(t)
y(t)

.

Then (3.34) becomes

λ(t)H(t) ≥ exp
(∫ t

t−τ

λ(s)H(s)P̄ (s)ds

)
(3.38)

+λ(t − r)H(t − r)R(t − τ) exp
(∫ t

t−r

λ(s)H(s)P̄ (s)ds

)
+
∫ t

t−τ+δ

Q(s − τ)λ(s − δ)H(s − δ) exp
(∫ t

s−δ

λ(u)H(u)P̄ (u)du

)
ds.

As before, by Lemma 3.3.2, we can prove that

(3.39) lim inf
t→∞

∫ t

t−τ

λ(s)H(s)P̄ (s)ds < ∞.

From (3.30), (3.31), and (3.39), we may conclude that lim inft→∞ λ(t) < ∞. In
view of (3.38), λ(t) ≥ 1, and so

lim inf
t→∞ λ(t) = h ∈ (0,∞).

From (3.33), there exists α ∈ (0, 1) such that

1 < α inf
λ>0,t≥T

{
1

λH(t)
exp
(

λ

∫ t

t−τ

H(s)P̄ (s)ds

)
+

H(t − r)R(t − τ)
H(t)

exp
(

λ

∫ t

t−r

H(s)P̄ (s)ds

)
+

1
H(t)

∫ t

t−τ+δ

Q(s − τ)H(s − δ) exp
(

λ

∫ t

s−δ

H(u)P̄ (u)du

)
ds

}
.

By using a similar method as in the first part of the proof, we can derive a contra-
diction. The proof is complete.

Remark 3.3.4. Conditions (3.32) and (3.33) are equivalent when P̄ (t) > 0 for
t ≥ T . In fact, if P̄ (t) > 0 for t ≥ T , set K(t) = H(t)P̄ (t). Then condition (3.33)
becomes (3.32). Conversely, if we let K(t) = H(t)/P̄ (t), then (3.32) reduces to
(3.33).

Since ex ≥ ex and ex ≥ 1 for x ≥ 0, (3.32) and (3.33) lead to the following
corollary.

Corollary 3.3.5. Assume that (3.22), (3.23), (3.24), (3.30), and (3.31) hold. Fur-
ther assume that either

1 < lim inf
t→∞

{
R(t − τ)P̄ (t)H(t − r)

P̄ (t − r)H(t)
+

eP̄ (t)
H(t)

∫ t

t−τ

H(s)ds

+
P̄ (t)
H(t)

∫ t

t−τ+δ

Q(s − τ)H(s − δ)
P̄ (s − δ)

ds

}
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(if P̄ (t) > 0 for t ≥ T ) or

1 < lim inf
t→∞

{
e

H(t)

∫ t

t−τ

H(s)P̄ (s)ds +
H(t − r)R(t − τ)

H(t)

+
1

H(t)

∫ t

t−τ+δ

Q(s − τ)H(s − δ)ds

}
.

Then every solution of (3.21) is oscillatory.

From Corollary 3.3.5, we can obtain different sufficient conditions for oscillation
of (3.21) by different choices of H(t). For instance, if we choose H(t) = P̄ (t) > 0
for t ≥ T or H(t) ≡ 1, then the first condition in Corollary 3.3.5 becomes

(3.40) lim inf
t→∞

{
R(t − τ) + e

∫ t

t−τ

P̄ (s)ds +
∫ t

t−τ+δ

Q(s − τ)ds

}
> 1

or

(3.41) lim inf
t→∞

{
P̄ (t)R(t − τ)

P̄ (t − r)
+ eP̄ (t)τ + P̄ (t)

∫ t

t−τ+δ

Q(s − τ)
P̄ (s − δ)

ds

}
> 1

(if P̄ (t) > 0 for t ≥ T ). If we select H(t) = P̄ (t) > 0 for t ≥ T , then the second
condition in Corollary 3.3.5 becomes

(3.42) 1 < lim inf
t→∞

{
e

P̄ (t)

∫ t

t−τ

[
P̄ (s)
]2

ds +
P̄ (t − r)R(t − τ)

P̄ (t)

+
1

P̄ (t)

∫ t

t−τ+δ

Q(s − τ)P̄ (s − δ)ds

}
.

Corollary 3.3.6. Assume that (3.22), (3.23), (3.24), and (3.40) hold. Then every
solution of (3.21) is oscillatory.

Corollary 3.3.7. Assume that (3.22), (3.23), (3.24), and (3.41) hold. Then every
solution of (3.21) is oscillatory.

Corollary 3.3.8. Assume that (3.22), (3.23), (3.24), and (3.42) hold. Then every
solution of (3.21) is oscillatory.

Remark 3.3.9. Condition (3.40) is the same as in [289, Theorem 1] (obtained by
a different technique). But we should point out that the proof in [289, Theorem 1]

On the other hand, if P̄ (t) > 0 is nonincreasing,
then it is easy to see that

R(t − τ)P̄ (t)
P̄ (t − r)

≤ R(t − τ), τ P̄ (t) ≤
∫ t

t−τ

P̄ (s)ds,

and

P̄ (t)
∫ t

t−τ+δ

Q(s − τ)
P̄ (s − δ)

ds ≤ P̄ (t)
P̄ (t − δ)

∫ t

t−τ+δ

Q(s − τ)ds ≤
∫ t

t−τ+δ

Q(s − τ)ds.

It follows that

R(t − τ)P̄ (t)
P̄ (t − r)

+ eP̄ (t)τ + P̄ (t)
∫ t

t−τ+δ

Q(s − τ)
P̄ (s − δ)

ds

≤ R(t − τ) + e

∫ t

t−τ

P̄ (s)ds +
∫ t

t−τ+δ

Q(s − τ)ds.

 

is inaccurate (see Zhang [297]).
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If P̄ (t) > 0 is nondecreasing, then all inequalities above are reversed.

Example 3.3.10. Consider the neutral differential equation

(3.43)
(

x(t) − t − 1
2t

x(t − 1)
)′

+
(

1
8e

+
1
t

)
x(t − 2) − 1

t + 1
x(t − 1) = 0

for t ≥ 4. Here, τ = 2, δ = 1,

R(t) =
t − 1
2t

, P (t) =
1
8e

+
1
t
, Q(t) =

1
t + 1

so that P̄ (t) = 1/(8e). It is easy to verify that the assumptions of Corollary 3.3.7
are satisfied. Therefore, every solution of (3.43) is oscillatory.

Corollary 3.3.11. Assume that R(t) = r0 > 0, P (t) = p > 0, Q(t) = q ≥ 0, p > q,
τ > δ and r0 + q(τ − δ) ≤ 1. Then every solution of (3.21) oscillates if and only if

f1(λ) = −λ(p − q) + qeλpτ + λ(p − q)r0e
λ(p−q)r − qeλ(p−q)δ > 0, λ > 0.

Corollary 3.3.12. Assume that the assumptions of Corollary 3.3.7 hold. Then
every solution of (3.21) oscillates if and only if

(3.44) f2(λ) = −λ + λr0e
λτ + peλτ − qeλδ > 0, λ > 0.

Proof. Sufficiency is obvious. We will prove the necessity. Assume that the
condition (3.44) is false, then there exists λ0 > 0 such that f2(λ0) ≤ 0, and
f2(0) = p − q > 0. Thus there exists λ1 ∈ (0, λ0] such that f2(λ1) = 0. In
fact, x(t) = exp(−λ1t) is nonoscillatory solution of (3.21). This is a contradiction
and the proof is complete.

Remark 3.3.13. Corollaries 3.3.11 and 3.3.12 imply that the conditions of Theo-
rem 3.3.3 are sharp.

3.4. Oscillation of Equations with Variable Coefficients (II)

In this section we continue to study the oscillation of the first order neutral
delay differential equation (3.21) by a comparison theorem.

Theorem 3.4.1. Assume that (3.22), (3.23), and (3.24) hold and that either

(3.45) R(t) +
(
P (t) − Q(t − τ + δ)

)
τ > 0

or

(3.46) τ > 0 and P̄ (s) �≡ 0 for s ∈ [t, t + τ ].

Then every solution of (3.21) oscillates if and only if the corresponding differential
inequality

(3.47)
(
x(t) − R(t)x(t − r)

)′
+ P (t)x(t − τ) − Q(t)x(t − δ) ≤ 0

has no eventually positive solution.

Proof. The sufficiency is obvious. To prove the necessity, we assume that x is an
eventually positive solution of (3.47). Define y as in (3.25). Then by (3.24) and
Lemma 3.3.1, we find

y(t) ≥
∫ ∞

t

P̄ (s)x(s − τ)ds,
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i.e.,

(3.48) x(t) ≥ R(t)x(t − r) +
∫ t

t−τ+δ

Q(s)x(s − δ)ds +
∫ ∞

t

P̄ (s)x(s − τ)ds.

Let T > t0 be fixed so that (3.48) holds for all t ≥ T . Now we consider the set of
functions

E =
{

u ∈ C([T − T0,∞), R+) : 0 ≤ u(t) ≤ 1 for t ≥ T − T0

}
and define a mapping F on E as

(Fu)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
x(t)

[
R(t)u(t − r)x(t − r) +

∫ t

t−τ+δ

Q(s)u(s − δ)x(s − δ)ds

+
∫ ∞

t

P̄ (s)u(s − τ)x(s − τ)ds

]
if t ≥ T,

t − T + T0

T0
(Fu)(T ) +

(
1 − t − T + T0

T0

)
if T − T0 ≤ t < T.

It is easy to see, using (3.48), that F maps E into itself. Moreover, for any u ∈ E
we have (Fu)(t) > 0 for T −T0 ≤ t < T . Next we define the sequence {uk} ⊂ E by

u0(t) = 1 for t ≥ T − T0, uk+1 = Fuk for k ∈ N0.

Then, by using (3.48) and a simple induction, we can easily see that

0 ≤ uk+1(t) ≤ uk(t) ≤ 1 for t ≥ T − T0 and k ∈ N0.

Set
u(t) = lim

k→∞
uk(t), t ≥ T − T0.

Then it follows from Lebesgue’s dominated convergence theorem that u satisfies

u(t) =
1

x(t)

[
R(t)u(t − r)x(t − r) +

∫ t

t−τ+δ

Q(s)u(s − δ)x(s − δ)ds

+
∫ ∞

t

P̄ (s)u(s − τ)x(s − τ)ds

]
for t ≥ T and

u(t) =
t − T + T0

T0
(Fu)(T ) +

(
1 − t − T + T0

T0

)
for T − T0 ≤ t ≤ T . Set

w = ux.

Then w satisfies w(t) > 0 for T − T0 ≤ t < T and

(3.49) w(t) = R(t)w(t − r) +
∫ t

t−τ+δ

Q(s)w(s − δ)ds +
∫ ∞

t

P̄ (s)w(s − τ)ds

for t ≥ T . So w solves (3.21). Clearly, w is continuous on [T − T0,∞).
It remains to show that w(t) is positive for all t ≥ T − T0. Assume that there

exists t∗ ≥ T − T0 such that w(t) > 0 for T − T0 ≤ t < t∗ and w(t∗) = 0. Then
t∗ ≥ T , and by (3.49) we get

0 = w(t∗) = R(t∗)w(t∗ − r) +
∫ t∗

t∗−τ+δ

Q(s)w(s − δ)ds +
∫ ∞

t∗
P̄ (s)w(s − τ)ds,
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which implies

R(t∗) = 0 and Q(t) ≡ 0 for t ∈ [t∗ − τ + δ, t∗]

and
P̄ (t)w(t − τ) ≡ 0 for all t ≥ t∗.

This contradicts (3.45) or (3.46). Therefore w(t) is positive on [T − T0,∞).

We now compare (3.21) with the equation

(3.50)
(
x(t) − R∗(t)x(t − r)

)′
+ P ∗(t)x(t − τ) − Q∗(t)x(t − δ) = 0

to obtain the following comparison theorem.

Theorem 3.4.2. Assume that (3.22), (3.23), and (3.24) hold and that (3.23) as
well as (3.45) or (3.46) hold for P ∗ and Q∗. Further assume that

(3.51) R(t) ≥ R∗(t), P̄ (t) ≥ P̄ ∗(t), and Q(t) ≥ Q∗(t).

If every solution of (3.50) oscillates, then every solution of (3.21) oscillates as well.

Proof. Suppose the contrary and let x be an eventually positive solution of (3.21).
Set y as in (3.25). Then by Lemma 3.3.1 we have eventually

y′(t) ≤ 0 and y(t) > 0.

Thus, by integrating (3.21) from t to T > t, we obtain

y(t) = y(T ) +
∫ T

t

P̄ (s)x(s − τ)ds ≥
∫ T

t

P̄ (s)x(s − τ)ds.

Therefore y(t) ≥
∫∞

t
P̄ (s)x(s − τ)ds. Using (3.51), we obtain

x(t) = y(t) + R(t)x(t − r) +
∫ t

t−τ+δ

Q(s)x(s − δ)ds

≥ R∗(t)x(t − r) +
∫ t

t−τ+δ

Q∗(s)x(s − δ)ds +
∫ ∞

t

P̄ ∗(s)x(s − τ)ds.

Note that (3.51) implies that (3.24) also holds for R∗ and Q∗. Therefore, by The-
orem 3.4.1, (3.50) has also an eventually positive solution. This is a contradiction
and the proof is complete.

In what follows, we will derive some sufficient conditions for the oscillation of
all solutions of (3.21). The following lemma plays an important rôle.

Lemma 3.4.3. Assume that (3.22) and (3.23) hold and that

(3.52) R(t) +
∫ t

t−τ+δ

Q(s)ds ≥ 1

and

(3.53)
∫ ∞

t0

P̄ (s) exp
(

1
r∗

∫ s

t0

uP̄ (u)du

)
ds = ∞,

where r∗ = min{δ, r} > 0. Let x be an eventually positive solution of inequality
(3.47), and define y by (3.25). Then eventually

(3.54) y′(t) ≤ 0 and y(t) < 0.
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Proof. From (3.22) and (3.23), we have

(3.55) y′(t) ≤ −P̄ (t)x(t − τ) ≤ 0.

Therefore, if (3.54) does not hold, then eventually y(t) > 0. That is,

(3.56) x(t) ≥ R(t)x(t − r) +
∫ t

t−τ+δ

Q(s)x(s − δ)ds.

Let t1 ≥ t0 be such that x(t − r) > 0, x(t − τ) > 0 for t ≥ t1 and such that (3.56)
holds for t ≥ t1. Define

m = min
{

x(t) : t ∈ [t1 − τ∗, t1]
}

, where τ∗ = max{r, τ}.

Then for t ∈ [t1, t1 + r∗], we have by (3.56) and (3.52)

x(t) > m

[
R(t) +

∫ t

t−τ+δ

Q(s)ds

]
≥ m.

Thus, by induction, we can show that

x(t) > m for t ∈ [t1 + (n − 1)r∗, t1 + nr∗] , n ∈ N,

and so
x(t) > m for t ≥ t1 − τ∗.

For convenience, we denote

N(t) =
[
t − t1

r∗

]
.

Since r∗ = min{δ, r} > 0 and y is nonincreasing, from (3.25) and (3.52) we have

x(t) = y(t) + R(t)x(t − r) +
∫ t

t−τ+δ

Q(s)x(s − δ)ds

= y(t) + R(t)
[
y(t − r) + R(t − r)x(t − 2r) +

∫ t−r

t−τ+δ−r

Q(s)x(s − δ)ds

]
+
∫ t

t−τ+δ

Q(s)

[
y(s − δ) + R(s − δ)x(s − r − δ) +

∫ s−δ

s−τ

Q(u)x(u − δ)du

]
ds

≥ y(t) +
[
R(t) +

∫ t

t−τ+δ

Q(s)ds

]
y(t − r∗)

+R(t)
[
R(t − r)x(t − 2r) +

∫ t−r

t−τ+δ−r

Q(s)x(s − δ)ds

]
+
∫ t

t−τ+δ

Q(s)

[
R(s − δ)x(s − r − δ) +

∫ s−δ

s−τ

Q(u)x(u − δ)du

]
ds

≥ y(t) + y(t − r∗) + R(t)
[
R(t − r)x(t − 2r) +

∫ t−r

t−τ+δ−r

Q(s)x(s − δ)ds

]
+
∫ t

t−τ+δ

Q(s)

[
R(s − δ)x(s − r − δ) +

∫ s−δ

s−τ

Q(u)x(u − δ)du

]
ds

= y(t) + y(t − r∗) + R(t)
{

R(t − r)
[
y(t − 2r) + R(t − 2r)x(t − 3r)

+
∫ t−2r

t−τ+δ−2r

Q(s)x(s − δ)ds

]
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+
∫ t−r

t−τ+δ−r

Q(s)
[
y(s − δ) + R(s − δ)x(s − r − δ)

+
∫ s−δ

s−τ

Q(u)x(u − δ)du

]
ds

}
+
∫ t

t−τ+δ

Q(s)
{

R(s − δ)
[
y(s − r − δ)

+ R(s − r − δ)x(s − 2r − δ) +
∫ s−r−δ

s−r−τ

Q(u)x(u − δ)du

]

+
∫ s−δ

s−τ

Q(u)
[
y(u − δ) + R(u − δ)x(u − r − δ)

+
∫ u−δ

u−τ

Q(v)x(v − δ)dv

]
du

}
ds.

In general, by induction, we can show that

(3.57) x(t) ≥ y(t) + y(t − r∗) + . . . + y
(
t − (N(t) − 1)r∗

)
+ x
(
t − N(t)r∗

)
for t ≥ t1. Noting that y(t) is nonincreasing and x(t − N(t)r∗) ≥ m for t ≥ t1, by
(3.57) we obtain that

x(t) ≥ N(t)y(t) + m, t ≥ t1.

Substituting this into (3.55), we find

y′(t) + P̄ (t)
[
N(t − τ)y(t − τ) + m

]
≤ 0, t ≥ t1 + τ = t2,

and hence

y′(t) + P̄ (t)N(t − τ)y(t) + P̄ (t)m ≤ 0, t ≥ t2.

Then

0 ≥
[
y(t) exp

(∫ t

t2

P̄ (s)N(s − τ)ds

)]′
+ mP̄ (t) exp

(∫ t

t2

P̄ (s)N(s − τ)ds

)
for t ≥ t2. Integrating this inequality from t2 to t ≥ t2, we have

(3.58) 0 ≥ y(t) exp
(∫ t

t2

P̄ (s)N(s − τ)ds

)
− y(t2)

+ m

∫ t

t2

P̄ (s) exp
(∫ s

t2

P̄ (u)N(u − τ)du

)
ds

for t ≥ t2. If the condition ∫ ∞

t0

P̄ (s)ds = ∞

is satisfied, then it is easy to see from (3.55) and the fact that x(t) ≥ m for
t ≥ t1 − τ∗, that limt→∞ y(t) = −∞, which is a contradiction. Hence, we assume
that ∫ ∞

t0

P̄ (s)ds < ∞.
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Because N(t − τ)/t → 1/r∗ holds as t → ∞, it is easy to see that∫∞
t2

P̄ (s)
[

s
r∗ − N(s − τ)

]
ds is absolutely convergent and

lim
s→∞

exp
(∫ s

t2

P̄ (u)N(u − τ)du

)
exp
(

1
r∗

∫ s

t2

uP̄ (u)du

) exists.

By condition (3.53), we obtain∫ ∞

t2

P̄ (s) exp
(∫ s

t2

P̄ (u)N(u − τ)du

)
ds = ∞.

Letting t → ∞ in (3.58), we obtain a contradiction.

As an immediate consequence of Lemmas 3.3.1 and 3.4.3, we obtain the following
result.

Theorem 3.4.4. Assume that (3.22), (3.23), and (3.53) hold and that

R(t) +
∫ t

t−τ+δ

Q(s)ds ≡ 1.

Then every solution of (3.21) oscillates.

Example 3.4.5. Consider the neutral delay differential equation(
x(t) − (1 − α)x(t − 1)

)′
+
(
α + t−β

)
x(t − 2) − αx(t − 1) = 0, t > 0,

where 0 < α < 1 and 1 < β < 2. This equation satisfies all conditions given in
Theorem 3.4.4. Hence all solutions of the equation oscillate.

Theorem 3.4.6. Assume that (3.22), (3.23), (3.24), and (3.53) hold, and that

(3.59) R(t − τ)P̄ (t) ≥ P̄ (t − r).

Then every solution of (3.21) oscillates.

Proof. By way of contradiction, we assume that the conclusion is false. Then (3.21)
would have an eventually positive solution x. Let y be defined by (3.25). Then by
Lemma 3.3.1 we have eventually

y′(t) ≤ 0 and y(t) > 0.

From (3.21), (3.24), and (3.59), we have

y′(t) = −P̄ (t)x(t − τ)

= −P̄ (t)
[
y(t − τ) + R(t − τ)x(t − r − τ) +

∫ t

t−τ+δ

Q(s − τ)x(s − τ − δ)ds

]
≤ −P̄ (t)y(t − τ) + y′(t − r),

i.e.,
y′(t) − y′(t − r) + P̄ (t)y(t − τ) ≤ 0,

which, in view of Theorem 3.4.1, implies that the equation

(3.60) y′(t) − y′(t − r) + P̄ (t)y(t − τ) = 0

has an eventually positive solution. But, on the other hand, by Theorem 3.4.4 we
see that (3.53) implies that (3.60) cannot have an eventually positive solution. This
is a contradiction and the proof is complete.

 



76 3. FIRST ORDER NEUTRAL DIFFERENTIAL EQUATIONS

Theorem 3.4.7. Assume that (3.22), (3.23), (3.52), and (3.53) hold and that

(3.61) R(t − τ)P̄ (t) ≤ h1P̄ (t − r),

and also suppose that 1/P̄ is nondecreasing and satisfies

(3.62) P̄ (t)Q(t − τ) ≤ h2P̄ (t − δ),

where h1, h2 are nonnegative constants satisfying

h1 + h2(τ − δ) = 1.

Then every solution of (3.21) oscillates.

Proof. If the above conclusion does not hold, then (3.21) has an eventually positive
solution x. Let y be defined by (3.25). From Lemma 3.4.3 we have y(t) < 0. By
(3.61) and (3.62), we get

y′(t) = −P̄ (t)x(t − τ)

= −P̄ (t)
[
y(t − τ) + R(t − τ)x(t − r − τ) +

∫ t

t−τ+δ

Q(s − τ)x(s − δ − τ)ds

]
≥ −P̄ (t)y(t − τ) − h1P̄ (t − r)x(t − r − τ)

−P̄ (t)
∫ t

t−τ+δ

Q(s − τ)
P̄ (s − δ)

[−y′(s − δ)] ds

≥ −P̄ (t)y(t − τ) + h1y
′(t − r) + h2

∫ t

t−τ+δ

y′(s − δ)ds

= −
[
P̄ (t) + h2

]
y(t − τ) + h2y(t − δ) + h1y

′(t − r),

i.e., (
y(t) − h1y(t − r)

)′
+
[
P̄ (t) + h2

]
y(t − τ) − h2y(t − δ) ≥ 0

so that −y is a positive solution of the inequality(
z(t) − h1z(t − r)

)′
+
[
P̄ (t) + h2

]
z(t − τ) − h2z(t − δ) ≤ 0.

This yields a contradiction by Lemma 3.4.3.

Example 3.4.8. If we take h1 = 1/4 and h2 = 1/2, then the equation(
x(t) − t + 2

2(t + 1)
x(t − 1)

)′
+
(

1
2

+ t−β

)
x(t − 2) − 1

2
x(t − 1) = 0,

where 1 < β < 2, satisfies all the assumptions of Theorem 3.4.7. Hence all solutions
of this equation oscillate.

In the next theorem, we set

R0(t) =
R(t − τ)P̄ (t)

P̄ (t − r)

for P̄ (t) > 0.

Theorem 3.4.9. Assume that (3.22), (3.23), and (3.24) hold and that

(3.63) P̄ (t) > 0 and 0 < r0 ≤ R0(t) < 1.
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Then either

(3.64) r0 lim sup
t→∞

∫ t

t−τ+δ

P̄ (s)ds > 1 − r0

or

(3.65) r0 lim inf
t→∞

∫ t

t−τ+δ

P̄ (s)ds >
1 − r0

e

implies that every solution of (3.21) oscillates.

Proof. Assume, for the sake of contradiction, that (3.21) has an eventually positive
solution x. Define y by (3.25). Then by Lemma 3.3.1, (3.26) holds. Also, y satisfies
the equation

0 = y′(t) − R0(t)y′(t − r) + P̄ (t)y(t − τ) + P̄ (t)
∫ t

t−τ+δ

Q(s − τ)x(s − τ − δ)ds

≥ y′(t) − r0y
′(t − r) + P̄ (t)y(t − τ),

where we also have used (3.63). In view of Theorem 3.4.1, the corresponding
differential equation

y′(t) − r0y
′(t − r) + P̄ (t)y(t − τ) = 0

has an eventually positive solution y. Set w(t) = y(t) − r0y(t − r). Then w′(t) ≤ 0
and w(t) > 0 by Lemma 3.3.1. Thus, for any n ∈ N, we have

y(t) = w(t) + r0w(t − r) + . . . + rn
0 w(t − nr) + rn

0 y
(
t − (n + 1)r

)
>
(
r0 + r2

0 + . . . + rn
0

)
w(t − r) =

r0(1 − rn
0 )

1 − r0
w(t − r)

and so

(3.66) w′(t) +
r0(1 − rn

0 )
1 − r0

P̄ (t)w(t − r − τ) ≤ 0.

Since 0 < r0 < 1, it follows for sufficiently large n ∈ N that (3.64) or (3.65) implies
respectively

(3.67)
r0(1 − rn

0 )
1 − r0

lim sup
t→∞

∫ t

t−τ+δ

P̄ (s)ds > 1

or

(3.68)
r0(1 − rn

0 )
1 − r0

lim inf
t→∞

∫ t

t−τ+δ

P̄ (s)ds >
1
e
.

It is well known that (3.67) or (3.68) implies that (3.66) has no eventually positive

the proof is complete.

3.5. Existence of Nonoscillating Solutions

The purpose of this section is to study the existence of nonoscillatory solution
of the neutral delay differential equation (3.21) under conditions (3.22) and (3.23).

 

solution (see e.g., [118, Theorem 2.3.3 on page 46]). This is a contradiction and so
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Theorem 3.5.1. Assume that (3.22) and (3.23) hold and that

0 ≤ P (t) ≤ M, where M is a constant,

and that there exists a positive number α such that

(3.69) 0 ≤ R(t)eαr ≤ c < 1

and

1 ≥ R(t)eαr + eαδ

∫ t

t−τ+δ

Q(s)e−α(s−t)ds(3.70)

+
∫ ∞

t

(
P (s) − Q(s − τ + δ)

)
e−α(s−t)eατds.

Then (3.21) has an eventually positive solution which approaches zero exponentially.

Proof. Let (3.69) and (3.70) hold for t ≥ t0. Let BC = BC[t0 − T0,∞) denote
the Banach space of all bounded and continuous real-valued functions defined on
[t0 − T0,∞), and the norm in BC is the sup norm. Let Ω be the subset of BC
defined by

Ω =
{

y ∈ BC : 0 ≤ y(t) ≤ 1 for t ≥ t0 − T0

}
.

Now we define operators F1 and F2 on Ω as

(F1y)(t) =

⎧⎨⎩R(t)eαry(t − r) if t ≥ t0,
t

t0
(F1y)(t0) +

(
1 − t

t0

)
if t0 − T0 ≤ t < t0

and

(F2y)(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ t

t−τ+δ

Q(s)eαδe−α(s−t)y(s − δ)ds +
∫ ∞

t

eατ P̄ (s)e−α(s−t)y(s − τ)ds

if t ≥ t0,
t

t0
(F2y)(t0) if t0 − T0 ≤ t < t0.

In view of (3.69) and (3.70) for every y1, y2 ∈ Ω we have

F1y + F2y ∈ Ω,

and F1 is a contraction on Ω. Since P (t) − Q(t − τ + δ) ≥ 0 and P (t) is bounded,
Q(t) is bounded. It is easy to see that∣∣∣∣ ddt

(F2y)(t)
∣∣∣∣ ≤ N

for some positive number N . Hence F2 is completely continuous on Ω. By the
Krasnosel′skĭı fixed point theorem (Theorem 1.4.27), there exists y ∈ Ω such that

F1y + F2y = y.

That is, for t ≥ t0,

y(t) = R(t)eαry(t − r) +
∫ t

t−τ+δ

Q(s)eαδe−α(s−t)y(s − δ)ds

+
∫ ∞

t

eατ P̄ (s)e−α(s−t)y(s − τ)ds,
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and for t0 − T0 ≤ t < t0,

y(t) =
t

t0
y(t0) +

(
1 − t

t0

)
> 0.

It follows that y(t) > 0 for all t ≥ t0 − T0. Set

x(t) = y(t)e−αt.

Then

x(t) = R(t)x(t − r) +
∫ t

t−τ+δ

Q(s)x(s − δ)ds +
∫ ∞

t

P̄ (s)x(s − τ)ds.

Consequently,(
x(t) − R(t)x(t − r)

)′
+ P (t)x(t − τ) − Q(t)x(t − δ) = 0, t ≥ t0,

i.e., x is a positive solution of (3.21) and x(t) approaches zero exponentially. The
proof is complete.

Remark 3.5.2. When R(t) ≡ R, P (t) ≡ P , Q(t) ≡ Q are nonnegative constants,
P > Q, τ ≥ δ ≥ 0, r > 0, R + Q(τ − δ) ≤ 1, then condition (3.70) becomes

Reαr +
P

α
eατ − Q

α
eαδ ≤ 1

for some α > 0. This condition provides not only a sufficient condition but also
a necessary condition for the existence of a nonoscillatory solution of (3.21) (see

Theorem 3.5.3. Assume that

R ∈ C1([t0,∞), R), P,Q ∈ C([t0,∞), R), r, τ, δ ∈ [0,∞),

and that there exists a positive number μ such that

(3.71) μ|R(t)|eμr + |R′(t)|eμr + |P (t)|eμτ + |Q(t)|eμδ ≤ μ, t ≥ t0.

Then (3.21) has a positive solution on t ≥ t0.

Proof. Set

P1(t) =

⎧⎪⎪⎨⎪⎪⎩
R(t) if t ≥ t0,
t − t0 + r

r
R(t0) if t0 − r ≤ t < t0,

0 if t0 − T0 − r ≤ t < t0 − r,

P2(t) =

⎧⎪⎪⎨⎪⎪⎩
R′(t) if t ≥ t0,
t − t0 + r

r
R′(t0) if t0 − r ≤ t < t0,

0 if t0 − T0 − r ≤ t < t0 − r,

P3(t) =

⎧⎪⎪⎨⎪⎪⎩
P (t) if t ≥ t0,
t − t0 + r

r
P (t0) if t0 − r ≤ t < t0,

0 if t0 − T0 − r ≤ t < t0 − r,

 

Theorem 3.3.3 in Section 3.3).
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and

P4(t) =

⎧⎪⎪⎨⎪⎪⎩
Q(t) if t ≥ t0,
t − t0 + r

r
Q(t0) if t0 − r ≤ t < t0,

0 if t0 − T0 − r ≤ t < t0 − r.

Then Pi for i ∈ {1, 2, 3, 4} are continuous on [t0 − T0 − r,∞). From (3.71) we have

μ|P1(t)|eμr + |P2(t)|eμr + |P3(t)|eμτ + |P4(t)|eμδ ≤ μ, t ≥ t0 − T0 − r.

We introduce the Banach space BC[t0 − T0 − r,∞) of all bounded continuous
functions x : [t0 − T0 − r,∞) → R with norm

‖x‖ = sup
t≥t0−T0−r

|x(t)|e−ηt,

where η > 0 satisfies the inequality

|P1(t)|eμr

(
e−ηr +

μ

η

)
+

eμr

η
|P2(t)| +

eμτ

η
|P3(t)| +

eμδ

η
|P4(t)| ≤

1
2

for t ≥ t0 − r. We consider the subset Ω of BC as

Ω =
{

λ ∈ BC : |λ(t)| ≤ μ for t ≥ t0 − T0 − r
}

.

Clearly, Ω is a bounded, closed, and convex subset of BC. Define the operator F
on Ω as

(Fλ)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ(t − r)P1(t) exp
(∫ t

t−r

λ(s)ds

)
+ P2(t) exp

(∫ t

t−r

λ(s)ds

)
+P3(t) exp

(∫ t

t−τ

λ(s)ds

)
− P4(t) exp

(∫ t

t−δ

λ(s)ds

)
if t ≥ t0 − r,

0 if t0 − T0 − r ≤ t < t0 − r.

In view of (3.71), we have for t ≥ t0 − r

|Fλ(t)| ≤ μ|P1(t)|eμr + |P2(t)|eμr + |P3(t)|eμτ + |P4(t)|eμδ ≤ μ,
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which shows that F maps Ω into itself. Next, we show that F is a contraction on
Ω. In fact, for any λ1, λ2 ∈ Ω and t ≥ t0 − r,

∣∣∣(Fλ1)(t) − (Fλ2)(t)
∣∣∣

≤ |P1(t)|
∣∣∣∣λ1(t − r) exp

(∫ t

t−r

λ1(s)ds

)
− λ2(t − r) exp

(∫ t

t−r

λ2(s)ds

)∣∣∣∣
+ |P2(t)|

∣∣∣∣exp
(∫ t

t−r

λ1(s)ds

)
− exp
(∫ t

t−r

λ2(s)ds

)∣∣∣∣
+ |P3(t)|

∣∣∣∣exp
(∫ t

t−τ

λ1(s)ds

)
− exp
(∫ t

t−τ

λ2(s)ds

)∣∣∣∣
+ |P4(t)|

∣∣∣∣exp
(∫ t

t−δ

λ1(s)ds

)
− exp
(∫ t

t−δ

λ2(s)ds

)∣∣∣∣
≤ |P1(t)|

[
eμr |λ1(t − r) − λ2(t − r)| + μeμr

∫ t

t−r

|λ1(s) − λ2(s)| ds

]
+eμr |P2(t)|

∫ t

t−r

|λ1(s) − λ2(s)| ds + eμτ |P3(t)|
∫ t

t−τ

|λ1(s) − λ2(s)| ds

+eμδ |P4(t)|
∫ t

t−δ

|λ1(s) − λ2(s)| ds

≤ ‖λ1 − λ2‖
{

eμr |P1(t)| eηt

[
e−ηr +

μ

η
(1 − e−ηr)

]
+

eμr

η
|P2(t)|

(
1 − e−ηr

)
eηt

+
1
η
|P3(t)| eμτ

(
1 − e−ητ

)
eηt +

1
η
eμδ |P4(t)|

(
1 − e−ηδ

)
eηt

}
≤ ‖λ1 − λ2‖ eηt

{
eμr|P1(t)|

(
e−ηr +

μ

η

)
+

1
η
eμr|P2(t)|

+
1
η
|P3(t)|eμτ +

1
η
eμδ|P4(t)|

}
≤ 1

2
eηt ‖λ1 − λ2‖ .

Hence,

‖Fλ1 − Fλ2‖ = sup
t≥t0−T0−r

∣∣∣(Fλ1)(t) − (Fλ2)(t)
∣∣∣ e−ηt

= sup
t≥t0−r

∣∣∣(Fλ1)(t) − (Fλ2)(t)
∣∣∣ e−ηt

≤ 1
2
‖λ1 − λ2‖ ,
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i.e., F is a contraction on Ω.
such that Fλ = λ. That is,

λ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ(t − r)P1(t) exp
(∫ t

t−r

λ(s)ds

)
+ P2(t) exp

(∫ t

t−r

λ(s)ds

)
+P3(t) exp

(∫ t

t−τ

λ(s)ds

)
− P4(t) exp

(∫ t

t−δ

λ(s)ds

)
if t ≥ t0 − r,

0 if t0 − T0 − r ≤ t < t0 − r.

According to the definition of Pi, we have

λ(t) = λ(t − r)R(t) exp
(∫ t

t−r

λ(s)ds

)
+ R′(t) exp

(∫ t

t−r

λ(s)ds

)
+ P (t) exp

(∫ t

t−τ

λ(s)ds

)
− Q(t) exp

(∫ t

t−δ

λ(s)ds

)
for t ≥ t0. Set

x(t) = exp
(
−
∫ t

t0

λ(s)ds

)
.

Then it is easy to see that x is a positive solution of (3.21) on [t0,∞). The proof
is complete.

3.6. Classification Schemes of Positive Solutions

This section is concerned with the first order neutral differential equation

(3.72)
(
x(t) − P (t)x(t − τ)

)′
+ Q(t)x(t − σ) = 0, t ≥ t0,

where P ∈ C([t0,∞), R), Q ∈ C([t0,∞), R+), τ > 0, and σ ≥ 0.

When P (t) ≤ 0 or 0 ≤ P (t) ≤ 1, (3.72) has been discussed in the monographs
[29, 92, 118]. Therefore, in this section we consider (3.72) with P (t) ≥ 1. When
P (t) ≥ 1 and is nondecreasing, it is easy to see that there exists a nondecreasing
function r ∈ C([t0 − τ,∞), (0,∞)) such that

P (t) =
r(t)

r(t − τ)
for t ≥ t0.

In what follows with respect to (3.72), we shall assume that

R(t) =
∫ t

t0

ds

r(s)
→ ∞ as t → ∞.

First, we shall provide some comparison theorems for oscillation and nonoscillation
of solutions of (3.72), and show that all solutions of (3.72) oscillate if there exists
an oscillatory solution.

Lemma 3.6.1. Let x be an eventually positive solution of the differential inequality(
x(t) − r(t)

r(t − τ)
x(t − τ)

)′
+ Q(t)x(t − σ) ≤ 0, t ≥ t0

 

Therefore (see Theorem 1.4.26) there exists λ ∈ Ω



3.6. CLASSIFICATION SCHEMES OF POSITIVE SOLUTIONS 83

and set

(3.73) z(t) = x(t) − r(t)
r(t − τ)

x(t − τ).

Then eventually

(3.74) z′(t) ≤ 0 and z(t) ≥ 0.

Proof. Since r is nondecreasing and
∫∞

t0
[r(s)]−1

ds = ∞, we have

∞∑
k=1

1
r(t0 + kτ)

≥ 1
τ

∫ ∞

t0+τ

ds

r(s)
= ∞.

The conclusion (3.74) now follows by [251, Lemma 2].

Lemma 3.6.2 ([92]). If the integral inequality

y(t) ≥ r(t)
r(t − τ)

y(t − τ) +
∫ ∞

t

Q(s)y(s − σ)ds, t ≥ T > t0

has a continuous positive solution y : [T − ρ,∞) → (0,∞), then the corresponding
integral equation

(3.75) x(t) =
r(t)

r(t − τ)
x(t − τ) +

∫ ∞

t

Q(s)x(s − σ)ds, t ≥ T

also has a continuous positive solution x : [T −ρ,∞) → (0,∞) with 0 < x(t) ≤ y(t)
for t ≥ T , where ρ = max{τ, σ}.

Lemma 3.6.3. Assume that p ∈ C([t0,∞), R+). If the differential inequality

(r(t)y′)′ + p(t)y ≤ 0, t ≥ T ∗ > t0

has a continuous positive solution y : [T ∗,∞) → (0,∞), then the corresponding
differential equation

(r(t)y′)′ + p(t)y = 0, t ≥ T ∗ > t0

also has a continuous positive solution x : [T ∗,∞) → (0,∞).

Proof. The proof is easy and will be omitted.

Lemma 3.6.4. Assume that v ∈ C([T − τ,∞), R+), u ∈ ([T,∞), R+), and that u
is nonincreasing on [T,∞). Then the following hold:

(i) If v(t) − [r(t)/r(t − τ)] v(t − τ) ≥ u(t) for t ≥ T , then

v(t) ≥ r(t)
τ

(∫ t

T+2τ

u(s)
r(s)

ds + τm

)
for t ≥ T + 2τ ;

(ii) if v(t) − [r(t)/r(t − τ)] v(t − τ) ≤ u(t) for t ≥ T , then

v(t) ≤ r(t)
τ

(∫ t

T

u(s)
r(s)

ds + τM

)
for t ≥ T,

where m = min
{

v(t)
r(t) : T ≤ t ≤ T + τ

}
and M = max

{
v(t)
r(t) : T ≤ t ≤ T + τ

}
.

 



84 3. FIRST ORDER NEUTRAL DIFFERENTIAL EQUATIONS

Proof. To show (i), set v(t) = r(t)W (t) for t ≥ t − T and n =
[

t−τ
τ

]
for t ≥ T .

Then we have

W (t) − W (t − τ) ≥ u(t)
r(t)

, t ≥ T

and so

W (t) ≥
n−1∑
k=0

u(t − kτ)
r(t − kτ)

+ W (t − nτ), t ≥ T.

In view of the nonincreasing nature of u/r and T ≤ t − nτ ≤ T + τ , we find

W (t) ≥ 1
τ

n−2∑
k=0

∫ t−kτ

t−(k+1)τ

u(s)
r(s)

ds + m ≥ 1
τ

∫ t

T+2τ

u(s)
r(s)

ds + m

for t ≥ T + 2τ . Thus it follows that

v(t) ≥ r(t)
τ

∫ t

T+2τ

u(s)
r(s)

ds + m, t ≥ T + 2τ.

To show (ii), set W (t) and n as in (i). Then we have

W (t) ≤
n−1∑
k=0

u(t − kτ)
r(t − kτ)

+ W (t − nτ)

≤ 1
τ

n−1∑
k=0

∫ t−kτ

t−(k+1)τ

u(s)
r(s)

ds + M

≤ 1
τ

∫ t

T

u(s)
r(s)

ds + M

for t ≥ T . Thus it follows that

v(t) ≤ r(t)
τ

(∫ t

T

u(s)
r(s)

ds + τM

)
, t ≥ T.

The proof is complete.

Theorem 3.6.5. Equation (3.72) has a positive solution if and only if the ordinary
differential equation

(3.76) (r(t)y′)′ +
1
τ

Q(t)r(t − σ)y = 0, t ≥ t0

has a positive solution.

Proof. Let x be a positive solution of (3.72) and define z as before in (3.73). By
Lemma 3.6.1, there exists t1 > t0 such that

x(t − ρ) > 0, z(t) ≥ 0, and z′(t) ≤ 0 for t ≥ t1,

where ρ = max{τ, σ}. This implies that z is nonincreasing on [t1,∞). Set

m = min
{

x(t)
r(t)

: t1 ≤ t ≤ t1 + τ

}
, t2 = t1 + 2τ.

Then by Lemma 3.6.4 we have

x(t) ≥ r(t)
τ

(∫ t

t2

z(s)
r(s)

ds + τm

)
, t ≥ t2,
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and so

x(t − σ) ≥ r(t − σ)
τ

(∫ t−σ

t2

z(s)
r(s)

ds + τm

)
(3.77)

≥ r(t − σ)
τ

(∫ t−σ

t3

z(s)
r(s)

ds + τm

)
for t ≥ t3 = t2 + σ. Set

y(t) =
∫ t

t3

z(s)
r(s)

ds + τm, t ≥ t3.

Then

(3.78) y(t) > 0 and y′(t) =
z(t)
r(t)

for t ≥ t3.

Substituting this into (3.77), we obtain

x(t − σ) ≥ r(t − σ)
τ

y(t), t ≥ t3,

which, together with (3.72), (3.73), and (3.78), leads to

(ry′)′(t) +
1
τ

Q(t)r(t − σ)y(t) ≤ 0, t ≥ t3.

By Lemma 3.6.3, this implies that (3.76) has a positive solution.
Next, we assume that (3.76) has a positive solution y. It is easy to see that

there exists T ≥ t0 such that

(3.79) y(t) > 0, y′(t) ≥ 0, and (ry′)′(t) ≤ 0 for t ≥ T.

In view of the nondecreasing nature of r and (3.79) it follows that y′ is nonincreasing
on [T,∞). Define a function v by

v(t) =

⎧⎨⎩
y(T ) + (t − T )y′(T + τ)

τ
if T ≤ t ≤ T + τ,

y′(t) + v(t − τ) if T + kτ ≤ t ≤ T + (k + 1)τ, k ∈ N.

It is easy to see that v is continuous and positive on [0,∞), and

v(t) ≤ y(t)
τ

, T ≤ t ≤ T + τ,(3.80)

v(t) = y′(t) + v(t − τ), t ≥ T + τ.(3.81)

For T + τ ≤ t ≤ T + 2τ , we have by (3.80) and (3.81) that

v(t) = y′(t) + v(t − τ) ≤ 1
τ

(
y(t) − y(t − τ)

)
+

1
τ

y(t − τ) =
y(t)
τ

.

By induction, we can show in general that

v(t) ≤ y(t)
τ

, T + kτ ≤ t ≤ T + (k + 1)τ, k ∈ N,

and so

v(t) ≤ y(t)
τ

, t ≥ T,

which, together with (3.79), yields

(3.82) v(t − σ) ≤ y(t − σ)
τ

≤ y(t)
τ

, t ≥ T + σ.
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Substituting (3.81) and (3.82) into (3.77), we obtain

(3.83)
[
r(t)
(
v(t) − v(t − τ)

) ]′
+ Q(t)r(t − σ)v(t − σ) ≤ 0

for t ≥ T + σ + τ . Set x̄ = rv. It follows from (3.83) that[
x̄(t) − r(t)

r(t − τ)
x̄(t − τ)

]′
+ Q(t)x̄(t − σ) ≤ 0, t ≥ T + σ + τ.

By Lemma 3.6.1, we have

x̄(t) ≥ r(t)
r(t − τ)

x̄(t − τ) +
∫ ∞

t

Q(s)x̄(s − σ)ds, t ≥ T + σ + τ.

By Lemma 3.6.2, this implies that the corresponding integral equation (3.75) has a
positive solution x. Clearly, this x is a positive solution of (3.72).

Next, we shall compare (3.72) with the equation

(3.84)
[
x(t) − r̄(t)

r̄(t − τ)
x(t − τ)

]′
+ Q̄(t)x(t − σ) = 0, t ≥ t0,

where r̄ and Q̄ satisfy the same hypotheses as r and Q. By Hille–Wintner’s com-
the following result is immediate.

Theorem 3.6.6. Suppose 0 < r̄(t) ≤ r(t) and

0 ≤
∫ ∞

t

Q(s)r(s − σ)ds ≤
∫ ∞

t

Q̄(s)r̄(s − σ)ds

hold for all t ≥ t1 ≥ t0. If every solution of (3.72) oscillates, then every solution
of (3.84) oscillates as well.

In what follows, we shall show that all positive solutions of (3.72) can be clas-
sified into four types.

Definition 3.6.7. A positive solution of (3.72) is said to be of

(i) A-type if it can be expressed as

x(t) = r(t)
(
αR(t) + β(t)

)
,

where α > 0 is a constant and β : [tx,∞) → R is a bounded continuous
function;

(ii) B-type if it can be expressed as

x(t) = r(t)
(
αR(t) + θ(t)

)
,

where α > 0 is a constant and θ : [tx,∞) → (0,∞) is an unbounded contin-
uous function with limt→∞

θ(t)
R(t) = 0;

(iii) C-type if x/r is unbounded and limt→∞
x(t)

r(t)R(t) = 0;
(iv) D-type if x/r is bounded.

Theorem 3.6.8. If x is a positive solution of (3.72), then x is either A, B, C, or
D-type.

 

parison theorem (see [255]),
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Proof. Suppose that x is a positive solution of (3.72). Define z as in (3.73). By
Lemma 3.6.1, there exists T > t0 such that

(3.85) x(t − ρ) > 0, z(t) ≥ 0, z′(t) ≤ 0, t ≥ T.

Let k = limt→∞ z(t). Clearly, k ≥ 0. We claim that

(3.86) lim
t→∞

x(t)
r(t)R(t)

=
k

τ
,

and if θ(t) = x(t)
r(t) − k R(t)

τ is unbounded, then θ(t) is eventually positive. From
(3.85) we have z(t) ≥ k for t ≥ T . Let

m = min
t∈[T,T+τ ]

x(t)
r(t)

and M = max
t∈[T,T+τ ]

x(t)
r(t)

.

Then by Lemma 3.6.4, we have

(3.87)
r(t)
τ

(∫ t

T+2τ

z(s)
r(s)

ds + τm

)
≤ x(t) ≤ r(t)

τ

(∫ t

T

z(s)
r(s)

ds + τM

)
for t ≥ T + 2τ . Since by L’Hôpital’s rule

lim
t→∞

r(t)
τ

(∫ t

T+2τ

z(s)
r(s)

ds + τm

)
r(t)R(t)

= lim
t→∞

z(t)
τr(t)

1
r(t)

=
k

τ

and

lim
t→∞

r(t)
τ

(∫ t

T

z(s)
r(s)

ds + τM

)
r(t)R(t)

= lim
t→∞

z(t)
τr(t)

1
r(t)

=
k

τ
,

it follows by (3.87) that (3.86) holds. From (3.87) we have

1
τ

(∫ t

T+2τ

z(s) − k

r(s)
ds + τm − kR(T + 2τ)

)
≤ x(t)

r(t)
− kR(t)

τ

≤ 1
τ

(∫ t

T

z(s) − k

r(s)
ds + τM − kR(T )

)
.

If θ(t) = x(t)
r(t) − k R(t)

τ is unbounded, then

lim
t→∞

∫ t

T

z(s) − k

r(s)
ds = ∞,

and hence θ(t) is eventually positive. If limt→∞ z(t) = 0, then by (3.86) we have

lim
t→∞

x(t)
r(t)R(t)

= 0.

Hence x is either of C-type or D-type. If limt→∞ z(t) = k > 0, then we have

lim
t→∞

x(t)
r(t)R(t)

=
k

τ
.

If θ(t) = x(t)
r(t) − kR(t)

τ is unbounded, then x is of B-type. If β(t) = x(t)
r(t) − kR(t)

τ is
bounded, then x is of A-type. The proof is complete.
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By (3.86), the following corollary is immediate.

Corollary 3.6.9. If x is a positive solution of (3.72), then the limit

lim
t→∞

x(t)
r(t)R(t)

= k ≥ 0

must exist and
lim

t→∞ z(t) = τk.

In order to further justify our classification scheme, we derive several necessary
and/or sufficient conditions for the existence of each type of positive solution.

Lemma 3.6.10. Assume that there exists a constant p such that

(3.88)
r(t)

r(t − τ)
≤ p for all t ≥ t0.

If ∫ ∞

t0

Q(s)r(s − σ)R(s − σ)ds < ∞,

then the equation

(3.89)
[
r(t)
(
R(t) − R(t − τ)

)
+ x(t) − r(t)

r(t − τ)
x(t − τ)

]′
+ Q(t)x(t − σ) + Q(t)r(t − σ)R(t − σ) = 0

has a positive solution.

Proof. Choose T > t0 + 2ρ sufficiently large such that

(3.90)
∫ ∞

T

Q(s)r(s − σ)R(s − σ)ds ≤ τ

p + 2
and R(T ) >

τ

r(T )
.

Set

H(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(p + 1)τ

r(t)
if t ≥ T,

t + τ − T

τ
H(T ) if T − τ ≤ t < T,

0 if t < T − τ.

Clearly, H ∈ C(R, R+). Define

(3.91) y(t) =
∞∑

k=0

H(t − kτ), t ≥ T.

It is obvious that y ∈ C([T,∞), R+) and y(t) = y(t − τ) + H(t). Since r is nonde-
creasing, H is nonincreasing on [T,∞). Then by Lemma 3.6.4, we have

y(t) ≤ 1
τ

∫ t

T

H(s)ds + H(T )

= (p + 1)
(
R(t) − R(T )

)
+

(p + 1)τ
r(T )

≤ (p + 1)R(t)

for t ≥ T . Define a set X as

X =
{

x ∈ C[t0,∞) : 0 ≤ x(t) ≤ r(t)y(t), t ≥ T
}

 



3.6. CLASSIFICATION SCHEMES OF POSITIVE SOLUTIONS 89

and an operator S on X by

(Sx)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p + 1)τ − r(t)
(
R(t) − R(t − τ)

)
+

r(t)
r(t − τ)

x(t − τ)

+
∫ ∞

t

Q(s)(x + rR)(s − σ)ds if t ≥ T + ρ,

(Sx)(T + ρ)r(t)y(t)
(T + ρ)r(T + ρ)y(T + ρ)

t + r(t)y(t)
(

1 − t

T + ρ

)
if T ≤ t < T + ρ.

For any x ∈ X and t ≥ T + ρ, by (3.90) and (3.91) we have

(Sx)(t) ≤ (p + 1)τ − τ + r(t)y(t − τ) + (p + 2)
∫ ∞

t

Q(s)r(s − σ)R(s − σ)ds

≤ r(t)
(

y(t − τ) +
(p + 1)τ

r(t)

)
= r(t)y(t)

and
(Sx)(t) ≥ (p + 1)τ − pτ > 0.

For T ≤ t ≤ T + ρ, it is easy to see that 0 ≤ (Sx)(t) ≤ r(t)y(t). So, SX ⊂ X.
Define a sequence of functions {xk}∞k=0 as

x0 = ry and xk = Sxk−1 for k ∈ N on [T,∞).

By induction we can prove that

r(t)y(t) = x0(t) ≥ x1(t) ≥ x2(t) ≥ . . . ≥ 0, t ≥ T.

Thus for t ≥ T , u(t) = limk→∞ xk(t) exists and

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p + 1)τ − r(t)
(
R(t) − R(t − τ)

)
+

r(t)
r(t − τ)

u(t − τ)

+
∫ ∞

t

Q(s)(u + rR)(s − σ)ds if t ≥ T + ρ,

u(T + ρ)r(t)y(t)
(T + ρ)r(T + ρ)y(T + ρ)

t + r(t)y(t)
(

1 − t

T + ρ

)
if T ≤ t < T + ρ.

Now it is not difficult to show that u(t) > (p+1)τ −pτ > 0 on [T +ρ,∞). Further,
u is continuous on [T,∞) and is a solution of (3.89). The proof is complete.

Lemma 3.6.11. Suppose (3.72) has a positive solution x. Then the following hold:

(i) If x is an A-type solution, then

(3.92)
∫ ∞ 1

r(s)

∫ ∞

s

Q(u)r(u − σ)R(u − σ)duds < ∞.

(ii) If x is a B-type solution, then

(3.93)

⎧⎪⎨⎪⎩
∫ ∞

Q(s)r(s − σ)R(s − σ)ds < ∞,∫ ∞ 1
r(s)

∫ ∞

s

Q(u)r(u − σ)R(u − σ)duds = ∞.
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(iii) If x is a D-type solution, then

(3.94)
∫ ∞

Q(s)r(s − σ)R(s − σ)ds < ∞.

Proof. We first show (i). Suppose x is an A-type solution of (3.72). Then x can be
expressed as

x(t) = r(t)
(
αR(t) + β(t)

)
,

where α > 0 and β(t) is bounded. Choose T1 ≥ t0 sufficiently large such that

x(t) >
αr(t)R(t)

2
, t ≥ T1.

Since

lim
t→∞

x(t)
r(t)R(t)

= α,

by Corollary 3.6.9 we have
lim

t→∞ z(t) = ατ.

Obviously,
z′(t) = −Q(t)x(t − σ).

Integrating this on both sides from t to ∞, we get

z(t) = ατ +
∫ ∞

t

Q(s)x(s − σ)ds

≥ ατ +
α

2

∫ ∞

t

Q(s)r(s − σ)R(s − σ)ds

for t ≥ T1 + σ, i.e.,

x(t) − r(t)
r(t − τ)

x(t − τ) ≥ ατ +
α

2

∫ ∞

t

Q(s)r(s − σ)R(s − σ)ds

for t ≥ T1 + σ. By Lemma 3.6.4, we have

x(t) ≥ r(t)
τ

∫ t

T1+σ+2τ

1
r(s)

(
ατ +

α

2

∫ ∞

s

Q(u)r(u − σ)R(u − σ)du

)
ds

for t ≥ T1 + σ + 2τ , and hence

β(t) + αR(T1 + σ + 2τ) ≥ α

2τ

∫ t

T1+σ+2τ

1
r(s)

∫ ∞

s

Q(u)r(u − σ)R(u − σ)duds

for t ≥ T1 + σ + 2τ . In the above inequality as t → ∞, we obtain (3.92).

Next we show (ii). Suppose x(t) = r(t) [αR(t) + θ(t)] is a B-type solution of
(3.72) with

lim
t→∞

θ(t)
R(t)

= 0 and lim sup
t→∞

θ(t) = ∞.

Choose T2 > t0 sufficiently large such that

αr(t)R(t) ≤ x(t) ≤ 2αr(t)R(t), t ≥ T2.

As in the proof of (i), we have

z(t) = ατ +
∫ ∞

t

Q(s)x(s − σ)ds ≥ ατ + α

∫ ∞

t

Q(s)r(s − σ)R(s − σ)ds
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for t ≥ T2, and so ∫ ∞
Q(s)r(s − σ)R(s − σ)ds < ∞.

On the other hand,

(3.95) z(t) ≤ ατ + 2α

∫ ∞

t

Q(s)r(s − σ)R(s − σ)ds, t ≥ T2 + σ.

Rewrite (3.95) as

x(t) − r(t)
r(t − τ)

x(t − τ) ≤ ατ + 2α

∫ ∞

t

Q(s)r(s − σ)R(s − σ)ds

for t ≥ T2 + σ. By Lemma 3.6.4, we get

x(t) ≤ r(t)
τ

[∫ t

T2+σ

1
r(s)

(
ατ + 2α

∫ ∞

s

Q(u)r(u − σ)R(u − σ)du

)
ds + τM̄

]
for t ≥ T2 + σ, where

M̄ = 2αR(T2 + σ + τ).

Thus it follows that

θ(t) + αR(T2 + σ) − M̄ ≤ 2α

τ

∫ t

T2+σ

1
r(s)

∫ ∞

s

Q(u)r(u − σ)R(u − σ)duds

for t ≥ T2 + σ. Letting t → ∞ in the above inequality, (3.93) follows.

Finally we show (iii). Suppose that x is a D-type positive solution of (3.72).
Then x/r is bounded. Let z be defined by (3.73). By Lemma 3.6.1, there exists
T3 ≥ t0 such that (3.85) holds. Set

m = min
{

x(t)
r(t)

: T3 ≤ t ≤ T3 + ρ

}
.

It is easy to see that x(t) ≥ mr(t) for t ≥ T3. From (3.72) and (3.85), we have

(3.96) z(t) ≥ m

∫ ∞

t

Q(s)r(s − σ)ds, t ≥ T3 + σ.

Thus, by Lemma 3.6.4, (3.73), (3.85), and (3.96), we get

x(t)
r(t)

≥ 1
τ

(∫ t

T3+2τ

z(s)
r(s)

ds + τm

)
≥ m

τ

∫ t

T3+2τ+σ

1
r(s)

∫ ∞

s

Q(u)r(u − σ)duds

for t ≥ T3 + 2τ + σ. Letting t → ∞ in the above inequality, we obtain

(3.97)
∫ ∞ 1

r(s)

∫ ∞

s

Q(u)r(u − σ)duds < ∞

and so (3.94) holds. The proof is complete.

Theorem 3.6.12. Assume that (3.88) holds. Then (3.72) has an A-type positive
solution if and only if (3.92) holds.
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Proof. The necessity follows from Lemma 3.6.11. Now we show sufficiency. If (3.92)
holds, then by Lemma 3.6.10, (3.89) has a positive solution u. Thus x = rR + u is
a positive solution of (3.72). By Corollary 3.6.9, the limit

lim
t→∞

[
1 +

u(t)
r(t)R(t)

]
= lim

t→∞
x(t)

r(t)R(t)
= k

must exist and k ≥ 1. Hence, by Theorem 3.6.8, x is either an A-type or B-
type solution of (3.72). But by (3.92) and Lemma 3.6.11, it is obvious that x is
not a B-type solution. Therefore, x is an A-type solution of (3.72). The proof is
complete.

Example 3.6.13. Consider the neutral differential equation

(3.98)
(

x(t) − t

t − 2
x(t − 2)

)′
+ Q1(t)x(t − 1) = 0, t ≥ 3,

where

Q1(t) =
2 − (t − 2)

(
ln t − ln(t − 2)

)
(t − 1)(t − 2) ln(t − 1)

.

Set

r(t) = t so that R(t) =
∫ t

3

ds

s
= ln t − ln 3.

By direct calculation, it is easy to see that∫ ∞ 1
r(s)

∫ ∞

s

Q1(u)r(u − 1)R(u − 1)duds < ∞.

Thus Theorem 3.6.12 ensures that (3.98) has an A-type solution. In fact,

x(t) = r(t)
(
R(t) + ln 3

)
= t ln t

is such a solution of (3.98).

Theorem 3.6.14. Assume that (3.88) holds. Then (3.72) has a B-type positive
solution if and only if (3.93) holds.

Proof. The necessity part follows from Lemma 3.6.11. The proof of the sufficiency
part is similar to that of the proof of Theorem 3.6.12.

Example 3.6.15. Consider the neutral differential equation

(3.99)
(

x(t) −
√

t√
t − 1

x(t − 1)
)′

+ Q2(t)x(t − 2) = 0, t ≥ 2,

where

Q2(t) =

[(
1 − 1

t

) 1
2 +
(
1 − 1

t

)− 1
2 − 2
]

+ 1
4 t−

1
4

[
2
(
1 − 1

t

) 1
4 +
(
1 − 1

t

) 3
4 − 3
]

2(t − 2) + (t − 2)
3
4

.

Set

r(t) = t
1
2 so that R(t) =

∫ t

2

ds√
s

= 2t
1
2 − 2

3
2 .

By direct calculation, it is easy to see that∫ ∞ 1
r(s)

∫ ∞

s

Q2(u)r(u − 2)R(u − 2)duds = ∞
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and ∫ ∞
Q2(s)r(s − 2)R(s − 2)ds < ∞.

Thus Theorem 3.6.14 guarantees that (3.99) has a B-type solution. In fact,

x(t) = r(t)
(
R(t) + t

1
4 + 2

3
2

)
= 2t + t

3
4

is such a solution of (3.99).

Theorem 3.6.16. Equation (3.72) has a D-type solution if and only if (3.94)
holds.

Proof. The necessity part follows from Lemma 3.6.11. Now we show sufficiency. If
(3.94) holds, then (3.97) holds. Set

Q∗(t) =
1

r(t)

∫ ∞

t

Q(s)r(s − σ)ds, t ≥ t0 + σ.

Clearly, Q∗ is nonincreasing on [t0 + σ,∞). Choose t1 > t0 + σ sufficiently large
such that

(3.100)
1
τ

∫ ∞

t1

1
r(s)

∫ ∞

s

Q(u)r(u − σ)duds +
2

r(t1)

∫ ∞

t1

Q(s)r(s − σ)ds ≤ 1.

Set

u(t) =

⎧⎪⎪⎨⎪⎪⎩
Q∗(t) if t ≥ t1,
t − t1 + τ

τ
Q∗(t1) if t1 − τ ≤ t < t1,

0 if t < t1 − τ.

Clearly, u ∈ C(R, R+). Define

v(t) =
∞∑

k=0

u(t − kτ), t ≥ t1 − τ.

It is obvious that v ∈ C([t1 − τ,∞), R+) and v(t) = v(t − τ) + u(t) for t ≥ t1. Set
x̄(t) = r(t)v(t) for t ≥ t1 − τ . Then we have

(3.101) x̄(t) − r(t)
r(t − τ)

x̄(t − τ) = r(t)u(t) =
∫ ∞

t

Q(s)r(s − σ)ds

for t ≥ t1. By Lemma 3.6.4, (3.101) yields

x̄(t) ≤ r(t)
τ

(∫ t

t1

1
r(s)

∫ ∞

s

Q(u)r(u − σ)duds +
2τ

r(t1)

∫ ∞

t1

Q(s)r(s − σ)ds

)
for t ≥ t1, which, in view of (3.100), gives

(3.102) x̄(t) ≤ r(t), t ≥ t1.

Substituting (3.102) into (3.101), we obtain

x̄(t) ≥ r(t)
r(t − τ)

x̄(t − τ) +
∫ ∞

t

Q(s)x̄(s − σ)ds, t ≥ t1 + σ.

By Lemma 3.6.2, this implies that the corresponding integral equation (3.75) has
a positive solution x with 0 < x(t) ≤ x̄(t) for t ≥ t1. Since x/r ≤ x̄/r ≤ 1, x is a
D-type positive solution of (3.72). The proof is complete.
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Example 3.6.17. Consider the neutral differential equation

(3.103)
(

x(t) − t ln t

(t − 1) ln(t − 1)
x(t − 1)

)′
+ Q3(t)x(t − 1) = 0, t ≥ 3,

where

Q3(t) =
t ln t − t + 1

t(t − 1)2(t − 2) ln(t − 1)
.

Set

r(t) = t ln t so that R(t) =
∫ t

3

ds

s ln s
= ln ln t − ln ln 3.

Then we have ∫ ∞
Q3(s)r(s − 1)R(s − 1)ds < ∞.

Thus by Theorem 3.6.16, (3.103) has a D-type solution. In fact

x(t) = (t − 1) ln t

is such a solution.

Lemma 3.6.18 ([282]). Assume that p ∈ C([t0,∞), R+) and∫ t

t0

ds

r(s)

∫ ∞

t

p(s)ds <
1
4
, t ≥ t1 ≥ t0.

Then the ordinary differential equation

(3.104) (r(t)y′)′ + p(t)y = 0, t ≥ t0

has a positive solution.

Theorem 3.6.19. Assume that

(3.105)
∫ ∞

Q(s)r(s − σ)R(s − σ)ds = ∞

and that there exists T > t0 such that

(3.106) R(t)
∫ ∞

t

Q(s)r(s − σ)ds ≤ τ

4
, t ≥ T.

Then (3.72) has a C-type positive solution.

Proof. In view of Lemma 3.6.18, (3.106) implies that (3.76) has a positive solution.
Thus by Theorem 3.6.5, (3.72) has a positive solution x. By Theorems 3.6.12,
3.6.14, and 3.6.16, (3.105) implies that x is neither one of A-type, B-type, or D-
type positive solution of (3.72). Hence, by Theorem 3.6.8, x is a C-type positive
solution of (3.72). The proof is complete.

Example 3.6.20. Consider the neutral differential equation

(3.107)

(
x(t) − t

1
3

(t − 1)
1
3
x(t − 1)

)′
+ Q4(t)x(t) = 0, t ≥ 3,

where

Q4(t) =
3 − (t − 1)

(
ln t − ln(t − 1)

)
3t(t − 1) ln t

.
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Let

r(t) = t
1
3 so that R(t) =

∫ t

3

ds
3
√

s
=

3
2

(
t

2
3 − 3

2
3

)
.

Then ∫ ∞
Q4(s)r(s)R(s)ds = ∞

and

R(t)
∫ ∞

t

Q4(s)r(s)ds <
1
4
, t > e10.

Thus by Theorem 3.6.19, (3.107) has a C-type solution. In fact,

x(t) = t
1
3 ln t

is such a solution.

Finally, we shall obtain a sharp oscillation result for (3.72).

Lemma 3.6.21 ([282]). Assume that p ∈ C([t0,∞), R+) and

lim inf
t→∞

∫ t

t0

ds

r(s)

∫ ∞

t

p(u)du >
1
4
.

Then every solution of (3.104) oscillates.

Theorem 3.6.22. Assume that

lim inf
t→∞ R(t)

∫ ∞

t

Q(s)r(s − σ)ds >
τ

4
.

Then every solution of (3.72) oscillates.

From Theorems 3.6.12, 3.6.14, 3.6.16, 3.6.19, and 3.6.22, the following result is
true.

Corollary 3.6.23. Consider the neutral differential equation

(3.108)
(

x(t) − r(t)
r(t − τ)

x(t − τ)
)′

+ c [r(t)r(t − σ)]−1 [R(t)]−αx(t − σ) = 0

for t ≥ t0, where c > 0 and α ∈ R. Then every solution of (3.108) oscillates if and
only if α < 2, or α = 2 and c > τ

4 .

3.7. Positive Solutions of Neutral Perturbed Equations

Consider the first order neutral differential equation

(3.109)
(
x(t) + h(t)x (τ(t))

)′
+ σf
(
t, x(g(t))

)
= 0,

where σ ∈ {1,−1}. It is assumed that

(H1) τ : [t0,∞] → R is continuous and strictly increasing, τ(t) < t for t ≥ t0 and
limt→∞ τ(t) = ∞.

(H2) h : [τ(t0),∞] → R is continuous.
(H3) g : [t0,∞) → R is continuous and limt→∞ g(t) = ∞.
(H4) f : [t0,∞) × (0,∞) → [0,∞) is continuous and f(t, u) is nondecreasing in

u ∈ (0,∞) for any fixed t ∈ [t0,∞).
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Theorem 3.7.1. Equation (3.109) has a solution x satisfying

(3.110) 0 < lim inf
t→∞ x(t) ≤ lim sup

t→∞
x(t) < ∞

if and only if

(3.111)
∫ ∞

t0

f(t, a)dt < ∞ for some a > 0,

when one of the following cases holds:

(i) |h(t)| ≤ λ < 1 and h(t)h(τ(t)) ≥ 0;
(ii) h(t) = 1 and τ(t) = t − p with p > 0;
(iii) 1 < μ < h(t) ≤ λ < ∞,

where λ, μ, and p are constants.

Proof. The proof is similar to the proofs of the theorems in Section 3.6 and will be
omitted here.

In what follows, we consider the existence of a solution x of (3.109) satisfying
(3.110) in the case

(3.112) h(t) > −1 and h(τ(t)) = h(t) for t ≥ t0.

Pairs of functions

τ(t) = t − 2π and h(t) = 1 +
3
2

sin t,

τ(t) =
t

e
and h(t) = 1 +

3
2

sin(2π ln t), t0 > 0,

or

τ(t) = t1/e and h(t) = 1 +
3
2

sin
(
2π ln(ln t)

)
, t0 > 1

give typical examples satisfying (3.112). We easily see that if (3.112) holds, then
for any positive constant b,

x(t) =
b

1 + h(t)
is a positive solution of the unperturbed equation(

x(t) + h(t)x (τ(t))
)′

= 0,

and so it is natural to expect that, if f is small enough, (3.109) possesses a solution
x that behaves like the function b/[1+h(t)] as t → ∞. In fact, the following theorem
will be shown.

Theorem 3.7.2. Suppose that (3.112) holds. Then (3.109) has a positive solution
x satisfying

(3.113) x(t) =
b

1 + h(t)
+ o(1) as t → ∞ for some b > 0

if and only if (3.111) holds.
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We remark that if (3.112) holds, then there are constants μ and λ such that
−1 < μ ≤ h(t) ≤ λ < ∞ for t ≥ t0. In fact, assume that (3.112) holds. Then note
that

[t0,∞) =
∞⋃

p=0

[
τ−p(t0), τ−(p+1)(t0)

]
and that the range of h(t) for t ∈ [t0, τ−1(t0)] is identical to the range of h(t)
(= h(τp(t))) for t ∈ [τ−p(t0), τ−(p+1)(t0)], p ∈ N0. Let

μ = min h
(
[t0, τ−1(t0)]

)
and λ = max h

(
[t0, τ−1(t0)]

)
.

Then we find that −1 < μ ≤ h(t) ≤ λ < ∞ for all t ≥ t0. Also it is worthwhile
to note that a positive solution x with the asymptotic property (3.113) satisfies
(3.110).

We give an example illustrating the above theorem.

Example 3.7.3. Consider the first order neutral differential equation

(3.114)
(
x(t) + h(t)x(t − τ)

)′
+ σe−t [p(g(t))]−γ [x(g(t))]γ = 0,

where σ ∈ {1,−1}, γ > 0, τ = ln(4/3), g ∈ C[t0,∞), limt→∞ g(t) = ∞, g(t) ≥ 0
for t ≥ t0, h(t) = 1 + (3/2) sin(2πt/τ), and

p(t) =
11

1 + h(t)
+ σ

3e−t

3 + 4h(t)
=

22
4 + 3 sin(2πt/τ)

+ σ
3e−t

7 + 6 sin(2πt/τ)

for t ≥ 0. Clearly, h(t) > −1, h(t) = h(t − τ) for t ≥ t0, and p(t) ≥ 1/7 for t ≥ 0.
Then it is easy to check that∫ ∞

t0

e−t [p(g(t))]−γ
aγdt < ∞ if a > 0.

By Theorem 3.7.2, we conclude that (3.114) has a positive solution x satisfying

x(t) =
b

4 + 3 sin(2πt/τ)
+ o(1) as t → ∞ for some b > 0.

Indeed, note that p(t) + h(t)p(t − τ) = 11 + σe−t, and therefore x = p is such a
positive solution.

In order to prove Theorem 3.7.2, we make some preparation and use the following
notation:

τ0(t) = t; τk(t) = τ
(
τk−1(t)

)
, τ−k(t) = τ−1

(
τ−(k−1)(t)

)
, k ∈ N,

where τ−1 is the inverse function of τ . We note here that τ−p(t) → ∞ as p → ∞ for
each fixed t ≥ t0. Otherwise, there is a constant c ≥ t0 such that limp→∞ τ−p(t) = c,
because of τ−p(t) < τ−(p+1)(t). Letting p → ∞ in τ−p(t) = τ−1(τ−(p−1)(t)), we
have c = τ−1(c) which contradicts τ(t) < t for t ≥ t0.

Recall that

max
{

h(t) : t ∈ [t0,∞)
}

= max
{

h(t) : t ∈
[
τ−p(t0), τ−(p+1)(t0)

]}
for p ∈ N0 and that τ−p(t) → ∞ as p → ∞ for each fixed t ≥ t0. Thus it is possible
to take a sufficiently large number T ≥ t0 such that

h(T ) = max
{

h(t) : t ∈ [t0,∞)
}

.
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Define

T∗ := min
{

τ(T ), inf{g(t) : t ≥ T}
}
≥ t0.

Let C[T∗,∞) denote the Fréchet space of all continuous functions on [T∗,∞) with
the topology of uniform convergence on every compact subinterval of [T∗,∞). Let
η ∈ C[T,∞) be fixed such that η(t) ≥ 0 for t ≥ T and limt→∞ η(t) = 0. We
consider the set Y of all functions y ∈ C[T∗,∞) that are nonincreasing on [T,∞)
and satisfy

y(t) = y(T ) for t ∈ [T∗, T ], 0 ≤ y(t) ≤ η(t) for t ≥ T.

It is easy to see that Y is a closed and convex subset of C[T∗,∞).

Proposition 3.7.4. Suppose that (3.112) holds. Let η ∈ C[T∗,∞] with η(t) ≥ 0
for t ≥ T and limt→∞ η(t) = 0. For this η, define Y as above. Then there exists a
mapping Φ : Y → C[T∗,∞), which possesses the following properties:

(i) For each y ∈ Y , Φ[y] satisfies

Φ[y](t) + h(t)Φ[y] (τ(t)) = y(t) for t ≥ T and lim
t→∞Φ[y](t) = 0.

(ii) Φ is continuous on Y in the C[T∗,∞)-topology, i.e., if {yj}j∈N is a se-
quence in Y converging to y ∈ Y uniformly on every compact subinterval of
[T∗,∞), then Φ[yj ] converges to Φ[y] uniformly on every compact subinterval
of [T∗,∞).

Before proving Proposition 3.7.4, we give several lemmas.

Assume that (3.112) holds. For each y ∈ Y , we define the function Ψ[y] by

Ψ[y] =

⎧⎪⎨⎪⎩
∞∑

k=1

(−1)k+1 [H(t)]k y
(
τ−k(t)
)

if t ≥ τ(T ),

Ψ[y] (τ(T )) if t ∈ [T∗, τ(T )),

where H(t) = max{1, h(t)}. We note that H(τ(t)) = H(t) and H(t) ≥ 1 for t ≥ t0.

Lemma 3.7.5. Assume that (3.112) holds.

(i) For each y ∈ Y , the series
∞∑

k=1

(−1)k+1 [H(t)]−k
y
(
τ−k(t)
)

converges uniformly on [τ(T ),∞); hence, Ψ[y] is well defined and continuous
on [T∗,∞).

(ii) For each y ∈ Y , Ψ[y] satisfies

(3.115) 0 ≤ Ψ[y] ≤ η
(
τ−1(t)
)
, t ≥ τ(T )

and

(3.116) Ψ[y](t) + H(t)Ψ[y] (τ(t)) = y(t), t ≥ T.

(iii) Ψ is continuous on Y in the C[T∗,∞)-topology.
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Proof. We first show (i). Let y ∈ Y . We set

Ψm[y](t) =
m∑

k=1

(−1)k+1 [H(t)]−k
y
(
τ−k(t)
)
, t ≥ τ(T ), m ∈ N.

Now we claim that

(3.117) 0 ≤ Ψm[y](t) ≤ η
(
τ−1(t)
)
, t ≥ τ(T )

for all m ∈ N. Since y is nonincreasing on [T,∞) and H(t) ≥ 1, we have

(3.118) y
(
τ−1(t)
)
− [H(t)]−1

y
(
τ−2(t)
)
≥ 0, t ≥ τ(T )

and

(3.119) [H(t)]−1
y
(
τ−1(t)
)
≤ η
(
τ−1(t)
)
, t ≥ τ(T ).

Hence, we easily see that (3.117) holds for the cases m = 1 and m = 2. If m ≥ 3 is
odd, then we can rewrite Ψm[y](t) as

Ψm[y](t) =
(m−1)/2∑

k=1

[H(t)]−(2k−1)
[
y
(
τ−(2k−1)(t)

)
− [H(t)]−1

y
(
τ−2k(t)

)]
+ [H(t)]−m

y
(
τ−m(t)

)
and

Ψm[y](t) = [H(t)]−1
y
(
τ−1(t)
)

−
(m−1)/2∑

k=1

[H(t)]−2k
[
y
(
τ−2k(t)

)
− [H(t)]−1

y
(
τ−(2k+1)(t)

)]
.

If m ≥ 4 is even, then we can rewrite Ψm[y](t) as

Ψm[y](t) =
m/2∑
k=1

[H(t)]−(2k−1)
[
y
(
τ−(2k−1)(t)

)
− [H(t)]−1

y
(
τ−2k(t)

)]
and

Ψm[y](t) = [H(t)]−1
y
(
τ−1(t)
)

−
(m/2)−1∑

k=1

[H(t)]−2k
[
y
(
τ−2k(t)

)
− [H(t)]−1

y
(
τ−(2k+1)(t)

)]
− [H(t)]−m

y
(
τ−m(t)

)
.

From (3.118) and (3.119), we conclude that (3.117) holds for all m ∈ N. Using
(3.117), we find that if m ≥ p ≥ 1, then∣∣∣∣∣∣

m∑
k=p

(−1)k+1 [H(t)]−k
y
(
τ−k(t)
)∣∣∣∣∣∣(3.120)

=

∣∣∣∣∣
m−p+1∑

k=1

(−1)(k+p−1)+1 [H(t)]−(k+p−1)
y
(
τ−k
(
τ−p+1(t)

))∣∣∣∣∣
=
∣∣∣(−1)p−1 [H(t)]−(p−1) Ψm−p+1[y]

(
τ−p+1(t)

)∣∣∣
≤ η
(
τ−p(t)
)
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for t ≥ τ(T ). Here, we have used the equality H(t) = H(τ−p+1(t)), p ∈ N. Since
η(τ−p(t)) → 0 as p → ∞, the series

∑∞
k=1(−1)k+1[H(t)]−ky(τ−k(t)) converges for

each fixed t ∈ [τ(T ),∞). From (3.120) it follows that

sup
t≥τ(T )

∣∣∣∣∣∣
∞∑

k=p

(−1)k+1 [H(t)]−k
y
(
τ−k(t)
)∣∣∣∣∣∣ ≤ sup

t≥τ(T )

η
(
τ−p(t)
)

= sup
t≥τ−p+1(T )

η(t)

→ 0 as p → ∞,

and hence the series
∑∞

k=1(−1)k+1[H(t)]−ky(τ−k(t)) converges uniformly on
[τ(T ),∞).

Now we show (ii). Letting m → ∞ in (3.117), we have (3.115). To verify (3.116),
we calculate

H(t)Ψ[y](τ(t)) = H(t)
∞∑

k=1

(−1)k+1 [H(τ(t))]−k
y
(
τ−k(τ(t))

)
= H(t)

∞∑
k=1

(−1)k+1 [H(t)]−k
y
(
τ−k+1(t)

)
=

∞∑
k=1

(−1)k+1 [H(t)]−k+1
y
(
τ−k+1(t)

)
=

∞∑
k=0

(−1)k+2 [H(t)]−k
y
(
τ−k(t)
)

= y(t) − Ψ[y](t).

Finally we show (iii). Let ε > 0. There exists p ∈ N such that

sup
t∈[τ(T ),∞)

η
(
τ−(p+1)(t)

)
= sup

t∈[τ−p(T ),∞)

η(t) <
ε

3
.

Let {yj}j∈N be a sequence in Y converging to y ∈ Y uniformly on every compact
subinterval of [T∗,∞). Take an arbitrary compact subinterval I of [τ(T ),∞). There
exists j0 ∈ N such that

p∑
k=1

∣∣∣yj

(
τ−k(t)
)
− y
(
τ−k(t)
) ∣∣∣ < ε

3
, t ∈ I, j ≥ j0.

It follows from (3.120) that∣∣∣Ψ[yj ](t) − Ψ[y](t)
∣∣∣ ≤ p∑

k=1

[H(t)]−k
∣∣∣yj

(
τ−k(t)
)
− y
(
τ−k(t)
) ∣∣∣

+

∣∣∣∣∣∣
∞∑

k=p+1

(−1)k+1 [H(t)]−k
yj

(
τ−k(t)
)∣∣∣∣∣∣+
∣∣∣∣∣∣

∞∑
k=p+1

(−1)k+1 [H(t)]−k
y
(
τ−k(t)
)∣∣∣∣∣∣

≤
p∑

k=1

∣∣∣yj

(
τ−k(t)
)
− y
(
τ−k(t)
) ∣∣∣+ 2η

(
τ−(p+1)(t)

)
< ε
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for t ∈ I and j ≥ j0, which implies that Ψ[yj ] converges to Ψ[y] uniformly on I. It
is easy to see that Ψ[yj ] → Ψ[y] uniformly on [T∗, τ(T )]. Consequently, we conclude
that Ψ is continuous on Y .

To each y ∈ Y we assign the function ϕ[y] as follows:

ϕ[y](t) =

⎧⎨⎩
y(T )

1 + h(T )
if h(T ) < 1,

Ψ[y](t) if h(T ) ≥ 1,

t ∈ [T∗, T ].

Lemma 3.7.6. (i) For each y ∈ Y , ϕ[y] satisfies

ϕ[y](T ) + h(T )ϕ[y] (τ(T )) = y(T ).

(ii) Suppose that {yj}∞j=1 is a sequence in Y converging to y ∈ Y uniformly on
every compact subinterval of [T∗,∞). Then ϕ[yi] converges to ϕ[y] uniformly
on [T∗, T ].

Proof. It is obvious that (i) and (ii) hold for the case h(T ) < 1. For the case
h(T ) ≥ 1, (i) and (ii) follow from (ii) and (iii) of Lemma 3.7.5.

For each y ∈ Y , we define the function Φ[y] as follows:

Φ[y](t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m∑

k=0

(−1)k [h(t)]k y
(
τk(t)
)

+ (−1)m+1 [h(t)]m+1
ϕ[y]
(
τm+1(t)

)
if t ∈

[
τ−m(T ), τ−(m+1)(T )

]
, m ∈ N0,

ϕ[y](t) if t ∈ [T∗, T ].

Lemma 3.7.7. Let y ∈ Y .

(i) Φ[y] is continuous on [T∗,∞);
(ii) Φ[y] satisfies

Φ[y](t) + h(t)Φ[y] (τ(t)) = y(t), t ≥ T ;

(iii) for t ∈ [τ(T ),∞) with h(t) ≥ 1,

Φ[y](t) = Ψ[y](t);

(iv) Φ is continuous on Y in the C[T∗,∞)-topology.

Proof. To show (i), it is easy to see that Φ[y] is continuous on

[T∗,∞) \ {τ−m(T ) : m ∈ N0}.

From Lemma 3.7.6 (i), it follows that

lim
t→T−

Φ[y](t) = ϕ[y](T ) = y(T ) − h(T )ϕ[y](τ(T )) = lim
t→T+

Φ[y](t)
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and that if m ∈ N, then

lim
t→(τ−m(T ))−

Φ[y](t) =
m−1∑
k=0

(−1)k
[
h
(
τ−m(T )

)]k
y
(
τk−m(T )

)
+(−1)m

[
h
(
τ−m(T )

)]m
ϕ[y](T )

=
m−1∑
k=0

(−1)k
[
h
(
τ−m(T )

)]k
y
(
τk−m(T )

)
+(−1)m

[
h
(
τ−m(T )

)]m (
y(T ) − h(T )ϕ[y] (τ(T ))

)
=

m∑
k=0

(−1)k
[
h
(
τ−m(T )

)]k
y
(
τk−m(T )

)
+(−1)m+1

[
h
(
τ−m(T )

)]m+1
ϕ[y]
(
τm+1
(
τ−m(T )

) )
= lim

t→(τ−m(T ))+
Φ[y](t).

Consequently, Φ[y] is continuous on [T∗,∞).

An easy computation shows that (ii) follows.

Now we show (iii). If h(T ) < 1, then there is no number t ∈ [τ(T ),∞) such that
h(t) ≥ 1 (recall the choice of T ). Assume that h(T ) ≥ 1. Then

Φ[y](t) = ϕ[y](t) = Ψ[y](t) for t ∈ [τ(T ), T ].

We suppose that there is m ∈ N0 such that Φ[y] = Ψ[y] on [τ−(m−1)(T ), τ−m(T )]
with h(t) ≥ 1. In view of Lemma 3.7.7 (ii) and (3.116), we find that if
t ∈ [τ−m(T ), τ−(m+1)(T )] and if h(t) ≥ 1, then

Φ[y](t) = y(t) − h(t)Φ[y](τ(t)) = y(t) − H(t)Ψ[y](τ(t)) = Ψ[y](t).

By induction, we conclude that Φ[y](t) = Ψ[y](t) for t ∈ [τ(T ),∞) with h(t) ≥ 1.

Finally we show (iv). Let {yj}∞j=1 be a sequence in Y converging to y ∈ Y
uniformly on every compact subinterval of [T∗,∞). Lemma 3.7.6 implies that Φ[yj ]
converges to Φ[y] uniformly on [T∗, t]. It suffices to prove that Φ[yj ] → Φ[y] uni-
formly on Im := [τ−m(T ), τ−(m+1)(T )], m ∈ N0. Since |h(t)| ≤ λ on [t0,∞) for
some λ ≥ 1, we observe that

sup
t∈Im

∣∣∣Φ[yj ](t) − Φ[y](t)
∣∣∣ ≤ m∑

k=0

λk sup
t∈Im

∣∣∣yj

(
τk(t)
)
− y
(
τk(t)
) ∣∣∣

+λm+1 sup
t∈Im

∣∣∣ϕ[yj ]
(
τm+1(t)

)
− ϕ[y]

(
τm+1(t)

) ∣∣∣
≤ λm

m∑
k=0

sup
t∈Im−k

∣∣∣yj(t) − y(t)
∣∣∣+ λm+1 sup

t∈[T∗,T ]

∣∣∣ϕ[yj ](t) − ϕ[y](t)
∣∣∣ .

Then, supt∈Im
|Φ[yj ](t) − Φ[y](t)| → 0 as j → ∞, so that Φ[yj ] converges to Φ[y]

uniformly on Im for m ∈ N0.

Lemma 3.7.8. Let {tj}∞j=0 be a sequence with limj→∞ tj = ∞ and h(tj) ≤ ν < 1,
j ∈ N, for some ν > 0. Then limj→∞ Φ[y](tj) = 0 for each y ∈ Y .
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Proof. Let y ∈ Y . Since limt→∞ y(t) = 0, for each ε > 0, there exists p ∈ N such
that

y(τ−p(T ))
1 − ν

<
ε

3
.

There exists q ∈ N such that

y(T )νr−p+1

1 − ν
<

ε

3
and νr+1 sup

t∈[T∗,T ]

∣∣∣ϕ[y](t)
∣∣∣ < ε

3
for all r ≥ p + q.

Let m ≥ p + q. Then τm−p(t) ≥ τ−p(T ) for t ∈ [τ−m(T ), τ−(m+1)(T )]. In view of
the monotonicity of y, we see that if t ∈ [τ−m(T ), τ−(m+1)(T )] and |h(t)| ≤ ν, then∣∣∣Φ[y](t)

∣∣∣ ≤
m∑

k=0

νky
(
τk(t)
)

+ νm+1
∣∣∣ϕ[y]
(
τm+1(t)

) ∣∣∣
≤

m−p∑
k=0

νky
(
τk(t)
)

+
m∑

k=m−p+1

νky
(
τk(t)
)

+
ε

3

≤ y
(
τm−p(t)

)m−p∑
k=0

νk + y(T )νm−p+1

p−1∑
k=0

νk +
ε

3

≤ y(τ−p(T ))
1 − ν

+
y(T )νm−p+1

1 − ν
+

ε

3
< ε.

This implies that |Φ[y](t)| < ε for t ∈ [τ−(p+q)(T ),∞) with |h(t)| ≤ ν, and hence
the conclusion follows.

Lemma 3.7.9. Let m ∈ N0. If t satisfies t ≥ τ−m(T ) and 0 ≤ h(t) ≤ 1, then

(3.121)

∣∣∣∣∣
m∑

k=0

(−1)k [h(t)]k y
(
τk(t)
)∣∣∣∣∣ ≤ 2y (τm(t)) , y ∈ Y.

Proof. Let t ≥ τ−m(T ) satisfy 0 ≤ h(t) ≤ 1 and let y ∈ Y . Put

A(t) :=
m∑

k=0

(−1)k[h(t)]ky(τk(t)).

It is easy to see that (3.121) holds for m = 0 and m = 1. If m ≥ 3 is odd, then we
can rewrite A(t) as

A(t) = y(t) −
(m−1)/2∑

j=1

[h(t)]2j−1
(
y
(
τ2j−1(t)

)
− h(t)y

(
τ2j(t)
) )

− [h(t)]m y (τm(t))

and

A(t) =
(m−1)/2∑

j=0

[h(t)]2j
(
y
(
τ2j(t)
)
− h(t)y

(
τ2j+1(t)

) )
.

If m ≥ 2 is even, then we can rewrite A(t) as

A(t) = y(t) −
m/2∑
j=1

[h(t)]2j−1
(
y
(
τ2j−1(t)

)
− h(t)y

(
τ2j(t)
) )
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and

A(t) =
(m/2)−1∑

j=0

[h(t)]2j
(
y
(
τ2j(t)
)
− h(t)y

(
τ2j+1(t)

) )
+ [h(t)]m y (τm(t)) .

Since y is nonincreasing on [T,∞), we see that

y(t) − h(t)y(τ(t)) ≤ [1 − h(t)]y(t), t ≥ τ−1(T ).

Hence, for the case when m ≥ 3 is odd, we have

A(t) ≥ −
(m−1)/2∑

j=1

[h(t)]2j−1 [1 − h(t)] y
(
τ2j−1(t)

)
− [h(t)]m y (τm(t))

≥ −
(m−1)/2∑

j=1

[h(t)]2j−1 [1 − h(t)] y (τm(t)) − [h(t)]m y (τm(t))

= y (τm(t))
m∑

k=1

(−1)k [h(t)]k

= −y (τm(t))h(t)
1 − [−h(t)]m

1 + h(t)
≥ −2y (τm(t)) .

In the same way, we can show that A(t) ≤ 2y(τm(t)) for the case when m ≥ 3 is
odd, and that −2y(τm(t)) ≤ A(t) ≤ 2y(τm(t)) for the case when m ≥ 2 is even.

Lemma 3.7.10. Let y ∈ Y . Then limt→∞ Φ[y](t) = 0.

Proof. Assume that limt→∞ Φ[y](t) = 0 does not hold. Then we first claim that
there is a sequence {tj}∞j=1 such that

(3.122)

⎧⎨⎩ lim
j→∞

tj = ∞, lim
j→∞

Φ[y](tj) exists in [−∞,∞] \ {0},
0 < h(tj) < 1 for j ∈ N, and lim

j→∞
h(tj) = 1.

By assumption, there exists a sequence {sj}∞j=1 for which sj → ∞ as well as
Φ[y](sj) → c ∈ [−∞,∞] \ {0} as j → ∞. Since −1 < μ ≤ h(t) ≤ λ for t ≥ t0,
there exists a subsequence {tj}∞j=1 of {sj}∞j=1 such that limj→∞ h(tj) = d ∈ [μ, λ].
Lemma 3.7.8 implies that d ≥ 1. It can be shown that h(tj) < 1, j ≥ j0 for
some j0 ∈ N. Otherwise, there exists a subsequence {t̃j}∞j=1 of {tj}∞j=1 such that
h(t̃j) ≥ 1 for all j ∈ N. From Lemma 3.7.7 (iii) and Lemma 3.7.5 (ii), it follows
that

|c| =
∣∣∣∣ limj→∞

Φ[y](t̃j)
∣∣∣∣ = ∣∣∣∣ limj→∞

Ψ[y](t̃j)
∣∣∣∣ ≤ lim

j→∞
η
(
τ−1(t̃j)

)
= 0,

which is a contradiction. Since d ≥ 1, we see that d = 1, so that 0 < h(tj) < 1,
j ≥ j1 for some j1 ≥ j0. This proves the existence of {tj}∞j=1 satisfying (3.122).

Suppose that {tj}∞j=1 is a sequence satisfying (3.122). Let ε > 0 be arbitrary.
There exists p ∈ N such that

η(t) < ε, t ≥ τ−p−1(T ).
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There is δ > 0 such that if s1, s2 ∈ [τ−p(T ), τ−(p+1)(T )] with |s1 − s2| < δ, then

(3.123)
∣∣∣Φ[y](s1) − Φ[y](s2)

∣∣∣ < ε.

Consider the mapping N : [τ−p(T ),∞) → N0 such that

τN(t)(t) ∈
[
τ−p(T ), τ−(p+1)(T )

)
for t ≥ τ−p(T ).

We note that limt→∞ N(t) = ∞. It is easily verified that {tj}∞j=1 has a subsequence
{uj}∞j=1 such that

lim
j→∞

τN(uj)(uj) exists in
[
τ−p(T ), τ−(p+1)(T )

]
.

Put ū = limj→∞ τN(uj)(uj). Then we find that

h(ū) = lim
j→∞

h
(
τN(uj)(uj)

)
= lim

j→∞
h(uj) = 1.

There exists j0 ∈ N such that uj ≥ τ−p(T ) and |τN(uj)(uj) − ū| < δ for j ≥ j0.
From Lemma 3.7.7 (ii), we observe that

Φ[y](t) = y(t) − h(t)Φ[y] (τ(t))

= y(t) − h(t)y (τ(t)) + [h(t)]2 Φ[y]
(
τ2(t)
)

=
m−1∑
k=0

(−1)k [h(t)]k y
(
τk(t)
)

+ (−1)m [h(t)]m Φ[y] (τm(t))

for t ≥ τ−m+1(T ). Since h(ū) = 1, we have∣∣∣Φ[y](uj) − Φ[y]
(
τ−N(uj)(ū)

) ∣∣∣ ≤
∣∣∣∣∣∣
N(uj)−1∑

k=0

(−1)k [h(uj)]
k
y
(
τk(uj)
)∣∣∣∣∣∣(3.124)

+

∣∣∣∣∣∣
N(uj)−1∑

k=0

(−1)ky
(
τk
(
τ−N(uj)(ū)

))∣∣∣∣∣∣
+
∣∣∣[h(uj)]

N(uj) Φ[y]
(
τN(uj)(uj)

)
− Φ[y]

(
τN(uj)

(
τ−N(uj)(ū)

)) ∣∣∣ .
Lemma 3.7.9 implies that if j ≥ j0, then

(3.125)
N(uj)−1∑

k=0

(−1)k [h(uj)]
k
y
(
τk(uj)
)
≤ 2y
(
τN(uj)−1(uj)

)
≤ 2η
(
τN(uj)−1(uj)

)
< 2ε

and

(3.126)
N(uj)−1∑

k=0

(−1)ky
(
τk
(
τ−N(uj)(ū)

))
≤ 2y
(
τN(uj)−1

(
τ−N(uj)(ū)

))
≤ 2η
(
τ−1(ū)

)
< 2ε.

From Lemma 3.7.7 (iii), Lemma 3.7.5 (ii), and the fact that h(ū) = 1, it follows
that

|Φ[y](ū)| = |Ψ[y](ū)| ≤ η
(
τ−1(ū)

)
< ε.
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Then we observe that for j ≥ j0,∣∣∣[h(uj)]
N(uj) Φ[y]

(
τN(uj)(uj)

)
− Φ[y]

(
τN(uj)

(
τ−N(uj)(ū)

))∣∣∣(3.127)

≤
∣∣∣[h(uj)]

N(uj)
∣∣∣ ∣∣∣Φ[y]
(
τN(uj)(uj)

)
− Φ[y](ū)

∣∣∣+ ∣∣∣[h(uj)]
N(uj) − 1

∣∣∣ |Φ[y](ū)|

≤
∣∣∣Φ[y]
(
τN(uj)(uj)

)
− Φ[y](ū)

∣∣∣+ 2
∣∣∣Φ[y](ū)

∣∣∣
< 3ε

because of (3.123). Combining (3.124)–(3.127), we obtain∣∣∣Φ[y](uj) − Φ[y]
(
τ−N(uj)(ū)

)∣∣∣ < 7ε, j ≥ j0.

This means that
lim

j→∞

∣∣∣Φ[y](uj) − Φ[y]
(
τ−N(uj)(ū)

)∣∣∣ = 0.

On the other hand, in view of Lemma 3.7.7 (iii) and Lemma 3.7.5 (ii), we see that

lim
j→∞

∣∣∣Φ[y]
(
τ−N(uj)(ū)

)∣∣∣ ≤ lim
j→∞

η
(
τ−N(uj)−1(ū)

)
= 0.

From (3.122) it follows that

lim
j→∞

∣∣∣Φ[y](uj) − Φ[y]
(
τ−N(uj)(ū)

)∣∣∣ exists and is not equal to 0.

This is a contradiction. The proof is complete.

Proof of Proposition 3.7.4. This result follows from Lemmas 3.7.7 and 3.7.10.

Proof of Theorem 3.7.2. First we prove the “only if” part of Theorem 3.7.2. Let x
be a solution of (3.109) which satisfies (3.113). Put y(t) = x(t)+h(t)x(τ(t)). Then
(3.112) implies that y(t) = b + o(1) as t → ∞. Integration of (3.109) over [T,∞)
yields

b − y(T ) + σ

∫ ∞

T

f
(
s, x (g(s))

)
ds = 0,

where T ≥ t0. Hence we obtain∫ ∞

T

f
(
s, x (g(s))

)
ds < ∞.

Noting that x satisfies (3.110) and using the monotonicity of f , we conclude that
(3.111) holds.

Now let us show the “if” part of Theorem 3.7.2. Put

η(t) =
∫ ∞

t

f(s, a)ds, t ≥ T.

We use Proposition 3.7.4 for this η. We can take constants b > 0, δ > 0, and ε > 0
such that

0 < δ + ε ≤ b

1 + h(t)
≤ a − ε, t ≥ T∗.

Define the mapping Θ : Y → C[T∗,∞) as follows:

(Θy)(t) =

⎧⎨⎩
∫ ∞

t

F

(
s,

b

1 + h (g(s))
+ σΦ[y] (g(s))

)
ds if t ≥ T,

(Θy)(T ) if t ∈ [T∗, T ),
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where

F (t, u) =

⎧⎪⎨⎪⎩
f(t, δ) if u ≤ δ,

f(t, u) if δ < u < a,

f(t, a) if u ≥ a.

It is easy to see that Θ is well defined on Y and maps Y into itself. Since Φ is
continuous on Y , the Lebesgue dominated convergence theorem shows that Θ is
continuous on Y . Let I be an arbitrary compact subinterval of [T,∞). We find
that ∣∣∣(Θy)′(t)

∣∣∣ ≤ max
{

f(s, a) : s ∈ I
}

, t ∈ I,

so that {(Θy)′(t)}y∈Y is uniformly bounded on I. The mean value theorem shows
that Θ(Y ) is equicontinuous on I. Since∣∣∣(Θy)(t1) − (Θy)(t2)

∣∣∣ = 0 for t1, t2 ∈ [T∗, T ],

we conclude that Θ(Y ) is equicontinuous on every compact subinterval of [T∗,∞).
Obviously, Θ(Y ) is uniformly bounded on [T∗,∞). Hence, by the Arzelà–Ascoli
theorem (Theorem 1.4.17), Θ(Y ) is relatively compact. Consequently, we may apply
the Schauder–Tychonov fixed point theorem (Theorem 1.4.25) to the operator Θ
and we conclude that there exists ỹ ∈ Y such that ỹ = Θỹ. Set

x(t) =
b

1 + h(t)
+ σΦ[ỹ](t).

Proposition 3.7.4 implies that x satisfies (3.113) and that there exists a number
T̃ ≥ T such that δ ≤ x(g(t)) ≤ a for t ≥ T̃ . Then F (t, x(g(t))) = f(t, x(g(t))) for
t ≥ T̃ . Observe that

x(t) + h(t)x (τ(t)) =
b

1 + h(t)
+

bh(t)
1 + h (τ(t))

+ σ
(
Φ[ỹ](t) + h(t)Φ[ỹ] (τ(t))

)
= b + σỹ(t)

= b + σ

∫ ∞

t

f
(
s, x (g(s))

)
ds

for t ≥ T̃ . By differentiating the above equation, we see that x is a solution of
(3.109). The proof is complete.

3.8. Notes

Lemma 3.2.1 is obtained by Yu, Wang, and Qian [293]. The rest of Section 3.2
is taken from Li [180]. Lemma 3.3.1 is based on Yu [289]. Lemma 3.3.2 is obtained
by Győri [117]. The rest of Section 3.3 is adopted from Li and Yan [206]. The
treatment in Section 3.4 is based on [203]. The material of Section 3.5 is taken
from He and Li [122], a special case is obtained by Yu [289]. Section 3.6 is taken
from Agarwal, Tang, and Wang [10], and related work can be found also in Yang
and Zhang [286]. The contents of Section 3.7 is based on Tanaka [256].

 



CHAPTER 4

Second Order Ordinary Differential Equations

4.1. Introduction

The study of oscillation for second order ordinary differential equations is inter-
esting from the theoretical as well as the practical point of view. There are many
articles and books studying this topic. The survey paper by Wong [267] contains
a complete bibliography up to 1968. Also, for a detailed account on second order
nonlinear differential equations, see the paper by Kartsatos [142], which gives more
than 300 references. In this chapter, we will present some criteria for oscillation and
for the existence of positive solutions of nonlinear differential equations of second
order, mainly including some contributions of the authors and their colleagues.

4.2. Oscillation of Superlinear Equations

Consider the second order nonlinear ordinary differential equation

(4.1) y′′(t) + a(t)f(y(t)) = 0,

where a is a continuous real-valued function on an interval [t0,∞) without any
restriction on its sign, and f is a continuous real-valued function on the real line R,
which is continuously differentiable on R\{0} and satisfies yf(y) > 0 and f ′(y) ≥ 0
for every y �= 0. The prototype of (4.1) is the so-called Emden–Fowler equation

(4.2) y′′(t) + a(t)|y(t)|γ sgn y(t) = 0 with γ > 0.

Here we are interested in the oscillation of solutions of (4.1) when f(y) satisfies, in
addition, the superlinearity condition

(4.3) 0 <

∫ ∞

ε

dy

f(y)
< ∞ and 0 <

∫ −∞

−ε

dy

f(y)
< ∞ for all ε > 0.

Throughout the section, we shall restrict our attention only to those solutions of
the differential equation (4.1) which exist on some ray [T,∞), where T ≥ t0 may
depend on the particular solution. Note that under quite general conditions there
will always exist solutions of (4.1) which are extendable to an interval [T,∞),
T ≥ t0, even though there will also exist nonextendable solutions [59].

In the linear case, i.e., (4.2) with γ = 1, Kamenev [140] showed that the condi-
tion

(4.4) lim sup
t→∞

1
tα

∫ t

t0

(t − s)αa(s)ds = ∞ for some α > 1

alone is sufficient for oscillation of (4.2). Wong [269] extended this result to equa-
tion (4.2) in the sublinear case (0 < γ < 1) and proposed [272] the following
conjecture.

109
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Wong’s Conjecture. Condition (4.4) together with the compatibility condition

(4.5) lim inf
t→∞

1
tβ

∫ t

t0

(t − s)βa(s)ds > −∞ for some β ≥ 1

is sufficient for oscillation of (4.2) in the superlinear case (γ > 1).

Remark 4.2.1. The special case when β = 0 in (4.5) has been answered affirma-
tively in an earlier paper [268]. In addition, Wong [273] proved the conjecture in
the case when conditions (4.4) and (4.5) hold for α > 1 and β ≥ 1, where α, β ∈ N.
But it remained an open problem when α > 1 and β ≥ 1 are positive real numbers.

In the following, we first prove the above conjecture and extend it to the general
superlinear differential equation (4.1), subject to the nonlinearity condition [272]

(4.6) f ′(y)G(y) ≥ d > 1 for all y, where G(y) =
∫ ∞

y

du

f(u)
.

Theorem 4.2.2. Assume that (4.3) and (4.6) hold. Then conditions (4.4) and
(4.5) imply that (4.1) is oscillatory.

For (4.2) with γ > 1, (4.6) becomes

f ′(y)G(y) = γ(γ − 1)−1 = d > 1.

Hence, our theorem leads to the following oscillation result.

Corollary 4.2.3. Equation (4.2) with γ > 1 is oscillatory if (4.4) and (4.5) are
satisfied.

This oscillation criterion is Wong’s conjecture.

Proof of Theorem 4.2.2. Assume that the differential equation (4.1) admits a
nonoscillatory solution y on an interval [T,∞), T ≥ max{t0, 1}. Without loss
of generality, this solution can be supposed to be such that y(t) �= 0 for t ≥ T .
Furthermore, we observe that the substitution u = −y transforms (4.1) into the
equation u′′(t) + a(t)f̄(u(t)) = 0, where f̄(y) = −f(−y), y ∈ R. The function f̄
is subject to the same conditions as f . So there is no loss of generality to restrict
our discussion to the case where the solution y is positive on the interval [T,∞).
Define w(t) = G(y(t)). Then we obtain

(4.7) w′′(t) = a(t) + [w′(t)]2f ′(y(t)) for t ≥ T.

Since f ′(y) ≥ 0, we note that the integral of f ′(y(t))[w′(t)]2 over [T,∞) exists, finite
or infinite. Hence we consider the two cases when

∫∞
T

[w′(t)]2f ′(y(t))dt is finite or
infinite.

First, if
∫∞

T
[w′(t)]2f ′(y(t))dt < ∞, then the proof given in Wong [273] is also

valid for positive reals α, β, and hence for brevity is not reproduced. Second, we
consider the case when

∫∞
T

[w′(s)]2f ′(y(s))ds = ∞. In view of (4.6), we can choose
a real number k ≥ max{β, 3} such that

(4.8)
k − 1
k − 2

< d.

As k ≥ β, it is easy to verify that condition (4.5) implies that

(4.9) lim inf
t→∞

1
tk−1

∫ t

T

(t − s)k−1a(s)ds > −∞.
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Now, for each t ≥ T , from (4.7) we obtain∫ t

T

(t − s)k−1a(s)ds +
∫ t

T

(t − s)k−1[w′(s)]2f ′(y(s))ds

=
∫ t

T

(t − s)k−1w′′(s)ds

= −(t − T )k−1w′(T ) + (k − 1)
∫ t

T

(t − s)k−2w′(s)ds.

So we have

(4.10)
1

tk−1

∫ t

T

(t − s)k−1a(s)ds = −
(

1 − T

t

)k−1

w′(T )

+
k − 1
tk−1

∫ t

T

(t − s)k−2w′(s)ds − 1
tk−1

∫ t

T

(t − s)k−1[w′(s)]2f ′(y(s))ds

for t ≥ T . Next, by taking into account (4.8), we choose a constant d1 with

(4.11)
k − 1

d(k − 2)
< d1 < 1.

We claim that, for every t∗ ≥ T , there exists t ≥ t∗ such that∫ t

T

(t − s)k−1[w′(s)]2f ′(y(s))ds >
k − 1
d1

∫ t

T

(t − s)k−2w′(s)ds.

Otherwise, there is t∗ ≥ T such that

(4.12)
∫ t

T

(t − s)k−1[w′(s)]2f ′(y(s))ds ≤ k − 1
d1

∫ t

T

(t − s)k−2w′(s)ds

for all t ≥ t∗. By using the Schwarz inequality and (4.12) and taking into account
the definitions of w and d, for t ≥ t∗ we find

0 ≤
∫ t

T

(t − s)k−2w′(s)ds

≤
{∫ t

T

(t − s)k−1[w′(s)]2f ′(y(s))ds

}1/2{∫ t

T

(t − s)k−3

f ′(y(s))
ds

}1/2

≤
{

k − 1
d1

∫ t

T

(t − s)k−2w′(s)ds

}1/2{
1
d

∫ t

T

(t − s)k−3w(s)ds

}1/2

,

and so we obtain

(4.13)
∫ t

T

(t − s)k−2w′(s)ds ≤ k − 1
d1d

∫ t

T

(t − s)k−3w(s)ds for t ≥ t∗.

But for any t ≥ t∗ we have∫ t

T

(t − s)k−3w(s)ds =
1

k − 2

(
(t − T )k−2w(T ) +

∫ t

T

(t − s)k−2w′(s)ds

)
.

So, (4.13) gives(
d1d

k − 2
k − 1

− 1
)∫ t

T

(t − s)k−2w′(s)ds ≤ (t − T )k−2w(T )

 



112 4. SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

for every t ≥ t∗. Therefore, by (4.12), we find

(4.14)
(

d1d
k − 2
k − 1

− 1
)

1
tk−2

∫ t

T

(t − s)k−1[w′(s)]2f ′(y(s))ds

≤ k − 1
d1

(
1 − T

t

)k−2

w(T )

for t ≥ t∗. But one has ∫ ∞

T

[w′(s)]2f ′(y(s))ds = ∞

and hence

lim
t→∞

1
tk−2

∫ t

T

(t − s)k−1[w′(s)]2f ′(y(s))ds = ∞.

On the other hand, (4.11) implies that d1d(k−2)/(k−1)−1 > 0. Thus, (4.14) leads
to a contradiction. Hence our claim is proved and so we can consider a sequence
{tn}∞n=1 of points in the interval [T,∞) with limn→∞ tn = ∞ and such that∫ tn

T

(tn − s)k−1[w′(s)]2f ′(y(s))ds >
k − 1
d1

∫ tn

T

(tn − s)k−2w′(s)ds, n ∈ N.

Then from (4.10) it follows that

1
tk−1
n

∫ tn

T

(tn − s)k−1a(s)ds = −
(

1 − T

tn

)k−1

w′(T )

+
k − 1
tk−1
n

∫ tn

T

(tn − s)k−2w′(s)ds − 1
tk−1
n

∫ tn

T

(tn − s)k−1[w′(s)]2f ′(y(s))ds

< −
(

1 − T

tn

)k−1

w′(T ) + (d1 − 1)
1

tk−1
n

∫ tn

T

(tn − s)k−1[w′(s)]2f ′(y(s))ds(4.15)

for n ∈ N. Since

lim
t→∞

1
tk−1

∫ t

T

(t − s)k−1[w′(s)]2f ′(y(s))ds =
∫ ∞

T

[w′(s)]2f ′(y(s))ds = ∞

and, by (4.11), d1 < 1, inequality (4.15) ensures that

lim
n→∞

1
tk−1
n

∫ tn

T

(tn − s)k−1a(s)ds = −∞.

This shows that

(4.16) lim inf
t→∞

1
tk−1

∫ t

T

(t − s)k−1a(s)ds = −∞.

Finally, for every t ≥ T , we obtain∫ t

t0

(t − s)k−1a(s)ds ≤
∫ T

t0

(t − s)k−1|a(s)|ds +
∫ t

T

(t − s)k−1a(s)ds

≤ (t − t0)k−1

∫ T

t0

|a(s)|ds +
∫ t

T

(t − s)k−1a(s)ds.

Thus, from (4.16) it follows that

lim inf
t→∞

1
tk−1

∫ t

t0

(t − s)k−1a(s)ds = −∞,

which contradicts (4.9). The proof of the theorem is now complete.
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In Theorem 4.2.2, condition (4.4) is not necessary. In fact, condition (4.4) can
be replaced by another condition. That is to say, we have the following result.

Theorem 4.2.4. Assume that (4.3) and (4.6) hold. Then (4.5) and

(4.17) lim sup
t→∞

1
t

∫ t

t0

[B(s)]2 ds = ∞, where B(t) =
∫ t

t0

a(s)ds

imply that (4.1) is oscillatory.

Corollary 4.2.5. Conditions (4.5) and (4.17) are sufficient for oscillation of (4.2)
with γ > 1.

Proof of Theorem 4.2.4. Similarly as in the proof of Theorem 4.2.2, assume that y
is positive on the interval [T,∞). Define w(t) = G(y(t)) and use (4.1) to obtain
(4.7). We consider the two cases when

∫∞
T

[w′(t)]2f ′(y(t))dt is finite or infinite.

If
∫∞

T
[w′(s)]2f ′(y(s))ds = ∞, then the proof is similar to that of Theorem 4.2.2

and hence will be omitted. Now we assume that
∫∞

T
[w′(t)]2f ′(y(t))dt is finite. We

shall show that

(4.18) lim
t→∞

w(t)
t

= 0.

Since (w′)2f ′ ∈ L1[T,∞), for each ε > 0 we can choose T1 ≥ T such that

(4.19)
∫ ∞

T1

[w′(s)]2f ′(y(s))ds ≤ ε

4
.

Furthermore, by using the Schwarz inequality, for t ≥ T1 we obtain

w(t) − w(T1) ≤
∣∣∣∣∫ t

T1

w′(s)ds

∣∣∣∣
≤
{∫ t

T1

[w′(s)]2f ′(y(s))ds

}1/2{∫ t

T1

1
f ′(y(s))

ds

}1/2

,

and so, in view of (4.19), we have

(4.20) w(t) ≤ w(T1) +
√

ε

2

{∫ t

T1

1
f ′(y(s))

ds

}1/2

for t ≥ T1.

If ∫ ∞

T1

1
f ′(y(s))

ds < ∞,

then from (4.20) it follows that w is bounded on [T1,∞) and hence (4.18) is satisfied.
So we assume that ∫ ∞

T1

1
f ′(y(s))

ds = ∞.

Then there exists a point T2 > T1 such that

w(T1) ≤
√

ε

2

{∫ t

T1

1
f ′(y(s))

ds

}1/2

for t ≥ T2,

and consequently (4.20) and then (4.6) gives

(4.21) w(t) ≤
√

ε

{∫ t

T1

1
f ′(y(s))

ds

}1/2

≤
√

ε/d

{∫ t

T1

w(s)ds

}1/2

for t ≥ T2.
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Hence

(4.22)
d

dt

{∫ t

T1

w(s)ds

}1/2

≤
√

ε/d

2
for t ≥ T2.

Upon integrating (4.22), we have for t ≥ T2{∫ t

T1

w(s)ds

}1/2

−
{∫ T2

T1

w(s)ds

}1/2

≤
√

ε/d

2
(t − T2) <

√
ε/d

2
t.

So, by letting

T3 = max

⎧⎨⎩T2,
2√
ε/d

(∫ T2

T1

w(s)ds

)1/2
⎫⎬⎭ ,

we obtain for t ≥ T3{∫ t

T1

w(s)ds

}1/2

<

√
ε/d

2
t +

{∫ T2

T1

w(s)ds

}1/2

≤
√

ε/d

2
t +

√
ε/d

2
t

=
√

ε

d
t.

Hence, (4.21) gives

w(t) <
εt

d
for all t ≥ T3.

Since ε > 0 is arbitrary, this proves (4.18).
Integrating (4.7) from T to t, one obtains

B(t) =
∫ t

t0

a(s)ds = −w′(T ) + B(T ) + w′(t) −
∫ t

T

[w′(s)]2f ′(y(s))ds,

from which it follows that

(4.23) [B(t)]2 ≤ 3
(
C2

0 + k2
0 + [w′(t)]2

)
,

where
C0 = w′(T ) + B(T ) and k0 =

∫ ∞

T

[w′(s)]2f ′(y(s))ds.

Next we estimate the integral of (w′)2 as

1
t

∫ t

T

[w′(s)]2ds ≤ 1
t

max
T≤s≤t

1
f ′(y(s))

∫ t

T

f ′(y(u))[w′(u)]2du(4.24)

≤ k0

dt
max

T≤s≤t
w(s).

By (4.18), we can choose T4 ≥ T such that |w(t)| ≤ t for t ≥ T , hence

(4.25) max
T≤s≤t

w(s) ≤ max
T≤s≤T4

w(s) + t = K1 + t,

where K1 = maxT≤s≤T4 w(s). Combining (4.24) and (4.25) in (4.23), we find

(4.26)
1
t

∫ t

T

[B(s)]2 ds ≤ 3
(
C2

0 + k2
0

)
+

3k0

dt
(K1 + t).

Letting t tend to infinity in (4.26) we obtain the desired contradiction to (4.17).
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4.3. Oscillation of Sublinear Equations

In this section we continue to study oscillation of (4.1) under the condition

(4.27) 0 <

∫ ε

0

dy

f(y)
< ∞ and 0 <

∫ −ε

0

dy

f(y)
< ∞ for all ε > 0,

which corresponds to the special case f(y) = |y|γ sgn y when 0 < γ < 1. The
coefficient a(t) is allowed to be negative for arbitrarily large t.

Theorem 4.3.1. Assume (4.27) and

(4.28) f ′(y)F (y) ≥ 1
c

> 0 for all y, where F (y) =
∫ y

0

du

f(u)
.

Then condition (4.4) implies that (4.1) is oscillatory.

Corollary 4.3.2. Condition (4.4) is sufficient for (4.2) to be oscillatory in the
sublinear case, i.e., when 0 < γ < 1.

Proof of Theorem 4.3.1. Assume that the differential equation (4.1) admits a
nonoscillatory solution y on an interval [T,∞), T ≥ max{t0, 1}. Without loss
of generality, this solution can be supposed to be such that y(t) > 0 for t ≥ T .
Define w(t) = F (y(t)). Then we obtain

(4.29) w′′(t) + a(t) + [w′(t)]2f ′(y(t)) = 0 for t ≥ T.

Since f ′(y) ≥ 0, we note that the integral of f ′(y(t))[w′(t)]2 over [T,∞) exists, finite
or infinite. Hence we consider the two cases when

∫∞
T

[w′(t)]2f ′(y(t))dt is finite or
infinite.

If
∫∞

T
[w′(t)]2f ′(y(t))dt < ∞, then we can show in exactly the same way as

in the proof of Theorem 4.2.4 that (4.18) holds. Now we choose a real number
k ≥ max{α, 3}. From (4.29) we obtain

1
tk−1

∫ t

T

(t − s)k−1a(s)ds = −
(

1 − T

t

)k−1

w′(T )

+
k − 1
tk−1

∫ t

T

(t − s)k−2w′(s)ds − 1
tk−1

∫ t

T

(t − s)k−1[w′(s)]2f ′(y(s))ds

for t ≥ T . Set

g(t) =
1

tk−1

∫ t

T

(t − s)k−1[w′(s)]2f ′(y(s))ds.

Since

g(t) =
k−1∑
i=0

(
k − 1

i

)∫ t

T

(−1)k−1−i

tk−1−i
sk−1−i[w′(s)]2f ′(y(s))ds

and

0 ≤
∫ t

T

sk−1−i

tk−1−i
[w′(s)]2f ′(y(s))ds ≤

∫ t

T

[w′(s)]2f ′(y(s))ds < ∞,
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g is bounded on [T,∞). On the other hand,

g′(t) =
k − 1

tk

(
t

∫ t

T

(t − s)k−2[w′(s)]2f ′(y(s))ds

−
∫ t

T

(t − s)k−1[w′(s)]2f ′(y(s))ds

)
≥ k − 1

tk−1

(∫ t

T

(t − s)k−1[w′(s)]2f ′(y(s))ds

−
∫ t

T

(t − s)k−1[w′(s)]2f ′(y(s))ds

)
= 0.

Hence limt→∞ g(t) exists, say limt→∞ g(t) = k0. By (4.18) we have

1
tk−1

∫ t

T

(t − s)k−1a(s)ds = −w′(T ) − k0.

But, for any t ≥ T , we obtain∫ t

T

(t − s)k−1a(s)ds ≤
∫ T

t0

(t − s)k−1 |a(s)| ds +
∫ t

T

(t − s)k−1a(s)ds

≤ (t − t0)k−1

∫ T

t0

|a(s)| ds +
∫ t

T

(t − s)k−1a(s)ds.

So we derive

lim sup
t→∞

1
tk−1

∫ t

T

(t − s)k−1a(s)ds ≤
∫ T

t0

|a(s)| ds − w′(T ) − k0 < ∞,

which contradicts (4.4).

Second, we consider the case when
∫∞

T
[w′(t)]2f ′(y(t))dt = ∞. Choose a real

number k ≥ max{β, 3}. Because of w(t) > 0, it follows that

(4.30)
1

tk−1

∫ t

T

(t − s)k−1a(s)ds = −
(

1 − T

t

)k−1

w′(T )

+
k − 1
tk−1

(t − T )k−2w(T ) − 1
tk−1

∫ t

T

(t − s)k−1w′(s)ds

for t ≥ T . Since

lim
t→∞

1
tk−1

∫ t

T

(t − s)k−1[w′(s)]2f ′(y(s))ds =
∫ ∞

T

[w′(s)]2f ′(y(s))ds = ∞,

we obtain from (4.30)

lim
t→∞

1
tk−1

∫ t

T

(t − s)k−1a(s)ds = −∞,

which contradicts (4.4).

Theorem 4.3.3. Assume that (4.27) and (4.28) hold. Then (4.5) and (4.17) imply
that (4.1) is oscillatory.

Proof. The proof is similar to the proofs of Theorems 4.3.1 and 4.2.2.
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Corollary 4.3.4. Conditions (4.5) and (4.17) are sufficient for (4.2) to be oscil-
latory with 0 < γ < 1.

4.4. Oscillation of Nonlinear Equations

In this section we consider nonlinear differential equations of the form

(4.31)
(
a(t)[y′(t)]σ

)′
+ q(t)f(y(t)) = 0,

where σ is a positive quotient of odd integers, a is an eventually positive function,
q is continuous on an interval [t0,∞) without any restriction on its sign, and f is a
continuous real-valued function on the real line R and satisfies

uf(u) > 0 and f ′(u) ≥ 0 for every u �= 0.

Lemma 4.4.1 ([159]). Let the function K : R×R×R+ → R be such that for fixed
t and s, the function K(t, s, ·) is nondecreasing. Further, let p be a given function
and u1 and u2 be functions satisfying, for t ≥ t0

u1(t) ≥ p(t) +
∫ t

t0

K
(
t, s, u1(s)

)
ds and u2(t) ≤ p(t) +

∫ t

t0

K
(
t, s, u2(s)

)
ds.

If v1 is the minimal solution and v2 is the maximal solution of

v(t) = p(t) +
∫ t

t0

K
(
t, s, v(s)

)
ds,

then

u1(t) ≥ v1(t) and u2(t) ≤ v2(t) for t ≥ t0.

Lemma 4.4.2. Assume that f ′(y) ≥ 0. Let σ be a quotient of odd integers. Suppose
that y is a positive solution of (4.31) for t ∈ [t0, α], and there exist t1 ∈ [t0, α] and
m > 0 such that

(4.32) −a(t0)[y′(t0)]σ

f(y(t0))
+
∫ t

t0

q(s)ds +
∫ t1

t0

a(s)f ′(y(s))[y′(s)]σ+1

[f(y(s))]2
ds ≥ m

for all t ∈ [t1, α]. Then

(4.33) a(t)[y′(t)]σ ≤ −mf(y(t1)) for t ∈ [t1, α].

If y is a negative solution of (4.31), then the result remains true if the inequality
in (4.33) is reversed.

Proof. Define w = a(y′)σ. From (4.31) we have

(4.34)
w′(t)

f(y(t))
= −q(t).

Then it follows from (4.34) that

(4.35)
[

w(t)
f(y(t))

]′
= −q(t) − w(t)f ′(y(t))y′(t)

[f(y(t))]2
.
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Integrating (4.35) from t0 to t, where t ∈ [t1, α], and using (4.32), we find

− w(t)
f(y(t))

= − w(t0)
f(y(t0))

+
∫ t

t0

q(s)ds +
∫ t

t0

a(s) [y′(s)]σ+1
f ′(y(s))

[f(y(s))]2
ds(4.36)

≥ m +
∫ t

t1

a(s) [y′(s)]σ+1
f ′(y(s))

[f(y(s))]2
ds > 0.

We first consider the case when y(t) is positive. Then (4.36) implies −w(t) > 0,
or eventually y′(t) < 0, t ∈ [t1, α]. Let u = −w = −a(y′)σ. Then (4.36) becomes

u(t) ≥ mf(y(t)) +
∫ t

t1

f(y(t)) [−y′(s)] f ′(y(s))
[f(y(s))]2

u(s)ds

for t ∈ [t1, α]. Define

(4.37) K(t, s, z) =
f(y(t)) [−y′(s)] f ′(y(s))

[f(y(s))]2
z, s, t ∈ [t1, α], z ∈ R+.

Since y′(t) < 0, t ∈ [t1, α], we observe that for fixed t and s, K(t, s, ·) is nonde-
creasing. With p(t) = mf(y(t)), we apply Lemma 4.4.1 to get

(4.38) u(t) ≥ v(t) for all t ∈ [t1, α],

where v is the minimal solution of the equation

(4.39) v(t) = mf(y(t)) +
∫ t

t1

f(y(t)) [−y′(s)] f ′(y(s))
[f(y(s))]2

v(s)ds,

provided v(t) ∈ R+ for all t ∈ [t1, α]. From (4.39) we find[
v(t)

f(y(t))

]′
=

[
m +
∫ t

t1

(−y′(s)) f ′(y(s))
[f(y(s))]2

v(s)ds

]′
(4.40)

=
(−y′(t)) f ′(y(t))

[f(y(t))]2
v(t).

On the other hand,

(4.41)
[

v(t)
f(y(t))

]′
=

v′(t)
f(y(t))

− v(t)f ′(y(t))y′(t)
[f(y(t))]2

.

Equating (4.40) and (4.41), we obtain v′(t) ≡ 0 and so v(t) ≡ v(t1) = mf(y(t1)).
The inequality (4.33) is now immediate from (4.38).

In the second case, we suppose that y(t) is negative. Then (4.36) gives w(t) > 0,
or equivalently y′(t) > 0, t ∈ [t1, α]. Let u = w = a(y′)σ. It follows from (4.36)
that

u(t) ≥ −mf(y(t)) +
∫ t

t1

[−f(y(t))] y′(s)f ′(y(s))
[f(y(s))]2

u(s)ds

for t ∈ [t1, α]. With K defined as in (4.37), we note that for fixed t and s, K(t, s, ·)
is nondecreasing. Applying Lemma 4.4.1 with p(t) = −mf(y(t)), we get (4.38),
where v is the minimal solution of the equation

v(t) = −mf(y(t)) +
∫ t

t1

[−f(y(t))] y′(s)f ′(y(s))
[f(y(s))]2

v(s)ds.

As in the first case, v′(t) ≡ 0 and hence v(t) ≡ v(t1) = −mf(y(t1)). The inequality
(4.38) immediately reduces to (4.33).
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Corollary 4.4.3. Assume that f ′(y) ≥ 0. Let y be a positive solution of (4.31). If

lim inf
t→∞

∫ t

t1

q(s)ds > −∞

and

(4.42)
∫ ∞

t1

ds

[a(s)]1/σ
= ∞,

then ∫ ∞

t1

a(s)f ′(y(s))[y′(s)]σ+1

[f(y(s))]2
ds < ∞.

Proof. Otherwise, ∫ ∞

t1

a(s)f ′(y(s))[y′(s)]σ+1

[f(y(s))]2
ds = ∞,

and hence there exists t∗1 ≥ t1 such that (4.32) holds (with t1 = t∗1). Therefore, by
Lemma 4.4.2

(4.43) a(t)[y′(t)]σ ≤ −mf(y(t∗1)) for t ≥ t∗1.

Since σ is a quotient of odd integers, by (4.43) we have

y′(t) ≤ −[mf(y(t∗1))]
1/σ 1

[a(t)]1/σ
for t ≥ t∗1.

In view of (4.42), relation (4.43) implies that y(t) is negative eventually, which is a
contradiction.

Corollary 4.4.4. Assume f ′(y) ≥ 0 and (4.42). If∫ ∞

t0

q(s)ds = ∞,

then every solution of (4.31) is oscillatory.

We now consider the case when limt→∞
∫ t

t0
q(s)ds exists.

Lemma 4.4.5. Let σ ≥ 1 be a quotient of odd integers. Assume f ′(y) ≥ 0 and
(4.42). Suppose further that

(i) lim|y|→∞ f(y) = ∞;
(ii) limt→∞

∫ t

t0
q(s)ds exists.

Let y be a nonoscillatory solution of (4.31). Then∫ ∞

t0

a(s)f ′(y(s))[y′(s)]σ+1

[f(y(s))]2
ds < ∞,(4.44)

lim
t→∞

a(t)[y′(t)]σ

f(y(t))
= 0,(4.45)

and

a(t)[y′(t)]σ

f(y(t))
=
∫ ∞

t

q(s)ds +
∫ ∞

t

a(s)f ′(y(s))[y′(s)]σ+1

[f(y(s))]2
ds(4.46)

for sufficiently large t.
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Proof. Let y be a nonoscillatory solution of (4.31). Without loss of generality,
assume y(t) > 0 for t ≥ t0. By Corollary 4.4.3 it follows that (4.44) holds. From
(4.31) we have

(4.47)
w′(t)

f(y(t))
= −q(t), where w = a(y′)σ.

Then it follows from (4.47) that[
w(t)

f(y(t))

]′
= −q(t) − w(t)f ′(y(t))y′(t)

[f(y(t))]2
.

Integrating this equation from t0 to t, we find

w(t)
f(y(t))

=
w(t0)

f(y(t0))
−
∫ t

t0

q(s)ds −
∫ t

t0

a(s)f ′(y(s))[y′(s)]σ+1

[f(y(s))]2
ds(4.48)

=
w(t0)

f(y(t0))
−
∫ ∞

t0

q(s)ds −
∫ ∞

t0

a(s)f ′(y(s))[y′(s)]σ+1

[f(y(s))]2
ds

+
∫ ∞

t

q(s)ds +
∫ ∞

t

a(s)f ′(y(s))[y′(s)]σ+1

[f(y(s))]2
ds

= β +
∫ ∞

t

q(s)ds +
∫ ∞

t

a(s)f ′(y(s))[y′(s)]σ+1

[f(y(s))]2
ds,

where

β =
w(t0)

f(y(t0))
−
∫ ∞

t0

q(s)ds −
∫ ∞

t0

a(s)f ′(y(s))[y′(s)]σ+1

[f(y(s))]2
ds.

We claim that β = 0.
If β < 0, then we choose t2 so large that∣∣∣∣∫ t

t2

q(s)ds

∣∣∣∣ ≤ −β

4
for all t ∈ [t2,∞)

and ∫ ∞

t2

a(s)f ′(y(s))[y′(s)]σ+1

[f(y(s))]2
ds < −β

4
.

We take t0 = t1 = t2 in Lemma 4.4.2. Then all assumptions of Lemma 4.4.2 (with
m = −β/2) hold. From Lemma 4.4.2 we obtain

y′(t) ≤ −[mf(y(t2))]1/σ 1
[a(t)]1/σ

for t ≥ t2,

which contradicts the positivity of y(t) since (4.42) holds.
If β > 0, then from (4.48) we have

lim
t→∞

a(t)[y′(t)]σ

f(y(t))
= β > 0,

which implies that y′(t) > 0 eventually. Hence there exists t1 ≥ t0 such that

(4.49)
a(t)[y′(t)]σ

f(y(t))
≥ β

2
for t ≥ t1.

Thus

∞ >

∫ ∞

t1

a(s)f ′(y(s))[y′(s)]σ+1

[f(y(s))]2
ds ≥ β

2

∫ ∞

t1

f ′(y(s))y′(s)
f(y(s))

ds =
β

2
lim

t→∞ ln
f(y(t))
f(y(t1)

.
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Therefore limt→∞ ln f(y(t)) < ∞, which implies limt→∞ f(y(t)) < ∞. Due to
condition (i) and since y is eventually increasing, it follows that y must be bounded.
On the other hand, from (4.49) and the monotonicity of f , we get

a(t)[y′(t)]σ ≥ β

2
f(y(t)) ≥ β

2
f(y(t1)),

and so

y′(t) ≥
[
β

2
f(y(t1))

]1/σ 1
[a(t)]1/σ

for t ≥ t1.

By (4.42), it follows that limt→∞ y(t) = ∞, which contradicts the boundedness of
y. The proof is complete.

Example 4.4.6. Consider the nonlinear differential equation

(4.50)
(

1
t
(y′)σ

)′
+

1
t5

yγ = 0, t ≥ 1,

where γ > 0 and σ ≥ 1 is a quotient of odd integers. It is easy to verify that the
assumptions of Lemma 4.4.5 hold. Hence, every nonoscillatory solution y of (4.50)
satisfies (4.44), (4.45), and (4.46).

Theorem 4.4.7. Let σ ≥ 1 be a quotient of odd integers. Assume f ′(y) ≥ 0 and
(4.42). Suppose further that

(i) 0 <
∫∞

ε
dy

[f(y)]1/σ < ∞ and 0 <
∫ −∞
−ε

dy
[f(y)]1/σ < ∞ for any ε > 0;

(ii)
∫∞

t0
q(s)ds exists and limt→∞

∫ t

t0
1

[a(s)]1/σ

(∫∞
s

q(u)du
)1/σ

ds = ∞.

Then every solution of (4.31) is oscillatory.

Proof. Suppose the contrary. Without loss of generality, we assume that (4.31) has
an eventually positive solution. Under our assumptions, Lemma 4.4.5 holds. Let
y be an eventually positive solution of (4.31). Then (4.46) is satisfied. Since f
is nondecreasing and [y′(t)]σ+1 ≥ 0, the second integral in (4.46) is nonnegative.
Hence

y′(t)
[f(y(t))]1/σ

≥ 1
[a(t)]1/σ

(∫ ∞

t

q(s)ds

)1/σ

.

Integrating from t0 to t provides

∞ >

∫ ∞

y(t0)

du

[f(u)]1/σ
≥
∫ t

t0

y′(s)
[f(y(s))]1/σ

ds ≥
∫ t

t0

1
[a(s)]1/σ

(∫ ∞

s

q(u)du

)1/σ

ds,

which contradicts condition (ii). Similarly, one can prove that (4.31) does not
possess eventually negative solutions.

Example 4.4.8. Consider the superlinear differential equation(
(t − 1)−βy′(t)

)′
+

1
t2(t − 1)α

|y(t)|γ sgn y(t) = 0, t ≥ 2,
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where γ > 1, α > 0, and β > 0 are constants. If β ≥ α, then∫ ∞

t0

1
a(s)

∫ ∞

s

q(u)duds =
∫ ∞

2

(s − 1)β

∫ ∞

s

1
u2(u − 1)α

duds

=
∫ ∞

2

1
u2(u − 1)α

∫ u

2

(s − 1)βdsdu

=
1

β + 1

∫ ∞

2

(u − 1)β+1 − 1
u2(u − 1)α

du

= ∞.

By Theorem 4.4.7, this equation is oscillatory.

We note that if (ii) holds, then

Q0(t) =
∫ ∞

t

q(s)ds, t ≥ t0

is finite. Assume that Q0(t) ≥ 0 for sufficiently large t. Define for n ∈ N the
sequence

Q1(t) =
∫ ∞

t

Q0(s)g−1 (Q0(s)) g−1

(
1

a(s)

)
ds, where g(y) = yσ

and

Qn+1(t) =
∫ ∞

t

[Q0(s) + λQn(s)] g−1
(
Q0(s) + λQn(s)

)
g−1

(
1

a(s)

)
ds.

Condition (H). For every λ > 0, there exists N ∈ N such that Qn(t) is finite for
n ∈ {1, 2, . . . , N − 1} and QN (t) is infinite.

Theorem 4.4.9. Suppose that conditions (i) and (ii) from Lemma 4.4.5, f ′(y) ≥ 0,
(4.42), and condition (H) hold and that

(4.51) [f(y)]
1−σ

σ f ′(y) ≥ λ > 0 for all y �= 0.

Then every solution of (4.31) is oscillatory.

Proof. Suppose to the contrary that y is a nonoscillatory, without loss of generality,
positive solution of (4.31). Hence, by Lemma 4.4.5, y satisfies (4.44) and (4.46),
which implies that

(4.52)
a(t)[y′(t)]σ

f(y(t))
≥ Q0(t) +

∫ ∞

t

a(s)[y′(s)]σ+1f ′(y(s))
[f(y(s))]2

ds ≥ Q0(t) ≥ 0

for t ≥ t1, and so

(4.53) y′(t) ≥ [Q0(t)]1/σ[f(y(t))]1/σ

(
1

a(t)

)1/σ

.
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From (4.51), (4.52), and (4.53), we have∫ ∞

t

a(s)[y′(s)]σ+1f ′(y(s))
[f(y(s))]2

ds ≥
∫ ∞

t

Q0(s)y′(s)f ′(y(s))
f(y(s))

ds

≥
∫ ∞

t

f ′(y(s))[f(y(s))]
1−σ

σ [Q0(s)]
1+σ

σ

(
1

a(s)

)1/σ

ds

≥ λ

∫ ∞

t

[Q0(s)]
1+σ

σ

(
1

a(s)

)1/σ

ds

= λQ1(t)(4.54)

for t ≥ t1. If N = 1 in Condition (H), then the right-hand side of (4.54) is infinite.
This is a contradiction to (4.44).

Next, it follows from (4.52) and (4.54) that

a(t)[y′(t)]σ

f(y(t))
≥ Q0(t) + λQ1(t),

and as before we obtain∫ ∞

t

a(s)[y′(s)]σ+1f ′(y(s))
[f(y(s))]2

ds ≥ λ

∫ ∞

t

[Q0(s) + λQ1(s)]
σ+1

σ

(
1

a(s)

)1/σ

ds

= λQ2(t)

for t ≥ t1. If N = 2 in Condition (H), then once again we get a contradiction
to (4.44). A similar argument yields a contradiction for any integer N > 2. This
completes the proof of the theorem.

Example 4.4.10. Consider the nonlinear differential equation

(4.55)
(

1
t
(y′)3
)′

+
1
t2

y3 = 0, t ≥ 1.

Here q(t) = 1/t2, a(t) = 1/t, f(y) = g(y) = y3, and σ = 3. We have

f ′(y)
[f(y)](σ−1)/σ

=
3y2

y2
= 3 > 0,

∫ ∞

1

q(s)ds =
∫ ∞

1

ds

s2
= 1,∫ ∞

1

ds

[a(s)]1/σ
=
∫ ∞

1

s1/3ds = ∞, Q0(t) =
∫ ∞

t

q(s)ds =
1
t
, t ≥ 1,

and

Q1(t) =
∫ ∞

t

(s−1)4/3s1/3ds =
∫ ∞

t

s−4/3s1/3ds =
∫ ∞

t

ds

s
= ∞.

Hence, by Theorem 4.4.9, every solution of (4.55) is oscillatory.

Remark 4.4.11. Consider the second order nonlinear differential equation(
a(t)g (y′(t))

)′
+ q(t)f (y(t)) = 0.

If g satisfies yg(y) > 0 and g′(y) ≥ 0, then the above results are true, see [262].

The remaining results in this section are for the nonlinear equation (4.31) with
σ = 1, i.e.,

(4.56)
(
a(t)y′(t)

)′
+ q(t)f (y(t)) = 0,
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where we assume that a is an eventually positive continuously differentiable func-
tion.

Theorem 4.4.12. Let σ = 1. Assume that

(4.57) f ′(y) ≥ μ > 0 for y �= 0.

Let D0 = {(t, s) : t > s ≥ t0} and D = {(t, s) : t ≥ s ≥ t0}. Let H ∈ C(D, R)
satisfy the following two conditions:

(i) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 for t > s ≥ t0;
(ii) H has a continuous and nonpositive partial derivative on D0 with respect to

the second variable.

Suppose that h : D0 → R is a continuous function with

−∂H

∂s
(t, s) = h(t, s)

√
H(t, s) for all (t, s) ∈ D0.

If there exists a function g ∈ C1[t0,∞) such that

(4.58) lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)φ(s) − 1

4μ
r(s)a(s)[h(t, s)]2

]
ds = ∞,

where

r(s) = exp
(
−2μ

∫ s

g(v)dv

)
, φ(s) = r(s)

{
q(s) + μa(s)[g(s)]2 − (ag)′(s)

}
,

then every solution of (4.56) is oscillatory.

Proof. Let y be a nonoscillatory solution of (4.56). Without loss of generality, we
may assume that y(t) > 0 on [T0,∞) for some T0 ≥ t0. Define

(4.59) u(t) = r(t)a(t)
{

y′(t)
f(y(t))

+ g(t)
}

for all t ≥ T0.

By (4.56), (4.57), and (4.59), we obtain

u′(t) = −2μg(t)u(t) + r(t)
{

(ay′)′(t)
f(y(t))

− a(t)
[y′(t)]2f ′(y(t))

[f(y(t))]2
+ (ag)′(t)

}
≤ −2μg(t)r(t)a(t)

{
y′(t)

f(y(t))
+ g(t)
}
− r(t)q(t)

−r(t)a(t)
[y′(t)]2μ
[f(y(t))]2

+ r(t)(ag)′(t)

= −2μg(t)r(t)a(t)
y′(t)

f(y(t))
− 2μr(t)a(t)[g(t)]2 − r(t)q(t)

−r(t)a(t)
[y′(t)]2μ
[f(y(t))]2

+ r(t)(ag)′(t)

= −μ[u(t)]2

a(t)r(t)
− φ(t)
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for t ≥ T0. It follows that for all t ≥ T ≥ T0,∫ t

T

H(t, s)φ(s)ds ≤ −
∫ t

T

H(t, s)u′(s)ds −
∫ t

T

H(t, s)
μ[u(s)]2

a(s)r(s)
ds

= −H(t, s)u(s)
∣∣∣t
s=T

−
∫ t

T

{
−∂H

∂s
(t, s)u(s) + H(t, s)

μ[u(s)]2

a(s)r(s)

}
ds

= H(t, T )u(T ) −
∫ t

T

{
h(t, s)
√

H(t, s)u(s) + H(t, s)
μ[u(s)]2

a(s)r(s)

}
ds

= H(t, T )u(T ) −
∫ t

T

{√
μH(t, s)
a(s)r(s)

u(s) +
1
2

√
a(s)r(s)

μ
h(t, s)

}2

ds

+
1
4μ

∫ t

T

a(s)r(s)[h(t, s)]2ds.

Then, for all t ≥ T ≥ T0,

(4.60)
∫ t

T

[
H(t, s)φ(s) − 1

4μ
r(s)a(s)[h(t, s)]2

]
ds

≤ H(t, T )u(T ) −
∫ t

T

{√
μH(t, s)
a(s)r(s)

u(s) +
1
2

√
a(s)r(s)

μ
h(t, s)

}2

ds.

This implies that for every t ≥ T0,∫ t

T0

[
H(t, s)φ(s) − 1

4μ
r(s)a(s)[h(t, s)]2

]
ds ≤ H(t, T0)u(T0)

≤ H(t, T0) |u(T0)| ≤ H(t, t0) |u(T0)| .
Therefore, ∫ t

t0

[
H(t, s)φ(s) − 1

4μ
r(s)a(s)[h(t, s)]2

]
ds

=
∫ T0

t0

[
H(t, s)φ(s) − 1

4μ
r(s)a(s)[h(t, s)]2

]
ds

+
∫ t

T0

[
H(t, s)φ(s) − 1

4μ
r(s)a(s)[h(t, s)]2

]
ds

≤ H(t, t0)
∫ T0

t0

|φ(s)|ds + H(t, t0)|u(T0)|

= H(t, t0)

{∫ T0

t0

|φ(s)|ds + |u(T0)|
}

for all t ≥ T0. This gives

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)φ(s) − 1

4μ
r(s)a(s)[h(t, s)]2

]
ds

≤
∫ T0

t0

|φ(s)|ds + |u(T0)|,

which contradicts (4.58). The proof is complete.
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From Theorem 4.4.12, we can obtain different sufficient conditions for oscillation
of all solutions of (4.56) by different choices of H(t, s). For example, let

H(t, s) = (t − s)λ, t ≥ s ≥ t0,

where λ > 1 is a constant. By Theorem 4.4.12, we have the following result.

Corollary 4.4.13. Assume that (4.57) holds. Let λ > 1 be a constant. Suppose
that there is a function g ∈ C1(t0,∞) satisfying

lim sup
t→∞

1
tλ

∫ t

t0

[
(t − s)λφ(s) − λ2

4μ
(t − s)λ−2r(s)a(s)

]
ds = ∞,

where

r(s) = exp
(
−2μ

∫ s

g(v)dv

)
, φ(s) = r(s)

{
q(s) + μa(s)[g(s)]2 − (ag)′(s)

}
.

Then every solution of (4.56) is oscillatory.

Define

(4.61) A(t) =
∫ t

t0

1
a(s)

ds, t ≥ t0

and let
H(t, s) = [A(t) − A(s)]λ, t ≥ t0,

where λ > 1 is a constant. By Theorem 4.4.12, we have the following oscillation
criterion.

Corollary 4.4.14. Assume that (4.57) holds. If

lim sup
t→∞

1
[A(t)]λ

∫ t

t0

[A(t) − A(s)]λ q(s)ds = ∞ for some λ > 1,

then every solution of (4.56) is oscillatory.

Corollary 4.4.15. Assume that (4.57) holds and that limt→∞ A(t) = ∞. If

(4.62) lim inf
t→∞ A(t)

∫ ∞

t

q(s)ds >
1
4μ

,

where A(t) is defined by (4.61), then every solution of (4.56) is oscillatory.

Proof. By (4.62), there are two numbers T ≥ t0 and k > 1/(4μ) such that

A(t)
∫ ∞

t

q(s)ds > k for t ≥ T and lim
t→∞A(t) = ∞.

Let
H(t, s) = [A(t) − A(s)]2 and g(t) = − 1

2μa(t)A(t)
.

Then
h(t, s) = 2A′(s) =

2
a(s)

and r(t) = A(t).

Thus

H(t, s)φ(s) − 1
4μ

r(s)a(s)[h(t, s)]2

= [A(t) − A(s)]2 A(s)
{

q(s) − 1
4μa(s)[A(s)]2

}
− A(s)

μa(s)
.
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Define

Q(t) =
∫ ∞

t

q(s)ds.

Then, for all t ≥ T ,∫ t

T

(
H(t, s)φ(s) − 1

4μ
r(s)a(s)[h(t, s)]2

)
ds

=
∫ t

T

[A(t) − A(s)]2 A(s)
d

ds

(
−Q(s) +

1
4μA(s)

)
ds −
∫ t

T

A(s)
μa(s)

ds

= [A(t) − A(T )]2 A(T )
(

Q(T ) − 1
4μA(T )

)
− 1

2μ

(
[A(t)]2 − [A(T )]2

)
+
∫ t

T

[
A(s)Q(s) − 1

4μ

] [
−4A(t) + 3A(s) +

[A(t)]2

A(s)

]
A′(s)ds

≥
(

k − 1
4μ

)[(
−5

2
− lnA(T )

)
[A(t)]2 + [A(t)]2 lnA(t)

]
− 1

2μ
[A(t)]2 −

[(
k − 1

4μ

)
3
2
− 1

2μ

]
[A(T )]2.

This and (4.62) imply that

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)φ(s) − 1

4μ
r(s)a(s)[h(t, s)]2

]
ds = ∞.

It follows from Theorem 4.4.12 that every solution of (4.56) is oscillatory.

Example 4.4.16. Consider the nonlinear differential equation

(4.63) (ty′)′ +
γ

t(ln t)2
(
y + y3
)

= 0, t ≥ 1.

Then

A(t) =
∫ t

t0

ds

a(s)
=
∫ t

1

ds

s
= ln t, f ′(y) ≥ 1 = μ,

and

lim inf
t→∞ ln t

∫ ∞

t

γ

s(ln s)2
ds = γ.

Hence, by Corollary 4.4.15, every solution of (4.63) is oscillatory if γ > 1/4.

Theorem 4.4.17. Suppose that (4.57) holds. Let H(t, s) and h(t, s) be as in The-
orem 4.4.12, and let

(4.64) 0 < inf
s≥t0

{
lim inf
t→∞

H(t, s)
H(t, t0)

}
≤ ∞.

Suppose that there exist two functions g ∈ C1[t0,∞) and B ∈ C[t0,∞) such that

(4.65) lim sup
t→∞

1
H(t, t0)

∫ t

t0

a(s)r(s)[h(t, s)]2ds < ∞

and

(4.66)
∫ ∞

T

[B+(s)]2

a(s)r(s)
ds = ∞,
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where B+(t) = max{B(t), 0}, and r and φ are defined as in Theorem 4.4.12. If for
every T ≥ t0,

(4.67) lim sup
t→∞

1
H(t, T )

∫ t

T

[
H(t, s)φ(s) − 1

4μ
r(s)a(s)[h(t, s)]2

]
ds ≥ B(t),

then every solution of (4.56) is oscillatory.

Proof. Without loss of generality, we may assume that there exists a solution of
(4.56) such that y(t) > 0 on [T0,∞) for some T0 ≥ t0. Define u as in (4.59). As in
the proof of Theorem 4.4.12, we can obtain (4.60). Then

1
H(t, T )

∫ t

T

[
H(t, s)φ(s) − 1

4μ
r(s)a(s)[h(t, s)]2

]
ds

≤ u(T ) − 1
H(t, T )

∫ t

T

{√
μH(t, s)
a(s)r(s)

u(s) +
1
2

√
a(s)r(s)

μ
h(t, s)

}2

ds

for t > T ≥ T0. Consequently, by (4.67),

B(t) ≤ lim sup
t→∞

1
H(t, T )

∫ t

T

[
H(t, s)φ(s) − 1

4μ
r(s)a(s)[h(t, s)]2

]
ds

≤ u(T ) − lim inf
t→∞

1
H(t, T )

∫ t

T

{√
μH(t, s)
a(s)r(s)

u(s) +
1
2

√
a(s)r(s)

μ
h(t, s)

}2

ds

≤ u(T )

for all T ≥ T0. Thus

(4.68) u(T ) ≥ B(T ) for all T ≥ T0

and

lim inf
t→∞

{
1

H(t, T0)

∫ t

T0

h(t, s)
√

H(t, s)u(s)ds +
1

H(t, T0)

∫ t

T0

H(t, s)
μ[u(s)]2

a(s)r(s)
ds

}
(4.69)

≤ lim inf
t→∞

1
H(t, T )

∫ t

T0

{√
μH(t, s)
a(s)r(s)

u(s) +
1
2

√
a(s)r(s)

μ
h(t, s)

}2

ds

≤ u(T0) − B(T0) < ∞.

Define

P (t) =
1

H(t, T0)

∫ t

T0

H(t, s)
μ[u(s)]2

a(s)r(s)
ds

and

Q(t) =
1

H(t, T0)

∫ t

T0

h(t, s)
√

H(t, s)u(s)ds

for t > T0. Then (4.69) implies that

(4.70) lim inf
t→∞ [P (t) + Q(t)] < ∞.

Now we claim that

(4.71)
∫ t

T0

[u(s)]2

a(s)r(s)
ds < ∞.
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Suppose to the contrary that

(4.72)
∫ ∞

T0

[u(s)]2

a(s)r(s)
ds = ∞.

By (4.64), there exists a positive constant K1 such that

(4.73) inf
s≥t0

{
lim inf
t→∞

H(t, s)
H(t, t0)

}
> K1 > 0.

Let K2 > 0 be arbitrary. Then it follows from (4.72) that there exists T1 > T0 such
that ∫ t

T0

[u(s)]2

a(s)r(s)
ds ≥ K2

K1
for all t ≥ T1.

Therefore,

P (t) =
μ

H(t, T0)

∫ t

T0

H(t, s)
d

ds

(∫ s

T0

[u(v)]2

a(v)r(v)
dv

)
ds

=
μ

H(t, T0)

∫ t

T0

(
−∂H

∂s
(t, s)
)(∫ s

T0

[u(v)]2

a(v)r(v)
dv

)
ds

≥ μ

H(t, T0)

∫ t

T1

(
−∂H

∂s
(t, s)
)(∫ s

T0

[u(v)]2

a(v)r(v)
dv

)
ds

≥ K2μ

K1H(t, T0)

∫ t

T1

(
−∂H

∂s
(t, s)
)

ds

=
K2μH(t, T1)
K1H(t, T0)

for t ≥ T1. By (4.73), there exists T2 ≥ T1 such that

H(t, T1)
H(t, T0)

≥ K1 for all t ≥ T2,

which implies
P (t) ≥ μK2 for all t ≥ T2.

Since K2 is arbitrary,

(4.74) lim
t→∞P (t) = ∞.

Next, consider a sequence {tn}∞n=1 ⊂ (t0,∞) with limn→∞ tn = ∞ satisfying

lim
n→∞ [P (tn) + Q(tn)] = lim inf

t→∞ [P (t) + Q(t)] .

In view of (4.70), there exists a constant M such that

(4.75) P (tn) + Q(tn) ≤ M for n ∈ N.

It follows from (4.74) that

(4.76) lim
n→∞P (tn) = ∞.

This and (4.75) give

(4.77) lim
n→∞Q(tn) = −∞.

Then, by (4.75) and (4.76),

1 +
Q(tn)
P (tn)

≤ M

P (tn)
<

1
2

for large enough n ∈ N.
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Thus
Q(tn)
P (tn)

<
1
2

for all large n ∈ N.

This and (4.77) imply that

(4.78) lim
n→∞

[Q(tn)]2

P (tn)
= ∞.

On the other hand, by the Schwarz inequality, we have

[Q(tn)]2 =
{

1
H(tn, T0)

∫ tn

T0

h(tn, s)
√

H(tn, s)u(s)ds

}2

≤
{

1
H(tn, T0)

∫ tn

T0

a(s)r(s)[h(tn, s)]2ds

}
×
{

1
H(tn, T0)

∫ tn

T0

H(tn, s)
a(s)r(s)

[u(s)]2ds

}
≤ P (tn)

μ

{
1

H(tn, T0)

∫ tn

T0

a(s)r(s)[h(tn, s)]2ds

}
for any n ∈ N. But (4.73) guarantees that

lim inf
t→∞

H(t, T0)
H(t, t0)

> K1.

This means that there exists T3 ≥ T0 such that
H(t, T0)
H(t, t0)

> K1 for large enough n ∈ N

and therefore
[Q(tn)]2

P (tn)
≤ 1

μK1H(tn, t0)

∫ tn

t0

a(s)r(s)[h(tn, s)]2ds for all large n ∈ N.

It follows from (4.78) that

lim
n→∞

1
H(tn, t0)

∫ tn

t0

a(s)r(s)[h(tn, s)]2ds = ∞.

This gives

lim sup
t→∞

1
H(t, t0)

∫ t

t0

a(s)r(s)[h(t, s)]2ds = ∞,

which contradicts (4.65). Thus (4.71) holds. Then, by (4.68),∫ ∞

T0

[B+(s)]2

a(s)r(s)
ds ≤
∫ ∞

T0

[u(s)]2

a(s)r(s)
ds < ∞,

which contradicts (4.66). This completes the proof.

Similarly, we can prove the following result.

Theorem 4.4.18. Suppose that (4.57) holds. Let H(t, s) and h(t, s) be as in Theo-
rem 4.4.12, and let (4.64) hold. Suppose that there exist two functions g ∈ C1[t0,∞)
and B ∈ C[t0,∞) such that (4.66) and the two conditions

lim inf
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)φ(s)ds < ∞
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and

lim inf
t→∞

1
H(t, T )

∫ t

T

[
H(t, s)φ(s) − 1

4μ
r(s)a(s)[h(t, s)]2

]
ds ≥ B(t)

hold for every T ≥ t0, where B+, r, and φ are as in Theorem 4.4.17. Then every
solution of (4.56) is oscillatory.

From Theorems 4.4.17 and 4.4.18, we can obtain different sufficient conditions
for oscillation of all solutions of (4.56) by different choices of H(t, s). For example,
let

H(t, s) = (t − s)λ for some λ > 1.

By Theorem 4.4.17, we have the following corollary.

Corollary 4.4.19. Suppose that (4.57) holds. Let λ > 1 be a constant and suppose
that there exist two functions g ∈ C1[t0,∞) and B ∈ C[t0,∞) such that (4.64),
(4.66),

lim sup
t→∞

1
tλ

∫ t

t0

(t − s)λa(s)r(s)ds < ∞,

and

lim sup
t→∞

1
tλ

∫ t

T

[
(t − s)λφ(s) − λ2

4μ
(t − s)λ−2r(s)a(s)[h(t, s)]2

]
ds ≥ B(t)

hold for every T ≥ t0, where B+, r, and φ are as in Theorem 4.4.17. Then every
solution of (4.56) is oscillatory.

Remark 4.4.20. In Theorems 4.4.12, 4.4.17, and 4.4.18, we always assume that
(4.57) holds. In fact, if we replace condition (4.57) with

f(y)
y

≥ μ > 0 for all y �= 0,

then Theorems 4.4.12, 4.4.17, and 4.4.18 remain true, but the function q should be
nonnegative; one can refer to [245] for details.

4.5. Forced Oscillation of Nonlinear Equations

In this section we consider the second order nonlinear differential equation

(4.79)
(
a(t)|y′(t)|σ−1y′(t)

)′
+ q(t)f(y(t)) = r(t),

where σ > 0 is a quotient of odd integers, a is an eventually positive function, q
and r are continuous on an interval [t0,∞) without any restriction on their sign,
and f is a continuous real-valued function on the real line R and satisfies

uf(u) > 0 and f ′(u) ≥ 0 for every u �= 0.

The following lemma is a generalization of Lemma 4.4.2.

Lemma 4.5.1. Suppose that y is a positive solution of (4.79) on t ∈ [t0, α], and
there exist t1 ∈ [t0, α] and m > 0 such that

(4.80) m ≤ −a(t0)|y′(t0)|σ−1y′(t0)
f(y(t0))

+
∫ t

t0

[
q(s) − r(s)

f(y(s))

]
ds

+
∫ t1

t0

a(s)f ′(y(s))|y′(s)|σ−1[y′(t)]2

[f(y(s))]2
ds

 



132 4. SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

for all t ∈ [t1, α]. Then

(4.81) a(t)|y′(t)|σ−1y′(t) ≤ −mf(y(t1)), t ∈ [t1, α].

If y is a negative solution of (4.79), then the result remains true with the inequality
reversed in (4.81).

For simplicity, we list the conditions used in the main results as∫ ∞
|r(s)|ds < ∞,(4.82)

−∞ <

∫ ∞

t0

q(s)ds < ∞,(4.83) ∫ ∞ ds

[a(s)]1/σ
= ∞,(4.84)

and

lim
|y|→∞

|f(y)| = ∞.(4.85)

Theorem 4.5.2. Let conditions (4.82), (4.83), (4.84), and (4.85) hold and let y
be a nonoscillatory solution of (4.79) such that lim inft→∞ |y(t)| > 0. Then

(4.86)
∫ ∞

t0

a(s)f ′(y(s))|y′(s)|σ−1[y′(t)]2

[f(y(s))]2
ds < ∞

and

(4.87)
a(t)|y′(t)|σ−1y′(t)

f(y(t))
=
∫ ∞

t

[
q(s) − r(s)

f(y(s))

]
ds

+
∫ ∞

t

a(s)f ′(y(s))|y′(s)|σ−1[y′(s)]2

[f(y(s))]2
ds

for sufficiently large t.

Proof. Since lim inft→∞ |y(t)| > 0, there exist t1 ≥ t0 and m1,m2 > 0 such that
|y(t)| ≥ m1 and |f(y(t))| ≥ m2 for t ≥ t1. Then it follows from (4.82) that

(4.88)
∣∣∣∣∫ t

t1

r(s)
f(y(s))

ds

∣∣∣∣ ≤ ∫ t

t1

∣∣∣∣ r(s)
f(y(s))

∣∣∣∣ ds ≤ 1
m2

∫ t

t1

|r(s)| ds ≤ m3

for t ≥ t1, where m3 is a finite positive constant. Suppose now that (4.86) does not
hold. Then, in view of (4.83) and (4.88), we see that (4.80) is satisfied for t ≥ t1 if
t1 is sufficiently large. Suppose y(t) is positive for t ≥ t1. Applying Lemma 4.5.1,
we obtain

a(t)|y′(t)|σ−1y′(t) ≤ −mf(y(t1)) and y′(t) < 0
for t ≥ t1. Since

|y′(t)|σ−1y′(t) = −[−y′(t)]σ,

we have

y(t) ≤ y(t1) − [mf(y(t1))]1/σ

∫ t

t1

ds

[a(s)]1/σ
,

which in view of condition (4.84) contradicts the fact that y(t) > 0 for t ≥ t1. The
case when y(t) is negative for t ≥ t1 follows by a similar argument. Hence (4.86) is
proved.
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Dividing (4.79) by f(y(t)) and integrating it from t0 to t, we obtain

a(t)|y′(t)|σ−1y′(t)
f(y(t))

=
a(t0)|y′(t0)|σ−1y′(t0)

f(y(t0))
(4.89)

−
∫ t

t0

[
q(s) − r(s)

f(y(s))

]
ds −
∫ t

t0

a(s)|y′(s)|σ−1[y′(s)]2f ′(y(s))
[f(y(s))]2

ds

= β +
∫ ∞

t

[
q(s) − r(s)

f(y(s))

]
ds +
∫ ∞

t

a(s)|y′(s)|σ−1[y′(s)]2f ′(y(s))
[f(y(s))]2

ds,

where

β =
a(t0)|y′(t0)|σ−1y′(t0)

f(y(t0))
−
∫ ∞

t0

[
q(s) − r(s)

f(y(s))

]
ds

−
∫ ∞

t0

a(s)|y′(s)|σ−1[y′(s)]2f ′(y(s))
[f(y(s))]2

ds.

Hence (4.87) is proved if we can show that β = 0.

If β < 0, then in view of (4.83), (4.86), and (4.88), we choose t1 so large that

(4.90)
∣∣∣∣∫ ∞

t

q(s)ds

∣∣∣∣ ≤ −β

6
,

∣∣∣∣∫ ∞

t

r(s)
f(y(s))

ds

∣∣∣∣ ≤ −β

6
, t ≥ t1,

and

(4.91)
∫ ∞

t1

a(s)|y′(s)|σ−1[y′(s)]2f ′(y(s))
[f(y(s))]2

ds ≤ −β

6
.

Let t = t0 in (4.89) to obtain

(4.92)
a(t0)|y′(t0)|σ−1y′(t0)

f(y(t0))
= β +

∫ ∞

t0

[
q(s) − r(s)

f(y(s))

]
ds

+
∫ ∞

t0

a(s)|y′(s)|σ−1[y′(s)]2f ′(y(s))
[f(y(s))]2

ds.

Using (4.90), (4.91), (4.92), and the fact that f ′(y(t)) ≥ 0, we see that

−a(t0)|y′(t0)|σ−1y′(t0)
f(y(t0))

+
∫ t

t0

[
q(s) − r(s)

f(y(s))

]
ds

+
∫ t1

t0

a(s)|y′(s)|σ−1[y′(s)]2f ′(y(s))
[f(y(s))]2

ds

= β −
∫ ∞

t

[
q(s) − r(s)

f(y(s))

]
ds −
∫ ∞

t1

a(s)|y′(s)|σ−1[y′(s)]2f ′(y(s))
[f(y(s))]2

ds

> −β +
β

6
+

β

6
+

β

6
= −β

2
= m0 > 0

for t ≥ t1, i.e., (4.80) is satisfied. Hence we can apply Lemma 4.5.1 and obtain a
contradiction as earlier.

If β > 0, then from (4.89) we have

lim
t→∞

a(t)|y′(t)|σ−1y′(t)
f(y(t))

= β > 0,
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which implies that y′(t) > 0 eventually. Hence there exists t1 ≥ t0 such that

(4.93)
a(t)|y′(t)|σ−1y′(t)

f(y(t))
≥ β

2
, t ≥ t1.

Thus

∞ >

∫ ∞

t1

a(s)|y′(s)|σ−1[y′(s)]2f ′(y(s))
[f(y(s))]2

ds

≥ β

2

∫ ∞

t1

f ′(y(s))y′(s)
f(y(s))

ds =
β

2
lim

t→∞ ln
f(y(t))
f(y(t1)

.

Therefore, ln f(y(t)) < ∞, which implies that f(y(t)) < ∞ as t → ∞. Due to
condition (4.85) and the fact that y is eventually increasing, y is bounded. On the
other hand, from (4.93) and the monotonicity of f , we have

a(t) |y′(t)|σ−1
y′(t) ≥ β

2
f(y(t)) ≥ β

2
f (y(t1)) , t ≥ t1.

Since y′(t) > 0, we further have

y′(t) ≥
[
β

2
f(y(t1))

]1/σ 1
[a(t)]1/σ

, t ≥ t1.

Hence condition (4.84) implies that limt→∞ y(t) = ∞, which contradicts the bound-
edness of y. The proof is complete.

Next, we obtain a sufficient condition for the oscillation of (4.79) subject to the
condition

(4.94)
f ′(y)

[f(y)]
σ−1

σ

≥ λ > 0 for all y �= 0.

We note that if (4.82) and (4.83) hold, then

h0(t) =
∫ ∞

t

(
q(s) − l|r(s)|

)
ds, t ≥ t0

is finite for any positive constant l. Assume that h0(t) > 0 for sufficiently large t.
Define, for n ∈ N, the sequence

h1(t) =
∫ ∞

t

[h0(s)]
σ+1

σ

[a(s)]1/σ
ds

and

hn+1(t) =
∫ ∞

t

[h0(s) + λhn(s)]
σ+1

σ

[a(s)]1/σ
ds for n ∈ N.

Condition (H). For every λ > 0, there exists N ∈ N such that hn(t) is finite for
n ∈ {1, 2, . . . , N − 1} and hN (t) is infinite.

Theorem 4.5.3. Suppose conditions (4.82), (4.83), (4.84), (4.85), (4.94), and
(H) hold. Then every solution y of (4.79) is either oscillatory or satisfies
lim inft→∞ |y(t)| = 0.
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Proof. Suppose to the contrary that y is a nonoscillatory solution of (4.79) such
that lim inft→∞ |y(t)| > 0. Hence, by Theorem 4.5.2, y satisfies (4.86) and (4.87).
Furthermore there exist t1 ≥ t0 and m1,m2 > 0 such that |y(t)| ≥ m1 and
|f(y(t))| ≥ m2 for t ≥ t1. Hence, from (4.86) and (4.87) we find

a(t)|y′(t)|σ−1y′(t)
f(y(t))

≥ h0(t) +
∫ ∞

t

a(s)|y′(s)|σ−1[y′(s)]2f ′(y(s))
[f(y(s))]2

ds(4.95)

≥ h0(t) ≥ 0

for t ≥ t1, and so

(4.96) y′(t) ≥ [h0(t)]1/σ[f(y(t))]1/σ[a(t)]−1/σ.

From (4.94), (4.95), and (4.96), we have∫ ∞

t

a(s)|y′(s)|σ−1[y′(s)]2f ′(y(s))
[f(y(s))]2

ds ≥
∫ ∞

t

h0(s)y′(s)f ′(y(s))
f(y(s))

ds

≥
∫ ∞

t

[h0(s)]
σ+1

σ [f(y(s))]1/σf ′(y(s))
f(y(s))[a(s)]1/σ

ds

≥ λ

∫ ∞

t

[h0(s)]
σ+1

σ

[a(s)]1/σ
ds = λh1(t)

for t ≥ t1. If N = 1 in Condition (H), then the right-hand side of the above
inequality is infinite. This is a contradiction to (4.86).

Next, it follows from (4.95) and the above inequality that

a(t)[y′(t)]σ

f(y(t))
≥ h0(t) + λh1(t),

and as before we obtain∫ ∞

t

a(s)[y′(s)]σ+1f ′(y(s))
[f(y(s))]2

ds ≥ λ

∫ ∞

t

[h0(s) + λh1(s)]
σ+1

σ

[a(s)]1/σ
ds = λh2(t)

for t ≥ t1. If N = 2 in Condition (H), then once again we get a contradiction to
(4.86). A similar argument yields a contradiction for any integer N > 2.

Next we consider (4.79) with σ = 1, namely,

(4.97) (a(t)y′(t))′ + q(t)f(y(t)) = r(t),

where uf(u) > 0 and f ′(u) ≥ 0 for u �= 0.

Define the set D and the function H as in Theorem 4.4.12. Also, in order to
simplify notation, we define

W (t) =
a(t)y′(t)
f(y(t))

for any nonoscillatory solution y of (4.97).

Theorem 4.5.4. Suppose that for any λ1 > 0 there exists λ2 > 0 such that

(4.98) f ′(y) ≥ λ2 for |y| ≥ λ1.

Suppose that ∫ t

t0

a(s)[h(t, s)]2ds < ∞ for t ≥ t0
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and

(4.99) lim sup
t→∞

1
H(t, T )

∫ t

T

[
H(t, s)

(
q(s) − K|r(s)|

)
− La(s)[h(t, s)]2

]
ds = ∞

for every T ≥ t0 and any positive constants K and L. Then any solution y of
(4.97) is either oscillatory or satisfies lim inft→∞ |y(t)| = 0.

Proof. Suppose on the contrary that y is a nonoscillatory solution of (4.97) such
that lim inft→∞ |y(t)| > 0. It then follows from f ′(y) ≥ 0 for y �= 0 that there exist
M > 0 and T1 ≥ t0 such that |f(y(t))| ≥ 1

M for all t ≥ T1. This implies that

(4.100)
r(t)

f(y(t))
≤
∣∣∣∣ r(t)
f(y(t))

∣∣∣∣ ≤ M |r(t)| for t ≥ T1.

Since

q(t) − r(t)
f(y(t))

= −W ′(t) − f ′(y(t))
a(t)

[W (t)]2,

we have for t ≥ T1∫ t

T1

H(t, s)
(

q(s) − r(s)
f(y(s))

)
ds

= −
∫ t

T1

H(t, s)W ′(s)ds −
∫ t

T1

H(t, s)
f ′(y(s))

a(s)
[W (s)]2ds

= − H(t, s)W (s)
∣∣∣t
s=T1

−
∫ t

T1

[
−∂H

∂s
(t, s)W (s) + H(t, s)

f ′(y(s))
a(s)

[W (s)]2
]

ds

= H(t, T1)W (T1) −
∫ t

T1

[
h(t, s)
√

H(t, s)W (s) + H(t, s)
f ′(y(s))

a(s)
[W (s)]2

]
ds.

Define

(4.101) ϕ(t, s) =
√

H(t, s)

√
f ′(y(s))

a(s)
W (s) + h(t, s)

√
a(s)

2
√

f ′(y(s))
.

Then, for all t ≥ T1, ∫ t

T1

[
H(t, s)

(
q(s) − r(s)

f(y(s))

)
ds − 1

4

∫ t

T1

[h(t, s)]2
a(s)

f ′(y(s))

]
ds

= H(t, T1)W (T1) −
∫ t

T1

[ϕ(t, s)]2ds(4.102)

≤ H(t, T1)W (T1).(4.103)

By (4.98), there exists L > 0 with f ′(y(s)) ≥ 1/(4L) for s ≥ T1. It follows from
(4.100) that

H(t, T1)W (T1) ≥
∫ t

T1

[
H(t, s)

(
q(s) − r(s)

f(y(s))

)
− 1

4
[h(t, s)]2

a(s)
f ′(y(s))

]
ds

≥
∫ t

T1

[
H(t, s)

(
q(s) − M |r(s)|

)
− La(s)[h(t, s)]2

]
ds(4.104)

for all t ≥ T1, which together with (4.103) give that

lim sup
t→∞

1
H(t, T1)

∫ t

T1

[
H(t, s)

(
q(s) − M |r(s)|

)
− La(s)[h(t, s)]2

]
ds ≤ W (T1),
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contradicting our assumption (4.99).

Theorem 4.5.5. Let

(4.105) 0 < inf
s≥t0

[
lim inf
t→∞

H(t, s)
H(t, t0)

]
≤ ∞.

Suppose that for any λ1 > 0 there exists λ2 > 0 such that (4.98) holds, and that

(4.106) lim sup
t→∞

1
H(t, t0)

∫ t

t0

a(s)[h(t, s)]2ds < ∞.

If there exists a function A ∈ C([t0,∞)) such that

(4.107)
∫ ∞

t0

[A+(s)]2

p(s)
ds = ∞ with A+(s) = max{A(s), 0}

holds, and for every T ≥ t0 and any positive constants K and L,

(4.108) lim sup
t→∞

1
H(t, T )

∫ t

T

[
H(t, s)

(
q(s) − K|r(s)|

)
− La(s)[h(t, s)]2

]
ds ≥ A(T ),

then any solution y of (4.97) is either oscillatory or satisfies lim inft→∞ |y(t)| = 0.

Proof. Suppose y is a nonoscillatory solution of (4.97) with lim inft→∞ |y(t)| > 0.
Then as in the proof of Theorem 4.5.4, we can obtain (4.100), (4.102), and (4.104).
From (4.102) and (4.104), we deduce

lim sup
t→∞

1
H(t, T )

∫ t

T

[
H(t, s)

(
q(s) − M |r(s)|

)
− L

4
a(s)[h(t, s)]2

]
ds

≤ W (T ) − lim inf
t→∞

1
H(t, T )

∫ t

T

[ϕ(t, s)]2ds

for all T ≥ T1. Thus, by (4.108)

W (T ) ≥ A(T ) + lim inf
t→∞

1
H(t, T )

∫ t

T

[ϕ(t, s)]2ds

for all T ≥ T1. This shows that

(4.109) W (T ) ≥ A(T ) for T ≥ T1

and

lim inf
t→∞

1
H(t, T1)

∫ t

T1

[ϕ(t, s)]2ds ≤ W (T1) − A(T1) < ∞.

Let

P (t) =
1

H(t, T1)

∫ t

T1

H(t, s)
f ′(y(s))

a(s)
[W (s)]2ds

and

Q(t) =
1

H(t, T1)

∫ t

T1

h(t, s)
√

H(t, s)W (s)ds

for all t ≥ T1. Then

(4.110) lim inf
t→∞ [P (t) + Q(t)] ≤ lim inf

t→∞
1

H(t, T1)

∫ t

T1

[ϕ(t, s)]2ds < ∞.

Now, suppose that

(4.111)
∫ ∞

T1

f ′(y(s))
a(s)

[W (s)]2ds = ∞.
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By condition (4.105), there exists a positive constant ξ such that

(4.112) inf
s≥t0

[
lim inf
t→∞

H(t, s)
H(t, t0)

]
> ξ > 0.

Let μ > 0 be arbitrary. Since (4.111) holds, there exists T2 > T1 such that∫ t

T1

f ′(y(s))
a(s)

[W (s)]2ds ≥ μ

ξ
for t ≥ T2.

Therefore, for all t ≥ T2,

P (t) =
1

H(t, T1)

∫ t

T1

H(t, s)
d

ds

(∫ s

T1

f ′(y(τ))
a(τ)

[W (τ)]2dτ

)
ds

= − 1
H(t, T1)

∫ t

T1

∂H

∂s
(t, s)
(∫ s

T1

f ′(y(τ))
a(τ)

[W (τ)]2dτ

)
ds

≥ − 1
H(t, T1)

∫ t

T2

∂H

∂s
(t, s)
(∫ s

T1

f ′(y(τ))
a(τ)

[W (τ)]2dτ

)
ds

≥ − μ

ξH(t, T1)

∫ t

T2

∂H

∂s
(t, s)ds =

μH(t, T2)
ξH(t, T1)

≥ μH(t, T2)
ξH(t, t0)

.

By (4.112), there exists T3 ≥ T2 such that H(t,T2)
H(t,t0)

≥ ξ for all t ≥ T3, and accordingly
P (t) ≥ μ for all t ≥ T3. Since μ is arbitrary,

(4.113) lim
t→∞P (t) = ∞.

Further, consider a sequence {tn}∞n=1 ⊂ (t0,∞) with limn→∞ tn = ∞ and such that

lim
n→∞[P (tn) + Q(tn)] = lim inf

t→∞ [P (t) + Q(t)].

Because of (4.110), there is a constant ρ such that

(4.114) P (tn) + Q(tn) ≤ ρ for all n ∈ N.

Furthermore, (4.113) shows that

(4.115) lim
n→∞P (tn) = ∞,

and hence (4.114) gives

(4.116) lim
n→∞Q(tn) = −∞.

Then, from (4.114) and (4.115), we get for large enough n ∈ N

1 +
Q(tn)
P (tn)

≤ ρ

P (tn)
<

1
2
,

which together with (4.116) ensures that

(4.117) lim
n→∞

[Q(tn)]2

P (tn)
= ∞.
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On the other hand, using the Schwarz inequality, we obtain for any n ∈ N

[Q(tn)]2 =
[

1
H(tn, T1)

∫ tn

T1

h(tn, s)
√

H(tn, s)W (s)ds

]2
≤
[

1
H(tn, T1)

∫ tn

T1

H(tn, s)
f ′(y(s))

a(s)
[W (s)]2ds

]
×
[

1
H(tn, T1)

∫ tn

T1

[h(tn, s)]2
a(s)

f ′(y(s))
ds

]
=

P (tn)
H(tn, T1)

∫ tn

T1

[h(tn, s)]2
a(s)

f ′(y(s))
ds.

Further, (4.112) guarantees that there exists T4 ≥ T0 such that

H(t, T1)
H(t, t0)

≥ ξ for all t ≥ T4,

which means that for large enough n ∈ N, we have

H(tn, T1)
H(tn, t0)

≥ ξ

and accordingly,

[Q(tn)]2

P (tn)
≤ 1

ξH(tn, t0)

∫ tn

t0

[h(tn, s)]2
a(s)

f ′(y(s))
ds.

Now, using assumption (4.98), we deduce that there is a constant L > 0 such that

[Q(tn)]2

P (tn)
≤ L

H(tn, t0)

∫ tn

t0

a(s)[h(tn, s)]2ds for large enough n ∈ N.

Then it follows from (4.117) that

(4.118) lim
n→∞

1
H(tn, t0)

∫ tn

t0

a(s)[h(tn, s)]2ds = ∞,

contradicting the assumption (4.106). We have proved that (4.111) fails to hold,
i.e., ∫ ∞

T1

f ′(y(s))
a(s)

[W (s)]2ds < ∞.

Then, by (4.98) and (4.109), we obtain for some L > 0

L

∫ ∞

T1

[A+(s)]2

p(s)
ds ≤
∫ ∞

T1

[A+(s)]2
f ′(y(s))

a(s)
ds ≤
∫ ∞

T1

[W (s)]2
f ′(y(s))

a(s)
ds < ∞,

which contradicts (4.107). This completes our proof.

Theorem 4.5.6. Suppose that (4.105) holds as well as that for any λ1 > 0 there
exists λ2 > 0 such that (4.98) holds. Assume

(4.119) lim inf
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)
(
q(s) − K|r(s)|

)
ds < ∞.

If there exists a function A ∈ C([t0,∞)) such that (4.107) and

(4.120) lim inf
t→∞

1
H(t, T )

∫ t

T

[
H(t, s)

(
q(s) − K|r(s)|

)
− La(s)[h(t, s)]2

]
ds ≥ A(T )
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hold for every T ≥ t0 and any positive constants K and L, then any solution y of
(4.97) is either oscillatory or satisfies lim inft→∞ |y(t)| = 0.

Proof. Let y be a nonoscillatory solution of (4.97) satisfying lim inft→∞ |y(t)| > 0.
As in the proof of Theorem 4.5.4, (4.100) and (4.102) is fulfilled for each t ≥ T1 ≥ t0.
Thus, for all T ≥ T1

lim inf
t→∞

1
H(t, T )

∫ t

T

[
H(t, s)

(
q(s) − M |r(s)|

)
− La(s)[h(t, s)]2

]
ds

≤ W (T ) − lim sup
t→∞

1
H(t, T )

∫ t

T

[ϕ(t, s)]2ds,

where ϕ(t, s) is defined by (4.101). Therefore, by (4.120), we have

W (T ) ≥ A(T ) + lim sup
t→∞

1
H(t, T )

∫ t

T

[ϕ(t, s)]2ds

for all T ≥ T1. Hence, (4.109) holds and

lim sup
t→∞

1
H(t, T1)

∫ t

T1

[ϕ(t, s)]2ds ≤ W (T1) − A(T1) < ∞.

This implies that

(4.121) lim sup
t→∞

[P (t) + Q(t)] ≤ lim sup
t→∞

1
H(t, T1)

∫ t

T1

[ϕ(t, s)]2ds < ∞,

where P and Q are defined as in the proof of Theorem 4.5.5. By using (4.120) we
have

A(t0) ≤ lim inf
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)

(
q(s) − K|r(s)|

)
− La(s)[h(t, s)]2

]
ds

≤ lim inf
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)
(
q(s) − K|r(s)|

)
ds

−L lim inf
t→∞

1
H(t, t0)

∫ t

t0

a(s)[h(t, s)]2ds,

which together with (4.119) implies that

lim inf
t→∞

1
H(t, t0)

∫ t

t0

a(s)[h(t, s)]2ds < ∞.

Then there exists a sequence {tn}∞n=1 ⊂ (t0,∞) with limn→∞ tn = ∞ satisfying

(4.122) lim
n→∞

1
H(tn, t0)

∫ tn

t0

a(s)[h(tn, s)]2ds

= lim inf
t→∞

1
H(t, t0)

∫ t

t0

a(s)[h(t, s)]2ds < ∞.

Now, suppose that (4.111) holds. Proceeding as in the proof of Theorem 4.5.5,
we conclude that (4.113) is satisfied. Because of (4.121), there exists a constant ρ
such that (4.114) holds. Then, as in the proof of Theorem 4.5.5, we obtain (4.118),
which contradicts (4.122). This proves that (4.111) fails. Since the remainder of
the proof is similar to the proof of Theorem 4.5.5, it will be omitted.
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4.6. Positive Solutions of Nonlinear Equations

In this section we first consider quasilinear differential equations of the form

(4.123)
(
r(t)[y′(t)]σ

)′
+ q(t)[y(t)]σ = 0, t ≥ t0,

where σ is a quotient of positive odd integers, q : [t0,∞) → [0,∞) is a continuous
function such that q(t) �≡ 0, and r : [t0,∞) → (0,∞) is a continuous function.

First, we assume that

(4.124)
∫ ∞

t0

ds

[r(s)]1/σ
= ∞.

We begin by assuming that y is a positive solution of (4.123). Then we see from
(4.123) that (

r(t)[y′(t)]σ
)′

= −q(t)[y(t)]σ ≤ 0 for t ≥ t0.

Furthermore, since q(t) ≥ 0 and q(t) �≡ 0, the nonincreasing function r(y′)σ is either
eventually positive or negative. If the latter holds, then

r(t)[y′(t)]σ ≤ c < 0

for t greater than or equal to, say T . But then

y′(t) ≤ c1/σ

[r(t)]1/σ
, t ≥ T

so that integrating from T to t ≥ T provides

y(t) − y(T ) ≤ c1/σ

∫ t

T

ds

[r(s)]1/σ
→ −∞,

which is a contradiction. We have thus shown that if y is a positive solution
of (4.123), then r(y′)σ is a positive nonincreasing function, and y′ is a positive
function.

Let the function w be defined by

(4.125) w(t) =
r(t)[y′(t)]σ

[y(t)]σ
, t ≥ t0.

Then by means of what we have just shown, w(t) > 0 and w′(t) ≤ 0 for t ≥ t0.
Furthermore, since

y′(t)
y(t)

=
(

w(t)
r(t)

)1/σ

,

we see from (4.123) that

w′(t) = −q(t) − w(t)
σy′(t)
y(t)

= −q(t) − w(t)σ
(

w(t)
r(t)

)1/σ

,

i.e.,

(4.126) w′(t) + w(t)σ
(

w(t)
r(t)

)1/σ

+ q(t) = 0, t ≥ t0.

For the sake of convenience, we will write

F (x, y, z) = z

(
x

y

)1/z

.
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Then we can also write (4.126) in the simpler form

w′(t) + w(t)F
(
w(t), r(t), σ

)
+ q(t) = 0, t ≥ t0.

Note that F (x, y, z) > 0 for x, y, z > 0. Furthermore,

Fx(x, y, z) = x
1
z −1y− 1

z ,

which is positive for x, y, z > 0, and

Fy(x, y, z) = −x
1
z y− 1

z −1,

which is negative for x, y, z > 0. These properties of F will be referred later as the
monotone nature of F .

Theorem 4.6.1. Equation (4.123) has a positive solution y for t ≥ t0 if and only if
there is a positive and continuous function u on [t0,∞) which satisfies the integral
inequality

(4.127)
∫ ∞

t

u(s)F
(
u(s), r(s), σ

)
ds +
∫ ∞

t

q(s)ds ≤ u(t), t ≥ t0.

Proof. If y is a positive solution of (4.123), then the function w defined by (4.125)
is a positive solution of the inequality∫ ∞

t

w(s)F
(
w(s), r(s), σ

)
ds +
∫ ∞

t

q(s)ds ≤ w(t), t ≥ t0,

obtained by integrating (4.126) from t to ∞. Conversely, let u be a posi-
tive and continuous function which satisfies (4.127). Let us define a mapping
T : C([t0,∞), (0,∞)) → C([t0,∞), (0,∞)) as follows:

(Tv)(t) =
∫ ∞

t

v(s)F
(
v(s), r(s), σ

)
ds +
∫ ∞

t

q(s)ds, t ≥ t0,

where v ∈ C([t0,∞), (0,∞)). Note that in view of (4.127), (Tv)(t) ≤ v(t) for t ≥ t0.
Consider the successive approximating sequence {vn}n∈N0 , defined by

(4.128) v0(t) = 0 and vn+1(t) = (Tvn)(t), n ∈ N0 for t ≥ t0.

By means of the monotone properties of F (w, r, σ), it is not difficult to see that

v0(t) < v1(t) ≤ v2(t) ≤ . . . ≤ vn(t) ≤ . . . ≤ u(t)

for n ∈ N0 and t ≥ t0. Thus, by letting v∗ be the positive function defined by

v∗(t) = lim
n→∞ vn(t), t ≥ t0,

we may then take limits on both sides of the recursive definition in (4.128) and
infer from Lebesgue’s dominated convergence theorem that v∗ = Tv∗.

In view of (4.125), the function y on [t0,∞) defined by y(t0) = c0 > 0 and

y(t) = y(t0) exp

(∫ t

t0

(
v∗(s)
r(s)

)1/σ

ds

)
, t ≥ t0

is a positive solution of (4.123). The proof is complete.

We remark that by slightly modifying the arguments used in the proof of the
above theorem, we see that the following variant holds.
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Theorem 4.6.2. Equation (4.123) has a positive solution if and only if the sequence
{vn} defined by (4.128) is well defined and pointwise convergent.

The approximating sequence defined by (4.128) is not the only one that is avail-
able. Indeed, let us introduce another formal sequence of functions {φn} defined as
follows: First we define a mapping S : C([t0,∞), (0,∞)) → C([t0,∞), (0,∞)) by

(Su)(t) =
∫ ∞

t

u(s)F
(
u(s), r(s), σ

)
ds, t ≥ t0,

where u ∈ C([t0,∞), (0,∞)). Then we define

(4.129)

⎧⎨⎩φ0(t) =
∫ ∞

t

q(s)ds and

φn+1(t) = (Sφn)(t), n ∈ N0 for t ≥ t0.

If the sequence {φn} is well defined, then by means of the monotone properties of
F (w, r, σ), φ1(t) > 0 for t ≥ t0. Furthermore,

φ2(t) =
(
S(φ0 + φ1)

)
(t) ≥ (Sφ0)(t) = φ1(t), t ≥ t0

and
φ3(t) =

(
S(φ0 + φ2)

)
(t) ≥
(
S(φ0 + φ1)

)
(t) = φ2(t), t ≥ t0.

Inductively, we see that

0 < φ1(t) ≤ φ2(t) ≤ . . . , t ≥ t0.

Therefore, if we assume in addition that {φn} is pointwise convergent to φ, then
by Lebesgue’s monotone convergence theorem, we see from (4.129) that

φ0(t) + φ(t) = φ0(t) +
∫ ∞

t

(
φ0(s) + φ(s)

)
F
(
φ0(s) + φ(s), r(s), σ

)
ds, t ≥ t0.

In other words, we have found a positive function φ0 + φ which satisfies (4.127).
Conversely, if we assume that y is a positive function which satisfies (4.127), i.e.,

(Sy)(t) + φ0(t) ≤ y(t), t ≥ t0,

then

φ0(t) ≤ (Sy)(t) + φ0(t) ≤ y(t), t ≥ t0,

φ0(t) + φ1(t) = φ0(t) + (Sφ0)(t) ≤ φ0(t) + (Sy)(t) ≤ y(t), t ≥ t0,

and

φ0 + φn+1(t) = φ0(t) +
(
S(φ0 + φn)

)
(t) ≤ φ0(t) + (Sy)(t) ≤ y(t), t ≥ t0.

Thus the sequence {φn} is well defined. Therefore,

0 < φ0(t) ≤ φ2(t) ≤ . . . ≤ y(t), t ≥ t0,

which implies that {φn} is also pointwise convergent.

Theorem 4.6.3. Equation (4.123) has a positive solution if and only if the sequence
{φn} defined by (4.129) is well defined and pointwise convergent.
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We now deduce two important implications from these existence criteria. First of
all, if u is a positive function which satisfies (4.127), then by means of the monotone
properties of the function F , it also satisfies∫ ∞

t

u(s)F
(
u(s), R(s), σ

)
ds +
∫ ∞

t

Q(s)ds ≤ u(t), t ≥ t0,

where Q : [t0,∞) → [0,∞) is a continuous function which satisfies

(4.130)
∫ ∞

t

Q(s)ds ≤
∫ ∞

t

q(s)ds, t ≥ t0,

and R : [t0,∞) → [0,∞) is a continuous function which satisfies 0 < r(t) ≤ R(t)
for t ≥ t0. The following Hille–Wintner type comparison theorem is now clear from
Theorem 4.6.1.

Theorem 4.6.4. Assume that R is a positive and continuous function which sat-
isfies 0 < r(t) ≤ R(t) for t ≥ t0 and∫ ∞

t0

ds

[R(s)]1/σ
= ∞,

and that Q is a nonnegative and continuous function which satisfies (4.130). If
(4.123) has a positive solution, then so does the equation(

R(t)[y′(t)]σ
)′

+ Q(t)[y(t)]σ = 0, t ≥ t0.

Next, let us assume that σ = 1 and

(4.131)
∫ ∞

t

1
r(s)

(∫ ∞

s

q(u)du

)2

ds ≥ 1 + δ

4

∫ ∞

t

q(s)ds, t ≥ t0,

where δ > 0 is arbitrary. In view of the function φ0 defined by (4.129), (4.131) is
equivalent to ∫ ∞

t

[φ0(s)]2

r(s)
ds ≥ 1 + δ

4
φ0(t), t ≥ t0.

Now the functions φ1 and φ2 defined in (4.129) satisfy on [t0,∞)

φ1(t) ≥ c0φ0(t),

where c0 = (1 + δ)/4, and with c1 = (1 + c0)2c0,

φ2(t) ≥
∫ ∞

t

(
φ0(s) + φ1(s)

)
F
(
φ0(s) + φ1(s), r(s), 1

)
ds

≥
∫ ∞

t

(1 + c0)φ0(s)F
(
(1 + c0)φ0(s), r(s), 1

)
ds

≥ (1 + c0)2
∫ ∞

t

φ0(s)
φ0(s)
r(s)

ds

≥ (1 + c0)2c0φ0(t) = c1φ0(t),

respectively. By induction we easily see that

φn+1(t) ≥ cnφ0(t), t ≥ t0, n ∈ N,

where
cn = (1 + cn−1)2c0 for n ∈ N.
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It is also easy to see that the sequence {cn} is increasing. We assert further that it
is unbounded. Otherwise, cn → c as n → ∞ would imply c = (1 + c)2c0, i.e.,

c0c
2 + (2c0 − 1)c + c0 = 0.

However, this quadratic equation cannot have a real solution if c0 > 1/4. Thus
the assumption that cn → c is impossible. Hence the sequence {φn} cannot be
pointwise convergent. The following is now clear from Theorem 4.6.3.

Corollary 4.6.5. Assume that σ = 1 and that the function q satisfies (4.131) for
some number δ > 0. Then (4.123) cannot have any positive solution.

We remark that the condition (4.131) in Corollary 4.6.5 is sharp in the following
sense.

Corollary 4.6.6. Assume that σ = 1, that∫ ∞

t0

q(s)ds < ∞,

and that ∫ ∞

t

(∫∞
s

q(u)du
)2

r(s)
ds ≤ μ

∫ ∞

t

q(s)ds, t ≥ t0,

where μ ≤ 1/4. Then (4.123) has a positive solution.

Proof. The crux of our proof lies in the observation that F (x, y, σ) = x/y when
σ = 1. More specifically, consider the sequence {φn} defined by (4.129). Note that

φ0(t) =
∫ ∞

t

q(s)ds < ∞, t ≥ t0

and

φ1(t) = (Sφ0)(t) =
∫ ∞

t

φ0(s)F
(
φ0(s), r(s), 1

)
ds =
∫ ∞

t

[φ0(s)]2

r(s)
ds ≤ c0φ0(t)

for t ≥ t0, where c0 = μ. Next,

φ2(t) =
(
S(φ0 + φ1)

)
(t)

=
∫ ∞

t

[φ0(s) + φ1(s)]2

r(s)
ds

≤
∫ ∞

t

[φ0(s) + c0φ0(s)]2

r(s)
ds

≤
∫ ∞

t

(1 + c0)2[φ0(s)]2

r(s)
ds

≤ c1φ0(t)

for t ≥ t0, where c1 = (1 + c0)2c0. Inductively, we see that

φn+1(t) ≤ cnφ0(t), t ≥ t0, n ∈ N

where
cn = (1 + cn−1)c0 for n ∈ N.

It is also easy to see that the sequence {cn} is nondecreasing and convergent. We
may see this as follows. Consider the fixed point problem

x = g(x), where g(x) = μ(1 + x)2.
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As is customary, we find fixed points by means of the iteration scheme

xn = μ(1 + xn−1)2, n ∈ N.

Note that when μ = 1/4, the graph of g is a parabola which has a unique minimum
at x = −1 and touches the line y = x at (x, y) = (1, 1). Therefore, if we choose
x0 = μ, then we see that the approximating sequence {xn} is strictly increasing
and converges to x = 1. If c0 < 1/4, then clearly cn < xn < 1 for all n ∈ N. This
shows that {cn} is bounded and hence converges.

We have thus shown that the sequence {φn} is well defined and pointwise con-
vergent. The proof is now complete in view of Theorem 4.6.3.

In order to compare with (4.123), we will consider the following class of advanced
type differential equations of the form

(4.132)
(
r(t)[y′(t)]σ

)′
+ q(t)[y(t + τ)]σ = 0, t ≥ t0,

where τ ≥ 0. By means of the same Riccati transformation (4.125), we may proceed
in a similar manner as above and obtain the following extension of Theorem 4.6.1.

Theorem 4.6.7. Equation (4.132) has a positive solution y if and only if there is
a positive and continuous function u which satisfies on [t0,∞) the inequality∫ ∞

t

u(s)F
(
u(s), r(s), σ

)
ds +
∫ ∞

t

q(s)

{
exp

(∫ s+τ

s

(
u(v)
r(v)

) 1
σ

dv

)}σ

ds ≤ u(t).

Since ∫ ∞

t

q(s)ds ≤
∫ ∞

t

q(s)

{
exp

(∫ s+τ

s

(
u(v)
r(v)

) 1
σ

dv

)}σ

ds

for u > 0, we immediately obtain from Theorems 4.6.1 and 4.6.7 the following
corollary.

Corollary 4.6.8. If (4.132) has a positive solution, then so does (4.123).

A partial converse of the above Corollary 4.6.8 can be obtained as follows. Let
y be a positive solution of (4.123) such that

(4.133) 1 ≤
[
exp

(∫ t+τ

t

(
u(s)
r(s)

) 1
σ

ds

)]σ
≤ Γ, t ≥ t0.

Then∫ ∞

t

u(s)F
(
u(s), r(s), σ

)
ds +

1
Γ

∫ ∞

t

q(s)

[
exp

(∫ s+τ

s

(
u(v)
r(v)

) 1
σ

dv

)]σ
ds ≤ u(t)

for t ≥ t0, so that there exists a positive solution of(
r(t)[y′(t)]σ

)′
+

1
Γ

q(t)[y(t)]σ = 0, t ≥ t0.

At this point, it is not clear which conditions are needed for a positive solution y to
exist such that the additional property (4.133) holds. However, we may twist the
above arguments slightly and conclude that if y is a positive solution of

(4.134)
(
r(t)[y′(t)]σ

)′
+ βq(t)[y(t)]σ = 0, t ≥ t0,
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where β ≥ 1 while the other parameters are the same as in (4.123), and if

1 ≤
[
exp

(∫ t+τ

t

(
u(s)
r(s)

) 1
σ

ds

)]σ
≤ β, t ≥ t0,

then (4.132) has a positive solution.

Now we assert that if y is a positive solution of (4.134), then

r(t)[y′(t)]σ

[y(t)]σ
→ 0 as t → ∞.

Indeed, from (4.134), we see that (r(y′)σ)′(t) ≤ 0 and r(t)[y′(t)]σ > 0 for t ≥ t0.
Thus either r(t)[y′(t)]σ decreases to zero or to a constant c > 0. In the former case,

r(t)[y′(t)]σ

[y(t)]σ
≤ r(t)[y′(t)]σ

[y(t0)]σ
→ 0 as t → ∞,

as desired. In the latter case, we have

y′(t) ≥
(

c

r(t)

) 1
σ

,

which implies, in view of (4.124), that

y(t) ≥ y(t0) +
∫ t

t0

c1/σ

[r(s)]1/σ
ds → ∞ as t → ∞.

Thus,
r(t)[y′(t)]σ

[y(t)]σ
≤ r(t0)[y′(t0)]σ

[y(t)]σ
→ 0 as t → ∞

also. As a consequence, if 1/r is bounded, then given any number β > 1, the
condition will automatically hold for all large t. Therefore, we may now conclude
that if β > 1 and 1/r is bounded, and if (4.134) has a positive solution, then (4.132)
has an eventually positive solution as well.

In the above discussion we always assumed that (4.124) holds. In the following
we give some results for the existence of positive nondecreasing solutions of (4.123)
without requiring condition (4.124).

We have shown that if y is a positive nondecreasing solution of (4.123), then w
defined by (4.125) satisfies the inequality

(4.135) w′(t) + w(t)F
(
w(t), r(t), σ

)
+ q(t) ≤ 0, t ≥ t0.

Note that w(t) is nonnegative. Therefore, if we now integrate (4.135) from t to ∞,
we obtain

(4.136) w(t) ≥
∫ ∞

t

w(s)F
(
w(s), r(s), σ

)
ds +
∫ ∞

t

q(s)ds, t ≥ t0.

Theorem 4.6.9. Suppose that
∫∞

q(s)ds exists. Then (4.123) has a positive non-
decreasing solution y on [t0,∞) if and only if there is a nonnegative and continuous
function w on [t0,∞) which satisfies the integral inequality (4.136).
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Proof. We need to show that if (4.136) has a nonnegative solution w, then (4.123)
has a positive nondecreasing solution. Let w ∈ C([t0,∞), [0,∞)) be a function such
that
∫∞

t
w(s)F (w(s), r(s), σ)ds exists. Define a mapping Tw by

(Tw)(t) =
∫ ∞

t

w(s)F
(
w(s), r(s), σ

)
ds +
∫ ∞

t

q(s)ds, t ≥ t0.

Thus Tw ∈ C([t0,∞), [0,∞)). Note that in view of (4.136), (Tw)(t) ≤ w(t) for
t ≥ t0. Consider the successive approximating sequence {wn}n∈N0 defined by

(4.137)

⎧⎨⎩w0(t) =
∫ ∞

t

q(s)ds and

wn+1(t) = (Twn)(t), n ∈ N0 for t ≥ t0.

By means of the monotone properties of F (w, r, σ), it is not difficult to see that

w0(t) < w1(t) ≤ w2(t) ≤ . . . ≤ wn(t) ≤ . . . ≤ w(t)

for n ∈ N0 and t ≥ t0. Thus, by letting w∗ be the positive function defined by

w∗(t) = lim
n→∞wn(t), t ≥ t0,

we may then take limits on both sides of the recursive definition in (4.137) and
infer from Lebesgue’s dominated convergence theorem that w∗ = Tw∗.

In view of (4.125), the function y : [t0,∞) → R defined by y(t0) = c0 > 0 and

y(t) = y(t0) exp

(∫ t

t0

(
w∗(s)
r(s)

) 1
σ

ds

)
, t ≥ t0

is a positive nondecreasing solution of (4.123). The proof is complete.

As a direct application, we deduce comparison theorems for the existence of
a positive nondecreasing solution of (4.123). Consider, together with (4.123), the
equation

(4.138)
(
R(t)[y′(t)]σ

)′
+ Q(t)[y(t)]σ = 0, t ≥ t0,

where R and Q satisfy the same conditions as those imposed on r and q. The
following is now clear from Theorem 4.6.9.

Theorem 4.6.10. In addition to the conditions imposed on the equations (4.123)
and (4.138), suppose further that r(t) ≥ R(t) > 0 for t ≥ t0 and∫ ∞

t

Q(s)ds ≥
∫ ∞

t

q(s)ds for t ≥ t0.

If (4.138) has a positive nondecreasing solution, then so does (4.123).

Now we compare (4.123) with the equation

(4.139)
(
R(t)[y′(t)]σ

)′
+ λ(t)Q(t)[y(t)]σ = 0.

Theorem 4.6.11. Suppose that
∫∞

Q(s)ds exists and

r(t) ≥ R(t) > 0 and Q(t) ≥ q(t) for t ≥ t0.

Suppose further that λ is a differentiable function such that λ(t) ≥ 1 and λ′(t) ≥ 0
for t ≥ t0. If (4.139) has a positive nondecreasing solution, then so does (4.123).

 



4.6. POSITIVE SOLUTIONS OF NONLINEAR EQUATIONS 149

Proof. By our assumptions and arguing as in (4.126), it follows that the equation

(4.140) u′(t) + u(t)F
(
u(t), R(t), σ

)
+ λ(t)Q(t) = 0, t ≥ t0

has a nonnegative solution u. Thus, dividing (4.140) by λ(t), we obtain, in view of
the homogeneity property of F , that

u′(t)
λ(t)

+
u(t)
λ(t)

F
(
u(t), R(t), σ

)
+ Q(t) =

u′(t)
λ(t)

+
u(t)
λ(t)

F

(
u(t)
λ(t)

,
R(t)
λ(t)

, σ

)
+ Q(t) = 0

for t ≥ t0. In view of λ′(t) ≥ 0, we have(u
λ

)′
(t) =

u′(t)
λ(t)

− u(t)λ′(t)
λ2(t)

≤ u′(t)
λ(t)

.

Additionally, since Q(t) ≥ q(t) and

F

(
u(t)
λ(t)

,
R(t)
λ(t)

, σ

)
≥ F

(
u(t)
λ(t)

,
r(t)
λ(t)

, σ

)
≥ F

(
u(t)
λ(t)

, r(t), σ
)

,

we have (u
λ

)′
(t) +

u(t)
λ(t)

F

(
u(t)
λ(t)

, r(t), σ
)

+ q(t) ≤ 0, t ≥ t0.

Setting w = u/λ, the preceding inequality implies that

w′(t) + w(t)F
(
w(t), r(t), σ

)
+ q(t) ≤ 0, t ≥ t0

has a nonnegative solution. By Theorem 4.6.9, (4.123) has a positive nondecreasing
solution.

There is a dual to the above theorem as follows.

Theorem 4.6.12. Suppose that
∫∞

q(s)ds exists and

0 < r(t) ≤ R(t) and Q(t) ≤ q(t) for t ≥ t0.

Suppose further that λ is a differentiable function such that 0 < λ(t) ≤ 1 and
λ′(t) ≤ 0 for t ≥ t0. If (4.123) has a positive nondecreasing solution, then so does
(4.139).

Proof. By our assumptions, the equation

u′(t) + u(t)F
(
u(t), r(t), σ

)
+ q(t) = 0, t ≥ t0

has a nonnegative solution u. It thus follows that

u′(t) + u(t)F
(
u(t), r(t), σ

)
+ Q(t) ≤ 0, t ≥ t0,

which, after multiplying by λ(t), becomes

λ(t)u′(t) + λ(t)u(t)F
(
λ(t)u(t), λ(t)r(t), σ

)
+ λ(t)Q(t) ≤ 0, t ≥ t0.

Since λ′(t) ≤ 0, we have

(λu)′ (t) = λ(t)u′(t) + λ′(t)u(t) ≤ λ(t)u′(t)

and

F
(
u(t)λ(t), r(t)λ(t), σ

)
≥ F
(
u(t)λ(t), r(t), σ

)
≥ F
(
u(t)λ(t), R(t), σ

)
.
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Thus

(uλ)′ (t) + u(t)λ(t)F
(
u(t)λ(t), R(t), σ

)
+ λ(t)Q(t) ≤ 0, t ≥ t0.

This implies that

w′(t) + w(t)F
(
w(t), R(t), σ

)
+ λ(t)Q(t) ≤ 0, t ≥ t0

has a nonnegative solution. By Theorem 4.6.9, (4.139) has a positive nondecreasing
solution.

As another application, we derive an explicit existence criterion based on The-
orem 4.6.9.

Theorem 4.6.13. Suppose that ∫ ∞

t0

q(s)ds < ∞

and let

φ(t) = 2
∫ ∞

t

q(s)ds < ∞, t ≥ t0.

Suppose further that

(4.141)
∫ ∞

t0

(
φ(s)
r(s)

) 1
σ

ds ≤ 1
2σ

.

Then (4.123) has a nonnegative solution.

Proof. It suffices to show that w = φ satisfies (4.136). Indeed, for t ≥ t0,∫ ∞

t

w(s)F
(
w(s), r(s), σ

)
ds =

∫ ∞

t

σφ(s)
(

φ(s)
r(s)

) 1
σ

ds

≤ φ(t)
∫ ∞

t

σ

(
φ(s)
r(s)

) 1
σ

ds.

Hence, in view of (4.141), we have∫ ∞

t

w(s)F
(
w(s), r(s), σ

)
ds +
∫ ∞

t

q(s)ds ≤ φ(t)
2

+
φ(t)
2

= φ(t) = w(t).

The proof is complete.

4.7. Oscillation of Half-Linear Equations

In this section we consider the problem of oscillation of the second order half-
linear damped differential equation

(4.142)
(
r(t) |y′(t)|α−1

y′(t)
)′

+ p(t) |y′(t)|α−1
y′(t) + q(t) |y(t)|α−1

y(t) = 0

on the half-line [t0,∞). In (4.142) we assume that

p, q ∈ C[t0,∞) and r ∈ C1([t0,∞), (0,∞)),

and α > 0 is a constant.
We recall that a function y : [t0, t1) → (−∞,∞), t1 > t0 is called a solution of

(4.142) if y satisfies (4.142) on [t0, t1). In the sequel it will be always assumed that
solutions of (4.142) exist for any t0 ≥ 0.
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In order to prove our theorems, we use the following well-known inequality due
to Hardy, Littlewood, and Pólya [120].

Lemma 4.7.1. If A,B are nonnegative, then

Aq + (q − 1)Bq ≥ qABq−1 for q > 1,

where equality holds if and only if A = B.

We say that a function H = H(t, s) belongs to a function class Y , denoted by
H ∈ Y , if H ∈ C(D, R), where D = {(t, s) : −∞ < s ≤ t < ∞}, which satisfies

H(t, t) = 0 and H(t, s) > 0 for t > s

and has a partial derivative ∂H/∂s on D such that (compare Section 4.4)

(4.143)
∂H

∂s
= −h(t, s)

√
H(t, s),

where h is a nonnegative and continuous function on D.

Theorem 4.7.2. If there exists H ∈ Y such that

(4.144) lim sup
t→∞

1
H(t, t0)

∫ t

t0

⎡⎢⎣H(t, s)q(s) −
r(s)
∣∣∣h(t, s) + p(s)

r(s)

√
H(t, s)

∣∣∣α+1

(α + 1)α+1[H(t, s)](α−1)/2

⎤⎥⎦ ds

= ∞,

then every solution of (4.142) is oscillatory.

Proof. Let y be a nonoscillatory solution of (4.142). Assume that y(t) �= 0 for
t ≥ t0. We define

(4.145) u(t) =
r(t) |y′(t)|α−1

y′(t)
|y(t)|α−1

y(t)
, t ≥ t0.

Then for every t ≥ t0, we have

u′(t) = −q(t) − p(t)
r(t)

u(t) − α
|u(t)|(α+1)/α

[r(t)]1/α
,

and consequently∫ t

t0

H(t, s)q(s)ds = −
∫ t

t0

H(t, s)u′(s)ds −
∫ t

t0

H(t, s)
p(s)
r(s)

u(s)ds

−α

∫ t

t0

H(t, s)
|u(s)|(α+1)/α

[r(s)]1/α
ds.

Since ∫ t

t0

H(t, s)u′(s)ds = −H(t, t0)u(t0) −
∫ t

t0

∂H(t, s)
∂s

u(s)ds

and in view of (4.143), the previous equality becomes

(4.146)
∫ t

t0

H(t, s)q(s)ds ≤ H(t, t0)u(t0)

+
∫ t

t0

∣∣∣∣h(t, s)
√

H(t, s) +
p(s)
r(s)

H(t, s)
∣∣∣∣ |u(s)| ds − α

∫ t

t0

H(t, s)
|u(s)|(α+1)/α

[r(s)]1/α
ds.
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In Lemma 4.7.1, we let

q =
α + 1

α
, A = [αH(t, s)]α/(α+1) |u(s)|

[r(s)]1/α
ds,

and

B =
αα/(α+1)

(α + 1)α+1

[r(s)]α/(α+1)
∣∣∣h(t, s)

√
H(t, s) + p(s)

r(s)H(t, s)
∣∣∣α

[H(t, s)]α2/(α+1)
.

From Lemma 4.7.1, we then obtain for t > s ≥ t0∣∣∣∣h(t, s)
√

H(t, s) +
p(s)
r(s)

H(t, s)
∣∣∣∣ |u(s)| − αH(t, s)

|u(s)|
[r(s)]1/α

≤
r(s)
∣∣∣h(t, s)

√
H(t, s) + p(s)

r(s)H(t, s)
∣∣∣α+1

(α + 1)α+1[H(t, s)]α

=
r(s)
∣∣∣h(t, s) + p(s)

r(s)

√
H(t, s)

∣∣∣α+1

(α + 1)α+1[H(t, s)](α−1)/2
.

Hence, (4.146) implies

(4.147)
1

H(t, t0)

∫ t

t0

H(t, s)q(s)ds ≤ u(t0)

+
1

(α + 1)α+1H(t, t0)

∫ t

t0

r(s)
∣∣∣h(t, s) + p(s)

r(s)

√
H(t, s)

∣∣∣α+1

[H(t, s)](α−1)/2
ds

for t ≥ t0. Consequently,

1
H(t, t0)

∫ t

t0

H(t, s)q(s)ds

− 1
(α + 1)α+1H(t, t0)

∫ t

t0

r(s)
∣∣∣h(t, s) + p(s)

r(s)

√
H(t, s)

∣∣∣α+1

[H(t, s)](α−1)/2
ds ≤ u(t0)

for t ≥ t0. Taking the limit superior as t → ∞ in the above, we obtain a contradic-
tion to (4.144), which completes the proof.

As immediate consequences of Theorem 4.7.2 we obtain the following corollaries.

Corollary 4.7.3. If there exists H ∈ Y such that

lim sup
t→∞

1
H(t, t0)

∫ t

t0

⎡⎢⎣r(s)
∣∣∣h(t, s) + p(s)

r(s)

√
H(t, s)

∣∣∣α+1

(α + 1)α+1[H(t, s)](α−1)/2

⎤⎥⎦ ds < ∞

and

lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)q(s)ds = ∞,

then every solution of (4.142) is oscillatory.

 



4.7. OSCILLATION OF HALF-LINEAR EQUATIONS 153

Corollary 4.7.4. Let α = 1 and p(t) ≡ 0, and let the functions h and H be as in
Theorem 4.7.2. If

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)q(s) − r(s)

4
[h(t, s)]2

]
ds = ∞,

then every solution of (4.142) is oscillatory.

With an appropriate choice of the functions H and h, we can derive from Theo-
rem 4.7.2 a number of oscillation criteria for (4.142). Let us consider, for example,
the function H(t, s) defined by

H(t, s) = (t − s)λ, (t, s) ∈ D,

where λ > α is a constant. Clearly, H belongs to the class Y . Furthermore, the
function

h(t, s) = λ(t − s)(λ−2)/2, (t, s) ∈ D

is continuous on [t0,∞) and satisfies condition (4.143). Then, by Theorem 4.7.2,
we obtain the following oscillation criteria.

Corollary 4.7.5. If p(t) ≡ 0 and

lim sup
t→∞

1
tλ

∫ t

t0

[
(t − s)λq(s) − λα+1r(s)

(α + 1)α+1
(t − s)λ−α−1

]
ds = ∞,

then every solution of (4.142) is oscillatory.

Corollary 4.7.6. Suppose p(t) ≡ 0 and there is a function b ∈ C([t0,∞), (0,∞))
such that for some λ > 1,

lim sup
t→∞

1
[B(t)]λ

∫ t

t0

{
[B(t) − B(s)]λq(s) − [b(s)λ]α+1r(s)[B(t) − B(s)]λ−α−1

(α + 1)α+1

}
ds

= ∞,

where B(t) =
∫ t

t0
b(s)ds. Then every solution of (4.142) is oscillatory.

Proof. Let us put
H(t, s) = [B(t) − B(s)]λ, (t, s) ∈ D.

Then with the choice

h(t, s) = λb(t) [B(t) − B(s)](λ−2)/2
, (t, s) ∈ D,

the conclusion follows directly from Theorem 4.7.2.

Theorem 4.7.7. Suppose that there exists H ∈ Y such that

(4.148) 0 < inf
s≥t0

[
lim inf
t→∞

H(t, s)
H(t, t0)

]
≤ ∞

and

(4.149) lim sup
t→∞

1
H(t, t0)

∫ t

t0

⎡⎢⎣r(s)
∣∣∣h(t, s) + p(s)

r(s)

√
H(t, s)

∣∣∣α+1

(α + 1)α+1[H(t, s)](α−1)/2

⎤⎥⎦ ds < ∞.
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If there exists a function φ ∈ C[t0,∞) such that for every T ≥ t0

(4.150) lim sup
t→∞

1
H(t, T )

∫ t

T

⎡⎢⎣H(t, s)q(s) −
r(s)
∣∣∣h(t, s) + p(s)

r(s)

√
H(t, s)

∣∣∣α+1

(α + 1)α+1[H(t, s)](α−1)/2

⎤⎥⎦ ds

≥ φ(T )

and

(4.151)
∫ ∞

t0

[φ+(s)](α+1)/α

[r(s)]1/α
ds = ∞,

where φ+(t) = max{φ(t), 0}, then every solution of (4.142) is oscillatory.

Proof. Suppose that there exists a solution y of (4.142) such that y(t) �= 0 for
t ≥ t0. Define u as in (4.145). As in the proof of Theorem 4.7.2, we can obtain
(4.146). Then, for t > T ≥ t0, we have

lim sup
t→∞

1
H(t, T )

∫ t

T

⎡⎢⎣H(t, s)q(s) −
r(s)
∣∣∣h(t, s) + p(s)

r(s)

√
H(t, s)

∣∣∣α+1

(α + 1)α+1[H(t, s)](α−1)/2

⎤⎥⎦ ds ≤ u(T ).

Therefore, by (4.150), we have

(4.152) φ(T ) ≤ u(T ), T ≥ t0

and

(4.153) lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)q(s)ds ≥ φ(t0).

Define

P (t) =
1

H(t, t0)

∫ t

t0

∣∣∣∣h(t, s)
√

H(t, s) +
p(s)
r(s)

H(t, s)
∣∣∣∣ |u(s)| ds

and

Q(t) =
α

H(t, t0)

∫ t

t0

H(t, s)
|u(s)|(α+1)/α

[r(s)]1/α
ds.

Then, by (4.146) and (4.153), we see that

lim inf
t→∞ [Q(t) − P (t)] ≤ u(t0) − lim sup

t→∞
1

H(t, t0)

∫ t

t0

H(t, s)q(s)ds

≤ u(t0) − φ(t0) < ∞.

Now we claim that

(4.154)
∫ ∞

t0

|u(s)|(α+1)/α

[r(s)]1/α
ds < ∞.

Suppose to the contrary that

(4.155)
∫ ∞

t0

|u(s)|(α+1)/α

[r(s)]1/α
ds = ∞.

By (4.148), there exists a constant k1 > 0 such that

(4.156) inf
s≥t0

[
lim inf
t→∞

H(t, s)
H(t, t0)

]
> k1.
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Let k2 > 0 be arbitrary. Then it follows from (4.155) that there exists t1 ≥ t0 such
that ∫ t

t0

|u(s)|(α+1)/α

[r(s)]1/α
ds ≥ k2

αk1
for all t ≥ t1.

Therefore,

Q(t) =
α

H(t, t0)

∫ t

t0

H(t, s)
d

ds

(∫ s

t0

|u(τ)|(α+1)/α

[r(τ)]1/α
dτ

)
ds

=
α

H(t, t0)

∫ t

t0

(
−∂H

∂s
(t, s)
)(∫ s

t0

|u(τ)|(α+1)/α

[r(τ)]1/α
dτ

)
ds

≥ α

H(t, t0)

∫ t

t1

(
−∂H

∂s
(t, s)
)(∫ s

t0

|u(τ)|(α+1)/α

[r(τ)]1/α
dτ

)
ds

≥ k2

k1H(t, t0)

∫ t

t1

(
−∂H

∂s
(t, s)
)

ds =
k2

k1

H(t, t1)
H(t, t0)

.

By (4.156), there exists t2 ≥ t1 such that

H(t, t1)
H(t, t0)

≥ k1 for all t ≥ t2,

which implies that Q(t) ≥ k2. Since k2 is arbitrary,

(4.157) lim
t→∞Q(t) = ∞.

Next, consider a sequence {Tn}∞n=1 ⊂ (t0,∞) with limn→∞ Tn = ∞ satisfying

lim
n→∞ [Q(Tn) − P (Tn)] = lim inf

t→∞ [Q(t) − P (t)] < ∞.

Then there exists a constant M such that

(4.158) Q(Tn) − P (Tn) ≤ M

for all sufficiently large n ∈ N. Since (4.157) ensures that

(4.159) lim
n→∞Q(Tn) = ∞,

(4.158) implies that

(4.160) lim
n→∞P (Tn) = ∞.

Furthermore, (4.158) and (4.159) lead to the inequality

P (Tn)
Q(Tn)

− 1 ≥ − M

Q(Tn)
> −1

2

for n ∈ N large enough. Thus
P (Tn)
Q(Tn)

>
1
2

for n ∈ N large enough, which together with (4.160) implies

(4.161) lim
n→∞

[P (Tn)]α+1

[Q(Tn)]α
= ∞.
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On the other hand, by Hölder’s inequality, we have for every n ∈ N

P (Tn) =
1

H(Tn, t0)

∫ Tn

t0

∣∣∣∣h(Tn, s)
√

H(Tn, s) +
p(s)
r(s)

H(Tn, s)
∣∣∣∣ |u(s)| ds

=
∫ Tn

t0

(
αα/(α+1)

[H(Tn, t0)]α/(α+1)

|u(s)| [H(Tn, t0)]α/(α+1)

[r(s)]1/(α+1)

)

×

⎛⎝ α−α/(α+1)

[H(Tn, t0)]1/(α+1)

[r(s)]1/(α+1)
∣∣∣h(Tn, s)

√
H(Tn, s) + p(s)

r(s)H(Tn, s)
∣∣∣

[H(Tn, t0)]α/(α+1)

⎞⎠ ds

≤
(

α

H(Tn, t0)

∫ Tn

t0

|u(s)|(α+1)/α
H(Tn, t0)

[r(s)]1/α
ds

) α
α+1

×

⎛⎜⎝ 1
ααH(Tn, t0)

∫ Tn

t0

r(s)
∣∣∣h(Tn, s)

√
H(Tn, s) + p(s)

r(s)H(Tn, s)
∣∣∣α+1

[H(Tn, t0)]α
ds

⎞⎟⎠
1

α+1

,

and accordingly,

[P (Tn)]α+1

[Q(Tn)]α
≤ 1

ααH(Tn, t0)

∫ Tn

t0

r(s)
∣∣∣h(Tn, s)

√
H(Tn, s) + p(s)

r(s)H(Tn, s)
∣∣∣α+1

[H(Tn, t0)]α
ds

=
1

ααH(Tn, t0)

∫ Tn

t0

r(s)
∣∣∣h(Tn, s) + p(s)

r(s)

√
H(Tn, s)

∣∣∣α+1

[H(Tn, t0)](α−1)/2
ds.

So, because of (4.161), we have

lim
n→∞

1
H(Tn, t0)

∫ Tn

t0

r(s)
∣∣∣h(Tn, s) + p(s)

r(s)

√
H(Tn, s)

∣∣∣α+1

[H(Tn, t0)](α−1)/2
ds = ∞,

which gives

lim sup
t→∞

1
H(t, t0)

∫ t

t0

r(s)
∣∣∣h(t, s) + p(s)

r(s)

√
H(t, s)

∣∣∣α+1

[H(t, t0)](α−1)/2
ds = ∞,

contradicting (4.149). Therefore (4.154) holds. Now, from (4.152) we obtain∫ ∞

t0

[φ+(s)](α+1)/α

[r(s)]1/α
ds ≤
∫ ∞

t0

|u(s)|(α+1)/α

[r(s)]1/α
ds < ∞,

which contradicts (4.151). This completes the proof.

The following result is a direct consequence of Theorem 4.7.7 and uses the same
choice of the functions H and h as in Corollary 4.7.5 above.

Corollary 4.7.8. Suppose that there exists a function φ ∈ C[t0,∞) such that
(4.151) along with

lim sup
t→∞

1
tλ

∫ t

t0

r(s)(t − s)λ−α−1

∣∣∣∣λ +
p(s)
r(s)

(t − s)
∣∣∣∣α+1

ds < ∞
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holds and

lim sup
t→∞

1
tλ

∫ t

T

⎡⎢⎣(t − s)λq(s) −
r(s)(t − s)λ−α−1

∣∣∣λ + p(s)
r(s) (t − s)

∣∣∣α+1

(α + 1)α+1

⎤⎥⎦ ds ≥ φ(T )

for all T ≥ t0 and for some λ > α. Then every solution of (4.142) is oscillatory.

Proof. The only thing to be checked is condition (4.148). With the above choice of
the functions H and h, this is fulfilled automatically since

lim
t→∞

H(t, s)
H(t, t0)

= lim
t→∞

(t − s)λ

(t − t0)λ
= 1

for any s ≥ t0.

Theorem 4.7.9. Suppose that there exists a function H ∈ Y such that (4.148)
holds and

(4.162) lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)q(s)ds < ∞.

If there exists φ ∈ C[t0,∞) such that for every T ≥ t0

(4.163) lim inf
t→∞

1
H(t, T )

∫ t

T

⎡⎢⎣H(t, s)q(s) −
r(s)
∣∣∣h(t, s) + p(s)

r(s)

√
H(t, s)

∣∣∣α+1

(α + 1)α+1[H(t, s)](α−1)/2

⎤⎥⎦ ds

≥ φ(T )

and (4.151) hold, then every solution of (4.142) is oscillatory.

Proof. For a nonoscillatory solution y of (4.142), as in the proof of Theorem 4.7.2,
(4.146) and (4.147) are satisfied. As in the proof of Theorem 4.7.7, (4.152) holds
for t ≥ T ≥ t0. Using (4.162), we conclude that

lim sup
t→∞

[Q(t) − P (t)] ≤ u(t0) − lim inf
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)q(s)ds < ∞.

It follows from (4.163) that

φ(t0) ≤ lim inf
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)q(s)ds

− lim inf
t→∞

1
H(t, t0)

∫ t

t0

r(s)
∣∣∣h(t, s) + p(s)

r(s)

√
H(t, s)

∣∣∣α+1

(α + 1)α+1[H(t, s)](α−1)/2
ds.

Hence (4.162) implies

lim inf
t→∞

1
H(t, t0)

∫ t

t0

r(s)
∣∣∣h(t, s) + p(s)

r(s)

√
H(t, s)

∣∣∣α+1

(α + 1)α+1[H(t, s)](α−1)/2
ds < ∞.

We consider a sequence {Tn}∞n=1 ⊂ (t0,∞) with limn→∞ Tn = ∞ such that

lim
n→∞[Q(Tn) − P (Tn)] = lim sup

t→∞
[Q(t) − P (t)].
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Then, using the procedure of the proof of Theorem 4.7.7, we conclude that (4.154)
holds. The remainder of the proof proceeds as in the proof of Theorem 4.7.7 and
hence is omitted here.

Example 4.7.10. Consider the nonlinear differential equation

(4.164)
(
t−β |y′(t)|α−1

y′(t)
)′

− t−β |y′(t)|α−1
y′(t)

+ tγ
(

γ
2 − cos t

t
+ sin t

)
|y(t)|α−1

y(t) = 0

for t ≥ 1, where α, β, γ are arbitrary positive constants and α �= 2. Then, for any
t ≥ 1, we have

∫ t

1

q(s)ds =
∫ t

1

d

ds

(
sγ(2 − cos s)

)
ds = tγ(2 − cos t) − (2 − cos 1) ≥ tγ − k0,

where k0 = 2 − cos 1. Taking H(t, s) = (t − s)2 for t ≥ s ≥ 1, we have

1
t2

∫ t

1

[
(t − s)2q(s) − 1

(α + 1)α+1

|2 − (t − s)|α+1

sβ(t − s)α−1

]
ds

=
1
t2

∫ t

1

[
2(t − s)

(∫ s

1

q(τ)dτ

)
− 1

(α + 1)α+1

|2 − (t − s)|α+1

sβ(t − s)α−1

]
ds

≥ 2
t2

∫ t

1

(t − s)(sγ − k0)ds − 2α+1

(α + 1)α+1t2

∫ t

1

(t − s)1−αds

=
2tγ

(γ + 1)(γ + 2)
+

k1

t2
+

k2

t
− k0 −

1
tα

(
1 − 1

t

)2−α

,

where

k1 =
2

γ + 2
− k0, k2 = 2k0 −

2
γ + 1

, k3 =
2α+1

(α + 1)α+1(2 − α)
.

Consequently, (4.144) holds. Hence, (4.164) is oscillatory by Theorem 4.7.2.

Example 4.7.11. Consider the differential equation

(4.165)
(
tβ |y′(t)|α−1

y′(t)
)′

+ tβ |y′(t)|α−1
y′(t) + tγ cos t |y(t)|α−1

y(t) = 0,

where t ≥ 1 and α, β, γ are constants such that −1 < γ ≤ 1, 0 < α �= 2, α > β,
and γ(α + 1) ≥ β − α. For example, α = 3, β = 1, and γ = 1 satisfy the above
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assumptions. Taking H(t, s) = (t − s)2 for t ≥ s ≥ 1, we find

1
t2

∫ t

1

sβ |2 − (t − s)|α+1

(t − s)α−1
ds ≤ 2α+1

t2

∫ t

1

sβ

(t − s)α−1
ds

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2α+1tβ−2 (t − 1)2−α

2 − α
if β > 0

2α+1

t2
(t − 1)2−α

2 − α
if β < 0

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2α+1tβ−α

2 − α

(
1 − 1

t

)2−α

if β > 0

2α+1

(2 − α)tα

(
1 − 1

t

)2−α

if β < 0.

Therefore, (4.149) holds, and for an arbitrary small constant ε > 0 there exists
t1 ≥ 1 such that for T ≥ t1,

lim sup
t→∞

1
t2

∫ t

1

[
(t − s)2sγ cos s − sβ |2 − (t − s)|α+1

(α + 1)α+1(t − s)α−1

]
ds ≥ −T γ cos T − ε.

Set φ(T ) = −T γ cos T − ε. Then there is N ∈ N such that (2N + 1)π − π/4 > t1
and if n ∈ N,

(2n + 1)π − π

4
≤ T ≤ (2n + 1)π +

π

4
, φ(T ) ≥ δT γ ,

where δ is a small constant. Taking into account that γ(α + 1) ≥ β − α, we obtain∫ ∞

1

[φ+(s)](α+1)/α

[r(s)]1/α
ds ≥

∞∑
n=N

δ(α+1)/α

∫ (2n+1)π+π/4

(2n+1)π−π/4

s[γ(α+1)−β]/αds

≥
∞∑

n=N

δ(α+1)/α

∫ (2n+1)π+π/4

(2n+1)π−π/4

ds

s
= ∞.

Accordingly, all conditions of Theorem 4.7.7 are satisfied, and hence (4.165) is
oscillatory.

4.8. Notes

Theorem 4.2.2 is obtained by Li and Yan [205]. Theorem 4.2.4 is taken from
Li and Agarwal [191]. Theorem 4.3.1 is adopted from Li and Quan [202] and
Theorem 4.3.3 is obtained by Li and Agarwal [191]. Theorem 4.4.7 is based on Li
[179]. Theorem 4.4.9 is taken from Li [262], a special case is obtained by Wong
and Agarwal [278], while Theorems 4.4.12 and 4.4.17 are adopted from Li, Zhang
and Fei [209]. Lemma 4.5.1 is given by Wong and Agarwal [278]. The rest of
Section 4.5 is based on Li [200]. The material of Section 4.6 is adopted from Li
[181] and Li and Fan [195]. The results in Section 4.7 are given by Li, Zhong, and
Fan [213].

 



CHAPTER 5

Second Order Delay Differential Equations

5.1. Introduction

In this chapter we investigate the existence of nonoscillatory solutions of second
order delay differential equations.

In Section 5.2 we present results on the existence of nonoscillatory solutions
of delay differential equations. In Section 5.3 we give a classification scheme for
eventually positive solutions of a class of second order nonlinear iterative differen-
tial equations, and provide necessary and/or sufficient conditions for the existence
of solutions. In Sections 5.4 and 5.5 we introduce the classification of nonoscilla-
tory solutions for second order nonlinear neutral differential equations under the
conditions

∫∞
ds/r(s) < ∞ and

∫∞
ds/r(s) = ∞. Various existence results of

nonoscillatory solutions of different type are given, respectively.

5.2. Nonoscillation of Half-Linear Equations

In this section we are interested in the existence and asymptotic behavior of
nonoscillatory solutions of second order half-linear functional differential equations
of the form

(5.1)
(
|x′(t)|α−1

x′(t)
)′

=
n∑

i=1

pi(t) |x (gi(t))|α−1
x (gi(t)) ,

where α > 0 is a constant, pi : [0,∞) → [0,∞) are continuous functions such that
sup{pi(t) : t ≥ Tx} > 0 for any Tx ≥ a, and gi : [0,∞) → R are continuously
differentiable functions with gi(t) < t, g′i(t) ≥ 0 for t ≥ a, and limt→∞ gi(t) = ∞,
1 ≤ i ≤ n.

By a solution of (5.1) we mean a function x ∈ C1[Tx,∞), Tx ≥ a, which
has the property |x′|α−1

x ∈ C1[Tx,∞) and satisfies (5.1) for all sufficiently large
t ≥ Tx. Our attention will be restricted to those solutions x of (5.1) which satisfy
sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. It is assumed that (5.1) does possess such a
solution.

If x is a nonoscillatory solution of (5.1), then there exists t0 > a such that either

(5.2) x(t)x′(t) > 0, t ≥ t0

or

(5.3) x(t)x′(t) < 0, t ≥ t0.

If (5.2) holds, then x is unbounded and the limit x′(∞) = limt→∞ x′(t), either
finite or infinite, exists. If (5.3) holds, then x is bounded and the finite limit
x(∞) = limt→∞ x(t) exists.

161
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In what follows we need only to consider eventually positive solutions of (5.1),
since if x satisfies (5.1), then so does −x. Let x be an eventually positive solu-
tion of (5.1) satisfying (5.2) and having a finite limit x′(∞) = limt→∞ x′(t) > 0.
Integrating (5.1) twice yields

(5.4) x(t) = x(t1) +
∫ t

t1

(
[x′(∞)]α −

∫ ∞

s

n∑
i=1

pi(r) [x (gi(r))]
α

dr

) 1
α

ds, t ≥ t1,

where t1 > t0 is chosen so that inft≥t1 gi(t) ≥ t0, 1 ≤ i ≤ n. Let x be an eventually
positive solution of (5.1) satisfying (5.3). Then we have

(5.5) x(t) = x(∞) +
∫ ∞

t

(∫ ∞

s

n∑
i=1

pi(r) [x (gi(r))]
α

dr

) 1
α

ds, t ≥ t1,

after integrating (5.1) twice from t to ∞.

Based on these integral representations (5.4) and (5.5), we can prove the follow-
ing existence theorems.

Theorem 5.2.1. Equation (5.1) has a nonoscillatory solution x such that

lim
t→∞

x(t)
t

= constant �= 0

if and only if

(5.6)
∫ ∞

pi(t)[gi(t)]αdt < ∞ for all i ∈ {1, . . . , n}.

Proof. (The “only if” part) Let x be a nonoscillatory solution of (5.1) satisfying
limt→∞

x(t)
t = c > 0. Then from (5.4) we see that∫ ∞ n∑

i=1

pi(t) [x(gi(t))]
α

dt < ∞.

This, combined with the relation limt→∞
x(gi(t))

gi(t)
= c, 1 ≤ i ≤ n, immediately

implies that (5.6) holds. Let k > 0 be arbitrary and fixed and take T > a so large
that

(5.7) T∗ = min
1≤i≤n

{
inf
t≥T

gi(t)
}

≥ a

and
n∑

i=1

∫ ∞

T

pi(t)[gi(t)]αdt ≤ 2α − 1
2α

.

Consider the set X ⊂ C[T∗,∞) and the mapping F : X → C[T∗,∞) defined by

X =
{

x ∈ C[T∗,∞) :
k

2
(t − T ) ≤ x(t) ≤ k(t − T ), t ≥ T, x(t) = 0, T∗ ≤ t ≤ T

}
and

(Fx)(t) =

⎧⎪⎪⎨⎪⎪⎩
∫ t

T

(
kα −
∫ ∞

s

n∑
i=1

pi(r) [x(gi(r))]
α

dr

) 1
α

ds if t ≥ T,

0 if T∗ ≤ t < T.
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It is clear that X is a closed convex subset of the Fréchet space C[T,∞) of continu-
ous functions on [T∗,∞) with the usual metric topology and that F is well defined
and continuous on X. It can be shown without difficulty that F maps X into itself
and F (X) is relatively compact in C[T∗,∞). Therefore, by the Schauder–Tychonov
fixed point theorem (Theorem 1.4.25), F has a fixed element x ∈ X, which satisfies

x(t) =
∫ t

T

(
kα −
∫ ∞

s

n∑
i=1

pi(r) [x(gi(r))]
α

dr

)1/α

ds, t ≥ T.

By differentiating this equation, we see that x is a solution of (5.1) on [T,∞) and
limt→∞

x(t)
t = limt→∞ x′(t) = k.

Theorem 5.2.2. Equation (5.1) has a nonoscillatory solution x such that

lim
t→∞x(t) = constant �= 0

if and only if

(5.8)
∫ ∞(∫ ∞

t

pi(s)ds

)1/α

dt < ∞ for all i ∈ {1, . . . , n} .

Proof. Note that our assumptions imply (5.3), and then the “only if” part follows
readily from (5.5). To prove the “if” part, suppose that (5.8) is satisfied. Choose
T > a so that (5.7) holds and∫ ∞

T

(∫ ∞

t

n∑
i=1

pi(s)ds

)1/α

dt ≤ 1
2
.

Define Y ⊂ C[T∗,∞) and G : Y → C[T∗,∞) by

Y =
{

y ∈ C[T∗,∞) : k ≤ y(t) ≤ 2k, t ≥ T∗
}

,

k > 0 being a fixed constant, and

(Gy)(t) =

⎧⎪⎪⎨⎪⎪⎩k +
∫ ∞

t

(∫ ∞

s

n∑
i=1

pi(r) [y(gi(r))]
α

dr

) 1
α

ds if t ≥ T,

(Gy)(T ) if T∗ ≤ t < T.

As in the proof of Theorem 5.2.1 one can verify that G maps Y into a relatively
compact subset of Y , so that there exists y ∈ Y such that

y(t) = k +
∫ ∞

t

(∫ ∞

s

n∑
i=1

pi(r) [y(gi(r))]
α

dr

)1/α

ds, t ≥ T.

Differentiating this equation twice, one sees that y satisfies (5.1) on [T,∞). Since
y(t) → k as t → ∞, y is a solution of (5.1) with the desired asymptotic property.
This completes the proof.

It remains to discuss the existence of an unbounded nonoscillatory solution x of
(5.1) with the property limt→∞

|x(t)|
t = ∞ and of a bounded solution x of (5.1) with

the property limt→∞ x(t) = 0. Below we confine our attention to the case where
at least one gi is retarded and show that some sufficient conditions can be derived
under which (5.1) has a nonoscillatory solution that tends to zero. Our derivation
is based on the following theorem which is essentially due to Philos [239].

 



164 5. SECOND ORDER DELAY DIFFERENTIAL EQUATIONS

Theorem 5.2.3. Suppose that there exists i0 ∈ {1, 2, . . . , n} such that

(5.9) gi0(t) < t and pi0(t) ≥ 0 for t ≥ a.

Suppose, in addition, that there exists a positive decreasing function φ on [t0,∞)
satisfying

(5.10) φ(t) ≥
∫ ∞

t

(∫ ∞

s

n∑
i=1

pi(r) [φ(gi(r))]
α

dr

)1/α

ds, t ≥ t0,

where t0 is chosen so that inft≥t0 gi(t) ≥ a for all 1 ≤ i ≤ n. Then (5.1) has a
nonoscillatory solution tending to zero as t → ∞.

Proof. Let Z denote the set

Z =
{

z ∈ C[t0,∞) : 0 ≤ z(t) ≤ φ(t), t ≥ t0

}
.

With each z ∈ Z we associate the function z̃ ∈ C[a,∞) defined by

(5.11) z̃(t) =

{
z(t) if t ≥ t0,

z(t0) + [φ(t) − φ(t0)] if a ≤ t < t0.

Define the mapping H : Z → C[t0,∞) by

(Hz)(t) =
∫ ∞

t

(∫ ∞

s

n∑
i=1

pi(r) [z̃(gi(r))]
α

dr

)1/α

ds, t ≥ t0.

Then it can be shown that H is a continuous mapping which sends Z into a relatively
compact subset of Z. It follows therefore that there exists z ∈ Z such that z = Hz,
i.e.,

z(t) =
∫ ∞

t

(∫ ∞

s

n∑
i=1

pi(r) [z̃(gi(r))]
α

dr

)1/α

ds, t ≥ t0.

Differentiating the above twice shows that(
− [−z′(t)]α

)′
=

n∑
i=1

pi(t) [z̃(gi(t))]
α

, t ≥ t0,

which, in view of (5.11), implies that z(t) is a solution of (5.1) for all sufficiently
large t. That z(t) > 0 for t ≥ t0 can be seen exactly as in Philos [239, page 170],
and so the details are omitted. This completes the proof.

In order to apply Theorem 5.2.3 to construct decaying nonoscillatory solutions
of (5.1), we distinguish the following three cases:∫ ∞ n∑

i=1

pi(t)dt < ∞ and
∫ ∞(∫ ∞

t

n∑
i=1

pi(s)ds

)1/α

dt < ∞,(5.12)

∫ ∞ n∑
i=1

pi(t)dt < ∞ but
∫ ∞(∫ ∞

t

n∑
i=1

pi(s)ds

)1/α

dt = ∞,(5.13)

and ∫ ∞ n∑
i=1

pi(t)dt = ∞.(5.14)
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The condition (5.12), which is nothing else but (5.8), always guarantees the exis-
tence of a decaying nonoscillatory solution of (5.1).

Theorem 5.2.4. Suppose that (5.9) holds for some i0 ∈ {1, 2, . . . , n}. If (5.8) is
satisfied, then (5.1) possesses a nonoscillatory solution tending to zero as t → ∞.

Proof. Let t0 be large enough so that min1≤i≤n{inft≥t0 gi(t)} ≥ max{a, 1} and

(5.15)
∫ ∞

t0

(∫ ∞

s

n∑
i=1

pi(r)dr

)1/α

ds ≤ 1
2
.

Choose φ(t) = 1 + 1
t . Using (5.15), we see that φ satisfies (5.10):

∫ ∞

t

(∫ ∞

s

n∑
i=1

pi(r) [φ(gi(r))]
α

dr

)1/α

ds

=
∫ ∞

t

(∫ ∞

s

n∑
i=1

pi(r)
(

1 +
1

gi(r)

)α

dr

)1/α

ds

≤ 2
∫ ∞

t

(∫ ∞

s

n∑
i=1

pi(r)dr

)1/α

ds

≤ 1 ≤ φ(t)

for t ≥ t0. The conclusion follows from Theorem 5.2.3.

We now state existence theorems of decaying nonoscillatory solutions which are
applicable to the cases (5.13) and (5.14).

Theorem 5.2.5. Suppose that (5.9) holds for some i0 ∈ {1, 2, . . . , n} and that

(5.16) lim sup
t→∞

∫ t

g∗(t)

(∫ ∞

s

n∑
i=1

pi(r)dr

)1/α

ds <
1
e
,

where g∗(t) = min1≤i≤n gi(t). Then (5.1) possesses a nonoscillatory solution tend-
ing to zero as t → ∞.

Proof. We put

P (t) =

(∫ ∞

t

n∑
i=1

pi(s)ds

)1/α

and choose t0 > 0 so that inft≥t0 g∗(t) ≥ a and

(5.17) Pt0 := sup
t≥t0

∫ t

g∗(t)

P (s)ds ≤ 1
e
.

Define

φ(t) = exp
(
− 1

Pt0

∫ t

a

P (s)ds

)
.
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Since, for 1 ≤ i ≤ n,

φ (gi(t)) = exp

(
1

Pt0

∫ t

gi(t)

P (s)ds

)
exp
(
− 1

Pt0

∫ t

a

P (s)ds

)

≤ e exp
(
− 1

Pt0

∫ t

a

P (s)ds

)
= eφ(t)

for t ≥ t0, we see, in view of (5.17), that φ satisfies (5.10):

∫ ∞

t

(∫ ∞

s

n∑
i=1

pi(r) [φ(gi(r))]
α

dr

)1/α

ds ≤ e

∫ ∞

t

P (s)φ(s)ds

= e

∫ ∞

t

P (s) exp
(
− 1

Pt0

∫ s

a

P (r)dr

)
ds

≤ ePt0 exp
(
− 1

Pt0

∫ t

a

P (s)ds

)
= ePt0φ(t) ≤ φ(t)

for t ≥ t0. By Theorem 5.2.3, (5.1) has a decaying nonoscillatory solution.

Theorem 5.2.6. Suppose that (5.9) holds for some i0 ∈ {1, 2, . . . , n}. Further,
suppose that there exists t0 > a such that inft≥t0 g∗(t) ≥ a and

(5.18) P ′
t0 := inf P (t) > 0 and sup

t≥t0

∫ t

g∗(t)

n∑
i=1

pi(s)ds ≤ α + 1
e

(
P ′

t0

α

)α/(α+1)

.

Then (5.1) possesses a nonoscillatory solution tending to zero as t → ∞.

Proof. Put

Qt0 = sup
t≥t0

∫ t

g∗(t)

n∑
i=1

pi(s)ds and φ(t) = exp

(
−α + 1

αQt0

∫ t

a

n∑
i=1

pi(s)ds

)
.

We see that

φ (gi(t)) ≤ exp
(

α + 1
α

)
φ(t), t ≥ t0, 1 ≤ i ≤ n,

and hence that∫ ∞

t

n∑
i=1

pi(s) [φ(gi(s))]
α

ds ≤ eα+1

∫ ∞

t

(
n∑

i=1

pi(s)

)
[φ(s)]αds

= eα+1

∫ ∞

t

n∑
i=1

pi(s) exp

(
−α + 1

Qt0

∫ s

a

n∑
i=1

pi(r)dr

)
ds

≤ Qt0

α + 1
eα+1 exp

(
−α + 1

Qt0

∫ t

a

n∑
i=1

pi(s)ds

)
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for t ≥ t0. Consequently, we obtain∫ ∞

t

(∫ ∞

s

n∑
i=1

pi(r) [φ(gi(r))]
α

dr

)1/α

ds

≤
(

Qt0

α + 1

)1/α

e(α+1)/α

∫ ∞

t

exp

(
−α + 1

αQt0

∫ s

a

n∑
i=1

pi(r)dr

)
ds

≤ 1
P ′

t0

(
Qt0

α + 1

)1/α

e(α+1)/α

∫ ∞

t

n∑
i=1

pi(s) exp

(
−α + 1

αQt0

∫ s

a

n∑
i=1

pi(r)dr

)
ds

≤ αQt0

(α + 1)P ′
t0

(
Qt0

α + 1

)1/α

e(α+1)/α exp

(
−α + 1

αQt0

∫ t

a

n∑
i=1

pi(s)ds

)
≤ φ(t)

for t ≥ t0, where (5.18) has been used. This establishes the existence of a strictly
decreasing positive function satisfying (5.10), and so the proof is complete via
Theorem 5.2.3.

Example 5.2.7. Consider the equation

(5.19)
(
|x′(t)|x′(t)

)′
= t−λ

∣∣∣∣x( t

θ

)∣∣∣∣x( t

θ

)
,

where λ > 1 and θ > 1 are constants. This is a special case of (5.1) in which α = 2,
n = 1, p1(t) = t−λ, and g1(t) = t

θ .

(i) Let λ > 3. Then both (5.6) and (5.7) hold for (5.19), and so by Theo-
rem 5.2.1 and Theorem 5.2.2, (5.19) has nonoscillatory solutions x1 and x2

such that limt→∞
x1(t)

t = constant �= 0 and limt→∞ x2(t) = constant �= 0
regardless of the values of θ > 0.

(ii) Let λ = 3. An easy computation shows that (5.16) is satisfied for (5.19) if
1 < θ < exp

(√
2

e

)
, since∫ t

g1(t)

(∫ ∞

s

p1(r)dr

)1/α

ds =
∫ t

t/θ

(∫ ∞

s

dr

r3

)1/2

ds = 21/2 ln θ.

From Theorem 5.2.5 it follows that, for such a θ, (5.19) possesses a nonoscil-
latory solution tending to zero as t → ∞.

(iii) Let 1 < λ < 3. Then (5.18) is satisfied for (5.19) since Pt0 = 1 and∫ t

g1(t)

p1(s)ds =
∫ t

t/θ

ds

sλ
=

θλ−1 − 1
λ − 1

t1−λ → 0 as t → ∞.

Therefore there exists a decaying nonoscillatory solution of (5.19) by Theo-
rem 5.2.6.

5.3. Classification Schemes for Iterative Equations

In this section we are concerned with the general class of second order nonlinear
differential equations

(5.20)
(
r(t) [x′(t)]σ

)′
+ f
(
t, x(t), x (Δ (t, x(t)))

)
= 0
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with the conditions
∫∞
0

ds/[r(s)]1/σ = ∞ and
∫∞
0

ds/[r(s)]1/σ < ∞, respectively.
We give a classification scheme for eventually positive solutions of this equation
in terms of their asymptotic magnitude, and provide necessary and/or sufficient
conditions for the existence of solutions.

Let T ∈ R+ = [0,∞). Define T−1 = inf{Δ(t, x) : t ≥ T, x ∈ R}.
Definition 5.3.1. The function x is called a solution of the differential equation
(5.20) in the interval [T,∞), if x(t) is defined for t ≥ T−1, is twice differentiable,
and satisfies (5.20) for t ≥ T .

Definition 5.3.2. The solution x of (5.20) is called regular, if it is defined on some
interval [Tx,∞) and sup{|x(t)| : t ≥ T} > 0 for t ≥ Tx.

Throughout this section, we assume that the following conditions hold:

(H1) r ∈ C(R+, R+) and r(t) > 0, t ∈ R+.
(H2) f ∈ C(R+ × R2, R+).
(H3) There exists T ∈ R+ such that uf(t, u, v) > 0 for t ≥ T , uv > 0, and

f(t, u, v) is nondecreasing in u and v for each fixed t ≥ T .
(H4) Δ ∈ C(R+ × R, R).
(H5) There exist a function Δ∗ ∈ C(R+, R) and T ∈ R+ such that

limt→∞ Δ∗(t) = ∞ and Δ∗(t) ≤ Δ(t, x) for t ≥ T , x ∈ R.
(H6) There exist a function Δ∗ ∈ C(R+, R) and T ∈ R+ such that Δ∗(t) is

nondecreasing for t ≥ T and Δ(t, x) ≤ Δ∗(t) ≤ t for t ≥ T , x ∈ R.
(H7) σ is a quotient of odd integers.

For the sake of convenience, we will employ the following notation:

R(t) =
∫ ∞

t

ds

[r(s)]1/σ
, R(T, t) =

∫ t

T

ds

[r(s)]1/σ
, R0 =

∫ ∞

0

ds

[r(s)]1/σ
.

Lemma 5.3.3. Suppose x is an eventually positive solution of (5.20). Then x′(t)
is of constant sign eventually.

Proof. Assume that there exists t0 ≥ 0 such that x(t) > 0 for t ≥ t0. It follows from
(H6) that there exists t1 ≥ t0 such that x(Δ(t, x(t))) > 0 for t ≥ t1. From (H4)
and (5.20) we conclude that (r(x′)σ)′(t) < 0 for t ≥ t1. If x′(t) is not eventually
positive, then there exists t2 ≥ t1 such that x′(t2) ≤ 0. Therefore, r(t2)[x′(t2)]σ ≤ 0.
Integrating (5.20) from t2 to t provides

r(t) [x′(t)]σ − r(t2) [x′(t2)]
σ +
∫ t

t2

f
(
s, x(s), x(Δ(s, x(s)))

)
ds = 0.

Thus

r(t) [x′(t)]σ ≤ −
∫ t

t2

f
(
s, x(s), x(Δ(s, x(s)))

)
ds < 0

for t ≥ t2. This shows that x′(t) < 0 for t ≥ t2. The proof is complete.

As a consequence, an eventually positive solution x of (5.20) either satisfies
x(t) > 0 and x′(t) > 0 for all large t, or x(t) > 0 and x′(t) < 0 for all large t.

Lemma 5.3.4. Suppose that

R0 =
∫ ∞

0

ds

[r(s)]1/σ
< ∞

and that x is an eventually positive solution of (5.20). Then limt→∞ x(t) exists.
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Proof. If not, then we have limt→∞ x(t) = ∞ by Lemma 5.3.3. On the other hand,
we have noted that r(x′)σ is monotone decreasing eventually. Therefore, there
exists t1 ≥ 0 such that

r(t) [x′(t)]σ ≤ r(t1) [x′(t1)]
σ for all t ≥ t1.

Then

(5.21) x′(t) ≤ [r(t1)]
1/σ

x′(t1)
1

[r(t)]1/σ

for t ≥ t1, and after integrating,

x(t) − x(t1) ≤ [r(t1)]
1/σ

x′(t1)R(t1, t)

for t ≥ t1. But this is contrary to the fact that limt→∞ x(t) = ∞ and the assumption
that R0 < ∞. The proof is complete.

Lemma 5.3.5. Suppose that R0 < ∞. Let x be an eventually positive solution of
(5.20). Then there exist a1 > 0, a2 > 0, and T ≥ 0 such that a1R(t) ≤ x(t) ≤ a2

for t ≥ T .

Proof. By Lemma 5.3.4, there exists t0 ≥ 0 such that x(t) ≤ a2 for some number
a2 > 0. We know that x′(t) is of constant sign eventually by Lemma 5.3.3. If
x′(t) > 0 eventually, then R(t) ≤ x(t) eventually because limt→∞ R(t) = 0. If
x′(t) < 0 eventually, then since r(t)[x′(t)]σ is also eventually decreasing, we may
assume that x′(t) < 0 and r(t)[x′(t)]σ is monotone decreasing for t ≥ T . By (5.21),
we have

x(s) − x(t) ≤ [r(T )]1/σx′(T )R(t, s), s ≥ t ≥ T.

Taking the limit as s → ∞ on both sides of the above inequality, we find

x(t) ≥ −[r(T )]1/σx′(T )R(t)

for t ≥ T . The proof is complete.

Our next result is concerned with necessary conditions for the function f to hold
in order that an eventually positive solution of (5.20) exists.

Lemma 5.3.6. Suppose that R0 < ∞ and that x is an eventually positive solution
of (5.20). Then∫ ∞

0

(
1

r(t)

∫ t

0

f
(
s, x(s), x(Δ(s, x(s)))

)
ds

)1/σ

dt < ∞.

Proof. In view of Lemma 5.3.3, we may assume without loss of generality that
x(t) > 0, and x′(t) > 0 or x′(t) < 0 for t ≥ 0. From (5.20), we have

r(t) [x′(t)]σ − r(0) [x′(0)]σ +
∫ t

0

f
(
s, x(s), x (Δ(s, x(s)))

)
ds = 0.

Thus, if x′(t) > 0 for t ≥ 0, then we have∫ u

0

1
[r(t)]1/σ

(∫ t

0

f
(
s, x(s), x (Δ(s, x(s)))

)
ds

)1/σ

dt

≤ [r(0)]1/σx′(0)
∫ u

0

1
[r(t)]1/σ

dt
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for u ≥ 0, and∫ u

0

1
[r(t)]1/σ

(∫ t

0

f
(
s, x(s), x(Δ(s, x(s)))

)
ds

)1/σ

dt ≤ [r(0)]1/σx′(0)R0 < ∞.

If x′(t) < 0 for t ≥ 0, then we have∫ u

0

1
[r(t)]1/σ

(∫ t

0

f
(
s, x(s), x(Δ(s, x(s)))

)
ds

)1/σ

dt

≤ −
∫ ∞

0

x′(s)ds ≤ x(0) < ∞.

The proof is complete.

We now consider the case when R0 = ∞.

Lemma 5.3.7. Suppose that

(5.22) R0 =
∫ ∞

0

ds

[r(s)]1/σ
= ∞.

Let x be an eventually positive solution of (5.20). Then x′(t) is eventually positive
and there exist c1 > 0, c2 > 0, and T ≥ 0 such that c1 ≤ x(t) ≤ c2R(t, T ) for t ≥ T .

Proof. In view of Lemma 5.3.3, x′(t) is of constant sign eventually. If x(t) > 0 and
x′(t) < 0 for t ≥ T , then we have

r(t) [x′(t)]σ ≤ r(T ) [x′(T )]σ < 0.

Thus
x′(t) ≤ [r(T )]1/σx′(T )

1
[r(t)]1/σ

, t ≥ T,

which after integrating yields

x(t) − x(T ) ≤ [r(T )]1/σx′(T )
∫ t

T

ds

[r(s)]1/σ
.

The left-hand side tends to −∞ in view of (5.22), which is a contradiction. Thus
x′(t) is eventually positive, and thus x(t) ≥ c1 eventually for some constant c1 > 0.
Furthermore, the same reasoning just used also leads to

x(t) ≤ x(T0) + [r(T0)]1/σx′(T0)
∫ t

T0

ds

[r(s)]1/σ

for t ≥ T0, where T0 is a number such that x(t) > 0 and x′(t) > 0 for t ≥ T0. Since
R0 = ∞, there exists c2 > 0 such that x(t) ≤ c2R(T, t) for all large t. The proof is
complete.

We have shown that when x is an eventually positive solution of (5.20), then
r(x′)σ is eventually decreasing and x′(t) is eventually of constant sign. We have
also shown that under the assumption that R0 < ∞, x(t) must converge to some
(nonnegative) constant. As a consequence, under the condition R0 < ∞, we may
now classify an eventually positive solution x of (5.20) according to the limits of
the functions x and r(x′)σ. For this purpose, we first denote the set of eventually
positive solutions of (5.20) by P . We then single out eventually positive solutions of
(5.20) which converge to zero or to positive constants, and denote the corresponding
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subsets by P0 and Pα respectively. But for any x ∈ Pα, r(t)[x′(t)]σ either tends to
a finite limit or to −∞, so we can further partition Pα into P β

α and P−∞
α .

Theorem 5.3.8. Suppose R0 < ∞. Then any eventually positive solution of (5.20)
must belong to one of the following classes:

P0 =
{

x ∈ P : lim
t→∞x(t) = 0

}
,

P β
α =
{

x ∈ P : lim
t→∞x(t) = α > 0, lim

t→∞ r(t) [x′(t)]σ = β
}

,

or

P−∞
α =

{
x ∈ P : lim

t→∞x(t) = α > 0, lim
t→∞ r(t) [x′(t)]σ = −∞

}
.

To justify the above classification scheme, we now derive several existence the-
orems.

Theorem 5.3.9. Suppose R0 < ∞. Then a necessary and sufficient condition for
(5.20) to have an eventually positive solution x ∈ Pα is that for some C > 0,

(5.23)
∫ ∞

0

(
1

r(t)

∫ t

0

f (s, C,C) ds

)1/σ

dt < ∞.

Proof. Let x be any eventually positive solution of (5.20) with limt→∞ x(t) = c > 0.
Thus, in view of (H6), there exist C1 > 0, C2 > 0, and T ≥ 0 such that

C1 ≤ x(t) ≤ C2 and C1 ≤ x(Δ(t, x(t))) ≤ C2 for t ≥ T.

On the other hand, using Lemma 5.3.6 we have∫ ∞

T

(
1

r(t)

∫ t

0

f
(
s, x(s), x(Δ(s, x(s)))

)
ds

)1/σ

dt < ∞.

Since f(t, u, v) is nondecreasing in u and v for each fixed t, we have∫ ∞

T

(
1

r(t)

∫ t

0

f (s, C1, C1) ds

)1/σ

dt < ∞.

Conversely, let a = C/2. In view of (5.23), we may choose T ≥ 0 so large that∫ ∞

T

(
1

r(t)

∫ t

0

f (s, C,C) ds

)1/σ

dt < a.

Define the set

Ω =
{

x ∈ C([T−1,∞), R) : a ≤ x(t) ≤ 2a, t ≥ T−1

}
.

Then Ω is a bounded, convex, and closed subset of C([T−1,∞), R). Let us further
define an operator F : Ω → C([T−1,∞), R) by

Fx(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a +
∫ ∞

t

(
1

r(s)

∫ s

0

f
(
u, x(u), x(Δ(u, x(u)))

)
du

) 1
σ

ds

if t ≥ T,

Fx(T ) if T−1 ≤ t < T.
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The mapping F has the following properties. F maps Ω into Ω. Indeed, if x ∈ Ω,
then

a ≤ Fx(t) = a +
∫ ∞

t

(
1

r(s)

∫ s

0

f
(
u, x(u), x(Δ(u, x(u)))

)
du

)1/σ

ds

≤ a +
∫ ∞

t

(
1

r(s)

∫ s

0

f (u, C,C) du

)1/σ

ds ≤ 2a.

Next, we show that F is continuous. To see this, let ε > 0. Choose M ≥ T so large
that

(5.24)
∫ ∞

t

(
1

r(s)

∫ s

0

f (u, C,C) du

)1/σ

ds <
ε

2
for t ≥ M.

Let {x(n)} ⊂ Ω be a sequence such that x(n) → x as n → ∞. Since Ω is closed, we
have x ∈ Ω. Furthermore, for any s ≥ t ≥ M ,∣∣∣Fx(n)(t) − Fx(t)

∣∣∣
≤
∫ ∞

t

(
1

r(s)

∫ s

0

f (u, C,C) du

)1/σ

ds +
∫ ∞

t

(
1

r(s)

∫ s

0

f (u, C,C) du

)1/σ

ds

= 2
∫ ∞

t

(
1

r(s)

∫ s

0

f (u, C,C) du

)1/σ

ds < ε.

For T ≤ t ≤ s ≤ M ,∣∣∣Fx(n)(t) − Fx(t)
∣∣∣

≤
∫ ∞

M

(
1

r(s)

∫ s

0

f(u, C, C)du

)1/σ

ds +
∫ ∞

M

(
1

r(s)

∫ s

0

f(u, C,C)du

)1/σ

ds

+
∫ M

t

(
1

r(s)

∫ s

0

f(u, C,C)du

)1/σ

ds −
∫ M

s

(
1

r(s)

∫ s

0

f(u, C, C)du

)1/σ

ds

≤ ε +
∫ s

t

(
1

r(s)

∫ s

0

f(u, C, C)du

)1/σ

ds

≤ ε + max
T≤u≤M

1
r(u)

∫ u

0

f(v, C,C)dv |s − t|

≤ ε + C0 |s − t| < 2ε

if

|s − t| <
ε

C0
, where C0 = max

T≤u≤M

1
r(u)

∫ u

0

f(v, C,C)dv.

Also, for T−1 ≤ t ≤ s < T , ∣∣∣Fx(n)(t) − Fx(t)
∣∣∣ = 0.

These statements show that
∥∥Fx(n) − Fx

∥∥ tends to zero, i.e., F is continuous.
When s, t ≥ M , by (5.24) we have

|Fx(s) − Fx(t)| ≤
∫ ∞

t

(
1

r(s)

∫ s

0

f(u, C,C)du

)1/σ

ds

+
∫ ∞

t

(
1

r(s)

∫ s

0

f(u, C,C)du

)1/σ

ds < ε,
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which holds for any x ∈ Ω. Therefore, FΩ is precompact. In view of Schauder’s
fixed point theorem, we see that there exists x∗ ∈ Ω such that Fx∗ = x∗. It is
easy to check that x∗ is an eventually positive solution of (5.20). The proof is
complete.

Theorem 5.3.10. Suppose R0 < ∞. A necessary and sufficient condition for
(5.20) to have an eventually positive solution x ∈ P β

α is that (5.23) holds for some
C > 0 and that for some D > 0,

(5.25)
∫ ∞

0

f(t, D, D)dt < ∞.

Proof. If x ∈ P β
α is an eventually positive solution, then, in view of Theorem

5.3.9, we see that (5.23) holds. Furthermore, as in the proof of Theorem 5.3.9,
0 < C1 ≤ x(t) ≤ C2 and C1 ≤ x(Δ(t, x(t))) ≤ C2 for t ≥ T . In view of (5.20), we
see that ∫ ∞

T

f(s, C1, C1)ds ≤
∫ ∞

T

f
(
s, x(s), x (Δ(s, x(s)))

)
ds

= r(T ) [x′(T )]σ − lim
t→∞ r(t) [x′(t)]σ < ∞.

Conversely, in view of (5.25), we can choose T ≥ 0 such that∫ ∞

T

f(t, D, D)dt <

(
D

2R0

)σ

.

We define the subset Ω of C([T−1,∞), R) by

Ω =
{

x ∈ C([T−1,∞), R) :
D

2
≤ x(t) ≤ D, t ≥ T−1

}
.

Then Ω is a bounded, convex, and closed subset of C([T−1,∞), R). In view of R0

and (5.25), we can further define an operator F : Ω → C([T−1,∞), R) as

Fx(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D −
∫ ∞

t

(
1

r(s)

∫ ∞

s

f
(
u, x(u), x (Δ(u, x(u)))

)
du

) 1
σ

ds

if t ≥ T,

Fx(T ) if T−1 ≤ t < T.

Then arguments similar to those in the proof of Theorem 5.3.9 show that F has a
fixed point u which satisfies

r(t)[u′(t)]σ =
∫ ∞

t

f
(
s, u(s), u (Δ(s, u(s)))

)
ds, t ≥ T.

Hence limt→∞ r(t)[u′(t)]σ = 0 as required. Choose T ≥ 0 such that∫ ∞

T

f(t,D, D)dt <

(
D

4R0

)σ

and R(t) <

(
D

4R0

)σ

for t ≥ T , and let

Fx(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D −
∫ ∞

t

(
1

r(s)
+

1
r(s)

∫ s

0

f
(
u, x(u), x (Δ(u, x(u)))

)
du

) 1
σ

ds

if t ≥ T,

Fx(T ) if T−1 ≤ t < T.
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Then under the same conditions (5.23) and (5.25), we can show that F has a fixed
point u which satisfies limt→∞ u(t) = D > 0 and

r(t)[u′(t)]σ = 1 +
∫ ∞

t

f
(
s, u(s), u (Δ(s, u(s)))

)
ds, t ≥ T.

Therefore, limt→∞ r(t)[u′(t)]σ = 1 > 0, and the proof is complete.

In view of Theorem 5.3.10, the following result is obvious.

Theorem 5.3.11. Suppose R0 < ∞. A necessary and sufficient condition for
(5.20) to have an eventually positive solution x ∈ P−∞

α is that (5.23) holds for
some C > 0 and that for any D > 0,∫ ∞

0

f(t, D, D)dt = ∞.

Our next result concerns the existence of eventually positive solutions in P0.

Theorem 5.3.12. Suppose R0 < ∞ and σ = 1. If for some C > 0,

(5.26)
∫ ∞

0

f
(
t, CR(t), CR(Δ∗(t))

)
dt < ∞,

then (5.20) has an eventually positive solution in P0. Conversely, if the equa-
tion (5.20) has an eventually positive solution x such that limt→∞ x(t) = 0 and
limt→∞ r(t)[x′(t)]σ = d �= 0, then for some C > 0, (5.26) holds.

Proof. Suppose (5.26) holds. Then there exists T ≥ 0 such that∫ ∞

t

f
(
s, CR(s), CR(Δ∗(s))

)
ds <

C

2
for t ≥ T.

Consider the equation

x(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
R(t)
(

C

2
+
∫ t

T

f
(
s, x(s), x (Δ(s, x(s)))

)
ds

)
+
∫ ∞

t

R(s)f
(
s, x(s), x (Δ(s, x(s)))

)
ds if t ≥ T,

Fx(T ) if T−1 ≤ t < T.

It is easy to check that a solution of the above equation must be a solution of (5.20).
We shall show that the above equation has a positive solution x ∈ P0 by means of
the method of successive approximations. Consider the sequence {xk} of successive
approximating sequences defined as

x1(t) = 0 and xn+1(t) = Fxn(t), n ∈ N for t ≥ T−1,

where F is defined by

Fx(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
R(t)
(

C

2
+
∫ t

T

f
(
s, x(s), x (Δ(s, x(s)))

)
ds

)
+
∫ ∞

t

R(s)f
(
s, x(s), x (Δ(s, x(s)))

)
ds if t ≥ T,

Fx(T ) if T−1 ≤ t < T.
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In view of (H3), it is easy to see that 0 ≤ xn(t) ≤ xn+1(t) for t ≥ T and n ∈ N. On
the other hand,

x2(t) = Fx1(t) =
C

2
R(t) ≤ CR(t), t ≥ T,

and inductively,

Fxk(t) ≤ C

2
R(t) + R(t)

∫ t

T

f
(
s, CR(s), CR(Δ∗(s))

)
ds

+R(t)
∫ ∞

t

f
(
s, CR(s), CR(Δ∗(s))

)
ds

≤ C

2
R(t) + R(t)

∫ ∞

T

f
(
s, CR(s), CR(Δ∗(s))

)
ds

≤ CR(t)

for k ≥ 2. Therefore, by means of Lebesgue’s dominated convergence theorem, we
see that Tx∗ = x∗. Furthermore, it is clear that x(t) converges to zero as t → ∞.

Let x be an eventually positive solution of (5.20) such that x(t) → 0 and
r(t)[x′(t)]σ → d < 0 (the proof of the case d > 0 is similar). Then there exist
C1 > 0, C2 > 0, and T ≥ 0 such that −C1 < r(t)[x′(t)]σ < −C2 for t ≥ T . Hence,

−C
1/σ
1

1
[r(t)]1/σ

< x′(t) < −C
1/σ
2

1
[r(t)]1/σ

,

and, after integrating,

−C
1/σ
1 R(t, s) < x(s) − x(t) < −C

1/σ
2 R(t, s)

for s > t ≥ T . Letting s → ∞ provides

−C
1/σ
1 R(t) < −x(t) < −C

1/σ
2 R(t), i.e., C

1/σ
2 R(t) < x(t) < C

1/σ
1 R(t).

On the other hand, by (5.20),

r(t) [x′(t)]σ = r(T ) [x′(T )]σ −
∫ t

T

f
(
s, x(s), x (Δ(s, x(s)))

)
ds, t ≥ T.

Since limt→∞ r(t)[x′(t)]σ = d < 0, we have∫ ∞

T

f
(
s, x(s), x (Δ(s, x(s)))

)
ds = r(T ) [x′(T )]σ − d < ∞.

Thus,∫ ∞

T

f
(
s, C

1/σ
1 R(s), C1/σ

1 R(Δ∗(s))
)

ds ≤
∫ ∞

T

f
(
s, x(s), x (Δ(s, x(s)))

)
ds < ∞.

The proof is complete.

We now consider the existence of eventually positive solutions of (5.20) in the
case R0 = ∞.

Recall that if x ∈ P , then r(x′)σ is eventually decreasing. Furthermore, in view
of Lemma 5.3.7, we see that x′(t), and hence r(t)[x′(t)]σ, are eventually positive.
Hence x(t) either tends to a positive constant or to positive infinity, and r(t)[x′(t)]σ

 



176 5. SECOND ORDER DELAY DIFFERENTIAL EQUATIONS

tends to a nonnegative constant. Note that if x(t) tends to a positive constant, then
r(t)[x′(t)]σ must tend to zero. Otherwise r(t)[x′(t)]σ ≥ d > 0 for t ≥ T so that

x′(t) ≥ d1/σ 1
[r(t)]1/σ

and

x(t) ≥ x(T )d1/σ

∫ t

T

1
[r(s)]1/σ

ds → ∞ as t → ∞,

which is a contradiction.

Theorem 5.3.13. Suppose that R0 = ∞. Then any eventually positive solution x
of (5.20) must belong to one of the following classes:

P 0
α =
{

x ∈ P : lim
t→∞x(t) ∈ (0,∞), lim

t→∞ r(t) [x′(t)]σ = 0
}

,

P 0
∞ =
{

x ∈ P : lim
t→∞x(t) = ∞, lim

t→∞ r(t) [x′(t)]σ = 0
}

,

or

P β
∞ =
{

x ∈ P : lim
t→∞x(t) = ∞, lim

t→∞ r(t) [x′(t)]σ = β �= 0
}

.

In order to justify our classification scheme, we present the following three re-
sults.

Theorem 5.3.14. Suppose that R0 = ∞. A necessary and sufficient condition for
(5.20) to have an eventually positive solution x ∈ P 0

α is that for some C > 0,

(5.27)
∫ ∞

0

(
1

r(t)

∫ ∞

t

f(s, C,C)ds

)1/σ

dt < ∞.

Proof. Suppose x ∈ P 0
α is an eventually positive solution of (5.20). This implies

limt→∞ x(t) = α > 0 and limt→∞ r(t)[x′(t)]σ = 0. Then there exist C1 > 0, C2 > 0,
and T ≥ 0 such that C1 ≤ x(t) ≤ C2 and C1 ≤ x(Δ(t, x(t))) ≤ C2 for t ≥ T . On
the other hand, in view of (5.20) we have

r(t) [x′(t)]σ =
∫ ∞

t

f
(
s, x(s), x (Δ(s, x(s)))

)
ds

for t ≥ T . After integrating, we see that∫ ∞

T

(
1

r(t)

∫ ∞

t

f (s, C1, C1) ds

)1/σ

dt

≤
∫ ∞

0

(
1

r(t)

∫ ∞

t

f
(
s, x(s), x (Δ(s, x(s)))

)
ds

)1/σ

dt

≤ α − x(T ).

The proof of the converse is similar to that of Theorem 5.3.9 and hence is only
sketched. In view of (5.27), we may choose T ≥ 0 so large that∫ ∞

T

(
1

r(t)

∫ ∞

t

f(s, C,C)ds

)1/σ

dt <
C

2
.
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Define a bounded, convex, and closed subset Ω of C([T−1,∞), R) and an operator
F : Ω → Ω by

Ω =
{

x ∈ C([T−1,∞), R) :
C

2
≤ x(t) ≤ C, t ≥ T−1

}
and

Fx(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C

2
+
∫ ∞

t

(
1

r(s)

∫ ∞

s

f
(
u, x(u), x (Δ(u, x(u)))

)
du

) 1
σ

ds

if t ≥ T,

Fx(T ) if T−1 ≤ t < T,

respectively. As in the proof of Theorem 5.3.10, we prove that F maps Ω into
Ω, that F is continuous, and that FΩ is precompact. The fixed point x∗(t) of F
converges to C/2 and satisfies (5.20).

Theorem 5.3.15. Suppose R0 = ∞. If for a constant C > 0,∫ ∞

0

f
(
t, CR(t, 0), CR(Δ∗(t), 0)

)
dt < ∞,

then (5.20) has a solution in P β
∞. Conversely, if (5.20) has a solution x ∈ P β

∞,
then for some positive constant C,∫ ∞

0

f
(
t, CR(t, 0), CR(Δ∗(t), 0)

)
dt < ∞.

In view of Theorems 5.3.14 and 5.3.15, the following result is clear.

Theorem 5.3.16. Suppose R0 = ∞. If for any C > 0 and for some D > 0,∫ ∞

0

(
1

r(t)

∫ ∞

t

f (s, C,C) ds

)1/σ

dt = ∞

and ∫ ∞

0

f
(
t, DR(t, 0), DR(Δ∗(t), 0)

)
dt < ∞,

then (5.20) has a solution in P 0
∞.

5.4. Nonoscillation of Nonlinear Equations with
∫∞

ds/r(s) < ∞

In this section we consider the classification of all nonoscillatory solutions of
second order neutral nonlinear differential equations of the form

(5.28)
(
r(t) [x(t) − p(t)x(t − τ)]′

)′
+ f
(
t, x(t − δ)

)
= 0

in the case ∫ ∞

t0

du

r(u)
< ∞,

and give necessary and/or sufficient conditions for their existence, where we assume
τ > 0, δ ≥ 0, p ∈ C([t0,∞), R+) such that 0 ≤ p(t) ≤ ρ < 1 for t ≥ t0, and
r ∈ C([t0,∞), (0,∞)). We further assume that for any t ≥ t0, f(t, ·) is continuous
on R and xf(t, x) > 0 for x �= 0, t ≥ t0.

Hereafter, the term solution of (5.28) is always used to denote a real function
x satisfying (5.28) for which supt≥t1 |x(t)| > 0 for any t1 ≥ t0. We assume that
(5.28) always has such solutions. A solution of (5.28) is called nonoscillatory if it
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is eventually positive or eventually negative. We use the functions R(s, t) and R(s)
defined by R(s, t) =

∫ t

s
1

r(u)du and R(s) =
∫∞

s
1

r(u)du, where s ≥ t0. We also let
R0 = limt→∞ R(t0, t).

We shall say that condition (H) is met if the following conditions hold:

(H1) xf(t, x) > 0 for x �= 0, t ≥ t0 and f(t, x1) ≥ f(t, x2) for x1 ≥ x2 > 0 or
x1 ≤ x2 < 0, t ≥ t0;

(H2) 0 ≤ p(t) < ρ < 1 for t ≥ t0.

Let x be a solution of (5.28). We define an associated function y by

(5.29) y(t) = x(t) − p(t)x(t − τ), t ≥ t0.

Note that if x(t) is eventually positive, then the fact that

(ry′)′(t) = −f
(
t, x(t − τ)

)
< 0 for all large t

implies that y′(t) is of constant positive or constant negative sign eventually. This
fact, in turn, implies that y(t) is eventually positive or eventually negative.

Lemma 5.4.1. Suppose that (H) holds. Let x be an eventually positive or an
eventually negative solution of (5.28), and let y be defined by (5.29). Then y′(t) is
eventually of one sign.

Lemma 5.4.2. Suppose that (H) holds. Let x be an eventually positive (nega-
tive) solution of (5.28) and let y be defined by (5.29). If lim supt→∞ x(t) > 0
(lim supt→∞(−x(t)) > 0), then y(t) is eventually positive (respectively negative).

Proof. Let x be an eventually positive solution of (5.28) and lim supt→∞ x(t) > 0.
Then y(t) > 0. If not, then we have y(t) < 0 for all large t. If x(t) is unbounded,
then there exists a sequence {tk} which tends to infinity and

x(tk) = max
t≤tk

x(t)

such that limk→∞ x(tk) = ∞. Then, from (5.29), we have

y(tk) = x(tk) − p(tk)x(tk − τ) ≥ x(tk)(1 − ρ).

From this inequality we obtain limk→∞ y(tk) = ∞. This is a contradiction. If x(t)
is bounded, then there exists a sequence {tk} which tends to infinity such that

lim
k→∞

x(tk) = lim sup
t→∞

x(t) = L > 0.

Since limk→∞ x(tk − τ) ≤ L, we have

0 ≥ lim
k→∞

y(tk) ≥ L(1 − ρ) > 0.

This is also a contradiction and the proof is complete.

The following lemma is independent of (5.28) and is due to Lu [214].

Lemma 5.4.3. Suppose that (H2) holds, x(t) > 0, and y is defined by (5.29).

(i) If limt→∞ p(t) = p0 ∈ [0, 1) and limt→∞ y(t) = a ∈ R, then

lim
t→∞x(t) =

a

1 − p0
.

(ii) If limt→∞ y(t) = ∞, then limt→∞ x(t) = ∞.
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If x(t) < 0, then the statement remains true if ∞ in (ii) is replaced by −∞.

Proof. To show (i), assume that x(t) > 0 and limt→∞ y(t) = a ∈ R. Then
y is bounded. Similar as in the proof of Lemma 5.4.2, it follows that x is
bounded. Hence there exists a sequence {tk} which tends to infinity such that
limk→∞ x(tk) = lim supt→∞ x(t). Since {p(tk)} and {x(tk − τ)} are bounded, with-
out loss of generality, we assume that limk→∞ p(tk) and limk→∞ x(tk − τ) exist.
Then

a = lim
k→∞

y(tk) = lim
k→∞

x(tk) − lim
k→∞

p(tk)x(tk − τ)

≥ lim sup
t→∞

x(t)
[
1 − lim

k→∞
p(tk)
]

= lim sup
t→∞

x(t) [1 − p0] ,

and so
a

1 − p0
≥ lim sup

t→∞
x(t).

On the other hand, there exists a sequence {t′k} which tends to infinity such that
limk→∞ x(t′k) = lim inft→∞ x(t). Since {p(t′k)} and {x(t′k − τ)} are bounded, with-
out loss of generality, we assume that limk→∞ p(t′k) and limk→∞ x(t′k − τ) exist.
Then

a = lim
k→∞

y(t′k) = lim
k→∞

x(t′k) − lim
k→∞

p(t′k)x(t′k − τ)

≤ lim inf
t→∞ x(t)

[
1 − lim

k→∞
p(t′k)
]

= lim inf
t→∞ x(t) [1 − p0] ,

and so
a

1 − p0
≤ lim inf

t→∞ x(t).

Therefore, we have limt→∞ x(t) = a/(1 − p0). For the case x(t) < 0, the proof is
similar and is omitted here.

Finally, we show (ii). Assume that x(t) > 0. If limt→∞ y(t) = ∞, then, in view
of x(t) ≥ y(t), we have limt→∞ x(t) = ∞. For the case x(t) < 0, the proof is similar
and we omit it here.

We have already remarked that if x is an eventually positive solution of (5.28),
then y and y′ are also of one sign eventually. These sign regularities provide addi-
tional asymptotic information as will be seen in the following two lemmas.

Lemma 5.4.4. Suppose that (H) holds. If x is a nonoscillatory solution of (5.28),
then y defined by (5.29) is eventually increasing or decreasing and limt→∞ y(t) = L
exists, where L is a finite constant.

Proof. Suppose x is an eventually positive solution of (5.28). If limt→∞ x(t) = 0,
then limt→∞ y(t) = 0. If lim supt→∞ x(t) > 0, by Lemma 5.4.2, we have y(t) > 0
for all large t. Thus, there exists t1 ≥ t0 such that x(t − δ) > 0 and y(t) > 0 for
t ≥ t1. It follows from (5.28) that (ry′)′(t) < 0. Hence

(5.30) y(t) < y(s) + r(s)y′(s)
∫ t

s

du

r(u)
= y(s) + r(s)y′(s)R(s, t)

for t ≥ s ≥ t1. If there exists t2 ≥ t1 such that y′(t2) ≤ 0, then it follows from
(5.30) that y(t) < y(s) for t > s ≥ t2. This means that y is eventually decreasing. If
y is eventually decreasing, it follows from y(t) > 0 that limt→∞ y(t) = L exists and

 



180 5. SECOND ORDER DELAY DIFFERENTIAL EQUATIONS

|L| < ∞. If there does not exist s ≥ t1 such that y′(s) ≤ 0, then y′(s) > 0 for all
s ≥ t1. This means that y is eventually increasing. Since R0 < ∞ and y′(t) > 0, we
see from (5.30) that y is bounded. Therefore limt→∞ y(t) = L exists and |L| < ∞.

Similarly, we may discuss the case when x is an eventually negative solution of
(5.28). The proof is complete.

Lemma 5.4.5. Suppose that (H) holds. If x is a nonoscillatory solution of (5.28)
and y is defined by (5.29), then there exist a1 > 0, a2 > 0, and t1 ≥ t0 such that
either

a1R(t) ≤ y(t) ≤ a2 or − a2 ≤ y(t) ≤ −a1R(t)

for all t ≥ t1.

Proof. Let x be an eventually positive solution of (5.28). By Lemma 5.4.1, y is
eventually of one sign. We have four cases to consider:

(i) y(t) > 0 and y′(t) > 0 eventually;
(ii) y(t) > 0 and y′(t) < 0 eventually;
(iii) y(t) < 0 and y′(t) > 0 eventually;
(iv) y(t) < 0 and y′(t) < 0 eventually.

We shall only consider cases (i) and (ii) in detail since the other two cases are
similar.

First we show (i). If y is eventually increasing, then (5.30) holds. In view of
Lemma 5.4.4, there exists a constant a2 > 0 such that y(t) ≤ a2. Since we are
assuming that y is positive and increasing and since R(t) → 0 as t → ∞, there
exist a constant a1 > 0 and t1 ≥ t0 such that y(t) ≥ a1R(t) for all t ≥ t1.

Next we show (ii). If y is eventually decreasing, then, from (5.30),

y(s) ≥ y(t) − r(s)y′(s)R(s, t).

By Lemma 5.4.4, limt→∞ y(t) = L ≥ 0. Taking the limit as t → ∞ on both sides
of the last inequality, we can see that

y(s) ≥ L − r(s)y′(s)R(s).

Since ry′ is eventually decreasing, we can choose t1 so large that r(t1)y′(t1) < 0.
Then r(s)y′(s) ≤ r(t1)y′(t1) = −a1 for all s ≥ t1. Therefore

y(s) ≥ a1R(s)

for s ≥ t1, where a1 > 0 is independent of s. Changing s to t, we can see that

y(t) ≥ a1R(t), a1 > 0

for t ≥ t1.

Similarly, we can prove the case when x is an eventually negative solution of
(5.28). This completes the proof.

The following result is one of the main classification theorems.
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Theorem 5.4.6. Suppose that (H) holds and that limt→∞ p(t) = p0 ∈ [0, 1). Then
any nonoscillatory solution of (5.28) must belong to one of the following four types:

S(b, a, c) : x(t) → b =
a

1 − p0
�= 0, y(t) → a �= 0, r(t)y′(t) → c (t → ∞);

S(b, a,∞) : x(t) → b =
a

1 − p0
�= 0, y(t) → a �= 0, r(t)y′(t) → ±∞ (t → ∞);

S(0, 0, c) : x(t) → 0, y(t) → 0, r(t)y′(t) → c �= 0 (t → ∞);

S(0, 0,∞) : x(t) → 0, y(t) → 0, r(t)y′(t) → ±∞ (t → ∞),

where a, b, c are some finite constants.

Proof. Suppose that x is a nonoscillatory solution of (5.28). By Lemmas 5.4.1 and
5.4.4, y is eventually of one sign and limt→∞ y(t) = L, where L is a finite constant.
So there are only two possibilities: limt→∞ y(t) = a �= 0 or limt→∞ y(t) = 0,
where a is a finite constant. According to Lemma 5.4.3, limt→∞ x(t) = b �= 0 or
limt→∞ x(t) = 0.

In addition, by our assumption that xf(t, x) > 0 for x �= 0, we see from (5.28)
that ry′ is eventually decreasing or increasing. Again there are only two possibilities:
limt→∞ r(t)y′(t) = c or limt→∞ r(t)y′(t) = ±∞, where c is a finite constant.

Based on the above discussion, we see that x must belong to one of the four
types as stated, except that we have not yet shown that for the case S(0, 0, c), the
constant c �= 0. We do this next.

Suppose x is a nonoscillatory solution of (5.28) which belongs to S(0, 0, c), that
is, limt→∞ x(t) = 0, limt→∞ y(t) = 0, and limt→∞ r(t)y′(t) = c. Then c �= 0. In
fact, consider the functions y and R. From our assumption, it is easy to see that

lim
t→∞ y(t) = 0, lim

t→∞R(t) = 0, R′(t) < 0,

and

lim
t→∞

y′(t)
R′(t)

= lim
t→∞(−r(t)y′(t)) = −c.

By L’Hôpital’s rule, limt→∞(y(t)/R(t)) exists, and

lim
t→∞

y(t)
R(t)

= lim
t→∞

y′(t)
R′(t)

= −c.

If y(t) is eventually positive, then, by Lemma 5.4.5, there exist two positive con-
stants a1 and a2 such that a1R(t) ≤ y(t) ≤ a2. Thus y(t)/R(t) ≥ a1 holds, hence
a1 ≤ −c. It follows that c �= 0. If y(t) is eventually negative, then by Lemma 5.4.5,
there exist two positive constants a1 and a2 such that −a2 ≤ y(t) ≤ −a1R(t). Thus
y(t)/R(t) ≤ −a1, which means −c ≤ −a1. Once more it follows that c �= 0, which
completes the proof.

Next we derive two existence theorems.

Theorem 5.4.7. Assume that (H) holds and limt→∞(R(t − τ)/R(t)) = 1. A
necessary and sufficient condition for (5.28) to have a nonoscillatory solution in
S(0, 0, c) is that

(5.31)
∫ ∞

t0

∣∣∣f(t, λR(t − δ))
∣∣∣ dt < ∞ for some λ �= 0.
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Proof. Necessity. Let x ∈ S(0, 0, c) be any nonoscillatory positive solution of (5.28),
i.e., limt→∞ x(t) = 0, limt→∞ y(t) = 0, and limt→∞ r(t)y′(t) = c �= 0. Without loss
of generality we may assume that c < 0. Since ry′ is monotone, there exist λ1 > 0,
λ2 > 0, and t1 ≥ t0 such that −λ1 ≤ r(t)y′(t) ≤ −λ2 for t ≥ t1. It follows that

−λ1R(t, s) ≤ y(s) − y(t) ≤ −λ2R(t, s)

for s > t, t ≥ t1. If s → ∞, then −λ1R(t) ≤ −y(t) ≤ −λ2R(t). That is,
λ2R(t) ≤ y(t) ≤ λ1R(t). On the other hand, by (5.28),

r(t)y′(t) = r(t1)y′(t1) −
∫ t

t1

f
(
s, x(s − δ)

)
ds.

Since limt→∞ r(t)y′(t) = c < 0, we have∫ ∞

t1

∣∣∣f (s, x(s − δ)
)∣∣∣ ds < ∞.

Furthermore, since (H) holds, by y(t) ≤ x(t), we have

f
(
s, x(s − δ)

)
≥ f
(
s, y(s − δ)

)
≥ f
(
s, λ2R(s − δ)

)
.

This means that ∫ ∞

t1

∣∣∣f (s, λ2R(s − δ)
)∣∣∣ ds < ∞.

Sufficiency. Suppose that (5.31) holds for λ > 0. A similar argument can be
applied if λ < 0. Since limt→∞(R(t − τ)/R(t)) = 1, we may choose A ∈ (ρ, 1) and
t1 ≥ t0 such that p(t)R(t−τ)

R(t) ≤ A and∫ ∞

t1

f
(
s, λR(s − τ)

)
ds < a(1 − A), where a =

λ

2
.

Consider the equation

(5.32) x(t) = p(t)x(t − τ) + R(t)
[
(1 − A)a +

∫ t

t1

f
(
s, x(s − δ)

)
ds

]
+
∫ ∞

t

R(s)f
(
s, x(s − δ)

)
ds

for t ≥ t1 + max{δ, τ}. It is easy to see that a solution of (5.32) must also be a
solution of (5.28). By means of the method of successive approximations, we shall
show that (5.32) has a nonoscillatory solution x ∈ S(0, 0, c). Consider the sequence
{xn} of successive approximating sequences defined by

x1(t) = 0 and xn+1(t) = (Fxn)(t), n ∈ N for t ≥ t1,

where F is defined by

(Fx)(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p(t)x(t − τ) + R(t)

[
(1 − A)a +

∫ t

t1

f
(
s, x(s − δ)

)
ds

]
+
∫ ∞

t

R(s)f
(
s, x(s − δ)

)
ds if t ≥ t1 + max{δ, τ},

(Fx)
(
t1 + max{δ, τ}

)
if t1 ≤ t < t1 + max{δ, τ}.

In view of (H1), it is easy to see that

0 ≤ xn(t) ≤ xn+1(t), t ≥ t1, n ∈ N.
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On the other hand,

x2(t) = (Fx1)(t) = a(1 − A)R(t) ≤ 2aR(t), t ≥ t1,

and inductively, we have

(Fxn)(t) ≤ 2p(t)aR(t − τ) + (1 − A)aR(t) + (1 − A)aR(t)
≤ 2AaR(t) + 2(1 − A)aR(t) = 2aR(t)

for n ≥ 2. Thus by means of Lebesgue’s dominated convergence theorem, we see
that Fx = x. Furthermore, it is clear that x(t), and hence its associated function
y(t), converge to zero (since R(t) does). Finally, in view of (5.32), we see that

−(1 − A)a > r(t)y′(t) = −(1 − A)a −
∫ t

t1

f
(
s, x(s − δ)

)
ds

> −(1 − A)a −
∫ t

t1

f
(
s, λR(s − δ)

)
ds

> −(1 − A)a − (1 − A)a = −2(1 − A)a,

which implies limt→∞ r(t)y′(t) = c �= 0 as required. The proof is complete.

Theorem 5.4.8. Assume that (H) holds and that limt→∞ p(t) = p0 ∈ [0, 1). A
necessary and sufficient condition for (5.28) to have a nonoscillatory solution in
S(b, a, c) ∪ S(b, a,∞) is that for t2 ≥ t1 ≥ t0,

(5.33)
∫ ∞

t2

1
r(s)

∫ s

t1

|f(u, λ)| duds < ∞ for some λ �= 0.

Proof. Necessity. Let x be any nonoscillatory positive solution of (5.28) such that
limt→∞ x(t) = b > 0. By (5.29), we have limt→∞ y(t) = a = b(1 − p0) > 0, which
means that y(t) is eventually positive and tends monotonically to a. Thus there
exist c1 > 0, c2 > 0, and t1 ≥ t0 such that c1 ≤ y(t) ≤ c2 for t ≥ t1. It follows from
(5.28) that

y(t) = y(s) + r(t1)y′(t1)
∫ t

s

du

r(u)
−
∫ t

s

1
r(u)

∫ u

t1

f
(
v, x(v − δ)

)
dvdu.

Taking the limit as t → ∞ on both sides of the last equality, we obtain

a = y(s) + r(t1)y′(t1)
∫ ∞

s

du

r(u)
−
∫ ∞

s

1
r(u)

∫ u

t1

f
(
v, x(v − δ)

)
dvdu.

This means that

(5.34) 0 ≤
∫ ∞

s

1
r(u)

∫ u

t1

f
(
v, x(v − δ)

)
dvdu < ∞.

By (H), we have f(t, c1) ≤ f(t, y(t− δ)) ≤ f(t, x(t− δ)). It follows from (5.34) that∫ ∞

s

1
r(u)

∫ u

t1

f(v, c1)dvdu < ∞.

Sufficiency. Suppose that (5.33) holds for λ > 0. A similar argument can be
applied if λ < 0. Choose t1 ≥ t0 so large that

(5.35)
∫ ∞

s

1
r(u)

∫ u

t1

f(v, λ)dvdu < (1 − ρ)a, where a =
λ

2
.
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Consider the equation

(5.36) x(t) = p(t)x(t − τ) + (1 − ρ)a +
∫ ∞

t

1
r(u)

∫ u

t1

f
(
v, x(v − δ)

)
dvdu.

It is easy to verify that a solution of (5.36) must also be a solution of (5.28).
Consider the Banach space Φ of all bounded functions x with norm supt≥t1 |x(t)|,
endowed with the usual pointwise ordering ≤: For x, y ∈ Φ, x ≤ y means x(t) ≤ y(t)
for all t ≥ t1. Then Φ is partially ordered. Define a subset Ω of Φ by

Ω =
{

x ∈ Φ : (1 − ρ)a ≤ x(t) ≤ 2a, t ≥ t1

}
.

For any subset B ⊂ Ω, it is obvious that inf B ∈ Ω and supB ∈ Ω. We also define
an operator F : Ω → Φ as

(Fx)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p(t)x(t − τ) + (1 − ρ)a +

∫ ∞

t

1
r(u)

∫ u

t1

f
(
v, x(v − δ)

)
dvdu

if t ≥ t1 + δ,

(Fx)(t1 + δ) if t1 ≤ t < t1 + δ.

The mapping F satisfies the assumptions of Knaster’s fixed point theorem. Namely,
it satisfies the following: First, F maps Ω into itself. Indeed, if x ∈ Ω, by (5.35),
we have

(1 − ρ)a ≤ (Fx)(t) ≤ 2p(t)a + (1 − ρ)a + (1 − ρ)a ≤ 2ρa + 2(1 − ρ)a = 2a.

Second, by (H), F is nondecreasing. That is, for any x, y ∈ Ω, x ≤ y implies
Fx ≤ Fy. Hence, by Knaster’s fixed point theorem (Theorem 1.4.28), there exists
an x ∈ Ω such that Fx = x, that is, x is a nonoscillatory solution of (5.28) which
belongs to S(b, a, c) or S(b, a,∞). Note that b �= 0. Since x ∈ Ω and by (5.29) and
Lemma 5.4.3, limt→∞ y(t) = a and limt→∞ x(t) = a/(1 − p0) = b �= 0 must exist.
This completes the proof.

5.5. Nonoscillation of Nonlinear Equations with
∫∞

ds/r(s) = ∞

In this section we consider nonoscillatory solutions of (5.28) in the case R0 = ∞.
Before stating the main results, we give several lemmas.

Lemma 5.5.1. Suppose that (H) holds. Let x be an eventually positive solution
of (5.28) and let y be defined by (5.29). If R0 = ∞ and limt→∞ x(t) = 0, then
y is eventually increasing and negative and limt→∞ y(t) = 0. The statement re-
mains true if “positive” is replaced by “negative” and “increasing” is replaced by
“decreasing”.

Proof. Let x be an eventually positive solution of (5.28) and define y by (5.29). If
limt→∞ x(t) = 0, then limt→∞ y(t) = 0. Suppose to the contrary that y(t) > 0 for
all large t. Then y′(t) < 0 for all large t. From (ry′)′(t) < 0, we obtain

(5.37) y(t) ≤ y(s) + r(s)y′(s)
∫ t

s

du

r(u)
= y(s) + r(s)y′(s)R(s, t)

for t ≥ s, where s ≥ t0 such that x(t) > 0 for t ≥ s. Since ry′ is eventually decreas-
ing, we can choose t1 so large that r(t1)y′(t1) < 0. So r(s)y′(s) < r(t1)y′(t1) = −a1

for s ≥ t1. Therefore

y(t) ≤ y(s) − a1R(s, t), a1 > 0.

 



5.5. NONOSCILLATION OF NONLINEAR EQUATIONS WITH
∫ ∞ ds/r(s) = ∞ 185

If R0 = ∞, taking the limit as t → ∞ on both sides of the last inequality and in
view of limt→∞ y(t) = 0, we see that

y(s) ≥ ∞,

which is a contradiction.

Lemma 5.5.2. Suppose that (H) holds. Let x be an eventually positive solution
of (5.28) and let y be defined by (5.29). If R0 = ∞, then y′ is eventually positive.
The statement remains true if “positive” is replaced by “negative”.

Proof. Suppose x is an eventually positive solution of (5.28) and let y be defined
by (5.29). We assert that y′(t) > 0 for all large t. If limt→∞ x(t) = 0, in view
of Lemma 5.5.1, the conclusion holds. If lim supt→∞ x(t) > 0, by Lemma 5.4.2,
we have y(t) > 0 for all large t. Suppose to the contrary that y′(t) is eventually
negative. Note that in view of (5.28), (ry′)′(t) = −f(t, x(t − δ)) < 0 for all large
t. Thus there exists t1 ≥ t0 such that y(t) > 0, y′(t) < 0, and (ry′)′(t) < 0 for all
large t ≥ t1. Then

y(t) ≤ y(t1) + r(t1)y′(t1)
∫ t

t1

ds

r(s)
→ −∞ as t → ∞,

which is a contradiction. The proof is complete.

Lemma 5.5.3. Suppose that (H) holds. If x is an eventually positive (negative)
solution of (5.28) and lim supt→∞ x(t) > 0 (lim supt→∞(−x(t)) > 0), then there
exist a1 > 0, a2 > 0, and t1 ≥ t0 such that the function y defined by (5.29) is
monotone increasing (decreasing) and satisfies

(5.38) a1 ≤ y(t) ≤ a2R(t1, t) ( − a2R(t1, t) ≤ y(t) ≤ −a1)

for all t ≥ t1.

Proof. Let x be an eventually positive solution of (5.28) and lim supt→∞ x(t) > 0.
Then, by Lemma 5.4.2, we have y(t) > 0 eventually. Thus, there exists s ≥ t0 such
that x(t) > 0 and y(t) > 0 for all t ≥ s. It follows from (5.28) that (ry′)′(t) < 0
and thus ry′ is eventually decreasing. By Lemma 5.5.2, we have that y′(t) > 0
eventually. Thus, y is eventually increasing and r(t)y′(t) is positive. By (5.37) we
then see that (5.38) holds. This completes the proof.

Theorem 5.5.4. Suppose that (H) holds and limt→∞ p(t) = p0 ∈ [0, 1). Then any
nonoscillatory solution of (5.28) must belong to one of the following five types:

S(0, 0, 0) : x(t) → 0, y(t) → 0, r(t)y′(t) → 0 (t → ∞);

S(0, 0, c) : x(t) → 0, y(t) → 0, r(t)y′(t) → c �= 0 (t → ∞);

S(b, a, 0) : x(t) → b =
a

1 − p0
�= 0, y(t) → a �= 0, r(t)y′(t) → 0 (t → ∞);

S(∞,∞, c) : x(t) → ∞, y(t) → ∞, r(t)y′(t) → c �= 0 (t → ∞);

S(∞,∞, 0) : x(t) → ∞, y(t) → ∞, r(t)y′(t) → 0 (t → ∞),

where a, b, c are some finite constants.
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Proof. For a nonoscillatory solution x of (5.28), without loss of generality, we may
suppose that x is an eventually positive solution. If limt→∞ x(t) = 0, then, by
Lemma 5.5.1, limt→∞ y(t) = 0 and y′(t) > 0 for all large t. Since (ry′)′(t) < 0 for
all large t, we have

lim
t→∞ r(t)y′(t) = c ≥ 0.

If lim supt→∞ x(t) > 0, in view of Lemma 5.4.2, we have y(t) > 0 for all large t.
By Lemma 5.5.3, we know that y is eventually increasing, and ry′ is positive and
decreasing. Thus there exist only the possibilities

lim
t→∞ y(t) = a ∈ (0,∞) or lim

t→∞ y(t) = ∞

and
lim

t→∞ r(t)y′(t) = c ≥ 0.

Since ry′ is eventually decreasing and limt→∞ r(t)y′(t) = c, we have

r(t)y′(t) ≥ c, i.e., y′(t) ≥ c

r(t)

for all large t. Integrating this inequality, we obtain

(5.39) y(t) ≥ y(s) + c

∫ t

s

du

r(u)
.

If c > 0 and R0 = ∞, then it follows that

lim
t→∞ y(t) = ∞.

By Lemma 5.4.3, we have limt→∞ x(t) = ∞. If c = 0 and limt→∞ y(t) = a (or
∞), then, by Lemma 5.4.3, it follows that limt→∞ x(t) = b = a/(1 − p0) (or ∞).
Therefore x must belong to one of the five types as stated.

Next we derive several existence criteria for nonoscillatory solutions of (5.28).

Theorem 5.5.5. Assume that (H) holds and limt→∞ p(t) = p0 ∈ [0, 1). A nec-
essary and sufficient condition for (5.28) to have a nonoscillatory solution which
belongs to S(b, a, 0) is that

(5.40)
∫ ∞

t0

1
r(u)

∫ ∞

u

|f(v, λ)| dvdu < ∞ for some λ �= 0.

Proof. Necessity. Let x ∈ S(b, a, 0) be a nonoscillatory solution of (5.28), i.e.,

lim
t→∞x(t) = b, lim

t→∞ y(t) = a, and lim
t→∞ r(t)y′(t) = 0.

Without loss of generality, we may suppose that b > 0. By (5.29), it follows that
limt→∞ y(t) = a = b(1− p0) > 0. Then there exist c1 > 0, c2 > 0, and t1 ≥ t0 such
that

c1 ≤ y(t) ≤ c2 for t ≥ t1.

On the other hand, by (5.28),

(5.41) r(t)y′(t) = r(s)y′(s) −
∫ t

s

f
(
u, x(u − δ)

)
du

 



5.5. NONOSCILLATION OF NONLINEAR EQUATIONS WITH
∫ ∞ ds/r(s) = ∞ 187

for t ≥ s ≥ t1. After taking the limits as t → ∞ on both sides of (5.41) and using
limt→∞ r(t)y′(t) = 0, we obtain

(5.42) r(s)y′(s) =
∫ ∞

s

f
(
u, x(u − δ)

)
du

for s ≥ t1. Now it follows from (5.42) that

y(s) = y(t1) +
∫ s

t1

1
r(u)

∫ ∞

u

f
(
v, x(v − δ)

)
dvdu

for s ≥ t1. Let s → ∞. Then

a = y(t1) +
∫ ∞

t1

1
r(u)

∫ ∞

u

f
(
v, x(v − δ)

)
dvdu.

Therefore ∫ ∞

t1

1
r(u)

∫ ∞

u

f
(
v, x(v − δ)

)
dvdu < ∞.

By (H), f(t, c1) ≤ f(t, y(t − δ)) ≤ f(t, x(t − δ)), so (5.40) holds.

Sufficiency. Without loss of generality, we may assume that (5.40) holds for
λ > 0. Then there exists t1 ≥ t0 such that∫ ∞

t1

1
r(u)

∫ ∞

u

f(v, λ)dvdu < (1 − ρ)a, where a =
λ

2
.

Now consider the equation

(5.43) x(t) = p(t)x(t − τ) + (1 − ρ)a +
∫ t

t1

1
r(u)

∫ ∞

u

f
(
v, x(v − δ)

)
dvdu

for t ≥ t1. Consider the Banach space Φ of all bounded real functions x with norm
supt≥t1 |x(t)|, with the usual pointwise ordering ≤: For x, y ∈ Φ, x ≤ y means
x(t) ≤ y(t) for all t ≥ t1. Then Φ is partially ordered. Define a subset Ω of Φ as
follows:

Ω =
{

x ∈ Φ : (1 − ρ)a ≤ x(t) ≤ 2a, t ≥ t1

}
.

If x ∈ Φ, also let

(Fx)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p(t)x(t − τ) + (1 − ρ)a +

∫ t

t1

1
r(u)

∫ ∞

u

f
(
v, x(v − δ)

)
dvdu

if t ≥ t1 + δ,

(Fx)(t1 + δ) if t1 ≤ t < t1 + δ.

Then, by using Knaster’s fixed point theorem and Lemma 5.5.3, we can show that
there exists a nonoscillatory solution of (5.43) and thus of (5.28) which belongs to
S(b, a, 0). We omit the details.

Theorem 5.5.6. Assume that (H) holds. A necessary and sufficient condition
for (5.28) to have a nonoscillatory solution which belongs to S(∞,∞, c) is that for
t1 ≥ t0,

(5.44)
∫ ∞

t1

∣∣∣f (u, λR(t1, u − δ)
)∣∣∣ du < ∞ for some λ �= 0.
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Proof. Necessity. Suppose that x ∈ S(∞,∞, c) is an eventually positive solution of
(5.28), i.e.,

lim
t→∞x(t) = ∞, lim

t→∞ y(t) = ∞, and lim
t→∞ r(t)y′(t) = c > 0.

Then it follows from (5.38) and (5.39) that there exist c1 > 0, c2 > 0, and t1 ≥ t0
such that

c1R(t1, t) ≤ y(t) ≤ c2R(t1, t)

for t ≥ t1. On the other hand, by (5.28),

(5.45) r(t)y′(t) = r(t1)y′(t1) −
∫ t

t1

f
(
u, x(u − δ)

)
du.

Let t → ∞ on both sides of (5.45) to obtain

(5.46)
∫ ∞

t1

∣∣∣f (u, x(u − δ)
)∣∣∣ du < ∞.

Since (H) holds, f(t, c1R(t1, t − δ)) ≤ f(t, y(t − δ)) ≤ f(t, x(t − δ)), and we can
conclude from (5.46) that (5.44) holds for some λ �= 0 and t1 ≥ t0.

Sufficiency. Without loss of generality, we may assume that (5.44) holds for
λ > 0 and t1 ≥ t0. Then there exists t2 ≥ t1 such that∫ ∞

t2

f
(
u, λR(t1, u − δ)

)
du < (1 − ρ)a, where a =

λ

2
.

Now consider the equation

(5.47) x(t) = p(t)x(t − τ) + (1 − ρ)aR(t1, t) +
∫ t

t2

R(t2, u)f
(
u, x(u − δ)

)
du

+ R(t1, t)
∫ ∞

t

f
(
u, x(u − δ)

)
du

for t ≥ t2. We introduce a Banach space Φ of all bounded real functions x which
satisfy

sup
t≥t2

|x(t)|
R(t1, t)

< ∞ with the norm ‖x‖ = sup
t≥t2

|x(t)|
R(t1, t)

.

Now Φ is considered to be endowed with the usual pointwise ordering ≤: For
x, y ∈ Φ, x ≤ y means x(t) ≤ y(t) for all t ≥ t2. Then Φ is partially ordered. Define
a subset Ω of Φ and an operator F : Ω → Φ by

Ω =
{

x ∈ Φ : (1 − ρ)aR(t1, t) ≤ x(t) ≤ 2aR(t1, t), t ≥ t2

}
,

and for x ∈ Φ,

(Fx)(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p(t)x(t − τ) + (1 − ρ)aR(t1, t) +

∫ t

t2

R(t2, u)f
(
u, x(u − δ)

)
du

+R(t1, t)
∫ ∞

t

f
(
u, x(u − δ)

)
du if t ≥ t2 + δ,

(Fx)(t2 + δ) if t2 ≤ t < t2 + δ.

Similar to the proof of Theorem 5.4.8, we can show that there exists a nonoscillatory
solution of (5.47) and also of (5.28) which belongs to S(∞,∞, c). This completes
the proof.
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Theorem 5.5.7. Assume that (H) holds. A sufficient condition for (5.28) to have
a nonoscillatory solution which belongs to S(∞,∞, 0) is that

(5.48)
∫ ∞

t0

R(t0, u)
∣∣∣f (u, λ1R(t1, u − δ)

)∣∣∣ du = ∞

and ∫ ∞

t0

∣∣∣f (u, λ2R(t1, u − δ)
)∣∣∣ du < ∞

for some λ1, λ2 such that λ1λ2 > 0 and t1 ≥ t0.

Proof. Without loss of generality, we may assume λ1 > 0 and λ2 > 0. We take a
large t2 ≥ t1 such that for t ≥ t2,

(5.49)
λ1

R(t1, t)λ2
+ p(t) +

1
λ2

∫ ∞

t2

f
(
u, λ2R(t1, u − δ)

)
du < 1.

Define an operator F as

(Fx)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1

R(t1, t)
+

R(t1, t − τ)
R(t1, t)

p(t)x(t − τ)

+
1

R(t1, t)

∫ t

t1

R(t1, u)f
(
u, R(t1, u − δ)x(u − δ)

)
du

+
∫ ∞

t

f
(
u, R(t1, u − δ)x(u − δ)

)
du if t ≥ t2,

Fx(t2) if t1 ≤ t < t2,

and let

x1(t) = 0 and xn+1(t) = (Fxn)(t), n ∈ N for t ≥ t1.

By (H) and induction, it is easy to see that 0 ≤ xn(t) ≤ xn+1(t) for t ≥ t1 and
n ∈ N. On the other hand, x2(t) ≤ λ2 for t ≥ t1. It follows from (5.49) that

(5.50) xn+1(t) ≤ λ2

[
λ1

R(t1, t)λ2
+ p(t) +

1
λ2

∫ ∞

t2

f
(
u, λ2R(t1, u − δ)

)
du

]
≤ λ2.

By induction, we have xn(t) ≤ λ2 for t ≥ t1, n ∈ N. Let

lim
n→∞xn(t) = x∗(t), t ≥ t2.

Using Lebesgue’s dominated convergence theorem, we get

x∗(t) = (Fx∗)(t), t ≥ t1.

By (5.49) and (5.50), it is easy to see that λ1
R(t1,t) ≤ x∗(t) ≤ λ2. Set

z(t) = R(t1, t)x∗(t), t ≥ t1.

Then we have λ1 ≤ z(t) ≤ λ2R(t1, t) and

z(t) = λ1 + p(t)z(t − τ) +
∫ t

t1

R(t1, u)f
(
u, z(u − δ)

)
du

+ R(t1, t)
∫ ∞

t

f
(
u, z(u − δ)

)
du

for t ≥ t2. Again set
w(t) = z(t) − p(t)z(t − τ).
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Then, by (5.48), we have limt→∞ w(t) = ∞. From Lemma 5.4.2, it follows that
limt→∞ z(t) = ∞. Since

r(t)w′(t) =
∫ ∞

t

f
(
u, z(u − δ)

)
du,

it follows that limt→∞ r(t)w′(t) = 0. This means that z ∈ S(∞,∞, 0) is a positive
solution of (5.28).

Theorem 5.5.8. Assume that (H) holds, that |p(t) − p(s)| ≤ K|t − s|, and that r
is nondecreasing. Furthermore, suppose that there exist K1 > K2 > 0 such that

(5.51) p(t)eK1τ > 1 ≥ p(t)eK2τ ,

and for large t1 and t ≥ t1,

(5.52)
(
p(t)eK1τ − 1

)
e−K1t ≥

∫ ∞

t

1
r(u)

∫ ∞

u

f
(
v, e−K2(v−δ)

)
dvdu.

Then (5.28) has a nonoscillatory solution x ∈ S(0, 0, 0).

Proof. Set

Ω =
{

x ∈ C[0,∞) : e−K1t ≤ x(t) ≤ e−K2t, |x(t) − x(s)| ≤ L|t − s|, t ≥ s ≥ t0

}
,

where L ≥ max{K, K2}. It is easy to show that Ω is nonempty, bounded, convex,
and closed in the Banach space Φ defined to be all bounded real functions x with
norm supt≥t0 |x(t)|. Define an operator F on Ω as

(Fx)(t) =

⎧⎪⎪⎨⎪⎪⎩
p(t)x(t − τ) −

∫ ∞

t

1
r(u)

∫ ∞

u

f
(
v, x(v − δ)

)
dvdu if t ≥ t2,

exp
(

ln(Fx(t2))
t2

t

)
if t0 ≤ t < t2,

where t2 ≥ t1 and for given α ∈ (ρ, 1) such that

1
r(t)

∫ ∞

t2

f
(
s, e−K2(s−δ)

)
ds ≤
(
α − p(t)

)
L, t ≥ t2(5.53)

and

α + e−K2(t−τ) ≤ 1, t ≥ t2.(5.54)

The mapping F satisfies the assumptions of Schauder’s fixed point theorem.
Namely, it satisfies the following:

First, F maps Ω into Ω. For any x ∈ S, by (5.51) and (5.52) we obtain

(Fx)(t) ≤ p(t)x(t − τ) ≤ p(t) exp
(
−K2(t − τ)

)
≤ exp (−K2t)
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and

(Fx)(t) ≥ p(t) exp
(
−K1(t − τ)

)
−
∫ ∞

t

1
r(u)

∫ ∞

u

f
(
v, exp (−K2(v − δ))

)
dvdu

= exp (−K1t) +
(
p(t) exp (K1τ) − 1

)
exp (−K1t)

−
∫ ∞

t

1
r(u)

∫ ∞

u

f
(
v, exp (−K2(v − δ))

)
dvdu

≥ exp(−K1t),

and so

K2 ≤ − ln(Fx(t2))
t2

≤ K1.

For any s ≥ t ≥ t2, by (5.53) and (5.54) we get∣∣∣(Fx)(s) − (Fx)(t)
∣∣∣

≤
[(

p(s) + e−K2(t−τ)
)

L +
1

r(t)

∫ ∞

t

f
(
u, exp (−K2(u − δ))

)
du

]
|s − t|

≤
(
exp(−K2(t − τ)) + α

)
L|s − t| ≤ L|s − t|,

and for t0 ≤ t ≤ s ≤ t2,∣∣∣(Fx)(s) − (Fx)(t)
∣∣∣ = ∣∣∣∣exp

(
ln(Fx(t2))

t2
s

)
− exp
(

ln(Fx(t2))
t2

t

)∣∣∣∣ ≤ L |s − t| .

Hence, F maps Ω into Ω.

Second, F is continuous. Let {xn} ⊂ Ω such that

lim
n→∞ ‖xn − x‖ = 0.

Since Ω is closed, x ∈ Ω. Then we get∣∣∣(Fxn)(t) − (Fx)(t)
∣∣∣

≤ p(t) ‖xn − x‖ +
∫ ∞

t2

1
r(u)

∫ ∞

u

∣∣∣f (v, xn(v − δ)
)
− f
(
v, x(v − δ)

)∣∣∣ dvdu

≤ ρ ‖xn − x‖ +
∫ ∞

t2

1
r(u)

∫ ∞

u

∣∣∣f (v, xn(v − δ)
)
− f
(
v, x(v − δ)

)∣∣∣ dvdu.

By the continuity of f and Lebesgue’s dominated convergence theorem, it follows
that

(5.55) lim
n→∞

(
sup
t≥t2

∣∣∣(Fxn)(t) − (Fx)(t)
∣∣∣) = 0.

We can easily show that

(5.56) sup
t0≤t≤t2

∣∣∣(Fxn)(t) − (Fx)(t)
∣∣∣ ≤ ∣∣∣ln((Fxn)(t2)) − ln((Fx)(t2))

∣∣∣ .
Using (5.55) and (5.56), it is easy to show that

lim
n→∞ ‖Fxn − Fx‖ = 0.
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Third, FΩ is precompact. Let x ∈ Ω and s > t ≥ t2. Then by (5.54) we have∣∣∣(Fx)(t) − (Fx)(s)
∣∣∣ =
∣∣∣p(t)x(t − τ) − p(s)x(s − τ)

+
∫ ∞

s

1
r(u)

∫ ∞

u

f
(
v, x(v − δ)

)
dvdu −

∫ ∞

t

1
r(u)

∫ ∞

u

f
(
v, x(v − δ)

)
dvdu

∣∣∣∣
≤
∣∣∣p(t)x(t − τ) − p(s)x(s − τ)

∣∣∣+ ∣∣∣∣∫ t

s

1
r(u)

∫ ∞

u

f
(
s, x(v − δ)

)
dvdu

∣∣∣∣
≤
∣∣∣p(t)x(t − τ) − p(s)x(s − τ)

∣∣∣+ ∣∣∣∣∫ ∞

s

1
r(u)

∫ ∞

u

f
(
s, x(v − δ)

)
dvdu

∣∣∣∣
≤ 2e−K2(t−τ) +

(
p(t)eK1τ − 1

)
e−K1t.

Since e−K1t → 0 and e−K2(t−τ) → 0 as t → ∞, we conclude from the above
inequalities that, for any given ε > 0, there exists t3 ≥ t2 such that for all x ∈ Ω
and s, t ≥ t3, ∣∣∣(Fx)(t) − (Fx)(s)

∣∣∣ < ε.

This means that F (Ω) is relatively compact in the topology of the Fréchet space
C[t0,∞).

By using Schauder’s fixed point theorem we can conclude that there is an x ∈ Ω
such that x = Fx. That is, x is a positive solution of (5.28). Since limt→∞ x(t) = 0,
by Lemma 5.4.3 it follows that limt→∞ y(t) = 0 and limt→∞ y′(t) = 0. The proof
is complete.

Remark 5.5.9. It would not be difficult to extend all the results in this section to
an equation whose nonlinear term has the form

f
(
t, x(t − δ1), . . . , x(t − δm)

)
.

5.6. Notes

The material of Section 5.2 is adopted from Kusano and Lalli [155]. The results
in Section 5.3 are obtained by Fan, Li, and Zhong [95]. Sections 5.4 and 5.5 are
taken from Li [177].

 



CHAPTER 6

Higher Order Delay Differential Equations

6.1. Introduction

In this chapter we describe some of the recent developments in the oscillation
and nonoscillation theory of higher order delay differential equations.

In Section 6.2, we consider nonlinear neutral delay differential equations with
variable coefficients of the form

dn

dtn

(
x(t) − P (t)x(t − τ)

)
+ Q(t)f

(
x(t − δ(t))

)
= 0

under the assumption
P (t∗ + kτ) ≤ 1 for k ∈ N

and establish a comparison theorem for oscillation. Some necessary and/or suffi-
cient conditions for all solutions to be oscillatory are presented. In Section 6.3, we
consider linear neutral delay differential equations of the form

dn

dtn

(
x(t) − px(t − τ)

)
+

m∑
i=1

qi(t)x(t − σi) = 0

under the assumption p ≥ 1 or 0 ≤ p < 1, respectively. Some oscillation criteria
are presented. In Section 6.4, we are concerned with the asymptotic behavior of
nonoscillatory solutions of nonlinear neutral differential equations of the form

dn

dtn

(
x(t) −

m∑
i=1

Pi(t)x(t − ri)

)
+ δ

k∑
j=1

Qj(t)fj

(
x (hj(t))

)
= 0

under the condition
∑m

i=1 |Pi(t)| ≤ λ < 1, where pi(t) is allowed to oscillate about
zero. Section 6.5 deals with the nonlinear neutral delay differential equation

dn

dtn

(
x(t) − p(t)x(t − τ)

)
+ q(t)

m∏
i=1

∣∣∣x(t − σi)
∣∣∣αi

sgn x(t − σi) = 0

under the conditions p(t) ≥ 1 and 0 ≤ p(t) ≤ 1. We present some sufficient
conditions for all solutions to be oscillatory. In Section 6.6, we consider the existence
of positive solutions of the neutral delay differential equation

dn

dtn

(
x(t) − px(t − τ)

)
+ q(t)x(g(t)) = 0,

where p �= 1 and p = 1, respectively. In Sections 6.7 and 6.8, we give a classification
scheme of eventually positive solutions of our two type equations in terms of their
asymptotic magnitude and provide necessary and/or sufficient conditions for the
existence of these solutions.
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6.2. Comparison Theorems and Oscillation

Our aim in this section is to obtain comparison theorems and sufficient condi-
tions for the oscillation of all solutions of the neutral nonlinear delay differential
equation

(6.1)
dn

dtn

(
x(t) − P (t)x(t − τ)

)
+ Q(t)f

(
x (t − δ(t))

)
= 0,

where

(6.2) P,Q, δ ∈ C([t0,∞), R+), n ∈ N is odd, τ > 0, lim
t→∞

(
t − δ(t)

)
= ∞,

(6.3)

{
f ∈ C(R, R), f is nondecreasing in x,

f(−x) = −f(x), xf(x) > 0 for x �= 0.

Before stating our main results we need the following lemma.

Lemma 6.2.1. Assume that (6.2) and (6.3) hold and that there exists t∗ ≥ t0 such
that

(6.4) P (t∗ + kτ) ≤ 1 for k ∈ N.

Suppose that Q(t) is not identically equal zero. Let x be an eventually positive
solution of (6.1) and set

(6.5) y(t) = x(t) − P (t)x(t − τ).

Then

(6.6) y(t) > 0 eventually.

Proof. From (6.1), we have

y(n)(t) = −Q(t)f
(
x (t − δ(t))

)
≤ 0,

which implies, in view of the hypothesis that Q(t) is not identically zero, that y(i),
0 ≤ i ≤ n−1, is eventually monotone. Hence, if (6.6) does not hold, then eventually
y(t) < 0. Since n is odd, we have eventually y′(t) < 0 and so there exist t1 > t0
and α > 0 such that

y(t) ≤ −α, t ≥ t1,

i.e.,

(6.7) x(t) ≤ −α + P (t)x(t − τ), t ≥ t1.

Choose k∗ ∈ N so large that t∗ + k∗τ ≥ t1. Hence, by (6.4) and (6.7), we have

x
(
t∗ + (k∗ + k)τ

)
≤ −α + x

(
t∗ + (k∗ + k − 1)τ

)
, k ∈ N0,

and by induction

x
(
t∗ + (k∗ + k)τ

)
≤ −(k + 1)α + x

(
t∗ + (k∗ − 1)τ

)
→ −∞ as k → ∞.

This is a contradiction and so y(t) is eventually positive. The proof is complete.
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Theorem 6.2.2. Assume that (6.2), (6.3), and (6.4) hold and that Q(t) is not
identically equal to zero eventually. Suppose also that either

(6.8) P (t) + Q(t)δ(t) > 0

or

(6.9) δ(t) > 0 and Q(s) �≡ 0 for s ∈ [t, T ∗],

where T ∗ satisfies T ∗ − δ(T ∗) = t. Then every solution of (6.1) oscillates if and
only if the corresponding differential inequality

(6.10)
dn

dtn

(
x(t) − P (t)x(t − τ)

)
+ Q(t)f

(
x (t − δ(t))

)
≤ 0

has no eventually positive solutions.

Proof. The sufficiency is obvious. To prove the necessity, assume that x is an
eventually positive solution of (6.10). Set y as in (6.5). From (6.8) we have that

(6.11) y(n)(t) ≤ −Q(t)f
(
x(t − δ(t))

)
≤ 0,

which implies that y(i), 0 ≤ i ≤ n − 1, is eventually monotone. As in the proof of
Lemma 6.2.1, we have y(t) > 0. Therefore, there exists a nonnegative even integer
n∗ ≤ n − 1 (recall n ∈ N is odd) such that

(6.12)

{
y(i)(t) > 0 for i ∈ {0, 1, . . . , n∗},
(−1)iy(i)(t) > 0 for i ∈ {n∗, . . . , n − 1}.

We consider the following possible cases.

Case I: n∗ = 0. By using (6.12) and integrating (6.11) from t to ∞, we obtain

y(t) ≥
∫ ∞

t

(s − t)n−1

(n − 1)!
Q(s)f
(
x (s − δ(s))

)
ds,

i.e.,

(6.13) x(t) ≥ P (t)x(t − τ) +
∫ ∞

t

(s − t)n−1

(n − 1)!
Q(s)f
(
x (s − δ(s))

)
ds.

Let T > t0 be such that (6.13) holds for all t ≥ T . Set

T0 = max
{

τ,min
t≥T

δ(t)
}

.

Now we consider the set of functions

Ω =
{

z ∈ C
(
[T − T0,∞), R+

)
: 0 ≤ z(t) ≤ 1 for t ≥ T − T0

}
and define a mapping F on Ω as

(Fz)(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

x(t)

[
P (t)(zx)(t − τ) +

∫ ∞

t

(s − t)n−1

(n − 1)!
Q(s)f
(
(zx)(s − δ(s))

)
ds

]
if t ≥ T,

t − T + T0

T0
(Fz)(T ) + 1 − t − T + T0

T0
if T − T0 ≤ t < T.

It is easy to see by using (6.13) that F maps Ω into itself, and for any z ∈ Ω, we
have (Fz)(t) > 0 for T − T0 ≤ t < T .
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Next we define the sequence {zk}k∈N0 ⊂ Ω by

z0(t) ≡ 1 and zk+1(t) = (Fzk)(t), k ∈ N0 for t ≥ T − T0.

Then, by using (6.13) and a simple induction, we can easily see that

0 ≤ zk+1(t) ≤ zk(t) ≤ 1 for t ≥ T − T0, k ∈ N0.

Set
z(t) = lim

k→∞
zk(t), t ≥ T − T0.

Then it follows from Lebesgue’s dominated convergence theorem that z satisfies

z(t) =
1

x(t)

[
P (t)z(t − τ)x(t − τ)

+
∫ ∞

t

(s − t)n−1

(n − 1)!
Q(s)f
(
z (s − δ(s))x (s − δ(s))

)
ds

]
for t ≥ T and

z(t) =
t − T + T0

T0
(Fz)(T ) + 1 − t − T + T0

T0
> 0

for T − T0 ≤ t < T . Again, set
w = zx.

Then w satisfies w(t) > 0 for T − T0 ≤ t < T and

(6.14) w(t) = P (t)w(t − τ) +
∫ ∞

t

(s − t)n−1

(n − 1)!
Q(s)f
(
w (s − δ(s))

)
ds, t ≥ T.

Clearly, w is continuous on [T − T0, T ). Then, by the method of steps, in view of
(6.14) we see that w is continuous on [T − T0,∞).

Finally, it remains to show that w(t) is positive for all t ≥ T − T0. Assume that
there exists t∗ ≥ T − T0 such that w(t) > 0 for T − T0 ≤ t < t∗ and w(t∗) = 0.
Then t∗ ≥ T and by (6.14), we obtain

0 = w(t∗) = P (t∗)w(t∗ − τ) +
∫ ∞

t∗

(s − t∗)n−1

(n − 1)!
Q(s)f
(
w (s − δ(s))

)
ds,

which implies

P (t∗) = 0 and Q(s)f
(
w (s − δ(s))

)
≡ 0

for all t ≥ t∗. This contradicts (6.8) or (6.9). Therefore w(t) > 0 on [T−T0,∞). It is
easy to see that w is a positive solution of (6.1), which implies that inequality (6.10)
having no eventually positive solution is a necessary condition for the oscillation of
all solutions of (6.1).

Case II: 2 ≤ n∗ ≤ n− 1. By using (6.12) and integrating (6.11) from t to ∞, we
obtain

(6.15) y(n∗)(t) ≥
∫ ∞

t

(s − t)n−n∗−1

(n − n∗ − 1)!
Q(s)f
(
x (s − δ(s))

)
ds.

Let T > t0 be such that (6.15) holds for all t ≥ T . Integrating (6.15) and using
(6.12), we have

y(t) ≥
∫ t

T

(t − s)n∗−1

(n∗ − 1)!

∫ ∞

s

(u − s)n−n∗−1

(n − n∗ − 1)!
Q(u)f

(
x (u − δ(u))

)
duds
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for t ≥ T . That is,

x(t) ≥ P (t)x(t−τ)+
∫ t

T

(t − s)n∗−1

(n∗ − 1)!

∫ ∞

s

(u − s)n−n∗−1

(n − n∗ − 1)!
Q(u)f

(
x (u − δ(u))

)
duds

for t ≥ T , which, using a method similar to the proof of Case I, yields that (6.1)
also has a positive solution. Hence the proof is complete.

Now we give some applications of Theorem 6.2.2. We compare (6.1) with the
equation

(6.16)
dn

dtn

(
x(t) − P ∗(t)x(t − τ)

)
+ Q∗(t)f∗

(
x (t − δ(t))

)
= 0

and state the following comparison theorem.

Theorem 6.2.3. Assume that (6.2), (6.3), and (6.8) or (6.9) hold. Furthermore
assume that f∗ satisfies (6.3), that

(6.17)

{
xf∗(x) ≥ xf(x) for all x ∈ R,

P ∗(t) ≥ P (t) and Q∗(t) ≥ Q(t),

and that there exists t∗ ≥ t0 with

P ∗(t∗ + kτ) ≤ 1, k ∈ N0.

If every solution of (6.1) oscillates, then every solution of (6.16) also oscillates.

Proof. Suppose the contrary and let x be an eventually positive solution of (6.16).
Set

y(t) = x(t) − P ∗(t)x(t − τ).

Then by Lemma 6.2.1, we have

y(n)(t) ≤ 0 and y(t) > 0.

Therefore there exists a nonnegative even integer n∗ ≤ n−1 such that (6.12) holds.

Suppose n∗ = 0. By integrating (6.16) from t to ∞, we obtain

x(t) ≥ P ∗(t)x(t − τ) +
∫ ∞

t

(s − t)n−1

(n − 1)!
Q∗(s)f∗

(
x (s − δ(s))

)
ds.

Noting condition (6.17), we find

x(t) ≥ P (t)x(t − τ) +
∫ ∞

t

(s − t)n−1

(n − 1)!
Q(s)f
(
x (s − δ(s))

)
ds.

Using a method similar to the proof of Theorem 6.2.2, we see that (6.1) also has
an eventually positive solution, and this is a contradiction.

Let 2 ≤ n∗ ≤ n − 1. Integrating (6.16), we obtain

x(t) ≥ P ∗(t)x(t − τ)

+
∫ t

T

(t − s)n∗−1

(n∗ − 1)!

∫ ∞

s

(u − s)n−n∗−1

(n − n∗ − 1)!
Q∗(u)f∗

(
x (u − δ(u))

)
duds
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for t ≥ T . From condition (6.17), we find

x(t) ≥ P (t)x(t − τ)

+
∫ t

T

(t − s)n∗−1

(n∗ − 1)!

∫ ∞

s

(u − s)n−n∗−1

(n − n∗ − 1)!
Q(u)f

(
x (u − δ(u))

)
duds

for t ≥ T , which again yields a contradiction. Hence the proof is complete.

Theorem 6.2.4. Assume that (6.2) and (6.4) hold and that there exist m,N ∈ N0

with m ≤ N and

Q(s)
i0∏

j=1

P
(
s − δ(s) − (j − 1)τ

)
�≡ 0, s ∈ [t, t + δ(t) + i0τ ] , i0 ∈ {m, . . . , N}.

If every solution of the delay differential equation

(6.18) y(n)(t) + Q(t)
N∑

j=m

(
j∏

i=1

P
(
t − δ(t) − (i − 1)τ

)
y
(
t − δ(t) − iτ

))
= 0

oscillates, then every solution of (6.1) is oscillatory.

Proof. Without loss of generality, assume that there exists an eventually positive
solution x of (6.1). Then, from Lemma 6.2.1 we know that for all sufficiently large
t we have y(t) > 0 and y (t − δ(t) − iτ) > 0 for i ∈ {1, . . . , N}. Thus we have

x(t) = P (t)x(t − τ) + y(t)

= y(t) + P (t)
[
y(t − τ) + P (t − τ)x(t − 2τ)

]
≥

N∑
j=m

j∏
i=1

P
(
t − (i − 1)τ

)
y(t − iτ),

so

y(n)(t) + Q(t)
N∑

j=m

(
j∏

i=1

P
(
t − δ(t) − (i − 1)τ

)
y
(
t − δ(t) − iτ

))
≤ 0.

Since y(t) > 0, it follows that (6.18) also has an eventually positive solution. This
is a contradiction, and the proof is complete.

Next, for the sake of completeness, we state the following lemma, which is very
useful in the subsequent results.

Lemma 6.2.5 ([68]). Suppose that φ ∈ C(n)([T,∞), R+), T ≥ 0, such that φ(i)(t),
i < n, is of one sign in [T,∞) and φ(n)(t) ≤ 0, t ≥ T . Then μ > 0 implies that

φ(t − μ) ≥ μn−1

(n − 1)!
φ(n−1)(t), t ≥ T + 2μ.

Theorem 6.2.6. Assume that (6.3) holds, 0 ≤ α ≤ P (t) ≤ β < 1, n > 1 is an odd
integer, δ(t) ≡ δ > 0, and there exists μ ∈ (0, 1) such that all solutions of the first
order delay differential equation

(6.19) y′(t) + Q(t)f

(
μ

(1 − α)(n − 1)!

(
n − 1

n

)n−1

y

(
t − δ

n

))
= 0

are oscillatory. Then all solutions of (6.1) are oscillatory.
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Proof. Assume that x is an eventually positive solution of (6.1). Set y as in (6.5).
From Lemma 6.2.1 we have y(t) > 0 eventually. Since all solutions of (6.19) being
oscillatory implies that

∫∞
Q(s)ds = ∞ by [284, Lemma 2.1], we have y′(t) < 0

and y(n−1)(t) > 0 eventually. Suppose that y(t) > 0 for t ≥ t1. There exists k ∈ N

such that 1 − αk+1 > μ. Thus we obtain by using y′(t) < 0,

x(t) = y(t) + P (t)x(t − τ) ≥ y(t) + αx(t − τ)(6.20)

≥
k∑

i=0

αiy(t − iτ) + αk+1x
(
t − (k + 1)τ

)

≥ y(t)
k∑

i=0

αi ≥ μ

1 − α
y(t)

for t ≥ t1 +(k+1)τ . From (6.1), (6.20), and the fact that y(t) < x(t) for t ≥ t1 + τ ,
we obtain

y(n)(t) + Q(t)f
(

μ

1 − α
y(t − δ)

)
≤ 0, t ≥ t1 + (k + 1)τ + δ.

By Lemma 6.2.5, we have eventually

(6.21) y(n)(t) + Q(t)f

(
μ

(1 − α)(n − 1)!

(
n − 1

n

)n−1

δn−1y(n−1)

(
t − δ

n

))
≤ 0.

From (6.21) we see that y(n−1) is an eventually positive solution of the first order
differential inequality. By Theorem 6.2.2, (6.19) has an eventually positive solution.
This contradiction completes the proof.

Corollary 6.2.7. Assume that P and n satisfy the hypotheses of Theorem 6.2.6.
If δ > 0, Q(t) ≥ 0, and either

lim inf
t→∞

∫ t

t− δ
n

δn−1Q(s)ds >
1
e

(
n

n − 1

)n−1

(1 − α)(n − 1)!

or

lim sup
t→∞

∫ t

t− δ
n

δn−1Q(s)ds >

(
n

n − 1

)n−1

(1 − α)(n − 1)!

holds, then every solution of (6.19) is oscillatory.

Example 6.2.8. Consider the neutral delay differential equation

(6.22)
(

x(t) − 23
24

x(t − τ)
)(5)

+ 5
(

626
256e

+ e−t

)
x(t − 1) = 0, t ≥ 1.

Here τ > 0, P (t) = 23
24 , Q(t) = 5

(
626
256e + e−t

)
, δ = 1, n = 5, α = 23

24 , f(x) = x, and

lim inf
t→∞

∫ t

t− δ
n

(t − s)n−1Q(s)ds =
5
2e

< (n − 1)!(1 − α) = 1.

Then

lim inf
t→∞

∫ t

t− δ
n

δn−1Q(s)ds =
626
256e

>
625
256e

=
1
e

(
n

n − 1

)n−1

(1 − α)(n − 1)!

so that Corollary 6.2.7 implies that every solution of (6.22) is oscillatory.
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Remark 6.2.9. For the general equation

dn

dtn

(
x(t) − P (t)x(t − τ)

)
+

m∑
i=1

Qi(t)fi

(
x(t − δ)

)
= 0,

the above results also hold if each fi, 1 ≤ i ≤ m, satisfies (6.3).

6.3. Oscillation Criteria for Neutral Equations

In this section we are concerned with the odd order neutral delay differential
equation

(6.23)
dn

dtn

(
y(t) − py(t − τ)

)
+

m∑
i=1

qi(t)y(t − σi) = 0

and mainly examine the oscillatory characteristics of (6.23) in the cases p ≥ 1 and
0 ≤ p < 1. For the sake of convenience, let

z(t) = y(t) − py(t − τ).

We also define

σ∗ = min {σ1, σ2, . . . , σm} , σ∗ = max {σ1, σ2, . . . , σm} ,

and the set

L =
{

τ,
τ − σ1

n
,
τ − σ2

n
, . . . ,

τ − σm

n

}
.

Lemma 6.3.1. Assume p ∈ [1,∞) and σ∗, τ, τ −σ∗ ∈ (0,∞), Suppose further that
qi ∈ C([t0,∞), R+),

∑m
i=1 qi(t) �≡ 0 on any subinterval of [t0,∞), and

(6.24) lim inf
t→∞

∫ t+ τ−σ∗
n

t

m∑
i=1

qi(s)ds > 0.

(i) If y is eventually positive, then either z(i) is decreasing with

(6.25) z(i)(t) → −∞ as t → ∞
for i ∈ {0, 1, 2, . . . , n − 1}, or z(i) is monotone and

(6.26) z(i)(t) → 0 as t → ∞ and z(i)(t)z(i+1)(t) < 0

for i ∈ {0, 1, 2, . . . , n − 1}.
(ii) If y is eventually negative, then either z(i) is increasing with

z(i)(t) → ∞ as t → ∞
for i ∈ {0, 1, 2, . . . , n − 1}, or (6.26) holds.

(iii) If n is odd and (6.26) holds, then z(t) > 0 for y(t) > 0, and z(t) < 0 for
y(t) < 0 eventually.

Proof. Condition (6.24) implies that∫ ∞

t0

m∑
i=1

qi(t)dt = ∞.

By [109, Lemma 2], it is easy to see that (i), (ii), and (iii) hold.
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Lemma 6.3.2 ([166]). Let φ ∈ Cn([t0,∞), R) be of constant sign and suppose

φ(t)φ(n)(t) < 0 (φ(t)φ(n)(t) > 0).

Then there exist t∗ ≥ t0 and l ∈ {0, 1, . . . , n} such that l + n is odd (even), and for
t ≥ t∗ the following inequalities hold:{

φ(t)φ(i)(t) > 0 for i ∈ {0, 1, . . . , l},
(−1)l+iφ(t)φ(i)(t) > 0 for i ∈ {l + 1, . . . , n}.

Lemma 6.3.3. Suppose that φ ∈ Cn([t0,∞), R), t0 ≥ 0, such that φ(i)(t), i < n,
is of one sign in [t0,∞) and φ(n)(t) ≤ 0, t ≥ t0. Then α > 0 implies the following:

(i) If φ(t) > 0, then

φ(t − α) ≥ αn−1

(n − 1)!
φ(n−1)(t), t ≥ t0 + 2α.

(ii) If φ(t) < 0, then

(6.27) φ(t + α) ≤ αn−1

(n − 1)!
φ(n−1)(t), t ≥ t0.

Proof. Part (i) is Lemma 6.2.5. Now we shall prove part (ii). Since φ(n)(t) ≤ 0, by
Lemma 6.3.2, there exists an integer k ∈ {0, 1, . . . , n} such that{

φ(j)(t) < 0 for j ≤ k,

φ(j)(t)φ(j+1)(t) < 0 for k ≤ j < n.

By Lemma 6.3.2, we have that k + n is even. Hence we may note that k is odd
(even) if and only if n is odd (even).

If k = n − 1 or k = n, then, expanding φ(t) by Taylor’s theorem, there exists
ξ ∈ (t, t + α) such that

φ(t + α) =
n−1∑
j=0

αj

j!
φ(j)(t) +

αn

n!
φ(n)(ξ) ≤ αn−1

(n − 1)!
φ(n−1)(t).

This shows that (6.27) holds.

If k < n − 1, then, by Lemma 6.3.2, we have φ(n−1)(t) > 0. Obviously, (6.27)
holds also. The proof is complete.

Lemma 6.3.4. Assume p ∈ [0, 1) and (6.24). Then z satisfies (6.26).

Proof. Since (6.24) holds, we have∫ ∞

t0

m∑
i=1

qi(t)dt = ∞.

By [109, Lemma 2 (d)], we have limt→∞ z(t) = 0. The proof is complete.

Theorem 6.3.5. Assume p ∈ [1,∞), n ∈ N is odd, and σ∗, τ, τ − σ∗ ∈ (0,∞).
Suppose further that (6.24) holds and for μ > 0 and l ∈ L,

(6.28) lim inf
t→∞

{
1
p
eμτ +

(
n−1

n

)n−1

lpμ(n − 1)!

m∑
i=1

(τ − σi)
n−1

eμ( τ−σi
n )
∫ t+l

t

qi(s)ds

}
> 1
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and

(6.29) qi(t) ≤ qi(t − τ), i ∈ {1, 2, . . . ,m}.
Then every solution of (6.23) oscillates.

Proof. Suppose the contrary and let y be an eventually positive solution of (6.23).
Then from (6.23), z(n)(t) ≤ 0 eventually. By Lemma 6.3.1 (i), we have that (6.25)
or (6.26) holds. If (6.26) holds, then, by Lemma 6.3.1 (iii), we have z(t) > 0
eventually. Then there exist M > 0 and T ≥ t0 such that y(t − σi) ≥ M for
1 ≤ i ≤ m and t ≥ T . From (6.23), we have

(6.30) z(n)(t) + M
m∑

i=1

qi(t) ≤ 0.

Condition (6.24) implies that ∫ ∞

T

m∑
i=1

qi(t)dt = ∞.

Integrating (6.30) from T to t ≥ T provides

z(n−1)(t) − z(n−1)(T ) ≤ −M

∫ t

T

m∑
i=1

qi(s)ds.

Letting t → ∞, we obtain limt→∞ z(n−1)(t) = −∞ and hence limt→∞ z(t) = −∞,
which is a contradiction. Hence (6.25) holds.

From (6.23) and (6.29) we have

z(n)(t) = −
m∑

i=1

qi(t)y(t − σi)

= −
m∑

i=1

qi(t)z(t − σi) − p

m∑
i=1

qi(t)y(t − τ − σi)

≥ −
m∑

i=1

qi(t − τ)z(t − σi) − p
m∑

i=1

qi(t − τ)y(t − τ − σi)

= −
m∑

i=1

qi(t − τ)z(t − σi) + pz(n)(t − τ).

Hence

(6.31) z(n)(t) ≤ z(n)(t + τ)
p

+
1
p

m∑
i=1

qi(t)z(t + τ − σi).

Dividing both sides of (6.31) by z(n−1)(t) and noting that z(n−1)(t) is negative, we
have

(6.32)
z(n)(t)

z(n−1)(t)
≥ z(n)(t + τ)

pz(n−1)(t)
+

1
pz(n−1)(t)

m∑
i=1

qi(t)z(t + τ − σi).

Using Lemma 6.3.3 (ii) with α = n−1
n (τ −σi) for the term z(t+ τ −σi), 1 ≤ i ≤ m,

we find

(6.33) z(t + τ − σi) ≤
(τ − σi)n−1

(n − 1)!

(
n − 1

n

)n−1

z(n−1)

(
t +

τ − σi

n

)
.
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Let

λ =
z(n)

z(n−1)
.

Then λ(t) > 0. By (6.32), (6.33), we obtain

λ(t) ≥ λ(t + τ)
p

exp
(∫ t+τ

t

λ(s)ds

)
+

1
p(n − 1)!

(
n − 1

n

)n−1 m∑
i=1

qi(t) (τ − σi)
n−1 exp

(∫ t+
τ−σi

n

t

λ(s)ds

)
.

Define {λk(t)} for k ∈ N and t ≥ T and a sequence of numbers {μk} for k ∈ N as
follows: λ1(t) ≡ 0,

λk+1(t) =
λk(t + τ)

p
exp
(∫ t+τ

t

λk(s)ds

)
+

1
p(n − 1)!

(
n − 1

n

)n−1 m∑
i=1

qi(t)(τ − σi)n−1 exp

(∫ t+
τ−σi

n

t

λk(s)ds

)
,

μ1 = 0,

(6.34) μk+1 = inf
t≥T

{
min
l∈L

[
μk

p
eμkτ +

1
pl(n − 1)!

(
n − 1

n

)n−1

×
m∑

i=1

(τ − σi)n−1eμk( τ−σi
n )
∫ t+l

t

qi(s)ds

]}
.

It is easy to see that

(i) 0 = μ1 < μ2 < . . .;
(ii) λk(t) ≤ λ(t) for k ∈ N;
(iii) 1

l

∫ t+l

t
λk(s)ds ≥ μk for k ∈ N, t ≥ T , and l ∈ L.

Since (i) and (ii) are obvious, we shall consider only (iii). It is evident for k = 1
that (iii) holds. If (iii) is true for k ∈ N, then

1
l

∫ t+l

t

λk+1(s)ds =
1
pl

∫ t+l

t

λk(s + τ) exp
(∫ s+τ

s

λk(u)du

)
ds

+

(
n−1

n

)n−1

pl(n − 1)!

∫ t+l

t

m∑
i=1

(τ − σi)
n−1

qi(s) exp

(∫ s+
τ−σi

n

s

λk(u)du

)
ds

≥ μk

p
eμkτ +

1
pl(n − 1)!

(
n − 1

n

)n−1 m∑
i=1

(τ − σi)
n−1

eμk( τ−σi
n )
∫ t+l

t

qi(s)ds

≥ μk+1.

Thus (iii) holds for k ∈ N. From (6.28) and (6.34), it is easy to see that there exists
α > 1 such that μk+1 ≥ αμk. Hence limk→∞ μk = ∞. From properties (ii) and
(iii), we have

(6.35)
z(n−1)(t + l)

z(n−1)(t)
= exp

(∫ t+l

t

λ(s)ds

)
→ ∞ as t → ∞.
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On the other hand, since y(t) > 0, we have z(t) > −py(t− τ). Substituting the last
inequality into (6.23), we find

z(n)(t) = −
m∑

i=1

qi(t)y(t − σi) <
1
p

m∑
i=1

qi(t)z (t + τ − σi) .

Furthermore, by Lemma 6.3.3 (ii) (as in (6.33)), we have

z(n)(t) <
1
p

m∑
i=1

qi(t)z(t + τ − σi)

≤ 1
p(n − 1)!

(
n − 1

n

)n−1 m∑
i=1

qi(t) (τ − σi)
n−1

z(n−1)

(
t +

τ − σi

n

)

≤ (1 − 1/n)n−1

p(n − 1)!

m∑
i=1

qi(t)(τ − σi)n−1z(n−1)

(
t +

τ − σ∗

n

)
.

Set
w = z(n−1).

Then

(6.36) w′(t) <
(1 − 1/n)n−1

p(n − 1)!

m∑
i=1

qi(t)(τ − σi)n−1w

(
t +

τ − σ∗

n

)
.

Integrating (6.36) from t to t + (τ − σ∗)/(2n), we find

w

(
t +

τ − σ∗

2n

)
≤ w

(
t +

τ − σ∗

2n

)
− w(t)

≤ (1 − 1/n)n−1

p(n − 1)!

∫ t+ τ−σ∗
2n

t

m∑
i=1

qi(s)(τ − σi)n−1w

(
s +

τ − σ∗

n

)
ds

≤ w

(
t +

τ − σ∗

n

)
(1 − 1/n)n−1

p(n − 1)!

∫ t+ τ−σ∗
2n

t

m∑
i=1

qi(s)(τ − σi)n−1ds.

Hence

(6.37)
w
(
t + τ−σ∗

n

)
w
(
t + τ−σ∗

2n

) (n−1
n

)n−1

p(n − 1)!

∫ t+ τ−σ∗
2n

t

m∑
i=1

qi(s)(τ − σi)n−1ds ≤ 1.

From (6.24) and (6.37), we obtain that

w
(
t + τ−σ∗

n

)
w
(
t + τ−σ∗

2n

)
is bounded, and this contradicts (6.35). This completes the proof.

Remark 6.3.6. The application of Lemma 6.3.3 with α = n−1
n (τ − σi) in (6.32)

is not totally unjustified. Suppose that Lemma 6.3.3 is applied to (6.32) with t
replaced by t − αi in z(t + τ − σi). Then the reduced inequality is

αn−1
i

(n − 1)!
zn−1 (t − αi + τ − σi) ≥ z(t + τ − σi).

If we choose αi such that 0 < αi < τ − σi, then the function

G(αi) = αn−1
i (τ − σi − αi)
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attains its maximum value at αi = n−1
n (τ − σi). A similar remark also holds for

Theorem 6.3.11 below.

Remark 6.3.7. Condition (6.24) can be replaced by

lim inf
t→∞

∫ t+
τ−σi

n

t

qi(s)ds > 0 for some i ∈ {1, 2, . . . ,m}.

Remark 6.3.8. When n = 1, condition (6.28) becomes

lim inf
t→∞

{
1
p
eμτ +

1
μpl

m∑
i=1

eμ(τ−σi)

∫ t+l

t

qi(s)ds

}
> 1.

Corollary 6.3.9. Assume that for l ∈ L,

lim inf
t→∞

{
K

(n − 1)!

∞∑
k=0

e
[(

k + 1
n

)
τ − σi

n

]
pk+1

}
> 1,

where

K =
(

n − 1
n

)n−1 m∑
i=1

(τ − σi)n−1

(
1
l

∫ t+l

t

qi(s)ds

)
.

Then every solution of (6.23) is oscillatory.

Proof. In fact, for 1
peμτ < 1, we have

lim inf
t→∞

(
1 − 1

n

)n−1

μpl(n − 1)!

m∑
i=1

eμ( τ−σi
n )(τ − σi)n−1

∫ t+l

t

qi(s)ds

(
1 − 1

p
eμτ

)−1

= lim inf
t→∞

(
1 − 1

n

)n−1

μpl(n − 1)!

m∑
i=1

eμ( τ−σi
n )(τ − σi)n−1

∫ t+l

t

qi(s)ds

∞∑
k=0

ekμτ

pk

≥ lim inf
t→∞

(
1 − 1

n

)n−1

(n − 1)!

m∑
i=1

(τ − σi)n−1
∞∑

k=0

(
1
l

∫ t+l

t

qi(s)ds

)
e
((

k + 1
n

)
τ − σi

n

)
pk+1

> 1,

i.e., (6.28) holds. By Theorem 6.3.5, every solution of (6.23) oscillates. If 1
peμτ ≥ 1,

then (6.28) is satisfied also. Therefore the corollary holds.

Example 6.3.10. Consider the equation

d3

dt3

(
y(t) − py(t − τ)

)
+
(

1 +
1
t

)
y(t − σ) = 0, t ≥ 1,

where p ≥ 1, τ > 0, σ > 0, and τ − σ > 0. Let q(t) = 1 + 1
t . It is easy to see that

for all l > 0,

lim
t→∞

1
l

∫ t+l

t

q(s)ds = lim
t→∞

1
l

∫ t+l

t

(
1 +

1
s

)
ds = lim

t→∞

(
1 +

1
l

ln
(

1 +
l

t

))
= 1.

According to Theorem 6.3.5, the above equation is oscillatory if for all μ > 0,
1
p
eμτ +

2
9pμ

(τ − σ)2 eμ( τ−σ
3 ) > 1.

Next we establish a sufficient condition for the oscillation of (6.23) in the case
p ∈ [0, 1).
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Theorem 6.3.11. Assume p ∈ [0, 1), n ∈ N is odd, and τ, σ∗ ∈ (0,∞). Assume
further that

lim inf
t→∞

∫ t+ σ∗
n

t

m∑
i=1

qi(s)ds > 0

holds and for μ > 0, l ∈
{

σi

n : 1 ≤ i ≤ m
}
,

lim inf
t→∞

{
peμτ +

(
n−1

n

)n−1

lμ(n − 1)!

m∑
i=1

σn−1
i eμ

σi
n

∫ t+l

t

qi(s)ds

}
> 1

and

(6.38) qi(t) ≥ qi(t − τ) for i ∈ {1, 2, . . . ,m}.
Then every solution of (6.23) oscillates.

Proof. Suppose the contrary and let y be an eventually positive solution of (6.23).
Then from (6.23), z(n)(t) ≤ 0 eventually. By Lemmas 6.3.1 and 6.3.4 we have
z(t) > 0 eventually and limt→∞ z(t) = 0. Hence z′(t) < 0 eventually. In view of
Lemma 6.3.2 we obtain z(n−1)(t) > 0 eventually. From (6.23) and (6.38) we have

z(n)(t) = −
m∑

i=1

qi(t)y(t − σi)

= −
m∑

i=1

qi(t)z(t − σi) − p
m∑

i=1

qi(t)y(t − τ − σi)

≤ −
m∑

i=1

qi(t)z(t − σi) − p
m∑

i=1

qi(t − τ)y(t − τ − σi)

= −
m∑

i=1

qi(t)z(t − σi) + pz(n)(t − τ).

Hence

(6.39) z(n)(t) ≤ pz(n)(t − τ) −
m∑

i=1

qi(t)z(t − σi).

Dividing both sides of (6.39) by −z(n−1)(t) and noting that z(n−1)(t) > 0 eventually,
we have

(6.40)
z(n)(t)

−z(n−1)(t)
≥ pz(n)(t − τ)

−z(n−1)(t)
+

1
z(n−1)(t)

m∑
i=1

qi(t)z(t − σi).

Using Lemma 6.3.3 (i) with α = n−1
n σi for the term z(t − σi), 1 ≤ i ≤ m, we have

(6.41) z(t − σi) ≥
σn−1

i

(n − 1)!

(
n − 1

n

)n−1

z(n−1)
(
t − σi

n

)
.

Let

(6.42) λ(t) = − z(n)(t)
z(n−1)(t)

> 0.
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By (6.40), (6.41), and (6.42), we obtain

λ(t) ≥ pλ(t − τ) exp
(∫ t

t−τ

λ(s)ds

)
+

1
(n − 1)!

(
n − 1

n

)n−1 m∑
i=1

qi(t)σn−1
i exp

(∫ t

t−σi
n

λ(s)ds

)
.

Repeating the proof of Theorem 6.3.5, we can obtain that the conclusion is valid.
The proof is complete.

In the following we establish a comparison theorem. We shall consider the
equation

(6.43)
dn

dtn

(
y(t) − P (t)y(t − τ)

)
+ Q(t)y(t − σ) = 0

and the equation

(6.44)
dn

dtn

(
y(t) − P ∗(t)y(t − τ)

)
+ Q∗(t)y(t − σ) = 0.

Lemma 6.3.12 ([290]). Assume that P (t) ≥ 1 and Q ∈ C([t0,∞), R+) such that

(6.45)
∫ ∞

t0

snQ(s)
∫ ∞

s

(u − s)n−1Q(u)duds = ∞.

If y is an eventually positive solution of (6.43) and z(t) = y(t)−P (t)y(t− τ), then
z(t) < 0 eventually.

Theorem 6.3.13. Suppose that P (t) ≥ 1 and Q∗ ∈ C([t0,∞), R+) satisfies (6.45).
Suppose further that

(6.46) P (t) ≤ P ∗(t) and Q(t) ≥ Q∗(t).

Then oscillation of (6.44) implies oscillation of (6.43).

Proof. Suppose the conclusion is not valid and let y be an eventually positive so-
lution of (6.43). Let z(t) = y(t) − P (t)y(t − τ). Then, by Lemma 6.3.12, we have
z(t) < 0 and z(n)(t) ≤ 0 eventually.

Since n is odd, by [166, Lemma 5.2.2], we have either

(6.47) z(i)(t) < 0 for all i ∈ {0, 1, . . . , n}
or

(6.48)

{
z(i)(t) < 0 for i ∈ {0, 1, . . . , l},
(−1)iz(i)(t) ≤ 0 for i ∈ {l + 1, . . . , n},

where l is odd.

Let T1 ≥ t0 be such that

(6.49) z(n)(t) = −Q(t)y(t − σ)

holds for all t ≥ T1. If (6.47) holds, then integrating (6.49) from T1 to t provides

z(t) ≤ −
∫ t

T1

∫ sn−1

T1

· · ·
∫ s1

T1

Q(u)y(u − σ)duds1 · · · dsn−1,

 



208 6. HIGHER ORDER DELAY DIFFERENTIAL EQUATIONS

i.e.,

P (t)y(t − τ) ≥ y(t) +
∫ t

T1

∫ sn−1

T1

· · ·
∫ s1

T1

Q(u)y(u − σ)duds1 · · · dsn−1.

Since P (t) ≥ 1, we find

y(t) ≥ 1
P (t + τ)

[
y(t + τ) +

∫ t+τ

T1

∫ sn−1

T1

· · ·
∫ s1

T1

Q(u)y(u − σ)duds1 · · · dsn−1

]
.

By condition (6.46), we have

(6.50) y(t) ≥ 1
P ∗(t + τ)

[
y(t + τ)

+
∫ t+τ

T1

∫ sn−1

T1

· · ·
∫ s1

T1

Q∗(u)y(u − σ)duds1 · · · dsn−1

]
for t ≥ T1 + τ . Let T > T1 + τ such that (6.50) holds for all t ≥ T . Set

T0 = max{τ, σ}.
Now we consider the set of functions

Ω =
{

w ∈ C([T − T0,∞), R+) : 0 ≤ w(t) ≤ 1 for t ≥ T − T0

}
and define a mapping F on Ω as

(Fw)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
y(t)P ∗(t + τ)

[
(wy)(t + τ) +

∫ t+τ

T1

∫ sn−1

T1

· · ·
∫ s1

T1

Q∗(u)w(u − σ)

× y(u − σ)duds1 · · · dsn−1

]
if t ≥ T,

t − T + T0

T0
(Fw)(T ) +

(
1 − t − T + T0

T0

)
if T − T0 ≤ t < T.

It is easy to see by using (6.50) that F maps Ω into itself, and for any w ∈ Ω, we
have (Fw)(t) > 0 for T − T0 ≤ t < T .

Next we define a sequence {wk}k∈N0 ⊂ Ω by

w0(t) = 1 and wk+1(t) = (Fwk)(t), k ∈ N0 for t ≥ T − T0.

Then, by using (6.50) and a simple induction, we can easily see that

0 ≤ wk+1(t) ≤ wk(t) ≤ 1 for t ≥ T − T0 and k ∈ N0.

Set
w(t) = lim

k→∞
wk(t), t ≥ T − T0.

Then it follows from Lebesgue’s dominated convergence theorem that w satisfies

w(t) =
1

y(t)P ∗(t + τ)

[
w(t + τ)y(t + τ)

+
∫ t+τ

T1

∫ sn−1

T1

· · ·
∫ s1

T1

Q∗(u)w(u − σ)y(u − σ)duds1 · · · dsn−1

]
for t ≥ T and

w(t) =
t − T + T0

T0
(Fw)(T ) +

(
1 − t − T + T0

T0

)
> 0
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for T − T0 ≤ t < T . Again set
v = wy.

Then v satisfies v(t) > 0 for T − T0 ≤ t < T and

v(t) =
1

P ∗(t + τ)

[
v(t + τ) +

∫ t+τ

T1

∫ sn−1

T1

· · ·
∫ s1

T1

Q∗(u)v(u − σ)duds1 · · · dsn−1

]
for t ≥ T . Clearly v is continuous on [T − T0, T ). Then by the method of steps we
see in view of the above that v is continuous on [T − T0,∞).

Since v(t) > 0 for T − T0 ≤ t < T , it is easy to see that v(t) > 0 for t ≥ T − T0.
Hence, v is a positive solution of (6.44). This is a contradiction.

If (6.48) holds, then, integrating (6.49) from T1 to t, we get

(6.51) z(l)(t) ≥ −
∫ t

T1

∫ sn−l−1

T1

· · ·
∫ s1

T1

Q(s)y(s − σ)dsds1 · · · dsn−l−1

for t ≥ T1. Again integrating (6.51) from T1 to t, we have

y(t) ≥ 1
P (t + τ)

[
y(t + τ)

+
∫ t

T1

(t − s)l−1

(l − 1)!

∫ s

T1

∫ sn−l−1

T1

· · ·
∫ s1

T1

Q(u)y(u − σ)duds1 · · · dsn−l−1

]
.

By condition (6.46), we have

y(t) ≥ 1
P ∗(t + τ)

[
y(t + τ)

+
∫ t

T1

(t − s)l−1

(l − 1)!

∫ s

T1

∫ sn−l−1

T1

· · ·
∫ s1

T1

Q∗(u)y(u − σ)duds1 · · · dsn−l−1

]
,

which, using a method similar to the proof of the former case, yields that (6.44)
has a positive solution. This is also a contradiction. The proof is complete.

Remark 6.3.14. When n = 1, (6.45) becomes∫ ∞

t0

sQ(s)
∫ ∞

s

Q(u)duds = ∞.

Clearly, the last condition is weaker than
∫∞

t0
Q(s)ds = ∞.

Remark 6.3.15. It would not be difficult to extend the comparison result from
Theorem 6.3.13 to nonlinear equations.

6.4. Asymptotic Behavior of Nonoscillatory Solutions

We consider the nth order neutral delay differential equation

(6.52)
dn

dtn

(
x(t) −

m∑
i=1

Pi(t)x(t − ri)

)
+ δ

k∑
j=1

Qj(t)fj

(
x(hj(t))

)
= 0,

where n ∈ N, δ ∈ {−1, 1}, ri ≥ 0, and hj , Pi, Qj : [t0,∞) → R, t0 ≥ 0, are
continuous with hj and Qj nonnegative, hj(t) ≤ t and hj(t) → ∞ as t → ∞,
Pi, Qj �≡ 0 on any half-line [t,∞), and fj : R → R are continuous with ufj(u) > 0
for u �= 0, i ∈ Im = {1, 2, . . . ,m}, j ∈ Ik = {1, 2, . . . , k}.
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In this section, our aim is to study the asymptotic behavior of nonoscillatory
solutions of (6.52), without requiring that Pi(t), i ∈ Im, has constant sign, namely,
Pi(t), i ∈ Im, is allowed to oscillate about zero.

Since we are interested in asymptotic behavior of nonoscillatory solutions of
(6.52), we only consider those solutions x that are extendable and nontrivial, i.e., x
is defined on [tx,∞) for some tx ≥ t0 and sup{|x(t)| : t ≥ t1} > 0 for every t1 > tx.

We first consider (6.52) when δ = 1, i.e.,

(6.53)
dn

dtn

(
x(t) −

m∑
i=1

Pi(t)x(t − ri)

)
+

k∑
j=1

Qj(t)fj

(
x(hj(t))

)
= 0.

We will frequently require that

fj(u) is bounded away from zero if u is bounded away from zero, j ∈ Ik,(6.54)
m∑

i=1

|Pi(t)| ≤ λ < 1,(6.55)

and
k∑

j=1

∫ ∞

t0

Qj(s)ds = ∞.(6.56)

For notational purposes, we let

(6.57) y(t) = x(t) −
m∑

i=1

Pi(t)x(t − ri).

All proofs in this section will be done only for the case when a nonoscillatory
solution of (6.53) is eventually positive, since, in each instance, the proof for an
eventually negative solution is similar.

We begin with two lemmas that are useful in proving a number of our asymptotic
results.

Lemma 6.4.1. Assume that (6.54) and (6.55) hold and that x is an eventually
positive (negative) solution of (6.53). Then

(i) If limt→∞ x(t) = 0, then limt→∞ y(t) = 0, y(i) is monotone, and

(6.58) lim
t→∞ y(t) = 0 and y(i)(t)y(i+1)(t) < 0

for i ∈ {0, 1, 2, . . . , n − 1}. If n is even, then y(t) < 0 (y(t) > 0). If n is
odd, then y(t) > 0 (y(t) < 0).

(ii) If x(t) �→ 0 as t → ∞, then y(t) > 0 (y(t) < 0).

Proof. Let x be an eventually positive solution of (6.53), say x(t− ri) > 0, i ∈ Im,
and x(hj(t)) > 0, j ∈ Ik, for t ≥ t1 ≥ t0. If x(t) → 0 as t → ∞, it is easy to see
that y(t) → 0 as t → ∞. By (6.53), y(n−1) is decreasing. If y(n−1)(t) → L < 0 as
t → ∞, then clearly there exist L1 < 0 and t2 ≥ t1 such that y(n−1)(t) ≤ L1 for
t ≥ t2. But the last inequality contradicts y(t) → 0 as t → ∞. On the other hand, if
y(n−1)(t) → L > 0 as t → ∞, then y(n−1)(t) ≥ L for t ≥ t1, which again contradicts
y(t) → 0 as t → ∞. Thus we conclude that y(n−1)(t) → 0 as t → ∞. Moreover,
since y(n−1) is decreasing and Qj(t), j ∈ Ik, is not identically zero on any half-line,
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we see that y(n−1)(t) > 0 on [t1,∞). So, if n ≥ 2, then y(n−2) is increasing and
hence y(n−2)(t) → L2 > −∞ as t → ∞. If L2 < 0, then y(n−2)(t) ≤ L2 for t ≥ t1,
contradicting y(t) → 0 as t → ∞. Now suppose L2 > 0. Then there exist L3 > 0
and t3 ≥ T1 such that y(n−2)(t) ≥ L3 for t ≥ t3, which again contradicts y(t) → 0
as t → ∞. Therefore y(n−2)(t) → 0 as t → ∞ and, since y(n−2) is increasing, we
have y(n−2)(t) < 0 on [t1,∞). Continuing in this manner we obtain (6.58).

If x(t) �→ 0 as t → ∞, then lim supt→∞ x(t) > 0. We claim that y(t) is eventually
positive. Otherwise we have y(t) < 0 eventually. If x is unbounded, then there exists
an increasing sequence {tk}, tk → ∞ as k → ∞ such that x(tk) = maxt≤tk

x(t) and
x(tk) → ∞ as k → ∞. By (6.57) we have

y(tk) = x(tk) −
m∑

i=1

Pi(tk)x(tk − ri) ≥ x(tk) −
m∑

i=1

|Pi(tk)|x(tk)(6.59)

= x(tk)

[
1 −

m∑
i=1

|Pi(tk)|
]

≥ x(tk)(1 − λ).

From (6.55) and (6.59) we have y(tk) → ∞ as k → ∞. This is a contradiction.
If x is bounded, then there exists a sequence {tk} such that tk → ∞ as k → ∞
and limk→∞ x(tk) = lim supt→∞ x(t) > 0. The sequence {x(tk − ri)}, i ∈ Im,
is bounded. Thus it has a convergent subsequence. Therefore, without loss of
generality, we may suppose that limk→∞ x(tk − ri), i ∈ Im, exists. Hence

0 ≥ lim
k→∞

y(tk) = lim
k→∞

[
x(tk) −

m∑
i=1

Pi(tk)x(tk − ri)

]

≥ lim
k→∞

[
x(tk) −

m∑
i=1

|Pi(tk)|x(tk)

]
= lim sup

t→∞
x(t)(1 − λ) > 0.

This is also a contradiction and the proof is complete.

The following lemma is independent of (6.52).

Lemma 6.4.2. Suppose that (6.55) holds, and that x(t) > 0 (x(t) < 0).

(i) If limt→∞ y(t) = 0, then limt→∞ x(t) = 0.
(ii) If limt→∞ y(t) = ∞ (−∞), then limt→∞ x(t) = ∞ (−∞).

Proof. First we show (i). Suppose that x(t) > 0. We prove that x is bounded. Since
limt→∞ y(t) = 0, we have that y is bounded. If x is unbounded, then there exists
an increasing sequence {tk} with limk→∞ tk = ∞ such that x(tk) = maxt≤tk

x(t)
and limk→∞ x(tk) = ∞. By (6.57), we have that (6.59) holds, which, in view of
(6.55), implies that limk→∞ y(tk) = ∞. This is a contradiction.

Next we prove that limt→∞ x(t) = 0. Let {tk} be a sequence of points in [t0,∞)
with tk → ∞ as k → ∞ such that

lim
k→∞

x(tk) = lim sup
t→∞

x(t) = M > 0.
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By (6.57), we have

0 = lim
k→∞

y(tk) = lim
k→∞

(
x(tk) −

m∑
i=1

Pi(tk)x(tk − ri)

)
≥ lim

k→∞
x(tk)(1 − λ) ≥ M(1 − λ).

This is a contradiction. Therefore lim supt→∞ x(t) = 0 and limt→∞ x(t) = 0.
Now we show (ii). By (6.57), we have

y(t) = x(t) −
m∑

i=1

Pi(t)x(t − ri) ≤ x(t) +
m∑

i=1

|Pi(t)|x(t − ri).

Since y(t) → ∞ as t → ∞, it follows that x is unbounded. Now we will prove that
x(t) → ∞ as t → ∞. Since x is unbounded, x(t − ri), i ∈ Im, is also unbounded.
Without loss of generality, we may assume r1 > r2 > . . . > rm, and therefore
lim inft→∞ x(t − rm) = b ≥ 0. Then there is a sequence {tk} with limk→∞ tk = ∞,
x(tk) = mint≤tk

x(t), and limk→∞ x(tk − rm) = lim inft→∞ x(t − rm) = b ≥ 0. By
(6.57), in view of x(tk) ≤ x(tk − ri), i ∈ Im, we have

y(tk) = x(tk) −
m∑

i=1

Pi(tk)x(tk − ri) ≤ x(tk) +
m∑

i=1

|Pi(tk)|x(tk − ri)

≤ x(tk − rm) + λx(tk − rm) = (1 + λ)x(tk − rm).

Letting k → ∞ we obtain

∞ = lim
k→∞

y(tk) ≤ (1 + λ) lim
k→∞

x(tk − rm) = (1 + λ)b.

This is a contradiction. Therefore lim inft→∞ x(t) = ∞ and limt→∞ x(t) = ∞. The
proof is complete.

The following lemma is extracted from [109].

Lemma 6.4.3. Suppose that (6.54) and (6.56) hold and that x is an eventually
positive (negative) solution of (6.53). Then

(i) y(n−1) is an eventually decreasing (increasing) function and satisfies
y(n−1)(t) → L < ∞ (> −∞) as t → ∞;

(ii) If L > −∞ (< ∞), then lim inft→∞ |x(t)| = 0.

Theorem 6.4.4. Suppose that (6.54), (6.55), and (6.56) hold. Then every
nonoscillatory solution of (6.53) satisfies x(t) → 0 as t → ∞.

Proof. Suppose that x is an eventually positive solution of (6.53) and x(t) → 0 as
t → ∞. By Lemma 6.4.1 we have y(t) > 0 eventually. From Lemma 6.4.3 (i), we
have that y(n−1) is decreasing on [t1,∞), where t1 ≥ t0 such that x(t − ri) > 0,
i ∈ Im, x(hj(t)) > 0, j ∈ Ik, for t ≥ t1, and y(n−1)(t) → L ≥ −∞ as t → ∞.
Notice first that if L = −∞, then y(i)(t) → −∞ as t → ∞, 0 ≤ i ≤ n − 1. This
contradicts y(t) > 0. If L > −∞, by Lemma 6.4.3 (ii), we have lim inft→∞ x(t) = 0.
If y(n−1)(t) → L < 0 as t → ∞, then y(t) is eventually negative, in contradiction to
y(t) > 0. Also, if y(n−1)(t) → L > 0 as t → ∞, and n ≥ 2, then y(n−1)(t) ≥ L for
t ≥ t1. Thus y(i)(t) → ∞ as t → ∞, 0 ≤ i ≤ n − 2. By Lemma 6.4.2, x(t) → ∞ as
t → ∞, which contradicts lim inft→∞ x(t) = 0. If n = 1 and y(t) → L > 0 as t → ∞,
then by Lemma 6.4.3 we have lim inft→∞ x(t) = 0. Without loss of generality, we

 



6.4. ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS 213

assume that r1 > r2 > . . . > rm. Then there exists an increasing sequence {tk}
with limk→∞ tk = ∞ such that x(tk) = mint≤tk

x(t) and limk→∞ x(tk − r1) = 0.
By (6.57), in view of x(tk) ≤ x(tk − ri), i ∈ Im, we have

y(tk) ≤ x(tk) +
m∑

i=1

|Pi(tk)|x(tk − ri) ≤ x(tk − r1) + λx(tk − r1)

= (1 + λ)x(tk − r1).

Letting k → ∞, we have limk→∞ y(tk) = 0, which contradicts limt→∞ y(t) = L > 0.
If limt→∞ y(t) = 0, then by Lemma 6.4.2 (i), we have limt→∞ x(t) = 0, which
contradicts x(t) �→ 0 as t → ∞. The proof is complete.

Remark 6.4.5. For the case 0 ≤ Pi(t) < pi < 1 or −1 < pi ≤ Pi(t) ≤ 0, i ∈ Im, of
(6.53), it was proved in [109] that every nonoscillatory solution of (6.53) satisfies
x(t) → 0 as t → ∞. This means that Theorem 6.4.4 generalizes [104, Theorem 3],
[108, Theorem 5], [109, Theorems 4 and 7], [110, Theorem 3], [112, Theorem 3],
parts of [113, Theorem 1(b)], parts of [164, Theorem 1(b)], [218, Theorem 1(b)],
and [279, Theorem 4].

The results in the following are for (6.52) with δ = −1, i.e., for

(6.60)
dn

dtn

(
x(t) −

m∑
i=1

Pi(t)x(t − ri)

)
−

k∑
j=1

Qj(t)fj

(
x(hj(t))

)
= 0.

Lemma 6.4.6. Assume that (6.54) and (6.55) hold and that x is an eventually
positive (negative) solution of (6.60). Then we have:

(i) If limt→∞ x(t) = 0, then limt→∞ y(t) = 0, y(i) is monotone and

lim
t→∞ y(t) = 0 and y(i)(t)y(i+1)(t) < 0

for i ∈ {0, 1, 2, . . . , n − 1}. If n is even, then y(t) > 0 (y(t) < 0). If n is
odd, then y(t) < 0 (y(t) > 0).

(ii) If x(t) → 0 as t → ∞, then y(t) > 0 (y(t) < 0).

Proof. The proof is similar to that of the corresponding results in Lemma 6.4.1 and
will be omitted.

Lemma 6.4.7 ([109]). Suppose that (6.54) and (6.56) hold and that x is an even-
tually positive (negative) solution of (6.60). Then

(i) y(n−1) is an eventually increasing (decreasing) function and satisfies
y(n−1)(t) → M > −∞ (< ∞) as t → ∞;

(ii) If M < ∞ (> −∞), then lim inft→∞ |x(t)| = 0.

Theorem 6.4.8. Suppose that (6.54), (6.55), and (6.56) hold. Then every
nonoscillatory solution of (6.60) satisfies x(t) → 0 or |x(t)| → ∞ as t → ∞.

Proof. Suppose that x is an eventually positive solution of (6.60) and x(t) → 0 as
t → ∞. By Lemma 6.4.6 we have y(t) > 0 eventually. From Lemma 6.4.7 (i), we
have that y(n−1) is increasing on [t1,∞), where t1 ≥ t0 such that x(t − ri) > 0,
i ∈ Im, and x(hj(t)) > 0, j ∈ Ik, for t ≥ t1, and y(n−1)(t) → M ≤ ∞ as t → ∞.
If M = ∞, then y(i)(t) → ∞ as t → ∞, 0 ≤ i ≤ n − 1. By Lemma 6.4.2,
we have limt→∞ x(t) = ∞. If M > 0 and n ≥ 2, then there exist M1 > 0 and
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t2 ≥ t1 such that y(n−1)(t) ≥ M1 for t ≥ t1. But the last inequality implies that
y(n−2)(t) ≥ y(n−2)(t2) + M1(t − t2) → ∞ as t → ∞, and hence y(i)(t) → ∞ as
t → ∞, 0 ≤ i ≤ n−2. By Lemma 6.4.2, we have x(t) → ∞ as t → ∞. If n = 1 and
y(t) → M < 0 as t → ∞, then y(t) is eventually negative, contradicting y(t) > 0.
If M > 0, then by Lemma 6.4.7, we have lim inft→∞ x(t) = 0. The rest of the proof
is similar to that of Theorem 6.4.4 and hence is omitted here.

Example 6.4.9. Consider the equation

(6.61)
dn

dtn

(
x(t) − sin t

2
x(t − 1)

)
+ δQ(t)x(t − 2) = 0,

where Q is continuous on [3,∞) and
∫∞
3

Q(t)dt = ∞. If δ = 1, by Theorem 6.4.4,
we have that every nonoscillatory solution of (6.61) satisfies limt→∞ x(t) = 0. If
δ = −1, then, by Theorem 6.4.8, we have that limt→∞ x(t) = 0 or limt→∞ x(t) = ∞.

Remark 6.4.10. The case
∑m

i=1 |Pi(t)| ≥ 1 of (6.52) remains as an open problem.

Remark 6.4.11. We point out that when Qj(t), j ∈ Ik, is oscillatory, the problem
is far more difficult, and any such results, even for linear equations, would be of
interest.

Remark 6.4.12. It would not be difficult to extend all results in this section to
equations whose nonlinear term has the form

F
(
t, x(h01(t)), . . . , x(h0m(t)), x′(h11(t)), . . . , x′(h1m(t)), . . . , x(n−1)(h(n−1)m(t))

)
.

We leave the formulation and proof of such results to the reader.

6.5. Positive Solutions of Nonlinear Equations

In this section we consider the nonlinear differential equation of the form

(6.62)
dn

dtn

(
y(t) − p(t)y(t − τ)

)
+ q(t)

m∏
i=1

∣∣∣y(t − σi)
∣∣∣αi

sgn y(t − σi) = 0,

where n ∈ N is odd, τ > 0, and σ1, σ2, . . . , σm ≥ 0, p, q ∈ C([t0,∞), R), q(t) ≥ 0,
q(t) is not identically zero for all large t, and each αi is a positive number for
1 ≤ i ≤ m with α1 + α2 + . . . + αm = 1. As in Section 6.3 we also define again

σ∗ = min {σ1, σ2, . . . , σm} , σ∗ = max {σ1, σ2, . . . , σm} ,

and the set
L′ =
{

τ,
σ1

n
,
σ2

n
, . . . ,

σm

n

}
\ {0}.

When m = 1, (6.62) reduces to the linear equation
dn

dtn

(
y(t) − p(t)y(t − τ)

)
+ q(t)y(t − σ) = 0.

Let μ = max{σ∗, τ}. Then by a solution of (6.62) we mean a function y that is
defined for t ≥ t0 − μ such that (6.62) is satisfied. It is clear that if y(t) is given
for t0 − μ ≤ t ≤ t0, then (6.62) has a unique solution satisfying these initial values.
We will be concerned with the existence and nonexistence as well as the asymp-
totic behaviors of eventually positive solutions of (6.62). Moreover, we deal with
the asymptotic behavior of eventually positive solutions of (6.62) with oscillating
coefficient.
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To this end, we consider an associated inequality relation

(6.63)
dn

dtn

(
y(t) − P (t)y(t − τ)

)
+ Q(t)

m∏
i=1

∣∣∣y(t − σi)
∣∣∣αi

sgn y(t − σi) ≤ 0,

where σ1, . . . , σm and α1, . . . , αm are the same as before, and P and Q satisfy the
same assumptions satisfied by p and q.

Theorem 6.5.1. Assume p(t) + q(t)σ∗ > 0, or σ∗ > 0 and q(s) �≡ 0 on [t, t + σ∗].
Suppose furthermore that P and Q are two functions such that P (t) ≥ p(t) ≥ 0 and
Q(t) ≥ q(t) for all large t, and there exists t∗ ≥ t0 such that P (t∗ + kτ) ≤ 1 for
k ≥ 0. If (6.63) has an eventually positive solution y, then so does (6.62).

Proof. The proof is similar to that of Theorem 6.2.2, and we omit it here.

As an immediate consequence of Theorem 6.5.1, we have the following result.

Corollary 6.5.2. Assume that there exists t∗ ≥ t0 such that 0 ≤ p(t∗ +kτ) ≤ 1 for
k ≥ 0. Suppose furthermore that either p(t) + q(t)σ∗ > 0, or σ∗ > 0 and q(s) �≡ 0
on [t, t + σ∗]. Then every solution of (6.62) is oscillatory if and only if

dn

dtn

(
y(t) − p(t)y(t − τ)

)
+ q(t)

m∏
i=1

∣∣∣y(t − σi)
∣∣∣αi

sgn y(t − σi) ≤ 0

does not have an eventually positive solution.

As an immediate corollary of Theorem 6.5.1 and Corollary 6.5.2, we have the
following comparison result.

Corollary 6.5.3. Under the assumptions of Theorem 6.5.1, if (6.62) is oscillatory,
then so is the equation

dn

dtn

(
y(t) − P (t)y(t − τ)

)
+ Q(t)

m∏
i=1

∣∣∣y(t − σi)
∣∣∣αi

sgn y(t − σi) = 0.

As another standard application, we may consider equations of the form

dn

dtn

(
y(t) − P (t)y(t − τ)

)
+ Q(t)

m∏
i=1

∣∣∣y(t − σi)
∣∣∣αi

sgn y(t − σi) = f
(
t, y(t)
)

,

where xf(·, x) ≤ 0 whenever x > 0. If such an equation has an eventually positive
solution, then so does (6.63). We may then conclude that some solution of (6.62)
is not oscillatory.

We now turn to the question as to when equation (6.62) is oscillatory. This
question is important if we want to apply Corollary 6.5.3. In view of Lemmas 6.2.1
and 6.3.12, it is easy to see that the following results hold.

Theorem 6.5.4. Suppose that p(t) ≡ 1, q(t) ≥ 0 for t ≥ t0 and

(6.64)
∫ ∞

t0

snq(s)
∫ ∞

s

(u − s)(n−1)q(u)duds = ∞.

Then (6.62) cannot have an eventually positive solution.

An oscillation criterion can be derived as a consequence of Theorem 6.5.4.
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Theorem 6.5.5. Suppose that there exists t∗ ≥ t0 such that p(t∗ + kτ) ≤ 1 for
k ≥ 0, p(t) ≥ 0 and q(t) ≥ 0 for t ≥ t0, and that (6.64) holds. Suppose further that

(6.65) q(t)
m∏

i=1

[p(t − σi)]
αi ≥ q(t − τ)

for all large t. Then (6.62) cannot have an eventually positive solution.

Proof. Suppose to the contrary that y is an eventually positive solution of (6.62).
Then, by Lemma 6.2.1, the function z(t) = y(t)− p(t)y(t− τ) satisfies z(t) > 0 for
all large t. In view of (6.62), we have

z(n)(t) = −q(t)
m∏

i=1

[y(t − σi)]
αi

= −q(t)
m∏

i=1

[z(t − σi) + p(t − σi)y(t − τ − σi)]
αi

≤ −q(t)

{
m∏

i=1

[z(t − σi)]
αi +

m∏
i=1

[p(t − σi)]
αi

m∏
i=1

[y(t − τ − σi)]
αi

}
for all large t, where we have used Hölder’s inequality to obtain our last inequality.
Since (6.62) implies

z(n)(t − τ) + q(t − τ)
m∏

i=1

[y(t − τ − σi)]
αi = 0,

we have

z(n)(t) − z(n)(t − τ) + q(t)
m∏

i=1

[z(t − σi)]
αi

≤
(

q(t − τ) − q(t)
m∏

i=1

[p(t − σi)]αi

)
m∏

i=1

[y(t − τ − σi)]
αi .

In view of our hypothesis (6.65),(
z(t) − z(t − τ)

)(n)

+ q(t)
m∏

i=1

[z(t − σi)]
αi ≤ 0

for all large t. Hence (6.63) (with P (t) ≡ 1 and Q = q) has the eventually positive
solution z. By Theorem 6.5.1, (6.62) (with p(t) ≡ 1) has an eventually positive
solution. But this is contrary to Theorem 6.5.4, and the proof is complete.

In case assumption (6.65) is not satisfied, we may check to see if there is some
number r ∈ [0, 1) such that rq(t − τ) ≤ q(t)

∏m
i=1 [p(t − σi)]

αi for all large t.

Theorem 6.5.6. Suppose that there exists t∗ ≥ t0 such that p(t∗ + kτ) ≤ 1 for
k ≥ 0, p(t) ≥ 0 and q(t) ≥ 0 for t ≥ t0, and that (6.64) holds. Suppose further that

q(t)
m∏

i=1

[p(t − σi)]
αi ≥ rq(t − τ)

 



6.5. POSITIVE SOLUTIONS OF NONLINEAR EQUATIONS 217

for all large t. Then (6.62) does not have an eventually positive solution provided
that the inequalities

w(n)(t) +
r

1 − r
w(t − τ − σ∗) ≤ 0 and w(n)(t) +

r

1 − r
w(t − τ − σ∗) ≤ 0

for t ≥ t0 do not have an eventually positive solution.

Proof. Suppose to the contrary that y is an eventually positive solution of (6.62).
Then by means of Lemma 6.2.1, the function z(t) = y(t) − p(t)y(t − τ) satisfies
z(t) > 0 and z(n)(t) ≤ 0 for all large t. Then, as in the proof of Theorem 6.5.5, we
see that (

z(t) − rz(t − τ)
)(n)

+ q(t)
m∏

i=1

[z(t − σi)]
αi ≤ 0

for all large t. If n∗ = 0 (n∗ defined by (6.12)), then z′(t) < 0 eventually. Thus, we
have(

z(t) − rz(t − τ)
)(n)

+ q(t)z(t − σ∗)

≤
(
z(t) − rz(t − τ)

)(n)

+ q(t)
m∏

i=1

[z(t − σi)]
αi ≤ 0

for all large t. Let w(t) = z(t)−rz(t−τ) for t ≥ t0. By Lemma 6.2.1, it is clear that
w(n)(t) ≤ 0 and w(t) > 0 for t greater than or equal to some number T . Without
loss of generality, we may assume that z(t) > 0 for t ≥ T . Now

z(t) = w(t) + rz(t − τ)

= w(t) + rw(t − τ) + . . . + rjw(t − jτ) + rj+1z
(
t − (j + 1)τ

)
>
(
r + r2 + . . . + rj+1

)
w(t − τ)

=
r(1 − rj+1)

1 − r
w(t − τ)

for t > (j + 1)τ + T + σ∗. Thus

w(n)(t) +
r

1 − r
w(t − τ − σ∗) ≤ 0

for all large t, which is contrary to our hypothesis.
If n∗ ≥ 2, then z′(t) > 0. Repeating the procedure of the proof for the case

n∗ = 0, we can obtain a contradiction. The proof is complete.

Lemma 6.5.7 ([109]). Suppose that 0 ≤ p(t) ≤ 1 and q(t) ≥ 0 for t ≥ t0 with∫∞
t0

q(s)ds = ∞. Let y be a nonoscillatory solution of (6.62). Then the function
z(t) = y(t)− p(t)y(t− τ) satisfies z(i)(t) → 0 as t → ∞ and z(i)(t)z(i+1)(t) < 0 for
i ∈ {0, 1, . . . , n − 1}.
Theorem 6.5.8. Suppose that n > 1, p(t) ≡ p ∈ [0, 1] and q(t) ≥ q(t − τ) ≥ q > 0
for all t. Suppose further that for all λ > 0 and l ∈ L′,

(6.66) lim inf
t→∞

{
peλτ +

(
n−1

n

)n−1

(n − 1)!

m∏
i=1

σn−1
i

(
e

λσi
n

)αi 1
l

∫ t+l

t

q(s)ds

}
> 1.

Then (6.62) cannot have an eventually positive solution.
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Proof. Suppose to the contrary that y is an eventually positive solution of (6.62).
By Lemma 6.2.1, we see that z(t) = y(t) − py(t − τ) > 0 for all large t. Since n is
odd, using

∫∞
t0

q(s)ds = ∞ and Lemma 6.5.7, we have

(6.67) z(i)(t) → 0 as t → ∞ and z(i)(t)z(i+1)(t) < 0

for i ∈ {0, 1, . . . , n − 1}. Since z(t) > 0 eventually, z′(t) < 0 and z(n−1)(t) > 0
eventually. By arguments similar to those used in the proof of Theorem 6.5.5, the
function z satisfies

(6.68) z(n)(t) − pz(n)(t − τ) + q(t)
m∏

i=1

[z(t − σi)]
αi ≤ 0

for t ≥ t0 for some t0. By Lemma 6.2.5, with μ = n−1
n σi for the term z(t − σi),

1 ≤ i ≤ m, we have

(6.69) z(t − σi) ≥
σn−1

i

(n − 1)!

(
n − 1

n

)n−1

z(n−1)
(
t − σi

n

)
.

Combining (6.68) and (6.69) yields

(6.70) z(n)(t)−pz(n)(t−τ)+q(t)

(
n−1

n

)n−1

(n − 1)!

m∏
i=1

(
σn−1

i

)αi
(
z(n−1)
(
t − σi

n

))αi

≤ 0.

Set

w = z(n−1) and u = −w′

w
.

By (6.67), we have w(t) > 0, and (6.70) reduces to

(6.71) w′(t) − pw′(t − τ) + q(t)

(
n−1

n

)n−1

(n − 1)!

m∏
i=1

(
σn−1

i

)αi
(
w
(
t − σi

n

))αi

≤ 0,

i.e.,

u(t) ≥ pu(t − τ) exp
(∫ t

t−τ

u(s)ds

)

+ q(t)
1

(n − 1)!

(
n − 1

n

)n−1 m∏
i=1

(
σn−1

i

)αi

(
exp

(∫ t

t−σi
n

u(s)ds

))αi

for t ≥ t0 + μ with μ = max{τ, σ∗}.
We now define a sequence of functions {uk(t)} for k ∈ N and t ≥ t0 and a

sequence of numbers {λk} for k ∈ N0 as follows: u1(t) ≡ 0 for t ≥ t0, and for k ∈ N,
t ≥ t0 + kμ,

(6.72) uk+1(t) = puk(t − τ) exp
(∫ t

t−τ

uk(s)ds

)

+ q(t)
1

(n − 1)!

(
n − 1

n

)n−1 m∏
i=1

(
σn−1

i

)αi

(
exp

(∫ t

t−σi
n

uk(s)ds

))αi

,
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λ1 = 0, and for k ∈ N,

(6.73) λk+1 = inf
t≥t0

min
l∈L′

{
pλkeλkτ + q(t)

1
(n − 1)!

(
n − 1

n

)n−1

×
m∏

i=1

(σn−1
i )αi

(
e

λkσi
n

)αi 1
l

∫ t+l

t

q(s)ds

}
.

We claim that the following inequalities hold:

(i) 0 = λ1 < λ2 < . . .;
(ii) uk(t) ≤ u(t) for t ≥ t0 + (k − 1)μ and k ∈ N;
(iii) 1

l

∫ t+l

t
uk(s)ds ≥ λk for t ≥ t0 + (k + 1)μ, k ∈ N, and l ∈ L′.

Clearly, λ2 > λ1 = 0 and u1(t) ≤ u(t) for t ≥ t0. By induction we see that (i)
and (ii) are true. We now show that (iii) also holds. Obviously (iii) is true for
k = 1. Assume (iii) is true for some k ∈ N. Then (6.72) and (6.73) imply that for
t ≥ t0 + kμ and l ∈ L′,

1
l

∫ t+l

t

uk+1(s)ds =
1
l

∫ t+l

t

q(s)
(n − 1)!

(
n − 1

n

)n−1 m∏
i=1

(
σn−1

i

)αi

×
[
exp

(∫ s

s−σi
n

uk(ξ)dξ

)]αi

ds

+
p

l

∫ t+l

t

uk(s − τ) exp
(∫ s

s−τ

uk(ξ)dξ

)
ds

≥ pλkeλkτ +

(
n−1

n

)n−1

(n − 1)!

m∏
i=1

(
σn−1

i

)αi
(
e

λkσi
n

)αi 1
l

∫ t+l

t

q(s)ds

≥ λk+1.

Hence (iii) holds.

Now let λ∗ = limk→∞ λk. From (6.66) and (6.73), there exists β > 1 such that
λk+1 ≥ βλk, k ∈ N, and this means that λ∗ = ∞. By (ii) and (iii) we have that
limt→∞

∫ t+σi

t
u(s)ds = ∞, and so

lim sup
t→∞

∫ t+ σ∗
2

t

u(s)ds = ∞,

where σ∗ > 0. Integrating both sides of the equation u = −w′/w from t to t + σ∗
2

for t sufficiently large we obtain

lim sup
t→∞

w(t)
w(t + σ∗

2 )
= lim sup

t→∞
exp

(∫ t+ σ∗
2

t

u(s)ds

)
= ∞.

 



220 6. HIGHER ORDER DELAY DIFFERENTIAL EQUATIONS

By (6.71),

w′(t) ≤ −q(t)
1

(n − 1)!

(
n − 1

n

)n−1 m∏
i=1

(
σn−1

i

)αi
(
w
(
t − σi

n

))αi

≤ −q
1

(n − 1)!

(
n − 1

n

)n−1 m∏
i=1

(
σn−1

i

)αi
(
w
(
t − σi

n

))αi

≤ −q
1

(n − 1)!

(
n − 1

n

)n−1

w
(
t − σ∗

n

) m∏
i=1

(
σn−1

i

)αi
.

Integrating both sides from t + σ∗/2 to t + σ∗ and using the decreasing nature of
w, we find for t sufficiently large

0 < w(t + σ∗) ≤ w
(
t +

σ∗
2

)
− q

σ∗
2

1
(n − 1)!

(
n − 1

n

)n−1 m∏
i=1

(
σn−1

i

)αi
w(t).

Thus,

w(t)
w
(
t + σ∗

2

) ≤ 2
qσ∗

[
1

(n − 1)!

(
n − 1

n

)n−1 m∏
i=1

(
σn−1

i

)αi

]−1

.

This is a contradiction and the proof is complete.

Next we consider the stability of eventually positive solutions of (6.62) with
oscillating coefficient.

Lemma 6.5.9. Suppose that there exists t∗ ≥ t0 such that

(6.74) 0 ≤ |P (t∗ + kτ)| ≤ 1, k ≥ 0.

Then for any eventually positive solution y of the inequality (6.63), the function
z(t) = y(t) − P (t)y(t − τ) satisfies

z(t) > 0 and z(n)(t) ≤ 0 eventually.

Proof. It is clear from (6.63) that z(n)(t) ≤ 0 and is not identically zero for all large
t. This implies that z(i) for i ∈ {0, 1, . . . , n− 1} are eventually monotone. Suppose
to the contrary that z(t) < 0. Since n is odd, z′(t) < 0 eventually. Thus, there
exist t1 ≥ t0 and α > 0 such that z(t) ≤ −α for t ≥ t1. That is,

(6.75) y(t) ≤ −α + P (t)y(t − τ), t ≥ t1.

By choosing k∗ ≥ 1 such that t∗ + k∗τ ≥ t1, we see from (6.74) and (6.75) that

y(t∗ + k∗τ + jτ) ≤ −α + P (t∗ + k∗τ + jτ) y
(
t∗ + (k∗ + j − 1)τ

)
≤ −α +

∣∣∣P (t∗ + k∗τ + jτ)
∣∣∣ y (t∗ + (k∗ + j − 1)τ

)
≤ −α + y

(
t∗ + (k∗ + j − 1)τ

)
≤ . . .

≤ −(j + 1)α + y
(
t∗ + (k∗ − 1)τ

)
for j ≥ 0. By letting j → ∞, we see that the right-hand side diverges to −∞, which
is contrary to our assumption that y(t) > 0 for t ≥ t1. The proof is complete.

 



6.5. POSITIVE SOLUTIONS OF NONLINEAR EQUATIONS 221

Lemma 6.5.10. Suppose that

|P (t)| ≤ p < 1

and that y(t) > 0 (y(t) < 0). Define z(t) = y(t) − P (t)y(t − τ).

(i) If limt→∞ z(t) = 0, then limt→∞ y(t) = 0;
(ii) if limt→∞ z(t) = ∞ (−∞), then limt→∞ y(t) = ∞ (−∞).

Proof. To show (i), suppose that y(t) > 0. First, we prove that y is bounded.
Since limt→∞ z(t) = 0, z is bounded. If y is unbounded, then there exists an
increasing sequence {tk} with limk→∞ tk = ∞ such that y(tk) = maxt≤tk

y(t) and
limk→∞ y(tk) = ∞. By the definition of z, we have

z(tk) = y(tk) − P (tk)y(tk − τ) ≥ y(tk) − |P (tk)|y(tk) ≥ (1 − p)y(tk) > 0.

Letting k → ∞, we obtain a contradiction.

Second, we prove that limt→∞ y(t) = 0. Let {tk} be a sequence of points in
[t0,∞) with tk → ∞ as k → ∞ such that

lim
k→∞

y(tk) = lim sup
t→∞

y(t) = M > 0.

By the definition of z, we have

0 = lim
k→∞

z(tk) = lim
k→∞

(
y(tk) − P (tk)y(tk − τ)

)
≥ lim

k→∞
y(tk)(1 − p) = M(1 − p) > 0.

This is a contradiction. Therefore lim supt→∞ y(t) = 0 and limt→∞ y(t) = 0.

Now we show (ii). By the definition of z, we have

z(t) = y(t) − P (t)y(t − τ) ≤ y(t) + |P (t)|y(t − τ) ≤ y(t) + py(t − τ).

Since z(t) → ∞ as t → ∞, we have that y is unbounded. Now we show y(t) → ∞
as t → ∞. Since y(t) is unbounded, y(t − τ) is also unbounded. We assume that
lim inft→∞ y(t−τ) = b ≥ 0. Then there exists a sequence {tk} with limk→∞ tk = ∞
such that y(tk) = mint≤tk

y(t) and limk→∞ y(tk − τ) = lim inft→∞ y(t− τ) = b ≥ 0.
By the definition of z, in view of y(tk) ≤ y(tk − τ), we have

z(tk) = y(tk) − P (tk)y(tk − τ) ≤ y(tk) + |P (tk)|y(tk − τ)
≤ y(tk − τ) + py(tk − τ) = (1 + p)y(tk − τ).

Letting k → ∞ we obtain

∞ = lim
k→∞

z(tk) ≤ (1 + p) lim
k→∞

y(tk − τ) = (1 + p)b.

This is a contradiction. Therefore lim inft→∞ y(t) = ∞ and limt→∞ y(t) = ∞. The
proof is complete.

Theorem 6.5.11. Suppose that |p(t)| ≤ p < 1 and that q(t) ≥ 0 for t ≥ t0 such
that

(6.76)
∫ ∞

t0

q(s)ds = ∞.

Then every eventually positive solution y of (6.62) satisfies limt→∞ y(t) = 0.
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Proof. Suppose that y is an eventually positive solution of the equation (6.62). In
view of Lemma 6.5.9, we have z(t) > 0, z(n)(t) ≤ 0 and is not identically zero
for all large t. This implies that z(i) for 0 ≤ i ≤ n − 1 is eventually monotone.
From (6.62), z(n)(t) = −q(t)

∏m
i=1[y(t − σi)]αi ≤ 0, so z(n−1)(t) is decreasing and

converges to L < ∞ as t → ∞.

If L = −∞, then z(t) → −∞ as t → ∞. This contradicts z(t) > 0. If L > −∞,
integrating (6.62) from t1 to t and then letting t → ∞, we find∫ ∞

t1

q(s)
m∏

i=1

[y(s − σi)]
αi ds = z(n−1)(t1) − L < ∞,

where t1 is a sufficiently large number. By (6.62) and (6.76), we have
lim inft→∞ y(t) = 0.

If limt→∞ z(t) = ∞, by Lemma 6.5.10, limt→∞ y(t) = ∞, which contradicts
lim inft→∞ y(t) = 0.

If limt→∞ z(t) = 0, by Lemma 6.5.10, we have limt→∞ y(t) = 0. Suppose that
limt→∞ z(t) = M > 0. Since lim inft→∞ y(t) = 0, there exists a sequence {tk} with
limk→∞ tk = ∞ such that y(tk) = mint≤tk

y(t) and limk→∞ y(tk − σ∗) = 0. By the
definition of z, we have

z(tk) = y(tk) − p(tk)
m∏

i=1

[y(tk − σi)]
αi ≤ y(tk) + |p(tk)|

m∏
i=1

[y(tk − σi)]
αi

≤ y(tk − σ∗) + py(tk − σ∗) = (1 + p)y(tk − σ∗).

Letting k → ∞, we obtain

0 < M ≤ (1 + p) lim
k→∞

y(tk − σ∗) = 0.

This is a contradiction, and the proof is complete.

6.6. Classifications of Nonoscillatory Solutions

This section is concerned with a class of higher order nonlinear delay differential
equations of the form

(6.77)
(
r(t)x(m−1)(t)

)′
+ f
(
t, x(t − τ)

)
= 0, t ≥ t0,

where τ ≥ 0 is a constant, m ∈ N \ {1}, r is a positive continuous function,
and f is a real-valued function defined on [t0,∞) × R which is continuous in the
second variable x and satisfies f(t, x) > 0 for x > 0. We will give a classification
scheme of eventually positive solutions of our equation in terms of their asymptotic
magnitude and provide necessary and/or sufficient conditions for the existence of
these solutions. In order to accomplish our goal, additional conditions will be
imposed on the coefficient function r and the function f . We will need either one
of the following two assumptions for the function r so as to include the case when
r(t) ≡ 1:

(H1) r′(t) ≥ 0 for t ≥ t0;
(H2)
∫∞

t0
dt

r(t) = ∞.
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As for the function f , for each fixed t, if f(t, x)/x is nondecreasing in x for x > 0,
it is called superlinear. If for each t, f(t, x)/x is nonincreasing in x for x > 0, then
f is said to be sublinear. Superlinear or sublinear functions f will be assumed in
later results. Here we note that if 0 < a ≤ x ≤ b, then

f(t, a) ≤ f(t, x) ≤ f(t, b) if f is superlinear

and
a

b
f(t, b) ≤ f(t, x) ≤ b

a
f(t, a) if f is sublinear.

For the sake of convenience, we will employ the notations

R(s, t) =
∫ t

s

du

r(u)
, t ≥ s ≥ t0

and

R(s) =
∫ ∞

s

du

r(u)
, s ≥ t0.

We begin by classifying all possible positive solutions of (6.77) according to their
asymptotic behavior as t → ∞, on the basis of the well-known Lemma 6.3.2.

Let x be an eventually positive solution of (6.77). Then(
r(t)x(m−1)(t)

)′
= −f
(
t, x(t − τ)

)
< 0

for all large t. Hence

(6.78) r(t)x(m−1)(t) < r(s)x(m−1)(s), t > s ≥ t0.

Since r′(t) ≥ 0, r(s)/r(t) ≤ 1 for t ≥ s, by (6.78), we have

x(m−1)(t) < x(m−1)(s), t > s.

This means that x(m−1) is eventually strictly decreasing. We may assert further
that x(m−1)(t) is eventually positive.

Lemma 6.6.1. Suppose the conditions (H1) and (H2) hold. Let x be an eventually
positive solution of (6.77). Then x(m−1)(t) is eventually positive.

Proof. Assume without loss of generality that x(t) > 0 for t ≥ t0. Then in view
of (6.77), we obtain (6.78). If it were the case that x(m−1)(t) < 0 for some t ≥ T ,
then

r(s)x(m−1)(s) < r(T )x(m−1)(T ) for all s > T

implies

x(m−2)(t) − x(m−2)(T ) =
∫ t

T

x(m−1)(s)ds

<

∫ t

T

r(T )
r(s)

x(m−1)(T )ds

= R(T, t)r(T )x(m−1)(T ).

Since limt→∞ R(T, t) = ∞ by (H2), we see that the right-hand side tends to nega-
tive infinity. Thus limt→∞ x(m−2)(t) = −∞, which implies that x(t) is eventually
negative. This is a contradiction and the proof is complete.

Lemma 6.6.2. Suppose the conditions (H1) and (H2) hold. Let x be an eventually
positive solution of (6.77). Then the function x(m) is eventually negative.
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Proof. By means of Lemma 6.6.1, x(m−1)(t) is eventually positive. Furthermore, in
view of (6.77) and our assumption on r, we see that

r(t)x(m)(t) = −r′(t)x(m−1)(t) − f
(
t, x(t − τ)

)
< 0,

as required.

Under the conditions (H1) and (H2), it is clear that Lemma 6.3.2 provides a
classification scheme for eventually positive solutions of (6.77). Such a scheme is
crude, however. We will propose an auxiliary classification scheme for eventually
positive solutions of (6.77). For the sake of convenience, we will make use of the
following notations in this scheme:

Ej(∞, ∗) =
{

x : lim
t→∞

x(t)
t2j−2

= ∞, lim
t→∞

x(t)
t2j−1

= a �= 0
}

,

Ej(∞, 0) =
{

x : lim
t→∞

x(t)
t2j−2

= ∞, lim
t→∞

x(t)
t2j−1

= 0
}

,

Ej(∗, 0) =
{

x : lim
t→∞

x(t)
t2j−2

= a �= 0, lim
t→∞

x(t)
t2j−1

= 0
}

,

Oj(∞, ∗) =
{

x : lim
t→∞

x(t)
t2j−1

= ∞, lim
t→∞

x(t)
t2j

= a �= 0
}

,

Oj(∞, 0) =
{

x : lim
t→∞

x(t)
t2j−1

= ∞, lim
t→∞

x(t)
t2j

= 0
}

,

Oj(∗, 0) =
{

x : lim
t→∞

x(t)
t2j−1

= a �= 0, lim
t→∞

x(t)
t2j

= 0
}

,

where the integer j ∈ {1, 2, . . . , [m/2]} will be specified.

Theorem 6.6.3. Suppose the conditions (H1) and (H2) hold. Under the additional
condition that m is even, there is an integer j ∈ {1, 2, . . . ,m/2} such that every
eventually positive solution x of (6.77) must belong to either one of the classes
Ej(∞, ∗), Ej(∞, 0), or Ej(∗, 0). Under the additional condition that m is odd,
either there is an integer j ∈ {1, 2, . . . , (m− 1)/2} such that any eventually positive
solution of (6.77) belongs to one of the classes Oj(∞, ∗), Oj(∞, 0), Oj(∗, 0), or
also every eventually positive solution of (6.77) converges.

Proof. First of all, we infer from Lemma 6.6.2 that x(m)(t) is eventually negative.
Suppose m is even. In view of Lemma 6.3.2, there is an integer l = 2j − 1, where
j ∈ {1, 2, . . . , m/2}, such that for each k ∈ {0, 1, . . . , l − 1}, x(k)(t) > 0 for all large
t, and for each k ∈ {l, l + 1, . . . ,m − 1}, (−1)k+1x(k)(t) > 0 for all large t. In
particular, x(2j−2)(t) > 0, x(2j−1)(t) > 0, and x(2j)(t) < 0 for all large t. Therefore
the limits

lim
t→∞x(2j−1)(t) = λ2j−1 and lim

t→∞x(2j−2)(t) = λ2j−2

satisfy 0 ≤ λ2j−1 < ∞ and 0 < λ2j−2 ≤ ∞, respectively. If λ2j−1 > 0, then by
L’Hôpital’s rule, we find

lim
t→∞

x(t)
t2j−1

= lim
t→∞

x′(t)
(2j − 1)t2j−2

= . . . = lim
t→∞

x(2j−1)(t)
(2j − 1)!

=
λ2j−1

(2j − 1)!
�= 0.

It follows that limt→∞ x(t)/t2j−2 = ∞, i.e., x ∈ Ej(∞, ∗).
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If λ2j−1 = 0 and λ2j−2 = ∞, then by L’Hôpital’s rule again, it is easy to see
that

lim
t→∞

x(t)
t2j−1

= 0 and lim
t→∞

x(t)
t2j−2

= ∞.

Hence x ∈ Ej(∞, 0). Finally, in case λ2j−1 = 0 and 0 < λ2j−2 < ∞, we apply
L’Hôpital’s rule again to find

lim
t→∞

x(t)
t2j−2

=
λ2j−2

(2j − 2)!
�= 0.

It follows that limt→∞ x(t)/t2j−1 = 0, and hence x ∈ Ej(∗, 0).

When the integer m is odd, in view of Lemma 6.3.2, there is an even integer
l ∈ {0, 1, . . . , m − 1} such that for each k ∈ {0, 1, . . . , l}, x(k)(t) > 0 for all large
t, and for each k ∈ {l + 1, . . . ,m − 1}, (−1)kx(k)(t) > 0 for all large t. In case
l ∈ {1, 2, . . . , m − 1}, the proof is similar to that given above. In case l = 0, we
have x(t) > 0, x′(t) < 0, and x′′(t) > 0 for all large t. It follows that x(t) converges
to some nonnegative constant. The proof is complete.

Under the conditions (H1) and (H2), eventually positive solutions can be classi-
fied according to Theorem 6.6.3. We remark that there is an uncertainty involved,
namely the integer j, which is needed in the definitions of the various subsets E and
O. We now impose conditions which are sufficient for the existence of eventually
positive solutions in these subsets.

Theorem 6.6.4. Suppose that m is even and that (H1) and (H2) hold. Suppose
further that f is superlinear or sublinear. If there exist a constant c > 0 and
j ∈ {1, 2, . . . , (m − 1)/2} such that

(6.79)
∫ ∞

t0

sm−2j−1

r(s)

∫ ∞

s

∣∣∣f (u, c(u − τ)2j−1
) ∣∣∣ duds < ∞,

then (6.77) has an eventually positive solution in Ej(∞, ∗). The converse is also
true.

Proof. Let a = c/2 if f is superlinear and a = c if f is sublinear. Set

K(t) = t2j−1.

In view of (6.79), we may choose T so large that

(6.80)
1

(2j − 1)!

∫ ∞

T

(t − T )m−2j−1

r(t)(m − 2j − 1)!

∫ ∞

t

f
(
s, c(s − τ)2j−1

)
dsdt <

a

2
.

Let us introduce the linear space X of all real functions x ∈ C[t0,∞) such that

sup
t≥t0

|x(t)|
K(t)

< ∞.

It is not difficult to verify that X endowed with the norm

‖x‖ = sup
t≥t0

|x(t)|
K(t)

is a Banach space. Define a subset Ω of X by

Ω =
{

x ∈ X : aK(t) ≤ x(t) ≤ 2aK(t), t ≥ t0

}
.
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Then Ω is a bounded, convex, and closed subset of X. Let us further define an
operator F : Ω → X as

(Fx)(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3a

2
K(t) +

∫ t

T

(t − s)2j−2

(2j − 2)!

∫ ∞

s

(u − s)m−2j−1

r(u)(m − 2j − 1)!

×
∫ ∞

u

f
(
v, x(v − τ)

)
dvduds if t ≥ T,

(Fx)(T ) if t0 ≤ t < T.

The mapping F has the following properties. First of all, F maps Ω into Ω. Indeed,
if x ∈ Ω, then

(Fx)(t) ≥ 3a

2
K(t) ≥ aK(t), t ≥ t0.

Furthermore, by (6.80), we also have

(Fx)(t) ≤ 3a

2
K(t)

+
(t − T )2j−1

(2j − 1)!

∫ ∞

T

(u − T )m−2j−1

r(u)(m − 2j − 1)!

∫ ∞

u

f
(
v, x(v − τ)

)
dvdu

≤ 3a

2
K(t) +

a

2
K(t) = 2aK(t).

Next, we show that F is continuous. To see this, let ε > 0. Choose T1 ≥ T so large
that

(6.81)
∫ ∞

T1

(t − T )m−2j−1

r(t)(m − 2j − 1)!

∫ ∞

t

f
(
s, c(s − τ)2j−1

)
dsdt < ε

and

(6.82)
∫ ∞

T1

f
(
s, c(s − τ)2j−1

)
ds < ε.

Let {xk}k∈N ⊂ Ω be such that xk → x. Since Ω is closed, x ∈ Ω. Furthermore, for
all large k,

∣∣∣∣∫ ∞

T

f
(
s, xk(s − τ)

)
ds −
∫ ∞

T

f
(
s, x(s − τ)

)
ds

∣∣∣∣
≤
∣∣∣∣∣
∫ T1

T

f
(
s, xk(s − τ)

)
ds −
∫ T1

T

f
(
s, x(s − τ)

)
ds

∣∣∣∣∣
+
∣∣∣∣∫ ∞

T1

f
(
s, xk(s − τ)

)
ds

∣∣∣∣+ ∣∣∣∣∫ ∞

T1

f
(
s, x(s − τ)

)
ds

∣∣∣∣
≤ 3hε,

 



6.6. CLASSIFICATIONS OF NONOSCILLATORY SOLUTIONS 227

where h = 1 if f is superlinear, and h = 1/2 if f is sublinear. In view of the
definition of F ,∣∣∣(Fxk)(t) − (Fx)(t)

∣∣∣ ≤ K(t)
∫ T1

T

(u − T )m−2j−1

r(u)(m − 2j − 1)!

×
∫ ∞

u

∣∣∣f (s, xk(s − τ)
)
− f
(
s, x(s − τ)

) ∣∣∣ dsdu

+K(t)
∣∣∣∣∫ ∞

T1

(u − T )m−2j−1

r(u)(m − 2j − 1)!

∫ ∞

u

f
(
s, xk(s − τ)

)
dsdu

∣∣∣∣
+K(t)

∣∣∣∣∫ ∞

T1

(u − T )m−2j−1

r(u)(m − 2j − 1)!

∫ ∞

u

f
(
s, x(s − τ)

)
dsdu

∣∣∣∣
≤ 3hεK(t).

This shows that ‖Fxk − Fx‖ tends to zero, i.e., F is continuous. Finally, note that
when t2 > t1 ≥ T ,(

Fx

K

)
(t1) −
(

Fx

K

)
(t2)

=
∫ t1

T

(t1 − s)2j−2

t2j−1
1 (2j − 2)!

∫ ∞

s

(u − s)m−2j−1

r(u)(m − 2j − 1)!

∫ ∞

u

f
(
v, x(v − τ)

)
dvduds

−
∫ t2

T

(t2 − s)2j−2

t2j−1
2 (2j − 2)!

∫ ∞

s

(u − s)m−2j−1

r(u)(m − 2j − 1)!

∫ ∞

u

f
(
v, x(v − τ)

)
dvduds

≤
∫ t1

T

(t1 − s)2j−2

t2j−1
1 (2j − 2)!

∫ ∞

s

(u − s)m−2j−1

r(u)(m − 2j − 1)!

∫ ∞

u

f
(
v, x(v − τ)

)
dvduds

−
∫ t1

T

(t1 − s)2j−2

t2j−1
2 (2j − 2)!

∫ ∞

s

(u − s)m−2j−1

r(u)(m − 2j − 1)!

∫ ∞

u

f
(
v, x(v − τ)

)
dvduds

=
t2j−1
2 − t2j−1

1

t2j−1
1 t2j−1

2

∫ t1

T

(t1 − s)2j−2

(2j − 2)!

∫ ∞

s

(u − s)m−2j−1

r(u)(m − 2j − 1)!

×
∫ ∞

u

f
(
v, x(v − τ)

)
dvduds

≤ t2j−1
2 − t2j−1

1

t2j−1
2

∫ ∞

T

(u − T )m−2j−1

r(u)(m − 2j − 1)!

∫ ∞

u

f
(
v, x(v − τ)

)
dvdu

=
t2j−1
2 − t2j−1

1

t2j−1
2

[∫ ∞

T1

(u − T )m−2j−1

r(u)(m − 2j − 1)!

∫ ∞

u

f
(
v, x(v − τ)

)
dvdu

+
∫ T1

T

(u − T )m−2j−1

r(u)(m − 2j − 1)!

∫ ∞

u

f
(
v, x(v − τ)

)
dvdu

]

≤ ε +
t2j−1
2 − t2j−1

1

t2j−1
2

∫ T1

T

(u − T )m−2j−1

r(u)(m − 2j − 1)!

∫ ∞

u

f
(
v, x(v − τ)

)
dvdu,

so ∣∣∣∣(Fx

K

)
(t1) −
(

Fx

K

)
(t2)
∣∣∣∣
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≤ ε +
t2j−1
2 − t2j−1

1

t2j−1
2

∫ T1

T

(u − T )m−2j−1

r(u)(m − 2j − 1)!

∫ ∞

u

f
(
v, x(v − τ)

)
dvdu.

Hence, there exists δ > 0 such that for all x ∈ Ω,∣∣∣∣(Fx

K

)
(t1) −
(

Fx

K

)
(t2)
∣∣∣∣ ≤ 2ε if |t1 − t2| < δ.

Therefore, FΩ is relatively compact. In view of Schauder’s fixed point theorem,
we see that there exists x∗ ∈ Ω such that Fx∗ = x∗. It is easy to check that x∗

is an eventually positive solution of (6.77). Furthermore, by means of L’Hôpital’s
rule,

lim
t→∞

1
t2j−1

∫ t

T

(t − s)2j−2

(2j − 2)!

∫ ∞

s

(u − s)m−2j−1

r(u)(m − 2j − 1)!

∫ ∞

u

f
(
v, x(v − τ)

)
dvduds

= . . . = lim
t→∞

1
(2j − 1)!

∫ ∞

t

(u − s)m−2j−1

r(u)(m − 2j − 1)!

∫ ∞

u

f
(
v, x(v − τ)

)
dvdu

= 0.

Thus

lim
t→∞

x∗(t)
t2j−1

= lim
t→∞

(Fx∗)(t)
t2j−1

=
3a

2
and lim

t→∞
x∗(t)
t2j−2

= ∞.

Therefore x∗ ∈ Ej(∞, ∗).
We now show that the converse holds. Let x ∈ Ej(∞, ∗) be an eventually positive

solution of (6.77). In view of Lemmas 6.6.1 and 6.6.2, we see that x(m−1)(t) > 0 and
x(m)(t) < 0 for t greater than or equal to some positive t1, and x(k) is eventually
monotone for each k ∈ {1, 2, . . . ,m − 1}. Since limt→∞ x(t)/t2j−1 = a > 0, there
exists t2 ≥ t1 with

a

2
t2j−1 ≤ x(t) ≤ 3a

2
t2j−1, t ≥ t2

so that
f
(
t, x(t − τ)

)
≥ f
(
t,

a

2
(t − τ)2j−1

)
, t ≥ t2 + τ = t3

if f is superlinear and

f
(
t, x(t − τ)

)
≥ 3f
(
t,

a

2
(t − τ)2j−1

)
, t ≥ t3

if f is sublinear. We assert that

lim
t→∞x(2j−1)(t) = (2j − 1)!a.

In fact, by means of L’Hôpital’s rule,

a = lim
t→∞

x(t)
t2j−1

= lim
t→∞

x′(t)
(2j − 1)t2j−2

= . . . = lim
t→∞

x(2j−1)(t)
(2j − 1)!

.

In case j < m
2 , we see further that

0 = lim
t→∞x(2j)(t) = lim

t→∞x(2j+1)(t) = . . . = lim
t→∞x(m−1)(t).

Since x(i) is eventually monotone for i ∈ {2j, 2j + 1, . . . ,m − 1}, we find by means
of (6.77),

r(s)x(m−1)(s) +
∫ s

t

f
(
v, x(v − τ)

)
dv = r(t)x(m−1)(t), s > t ≥ t3
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so that

x(m−1)(t) ≥ 1
r(t)

∫ ∞

t

f
(
v, x(v − τ)

)
dv, t ≥ t3.

Integrating the above inequality successively and invoking (6.81) if necessary, we
see that

x(2j)(t) ≥
∫ ∞

t

(u − t)m−2j−2

r(u)(m − 2j − 2)!

∫ ∞

u

f
(
v, x(v − τ)

)
dvdu, t ≥ t3.

Integrating the above inequality one more time, we then obtain

a(2j − 1)! − x(2j−1)(t3)

≥
∫ ∞

t3

∫ ∞

s

(u − s)m−2j−2

r(u)(m − 2j − 2)!

∫ ∞

u

f
(
v, x(v − τ)

)
dvduds

≥ C

∫ ∞

t3

(u − t3)m−2j−1

r(u)

∫ ∞

u

f
(
v, c(v − τ)2j−1

)
dvdu

for some appropriate constants C and c. The proof is complete.

Theorem 6.6.5. Suppose that m is even and that (H1) and (H2) hold. Suppose
further that f is superlinear or sublinear. If there exist a constant c > 0 and
j ∈ {1, 2, . . . , m/2} such that∫ ∞

t0

sm−2j

r(s)

∫ ∞

s

∣∣∣f (u, c(u − τ)2j−2
)∣∣∣ duds < ∞,

then (6.77) has an eventually positive solution in Ej(∞, 0). The converse is also
true.

Proof. The proof of the sufficiency part is similar to that of Theorem 6.6.4 and is
therefore only sketched as follows. Let a = c/2 if f is superlinear and a = c if f is
sublinear. Set

K(t) = t2j−2, t ≥ t0.

Then as in the proof of Theorem 6.6.4, we see that there exist a number t1 ≥ t0
and a function x∗ such that

aK(t) ≤ x∗(t) ≤ 2aK(t), t ≥ t1 + τ = T

and

x∗(t) =
3a

2
K(t)

+
∫ t

T

(t − s)2j−3

(2j − 3)!

∫ ∞

s

(u − T )m−2j

r(u)(m − 2j)!

∫ ∞

u

f
(
v, x∗(v − τ)

)
dvduds.

Then by means of L’Hôpital’s rule, we may show that

lim
t→∞

x∗(t)
t2j−2

=
3a

2
+ β,

where β is a constant satisfying

0 < β ≤
∫ ∞

T

(t − T )m−2j−1

r(t)(m − 2j − 1)!

∫ ∞

t

2f
(
s, c(s − τ)2j−2

)
dsdt.

It follows that

lim
t→∞

x∗(t)
t2j−1

= 0.
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This shows that x∗ is an eventually positive solution in Ej(∗, 0).

Theorem 6.6.6. Suppose that m is odd and that (H1) and (H2) hold. Suppose
further that f is superlinear or sublinear. If there exist a constant c > 0 and
j ∈ {1, 2, . . . , (m − 1)/2} such that∫ ∞

t0

sm−2j−2

r(s)

∫ ∞

s

∣∣∣f (u, c(u − τ)2j
)∣∣∣ duds < ∞,

then (6.77) has an eventually positive solution in Oj(∞, ∗). The converse is also
true.

Proof. The proof is similar to that of Theorem 6.6.4. We only need to note that
the function K there should be replaced by

K(t) = t2j

and the mapping F should be modified as

(Fx)(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3a

2
K(t) +

∫ t

T

(t − s)2j−1

(2j − 1)!

∫ ∞

s

(u − s)m−2j−2

r(u)(m − 2j − 2)!

×
∫ ∞

u

f
(
v, x(v − τ)

)
dvduds if t ≥ T,

(Fx)(T ) if t0 ≤ t < T.

The rest of the proof is as in the proof of Theorem 6.6.4.

Theorem 6.6.7. Suppose that m is odd and that (H1) and (H2) hold. Suppose
further that f is superlinear or sublinear. If there exist a constant c > 0 and
j ∈ {1, 2, . . . , (m − 1)/2} such that∫ ∞

t0

sm−2j−1

r(s)

∫ ∞

s

∣∣∣f (u, c(u − τ)2j−1
)∣∣∣ duds < ∞,

then (6.77) has an eventually positive solution in Oj(∞, 0). The converse is also
true.

Theorem 6.6.8. Suppose that m is odd and that (H1) and (H2) hold. Suppose
further that f is superlinear or sublinear. If there exist a constant c > 0 and
j ∈ {1, 2, . . . , (m − 1)/2} such that∫ ∞

t0

sm−2

r(s)

∫ ∞

s

|f(u, c)| duds < ∞,

then (6.77) has an eventually positive solution which converges to a positive con-
stant. The converse is also true.

Proof. The proof is similar to that of Theorem 6.6.4. We only need to note that
the function K should now be replaced by

K(t) ≡ 1

and the mapping F should be modified as

(Fx)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3a

2
+
∫ ∞

t

(s − t)m−2

r(s)(m − 2)!

∫ ∞

s

f
(
u, x(u − τ)

)
duds

if t ≥ T,

(Fx)(T ) if t0 ≤ t < T.
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The rest of the proof follows as in the proof of Theorem 6.6.4.

Theorem 6.6.9. Suppose that m is odd and that (H1) and (H2) hold. Suppose
further that f is nondecreasing in x. Then (6.77) has an eventually positive solution
x which converges to zero if

t

∫ ∞

t

(s − t)m−2

r(s)(m − 2)!

∫ ∞

s

∣∣∣∣f (u,
1

u − τ

)∣∣∣∣ duds ≤ 1

holds for t ≥ T ≥ m + τ .

Proof. Let X be the partially ordered Banach space of all real functions endowed
with the usual sup-norm and pointwise ordering. Define a subset Ω of X by

Ω =
{

x ∈ X : x is nondecreasing and 0 ≤ x(t) ≤ 1, t ≥ t0

}
.

For any subset M of Ω, it is clear that inf M ∈ Ω and supM ∈ Ω. Define an
operator F on Ω by

(Fx)(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t

∫ ∞

t

(s − t)m−2

r(s)(m − 2)!

∫ ∞

s

f

(
u,

x(u − τ)
u − τ

)
duds

if t ≥ T,

exp
(

ln((Fx)(T ))t
T

)
if t0 ≤ t < T.

By means of (6.82), we see that F maps Ω into Ω. Furthermore, it is clear that F
is an increasing mapping. By means of Knaster’s fixed point theorem, there exists
a function y∗ such that Fy∗ = y∗. If we let

x∗(t) =
y∗(t)

t
, t ≥ T,

then

x∗(t) =
∫ ∞

t

(s − t)m−2

r(s)(m − 2)!

∫ ∞

s

f
(
u, x∗(u − τ)

)
duds.

By differentiating both sides of the above equation, we may easily verify that x∗ is
a solution of (6.77) for all large t. Since x∗ is eventually positive and converges to
zero, we have found the desired solution. The proof is complete.

Remark 6.6.10. We remark that it would not be difficult to extend all the results
in this section to an equation whose nonlinear term has the form

f
(
t, x(t − τ1), . . . , x(t − τn)

)
.

6.7. Asymptotic Trichotomy for Positive Solutions

This section is concerned with higher order nonlinear functional differential equa-
tions of the form

(6.83) x(n)(t) + σf
(
t, x(g(t))

)
= 0, t ≥ t0,

where n ∈ N \ {1}, σ ∈ {−1, 1}, g is a continuous and nondecreasing function such
that limt→∞ g(t) = ∞, and f : [t0,∞) × R → R is a continuous function such that

(6.84) f(t, x) ≥ 0 for (t, x) ∈ [t0,∞) × (0,∞).
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It is well known [145] that if x is a positive solution of (6.83), then there exists
k ∈ N such that 0 ≤ k ≤ n, (−1)n−k−1σ = 1, and

(6.85)

{
x(i)(t) > 0 if 0 ≤ i ≤ k − 1,

(−1)i−kx(i)(t) > 0 if k ≤ i ≤ n

for t ≥ Tx, where Tx is sufficiently large. Denote by P and Pk, respectively, the
set of all positive solutions of (6.83) and the set of all positive solutions x of (6.83)
satisfying (6.85). Then the above observation means that P has the decomposition

P =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P1 ∪ P3 ∪ . . . ∪ Pn−1 if σ = 1 and n is even,

P0 ∪ P2 ∪ . . . ∪ Pn−1 if σ = 1 and n is odd,

P0 ∪ P2 ∪ . . . ∪ Pn if σ = −1 and n is even,

P1 ∪ P3 ∪ . . . ∪ Pn if σ = −1 and n is odd.

In what follows our attention will be restricted to the classes Pk with k such that

(6.86) 0 < k < n and (−1)n−k−1σ = 1.

If x ∈ Pk for k satisfying (6.86), then, in view of (6.85), there exist c1 > 0, c2 > 0,
and T ≥ Tx such that

(6.87) c1t
k−1 ≤ x(t) ≤ c2t

k, t ≥ T

and exactly one of the following three cases occurs:

lim
t→∞x(k)(t) ≡ constant > 0,(6.88)

lim
t→∞x(k)(t) = 0 and lim

t→∞x(k−1)(t) = ∞,(6.89)

or

lim
t→∞x(k−1)(t) ≡ constant > 0.(6.90)

This suggests a further decomposition of Pk as

Pk = Pk[max] ∪ Pk[int] ∪ Pk[min],

where Pk[max], Pk[int] and Pk[min] denote the sets of all x ∈ Pk satisfying (6.88),
(6.89), and (6.90), respectively, and naturally raises the question of characterizing
these classes of Pk.

Theorem 6.7.1. Suppose that f(t, x) satisfies (6.84) and is either nondecreasing
or nonincreasing in x ∈ (0,∞) for each fixed t ∈ [t0,∞). Let k ∈ N satisfy (6.86).
Then

(i) Pk[max] �= ∅ for (6.83) if and only if∫ ∞
tn−k−1f

(
t, c [g(t)]k

)
dt < ∞ for some c > 0;

(ii) Pk[min] �= ∅ for (6.83) if and only if

(6.91)
∫ ∞

tn−kf
(
t, c [g(t)]k−1

)
dt < ∞ for some c > 0.

Proof. The proof is similar to that of Theorem 6.6.4 and will be omitted.
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In the following, we shall consider the subclasses Pk[int] subject to the assump-
tion that the nonlinear term f(t, x) is nonincreasing in x or nondecreasing in x.
First we give a lemma which is important for proving the necessity of the following
main results.

Lemma 6.7.2 ([156]). Consider the equation

(6.92) x(n)(t) + σp(t)[x(t)]γ = 0, t ≥ t0,

where γ ∈ (0, 1). Suppose k ∈ N satisfies (6.86). Then Pk[int] �= ∅ for (6.92) if and
only if ∫ ∞

tn−k−1+kγp(t)dt < ∞ and
∫ ∞

tn−k+(k−1)γp(t)dt = ∞.

Theorem 6.7.3. In addition to (6.84) assume that f(t, x) is nondecreasing in
x ∈ (0,∞) for each fixed t ≥ t0. Suppose k ∈ N satisfies (6.86). Then Pk[int] �= ∅
if

(6.93)
∫ ∞

tn−k−1f
(
t, a [g(t)]k

)
dt < ∞ for some a > 0

and

(6.94)
∫ ∞

tn−kf
(
t, b [g(t)]k−1

)
dt = ∞ for every b > 0.

Proof. Let T ≥ t0 be so large such that

(6.95)
b

g(t)
< a and

b

t
+

(t − T )k

tkk!

∫ ∞

T

(s − T )n−k−1

(n − k − 1)!
f
(
s, a [g(s)]k

)
ds < a

for t ≥ T . Such a number exists since g(t) → ∞ as t → ∞ and (6.93) holds. Define
an operator F by

(Fx)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b

t
+

1
tk

∫ t

T

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)n−k−1

(n − k − 1)!
f
(
r, [g(r)]k x(g(r))

)
drds

if t ≥ T,

(Fx)(T ) if t0 ≤ t < T.

Consider the sequence {xi(t)} of successive approximations defined by

x1(t) ≡ 0 and xi+1(t) = (Fxi)(t), i ∈ N for t ≥ t0.

In view of the nondecreasing property of f(t, x), it is easy to see that

0 ≤ xi(t) ≤ xi+1(t), t ≥ t0, i ∈ N.

On the other hand,

x2(t) =
b

t
< a and x2 (g(t)) =

b

g(t)
< a for t ≥ t0,

and by induction xi(t) ≤ a for t ≥ t0 implies by (6.95)

xi+1(t) ≤ b

t
+

1
tk

∫ t

T

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)n−k−1

(n − k − 1)!
f
(
r, [g(r)]kxi(g(r))

)
drds

≤ b

t
+

(t − T )k

tkk!

∫ ∞

T

(r − T )n−k−1

(n − k − 1)!
f
(
r, a[g(r)]k

)
dr < a

for t ≥ t0. Thus {xi} is pointwise convergent to some function x∗. By means of
Lebesgue’s dominated convergence theorem, we obtain Fx∗ = x∗. In view of (6.95),
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it is clear that b/t ≤ x∗(t) ≤ a, t ≥ t0. We assert that the function z defined by
z(t) = x∗(t)tk, t ≥ t0, is an eventually positive solution of (6.83) in Pk[int]. Indeed,
note that

(6.96) z(t) = btk−1 +
∫ t

T

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)n−k−1

(n − k − 1)!
f
(
r, z(r)
)

drds

for t ≥ t0. Differentiating (6.96) k − 1 times, we see that

(6.97) z(k−1)(t) = b +
∫ t

T

∫ ∞

s

(r − s)n−k−1

(n − k − 1)!
f
(
r, z(r)
)

drds, t ≥ t0

and hence

(6.98) z(k)(t) =
∫ ∞

t

(r − t)n−k−1

(n − k − 1)!
f
(
r, z(r)
)

dr, t ≥ t0.

In view of (6.86), it is clear that z = z(t) satisfies (6.83) at every point of [T,∞).
By (6.98) we have limt→∞ z(k)(t) = 0. Since (6.97) and (6.98) imply that z(k−1)(t)
is positive and increasing in [T,∞), z(k−1)(t) either converges to some positive limit
or diverges to ∞ as t → ∞. Assume that the first case holds. Then this means
that z ∈ Pk[min], and so (6.91) holds by Theorem 6.7.1. But this contradicts the
assumption (6.94). Thus, we conclude that limt→∞ z(k−1)(t) = ∞, implying that z
is a solution of (6.83) belonging to Pk[int].

Necessary conditions for the existence of solutions of (6.83) belonging to Pk[int]
are given in the following theorem.

Theorem 6.7.4. In addition to (6.84) assume that f(t, x) is nondecreasing in
x ∈ (0,∞) for each fixed t ≥ t0. Suppose k ∈ N satisfies (6.86). If (6.83) has a
positive solution in the class Pk[int], then

(6.99)
∫ ∞

tn−k−1f
(
t, a [g(t)]k−1

)
dt < ∞ for every a > 0

and

(6.100)
∫ ∞

tn−kf
(
t, b [g(t)]k

)
dt = ∞ for every b > 0.

Proof. Let x ∈ Pk[int] for (6.83). Then

lim
t→∞

x(t)
tk

= 0 and lim
t→∞

x(t)
tk−1

= ∞.

Hence, for any c1 > 0, c2 > 0, there exists t1 ≥ t0 such that

x(t) ≥ c1t
k−1, x(g(t)) ≥ c1[g(t)]k−1

and
x(t) ≤ c2t

k, x(g(t)) ≤ c2[g(t)]k

hold for t ≥ t1, which, in view of the nondecreasing property of f(t, x), implies that

f
(
t, x(g(t))

)
[x(t)]−γ ≥ c−γ

2 t−kγf
(
t, c1 [g(t)]k−1

)
and

f
(
t, x(g(t))

)
[x(t)]−γ ≤ c−γ

1 t−(k−1)γf
(
t, c2 [g(t)]k

)
hold for t ≥ t1. Lemma 6.7.2 applied to the equation

x(n)(t) + σf
(
t, x(g(t))

)
[x(t)]−γ [x(t)]γ = 0 for γ ∈ (0, 1)
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implies that ∫ ∞
tn−k−1+kγf

(
t, x(g(t))

)
[x(t)]−γ

dt < ∞

and ∫ ∞
tn−k+(k−1)γf

(
t, x(g(t))

)
[x(t)]−γ

dt = ∞.

This shows that (6.99) and (6.100) hold.

Now we consider the equation

(6.101) x(n)(t) + σp(t)φ
(
x(g(t))

)
= 0, t ≥ t0,

where p : [t0,∞) → [0,∞), φ : (0,∞) → (0,∞) are continuous, and g is a continuous
and nondecreasing function such that limt→∞ g(t) = ∞. Then it is easy to prove
the following result.

Theorem 6.7.5. Assume that φ is nonincreasing and satisfies

(6.102) lim
x→∞φ(x) > 0,

and let k ∈ N satisfy (6.86). Then (6.101) has a positive solution in the class Pk[int]
if and only if

(6.103)
∫ ∞

tn−k−1p(t)dt < ∞ and
∫ ∞

tn−kp(t)dt = ∞.

Similarly, from Theorems 6.7.3 and 6.7.4, we can obtain the following result.

Theorem 6.7.6. Assume that φ is nondecreasing and satisfies

(6.104) 0 < φ(x) ≤ c, where c is a constant,

and let k ∈ N satisfy (6.86). Then (6.101) has a solution in the class Pk[int] if and
only if (6.103) holds.

Example 6.7.7. As an example, consider the equation

(6.105) x(n)(t) + σp(t)
[x(g(t))]γ

1 + [x(g(t))]γ
= 0, t ≥ t0,

where γ > 0 is constant and g is defined as in Theorem 6.7.3. By Theorem 6.7.6,
(6.105) has a solution in the class Pk[int] if and only if (6.103) holds. But Theorem
6.7.5 is not applicable to (6.105) since φ is increasing.

By Theorems 6.7.5 and 6.7.6, we have the following result.

Theorem 6.7.8. Assume that φ is either nondecreasing or nonincreasing and sat-
isfies

a ≤ φ(x) ≤ b, x ∈ (0,∞),

where a and b are constants. Suppose k ∈ N satisfies (6.86). Then Pk[int] �= ∅ if
and only if (6.103) holds.

Next we consider (6.83) in which f(t, x) is nonincreasing in x and establish
conditions for this equation to possess positive solutions in the subclasses Pk[int]
for k ∈ N satisfying (6.86).
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Theorem 6.7.9. In addition to (6.84) assume that f(t, x) is nonincreasing in
x ∈ (0,∞) for each fixed t ≥ t0. Suppose k ∈ N satisfies (6.86). Then Pk[int] �= ∅
if (6.93) and (6.94) hold.

Proof. If k > 1, then define

qk−2(t) =
k−2∑
j=0

αj(t − t0)j

j!
,

where αm > 0, 0 ≤ m ≤ k − 2, are arbitrary fixed constants, and if k = 1, put
qk−2(t) = 0. Let δ > a(k − 1)! be fixed, where a is the number in (6.93). Define
by C[t0,∞) the space of all continuous functions on [t0,∞) with the topology
of uniform convergence on every compact subinterval of [t0,∞), and consider the
subset X of C[t0,∞) consisting of all x ∈ C[t0,∞) such that

qk−2(t) +
δ(t − t0)k−1

(k − 1)!
≤ x(t) ≤ qk−2(t) +

δ(t − t0)k−1

(k − 1)!

+
∫ t

t0

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)n−k−1

(n − k − 1)!
f

(
r, g

(
qk−2(r) +

δ(r − t0)k−1

(k − 1)!

))
drds

for t ≥ t0. A solution x of (6.83) with the required properties is obtained as a fixed
point of the operator M : X → C[t0,∞) defined by

Mx(t) = qk−2(t) +
δ(t − t0)k−1

(k − 1)!

+
∫ t

t0

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)n−k−1

(n − k − 1)!
f
(
r, x(r)
)

drds

for t ≥ t0. It is clear that M is well defined on X and maps X into C[t0,∞). A
routine computation shows that

(i) M maps X into X;
(ii) M is continuous on X;
(iii) MX is relatively compact.

The Schauder–Tychonov theorem (Theorem 1.4.25) then implies that M has a fixed
point in X. Let x ∈ X be a fixed point of M . Differentiating the equation x = Mx,
we see that

(6.106) x(k−1)(t) = δ +
∫ t

t0

∫ ∞

s

(r − s)n−k−1

(n − k − 1)!
f
(
r, x(r)
)

drds,

and hence

(6.107) x(k)(t) =
∫ ∞

t

(r − t)n−k−1

(n − k − 1)!
f
(
r, x(r)
)

dr

hold for t ≥ t0. In view of (6.87), it is also clear that x = x(t) satisfies (6.83) at every
point of [t0,∞). By (6.107), we have limt→∞ x(k)(t) = 0. Since (6.106) and (6.107)
imply that x(k−1)(t) is positive and increasing in [t0,∞), x(k−1)(t) either converges
to some positive limit or diverges to ∞ as t → ∞. Assume that the first case holds.
Then this means that x ∈ Pk[min], and so (6.91) holds by Theorem 6.7.1. But this
contradicts the assumption (6.94). Thus we conclude that limt→∞ x(k−1)(t) = ∞,
implying that x is a solution of (6.83) belonging to Pk[int].
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Necessary conditions for the existence of solutions of (6.83) in Pk[int] are given
in the following theorem.

Theorem 6.7.10. In addition to (6.84) assume that f(t, x) is nonincreasing in
x ∈ (0,∞) for each fixed t ≥ t0. Let k ∈ N satisfy (6.86). If (6.83) has a positive
solution in the class Pk[int], then∫ ∞

tn−k−1f
(
t, a [g(t)]k

)
dt < ∞ for every a > 0

and ∫ ∞
tn−kf
(
t, b [g(t)]k−1

)
dt = ∞ for every b > 0.

Proof. The proof is similar to that of Theorem 6.7.4 and will be omitted here.

As an application, we consider the equation (6.101), where g is a continuous and
nonincreasing function such that limt→∞ g(t) = ∞. Then it is easy to prove the
following results.

Theorem 6.7.11. Assume that φ is nonincreasing and satisfies (6.102), and let
k ∈ N satisfy (6.86). Then (6.101) has a positive solution in the class Pk[int] if and
only if (6.103) holds.

Theorem 6.7.12. Assume that φ is nonincreasing and satisfies (6.104), and let
k ∈ N satisfy (6.86). Then (6.101) has a solution in the class Pk[int] if and only if
(6.103) holds.

6.8. Existence of Nonoscillatory Solutions

In this section we give several sufficient conditions for the existence of positive
solutions of higher order neutral differential equations of the form

(6.108)
dn

dtn

(
x(t) − cx(t − τ)

)
+ p(t)x(g(t)) = 0,

where p, g ∈ C((t0,∞), R), c ∈ R, τ ∈ R+, and g(t) → ∞ as t → ∞.

Theorem 6.8.1. Assume that n ∈ N is even and

(i) c > 0, p(t) ≥ 0, and g(t + τ) < t;
(ii) there exists a constant α > 0 such that

(6.109)
1
c
e−ατ +

1
c

∫ ∞

t+τ

(s − t − τ)n−1

(n − 1)!
p(s) exp

(
α (t − g(s))

)
ds ≤ 1 for large t.

Then (6.108) has a positive solution x satisfying x(t) → 0 as t → ∞.

Proof. If the equal sign in (6.109) holds eventually, then (6.108) has the positive
solution x(t) = e−αt. In the rest of the proof we may assume that there exists
T > t0 such that t − τ ≥ t0, g(t) ≥ t0 for t ≥ T ,

β :=
1
c
e−ατ +

1
c

∫ ∞

T+τ

(s − T − τ)n−1

(n − 1)!
p(s) exp

(
α (T − g(s))

)
ds < 1,

and condition (6.109) holds for t ≥ T .
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Let X denote the Banach space of all continuous bounded functions defined on
[t0,∞) with the sup-norm and let Ω be the subset of X defined by

Ω =
{

y ∈ X : 0 ≤ y(t) ≤ 1, t ≥ t0

}
.

Define a map S : Ω → X as

(Sy)(t) = (S1y)(t) + (S2y)(t),

where

(S1y)(t) =

⎧⎨⎩
1
c
e−ατy(t + τ) if t ≥ T,

(S1y)(T ) + exp
(
ε (T − t)

)
− 1 if t0 ≤ t < T

and

(S2y)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
c

∫ ∞

t+τ

(s − t − τ)n−1

(n − 1)!
p(s) exp

(
α (t − g(s))

)
y(g(s))ds

if t ≥ T,

(S2y)(T ) if t0 ≤ t < T,

and ε = ln(2 − β)/(T − t0). It is easy to see that the integral in S2 is defined
whenever y ∈ Ω. Clearly, the set Ω is closed, bounded, and convex in X. We shall
show that for every pair x, y ∈ Ω,

(6.110) S1x + S2y ∈ Ω.

In fact, for any x, y ∈ Ω, we have by (6.109)

(S1x)(t) + (S2y)(t) =
1
c
e−ατx(t + τ)

+
1
c

∫ ∞

t+τ

(s − t − τ)n−1

(n − 1)!
p(s) exp

(
α (t − g(s))

)
y(g(s))ds

≤ 1
c
e−ατ +

1
c

∫ ∞

t+τ

(s − t − τ)n−1

(n − 1)!
p(s) exp

(
α (t − g(s))

)
ds ≤ 1

and

(S1x)(t) + (S2y)(t) = (S1x)(T ) + (S2y)(T ) + exp
(
ε (T − t)

)
− 1

≤ β + exp
(
ε(T − t)

)
− 1 ≤ 1

for t ≥ T . Obviously, (S1x)(t) + (S2y)(t) ≥ 0 for t ≥ t0. Thus (6.110) is proved.
Next, since 0 < 1

c e−ατ < 1, it follows that S1 is a strict contraction. We now shall
show that S2 is completely continuous. In fact, from condition (6.109), there exists
a constant M > 0 such that

1
c

∫ ∞

t+τ

(s − t − τ)n−1

(n − 1)!
p(s) exp

(
α (t − g(s))

)
ds ≤ M for t ≥ T.

Thus we obtain∣∣∣∣ ddt
(S2y) (t)

∣∣∣∣ = ∣∣∣∣−1
c

∫ ∞

t+τ

(s − t − τ)n−2

(n − 2)!
p(s) exp

(
α (t − g(s))

)
y (g(s)) ds

+
α

c

∫ ∞

t+τ

(s − t − τ)n−1

(n − 1)!
p(s) exp

(
α (t − g(s))

)
y (g(s)) ds

∣∣∣∣ ≤ M + α
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for t ≥ T and
d

dt
(S2y) (t) = 0 for t0 ≤ t ≤ T.

This implies that S2 is relatively compact. On the other hand, it is easy to see
that S2 is continuous and uniformly bounded, and so S2 is completely continuous.
Now, by Krasnosel′skĭı’s fixed point theorem (Theorem 1.4.27), S has a fixed point
y ∈ Ω, i.e.,

y(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
c
e−ατy(t + τ) +

1
c

∫ ∞

t+τ

(s − t − τ)n−1

(n − 1)!
p(s) exp

(
α (t − g(s))

)
y(g(s))ds

if t ≥ T,

y(T ) + exp
(
ε (T − t)

)
− 1 if t0 ≤ t < T.

Since y(t) ≥ exp (ε (T − t)) − 1 for t0 ≤ t ≤ T , it follows that y(t) > 0 for t ≥ t0.
Set

x(t) = y(t)e−αt.

Then the above equation becomes

x(t) =
1
c
x(t + τ) +

1
c

∫ ∞

t+τ

(s − t − τ)n−1

(n − 1)!
p(s)x (g(s)) ds for t ≥ T.

Furthermore, since n ∈ N is even, we have

x(t) = cx(t − τ) +
∫ ∞

t

(t − s)n−1

(n − 1)!
p(s)x (g(s)) ds for t ≥ T + τ.

It follows that
dn

dtn

(
x(t) − cx(t − τ)

)
+ p(t)x (g(t)) = 0 for t ≥ T + τ,

and hence x is an eventually positive solution of (6.108) satisfying x(t) → 0 as
t → ∞.

Theorem 6.8.2. Assume that n ∈ N is odd and

(i) c ∈ (0, 1), τ > 0, p(t) ≥ 0, and g(t + τ) < t;
(ii) there exists a constant α > 0 such that

(6.111) ceατ +
∫ ∞

t

(t − s)n−1

(n − 1)!
p(s) exp

(
α (t − g(s))

)
ds ≤ 1 for large t.

Then (6.108) has a positive solution x satisfying x(t) → 0 as t → ∞.

Proof. If the equal sign in (6.111) holds eventually, then (6.108) has the positive
solution x(t) = e−αt. Now we assume that there exists T > t0 such that t− τ ≥ t0,
g(t) ≥ t0 for t ≥ T ,

β = ceατ +
∫ ∞

T

(T − s)n−1

(n − 1)!
p(s) exp

(
α (T − g(s))

)
ds < 1,

and condition (6.111) holds for t ≥ T .

Define the Banach space X and its subset Ω as in the proof of Theorem 6.8.1.
Define a map S : Ω → X by

(Sy)(t) = (S1y)(t) + (S2y)(t),
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where

(S1y)(t) =

{
ceατy(t − τ) if t ≥ T,

(S1y)(T ) + exp
(
ε(T − t)

)
− 1 if t0 ≤ t < T

and

(S2y)(t) =

⎧⎨⎩
∫ ∞

t

(t − s)n−1

(n − 1)!
p(s) exp

(
α (t − g(s))

)
y(g(s))ds if t ≥ T,

(S2y)(T ) if t0 ≤ t < T,

and ε = ln(2 − β)/(T − t0). As in the proof of Theorem 6.8.1, we can show that
the map S satisfies all conditions of Krasnosel′skĭı’s fixed point theorem, and so
S has a fixed point y ∈ Ω. Clearly, y(t) > 0 for t ≥ t0. It is easy to check that
x(t) = y(t)e−αt is a solution of (6.108), and so the proof is complete.

Theorem 6.8.3. Assume c �= 1, g(t + τ) < t, p(t) ≥ 0, and∫ ∞

t0

sn−1p(s)ds < ∞ for some odd n ∈ N.

Then (6.108) has a bounded positive solution.

Proof. Let X be the Banach space of all continuous bounded functions defined on
[t0,∞) with the norm

‖x‖ = sup
t≥t0

|x(t)| .

We discuss the following five possibilities.
(a) c ∈ (0, 1). Let T > t0 be a sufficiently large number such that T − τ ≥ t0,

T − g(T ) ≥ t0 for t ≥ T , and∫ ∞

T

sn−1p(s)ds ≤ (1 − c)(n − 1)!
2

.

Set
Ω =
{

x ∈ X : 1 ≤ x(t) ≤ 2, t ≥ t0

}
.

Then Ω is closed, bounded, and convex in X. Define S : Ω → X by

(Sx)(t) =

⎧⎨⎩1 − c + cx(t − τ) +
∫ ∞

t

(t − s)n−1

(n − 1)!
p(s)x(g(s))ds if t ≥ T,

(Sx)(T ) if t0 ≤ t < T.

Clearly, S is continuous. For every x ∈ Ω, it is easy to see that

(Sx)(t) ≤ 1 − c + 2c +
2(1 − c)

2
= 2 and (Sx)(t) ≥ 1 − c + c + 0 = 1

for t ≥ t0. This means that SΩ ⊆ Ω. We now shall show that S is a strict
contraction. In fact, for every pair x1, x2 ∈ Ω and t ≥ T , we have∣∣∣(Sx1)(t) − (Sx2)(t)

∣∣∣ ≤ c
∣∣∣x1(t − τ) − x2(t − τ)

∣∣∣
+
∫ ∞

t

(t − s)n−1

(n − 1)!
p(s)
∣∣∣x1 (g(s)) − x2 (g(s))

∣∣∣ ds

≤ ‖x1 − x2‖
(

c +
1 − c

2

)
=
(

1 + c

2

)
‖x1 − x2‖
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and

‖Sx1 − Sx2‖ = sup
t≥t0

∣∣∣(Sx1)(t) − (Sx2)(t)
∣∣∣ = sup

t≥T

∣∣∣(Sx1)(t) − (Sx2)(t)
∣∣∣

≤
(

1 + c

2

)
‖x1 − x2‖ .

Since (1 + c)/2 < 1, it follows that S is a strict contraction. By the Banach
contraction mapping principle (Theorem 1.4.26), S has a fixed point x ∈ Ω. It is
easy to check that x is a bounded positive solution of (6.108).

(b) c > 1. Let T > t0 be a sufficiently large number such that T − g(T ) ≥ t0 for
t ≥ T and ∫ ∞

T+τ

sn−1p(s)ds ≤ (c − 1)(n − 1)!
2

.

Set

Ω =
{

x ∈ X :
c − 1

2
≤ x(t) ≤ c, t ≥ t0

}
.

Then Ω is closed, bounded, and convex in X. Define S : Ω → X by

(Sx)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c − 1 +

1
c
x(t + τ) − 1

c

∫ ∞

t+τ

(t + τ − s)n−1

(n − 1)!
p(s)x (g(s)) ds

if t ≥ T,

(Sx)(T ) if t0 ≤ t < T.

As in the proof of (a), we can show that SΩ ⊆ Ω, and for every pair x1, x2 ∈ Ω, we
have

‖Sx1 − Sx2‖ ≤ 1
c

(
2c − 1

2c

)
‖x1 − x2‖ .

Since 0 < (2c−1)/(2c) < 1, it follows that S is a strict contraction. By the Banach
contraction mapping principle, S has a fixed point x ∈ Ω, and x is a positive
solution of (6.108).

(c) c ∈ (−1, 0]. Let T > t0 be a sufficiently large number such that T − τ ≥ t0,
T − g(T ) ≥ t0 for t ≥ T , and∫ ∞

T

sn−1p(s)ds ≤ (c + 1)(n − 1)!
2

.

Set

Ω =
{

x ∈ X :
(c + 1)2

1 − c
≤ x(t) ≤ 2(c + 1)2

1 − c
, t ≥ t0

}
.

Then Ω is closed, bounded, and convex in X. Define S : Ω → X by

(Sx)(t) =

⎧⎨⎩c + 1 + cx(t − τ) +
∫ ∞

t

(t − s)n−1

(n − 1)!
p(s)x(g(s))ds if t ≥ T,

(Sx)(T ) if t0 ≤ t < T.

As in the proof of (a), we can show that

(c + 1)2

1 − c
≤ x(t) ≤ 2(c + 1)2

1 − c
, t ≥ t0,

and for every pair x1, x2 ∈ Ω, we have

‖Sx1 − Sx2‖ ≤
(

1 − c

2

)
‖x1 − x2‖ .
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Since 0 < (1 − c)/2 < 1, it follows that S is a strict contraction. By the Banach
contraction mapping principle, S has a fixed point x ∈ Ω, and x is a positive
solution of (6.108).

(d) c < −1. Let T > t0 be a sufficiently large number such that t+ τ − g(t) ≥ t0
for t ≥ T and ∫ ∞

T+τ

sn−1p(s)ds ≤ − (c + 1)(n − 1)!
2

.

Set

Ω =
{

x ∈ X :
(c + 1)2

c(c − 1)
≤ x(t) ≤ −2(c + 1)

1 − c
, t ≥ t0

}
.

Then Ω is closed, bounded, and convex in X. Define S : Ω → X by

(Sx)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 +

1
c

+
1
c
x(t + τ) − 1

c

∫ ∞

t+τ

(t + τ − s)n−1

(n − 1)!
p(s)x(g(s))ds

if t ≥ T,

(Sx)(T ) if t0 ≤ t < T.

As in the proof of (a), we can show that SΩ ⊆ Ω, and for every pair x1, x2 ∈ Ω, we
have

‖Sx1 − Sx2‖ ≤
(

1 − c

−2c

)
‖x1 − x2‖ .

Since 0 < (c− 1)/(2c) < 1, it follows that S is a strict contraction. By the Banach
contraction mapping principle, S has a fixed point x ∈ Ω, and x is a positive
solution of (6.108).

(e) c = −1. Let T > t0 be a sufficiently large number such that t+ τ − g(t) ≥ t0
for t ≥ T and ∫ ∞

T+τ

sn−1p(s)ds ≤ (n − 1)!
2

.

Set
Ω =
{

x ∈ X : 1 ≤ x(t) ≤ 2, t ≥ t0

}
.

Then Ω is closed, bounded, and convex in X. Define S : Ω → X by

(Sx)(t) =

⎧⎪⎨⎪⎩1 +
∞∑

i=1

∫ t+2iτ

t+(2i−1)τ

(t − s)n−1

(n − 1)!
p(s)x(g(s))ds if t ≥ T,

(Sx)(T ) if t0 ≤ t < T.

As in the proof of (a), we can show that SΩ ⊆ Ω, and for every pair x1, x2 ∈ Ω, we
have

‖Sx1 − Sx2‖ ≤ 1
2
‖x1 − x2‖ .

It follows that S is a strict contraction. By the Banach contraction mapping prin-
ciple, S has a fixed point x ∈ Ω, i.e.,

x(t) =

⎧⎪⎨⎪⎩1 +
∞∑

i=1

∫ t+2iτ

t+(2i−1)τ

(t − s)n−1

(n − 1)!
p(s)x(g(s))ds if t ≥ T,

(Sx)(T ) if t0 ≤ t < T.

From this we obtain

x(t) + x(t − τ) = 2 +
∫ ∞

t

(t − s)n−1

(n − 1)!
p(s)x (g(s)) ds, t ≥ T + τ.
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Hence x is a positive solution of (6.108).

Theorem 6.8.4. Assume that n ∈ N is even and

(i) c ∈ (0, 1), τ > 0, p(t) ≤ 0;
(ii) there exists a constant α > 0 such that

(6.112) ceατ +
∫ ∞

t

(t − s)n−1

(n − 1)!
p(s) exp

(
α (t − g(s))

)
ds ≤ 1 for all large t.

Then (6.108) has a positive solution satisfying x(t) → 0 as t → ∞.

Proof. It is easy to see that if the equal sign in (6.112) holds eventually, then (6.108)
has the positive solution x(t) = e−αt. Now we assume that there exists T > t0 such
that t − τ ≥ t0, g(t) ≥ t0 for t ≥ T ,

β := ceατ +
∫ ∞

T

(T − s)n−1

(n − 1)!
p(s) exp

(
α (T − g(s))

)
ds < 1,

and condition (6.112) holds for t ≥ T .
Define the Banach space X and its subset Ω as in the proof of Theorem 6.8.1.

Define a map S : Ω → X by

(Sy)(t) = (S1y)(t) + (S2y)(t),

where

(S1y)(t) =

{
ceατy(t − τ) if t ≥ T,

(S1y)(T ) + exp
(
ε (T − t)

)
− 1 if t0 ≤ t < T

and

(S2y)(t) =

⎧⎨⎩
∫ ∞

t

(t − s)n−1

(n − 1)!
p(s) exp

(
α (t − g(s))

)
y(g(s))ds if t ≥ T,

(S2y)(T ) if t0 ≤ t < T,

and ε = ln(2 − β)/(T − t0). As in the proof of Theorem 6.8.1, we can show that
the map S satisfies all conditions of Krasnosel′skĭı’s fixed point theorem, and so
S has a fixed point y ∈ Ω. Clearly, y(t) > 0 for t ≥ t0. It is easy to check that
x(t) = y(t)e−αt is a solution of (6.108), and so the proof is complete.

By the Banach contraction mapping principle and Krasnosel′skĭı’s fixed point
theorem, we can easily show that the following two theorems hold.

Theorem 6.8.5. If c > 1, τ > 0, p(t) ≤ 0, and

−
∫ ∞

t0

sn−1p(s)ds < ∞ for some even n ∈ N,

then (6.108) has a bounded positive solution.

Theorem 6.8.6. Assume that n ∈ N is odd and

(i) c > 0, p(t) ≤ 0, and g(t + τ) < t;
(ii) there exists a constant α > 0 such that

1
c
e−ατ − 1

c

∫ ∞

t+τ

(s − t − τ)n−1

(n − 1)!
p(s) exp

(
α (t − g(s))

)
ds ≤ 1 for all large t.

Then (6.108) has a positive solution satisfying x(t) → 0 as t → ∞.
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Theorem 6.8.7. Assume c > 1 and

(6.113)
∫ ∞

t0

sn−1 |p(s)| ds < ∞ for some even n ∈ N.

Then (6.108) has a bounded positive solution.

Proof. Let T > t0 be a sufficiently large number such that t + τ ≥ t0, g(t + τ) ≥ t0
for t ≥ T , and ∫ ∞

T+τ

sn−1p(s)ds ≤ (c − 1)(n − 1)!
4

.

Let X be the Banach space of all continuous bounded functions defined on [t0,∞)
with the norm ‖x‖ = supt≥t0 |x(t)| and set

Ω =
{

x ∈ X :
1
2c

≤ x(t) ≤ 2c, t ≥ t0

}
.

Then Ω is closed, bounded, and convex in X. Define S : Ω → X by

(Sx)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c − 1 +

1
c
x(t + τ) +

1
c

∫ ∞

t+τ

(s − t − τ)n−1

(n − 1)!
p(s)x(g(s))ds

if t ≥ T,

(Sx)(T ) if t0 ≤ t < T.

Clearly, S is continuous. For every x ∈ Ω, it is easy to see that

(Sx)(t) ≤ c − 1 +
1
c
2c +

1
c

∫ ∞

t+τ

(s − t − τ)n−1

(n − 1)!
|p(s)| 2cds ≤ c +

1 + c

2
< 2c

and

(Sx)(t) ≥ c − 1 +
1
c

c

2
− 1

c

∫ ∞

t+τ

(s − t − τ)n−1

(n − 1)!
|p(s)| 2cds

≥ c − 1 +
1
2
− c − 1

2
=

c

2
for t ≥ t0. This means that SΩ ⊆ Ω.

We now shall show that S is a strict contraction. In fact, for every pair x1, x2 ∈ Ω
and t ≥ T , we have∣∣∣(Sx1)(t) − (Sx2)(t)

∣∣∣ ≤ 1
c

∣∣∣x1(t + τ) − x2(t + τ)
∣∣∣

+
1
c

∫ ∞

t+τ

(s − t − τ)n−1

(n − 1)!
|p(s)|
∣∣∣x1(g(s)) − x2(g(s))

∣∣∣ ds

≤ ‖x1 − x2‖
(

1
c

+
1
c

c − 1
4

)
≤ 1

4

(
1 +

3
c

)
‖x1 − x2‖ ,

which implies that

‖Sx1 − Sx2‖ = sup
t≥t0

∣∣∣(Sx1)(t) − (Sx2)(t)
∣∣∣ = sup

t≥T

∣∣∣(Sx1)(t) − (Sx2)(t)
∣∣∣

≤ 1
4

(
1 +

3
c

)
‖x1 − x2‖ .

Since 1
4

(
1 + 3

c

)
< 1, it follows that S is a strict contraction. By the Banach

contraction mapping principle, S has a fixed point x ∈ Ω, and x is a positive
solution of (6.108).
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By using the above method, we can show that the following three theorems are
also true.

Theorem 6.8.8. Assume that c ∈ (0, 1), τ > 0, and that condition (6.113) holds.
Then (6.108) has a bounded positive solution.

Theorem 6.8.9. Assume c > 1 and

(6.114)
∫ ∞

t0

sn−1 |p(s)| ds < ∞ for some odd n ∈ N.

Then (6.108) has a bounded positive solution.

Theorem 6.8.10. Assume that c ∈ (0, 1) and that condition (6.114) holds. Then
(6.108) has a bounded positive solution.

6.9. Notes

The results in Section 6.2 are taken from Li [178], a special case is obtained
by Zhang, Yu, and Wang [302]. Section 6.3 is adopted from Zhang and Li [300].
The material in Section 6.4 is taken from Li [182], related results are given by
Graef, Spikes, and Grammatikopoulos [109]. The results in Sections 6.5 and 6.6
are obtained by Li [183] and Li and Fei [196], respectively. The contents of Sections
6.7 and 6.8 is taken from Kusano and Singh [156], Li and Zhong [212], and Li and
Ye [208], respectively.

 



CHAPTER 7

Systems of Nonlinear Differential Equations

7.1. Introduction

Oscillation and nonoscillation of systems of nonlinear differential equations is
an interesting problem. In this chapter we will present some recent contributions.

In Sections 7.2 and 7.3, we consider oscillation of all solutions of systems of
nonlinear differential equations with or without forcing. Some oscillation criteria
are presented. In Sections 7.4 and 7.5, we classify positive solutions of our systems
according to their limiting behaviors and then provide necessary and sufficient con-
ditions for their existence. Then, in Section 7.6, we provide a classification scheme
for positive solutions of two-dimensional second order differential systems and give
conditions for the existence of solutions with designated asymptotic properties.
Section 7.7 is concerned with nonoscillation of systems of differential equations of
the Emden–Fowler type. Several necessary and/or sufficient conditions for strong
nonoscillation are given. Here we use the definitions for strong oscillation and strong
nonoscillation given in Chapter 1, i.e., a vector solution is said to be strongly oscil-
latory (strongly nonoscillatory) if each of its nontrivial components has arbitrarily
large zeros (is nonoscillatory).

7.2. Oscillation of Nonlinear Systems

Consider the nonlinear two-dimensional differential system

(7.1)

{
x′(t) = a(t)f (y(t)) ,

y′(t) = −b(t)g (x(t)) ,

where a and b are continuous real-valued functions on an interval [t0,∞), and f
and g are continuous real-valued functions on the real line R satisfying the sign
property

uf(u) > 0 and ug(u) > 0 for all u ∈ R \ {0}.
It is supposed that a is nonnegative on [t0,∞), f is increasing on R, and g is
continuously differentiable on R \ {0} and satisfies

g′(u) ≥ 0 for all u �= 0.

Note that no restriction on the sign of the coefficient b is imposed.

Throughout this section, we shall restrict our attention only to those solutions
of the differential system (7.1) which exist on some ray [T0,∞), where T0 ≥ t0 may
depend on the particular solution. Note that, under quite general conditions, there
will always exist solutions of (7.1) which are extendable to an interval [T0,∞),
T0 ≥ t0, even though there will also exist nonextendable solutions [152].
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The special case when

f(u) = |u|λ sgn u, g(u) = |u|μ sgn u, u ∈ R with λ, μ > 0

is of particular interest. In this case, the differential system (7.1) becomes{
x′(t) = a(t)|y(t)|λ sgn y(t),
y′(t) = −b(t)|x(t)|μ sgn x(t),

where λ and μ are positive constants.
In the following, we will be concerned with conditions which are sufficient for

oscillation of all solutions of (7.1). A lemma is useful for this purpose.

Lemma 7.2.1. Suppose a(t) ≥ 0 (�≡ 0). Then the first component x of a nonoscil-
latory solution (x, y) of (7.1) is also nonoscillatory.

Proof. Assume to the contrary that x is oscillatory but y is eventually positive.
Then in view of (7.1), x′(t) = a(t)f(y(t)) ≥ 0 for t larger than some T , and that
x′(t) ≥ 0 (�≡ 0) when t > T . Thus x(t) > 0 for all large t or x(t) < 0 for all
large t. This is a contradiction. The case when y is eventually negative is proved
similarly.

Lemma 7.2.2. Let (x, y) be a solution of (7.1) on an interval [τ,∞) and τ ≥ t0
be such that x(t) > 0 for all t ≥ τ . Moreover, let τ∗ ≥ τ and c be a real constant.
If

− y(τ)
g(x(τ))

+
∫ t

τ

b(s)ds +
∫ τ∗

τ

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds ≥ c for all t ≥ τ∗,

then
y(t) ≤ −cg(x(τ∗)) for all t ≥ τ∗.

Proof. From the second equation of (7.1) we obtain for t ≥ τ∗,∫ t

τ

b(s)ds =
∫ t

τ

−y′(s)
g(x(s))

ds

= − y(t)
g(x(t))

+
y(τ)

g(x(τ))
−
∫ t

τ

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds,

and so we have by our hypothesis

−y(t)
g(x(t))

=
−y(τ)
g(x(τ))

+
∫ t

τ

b(s)ds +
∫ τ∗

τ

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds

+
∫ t

τ∗

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds

≥ c +
∫ t

τ∗

{
− y(s)

g(x(s))

}{
−x′(s)g′(x(s))

g(x(s))

}
ds

for all t ≥ τ∗. Hence, by using Lemma 4.4.1, we conclude that

w(t) ≤ −y(t) for all t ≥ τ∗,

where w satisfies
w(t)

g(x(t))
= c +
∫ t

τ∗

w(s)
g(x(s))

{
−x′(s)g′(x(s))

g(x(s))

}
ds for t ≥ τ∗.
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We can easily see that w′ = 0 on [τ∗,∞). Moreover, we have w(τ∗) = cg(x(τ∗)).
Thus w(t) = cg(x(τ∗)) for all t ≥ τ∗, and so the proof of the lemma is complete.

Theorem 7.2.3. Suppose that∫ ∞ du

f(g(u))
< ∞ and

∫ −∞ du

f(g(u))
< ∞,(7.2) ∫ ∞

t0

a(t)dt = ∞,(7.3) ∫ ∞

t0

b(s)ds exists as a real number,(7.4)

and

f(u)f(v) ≤ f(uv) ≤ f(u)[−f(−v)] for all v > 0 and sufficiently small u.(7.5)

Then the differential system (7.1) is oscillatory if

(7.6)
∫ ∞

t0

a(t)f(B(t))dt = ∞,

where

B(t) =
∫ ∞

t

b(s)ds for t ≥ t0.

Proof. Assume that the differential system (7.1) admits a nonoscillatory solution
(x, y) on an interval [T0,∞), where T0 ≥ t0. From (7.3) it follows that the coefficient
a is not identically zero on any interval of the form [τ0,∞), τ0 ≥ t0. Therefore,
by Lemma 7.2.1, x is always nonoscillatory. Without loss of generality, we shall
assume that x(t) �= 0 for all t ≥ T0. Furthermore, we observe that the substitution
z = −x, w = −y transforms (7.1) into the system{

z′(t) = a(t)f̂ (w(t)) ,

w′(t) = −b(t)ĝ (z(t)) ,

where
f̂(u) = −f(u) and ĝ(u) = −g(−u) for u ∈ R.

The functions f̂ and ĝ are subject to the same conditions as the ones imposed on f
and g. Thus we can restrict our discussion to the case when x is positive on [T0,∞).
It must be noted that, from the first equation of system (7.1), it follows that the
function yx′ is necessarily nonnegative on the interval [T0,∞), even though y is
oscillatory.

First of all, we will show that

(7.7)
∫ ∞

T0

y(t)x′(t)g′(x(t))
[g(x(t))]2

dt < ∞.

To this end, let us assume that (7.7) fails to hold. By condition (7.4), there exists
a real constant K such that

− y(T0)
g(x(T0))

+
∫ t

T0

b(s)ds ≥ K, t ≥ T0.
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Furthermore, we can choose a point T ∗
0 ≥ T0 so that∫ T∗

0

T0

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds ≥ 1 − K.

So we have

− y(T0)
g(x(T0))

+
∫ t

T0

b(s)ds +
∫ T∗

0

T0

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds ≥ 1, t ≥ T ∗
0 ,

and hence, by applying Lemma 7.2.2 with τ = T0, τ∗ = T ∗
0 , and c = 1, we obtain

y(t) ≤ d, t ≥ T ∗
0 ,

where d = −g(x(T ∗
0 )) < 0. Next, from the first equation of (7.1) we derive for

t ≥ T ∗
0 ,

x(t) − x(T ∗
0 ) =
∫ t

T∗
0

a(s)f(y(s))ds ≤ f(d)
∫ t

T∗
0

a(s)ds,

which, in view of (7.3), gives limt→∞ x(t) = −∞, a contradiction. Hence (7.7)
holds.

Now, by taking into account (7.4) and the definition of the function B as well
as (7.7), from the second equation of (7.1) we get for t ≥ T0,

B(T0) − B(t) =
∫ t

T0

b(s)ds =
∫ t

T0

−y′(s)
g(x(s))

ds

= − y(t)
g(x(t))

+
y(T0)

g(x(T0))
−
∫ t

T0

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds

= − y(t)
g(x(t))

+
y(T0)

g(x(T0))
−
∫ ∞

T0

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds

+
∫ ∞

t

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds,

namely

(7.8)
y(t)

g(x(t))
= θ + B(t) +

∫ ∞

t

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds, t ≥ T0,

where the real number θ is defined by

θ :=
y(T0)

g(x(T0))
− B(T0) −

∫ ∞

T0

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds.

We claim that the constant θ is nonnegative. Otherwise, from (7.4) and (7.7) it
follows that there exists T ∗∗

0 ≥ T such that∫ ∞

T∗∗
0

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds ≤ −θ

4
and

∫ ∞

t

b(s)ds ≤ −θ

4
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for t ≥ T ∗∗
0 . Thus, by using (7.8), we find for every t ≥ T ∗∗

0 ,

− y(T0)
g(x(T0))

+
∫ t

T0

b(s)ds +
∫ T∗∗

0

T0

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds = −θ − B(T0)

−
∫ ∞

T0

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds +
∫ t

T0

b(s)ds +
∫ T∗∗

0

T0

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds

= −θ −
∫ ∞

t

b(s)ds −
∫ ∞

T∗∗
0

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds

≥ −θ +
θ

4
+

θ

4
= −θ

2
,

and so Lemma 7.2.2 ensures that

y(t) ≤ D, t ≥ T ∗∗
0 , where D =

θ

2
g(x(T ∗∗

0 )) < 0.

So, exactly as in the proof of (7.7), we find the contradiction limt→∞ x(t) = −∞,
which proves θ ≥ 0.

Therefore, (7.8) guarantees that

y(t) ≥ B(t)g(x(t)) for all t ≥ T0.

Hence, by taking into account the fact that limt→∞ B(t) = 0 and using condition
(7.5), from the first equation of (7.1) we obtain for t ≥ T0,

x′(t) = a(t)f(y(t)) ≥ a(t)f
(
B(t)g(x(t))

)
≥ a(t)f(B(t))f(g(x(t))),

and consequently ∫ x(t)

x(T0)

du

f(g(u))
≥
∫ t

T0

a(s)f(B(s))ds, t ≥ T0.

So, because of condition (7.2), we have∫ t

T0

a(s)f(B(s))ds ≤
∫ ∞

x(T0)

du

f(g(u))
< ∞, t ≥ T0,

which contradicts (7.6). The proof is complete.

Remark 7.2.4. When
∫∞

t0
b(s)ds = ∞, there are many oscillation results for the

differential system (7.1). The reader can refer to [152, 224, 225, 226].

7.3. Oscillation of Nonlinear Systems with Forcing

In this section we are concerned with the oscillation of the differential system

(7.9)

{
x′(t) = a(t)f(y(t)),
y′(t) = −b(t)g(x(t)) + r(t),

where a, b, and r are nontrivial and continuous functions defined on an interval
[t0,∞), a(t) is nonnegative on [t0,∞), f and g are real, nondecreasing, and contin-
uously differentiable functions defined on R such that

xf(x) > 0, xg(x) > 0, and g′(x) ≥ μ > 0 for x �= 0.

First of all, we present two lemmas which will be used in the proofs of the
following main results.
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Lemma 7.3.1. Suppose a(t) ≥ 0 (�≡ 0). Then the first component x of a nonoscil-
latory solution (x, y) of (7.9) is also nonoscillatory.

Proof. The proof is similar to the proof of Lemma 7.2.1, and we omit it here.

Lemma 7.3.2. Suppose (x, y) is a solution of (7.9) with x(t) > 0 for t ∈ [t0, α].
Suppose further that there exist t1 ∈ [t0, α] and m > 0 such that

(7.10) − y(t0)
g(x(t0))

+
∫ t

t0

(
b(s) − r(s)

g(x(s))

)
ds +
∫ t1

t0

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds ≥ m

for all t ∈ [t1, α]. Then

y(t) ≤ −mg (x(t1)) for t ∈ [t1, α].

Proof. The proof is similar to the proof of Lemma 7.2.2, and we omit it here.

Before stating the main results, for simplicity, we list the conditions used as∫ ∞

t0

|r(s)|ds < ∞,(7.11) ∫ ∞

t0

b(s)ds = ∞,(7.12)

and

−∞ <

∫ ∞

t0

b(s)ds < ∞.(7.13)

Theorem 7.3.3. Suppose (7.3), (7.11), and (7.12) hold. Then every solution of
(7.9) either oscillates or satisfies lim inft→∞ |x(t)| = 0.

Proof. Let (x, y) be a nonoscillatory solution of (7.9) with lim inft→∞ |x(t)| > 0.
Since a(t) ≥ 0 (�≡ 0), in view of (7.3), we infer from Lemma 7.3.1 that x is nonoscil-
latory. Assume that x(t) is eventually positive such that x(t) > 0 for t ≥ t0. Since
lim inft→∞ |x(t)| > 0, there exist T ≥ t0 and m1,m2 > 0 such that x(t) ≥ m1 and
g(x(t)) ≥ m2 for t ≥ T . Then it follows from (7.11) that

(7.14)
∣∣∣∣∫ t

T

r(s)
g(x(s))

ds

∣∣∣∣ ≤ ∫ t

T

∣∣∣∣ r(s)
g(x(s))

∣∣∣∣ ds ≤
∫ t

T
|r(s)| ds

m2
≤ m3, t ≥ T,

where m3 is a finite positive constant. Then, in view of (7.12) and (7.14), we see
that (7.10) is satisfied for t ≥ T . If T is sufficiently large, applying Lemma 7.3.2,
we obtain

y(t) ≤ −mg(x(T )) < 0, t ≥ T.

But since f is nondecreasing, we find

(7.15) x′(t) = a(t)f(y(t)) ≤ a(t)f
(
−mg(x(T ))

)
, t ≥ T.

By means of (7.3), x(t) tends to −∞, which is a contradiction. The case when x(t)
is eventually negative is proved similarly.
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Example 7.3.4. Consider the differential system⎧⎨⎩x′(t) = y(t),

y′(t) = −x(t) +
6 + t2

t4

for t ≥ 2. Clearly, a(t) ≡ 1, b(t) ≡ 1, f(x) = g(x) = x, and r(t) = (6 + t2)/t4, and
hence the conditions of Theorem 7.3.3 are satisfied. Therefore, every solution x of
the above system either is oscillatory or satisfies lim inft→∞ |x(t)| = 0. In fact,

x(t) = sin t +
1
t2

, y(t) = cos t − 2
t3

is such an oscillatory solution.

Theorem 7.3.5. Suppose (7.2), (7.3), (7.5), (7.11), and (7.13) hold. Then every
solution of (7.9) either oscillates or satisfies lim inft→∞ |x(t)| = 0 if

(7.16)
∫ ∞

t0

a(t)f
(∫ ∞

t

(b(s) − l|r(s)|) ds

)
dt = ∞ for all l > 0.

Proof. Let (x, y) be a nonoscillatory solution of (7.9) with lim inft→∞ |x(t)| > 0.
Since a(t) ≥ 0 (�≡ 0) in view of (7.3), we infer from Lemma 7.3.1 that x is nonoscil-
latory. Assume that x(t) is eventually positive such that x(t) > 0 for t ≥ t0. Fur-
thermore, there exist t1 ≥ t0 and m1,m2 > 0 such that x(t) ≥ m1 and g(x(t)) ≥ m2

for t ≥ t1. As in the proof of Lemma 7.2.2, we obtain

y(t)
g(x(t))

=
y(t0)

g(x(t0))
−
∫ t

t0

(
b(s) − r(s)

g(x(s))

)
ds −
∫ t

t0

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds

for t ≥ t0. Note that

(7.17)
∫ ∞

t0

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds < ∞.

For otherwise (7.10) is valid for some m > 0 and t1. Then by Lemma 7.3.2, we
have y(t) ≤ −mg(x(t1)) < 0 for t ≥ t1 so that (7.15) holds, and its subsequent
contradiction follows as before. Now

y(t)
g(x(t))

=
y(t0)

g(x(t0))
−
∫ ∞

t0

(
b(s) − r(s)

g(x(s))

)
ds −
∫ ∞

t0

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds

+
∫ ∞

t

(
b(s) − r(s)

g(x(s))

)
ds +
∫ ∞

t

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds

= β +
∫ ∞

t

(
b(s) − r(s)

g(x(s))

)
ds +
∫ ∞

t

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds,

(7.18)

where

β :=
y(t0)

g(x(t0))
−
∫ ∞

t0

(
b(s) − r(s)

g(x(s))

)
ds −
∫ ∞

t0

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds.

We now show that β ≥ 0. Indeed, if β < 0, then (7.13), (7.14), and (7.17) respec-
tively imply ∣∣∣∣∫ ∞

t

b(s)ds

∣∣∣∣ ≤ −β

6
,

∣∣∣∣∫ ∞

t

r(s)
g(x(s))

ds

∣∣∣∣ ≤ −β

6
,

and ∫ ∞

t

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds < −β

6

 



254 7. SYSTEMS OF NONLINEAR DIFFERENTIAL EQUATIONS

for t ≥ T . But then

− y(t0)
g(x(t0))

+
∫ t

t0

(
b(s) − r(s)

g(x(s))

)
ds +
∫ T

t0

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds

= −β −
∫ ∞

t

(
b(s) − r(s)

g(x(s))

)
ds −
∫ ∞

t

y(s)x′(s)g′(x(s))
[g(x(s))]2

ds

≥ −β +
β

6
+

β

6
+

β

6
= −β

2
> 0.

In view of Lemma 7.3.2, y(t) ≤ β
2 g(x(T )) for t ≥ T . Again, (7.15) holds with

m = −β/2, which is contrary to the condition (7.3) and the assumption that
x(t) > 0 for t ≥ t0, so β ≥ 0. In view of (7.18) and β ≥ 0, we have

y(t) ≥ g(x(t))
∫ ∞

t

(
b(s) − r(s)

g(x(s))

)
ds

≥ g(x(t))
(∫ ∞

t

b(s)ds − l

∫ ∞

t

|r(s)|ds

)
for all large t, where l = 1/m2. For the sake of convenience, let

C(t) =
∫ ∞

t

(
b(s) − l|r(s)|

)
ds

for all large t. Then limt→∞ C(t) = 0, and in view of (7.5) and the fact that f is
nondecreasing,

x′(t) = a(t)f (y(t)) ≥ a(t)f
(
C(t)g(x(t))

)
≥ a(t)f (C(t)) f (g(x(t)))

for t larger than or equal to some number T . It is easy to see that

x′(s)
f (g(x(s)))

≥ a(t)f (C(t)) ,

and thus by (7.2) ∫ ∞

T

a(s)f (C(s)) ds ≤
∫ ∞

x(T )

du

f (g(u))
< ∞,

which is contrary to (7.16). The case when x(t) is eventually negative is proved
similarly.

7.4. Classification Schemes of Positive Solutions (I)

In this section we provide several nonoscillation theorems for the two-
dimensional nonlinear differential system

(7.19)

{
x′(t) = a(t)f (y(t)) ,

y′(t) = −b(t)g (x(t)) ,

More specifically, we will classify the nonoscillatory solutions of (7.19) according
to their limiting behaviors and then provide necessary and sufficient conditions for
their existence.

We will assume that

(H1) a and b are nontrivial, nonnegative, and continuous functions defined on an
interval [t0,∞), and
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(H2) f and g are real, increasing, and continuously differentiable functions defined
on R such that xf(x) > 0 and xg(x) > 0 for x �= 0.

The system (7.19) is naturally classified into four classes according to whether∫ ∞

t0

a(s)ds < ∞,

∫ ∞

t0

a(s)ds = ∞,

∫ ∞

t0

b(s)ds < ∞, or
∫ ∞

t0

b(s)ds = ∞.

By symmetry considerations, we will, however, restrict our attention to the cases
where ∫ ∞

t0

a(s)ds < ∞ or
∫ ∞

t0

a(s)ds = ∞.

For this reason, we will employ the following notations:

A(s) =
∫ ∞

s

a(u)du, t0 ≤ s

and

A(s, t) =
∫ t

s

a(u)du, t0 ≤ s ≤ t.

Lemma 7.4.1. Suppose the conditions (H1) and (H2) hold. Suppose further that
the function a is not identically zero on any interval of the form [τ0,∞), where
τ0 ≥ t0. Then the component function x of a nonoscillatory solution (x, y) of
(7.19) is also nonoscillatory.

Proof. Assume to the contrary that x is oscillatory but y is eventually posi-
tive. Then in view of (7.19), x′(t) = a(t)f(y(t)) ≥ 0 for all large t and
x′(ti) = a(ti)f(y(ti)) > 0 for an increasing and divergent sequence {ti}. Thus
x(t) > 0 for all large t or x(t) < 0 for all large t. This is a contradiction. The case
when y is eventually negative is proved similarly.

Similarly, if b is not identically zero on any interval of the form [τ0,∞), then
the component function y of a nonoscillatory solution (x, y) is also nonoscillatory.
Therefore, under the additional condition

(H3) a and b are not identically zero on any interval of the form [τ0,∞), where
τ0 ≥ t0,

each component function of a nonoscillatory solution (x, y) of (7.19) is eventually
of one sign.

If we now interpret (7.19) as a (time varying) vector field in the plane and its
solutions as trajectories, then we see that each nonoscillatory solution corresponds
to a trajectory which ultimately lies in one of the four open quadrants of the plane.
In view of the directions of the vector field in each open quadrant, it is also clear
that the component functions of a nonoscillatory trajectory must be monotone.

7.4.1. The Case A(t0) = ∞. We now impose an additional condition on
(7.19), namely A(t0) = ∞. We assert that any nonoscillatory solution (x, y) of
(7.19) must ultimately lie in the first or the third open quadrant.

Lemma 7.4.2. Suppose the conditions (H1)–(H3) hold. Suppose further that
A(t0) = ∞. Then any nonoscillatory trajectory (x, y) of (7.19) must ultimately
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lie in the first or the third open quadrant and y(t) must converge. Furthermore,
there exist c1 > 0, c2 > 0, and T ≥ t0 such that

c1 ≤ x(t) ≤ c2A(t0, t) or − c2A(t0, t) ≤ x(t) ≤ −c1 for t ≥ T.

Proof. Assume without loss of generality that x(t) > 0 and y(t) > 0, or x(t) > 0
and y(t) < 0 for t ≥ T0. The latter case cannot happen. Otherwise, x′(t) ≤ 0 and
y′(t) ≤ 0 for t ≥ T0. Hence

x′(t) = a(t)f(y(t)) ≤ a(t)f(y(T0)), t ≥ T0,

which implies

0 < x(t) ≤ x(T0) + f(y(T0))
∫ t

T0

a(s)ds = x(T0) + f(y(T0))A(T0, t) → −∞

as t → ∞, a contradiction. Thus x(t) > 0, y(t) > 0, x′(t) ≥ 0, and y′(t) ≤ 0 for
t ≥ T0. It follows that y(t) monotonically decreases to a nonnegative constant, and
x(t) monotonically increases. Furthermore,

0 < x(T0) ≤ x(t) ≤ x(T0) + f(y(T0))A(T0, t) ≤ c2A(t0, t), t ≥ T0

for some c2 > 0 since A(t0) = ∞. The proof is complete.

We have shown that a nonoscillatory solution (x, y) must ultimately lie in the
first or the third quadrant, and that y(t) must converge. Note that since x′(t) ≥ 0
or x′(t) ≤ 0 for all large t, we see further that x(t) either converges to some nonzero
constant or diverges to positive infinity or to negative infinity as t → ∞. However,
if x(t) converges to some nonzero constant, then y(t) must converge to 0. Indeed,
if limt→∞ y(t) = d > 0, then since

x′(t) = a(t)f(y(t)) ≥ a(t)f(d)

for all large t,

x(t) ≥ x(M) + f(d)
∫ t

M

a(s)ds → ∞ as t → ∞,

which is a contradiction.
In view of the above considerations, we may now make the following classifi-

cation. Let Ω be the set of all nonoscillatory solutions of (7.19) and Ω+ be the
subset of Ω containing those which ultimately lie in the first open quadrant. Sup-
pose (H1)–(H3) hold and A(t0) = ∞. Then any nonosillatory solution in Ω+ must
belong to one of the following three classes:

Ω+(+, 0) =
{

(x, y) ∈ Ω+ : lim
t→∞x(t) ∈ (0,∞), lim

t→∞ y(t) = 0
}

,

Ω+(∞, 0) =
{

(x, y) ∈ Ω+ : lim
t→∞x(t) = ∞, lim

t→∞ y(t) = 0
}

,

and

Ω+(∞,+) =
{

(x, y) ∈ Ω+ : lim
t→∞x(t) = ∞, lim

t→∞ y(t) ∈ (0,∞)
}

.

A similar classification is also available for nonoscillatory solutions which lie ulti-
mately in the third open quadrant.

In order to further justify our classification scheme, we derive several necessary
and sufficient conditions for the existence of each type of nonoscillatory solutions.
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Theorem 7.4.3. Suppose (H1)–(H3) hold and A(t0) = ∞. A necessary and suf-
ficient condition for (7.19) to have a nonoscillatory solution (x, y) ∈ Ω+(+, 0) is
that

(7.20)
∫ ∞

t0

a(t)
∣∣∣∣f (∫ ∞

t

b(s)g(c)ds

)∣∣∣∣ dt < ∞ for some c > 0.

Proof. Let (x, y) ∈ Ω+(+, 0) be such that limt→∞ x(t) = α > 0. Then there exist
c1 > 0 and T such that c1 ≤ x(t) for t ≥ T . In view of (7.19),

y(t) =
∫ ∞

t

b(s)g(x(s))ds, t ≥ T

and

∞ > α − x(T ) =
∫ ∞

T

a(s)f (y(s)) ds

=
∫ ∞

T

a(s)f
(∫ ∞

s

b(u)g (x(u)) du

)
ds

≥
∫ ∞

T

a(s)f
(∫ ∞

s

b(u)g(c1)du

)
ds.

Conversely, choose a number M so large that∫ ∞

M

a(s)f
(∫ ∞

s

b(u)g(c)du

)
ds <

c

2
.

Let X be the set of all bounded, continuous, real-valued functions x defined on
[M,∞) with norm ‖x‖ = supt≥M |x(t)|. Let Ψ be the subset of the Banach space
X defined by

Ψ =
{

x ∈ X :
c

2
≤ x(t) ≤ c, t ≥ T

}
.

Then Ψ is a bounded, convex, and closed subset of X. Let us define an operator
F : Ψ → X by

(Fx)(t) = c −
∫ ∞

t

a(s)f
(∫ ∞

s

b(u)g(x(u))du

)
ds for t ≥ M.

The mapping F has the following properties. First of all, F maps Ψ into Ψ. Indeed,
if x ∈ Ψ, then

c ≥ (Fx)(t) = c −
∫ ∞

t

a(s)f
(∫ ∞

s

b(u)g (x(u)) du

)
ds

≥ c −
∫ ∞

M

a(s)f
(∫ ∞

s

b(u)g(c)du

)
ds ≥ c

2
.

Next, we show that F is continuous. Let {xi} be a convergent sequence of functions
in Ψ such that limi→∞ ‖xi − x‖ = 0. Since Ψ is closed, x ∈ Ψ. By the definition of
F , we have∣∣∣(Fxi)(t) − (Fx)(t)

∣∣∣
=
∣∣∣∣∫ ∞

t

a(s)f
(∫ ∞

s

b(u)g (xi(u)) du

)
ds −
∫ ∞

t

a(s)f
(∫ ∞

s

b(u)g (x(u)) du

)
ds

∣∣∣∣
≤
∫ ∞

t

a(s)
∣∣∣∣f (∫ ∞

s

b(u)g (xi(u)) du

)
− f

(∫ ∞

s

b(u)g (x(u)) du

)∣∣∣∣ ds.
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By the continuity of f and g and Lebesgue’s dominated convergence theorem, it
follows that limi→∞ ‖Fxi − Fx‖ = 0.

Finally, we show that FΨ is precompact. Let x ∈ Ψ and s, t ≥ M . Then,
assuming without loss of generality that s > t,∣∣∣(Fx)(s) − (Fx)(t)

∣∣∣ =
∣∣∣∣∫ s

t

a(u)f
(∫ ∞

u

b(v)g (x(v)) dv

)
du

∣∣∣∣
≤
∫ s

t

a(u)f
(∫ ∞

u

b(v)g(c)dv

)
du.

In view of (7.20), for any ε > 0, there exists δ > 0 such that |s − t| < δ implies∣∣∣(Fx)(s) − (Fx)(t)
∣∣∣ < ε.

This means that FΨ is precompact.

By Schauder’s fixed point theorem, we may conclude that there exists x ∈ Ψ
such that x = Fx. Set

y(t) =
∫ ∞

t

b(v)g(x(v))dv, t ≥ M.

Then limt→∞ y(t) = 0 and y′(t) = −b(t)g(x(t)). On the other hand,

x(t) = (Fx)(t) = c −
∫ ∞

t

a(s)f
(∫ ∞

s

b(u)g(x(u))du

)
ds

= c −
∫ ∞

t

a(s)f(y(s))ds,

and thus limt→∞ x(t) = c and x′(t) = a(t)f(y(t)). Hence (x, y) ∈ Ω+(+, 0).

Theorem 7.4.4. Suppose (H1)–(H3) hold and A(t0) = ∞. A necessary and suf-
ficient condition for (7.19) to have a nonoscillatory solution (x, y) ∈ Ω+(∞,+) is
that ∫ ∞

t0

b(t)
∣∣∣g (cA(t0, t))

∣∣∣ dt < ∞ for some c > 0.

Proof. Let (x, y) ∈ Ω+(∞,+) be such that limt→∞ y(t) = β > 0. Then there exist
four positive constants c1, c2, d1, d2 and T ≥ t0 such that

c1 ≤ x(t) ≤ c2A(t0, t) and d1 ≤ y(t) ≤ d2 for t ≥ T.

In view of (7.19), we have with c = f(d1)

x(t) = x(t0) +
∫ t

t0

a(s)f(y(s))ds ≥ x(t0) +
∫ t

t0

a(s)f(d1)ds

≥ f(d1)A(t0, t) = cA(t0, t),

and hence

∞ > y(T ) − β =
∫ ∞

T

b(s)g(x(s))ds ≥
∫ ∞

T

b(s)g (cA (t0, s)) ds.

Conversely, pick a number T ≥ t0 so that∫ ∞

T

b(s)g (cA(T, s)) ds < d, where d =
f−1(c)

2
.
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Let X be the partially ordered Banach space of all continuous real-valued functions
x with the norm

‖x‖ = sup
t≥T

|x(t)|
A(T, t)

and the usual pointwise ordering. Let Ψ be the subset of X defined by

Ψ =
{

x ∈ X : f(d)A(T, t) ≤ x(t) ≤ f(2d)A(T, t), t ≥ T
}

.

For any subset B of Ψ, it is obvious that inf B ∈ X and supB ∈ X. Let us further
define an operator F : Ψ → X by

(Fx)(t) =
∫ t

T

a(s)f
(

d +
∫ ∞

s

b(u)g(x(u))du

)
ds for t ≥ T.

The mapping F satisfies the assumptions of Knaster’s fixed point theorem: F
maps Ψ into itself and F is increasing. The latter is easy to see. As for the former
statement, note that for any x ∈ Ψ,

(Fx)(t) ≥ A(T, t)f(d)

and

(Fx)(t) ≤
∫ t

T

a(s)f
(

d +
∫ ∞

T

b(u)g
(
f(2d)A(T, u)

)
du

)
ds

=
∫ t

T

a(s)f
(

d +
∫ ∞

T

b(u)g(cA(T, u))du

)
ds

≤ f(2d)A(T, t)

for t ≥ T , as desired. By Knaster’s fixed point theorem, we may conclude that
there exists x ∈ Ψ such that x = Fx. Set

y(t) = d +
∫ ∞

t

b(u)g(x(u))du, t ≥ T.

Then limt→∞ y(t) = d and y′(t) = −b(t)g(x(t)). On the other hand,

x(t) = (Fx)(t) =
∫ t

T

a(s)f(y(s))ds ≥ f(d)
∫ t

T

a(s)ds = f(d)A(T, t)

so that limt→∞ x(t) = ∞ and x′(t) = a(t)f(y(t)). Hence (x, y) ∈ Ω+(∞,+).

Finally, we provide a sufficient condition for the existence of a solution in
Ω+(∞, 0).

Theorem 7.4.5. Suppose (H1)–(H3) hold and A(t0) = ∞. A sufficient condition
for (7.19) to have a nonoscillatory solution (x, y) ∈ Ω+(∞, 0) is that∫ ∞

t0

b(t)
∣∣∣g(cA(t0, t))

∣∣∣ dt < ∞ for some c > 0

and

(7.21)
∫ ∞

t0

a(t)
∣∣∣∣f (∫ ∞

t

b(s)g(d)ds

)∣∣∣∣ dt = ∞ for any d > 0.
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Proof. Let δ > c be fixed. Denote by C[t0,∞) the space of all continuous functions
on [t0,∞) with the topology of uniform convergence on every compact subinterval
of [t0,∞). Consider the subset Ψ of C[t0,∞) consisting of all x ∈ C[t0,∞) such
that

δ ≤ x(t) ≤ δ +
∫ t

T

a(s)f
(∫ ∞

s

b(u)g(x(u))du

)
ds, t ≥ T.

Let us define an operator F : Ψ → C[t0,∞) by

(Fx)(t) = δ +
∫ t

T

a(s)f
(∫ ∞

s

b(u)g(x(u))du

)
ds for t ≥ T.

It is clear that F is well defined and maps Ψ into C[t0,∞). By reasonings similar
to those in the proof of Theorem 7.4.3, we may also show that F maps Ψ into Ψ,
that F is continuous on Ψ, and that FΨ is relatively compact. Schauder’s fixed
point theorem then implies that F has a fixed point x ∈ Ψ. Set

y(t) =
∫ ∞

t

b(u)g(x(u))du, t ≥ T.

Then limt→∞ y(t) = 0 and y′(t) = −b(t)g(x(t)). On the other hand,

x(t) = (Fx)(t) = δ +
∫ t

T

a(s)f(y(s))ds

so that x′(t) = a(t)f(y(t)) for t ≥ T . We assert that limt→∞ x(t) = ∞. Indeed, x(t)
either converges to some positive limit or diverges to ∞. If limt→∞ x(t) = d > 0,
then x(s) ≥ d/2 for s ≥ S. In view of (7.21),

x(t) = δ +
∫ t

T

a(s)f
(∫ ∞

s

b(u)g(x(u))du

)
ds

≥ δ +
∫ t

T

a(s)f
(∫ ∞

s

b(u)g
(

d

2

)
du

)
ds = ∞,

which is a contradiction. Hence (x, y) ∈ Ω+(∞, 0).

7.4.2. The Case A(t0) < ∞. We now impose another condition on (7.19),
namely A(t0) < ∞. We assert that any nonoscillatory solution (x, y) of (7.19)
approaches some vertical line as t → ∞.

Lemma 7.4.6. Suppose (H1)–(H3) hold and A(t0) < ∞. Then any nonoscilla-
tory trajectory (x(t), y(t)) of (7.19) tends to some vertical line x = α as t → ∞.
Furthermore, there exist c1 > 0, c2 > 0, and T ≥ t0 such that

c1A(t) ≤ x(t) ≤ c2 or − c2 ≤ x(t) ≤ −c1A(t) for t ≥ T.

Proof. Without loss of generality, suppose x(t) > 0 and y(t) > 0 for t ≥ T0, or
x(t) > 0 and y(t) < 0 for t ≥ T0. If the former case holds, then in view of (7.19),
x′(t) ≥ 0 and y′(t) ≤ 0 for t ≥ T0. Thus,

0 ≤ x′(t) = a(t)f(y(t)) ≤ a(t)f(y(T0)), t ≥ T0,

which implies that x(t) monotonically increases to a constant α ≥ 0 since

x(t) ≤ x(T0) + f(y(T0))
∫ t

T0

a(s)ds ≤ x(T0) + f(y(T0))A(T0) < ∞.
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Furthermore, it is clear that A(t) ≤ x(t) < α + 1 for all large t since A(t) → 0 as
t → ∞.

Suppose the latter case holds. Then in view of (7.19), we see that x′(t) ≤ 0 and
y′(t) ≤ 0 for t ≥ T0. Hence x(t) monotonically decreases to a constant β ≥ 0. Since

x′(t) = a(t)f(y(t)) ≤ a(t)f(y(T0)), t ≥ T0,

we find

0 ≤ β = x(s) + f(y(T0))
∫ ∞

s

a(u)du = x(s) + f(y(T0))A(s), t ≥ T0.

We further see that β + 1 ≥ x(s) ≥ −f(y(T0))A(s) for all large s. The proof is
complete.

We have shown that a nonoscillatory solution (x, y) must ultimately lie in one
of the four open quadrants of the plane. If (x, y) is eventually in the first open
quadrant, then in view of our previous lemmas, x(t) monotonically increases and
approaches a positive constant and y(t) decreases and approaches a nonnegative
constant. In the case when (x, y) is eventually in the fourth quadrant, x(t) decreases
and converges to a nonnegative constant and y(t) decreases and either converges
to a negative constant or diverges to −∞. The other two cases can be analyzed
similarly.

In view of the above considerations, we may now make the following classifica-
tion. Let Ω be the set of all nonoscillatory solutions of (7.19) and Ω++, Ω+− be
respectively the subsets of Ω containing those which ultimately lie in the first or
the fourth open quadrant. Suppose (H1)–(H3) hold and A(t0) < ∞. Then any
solution in Ω++ must belong to one of the classes

Ω++(+,+) =
{

(x, y) ∈ Ω++ : lim
t→∞x(t) ∈ (0,∞), lim

t→∞ y(t) ∈ (0,∞)
}

,

Ω++(+, 0) =
{

(x, y) ∈ Ω++ : lim
t→∞x(t) ∈ (0,∞), lim

t→∞ y(t) = 0
}

,

while any solution in Ω+− must belong to one of the following classes:

Ω+−(+,−) =
{

(x, y) ∈ Ω+− : lim
t→∞x(t) ∈ (0,∞), lim

t→∞ y(t) ∈ (−∞, 0)
}

,

Ω+−(+,−∞) =
{

(x, y) ∈ Ω+− : lim
t→∞x(t) ∈ (0,∞), lim

t→∞ y(t) = −∞
}

,

Ω+−(0,−) =
{

(x, y) ∈ Ω+− : lim
t→∞x(t) = 0, lim

t→∞ y(t) ∈ (−∞, 0)
}

,

Ω+−(0,−∞) =
{

(x, y) ∈ Ω+− : lim
t→∞x(t) = 0, lim

t→∞ y(t) = −∞
}

.

Theorem 7.4.7. Suppose (H1)–(H3) hold and A(t0) < ∞. A necessary and suffi-
cient condition for (7.19) to have a nonoscillatory solution in Ω+−(0,−) is that

(7.22)
∫ ∞

t0

b(t)g(cA(t))dt < ∞ for some c > 0.

Proof. Let (x, y) ∈ Ω+−(0,−) satisfy limt→∞ x(t) = 0 and limt→∞ y(t) = β < 0.
Since y(t) is monotone, there exist two positive constants c1, c2 and T ≥ t0 such
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that −c1 ≤ y(t) ≤ −c2 for t ≥ T . On the other hand, in view of the second equation
of (7.19), we have

y(t) = y(T ) −
∫ t

T

b(s)g(x(s))ds.

Since limt→∞ y(t) = β < 0, we have∫ ∞

T

b(s)g(x(s))ds < ∞.

Furthermore, we see from Lemma 7.4.6 that

g(x(t)) ≥ g(cA(t)) for some c > 0,

which implies that ∫ ∞

t0

b(t)g(cA(t))dt < ∞.

Conversely, suppose that (7.22) holds. Then, in view of A(t0) < ∞, there exists
T ≥ t0 such that ∫ ∞

T

b(t)g(cA(t))dt < d, where d =
f−1(c)

2
.

Let X be the Banach space of all bounded, continuous, real-valued functions y with
the norm

‖y‖ = sup
t≥T

|y(t)| .

Define a subset Ω of X by

Ω =
{

y ∈ X : −2d ≤ y(t) ≤ −d, t ≥ T
}

.

Then Ω is a bounded, convex, and closed subset of X. Let us further define an
operator F : Ω → X by

(Fy)(t) = −2d −
∫ ∞

t

b(s)g
(∫ ∞

s

a(u)f(y(u))du

)
ds for t ≥ T.

The mapping F has the following properties. First of all, F maps Ω into itself.
Indeed, if y ∈ Ω, then

(Fy)(t) = −2d +
∫ ∞

t

b(s)g
(
−
∫ ∞

s

a(u)f(y(u))du

)
ds

≥ −2d +
∫ ∞

t

b(s)g
(
f(d)A(s)

)
ds ≥ −2d

and

(Fx)(t) = −2d +
∫ ∞

t

b(s)g
(
−
∫ ∞

s

a(u)f(y(u))du

)
ds

≤ −2d +
∫ ∞

t

b(s)g
(
f(2d)A(s)

)
ds

≤ −2d + d = −d
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for all t ≥ T . Next, we show that F is continuous. Let y, yl ∈ Ω such that
liml→∞ ‖yl − y‖ = 0. Since Ω is closed, y ∈ Ω. Then∣∣∣(Fyl)(t) − (Fy)(t)

∣∣∣
=
∣∣∣∣∫ ∞

t

b(s)g
(∫ ∞

s

a(u)f(yl(u))du

)
ds −
∫ ∞

t

b(s)g
(∫ ∞

s

a(u)f(y(u))du

)
ds

∣∣∣∣
≤
∫ ∞

t

b(s)
∣∣∣∣g(∫ ∞

s

a(u)f(yl(u))du

)
− g

(∫ ∞

s

a(u)f(y(u))du

)∣∣∣∣ ds.

By the continuity of f and g and Lebesgue’s dominated convergence theorem, it
follows that

lim
l→∞

sup
t≥T

∣∣∣(Fyl)(t) − (Fy)(t)
∣∣∣ = 0.

This shows that

lim
l→∞

‖Fyl − Fy‖ = 0,

i.e., F is continuous.

Finally, we will show that FΩ is precompact. Let y ∈ Ω and s, t ≥ T . Then we
have for s > t∣∣∣(Fy)(s) − (Fy)(t)

∣∣∣ ≤
∫ s

t

b(u)g
(∫ ∞

u

a(v) |f(y(v))| dv

)
du

≤
∫ ∞

t

b(u)g
(
f(2d)A(u)

)
du.

In view of (7.22), this means that FΩ is precompact.

By Schauder’s fixed point theorem, we can conclude that there exists y ∈ Ω such
that y = Fy. Set

x(t) = −
∫ ∞

t

a(s)f (y(s)) ds.

Since y(t) < 0 implies x(t) > 0, we have

x′(t) = a(t)f (y(t)) and lim
t→∞x(t) = 0.

On the other hand,

y(t) = (Fy)(t) = −2d +
∫ ∞

t

b(s)g (x(s)) ds,

which implies that limt→∞ y(t) = −2d and

y′(t) = −b(t)g (x(t)) .

Hence (x, y) ∈ Ω+−(0,−).

Theorem 7.4.8. Suppose (H1)–(H3) hold and A(t0) < ∞. A necessary and suffi-
cient condition for (7.19) to have a nonoscillatory solution in Ω++(+,+) is that

(7.23)
∫ ∞

T

a(s)f
(

β +
∫ ∞

s

b(u)g(c)du

)
ds < ∞ for some c > 0, β > 0.
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Proof. Let (x, y) be a solution of (7.19) such that limt→∞ x(t) = α > 0 and
limt→∞ y(t) = β > 0. Then there exist two positive constants c1, c2 and T ≥ t0
such that c1 ≤ x(t) ≤ c2 for t ≥ T . In view of the first equation of (7.19), we have

x(t) = x(T ) +
∫ t

T

a(s)f(y(s))ds.

Since limt→∞ x(t) = α > 0, we have

(7.24)
∫ ∞

T

a(s)f(y(s))ds < ∞.

Furthermore, we see from the second equation of (7.19) that

y(t) = β +
∫ ∞

t

b(s)g(x(s))ds

and

β +
∫ ∞

t

b(s)g(c1)ds ≤ y(t) ≤ β +
∫ ∞

t

b(s)g(c2)ds.

Together with (7.24), this means that∫ ∞

T

a(s)f
(

β +
∫ ∞

s

b(u)g(c1)du

)
ds < ∞.

Conversely, suppose that (7.23) holds. Choose T ≥ t0 so large that∫ ∞

T

a(s)f
(

β +
∫ ∞

s

b(u)g(c)du

)
ds < d, where d =

c

2
.

Let X be the Banach space of all bounded, continuous, real-valued functions x with
the norm

‖x‖ = sup
t≥T

|x(t)|

endowed with the usual pointwise ordering ≤: For x1, x2 ∈ X, x1 ≤ x2 means
x1(t) ≤ x2(t) for all t ≥ T . Then X is partially ordered. Define a subset Ω of X by

Ω =
{

x ∈ X : d ≤ x(t) ≤ 2d, t ≥ T
}

.

For any subset B ⊂ Ω, it is obvious that inf B ∈ Ω and supB ∈ Ω. Let us further
define an operator F : Ω → X by

(Fx)(t) = d +
∫ t

T

a(s)f
(

β +
∫ ∞

s

b(u)g(x(u))du

)
ds for t ≥ T.

The mapping F satisfies the assumptions of Knaster’s fixed point theorem.
Namely, it satisfies the following:

(i) F maps Ω into itself. Indeed, if x ∈ Ω, then for t ≥ T ,

d ≤ (Fx)(t) ≤ d +
∫ t

T

a(s)f
(

β +
∫ ∞

s

b(u)g(2d)du

)
ds

= d +
∫ t

T

a(s)f
(

β +
∫ ∞

s

b(u)g(c)du

)
ds ≤ 2d.

(ii) By the assumptions on f and g, F is increasing. That is, for any x1, x2 ∈ Ω,
x1 ≤ x2 implies Fx1 ≤ Fx2.

 



7.4. CLASSIFICATION SCHEMES OF POSITIVE SOLUTIONS (I) 265

By Knaster’s fixed point theorem, we can conclude that there exists x ∈ Ω such
that x = Fx. Set

y(t) = β +
∫ ∞

t

b(u)g(x(u))du, t ≥ T.

Then

y′(t) = −b(t)g(x(t)), lim
t→∞ y(t) = β > 0, and x′(t) = a(t)f(y(t)).

Hence (x, y) ∈ Ω++(+,+).

Similar to the proof of Theorem 7.4.8, we can prove the following two theorems.

Theorem 7.4.9. Suppose (H1)–(H3) hold and A(t0) < ∞. A necessary and suffi-
cient condition for (7.19) to have a nonoscillatory solution in Ω++(+, 0) is that∫ ∞

T

a(s)f
(∫ ∞

s

b(u)g(c)du

)
ds < ∞ for some c > 0.

Theorem 7.4.10. Suppose (H1)–(H3) hold and A(t0) < ∞. A necessary and
sufficient condition for (7.19) to have a nonoscillatory solution in Ω+−(+,−) is
that ∫ ∞

T

a(s)
∣∣∣∣f (β +

∫ ∞

s

b(u)g(c)du

)∣∣∣∣ ds < ∞ for some c > 0, β < 0.

Next, we derive two criteria for the existence of nonoscillatory solutions in
Ω+−(+,−∞) and Ω+−(0,−∞).

Theorem 7.4.11. Suppose (H1)–(H3) hold and A(t0) < ∞. Suppose further that
f(−u) = −f(u). A necessary and sufficient condition for (7.19) to have a nonoscil-
latory solution in Ω+−(+,−∞) is that

(7.25)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ ∞

T

a(s)f
(∫ s

T

b(u)g(c)du

)
ds < ∞ for some c > 0,∫ ∞

t0

b(s)ds = ∞.

Proof. Let (x, y) be a solution of (7.19) such that limt→∞ x(t) = α > 0 and
limt→∞ y(t) = −∞. Then there exist two positive constants c1, c2 and T ≥ t0
such that c1 ≤ x(t) ≤ c2 for t ≥ T . In view of the first equation of (7.19), we have

x(t) = x(T ) +
∫ t

T

a(s)f(y(s))ds.

Since limt→∞ x(t) = α > 0, we have∫ ∞

T

a(s) |f(y(s))| ds < ∞.

Furthermore, we see from the second equation of (7.19) that

y(t) = y(T ) −
∫ t

T

b(s)g(x(s))ds

and

y(T ) −
∫ t

T

b(s)g(c2)ds ≤ y(t) ≤ −
∫ t

T

b(s)g(c1)ds.
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Since |f(y(t))| ≥ f
(∫ t

T
b(s)g(c1)ds

)
, we have∫ ∞

T

a(s)f
(∫ s

T

b(u)g(c1)du

)
ds < ∞.

On the other hand, in view of (7.19) and y(t) → −∞ as t → ∞, we have∫ ∞

T

b(s)ds = ∞,

which implies that (7.25) holds.
Conversely, suppose that (7.25) holds. Choose T ≥ t0 so large that∫ ∞

T

a(s)f
(∫ s

T

b(u)g(c)du

)
ds < d, where d =

c

2
.

Let X be the Banach space of all bounded, continuous, real-valued functions x with
the norm

‖x‖ = sup
t≥T

|x(t)|

endowed with the usual pointwise ordering ≤: For x1, x2 ∈ X, x1 ≤ x2 means
x1(t) ≤ x2(t) for all t ≥ T . Then X is partially ordered. Define a subset Ω of X by

Ω =
{

x ∈ X : d ≤ x(t) ≤ 2d, t ≥ T
}

.

For any subset B ⊂ Ω, it is obvious that inf B ∈ Ω and supB ∈ Ω. Let us further
define an operator F : Ω → X by

(Fx)(t) = d +
∫ ∞

t

a(s)f
(∫ s

T

b(u)g(x(u))du

)
ds for t ≥ T.

The mapping F satisfies the assumptions of Knaster’s fixed point theorem.
Namely, it satisfies the following:

(i) F maps Ω into itself. Indeed, if x ∈ Ω, then for t ≥ T ,

d ≤ (Fx)(t) ≤ d +
∫ ∞

t

a(s)f
(∫ s

T

b(u)g(2d)du

)
ds

= d +
∫ ∞

t

a(s)f
(∫ s

T

b(u)g(c)du

)
ds ≤ 2d.

(ii) By the assumptions on f and g, F is increasing. That is, for any x1, x2 ∈ Ω,
x1 ≤ x2 implies Fx1 ≤ Fx2.

By Knaster’s fixed point theorem, we can conclude that there exists x ∈ Ω such
that x = Fx. Set

y(t) = −
∫ t

T

b(u)g(x(u))du, t ≥ T.

Then

y′(t) = −b(t)g(x(t)), −g(2d)
∫ t

T

b(s)ds ≤ y(t) ≤ −g(d)
∫ t

T

b(s)ds

and
x′(t) = −a(t)f(−y(t)) = a(t)f(y(t)), lim

t→∞ y(t) = −∞

since
∫∞

t0
b(s)ds = ∞, where we have used the assumption f(−u) = −f(u). Hence

(x, y) ∈ Ω+−(+,−∞).
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Theorem 7.4.12. Suppose (H1)–(H3) hold and A(t0) < ∞. If∫ ∞

T

a(s)f
(∫ ∞

s

b(u)g(cA(u))du

)
ds < ∞ for some c > 0

and ∫ ∞

t0

b(s)g(dA(s))ds = ∞ for any d > 0,

then (7.19) has a nonoscillatory solution in Ω+−(0,−∞).

Proof. The proof is similar to that of Theorem 7.4.11, and we omit it here.

Finally, we derive a necessary condition for (7.19) to have a nonoscillatory so-
lution in Ω+−(0,−∞).

Theorem 7.4.13. Suppose (H1)–(H3) hold and A(t0) < ∞. A necessary condition
for (7.19) to have a nonoscillatory solution in Ω+−(0,−∞) is that∫ ∞

T

a(s)f
(∫ ∞

s

b(u)g(cA(u))du

)
ds < ∞ for some c > 0

and

(7.26)
∫ ∞

t0

b(s)ds = ∞.

Proof. Let (x, y) be a solution of (7.19) such that limt→∞ x(t) = 0 and
limt→∞ y(t) = −∞. Then, by Lemma 7.4.6, there exist two positive constants
c1, c2 and T ≥ t0 such that c1A(t) ≤ x(t) ≤ c2 for t ≥ T . In view of the first
equation of (7.19), we have

∞ > x(t) = −
∫ ∞

t

a(s)f(y(s))ds > 0,

and therefore ∫ ∞

t0

a(s)
∣∣∣f(y(s))

∣∣∣ ds < ∞.

Furthermore, we see from the second equation of (7.19) that

y(t) = y(T ) −
∫ t

T

b(s)g(x(s))ds

and

y(T ) −
∫ t

T

b(s)g(c2)ds ≤ y(t) ≤ −
∫ t

T

b(s)g(c1A(s))ds.

Since |f(y(t))| ≥ f
(∫ t

T
b(s)g(c1A(s))ds

)
, we have∫ ∞

T

a(s)f
(∫ s

T

b(u)g(c1A(u))du

)
ds < ∞.

On the other hand, in view of (7.19) and y(t) → −∞ as t → ∞, we have∫ ∞

T

b(s)ds = ∞,

which implies that (7.26) holds. The proof is complete.
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7.5. Classification Schemes of Positive Solutions (II)

In Section 7.4, we classified the positive solutions of (7.19) under the assumption
b(t) ≥ 0 according to their limiting behavior and provided necessary and sufficient
conditions for their existence. However, a remaining problem is to characterize the
case b(t) < 0. In this section, we study this problem (see [185]). For the sake of
convenience, we rewrite (7.19) as

(7.27)

{
x′(t) = a(t)f (y(t)) ,

y′(t) = b(t)g (x(t)) ,

where

(H1) a and b are real-valued nonzero functions such that a(t) > 0 and b(t) > 0
for t ≥ t0, and

(H2) f and g are continuous, real-valued and increasing functions on the real line
R and satisfy xf(x) > 0 and xg(x) > 0 for x �= 0.

The system (7.27) is naturally classified into the four classes∫ ∞

t0

a(s)ds = ∞ and
∫ ∞

t0

b(s)ds = ∞,∫ ∞

t0

a(s)ds = ∞ and
∫ ∞

t0

b(s)ds < ∞,∫ ∞

t0

a(s)ds < ∞ and
∫ ∞

t0

b(s)ds = ∞,∫ ∞

t0

a(s)ds < ∞ and
∫ ∞

t0

b(s)ds < ∞.

For this reason, we will employ the following notations:

A(t) =
∫ ∞

t

a(s)ds and B(t) =
∫ ∞

t

b(s)ds for t ≥ t0.

7.5.1. The Case A(t0) = ∞ and B(t0) = ∞. Assume that A(t0) = ∞ and
B(t0) = ∞. Let (x, y) be a solution of (7.27) such that x(t) > 0 and y(t) > 0 for
t ≥ t0. Then, from (7.27) we have y′(t) > 0 and x′(t) > 0 for t ≥ t0, which implies
that y and x are increasing. Therefore,

x(t) = x(t0) +
∫ t

t0

a(s)f(y(s))ds ≥ x(t0) + f(y(t0))
∫ t

t0

a(s)ds → ∞ as t → ∞

and

y(t) = y(t0) +
∫ t

t0

b(s)g(x(s))ds ≥ y(t0) + g(x(t0))
∫ t

t0

b(s)ds → ∞ as t → ∞,

which imply that x(t) → ∞ and y(t) → ∞ as t → ∞.
In view of our considerations, we may now make the following classification. Let

C be the set of all positive solutions of (7.27). Then we have the following result.

Theorem 7.5.1. Suppose that A(t0) = ∞ and B(t0) = ∞. Then any positive
solution of (7.27) must belong to the set

C(∞,∞) =
{

(x, y) ∈ C : lim
t→∞x(t) = ∞, lim

t→∞ y(t) = ∞
}

.
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7.5.2. The Case A(t0) = ∞ and B(t0) < ∞. Assume that A(t0) = ∞ and
B(t0) < ∞. If (x, y) is a positive solution of (7.27), i.e., x(t) > 0 and y(t) > 0 for
t ≥ t0, then, in view of (7.27), we have x′(t) > 0 and y′(t) > 0 for t ≥ t0, which
imply that x and y are increasing. By the first equation of (7.27), we have

x(t) = x(t0) +
∫ t

t0

a(s)f(y(s))ds ≥ x(t0) + f(y(t0))
∫ t

t0

a(s)ds → ∞ as t → ∞,

and so limt→∞ x(t) = ∞.

In view of our considerations, we may now make the following classification.

Theorem 7.5.2. Suppose that A(t0) = ∞ and B(t0) < ∞. Then any positive
solution of (7.27) must belong to one of the following classes:

C(∞,+) =
{

(x, y) ∈ C : lim
t→∞x(t) = ∞, lim

t→∞ y(t) > 0
}

,

C(∞,∞) =
{

(x, y) ∈ C : lim
t→∞x(t) = ∞, lim

t→∞ y(t) = ∞
}

.

Theorem 7.5.3. Suppose that A(t0) = ∞ and B(t0) < ∞. A necessary and
sufficient condition for (7.27) to have a positive solution (x, y) ∈ C(∞,+) is that

(7.28)
∫ ∞

t0

b(t)g
(∫ t

t0

a(s)f (c) ds

)
dt < ∞ for some c > 0.

Proof. Let (x, y) be a positive solution of (7.27) such that limt→∞ x(t) = ∞ and
limt→∞ y(t) = β > 0. Then there exist two positive constants c1 and c2 such that
c1 ≤ y(t) ≤ c2 for t ≥ t1 ≥ t0. In view of the first equation of (7.27) we have

x(t) = x(t1) +
∫ t

t1

a(s)f(y(s))ds.

After integrating the second equation of (7.27), we see that

y(t) = y(t1) +
∫ t

t1

b(s)g(x(s))ds,

and so

∞ > β ≥ y(t) = y(t1) +
∫ t

t1

b(s)g
(

x(t1) +
∫ s

t1

a(u)f(y(u))du

)
ds

≥ y(t1) +
∫ t

t1

b(s)g
(∫ s

t1

a(u)f(y(u))du

)
ds,

which implies (7.28) with c = c1.

Conversely, choose T so large that∫ ∞

T

b(t)g
(∫ t

T

a(s)f(c)ds

)
dt <

c

2
.

Let X be the set of all bounded, continuous, real-valued functions y on [T,∞)
equipped with the norm ‖y‖ = supt≥T |y(t)|. Then X is a Banach space. We define
a subset Ω of X by

Ω =
{

y ∈ X :
c

2
≤ y(t) ≤ c, t ≥ T

}
.
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Then Ω is a bounded, convex, and closed subset of X. Let us further define an
operator F : Ω → X by

(Fy)(t) = c −
∫ ∞

t

b(s)g
(∫ s

T

a(u)f(y(u))du

)
ds for t ≥ T.

The mapping F has the following properties. First of all, F maps Ω into Ω. Indeed,
if y ∈ Ω, then

c ≥ (Fy)(t) = c −
∫ ∞

t

b(s)g
(∫ s

T

a(u)f(y(u))du

)
ds

≥ c −
∫ ∞

t

b(s)g
(∫ s

T

a(u)f(c)du

)
ds ≥ c

2
.

Next, we show that F is continuous. Let y, yl ∈ Ω such that liml→∞ ‖yl − y‖ = 0.
Since Ω is closed, y ∈ Ω. Then by (7.27), we have∣∣∣(Fyl)(t) − (Fy)(t)

∣∣∣
=
∣∣∣∣∫ ∞

t

b(s)g
(∫ s

T

a(u)f(yl(u))du

)
ds −
∫ ∞

t

b(s)g
(∫ s

T

a(u)f(y(u))du

)
ds

∣∣∣∣
≤
∫ ∞

t

b(s)
∣∣∣∣g(∫ s

T

a(u)f(yl(u))du

)
− g

(∫ s

T

a(u)f(y(u))du

)∣∣∣∣ ds.

By the continuity of f and g and Lebesgue’s dominated convergence theorem, it
follows that

lim
l→∞

sup
t≥T

∣∣∣(Fyl)(t) − (Fy)(t)
∣∣∣ = 0.

This shows that
lim
l→∞

‖Fyl − Fy‖ = 0,

i.e., F is continuous.
Finally, we show that FΩ is precompact. Let y ∈ Ω and s, t ≥ T . Then we have

for s > t ∣∣∣(Fy)(s) − (Fy)(t)
∣∣∣ ≤

∫ s

t

b(u)g
(∫ u

T

a(v)f (y(v)) dv

)
du

≤
∫ ∞

t

b(u)g
(∫ u

T

a(v)f(c)dv

)
du.

In view of (7.28), this means that FΩ is precompact.
By Schauder’s fixed point theorem, we can conclude that there exists y ∈ Ω such

that y = Fy. Set

x(t) =
∫ t

T

a(s)f (y(s)) ds.

Then

x(t) ≥
∫ t

T

a(s)f
( c

2

)
ds → ∞ as t → ∞,

and hence limt→∞ x(t) = ∞. On the other hand,

y(t) = (Fy)(t) = c −
∫ ∞

t

b(s)g (x(s)) ds,

which implies that limt→∞ y(t) = c. The proof is complete.
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7.5.3. The Case A(t0) < ∞ and B(t0) = ∞. In this subsection we consider
the classification and existence for positive solutions of (7.27) under the assumption
A(t0) < ∞ and B(t0) = ∞.

Theorem 7.5.4. Suppose that A(t0) < ∞ and B(t0) = ∞. Then any positive
solution of (7.27) must belong to one of the following classes:

C(+,∞) =
{

(x, y) ∈ C : lim
t→∞x(t) > 0, lim

t→∞ y(t) = ∞
}

,

C(∞,∞) =
{

(x, y) ∈ C : lim
t→∞x(t) = ∞, lim

t→∞ y(t) = ∞
}

.

Proof. If (x, y) is a positive solution of (7.27), i.e., x(t) > 0 and y(t) > 0 for t ≥ t0,
then, in view of (7.27), we have x′(t) > 0 and y′(t) > 0 for t ≥ t0, which imply that
x and y are increasing. By the second equation of (7.27), we have

y(t) = y(t0) +
∫ t

t0

b(s)g(x(s))ds ≥ y(t0) +
∫ t

t0

b(s)g(x(t0))ds → ∞ as t → ∞,

and so limt→∞ y(t) = ∞. The proof is complete.

Similar to the proof of Theorem 7.5.3, we can prove the following result.

Theorem 7.5.5. Suppose that A(t0) < ∞ and B(t0) = ∞. A necessary and
sufficient condition for (7.27) to have a positive solution (x, y) ∈ C(+,∞) is that∫ ∞

t0

a(t)f
(∫ t

t0

b(s)g(c)ds

)
dt < ∞ for some c > 0.

7.5.4. The Case A(t0) < ∞ and B(t0) < ∞. We first give a classification
scheme for positive solutions of (7.27) subject to A(t0) < ∞ and B(t0) < ∞.

Theorem 7.5.6. Suppose that A(t0) < ∞ and B(t0) < ∞. Then any positive
solution of (7.27) must belong to one of the following classes:

C(+,+) =
{

(x, y) ∈ C : lim
t→∞x(t) > 0, lim

t→∞ y(t) > 0
}

,

C(∞,∞) =
{

(x, y) ∈ C : lim
t→∞x(t) = ∞, lim

t→∞ y(t) = ∞
}

.

Proof. If (x, y) is a positive solution of (7.27), i.e., x(t) > 0 and y(t) > 0 for t ≥ t0,
then, in view of (7.27), we have x′(t) > 0 and y′(t) > 0 for t ≥ t0, which imply that
x and y are increasing.

If limt→∞ x(t) = α > 0, then x(t) ≤ α for t ≥ t0 and

y(t) = y(t0) +
∫ t

t0

b(s)g(x(s))ds ≤ y(t0) + g(α)
∫ t

t0

b(s)ds

≤ y(t0) + g(α)B(t0) < ∞,

which implies that y is bounded, and hence limt→∞ y(t) = β > 0. Similarly, if
limt→∞ y(t) = β > 0, then x is bounded, and hence limt→∞ x(t) = α > 0. The
proof is complete.

Theorem 7.5.7. A necessary and sufficient condition for (7.27) to have a positive
solution (x, y) ∈ C(+,+) is that

(7.29) A(t0) < ∞ and B(t0) < ∞.
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Proof. Let (x, y) be a solution of (7.27) such that limt→∞ x(t) = α > 0 and
limt→∞ y(t) = β > 0. Then there exist four positive constants c1, c2, c3, c4 and
T ≥ t0 such that c1 ≤ x(t) ≤ c2 and c3 ≤ y(t) ≤ c4 for t ≥ T . In view of the first
equation of (7.27) and limt→∞ x(t) = α > 0, we have

x(t) = α −
∫ ∞

t

a(s)f(y(s))ds ≥ α −
∫ ∞

t

a(s)f(c4)ds,

and so ∫ ∞

t0

a(s)f(c4)ds < ∞.

Furthermore, we see from the second equation of (7.27) that

y(t) = β −
∫ ∞

t

b(s)g(x(s))ds ≥ β −
∫ ∞

t

b(s)g(c2)ds,

and so ∫ ∞

t0

b(s)g(c2)ds < ∞.

Conversely, suppose that (7.29) holds. Let c, d > 0 be arbitrary. Then there
exists T ≥ t0 such that∫ ∞

T

a(s)f(2c)ds < d and
∫ ∞

T

b(s)g(2d)ds < c.

Let X be the Banach space of all bounded, continuous, real-valued functions (x, y)
on [T,∞) endowed with the norm

‖(x, y)‖ = max
{

sup
t≥T

|x(t)| , sup
t≥T

|y(t)|
}

and with the usual pointwise ordering ≤. Define a subset Ω of X by

Ω =
{

(x, y) ∈ X : d ≤ x(t) ≤ 2d, c ≤ y(t) ≤ 2c, t ≥ T
}

.

For any subset B of Ω, it is obvious that inf B ∈ Ω and supB ∈ Ω. Let us further
define an operator F : Ω → X by

F (x, y)(t) =
(

d

c

)
+

⎛⎜⎜⎝
∫ t

T
a(s)f(y(s))ds∫ t

T
b(s)g(x(s))ds

⎞⎟⎟⎠ for (x, y) ∈ Ω.

The mapping F satisfies the assumptions of Knaster’s fixed point theorem: F is
increasing and maps Ω into itself. Indeed, if (x, y) ∈ Ω, then

d ≤ (Fx)(t) = d +
∫ t

T

a(s)f(y(s))ds ≤ d + f(2c)
∫ ∞

T

a(s)ds ≤ 2d

and

c ≤ (Fy)(t) = c +
∫ t

T

b(s)g(x(s))ds ≤ c + g(2d)
∫ ∞

T

b(s)ds ≤ 2c.

By Knaster’s fixed point theorem, we can conclude that there exists (x, y) ∈ Ω such
that (x, y) = F (x, y). That is,

x(t) = d +
∫ t

T

a(s)f(y(s))ds and y(t) = c +
∫ t

T

b(s)g(x(s))ds.

 



7.6. POSITIVE SOLUTIONS OF SECOND ORDER SYSTEMS 273

Then

lim
t→∞x(t) = d +

∫ ∞

T

a(s)f(y(s))ds and lim
t→∞ y(t) = c +

∫ ∞

T

b(s)g(x(s))ds.

Hence (x, y) ∈ C(+,+).

In the previous subsections, we have given some classification schemes for pos-
itive solutions of (7.27) under the assumptions A(t0) = ∞ and B(t0) = ∞,
A(t0) = ∞ and B(t0) < ∞, A(t0) < ∞ and B(t0) = ∞, and A(t0) < ∞ and
B(t0) < ∞, respectively. However, we could not give sufficient conditions for (7.27)
to have a positive solution which belongs to C(∞,∞). Now, as an open problem
we leave it for the reader.

Open Problem. Obtain sufficient conditions for (7.27) to have a positive solution
which belongs to C(∞,∞) under one of the following conditions:

(i) A(t0) = ∞ and B(t0) = ∞;
(ii) A(t0) = ∞ and B(t0) < ∞;
(iii) A(t0) < ∞ and B(t0) = ∞;
(iv) A(t0) < ∞ and B(t0) < ∞.

Remark 7.5.8. If the functions f and g are bounded, A(t0) < ∞ and B(t0) < ∞,
then C(∞,∞) = ∅. In fact, if limt→∞ x(t) = ∞, then

x(t) = x(t0) +
∫ t

t0

a(s)f(y(s))ds ≤ x(t0) + f(y(t))
∫ t

t0

a(s)ds

≤ x(t0) + f(y(t))A(t0) → ∞ as t → ∞,

which implies that f(y(t)) → ∞ as t → ∞. This is a contradiction since f is
bounded. Similarly, if limt→∞ y(t) = ∞, then we can also obtain a contradiction.

Remark 7.5.9. All above results can be extended to two-dimensional delay differ-
ential systems of the form {

x′(t) = a(t)f(y(t − τ)),
y′(t) = b(t)g(x(t − δ)),

where τ, δ > 0.

7.6. Positive Solutions of Second Order Systems

In Sections 7.4 and 7.5, we provided a classification scheme for positive solutions
of two-dimensional first order nonlinear differential systems and gave conditions
for the existence of solutions with designated asymptotic properties.

In this section, following [207], we are concerned with a class of two-dimensional
second order nonlinear differential systems of the form

(7.30)

{
x′′(t) = a(t)f(y(t)),
y′′(t) = −b(t)g(x(t)),

where

(H1) a and b are continuous and real-valued nonzero functions such that a(t) ≥ 0
and b(t) ≥ 0 for t ≥ t0, and
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(H2) f and g are continuous, real-valued, and increasing functions on the real line
R and satisfy xf(x) > 0 and xg(x) > 0 for x �= 0.

As usual, a solution (x, y) of (7.30) is said to be positive if both x and y are positive.
Positive solutions of (7.30) are interesting for many reasons. For example, when
a(t) ≡ 1 and f(u) = u, we see from (7.30) that

x(4)(t) = −b(t)g(x(t)).

Therefore, a positive solution of (7.30) yields a positive and strictly concave solution
of the fourth order nonlinear differential equation

x(4)(t) + b(t)g(x(t)) = 0.

Other important differential equations such as

x(4)(t) + p(t) |x(t)|γ sgn x(t) = 0

and
(rx′′)′′(t) + p(t)f(x(t)) = 0,

can also be written in the form (7.30).

In this section, we will be concerned with classification schemes for positive
solutions of (7.30) and give necessary as well as sufficient conditions for the existence
of these solutions. The system (7.30) is naturally classified into the four classes∫ ∞

t0

a(s)ds = ∞ and
∫ ∞

t0

b(s)ds = ∞,∫ ∞

t0

a(s)ds = ∞ and
∫ ∞

t0

b(s)ds < ∞,∫ ∞

t0

a(s)ds < ∞ and
∫ ∞

t0

b(s)ds = ∞,∫ ∞

t0

a(s)ds < ∞ and
∫ ∞

t0

b(s)ds < ∞.

For this reason, we will employ the following notations:

A(t) =
∫ ∞

t

a(s)ds and B(t) =
∫ ∞

t

b(s)ds for t ≥ t0.

7.6.1. The Case A(t0) = ∞ and B(t0) = ∞. In this subsection we always
assume that A(t0) = ∞ and B(t0) = ∞.

Theorem 7.6.1. Suppose that A(t0) = ∞ and B(t0) = ∞. Then there exists no
positive solution of (7.30).

Proof. Suppose that (x, y) is a solution of (7.30) such that x(t) > 0 and y(t) > 0
for t ≥ t0. Then, from (7.30) we have y′′(t) < 0 for t ≥ t0, which implies that y′ is
decreasing. Therefore, there are two possibilities:

(i) y′(t) > 0 for t ≥ t0, and
(ii) y′(t) < 0 for t ≥ t0.
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If y′(t) > 0 for t ≥ t0, then y is an increasing function. Since y(t) > 0 for t ≥ t0, we
have y(t) ≥ y(t0) > 0 for t ≥ t0. From the first equation of (7.30) we find x′′(t) > 0
for t ≥ t0 and hence

x′(t) = x′(t0)+
∫ t

t0

a(s)f(y(s))ds ≥ x′(t0)+f(y(t0))
∫ t

t0

a(s)ds → ∞ as t → ∞,

which implies that there exists t1 ≥ t0 such that x(t) ≥ x(t1) > 0 for t ≥ t1. From
the second equation of (7.30), we have

y′(t) = y′(t1)−
∫ t

t1

b(s)g(x(s))ds ≤ y′(t1)−g(x(t))
∫ t

t1

b(s)ds → −∞ as t → ∞,

which contradicts the fact that y′(t) > 0 for t ≥ t0.
If y′(t) < 0 for t ≥ t0, then from y′′(t) < 0 for t ≥ t0, it follows that y′ is

decreasing, and hence there exists a constant c > 0 such that

y′(t) ≤ −c for t ≥ t2 ≥ t0,

which means that

y(t) ≤ y(t2) −
∫ t

t2

cds → −∞ as t → ∞,

and so there exists t3 ≥ t2 such that y(t) < 0 for t ≥ t3. This is a contradiction
and completes the proof.

7.6.2. The Case A(t0) = ∞ and B(t0) < ∞. Assume that A(t0) = ∞ and
B(t0) < ∞. If (x, y) is a positive solution of (7.30), that is to say, x(t) > 0 and
y(t) > 0 for t ≥ t0, then, in view of (7.30), we have x′′(t) > 0 and y′′(t) < 0 for
t ≥ t0, which imply that x′ is increasing and y′ is decreasing. Hence x and y are
eventually monotone functions. By the second equation of (7.30), we have

y′(t) = y(t0) −
∫ t

t0

b(s)g(x(s))ds, t ≥ t0.

If there exists t1 ≥ t0 such that y′(t) < y′(t1) < 0 for t ≥ t1, then

y(t) = y(t1) +
∫ t

t1

y′(s)ds ≤ y(t1) +
∫ t

t1

y′(t1)ds → −∞ as t → ∞,

which contradicts the assumption y(t) > 0 for t ≥ t0. Hence y′(t) > 0 for t ≥ t0 and
limt→∞ y′(t) = c ≥ 0, which implies that limt→∞ y(t) = ∞ or limt→∞ y(t) = β > 0.

By the first equation of (7.30), we have

x′(t) = x′(t0)+
∫ t

t0

a(s)f(y(s))ds ≥ x′(t0)+f(y(t0))
∫ t

t0

a(s)ds → ∞ as t → ∞,

and so limt→∞ x(t) = ∞.
In view of our considerations, we may now make the following classification. Let

C be the set of all positive solutions of (7.30). Then we have the following result.

Theorem 7.6.2. Suppose that A(t0) = ∞ and B(t0) < ∞. Then any positive
solution of (7.30) must belong to one of the following classes:

C(∞,+) =
{

(x, y) ∈ C : lim
t→∞x(t) = ∞, lim

t→∞ y(t) > 0
}

,

C(∞,∞) =
{

(x, y) ∈ C : lim
t→∞x(t) = ∞, lim

t→∞ y(t) = ∞
}

.
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In order to further justify our classification scheme, we derive several sufficient
conditions for the existence of each type of positive solution.

Theorem 7.6.3. Suppose that A(t0) = ∞ and B(t0) < ∞. A sufficient condition
for (7.30) to have a positive solution (x, y) ∈ C(∞,+) is that

(7.31)
∫ ∞

t0

∫ ∞

s

b(u)g
(∫ u

t0

∫ v

t0

a(r)f(c)drdv

)
duds < ∞ for some c > 0

and ∫ ∞

t0

∫ u

t0

a(v)dvdu = ∞.

Proof. Choose M so large that∫ ∞

M

∫ ∞

s

b(u)g
(∫ u

M

∫ r

M

a(t)f(c)dtdr

)
duds <

c

2
.

Let X be the set of all bounded, continuous, real-valued functions y equipped with
the norm ‖y‖ = supt≥M |y(t)|. Then X is a Banach space. We define a subset Ω of
X by

Ω =
{

y ∈ X :
c

2
≤ y(t) ≤ c, t ≥ M

}
.

Then Ω is a bounded, convex, and closed subset of X. Let us further define an
operator F : Ω → X by

(7.32) (Fy)(t) = c −
∫ ∞

t

∫ ∞

s

b(u)g
(∫ u

M

∫ r

M

a(w)f (y(w)) dwdr

)
duds, t ≥ M.

The mapping F has the following properties. First of all, F maps Ω into Ω. Indeed,
if y ∈ Ω, then

c ≥ (Fy)(t) = c −
∫ ∞

t

∫ ∞

s

b(u)g
(∫ u

M

∫ r

M

a(w)f (y(w)) dwdr

)
duds

≥ c −
∫ ∞

M

∫ ∞

s

b(u)g
(∫ u

M

∫ r

M

a(w)f(c)dwdr

)
duds ≥ c

2
.

Next, we show that F is continuous. Let yl ∈ Ω such that liml→∞ ‖yl − y‖ = 0.
Since Ω is closed, y ∈ Ω. Then by (7.32), we have∣∣∣(Fyl)(t) − (Fy)(t)

∣∣∣
=
∣∣∣∣∫ ∞

t

∫ ∞

s

b(u)g
(∫ u

M

∫ r

M

a(w)f (yl(w)) dwdr

)
duds

−
∫ ∞

t

∫ ∞

s

b(u)g
(∫ u

M

∫ r

M

a(w)f (y(w)) dwdr

)
duds

∣∣∣∣
≤
∫ ∞

t

∫ ∞

s

b(u)
∣∣∣∣g(∫ u

M

∫ r

M

a(w)f (yl(w)) dwdr

)
−g

(∫ u

M

∫ r

M

a(w)f(c)dwdr

)∣∣∣∣ duds.

By the continuity of f and g and Lebesgue’s dominated convergence theorem, it
follows that

lim
l→∞

sup
t≥M

∣∣∣(Fyl)(t) − (Fy)(t)
∣∣∣ = 0.
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This shows that
lim
l→∞

‖Fyl − Fy‖ = 0,

i.e., F is continuous.

Finally, we show that FΩ is precompact. Let y ∈ Ω and s, t ≥ M . Then we
have for s > t∣∣∣(Fy)(s) − (Fy)(t)

∣∣∣ ≤
∫ s

t

∫ ∞

u

b(v)g
(∫ v

M

∫ r

M

a(w)f (y(w)) dwdr

)
dvdu

≤
∫ ∞

t

∫ ∞

u

b(v)g
(∫ u

M

∫ r

M

a(w)f (y(w)) dwdr

)
dvdu.

In view of (7.31), this means that FΩ is precompact.

By Schauder’s fixed point theorem, we can conclude that there exists y ∈ Ω such
that y = Fy. Set

x(t) =
∫ t

M

∫ r

M

a(w)f (y(w)) dwdr.

Then

x(t) ≥
∫ t

M

∫ r

M

a(w)f
( c

2

)
dwdr → ∞ as t → ∞,

and hence limt→∞ x(t) = ∞. On the other hand,

y(t) = (Fy)(t) = c −
∫ ∞

t

∫ ∞

u

b(v)g (x(v)) dvdu,

which implies that limt→∞ y(t) = c. Hence (x, y) ∈ C(∞,+).

Theorem 7.6.4. Suppose that A(t0) = ∞ and B(t0) < ∞. A sufficient condition
for (7.30) to have a positive solution (x, y) ∈ C(∞,∞) is that

(7.33)
∫ ∞

t0

a(s)f(cs)ds < ∞ for some c > 0

and

(7.34)
∫ ∞

t0

b(s)g(ds)ds < ∞ for some d > 0.

Proof. Suppose that (7.33) and (7.34) hold. Then there exists M ≥ t0 such that∫ ∞

M

a(s)f(cs)ds <
d

2
and

∫ ∞

M

b(s)f(ds)ds <
c

2
.

Let X be the Banach space of all real-valued continuous functions (x, y) endowed
with the norm

‖(x, y)‖ = max
{

sup
t≥M

∣∣∣∣x(t)
t

∣∣∣∣ , sup
t≥M

∣∣∣∣y(t)
t

∣∣∣∣}
and with the usual pointwise ordering ≤. Define a subset Ω of X by

Ω =
{

(x, y) ∈ X :
dt

2
≤ x(t) ≤ dt,

ct

2
≤ y(t) ≤ ct, t ≥ M

}
.
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For any subset B of Ω, it is obvious that inf B ∈ Ω and supB ∈ Ω. Let us further
define an operator F : Ω → X by

F (x, y)(t) =

⎛⎜⎜⎝dt
2 +
∫ t

M

∫ s

M
a(u)f(y(u))duds

ct
2 +
∫ t

M

∫∞
s

b(u)g(x(u))duds

⎞⎟⎟⎠ for t ≥ M.

The mapping F satisfies the assumptions of Knaster’s fixed point theorem: F is
increasing and maps Ω into itself. Indeed, if (x, y) ∈ Ω, then

dt

2
≤ (Fx)(t) ≤ dt

2
+ t

∫ ∞

M

a(s)f(cs)ds ≤ dt, t ≥ M

and
ct

2
≤ (Fy)(t) ≤ ct

2
+ t

∫ ∞

M

b(s)g(ds)ds ≤ ct, t ≥ M.

By Knaster’s fixed point theorem, we can conclude that there exists (x, y) ∈ Ω such
that (x, y) = F (x, y). That is,

x(t) =
dt

2
+
∫ t

M

∫ s

M

a(u)f(y(u))duds, t ≥ M

and

y(t) =
ct

2
+
∫ t

M

∫ ∞

s

b(u)g(x(u))duds, t ≥ M.

Then
lim

t→∞x(t) = ∞ and lim
t→∞ y(t) = ∞.

Hence (x, y) ∈ C(∞,∞).

7.6.3. The Case A(t0) < ∞ and B(t0) < ∞. We first classify positive solu-
tions of (7.30) under the assumption A(t0) < ∞ and B(t0) < ∞.

Theorem 7.6.5. Suppose that A(t0) < ∞ and B(t0) < ∞. Then any positive
solution of (7.30) must belong to one of the following six classes:

C(+,+) =
{

(x, y) ∈ C : lim
t→∞x(t) > 0, lim

t→∞ y(t) > 0
}

,

C(0,+) =
{

(x, y) ∈ C : lim
t→∞x(t) = 0, lim

t→∞ y(t) > 0
}

,

C(∞,+) =
{

(x, y) ∈ C : lim
t→∞x(t) = ∞, lim

t→∞ y(t) > 0
}

,

C(+,∞) =
{

(x, y) ∈ C : lim
t→∞x(t) > 0, lim

t→∞ y(t) = ∞
}

,

C(0,∞) =
{

(x, y) ∈ C : lim
t→∞x(t) = 0, lim

t→∞ y(t) = ∞
}

,

C(∞,∞) =
{

(x, y) ∈ C : lim
t→∞x(t) = ∞, lim

t→∞ y(t) = ∞
}

.

Proof. Let (x, y) be a positive solution of (7.30). Then y′′(t) = −b(t)g(x(t)) < 0
for t ≥ t0. Hence y′ is monotone and either y′(t) > 0 for t ≥ t0 or y′(t) < 0 for
t ≥ t0. If the latter holds, then y(t) ≤ y(t0) for t ≥ t0 and y′(t) ≤ y′(t0) < 0 for
t ≥ t0, and so

y(t) ≤ y(t0) +
∫ t

t0

y′(t0)ds → −∞ as t → ∞,
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which contradicts the assumption y(t) > 0 for t ≥ t0. This means that
limt→∞ y(t) = ∞ or limt→∞ y(t) = β > 0. On the other hand, it follows from (7.30)
that x′′(t) > 0 for t ≥ t0, which implies that x′ is monotone and either x′(t) > 0
for t ≥ t0 or x′(t) < 0 for t ≥ t0. If the latter holds, then limt→∞ x(t) = α ≥ 0.
If the former holds, then limt→∞ x(t) = ∞ or limt→∞ x(t) = α > 0. The proof is
complete.

Again, in order to justify our classification scheme, we derive several necessary
and/or sufficient conditions for the existence of each type of positive solution.

Theorem 7.6.6. Suppose that A(t0) < ∞ and B(t0) < ∞. A necessary and
sufficient condition for (7.30) to have a positive solution (x, y) ∈ C(+,+) is that

(7.35)
∫ ∞

t0

∫ ∞

s

a(u)duds < ∞ and
∫ ∞

t0

∫ ∞

s

b(u)duds < ∞.

Proof. Let (x, y) be a solution of (7.30) such that limt→∞ x(t) = α > 0 and
limt→∞ y(t) = β > 0. Then there exist four positive constants c1, c2, c3, c4 and
M ≥ t0 such that c1 ≤ x(t) ≤ c2 and c3 ≤ y(t) ≤ c4 for t ≥ M . In view of the first
equation of (7.30) and limt→∞ x(t) = α > 0, we have

x(t) = α +
∫ ∞

t

∫ ∞

s

a(u)f(y(u))duds,

and so ∫ ∞

t

∫ ∞

s

a(u)f(c3)duds < ∞.

Furthermore, we see from the second equation of (7.30) that

y′(t) =
∫ ∞

t

b(s)g(x(s))ds

and

y(t) = β −
∫ ∞

t

∫ ∞

s

b(u)g(x(u))duds > 0.

Thus ∫ ∞

t0

∫ ∞

s

b(u)g(c1)duds < β < ∞.

Conversely, suppose that (7.35) holds. Let c, d > 0 be arbitrary. Then there
exists M ≥ t0 such that∫ ∞

M

∫ ∞

s

a(u)f(2c)duds < d and
∫ ∞

M

∫ ∞

s

b(u)g(2d)duds < c.

Let X be the Banach space of all real-valued, bounded, continuous functions (x, y)
endowed with the norm

‖(x, y)‖ = max
{

sup
t≥M

|x(t)| , sup
t≥M

|y(t)|
}

and with the usual pointwise ordering ≤. Define a subset Ω of X by

Ω =
{

(x, y) ∈ X : d ≤ x(t) ≤ 2d, c ≤ y(t) ≤ 2c, t ≥ M
}

.

 



280 7. SYSTEMS OF NONLINEAR DIFFERENTIAL EQUATIONS

For any subset B of Ω, it is obvious that inf B ∈ Ω and supB ∈ Ω. Let us further
define an operator F : Ω → X by

F (x, y)(t) =

⎛⎜⎜⎝d +
∫∞

t

∫∞
s

a(u)f(y(u))duds

c +
∫ t

M

∫∞
s

b(u)g(x(u))duds

⎞⎟⎟⎠ for t ≥ M.

The mapping F satisfies the assumptions of Knaster’s fixed point theorem: F is
increasing and maps Ω into itself. Indeed, if x ∈ Ω, then for t ≥ M ,

d ≤ (Fx)(t) = d +
∫ ∞

t

∫ ∞

s

a(u)f(y(u))duds

≤ d +
∫ ∞

t

∫ ∞

s

a(u)f(2c)duds ≤ 2d

and

c ≤ (Fy)(t) = c +
∫ t

M

∫ ∞

s

b(u)g(x(u))duds

≤ c +
∫ t

M

∫ ∞

s

b(u)g(2d)duds ≤ 2c.

By Knaster’s fixed point theorem, we can conclude that there exists (x, y) ∈ Ω such
that (x, y) = F (x, y). That is,

x(t) = d +
∫ ∞

t

∫ ∞

s

a(u)f(y(u))duds, t ≥ M

and

y(t) = c +
∫ t

M

∫ ∞

s

b(u)g(x(u))duds, t ≥ M.

Then

lim
t→∞x(t) = d and lim

t→∞ y′(t) = lim
t→∞

∫ ∞

t

b(u)g(x(u))du = 0,

and so limt→∞ y(t) = β ≥ 0. In view of y′(t) =
∫∞

t
b(u)g(x(u))du > 0, it follows

that β > 0. Hence (x, y) ∈ C(+,+).

Theorem 7.6.7. Suppose that A(t0) < ∞ and B(t0) < ∞. A necessary and
sufficient condition for (7.30) to have a positive solution (x, y) which belongs to
C(0,+) is that

(7.36)
∫ ∞

t0

∫ ∞

t

b(u)g
(∫ ∞

u

∫ ∞

v

a(r)f(c)drdv

)
duds < ∞ for some c > 0.

Proof. Let (x, y) be a solution of (7.30) such that limt→∞ x(t) = 0 and
limt→∞ y(t) = β > 0. Then there exist two positive constants c1, c2 and T ≥ t0
such that c1 ≤ y(t) ≤ c2 for t ≥ T . In view of the first equation of (7.30) and
limt→∞ x(t) = 0, we have

x(t) =
∫ ∞

t

∫ ∞

s

a(u)f(y(u))duds.

Furthermore, we see from the second equation of (7.30) that

y′(t) =
∫ ∞

t

b(s)f(y(s))ds
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and

y(t) = β −
∫ ∞

t

∫ ∞

s

b(u)g
(∫ ∞

u

∫ ∞

v

a(r)f(y(r))drdv

)
duds > 0.

Thus, ∫ ∞

T

∫ ∞

t

b(u)g
(∫ ∞

u

∫ ∞

v

a(r)f(c1)drdv

)
duds < β.

Conversely, suppose that (7.36) holds. Then there exists T ≥ t0 such that∫ ∞

T

∫ ∞

t

b(u)g
(∫ ∞

u

∫ ∞

v

a(r)f(2c)drdv

)
duds < c.

Let X be the Banach space of all bounded, continuous, real-valued functions y
endowed with the norm

‖y‖ = sup
t≥T

|y(t)|

and with the usual pointwise ordering ≤. Define a subset Ω of X by

Ω =
{

y ∈ X : c ≤ y(t) ≤ 2c, t ≥ T
}

.

For any subset B of Ω, it is obvious that inf B ∈ Ω and supB ∈ Ω. Let us further
define an operator F : Ω → X by

(Fy)(t) = c +
∫ t

T

∫ ∞

s

b(u)g
(∫ ∞

u

∫ ∞

v

a(r)f(y(r))drdv

)
duds for t ≥ T.

The mapping F satisfies the assumptions of Knaster’s fixed point theorem: F is
increasing and maps Ω into itself. Indeed, if y ∈ Ω, then

c ≤ (Fy)(t) ≤ c +
∫ ∞

T

∫ ∞

s

b(u)g
(∫ ∞

u

∫ ∞

v

a(r)f(2c)drdv

)
duds ≤ 2c

for t ≥ T . By Knaster’s fixed point theorem, we can conclude that there exists
y ∈ Ω such that y = Fy. Set

x(t) =
∫ ∞

t

∫ ∞

s

a(u)f(y(u))duds.

Then

y(t) = c +
∫ t

T

∫ ∞

s

b(u)g (x(u)) duds

and
lim

t→∞x(t) = 0 and lim
t→∞ y(t) = c +

∫ ∞

T

∫ ∞

s

b(u)g (x(u)) duds.

Hence (x, y) ∈ C(0,+).

By means of similar reasoning used as in the proof of Theorems 7.6.3, 7.6.6, and
7.6.7 we may prove the following three theorems.

Theorem 7.6.8. Suppose that A(t0) < ∞ and B(t0) < ∞. A sufficient condition
for (7.30) to have a positive solution (x, y) ∈ C(∞,+) is that∫ ∞

t0

∫ s

t0

a(u)duds = ∞

and ∫ ∞

t0

∫ ∞

s

b(u)g
(∫ u

t0

∫ v

t0

a(r)f(c)drdv

)
duds < ∞ for some c > 0.
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Theorem 7.6.9. Suppose that A(t0) < ∞ and B(t0) < ∞. A sufficient condition
for (7.30) to have a positive solution (x, y) ∈ C(+,∞) is that∫ ∞

t0

∫ ∞

s

b(u)duds = ∞

and ∫ ∞

t0

∫ ∞

s

a(u)f
(∫ u

t0

∫ v

t0

a(r)g(c)drdv

)
duds < ∞ for some c > 0.

Theorem 7.6.10. Suppose that A(t0) < ∞ and B(t0) < ∞. A sufficient condition
for (7.30) to have a positive solution (x, y) ∈ C(∞,∞) is that∫ ∞

t0

a(s)f(cs)ds < ∞ and
∫ ∞

t0

b(s)g(c0s)ds < ∞ for some c > 0, c0 > 0.

7.6.4. The Case A(t0) < ∞ and B(t0) = ∞. In this subsection we consider
the classification and existence for positive solutions of (7.30) under the assumption
A(t0) < ∞ and B(t0) = ∞.

Theorem 7.6.11. Suppose that A(t0) < ∞ and B(t0) = ∞. Then any positive
solution of (7.30) must belong to one of the following classes:

C(0,+) =
{

(x, y) ∈ C : lim
t→∞x(t) = 0, lim

t→∞ y(t) > 0
}

,

C(0,∞) =
{

(x, y) ∈ C : lim
t→∞x(t) = 0, lim

t→∞ y(t) = ∞
}

.

Proof. Let (x, y) be a positive solution of (7.30). Then y′′(t) = −b(t)g(x(t)) < 0
for t ≥ t0. Hence y′ is monotone and either y′(t) > 0 for t ≥ t0 or y′(t) < 0 for
t ≥ t0. If the latter holds, then y(t) ≤ y(t0) for t ≥ t0 and y′(t) ≤ y′(t0) < 0 for
t ≥ t0, and so

y(t) ≤ y(t0) +
∫ t

t0

y′(t0)ds → −∞ as t → ∞,

which contradicts the assumption y(t) > 0 for t ≥ t0. This means that
limt→∞ y(t) = ∞ or limt→∞ y(t) = β > 0. On the other hand, it follows from
(7.30) that x′′(t) > 0 for t ≥ t0, which implies that x′ is monotone and either
x′(t) > 0 for t ≥ t0 or x′(t) < 0 for t ≥ t0. If the former holds, then x(t) ≥ x(t0)
for t ≥ t0. By the second equation of 7.30 we have

y′(t) = y′(t0)−
∫ t

t0

b(s)g(x(s))ds ≤ y′(t0)−g(x(t))
∫ t

t0

b(s)ds → −∞ as t → ∞,

which implies that limt→∞ y′(t) = −∞ and hence limt→∞ y(t) = −∞. This
contradicts the assumption y(t) > 0 for t ≥ t0. If the latter holds, then
limt→∞ x(t) = α ≥ 0. Since x′(t) < 0 for t ≥ t0, we have x(t) ≥ α ≥ 0 for
t ≥ t0. If α > 0, then

y′(t) = y′(t0) −
∫ t

t0

b(s)g(x(s))ds ≤ y′(t0) − g(α)
∫ t

t0

b(s)ds → −∞ as t → ∞,

which also contradicts the assumption y(t) > 0 for t ≥ t0.

In the following, in order to justify our classification scheme, we derive several
necessary and/or sufficient conditions for the existence of each type of positive
solution.
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Theorem 7.6.12. Suppose that A(t0) < ∞ and B(t0) = ∞. A necessary and
sufficient condition for (7.30) to have a positive solution (x, y) ∈ C(0,+) is that

(7.37)
∫ ∞

t0

∫ ∞

s

a(u)duds < ∞

and

(7.38)
∫ ∞

t0

∫ ∞

s

b(u)g
(∫ ∞

u

∫ ∞

v

a(r)f(c0)drdv

)
duds < ∞ for some c0 > 0.

Proof. Let (x, y) be a solution of (7.30) such that limt→∞ x(t) = 0 and
limt→∞ y(t) = β > 0. Then there exist two positive constants c1, c2 and M ≥ t0
such that c1 ≤ y(t) ≤ c2 for t ≥ M . In view of the first equation of (7.30) and
limt→∞ x(t) = 0, we find

x′(t) = −
∫ ∞

t

a(s)f(y(s))ds

and so

∞ > x(t) =
∫ ∞

t0

∫ ∞

s

a(u)f(y(u))duds ≥
∫ ∞

t0

∫ ∞

s

a(u)f(c1)duds.

Furthermore, we see from the second equation of (7.30) that

y′(t) =
∫ ∞

t

b(s)g(x(s))ds

and

∞ > y(t) = y(M) +
∫ t

M

∫ ∞

s

b(u)g(x(u))duds

≥
∫ t

M

∫ ∞

s

b(u)g
(∫ ∞

u

∫ ∞

v

a(r)f(y(r))drdv

)
duds

≥
∫ t

M

∫ ∞

s

b(u)g
(∫ ∞

u

∫ ∞

v

a(r)f(c1)drdv

)
duds.

Conversely, suppose that (7.37) and (7.38) hold. Then there exists M ≥ t0 such
that ∫ ∞

M

∫ ∞

s

b(u)g
(∫ ∞

u

∫ ∞

v

a(r)f(2c)drdv

)
duds ≤ c.

Let X be the Banach space of all real-valued, bounded, continuous functions y
endowed with the norm

‖y‖ = sup
t≥M

|y(t)|

and with the usual pointwise ordering ≤. Define a subset Ω of X by

Ω =
{

y ∈ X : c ≤ y(t) ≤ 2c, t ≥ M
}

.

For any subset B of Ω, it is obvious that inf B ∈ Ω and supB ∈ Ω. Let us further
define an operator F : Ω → X by

(Fy)(t) = c +
∫ t

M

∫ ∞

s

b(u)g
(∫ ∞

u

∫ ∞

v

a(r)f(y(r))drdv

)
duds, t ≥ M.
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The mapping F satisfies the assumptions of Knaster’s fixed point theorem: F is
increasing and maps Ω into itself. Indeed, if y ∈ Ω, then for t ≥ M ,

c ≤ (Fy)(t) = c +
∫ t

M

∫ ∞

s

b(u)g
(∫ ∞

u

∫ ∞

v

a(r)f(y(r))drdv

)
duds

≤ c +
∫ ∞

M

∫ ∞

s

b(u)g
(∫ ∞

u

∫ ∞

v

a(r)f(2c)drdv

)
duds ≤ 2c.

By Knaster’s fixed point theorem, we can conclude that there exists y ∈ Ω such
that y = Fy. That is,

y(t) = c +
∫ t

M

∫ ∞

s

b(u)g
(∫ ∞

u

∫ ∞

v

a(r)f(y(r))drdv

)
duds, t ≥ M.

Set

x(t) =
∫ ∞

t

∫ ∞

s

a(r)f(y(r))drds.

Then limt→∞ x(t) = 0 and

y(t) = c +
∫ t

M

∫ ∞

s

b(u)g (x(u)) duds, t ≥ M,

and so

lim
t→∞ y′(t) = lim

t→∞

∫ ∞

t

b(s)g(x(s))ds = 0.

Hence limt→∞ y(t) = β ≥ c > 0 and (x, y) ∈ C(0,+).

Theorem 7.6.13. Suppose that A(t0) < ∞ and B(t0) = ∞. A sufficient condition
for (7.30) to have a positive solution (x, y) ∈ C(0,∞) is that

(7.39)
∫ ∞

t0

b(s)g
(∫ ∞

s

∫ ∞

u

a(v)f(cv)dvdu

)
ds < ∞ for some c > 0.

Proof. Suppose that (7.39) holds. Then there exists M so large that∫ ∞

M

b(s)g
(∫ ∞

s

∫ ∞

u

a(r)f(2cr)drdu

)
ds < c.

Let X be the set of all real-valued continuous functions y equipped with the norm
‖y‖ = supt≥M |y(t)/t|. Then X is a Banach space. We define a subset Ω of X by

Ω =
{

y ∈ X : ct ≤ y(t) ≤ 2ct, t ≥ M
}

.

Then Ω is a bounded, convex, and closed subset of X. Let us further define an
operator F : Ω → X by

(Fy)(t) = ct +
∫ t

M

∫ ∞

v

b(s)g
(∫ ∞

s

∫ ∞

u

a(r)f(y(r))drdu

)
dsdv for t ≥ M.

The mapping F satisfies the assumptions of Knaster’s fixed point theorem: F is
increasing and maps Ω into itself. Indeed, if y ∈ Ω, then

ct ≤ (Fy)(t) ≤ ct +
∫ ∞

M

b(s)g
(∫ ∞

s

∫ ∞

u

a(r)f(2cr)drdu

)
ds ≤ 2ct for t ≥ M.

By Knaster’s fixed point theorem, we can conclude that there exists y ∈ Ω such
that y = Fy. Set

x(t) =
∫ ∞

t

∫ ∞

s

a(r)f(y(r))drds.
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Then

y(t) = ct +
∫ t

M

∫ ∞

s

b(u)g (x(u)) duds

and
lim

t→∞x(t) = 0 and lim
t→∞ y(t) = ∞.

Hence (x, y) ∈ C(0,∞).

Remark 7.6.14. All above results also hold for the two-dimensional delay differ-
ential system {

x′′(t) = a(t)f(y(t − τ)),
y′′(t) = −b(t)g(x(t − δ)),

where τ and δ are positive numbers.

7.7. Nonoscillation of Emden–Fowler Systems

The differential equation

u′′(t) = a(t)|u(t)|λ sgn u(t) with some λ �= 1

is known in the literature as an equation of the Emden–Fowler type. Study of the
equation of this type began in connection with astrophysical investigations around
the turn of the century. The oscillatory and nonoscillatory behavior of solutions
of Emden–Fowler equations has been investigated by many authors. A survey on
such results and a fairly extensive bibliography of the earlier work can be found in
the book of Kiguradze and Chanturiya [145].

For the system of differential equations of the Emden–Fowler type

(7.40)

{
u′

1(t) = a1(t)|u2(t)|λ1 sgn u2(t),
u′

2(t) = a2(t)|u1(t)|λ2 sgn u1(t),

which is a generalization of the Emden–Fowler equation, considerably less research
work have been done. We refer to [224, 225, 226, 227, 228, 229] for oscillation
theorems and to [229, 249, 250, 254] for nonoscillation theorems.

Throughout this section we assume that the functions ai, i ∈ {1, 2}, are summa-
ble on each finite segment of the interval [0,∞), ai(t) > 0 for all t ≥ t0 and λi > 0,
i ∈ {1, 2}, λ1λ2 = 1. We consider only those solutions of the system (7.40) which
exist on some ray [t0,∞), where t0 ≥ 0 may depend on the particular solution. A
nontrivial solution (x, y) of the system (7.40) is said to be nonoscillatory if we can
find t∗ > t0 such that u1 and u2 are different from zero on [t∗,∞). The system
(7.40) is called nonoscillatory if all nontrivial solutions are nonoscillatory.

It is well known that the oscillatory nature of the system (7.40) and the existence
of solutions of the generalized Riccati equation

v′(t) + λ2a1(t)|v(t)|1+λ1 = a2(t)

are closely related. Namely, in 1980, Skhalyakho [249] has established the following
sufficient and necessary condition on the nonoscillation of the system (7.40).
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Theorem 7.7.1. The system (7.40) is nonoscillatory if and only if there exists a
function θ ∈ C1([t0,∞)) such that

θ′(t) + λ2a1(t) |θ(t)|1+λ1 − a2(t) ≤ 0 for t ≥ t0 ≥ 0,

where λ1λ2 = 1.

The purpose of this section is to establish nonoscillation theorems for the system
(7.40) by the application of Theorem 7.7.1. In order to simplify notation, we define

ε =
λ1

(1 + λ1)1+λ2
, α = (1 + λ1)λ2 .

Theorem 7.7.2. Let g and ψ be two continuously differentiable functions on [t0,∞)
such that

(7.41) g(t) > 0, g′(t) ≥ a1(t), ψ′(t) ≥ −a2(t).

If

(7.42) lim sup
t→∞

(
[g(t)]λ2 |ψ(t)|

)
< ε,

then the system (7.40) is nonoscillatory.

Proof. Since (7.42) holds, there exist T ≥ t0 and k ∈ (0, ε) such that

(7.43) [g(t)]λ2 |ψ(t)| < k for t ≥ T.

Let

θ(t) = −ψ(t) +
1 − kα

α[g(t)]λ2
.

Then

αk < αε = (1 + λ1)λ2
λ1

(1 + λ1)1+λ2
=

λ1

1 + λ1
< 1

and

θ′(t) = −ψ′(t) − λ2
1 − kα

α

g′(t)
[g(t)]1+λ2

≤ a2(t) − λ2
1 − kα

α

a1(t)
[g(t)]1+λ2

.

Accordingly,

θ′(t) + λ2a1(t) |θ(t)|λ1+1 − a2(t)

≤ λ2
kα − 1

α

a1(t)
[g(t)]1+λ2

+ λ2a1(t)
∣∣∣∣−ψ(t) +

1 − kα

α[g(t)]λ2

∣∣∣∣λ1+1

= λ2
a1(t)

[g(t)]1+λ2

[
k − 1

α
+
∣∣∣∣1 − kα

α
− ψ(t)[g(t)]λ2

∣∣∣∣λ1+1
]

.

Now, (7.43) implies for all t ≥ T

θ′(t) + λ2a1(t) |θ(t)|λ1+1 − a2(t)

≤ λ2
a1(t)

[g(t)]1+λ2

[
k − 1

α
+
∣∣∣∣1 − kα

α
+ k

∣∣∣∣λ1+1
]

= λ2
a1(t)

[g(t)]1+λ2
(k − ε) < 0.

The conclusion follows now from Theorem 7.7.1.
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Theorem 7.7.3. Let g and ψ be two continuously differentiable functions on [t0,∞)
satisfying one of the conditions

g(t) > 0, g′(t) ≥ a1(t), ψ′(t) ≤ a2(t),(7.44)

g(t) > 0, g′(t) ≤ −a1(t), ψ′(t) ≥ −a2(t),(7.45)

g(t) > 0, g′(t) ≤ −a1(t), ψ′(t) ≤ a2(t).(7.46)

If (7.42) holds, then the system (7.40) is nonoscillatory.

Proof. The proof follows by similar arguments as in the previous theorem by taking

θ(t) = ψ(t) +
1 − kα

α[g(t)]λ2

if (7.44) holds,

θ(t) = −ψ(t) − 1 − kα

α[g(t)]λ2

if (7.45) holds, and

θ(t) = ψ(t) − 1 − kα

α[g(t)]λ2

if (7.46) holds.

For the next two theorems, we refer to the fact that there exists a constant k > 0
such that

(7.47)
∣∣∣[g(t)]λ2ψ(t) − k

∣∣∣1+λ1

≤ k, k
1

1+λ1 + k ≤ ε

or such that

(7.48)
∣∣∣[g(t)]λ2ψ(t) + k

∣∣∣1+λ1

≤ k, k
1

1+λ1 − k ≤ ε.

Theorem 7.7.4. Let g and ψ be two continuously differentiable functions on
[t0,∞). Then we have:

(i) (7.41) and (7.47) imply that the system (7.40) is nonoscillatory;
(ii) (7.44) and (7.48) imply that the system (7.40) is nonoscillatory.

Proof. To prove (i) let

θ(t) = −ψ(t) +
k

[g(t)]λ2
.

Then, according to (7.41),

θ′(t) = −ψ′(t) − kλ2
g′(t)

[g(t)]1+λ2
≤ a2(t) − kλ2

a1(t)
[g(t)]1+λ2

,

which implies

θ′(t) + λ2a1(t) |θ(t)|λ1+1 − a2(t)

≤ −kλ2
a1(t)

[g(t)]1+λ2
+ λ2a1(t)

∣∣∣∣ψ(t) − k

[g(t)]λ2

∣∣∣∣λ1+1

= λ2
a1(t)

[g(t)]1+λ2

[∣∣ψ(t)[g(t)]λ2 − k
∣∣1+λ1 − k

]
≤ 0.

This proves the conclusion (i) by an application of Theorem 7.7.1.
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To show (ii), let

θ(t) = ψ(t) +
k

[g(t)]λ2
.

Using (7.44), we obtain

θ′(t) ≤ a2(t) − kλ2
a1(t)

[g(t)]1+λ2

and

θ′(t) + λ2a1(t) |θ(t)|λ1+1 − a2(t)

≤ −kλ2
a1(t)

[g(t)]1+λ2
+ λ2a1(t)

∣∣∣∣ψ(t) +
k

[g(t)]λ2

∣∣∣∣λ1+1

= λ2
a1(t)

[g(t)]1+λ2

(∣∣∣ψ(t)[g(t)]λ2 + k
∣∣∣1+λ1

− k

)
≤ 0,

which establishes the conclusion (ii).

Theorem 7.7.5. Let g and ψ be two continuously differentiable functions on
[t0,∞). Then we have:

(i) (7.45) and (7.48) imply that the system (7.40) is nonoscillatory;
(ii) (7.46) and (7.47) imply that the system (7.40) is nonoscillatory.

Proof. The conclusion follows according to Theorem 7.7.1 if we let

θ(t) = −ψ(t) − k

[g(t)]λ2

for (i) and

θ(t) = ψ(t) − k

[g(t)]λ2

for (ii).

Theorem 7.7.6. Let g be a continuously differentiable function on [t0,∞) such that
g(t) > 0 and g′(t) ≤ −a1(t). If there exists a continuously differentiable function ψ
on [t0,∞) such that

(7.49) lim
t→∞ψ(t) exists and ψ′(t) ≥ −a2(t)[g(t)]λ2 ,

then the system (7.40) is nonoscillatory.

Proof. Since limt→∞ ψ(t) exists, there exist two numbers T ≥ t0 and M such that

0 < M + ψ(t) ≤ 1 for t ≥ T.

Then, for the function

θ(t) = −M + ψ(t)
[g(t)]λ2

we obtain

θ′(t) = − ψ′(t)
[g(t)]λ2

+ λ2
M + ψ(t)
[g(t)]1+λ2

g′(t) ≤ a2(t) − λ2
M + ψ(t)
[g(t)]1+λ2

a1(t),
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which implies

θ′(t) + λ2a1(t) |θ(t)|λ1+1 − a2(t)

≤ λ2a1(t)
(M + ψ(t))1+λ1

[g(t)]1+λ2
− λ2a1(t)

M + ψ(t)
[g(t)]1+λ2

≤ λ2
a1(t)

[g(t)]1+λ2

(
M + ψ(t) − (M + ψ(t))

)
= 0.

This completes the proof by an application of Theorem 7.7.1.

Theorem 7.7.7. Let g be a continuously differentiable function on [t0,∞) such
that g(t) > 0 and g′(t) ≥ a1(t). If there exists a continuously differentiable function
ψ on [t0,∞) satisfying (7.49), then the system (7.40) is nonoscillatory.

Proof. The assumption (7.49) guarantees the existence of two numbers T ≥ t0 and
K such that

0 < K − ψ(t) ≤ 1 for t ≥ T.

Taking θ(t) = K−ψ(t)
[g(t)]λ2

, we get the conclusion as in the previous proof.

Theorem 7.7.8. Let a2(t) ≥ −[h(t)]−1−λ2 , where h ∈ C1([t0,∞), (0,∞)). If

lim
t→∞

(
h′(t) − a1(t)

)
= L exists and L >

1
λ2

,

then the system (7.40) is nonoscillatory.

Proof. It follows from the assumption (7.49) that there exists T ≥ t0 with

h′(t) − a1(t) >
1
λ2

for t ≥ T.

Then the function θ(t) = [h(t)]−λ2 satisfies the condition of the Theorem 7.7.1,
since we have

θ′(t) + λ2a1(t) |θ(t)|λ1+1 − a2(t) = −λ2
h′(t)

[h(t)]1+λ2
+ λ2

a1(t)
[h(t)]1+λ2

− a2(t)

≤ λ2

[h(t)]1+λ2

[
−h′(t) + a1(t) +

1
λ 2

]
< 0.

Hence we obtain the desired result according to Theorem 7.7.1.

Theorem 7.7.9. Let ψ be a nonnegative continuously differentiable function on
[t0,∞) such that ψ′(t) ≤ a2(t). If∫ ∞

t

[ψ(s)]1+λ1a1(s)ds ≤ ψ(t)
(1 + λ2)1+λ1

,

then the system (7.40) is nonoscillatory.

Proof. Denote β = (1 + λ2)1+λ1 and

θ(t) = ψ(t) + λ2β

∫ ∞

t

[ψ(s)]1+λ1a1(s)ds.

Then

θ′(t) = ψ′(t) − λ2β[ψ(t)]1+λ1a1(t) ≤ a2(t) − λ2β[ψ(t)]1+λ1a1(t).
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Therefore,

θ′(t) + λ2a1(t) |θ(t)|λ1+1 − a2(t)

≤ λ2a1(t)
∣∣∣∣ψ(t) + λ2β

∫ ∞

t

[ψ(s)]1+λ1a1(s)ds

∣∣∣∣λ1+1

− λ2β[ψ(t)]1+λ1a1(t)

≤ λ2a1(t)
(
[ψ(t) + λ2ψ(t)]λ1+1 − β[ψ(t)]1+λ1

)
= 0.

Hence, by Theorem 7.7.1, the system (7.40) is nonoscillatory.

Theorem 7.7.10. Let ψ be a nonnegative continuously differentiable function on
[t0,∞) such that ψ′(t) ≤ a2(t) and let

ϕ(t) =
∫ ∞

t

[ψ(s)]1+λ1a1(s) exp
(

λ2(1 + λ2)λ1

∫ s

t

[ψ(τ)]λ1a1(τ)dτ

)
ds.

If ϕ(t) ≤ ψ(t)
(1+λ2)λ1

, then the system (7.40) is nonoscillatory.

Proof. Denote γ = (1 + λ2)λ1 and θ(t) = ψ(t) + λ2γϕ(t). Then we get

θ′(t) = ψ′(t) + λ2γϕ′(t) ≤ a2(t) − λ2γ
(
[ψ(t)]1+λ1a1(t) + λ2γϕ(t)[ψ(t)]λ1a1(t)

)
and consequently,

θ′(t) + λ2a1(t) |θ(t)|λ1+1 − a2(t)

≤ λ2a1(t)
∣∣∣ψ(t) + λ2γϕ(t)

∣∣∣λ1+1

− λ2γa1(t)[ψ(t)]λ1

(
ψ(t) + λ2γϕ(t)

)
= λ2a1(t)

(
ψ(t) + λ2γϕ(t)

)(
[ψ(t) + λ2γϕ(t)]λ1 − γ[ψ(t)]λ1

)
≤ λ2a1(t)

(
ψ(t) + λ2γϕ(t)

)(
[ψ(t) + λ2ψ(t)]λ1 − γ[ψ(t)]λ1

)
= 0.

It follows from Theorem 7.7.1 that the system (7.40) is nonoscillatory.

7.8. Notes

The results in Section 7.2 are based on Kordonis and Philos [152]; see also
Mirzov [224, 225, 226] and Kwong and Wong [161]. The treatment in Section 7.3
is from Li and Huo [198]. The results of Section 7.4 are taken from Li and Cheng
[194]. While Section 7.5 follows Li [185], Section 7.6 summarizes results by Li and
Yang [207]. The material in Section 7.7 is adopted from Manojlović [223].

 



CHAPTER 8

Oscillation of Dynamic Equations on Time Scales

8.1. Introduction

The study of dynamic equations on a time scale goes back to its founder Stefan
Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics.
Motivating the subject is the notion that dynamic equations on time scales can
build bridges between continuous and discrete mathematics. Further, the study of
time scales has led to several important applications, e.g., in the study of insect
population models, neural networks, heat transfer, and epidemic models.

The development of the theory of time scales is yet in its infancy, yet as inroads
are made, interest is gathering steam. Of a great deal of interest are methods being
introduced for dynamic equations on time scales which now explain some discrep-
ancies that have been encountered when results for differential equations and their
discrete counterparts have been independently considered. The explanations of
these seemingly discrepancies are incidentally producing unifying results via time
scale methods. While there are currently many independent results on oscillation
of differential equations as well as on oscillation of difference equations, the occur-
ring discrepancies may suggest that a unification will be too hard or impossible.
However, all of the problems that have been tackled so far using the time scales
calculus led to a unification and hence shed light on the nature of the underlying
structures.

In addition to the unification aspect of the theory of time scales there is an ex-
tension aspect, which might even have a broader impact on the future of oscillation.
Instead of differential or difference equations, any other kind of dynamic equation
is also applicable to the theory (for example, so-called q-difference equations), and
it might be very important to understand oscillation properties of solutions of such
more general equations. The applicability of dynamic equations on time scales to
modeling phenomena of seasonal plant (or insect) population dynamics is of great
potential value. Results in this direction will undoubtedly attract the attention of
researchers in other disciplines such as the biological sciences.

In this chapter we present some first progress in direction of generalizing the
oscillation results given in the earlier chapters of this book to the time scales case. In
Section 8.2 we first give a general introduction into the theory of dynamic equations
on time scales. The reader may consult the books [53, 55] for further results. Then,
in Section 8.3, we present some oscillation results of second order nonlinear dynamic
equations on time scales. In Section 8.4, some oscillation criteria for perturbed
nonlinear dynamic equations are given. We then follow [197] and classify positive
solutions of nonlinear dynamic equations in Section 8.5 and discuss oscillation of
Emden–Fowler dynamic equations in Section 8.6. In Section 8.7 we present some
oscillation criteria for first order delay dynamic equations. Finally, in Section 8.8,
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we consider oscillation of symplectic dynamic systems, which contain as special
cases linear Hamiltonian dynamic systems and Sturm–Liouville dynamic equations
of any even order.

8.2. The Time Scales Calculus

In this section we introduce some basic concepts concerning the calculus on
time scales that one needs to know to read the remainder of this chapter. Most
of these results will be stated without proof. Proofs can be found in the books
by Bohner and Peterson [53, 55]. A time scale is an arbitrary nonempty closed
subset of the real numbers. Thus R, Z, N, N0, [0, 1] ∪ [2, 3], [0, 1] ∪ N, and the
Cantor set are examples of time scales, while Q, R \ Q, C, and (0, 1) are not time
scales. Throughout this chapter we will denote a time scale by the symbol T. We
assume throughout that a time scale T has the topology that it inherits from the
real numbers with the standard topology.

The calculus of time scales was initiated by Stefan Hilger in [124] in order to
create a theory that can unify discrete and continuous analysis. Indeed, below we
will introduce the delta derivative fΔ for a function f defined on T, and it turns
out that

(i) fΔ = f ′ is the usual derivative if T = R and
(ii) fΔ = Δf is the usual forward difference operator if T = Z.

We now introduce the basic notions connected to time scales. We start by
defining the forward and backward jump operators.

Definition 8.2.1. Let T be a time scale. For t ∈ T we define the forward jump
operator σ : T → T by

σ(t) := inf
{

s ∈ T : s > t
}

for all t ∈ T,

while the backward jump operator ρ : T → T is defined by

ρ(t) := sup
{

s ∈ T : s < t
}

for all t ∈ T.

In this definition we put inf ∅ = sup T (i.e., σ(M) = M if T has a maximum M)
and sup ∅ = inf T (i.e., ρ(m) = m if T has a minimum m), where ∅ denotes the
empty set. If σ(t) > t, then we say that t is right-scattered, while if ρ(t) < t, then
we say that t is left-scattered. Points that are right-scattered and left-scattered at
the same time are called isolated. Also, if t < sup T and σ(t) = t, then t is called
right-dense, and if t > inf T and ρ(t) = t, then t is called left-dense. Points that are
right-dense or left-dense are called dense. If T has a left-scattered maximum M ,
then we define Tκ = T − {M}, otherwise Tκ = T. Finally, the graininess function
μ : T → [0,∞) is defined by

μ(t) := σ(t) − t for all t ∈ T.

Remark 8.2.2. As in this book we are concerned with oscillatory behavior as
t → ∞, we will assume for the remainder of this chapter that T is a time scale that
is unbounded above.

Now we consider a function f : T → R and define the so-called delta (or Hilger)
derivative of f at a point t ∈ Tκ.

 



8.2. THE TIME SCALES CALCULUS 293

Definition 8.2.3. Assume f : T → R is a function and let t ∈ Tκ. Then we define
fΔ(t) to be the number (provided it exists) with the property that given any ε > 0,
there is a neighborhood U of t (i.e., U = (t− δ, t + δ)∩T for some δ > 0) such that∣∣∣f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)

∣∣∣ ≤ ε |σ(t) − s| for all s ∈ U.

We call fΔ(t) the delta (or Hilger) derivative of f at t.

Moreover, we say that f is delta (or Hilger) differentiable (or in short: differen-
tiable) on Tκ provided fΔ(t) exists for all t ∈ Tκ. The function fΔ : Tκ → R is
then called the (delta) derivative of f on Tκ.

Some easy and useful relationships concerning the delta derivative are given
next.

Theorem 8.2.4. Assume f : T → R is a function and let t ∈ Tκ. Then we have
the following:

(i) If f is differentiable at t, then f is continuous at t.
(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t

with

fΔ(t) =
f(σ(t)) − f(t)

μ(t)
.

(iii) If t is right-dense, then f is differentiable at t iff the limit

lim
s→t

f(t) − f(s)
t − s

exists as a finite number. In this case

fΔ(t) = lim
s→t

f(t) − f(s)
t − s

.

(iv) If f is differentiable at t, then

(8.1) fσ(t) = f(t) + μ(t)fΔ(t), where fσ := f ◦ σ.

Example 8.2.5. Again we consider the two cases T = R and T = Z.

(i) If T = R, then Theorem 8.2.4 (iii) yields that f : R → R is delta differentiable
at t ∈ R iff

f ′(t) = lim
s→t

f(t) − f(s)
t − s

exists,

i.e., iff f is differentiable (in the ordinary sense) at t. In this case we then
have

fΔ(t) = lim
s→t

f(t) − f(s)
t − s

= f ′(t)

by Theorem 8.2.4 (iii).
(ii) If T = Z, then Theorem 8.2.4 (ii) yields that f : Z → R is delta differentiable

at t ∈ Z with

fΔ(t) =
f(σ(t)) − f(t)

μ(t)
=

f(t + 1) − f(t)
1

= f(t + 1) − f(t) =: Δf(t),

where Δ is the usual forward difference operator defined by the last equation
above.
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Next, we would like to be able to find the derivatives of sums, products, and
quotients of differentiable functions. This is possible according to the following
theorem.

Theorem 8.2.6. Assume f, g : T → R are differentiable at t ∈ Tκ. Then:

(i) The sum f + g : T → R is differentiable at t with

(f + g)Δ(t) = fΔ(t) + gΔ(t).

(ii) For any constant α, αf : T → R is differentiable at t with

(αf)Δ(t) = αfΔ(t).

(iii) The product fg : T → R is differentiable at t with

(8.2) (fg)Δ(t) = fΔ(t)g(t) + f(σ(t))gΔ(t) = f(t)gΔ(t) + fΔ(t)g(σ(t)).

(iv) If f(t)f(σ(t)) �= 0, then 1
f is differentiable at t with(

1
f

)Δ

(t) = − fΔ(t)
f(t)f(σ(t))

.

(v) If g(t)g(σ(t)) �= 0, then f
g is differentiable at t and

(8.3)
(

f

g

)Δ

(t) =
fΔ(t)g(t) − f(t)gΔ(t)

g(t)g(σ(t))
.

The following theorem enables us to differentiate polynomials.

Theorem 8.2.7. Let α be constant and m ∈ N.

(i) For f defined by f(t) = (t − α)m we have

fΔ(t) =
m−1∑
ν=0

(σ(t) − α)ν(t − α)m−1−ν .

(ii) For g defined by g(t) = 1
(t−α)m we have

gΔ(t) = −
m−1∑
ν=0

1
(σ(t) − α)m−ν(t − α)ν+1

,

provided (t − α)(σ(t) − α) �= 0.

In order to describe classes of functions that are “delta integrable”, we introduce
the following concept.

Definition 8.2.8. A function f : T → R is called rd-continuous provided it is
continuous at right-dense points in T and its left-sided limits exist (finite) at left-
dense points in T. The set of rd-continuous functions f : T → R will be denoted
by

Crd = Crd(T) = Crd(T, R).
The set of functions f : T → R that are differentiable and whose derivative is
rd-continuous is denoted by

C1
rd = C1

rd(T) = C1
rd(T, R).
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Definition 8.2.9. A function F : T → R is called an antiderivative of f : T → R

provided
FΔ(t) = f(t) holds for all t ∈ Tκ.

Theorem 8.2.10 (Existence of Antiderivatives). Every rd-continuous function has
an antiderivative.

Definition 8.2.11. Let f : T → R be rd-continuous, and let F : T → R be an
antiderivative of f . Then we define the (Cauchy) integral of f by∫ s

r

f(t)Δt = F (s) − F (r) for all r, s ∈ T.

The following theorem gives several elementary properties of the delta integral.

Theorem 8.2.12. If a, b, c ∈ T, α ∈ R, and f, g ∈ Crd, then

(i)
∫ b

a
[f(t) + g(t)]Δt =

∫ b

a
f(t)Δt +

∫ b

a
g(t)Δt;

(ii)
∫ b

a
(αf)(t)Δt = α

∫ b

a
f(t)Δt;

(iii)
∫ b

a
f(t)Δt = −

∫ a

b
f(t)Δt;

(iv)
∫ b

a
f(t)Δt =

∫ c

a
f(t)Δt +

∫ b

c
f(t)Δt;

(v)
∫ b

a
f(σ(t))gΔ(t)Δt = (fg)(b) − (fg)(a) −

∫ b

a
fΔ(t)g(t)Δt;

(vi)
∫ b

a
f(t)gΔ(t)Δt = (fg)(b) − (fg)(a) −

∫ b

a
fΔ(t)g(σ(t))Δt;

(vii)
∫ a

a
f(t)Δt = 0;

(viii) if f(t) ≥ 0 for all a ≤ t < b, then
∫ b

a
f(t)Δt ≥ 0;

(ix) if |f(t)| ≤ g(t) on [a, b), then∣∣∣∣∣
∫ b

a

f(t)Δt

∣∣∣∣∣ ≤
∫ b

a

g(t)Δt.

The following simple theorem is useful.

Theorem 8.2.13. If f : T → R is an arbitrary function and t ∈ T, then∫ σ(t)

t

f(τ)Δτ = μ(t)f(t).

One can then easily prove the following theorem.

Theorem 8.2.14. Let a, b ∈ T and f ∈ Crd.

(i) If T = R, then ∫ b

a

f(t)Δt =
∫ b

a

f(t)dt,

where the integral on the right is the usual Riemann integral from calculus.
(ii) If [a, b] consists of only isolated points, then

∫ b

a

f(t)Δt =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
t∈[a,b)

μ(t)f(t) if a < b

0 if a = b

−
∑

t∈[b,a)

μ(t)f(t) if a > b.
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(iii) If T = hZ = {hk : k ∈ Z}, where h > 0, then

∫ b

a

f(t)Δt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

b
h−1∑
k= a

h

f(kh)h if a < b

0 if a = b

−
a
h−1∑
k= b

h

f(kh)h if a > b.

(iv) If T = Z, then

∫ b

a

f(t)Δt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b−1∑
t=a

f(t) if a < b

0 if a = b

−
a−1∑
t=b

f(t) if a > b.

Now we will introduce the exponential function on time scales. In order to do
so, we first need to look at what is called the regressive group.

Definition 8.2.15. We say that a function p : T → R is regressive provided

(8.4) 1 + μ(t)p(t) �= 0 for all t ∈ Tκ

holds. The set of all regressive and rd-continuous functions f : T → R will be
denoted by

R = R(T) = R(T, R).

Theorem 8.2.16. For p, q ∈ R, define “circle plus” addition by

(p ⊕ q)(t) := p(t) + q(t) + μ(t)p(t)q(t) for all t ∈ Tκ.

Then (R,⊕) is an Abelian group, the so-called regressive group. The inverse of
p ∈ R with respect to ⊕ is given by

(�p)(t) = − p(t)
1 + μ(t)p(t)

for all t ∈ Tκ.

If we define the “circle minus” subtraction � on R by

(p � q)(t) := (p ⊕ (�q))(t) for all t ∈ Tκ,

then we have the formula

p � q =
p − q

1 + μq
for all p, q ∈ R.

If we define the set of positively regressive functions R+ as the set consisting of
those p ∈ R satisfying

1 + μ(t)p(t) > 0 for all t ∈ T,

then (R+,⊕) is a subgroup of the regressive group. If we define the “circle square”
of p ∈ R by

(p©2 )(t) = (−p(t))(�p(t)) for all t ∈ T,

then we have the formula [53, (2.8)]

(8.5) f + (�f) = μf©2 .
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The main existence theorem for initial value problems with first order linear
dynamic equations now reads as follows.

Theorem 8.2.17. Suppose p ∈ R and fix t0 ∈ T. Then the initial value problem

(8.6) yΔ = p(t)y, y(t0) = 1

has a unique solution on T.

Definition 8.2.18. If p ∈ R and t0 ∈ T, then the unique solution of the initial
value problem (8.6) is called the exponential function and denoted by ep(·, t0).

In the following theorem we collect some important properties of the exponential
function. Their proofs can be found in [53, Theorem 2.36 and Theorem 2.39].

Theorem 8.2.19. If p, q ∈ R, then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + μ(t)p(t))ep(t, s);
(iii) 1

ep(t,s) = e�p(t, s);
(iv) ep(t, s) = 1

ep(s,t) = e�p(s, t);
(v) ep(t, s)ep(s, r) = ep(t, r);
(vi) ep(t, s)eq(t, s) = ep⊕q(t, s);
(vii) ep(t,s)

eq(t,s) = ep�q(t, s);

(viii)
(

1
ep(·,s)
)Δ

= − p(t)
eσ

p (·,s) ;

(ix) [ep(c, ·)]Δ = −p[ep(c, ·)]σ, where c ∈ T.

There are two versions of variation of parameters results as follows.

Theorem 8.2.20. Suppose f ∈ Crd and p ∈ R. Then the unique solution of the
initial value problem

yΔ = p(t)y + f(t), y(t0) = y0

is given by

y(t) = y0ep(t, t0) +
∫ t

t0

ep(t, σ(τ))f(τ)Δτ.

Also, the unique solution of the initial value problem

yΔ = −p(t)yσ + f(t), y(t0) = y0

is given by

y(t) = y0e�p(t, t0) +
∫ t

t0

e�p(t, τ)f(τ)Δτ.

We now give some examples of exponential functions. These examples can be
verified easily by checking that the given functions satisfy the corresponding initial
value problems (8.6).

Example 8.2.21. (i) Let T = R and α ∈ R be a constant. Then

eα(t, 0) = eαt for all t ∈ R;

(ii) Let T = R and p : T → R be continuous. Then

ep(t, t0) = exp
{∫ t

t0

p(s)ds

}
for all t ∈ R;
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(iii) Let T = Z and α ∈ R be a constant. Then

eα(t, 0) = (1 + α)t for all t ∈ Z;

(iv) Let T = Z and p : T → R be arbitrary. Then

ep(t, t0) =
t−1∏
s=t0

(
1 + p(s)

)
for all t ∈ Z ∩ [t0,∞);

(v) Let T = hN0 for h > 0 and α ∈ R be a constant. Then

eα(t, 0) = (1 + αh)
t
h for all t ∈ T.

(vi) Let T = N2
0 = {n2 : n ∈ N0}. Then

e1(t, 0) = 2
√

t(
√

t)! for all t ∈ T.

(vii) Let T = {Hn : n ∈ N0}, where Hn =
∑n

k=1 1/k. If α ≥ 0 is constant, then

eα(Hn, 0) =
(

n + α

n

)
for all n ∈ N.

(viii) Let T = qN0 =
{
qk : k ∈ N0

}
and p ∈ R. Then

ep(t, 1) =
∏

s∈T∩(0,t)

(
1 + (q − 1)sp(s)

)
for all t ∈ T.

8.3. Oscillation of Second Order Nonlinear Dynamic Equations

In this section we follow [58] and consider the nonlinear second order dynamic
equation

(8.7)
(
p(t)xΔ

)Δ
+ q(t)(f ◦ xσ) = 0 for t ∈ [a, b],

where p and q are positive, real-valued rd-continuous functions defined on the time
scales interval [a, b] (throughout a, b ∈ T with a < b). Since we are interested
in oscillatory behavior, we suppose that the time scale under consideration is not
bounded above, i.e., it is a time scale interval of the form [a,∞). We suppose that
there exists a constant K > 0 such that f : R → R satisfies

(8.8) xf(x) > 0 and f(x) ≥ Kx for all x �= 0.

Let us first recall that a solution of (8.7) is a nontrivial real function x satisfying
(8.7) for t ≥ a. A solution x of (8.7) is said to be oscillatory if it is neither eventually
positive nor eventually negative; otherwise it is called nonoscillatory. Equation
(8.7) is said to be oscillatory if all its solutions are oscillatory. Our attention is
restricted to those solutions of (8.7) which exist on some half line [tx,∞) and
satisfy sup{|x(t)| : t > t0} > 0 for any t0 ≥ tx.

The classical Riccati transformation technique for differential equations consists
essentially in “completing the square”. For dynamic equations we will need to
“complete the circle square”.

Lemma 8.3.1. For f, g ∈ R we have

(8.9) (f � g)©2 = f©2 + f(�g) + (�f)g + g©2 .
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Proof. We have

(f � g)©2 =
(f � g)2

1 + μ(f � g)
=

(f−g)2

(1+μg)2

1 + μ f−g
1+μg

=
(f − g)2

(1 + μf)(1 + μg)
,

and hence

(f � g)©2 − f©2 − g©2 =
(f − g)2

(1 + μf)(1 + μg)
− f2

1 + μf
− g2

1 + μg

=
f2 − 2fg + g2 − f2 − μf2g − g2 − μg2f

(1 + μf)(1 + μg)

= −fg
1 + μf + 1 + μg

(1 + μf)(1 + μg)
= f(�g) + (�f)g

implies (8.9).

In the next lemma we collect some identities that are needed in the proof of our
Riccati transformation result. These identities follow easily from (8.1), and hence
we omit the proof.

Lemma 8.3.2. Suppose f is differentiable with ffσ �= 0 and define g = fΔ

f . Then

(8.10) 1 + μg =
fσ

f
, �g = −fΔ

fσ
, and g©2 =

(fΔ)2

ffσ
.

Theorem 8.3.3. Suppose that x solves (8.7) with x(t) �= 0 for all t ≥ t0. Let z be
a differentiable function and define w on [t0,∞) by

(8.11) w =
z2pxΔ

x
.

Then we have on [t0,∞)

(8.12) −wΔ = (zσ)2q
f ◦ xσ

xσ
− p(zΔ)2 + pzzσ(r � s)©2 ,

where

r =
xΔ

x
and s =

zΔ

z
.

If additionally (8.8) holds and x(t)xσ(t) > 0 for all t ≥ t0, then on [t0,∞)

(8.13) −wΔ ≥ qK(zσ)2 − p(zΔ)2.
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Proof. We calculate

−wΔ (8.2)
= −

[
zΔ

(
zpxΔ

x

)
+ zσ

(
zpxΔ

x

)Δ
]

(8.2)
= −zΔzpr − zσ

[
zσ

(
pxΔ

x

)Δ

+ zΔ pxΔ

x

]
(8.3)
= −zΔzpr − (zσ)2

[
(pxΔ)Δx − xΔpxΔ

xxσ

]
− zσzΔpr

(8.10)
= −(zσ)2

(pxΔ)Δ

xσ
+ (zσ)2pr©2 − zΔzpr − zσzΔpr

(8.7)
= (zσ)2q

f ◦ xσ

xσ
+ pzzσ

[
zσ

z
r©2 − zΔ

zσ
r − zΔ

z
r

]
(8.1)
= (zσ)2q

f ◦ xσ

xσ
+ pzzσ

[
z + μzΔ

z
r©2 − zΔ

z
r − zΔ

zσ
r

]
(8.10)
= (zσ)2q

f ◦ xσ

xσ
+ pzzσ

[
r©2 + μsr©2 − sr + (�s)r

]
(8.5)
= (zσ)2q

f ◦ xσ

xσ
+ pzzσ

[
r©2 + s(�r) + (�s)r

]
(8.9)
= (zσ)2q

f ◦ xσ

xσ
+ pzzσ

[
(r � s)©2 − s©2

]
(8.10)
= (zσ)2q

f ◦ xσ

xσ
+ pzzσ(r � s)©2 − p(zΔ)2,

where we simply “completed the square”. This proves (8.12). To obtain (8.13),
note that

zzσp(r � s)©2 =
z2x(r − s)2

xσ

holds (apply the formula in the proof of Lemma 8.3.1 and the identities (8.10) from
Lemma 8.3.2). This and (8.8) imply (8.13).

8.3.1. The Case
∫∞

a
1

p(t)Δt = ∞. Now we assume

(8.14)
∫ ∞

a

1
p(t)

Δt = ∞.

and present some oscillation criteria for (8.7). We start with the following auxiliary
result.

Lemma 8.3.4. Assume (8.14). Suppose that x is a nonoscillatory solution of
(8.7). Then there exists t0 ∈ T such that

(8.15) x(t)xΔ(t) > 0 for all t ≥ t0.

Proof. Since x is nonoscillatory, it is either eventually positive or eventually nega-
tive. We only prove the lemma for the first case as the second case is similar and
hence omitted. Assume there exists t0 ∈ T such that

x(t) > 0 for all t ≥ t0.

Define y = pxΔ. Let t ≥ t0. Then x(σ(t)) > 0 and hence

yΔ(t) = −q(t)f(xσ(t)) < 0
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so that y is decreasing. Assume that there exists t1 ≥ t0 with y(t1) =: c < 0. Then

p(s)xΔ(s) = y(s) ≤ y(t1) = c for all s ≥ t1

and therefore
xΔ(s) ≤ c

p(s)
for all s ≥ t1.

Let t ≥ t1. Then

x(t) = x(t1) +
∫ t

t1

xΔ(s)Δs

≤ x(t1) +
∫ t

t1

c

p(s)
Δs

= x(t1) + c

{∫ t

t1

Δs

p(s)

}
(8.14)→ −∞ as t → ∞,

a contradiction. Hence y(t) > 0 for all t ≥ t0 and thus xΔ(t) > 0 for all t ≥ t0, i.e.,
(8.15) holds.

Now we are ready to present the main results of this section.

Theorem 8.3.5. Assume that (8.8) and (8.14) hold. Furthermore, assume that
there exists a differentiable function z with

(8.16) lim sup
t→∞

∫ t

a

[
Kq(s)(zσ(s))2 − p(s)(zΔ(s))2

]
Δs = ∞.

Then every solution of (8.7) is oscillatory on [a,∞).

Proof. Suppose to the contrary that x is a nonoscillatory solution of (8.7). Then
(8.15) from Lemma 8.3.4 implies that there exists t0 ∈ T such that

w(t) > 0 for all t ≥ t0,

where w is defined by (8.11). All assumptions from Theorem 8.3.3 are satisfied,
and hence we may integrate (8.13) from t0 to t ≥ t0 to obtain

w(t0) ≥ w(t0) − w(t)

= −
∫ t

t0

wΔ(s)Δs

≥
∫ t

t0

(
Kq(s)(zσ(s))2 − p(s)(zΔ(s))2

)
Δs

(8.16)→ ∞,

which is not possible. The proof is complete.

Corollary 8.3.6. Assume that (8.8) and (8.14) hold. Furthermore, assume that
there exists a positive function δ with

(8.17) lim sup
t→∞

∫ t

a

⎡⎣Kq(s)δσ(s) − p(s)

(
δΔ(s)√

δ(s) +
√

δσ(s)

)2
⎤⎦Δs = ∞.

Then every solution of (8.7) is oscillatory on [a,∞).
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Proof. Define z =
√

δ and note that [53]

zΔ =
δΔ

√
δ +

√
δσ

.

Since (8.17) holds for δ, we see that (8.16) holds for z =
√

δ. Hence the claim
follows from Theorem 8.3.5.

From Theorem 8.3.5 and Corollary 8.3.6 we can obtain different conditions for
oscillation of all solutions of (8.7) by different choices of δ. E.g., if z(t) = δ(t) ≡ 1,
then the following oscillation criterion appears.

Corollary 8.3.7. Assume that (8.8) and (8.14) hold. If

lim sup
t→∞

∫ t

a

q(s)Δs = ∞,

then every solution of (8.7) is oscillatory on [a,∞).

If δ(t) = t, then Corollary 8.3.6 yields the following result.

Corollary 8.3.8. Assume that (8.8) and (8.14) hold. If

(8.18) lim sup
t→∞

∫ t

a

[
Kσ(s)q(s) − p(s)

(
√

s +
√

σ(s))2

]
Δs = ∞,

then every solution of (8.7) is oscillatory on [a,∞).

Example 8.3.9. Consider the Euler dynamic equation

(8.19) xΔΔ +
γ

tσ(t)
xσ = 0 for t ∈ [1,∞).

Here, p(t) ≡ 1, K = 1, and q(t) = γ
tσ(t) . Then (8.18) from Corollary 8.3.8 reads

lim sup
t→∞

∫ t

1

[
γ

s
− 1

(
√

s +
√

σ(s))2

]
Δs = ∞.

Note that the estimate
γ

s
− 1

(
√

s +
√

σ(s))2
≥ γ

s
− 1

(
√

s +
√

s)2

=
γ

s
− 1

(2
√

s)2

=
γ − 1

4

s

implies the following result: If T is a time scale that satisfies

(8.20)
∫ ∞

1

Δt

t
= ∞,

and if γ > 1
4 , then (8.19) is oscillatory. Note that (8.20) holds for the time scales

T = R and T = Z as

lim
t→∞ ln t = ∞ and

∞∑
k=1

1
k

= ∞.

 



8.3. OSCILLATION OF SECOND ORDER NONLINEAR DYNAMIC EQUATIONS 303

It also holds for the time scale T = qN0 := {qn : n ∈ N0}, where q > 1, since for
this time scale∫ ∞

1

Δt

t
=

∞∑
k=0

∫ qk+1

qk

Δt

t
=

∞∑
k=0

μ(qk)
qk

=
∞∑

k=0

(q − 1)qk

qk
=

∞∑
k=0

(q − 1) = ∞.

In fact, in [47] it is shown that (8.20) holds whenever T is a time scale that is un-
bounded above. Note that our result is compatible with the well-known oscillatory
behavior of (8.19) when T = R (see [172]) and when T = Z (see [303]). For the
case T = Z, it is also known from [303] that for γ ≤ 1/4, (8.19) has a nonoscillatory
solution. Hence, Theorem 8.3.5 and Corollary 8.3.8 are sharp. Finally note that
the results in [73, 86], i.e., Corollary 8.3.7, cannot be applied to (8.19) as∫ ∞

1

q(t)Δt =
∫ ∞

1

γΔt

tσ(t)
= γ

∫ ∞

1

(
−1

t

)Δ

Δt = γ lim
t→∞

(
1 − 1

t

)
= γ.

Example 8.3.10. Let 0 < p(t) ≤ 1 for all t (e.g., p(t) = t/(t + 1)) and consider
the nonlinear dynamic equation

(8.21)
(
p(t)xΔ

)Δ
+

γ

tσ(t)
xσ(1 + (xσ)2) = 0 for t ≥ 1.

Here, K = 1 and q(t) = γ
tσ(t) . Then (8.18) from Corollary 8.3.8 reads

lim sup
t→∞

∫ t

1

[
γ

s
− p(s)

(
√

s +
√

σ(s))2

]
Δs = ∞.

Note that the estimate
γ

s
− p(s)

(
√

s +
√

σ(s))2
≥ γ

s
− 1

(
√

s +
√

s)2
=

γ − 1
4

s

implies that every solution of (8.21) is oscillatory when γ > 1/4. Note also that
the results in [73, 86] cannot be applied to (8.21).

Theorem 8.3.11. Assume that (8.8) and (8.14) hold. Furthermore, assume that
there exists a differentiable function z and an odd m ∈ N with

(8.22) lim sup
t→∞

1
tm

∫ t

a

(t − s)m
(
Kq(s)(zσ(s))2 − p(s)(zΔ(s))2

)
Δs = ∞.

Then every solution of (8.7) is oscillatory on [a,∞).

Proof. Suppose to the contrary that x is a nonoscillatory solution of (8.7). Then
(8.15) from Lemma 8.3.4 implies that there exists t0 ∈ T such that

w(t) > 0 for all t ≥ t0,

where w is defined by (8.11). All assumptions from Theorem 8.3.3 are satisfied,
and hence we may multiply (8.13) by (t− s)m for t ≥ s and integrate the resulting
inequality from t0 to t ≥ t0 to obtain∫ t

t0

(t − s)m
(
Kq(s)(zσ(s))2 − p(s)(zΔ(s))2

)
Δs ≤ −

∫ t

t0

(t − s)mwΔ(s)Δs

= −
{
−(t − t0)mw(t0) − (−1)m

∫ t

t0

m−1∑
ν=0

(σ(t) − s)ν (t − s)m−ν−1w(σ(s))Δs

}
≤ (t − t0)mw(t0),
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where we have used the integration by parts formula from Theorem 8.2.12 (vi),
Theorem 8.2.7, and the fact that m ∈ N is odd. Therefore

1
tm

∫ t

t0

(t − s)m
(
Kq(s)(zσ(s))2 − p(s)(zΔ(s))2

)
Δs ≤
(

1 − t0
t

)m

w(t0),

which is a contradiction to (8.22). The proof is complete.

Remark 8.3.12. Note that when z(t) ≡ 1, then (8.22) reduces to

(8.23) lim sup
t→∞

1
tm

∫ t

T

(t − s)mq(s)Δs = ∞,

which can be considered as an extension of Kamenev type oscillation criteria for
second order differential equations; see [140]. When T = R, then (8.23) becomes

lim sup
t→∞

1
tm

∫ t

T

(t − s)mq(s)ds = ∞,

and when T = Z, then (8.23) becomes

lim sup
t→∞

1
tm

t−1∑
s=T

(t − s)mq(s) = ∞.

8.3.2. The Case
∫∞

a
1

p(t)Δt < ∞. In this subsection we consider (8.7), where
p does not satisfy (8.14), i.e.,

(8.24)
∫ ∞

a

1
p(t)

Δt < ∞.

In addition to (8.8), we impose the additional assumption

(8.25) f is nondecreasing.

We start with the following auxiliary result.

Lemma 8.3.13. Assume (8.8), (8.24), (8.25), and

(8.26)
∫ ∞

a

1
p(t)

∫ t

a

q(s)ΔsΔt = ∞.

Suppose that x is a nonoscillatory solution of (8.7) such that there exists t1 ∈ T

with

(8.27) x(t)xΔ(t) < 0 for all t ≥ t1.

Then
lim

t→∞x(t) exists and is zero.

Proof. Since x is nonoscillatory, it is either eventually positive or eventually nega-
tive. We only prove the lemma for the first case as the second case is similar and
hence omitted. Assume there exists t1 ∈ T such that

(8.28) x(t) > 0 and xΔ(t) < 0 for all t ≥ t1.

Hence x is positive and decreasing, and therefore limt→∞ x(t) =: b clearly exists.
We have to show b = 0. Let us assume the opposite, i.e., b > 0. By (8.8), f(b) > 0.
Hence

x(σ(t)) ≥ b > 0 for all t ≥ t1
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implies by (8.25)

f(x(σ(t))) ≥ f(b) > 0 for all t ≥ t1.

Define y = pxΔ and integrate the inequality

yΔ(s) ≤ −q(s)f(x(σ(s))) ≤ −q(t)f(b)

from t1 to t ≥ t1 to find

y(t) = y(t1) +
∫ t

t1

yΔ(s)Δs ≤
∫ t

t1

yΔ(s)Δs ≤ −
∫ t

t1

q(s)f(b)Δs

so that

xΔ(t) ≤ −f(b)
1

p(t)

∫ t

t1

q(s)Δs.

Now we integrate this inequality from t1 to T ≥ t1 to obtain

x(T ) = x(t1) +
∫ T

t1

xΔ(t)Δt

≤ −f(b)
∫ T

t1

1
p(t)

∫ t

t1

q(s)ΔsΔt

(8.26)→ −∞ as T → ∞.

This is contradictory to (8.28), and the proof is complete.

Using Lemma 8.3.13, we can now derive the following criteria.

Theorem 8.3.14. Assume (8.8), (8.24), (8.25), and (8.26). If there exists a differ-
entiable function z satisfying (8.16), then every solution of (8.7) is either oscillatory
or converges to zero.

Proof. We assume that x is a nonoscillatory solution of (8.7). Hence x is either
eventually positive or eventually negative, i.e., there exists t0 ∈ T with x(t) > 0
for all t ≥ t0 or x(t) < 0 for all t ≥ t0. Let y = pxΔ. If there exists t1 ≥ t0 with
y(t1) < 0, then

y(t) ≤ y(t1) < 0 for all t ≥ t1

since y is decreasing, and hence xΔ(t) < 0 for all t ≥ t1. If, however, y(t) > 0 for
all t ≥ t0, then xΔ(t) > 0 for all t ≥ t0. Altogether, either

x(t)xΔ(t) > 0 for all t ≥ t1,

in which case we can use Theorem 8.3.3 to derive a contradiction as in the proof of
Theorem 8.3.5, or

x(t)xΔ(t) < 0 for all t ≥ t1,

in which case we see from Lemma 8.3.13 that x(t) converges to zero as t tends to
infinity. This completes the proof.

Similarly we can prove the following theorem.

Theorem 8.3.15. Assume (8.8), (8.24), (8.25), and (8.26). If there exists a differ-
entiable function z satisfying (8.22), then every solution of (8.7) is either oscillatory
or converges to zero.
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8.4. Oscillation of Perturbed Nonlinear Dynamic Equations

In this section we follow [57] and provide some sufficient conditions for oscillation
of second order nonlinear perturbed dynamic equations of the form

(8.29)
(
α(t)
(
xΔ
)γ )Δ

+ F (t, xσ) = G(t, xσ, xΔ) for t ∈ [a, b],

where γ is a positive odd integer and α is a positive, real-valued rd-continuous func-
tion defined on the time scales interval [a, b]. Since we are interested in oscillatory
behavior, we suppose that the time scale under consideration is not bounded above,
i.e., it is a time scale interval of the form [a,∞). By a solution of (8.29) we mean a
nontrivial real-valued function x satisfying (8.29) for t ≥ a. A solution x of (8.29)
is said to be oscillatory if it is neither eventually positive nor eventually negative,
otherwise it is called nonoscillatory. Equation (8.29) is said to be oscillatory if all
its solutions are oscillatory. Our attention is restricted to those solutions of (8.29)
which exist on some half line [tx,∞) and satisfy sup{|x(t)| : t > t0} > 0 for any
t0 ≥ tx.

Throughout this section we shall assume that

(H1) α : T → R is a positive and rd-continuous function;
(H2) γ ∈ N is odd;
(H3) p, q : T → R are rd-continuous functions such that q(t) − p(t) > 0 for all

t ∈ T;
(H4) f : R → R is continuously differentiable and nondecreasing such that

uf(u) > 0 for all u ∈ R \ {0};
(H5) F : T × R → R and G : T × R2 → R are functions such that

uF (t, u) > 0 and uG(t, u, v) > 0 for all u ∈ R \ {0}, v ∈ R, t ∈ T;

(H6)
F (t,u)
f(u) ≥ q(t) and G(t,u,v)

f(u) ≤ p(t) for all u, v ∈ R \ {0} and all t ∈ T.

For simplicity, we list the conditions used in the main results as follows (t0 ≥ a):∫ ∞

t0

Δt

[α(t)]
1
γ

= ∞,(8.30) ∫ ∞

t0

Δt

[α(t)]
1
γ

< ∞,(8.31) ∫ ∞

t0

[q(t) − p(t)]Δt = ∞,(8.32)

lim
t→∞

∫ t

t0

{
1

α(s)

∫ ∞

s

[q(τ) − p(τ)]Δτ

} 1
γ

Δs = ∞,(8.33) ∫ ∞

t0

[q(t) − p(t)]Δt > 0,(8.34) ∫ ∞

t0

{
M

α(s)
− 1

α(s)

∫ s

t0

[q(t) − p(t)]Δt

}
Δs = −∞ for all M > 0,(8.35)

∫ ∞

t0

{
1

α(s)

∫ s

t0

[q(t) − p(t)]Δt − M

α(s)

} 1
γ

Δs = ∞ for all M > 0.(8.36)
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Theorem 8.4.1. Assume (H1)–(H6). Suppose that (8.30) and (8.32) hold. Then
every solution of (8.29) is oscillatory on [a,∞).

Proof. Let x be a nonoscillatory solution of (8.29), say, x(t) > 0 for t ≥ t0 for
some t0 ≥ a. We consider only this case, because the proof for the case that x is
eventually negative is similar. From (8.29), (8.2), (8.3), and the chain rule (as given
in [53, Theorem 1.87]), we have the identity (for t ≥ t0)(

α
(
xΔ
)γ

f ◦ x

)Δ

(t) =
G
(
t, xσ(t), xΔ(t)

)
f(xσ(t))

− F (t, xσ(t))
f(xσ(t))

− f ′(x(ξ))α(t)
[
xΔ(t)
]γ+1

f(x(t))f(x(σ(t)))
,

where ξ is a number in the real interval [t, σ(t)]. In view of (H2), (H4), (H5), and
(H6), we have for all t ≥ t0

(8.37)

(
α
(
xΔ
)γ

f ◦ x

)Δ

(t) ≤ p(t) − q(t).

Because of (H6) and (H3), from (8.29) we obtain for all t ≥ t0

(8.38)
(
α
(
xΔ
)γ )Δ

(t) ≤ −f(x(σ(t)))[q(t) − p(t)] < 0,

which implies that α
(
xΔ
)γ is a decreasing function on [t0,∞). We claim that

xΔ(t) ≥ 0 for all t ≥ t1 ≥ t0. If not, then there exists t2 ≥ t1 such that
α(t)
[
xΔ(t)
]γ ≤ α(t2)

[
xΔ(t2)
]γ = c < 0. Hence

(8.39) xΔ(t) ≤ c
1
γ

[α(t)]
1
γ

.

Integrating (8.39) from t2 to t provides

(8.40) x(t) ≤ x(t2) + c
1
γ

∫ t

t2

Δs

[α(s)]
1
γ

(8.30)−→ −∞ as t → ∞,

while the left-hand side of (8.40), i.e., x(t), is eventually positive. This contradiction
implies that xΔ(t) ≥ 0 for all t ≥ t1. Then, integrating (8.37) from t1 to t gives

(8.41)
α(t)
[
xΔ(t)
]γ

f(x(t))
≤ α(t1)

[
xΔ(t1)
]γ

f(x(t1))
−
∫ t

t1

[q(s) − p(s)]Δs
(8.32)−→ −∞

as t → ∞, while the left-hand side of (8.41) is always nonnegative, a contradiction.
Therefore every solution of (8.29) oscillates. The proof is complete.

Example 8.4.2. If T = R, then σ(t) = t and μ(t) ≡ 0. Then (8.30) and (8.32)
become (the Leighton–Wintner type criteria)∫ ∞

t0

dt

[α(t)]
1
γ

= ∞ and
∫ ∞

t0

[q(t) − p(t)]dt = ∞.

If T = Z, then σ(t) = t + 1 and μ(t) ≡ 1. Then (8.30) and (8.32) become (the
discrete analogue of Leighton–Wintner type criteria)

∞∑
t=t0

1

[α(t)]
1
γ

= ∞ and
∞∑

t=t0

[q(t) − p(t)] = ∞.
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Example 8.4.3. Let T ⊂ [1,∞) be any time scale that is unbounded above. Some
of the examples included are T = [1,∞), T = N, and T = {2k : k ∈ N0}. On T, we
consider the perturbed nonlinear dynamic equation

(8.42) (txΔ)Δ + xσ

(
1
t

+
1
t2

+ t2(xσ)2
)

=
(xσ)5

2t((xσ)4 + 1)((xΔ)2 + 1)
.

Let

α(t) = t, γ = 1, f(u) = u, p(t) =
1
2t

, q(t) =
1
t
,

and

F (t, u) = u

(
1
t

+
1
t2

+ t2u2

)
, G(t, u, v) =

u5

2t(u4 + 1)(v2 + 1)
.

Then (8.42) is in the form (8.29) and the conditions (H1), (H2), (H4), and (H5) are
clearly satisfied. In [47, Theorem 5.11], it was shown that for an unbounded time
scale T ⊂ [1,∞) with a ∈ T we have

(8.43)
∫ ∞

a

1
t
Δt = ∞.

Hence (8.30) is satisfied, and because of q(t) − p(t) = 1/(2t) > 0 and (8.43), (H3)
and (8.32) are satisfied as well. Finally, (H6) follows from

F (t, u)
f(u)

=
1
t

+
1
t2

+ t2u2 ≥ 1
t

= q(t)

and
G(t, u, v)

f(u)
=

u4

2t(u4 + 1)(v2 + 1)
≤ 1

2t

u4

u4 + 1
≤ 1

2t
= p(t).

It follows from Theorem 8.4.1 that all solutions of (8.42) are oscillatory on [1,∞).
Note that the same statement is also true for the equation(

t3(xΔ)3
)Δ

+ xσ

(
1
t

+
1
t2

+ t2(xσ)2
)

=
(xσ)5

2t((xσ)4 + 1)((xΔ)2 + 1)
.

Theorem 8.4.4. Assume (H1)–(H6). Suppose that (8.30) and (8.33) hold. Then
any bounded solution of (8.29) oscillates on [a,∞).

Proof. Suppose that x is a bounded nonoscillatory solution of (8.29), say, x(t) > 0
for t ≥ t0 for some t0 ≥ a. As in the proof of Theorem 8.4.1, since (8.30) holds,
we have xΔ(t) ≥ 0 for all t ≥ t1 ≥ t0 and the inequality in (8.41) holds. Since the
left-hand side of (8.41) is nonnegative, we find∫ t

t1

[q(s) − p(s)]Δs ≤ α(t1)
[
xΔ(t1)
]γ

f(x(t1))
,

and therefore for t ≥ t1

(8.44)
∫ ∞

t

[q(s) − p(s)]Δs ≤ α(t)
[
xΔ(t)
]γ

f(x(t))
.

Integrating (8.44) from t1 to t, we get

(8.45)
∫ t

t1

{
1

α(s)

∫ ∞

s

[q(τ) − p(τ)]Δτ

} 1
γ

Δs ≤
∫ t

t1

xΔ(s)Δs

[f(x(s))]
1
γ

.
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In view of (H4) we find that f(x(t)) ≥ f(x(t1)) for all t ≥ t1. Hence, it follows from
(8.45) that ∫ t

t1

{
1

α(s)

∫ ∞

s

[q(τ) − p(τ)]Δτ

} 1
γ

Δs ≤
∫ t

t1

xΔ(s)Δs

[f(x(s))]
1
γ

≤
∫ t

t1

xΔ(s)Δs

[f(x(t1))]
1
γ

=
x(t) − x(t1)

[f(x(t1))]
1
γ

.

By (8.33), the left-hand side of the above inequality tends to ∞ as t → ∞, while
the right-hand side is bounded, a contradiction. Therefore every bounded solution
of (8.29) oscillates on [a,∞).

Theorem 8.4.5. Assume (H1)–(H6). Suppose that (8.31), (8.34), (8.35), and
(8.36) hold. Then every solution of (8.29) is oscillatory or converges to zero on
[a,∞).

Proof. Again suppose that x is a nonoscillatory solution of (8.29) that does not
converge to zero, say, x(t) > 0 for t ≥ t0 for some t0 ≥ a. From (8.38) we have that
α
(
xΔ
)γ is a decreasing function on [t0,∞) and xΔ is monotone and of one sign.

Case 1. Suppose that xΔ(t) ≥ 0 for all t ≥ t1 ≥ t0. As in the proof of Theorem
8.4.1 we get the inequality in (8.41). Let

M =
α(t1)
[
xΔ(t1)
]γ

f(x(t1))
.

Then it follows from the inequality in (8.41) that for all t ≥ t1

(8.46)

[
xΔ(t)
]γ

f(x(t))
≤ M

α(t)
− 1

α(t)

∫ t

t1

[q(s) − p(s)]Δs.

Integrating (8.46) from t1 to t we obtain

(8.47)
∫ t

t1

[
xΔ(s)
]γ

f(x(s))
Δs ≤
∫ t

t1

{
M

α(s)
− 1

α(s)

∫ t

t1

[q(τ) − p(τ)]Δτ

}
Δs.

By (8.35), the right-hand side of (8.47) tends to −∞ as t → ∞, whereas the
left-hand side is nonnegative, a contradiction.

Case 2. Suppose that xΔ(t) < 0 for all t ≥ t1 ≥ t0. Hence x(t) → N > 0 as
t → ∞, and by (H4), f(x(t)) ≥ f(N) > 0 for all t ≥ t1. From (8.46) it follows that[

xΔ(t)
]γ ≤ −

{
1

α(t)

∫ t

t1

[q(τ) − p(τ)]Δτ − M

α(t)

}
f(x(t))

≤ −f(N)
{

1
α(t)

∫ t

t1

[q(τ) − p(τ)]Δτ − M

α(t)

}
.

Hence

(8.48) xΔ(t) ≤ − [f(N)]
1
γ

{
1

α(t)

∫ t

t1

[q(τ) − p(τ)]Δτ − M

α(t)

} 1
γ

.
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Integrating (8.48) from t1 to t, we have

(8.49) x(t) ≤ x(t1) − [f(N)]
1
γ

∫ t

t1

{
1

α(s)

∫ t

t1

[q(τ) − p(τ)]Δτ − M

α(s)

} 1
γ

Δs.

By (8.36), the right-hand side of (8.49) tends to −∞ as t → ∞, but this contradicts
the fact that x(t) is positive. This contradiction completes the proof.

Corollary 8.4.6. Assume (H1)–(H6). Suppose that (8.31), (8.34), and (8.35) hold.
Then any bounded solution x of (8.29) is oscillatory or converges to zero on [a,∞).

Proof. The condition (8.36) is used only in Case 2 of the proof of Theorem 8.4.5.
Let x be a bounded nonoscillatory solution of (8.29) that does not converge to zero.
In Case 2 of the proof of Theorem 8.4.5, we have x(t) > 0 and xΔ(t) < 0 for all
t ≥ t1 ≥ t0. Hence x(t) → N > 0 as t → ∞, and by (H4), f(x(t)) ≥ f(N) > 0 for
all t ≥ t1. From (8.46) we find∫ t

t1

{
M

α(s)
− 1

α(s)

∫ t

t1

[q(τ) − p(τ)]Δτ

}
Δs ≥

∫ t

t1

(
xΔ(s)

[f(x(s))]
1
γ

)γ

Δs

≥
∫ t

t1

(
xΔ(s)

[f(N)]
1
γ

)γ

Δs

=

(
x(t) − x(t1)

[f(N)]
1
γ

)γ

.

By (8.35), the left-hand side of the above inequality tends to −∞ as t → ∞, hence
x(t) → −∞ as t → ∞, but this contradicts the assumption that x is bounded.

Theorem 8.4.7. Assume (H1)–(H6). Suppose that (8.31), (8.32), and

(8.50)
∫ ∞

t0

{
1

α(t)

∫ t

t0

[q(s) − p(s)]Δs

} 1
γ

Δt = ∞

hold. Then every solution of (8.29) is oscillatory or converges to zero on [a,∞).

Proof. Let x be a nonoscillatory solution of (8.29), say, x(t) > 0 for t ≥ t0 for some
t0 ≥ a. As in the proof of Theorem 8.4.1 we see that xΔ is either eventually positive
or eventually negative. If xΔ is eventually positive, we can derive a contradiction
as in the proof of Theorem 8.4.1, since (8.32) holds. If xΔ(t) is eventually negative,
then limt→∞ x(t) =: N exists. We prove that N = 0. If not, then N > 0, from
which by (H4) we have f(x(σ(t))) ≥ f(N) > 0 for all t ≥ t1. Hence, it follows from
(8.29) and (H6) that

(8.51)
(
α
(
xΔ
)γ )Δ

(t) + [q(t) − p(t)]f(N) ≤ 0.

Define the function
u = α
(
xΔ
)γ

.

Then from (8.51) for t ≥ t1, we obtain

uΔ(t) ≤ −[q(t) − p(t)]f(N).
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Hence, for t ≥ t1, we have

u(t) ≤ u(t1) − f(N)
∫ t

t1

[q(s) − p(s)]Δs < −f(N)
∫ t

t1

[q(s) − p(s)]Δs,

where u(t1) = α(t1)
[
xΔ(t1)
]γ

< 0. Integrating the last inequality from t1 to t, we
find

∫ t

t1

xΔ(s)Δs ≤ − [f(N)]
1
γ

∫ t

t1

(
1

α(s)

∫ s

t1

[q(τ) − p(τ)]Δτ

) 1
γ

Δs
(8.50)−→ −∞

as t → ∞, and so x(t) → −∞ as t → ∞, a contradiction to the fact that x(t) > 0
for t ≥ t0. Thus N = 0 and then x(t) → 0 as t → ∞.

Theorem 8.4.8. Assume (H1)–(H6). Suppose that (8.31), (8.35), and (8.50) hold.
Then every solution of (8.29) is oscillatory or converges to zero on [a,∞).

Proof. Again suppose that x is a nonoscillatory solution of (8.29), say, x(t) > 0 for
t ≥ t0 for some t0 ≥ a. Since (8.31) holds, we see from the proof of Theorem 8.4.4
that xΔ is either eventually positive or eventually negative. If xΔ is eventually
positive, we can derive a contradiction as in Case 1 of the proof of Theorem 8.4.5,
since (8.35) holds. If xΔ(t) is eventually negative, we can prove as in Theorem 8.4.7
that x(t) converges to zero, and this completes the proof.

In the remainder of this section, by means of Riccati transformation techniques,
we establish some oscillation criteria for (8.29) in terms of the coefficients. We shall
now assume besides (H1)–(H6) that

(H7) there exists K > 0 such that f(u) ≥ Ku for all u ∈ R.

Theorem 8.4.9. Assume (H1)–(H7). Suppose that (8.30) holds. Moreover assume
that there exists a differentiable function z such that for all constants M > 0,

(8.52) lim sup
t→∞

∫ t

a

{
K[q(s) − p(s)] [zσ(s)]2 − [α(s)]1/γ

M1−1/γ

[
zΔ(s)
]2}

Δs = ∞.

Then every solution of (8.29) is oscillatory on [a,∞).

Proof. Suppose that x is a solution of (8.29) with x(t) �= 0 for all t and make the
Riccati substitution

(8.53) w = z2 α(xΔ)γ

x
.
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We use the rules (8.2) and (8.3) to find

−wΔ = −zΔz
α(xΔ)γ

x
− zσ

{
zσ

(
α(xΔ)γ

x

)Δ

+ zΔ α(xΔ)γ

x

}

= −zΔz
α(xΔ)γ

x
− (zσ)2

{
[α(xΔ)γ ]Δ

xσ
− α(xΔ)γ+1

xxσ

}
− zσzΔ α(xΔ)γ

x

= (zσ)2
{

F (t, xσ)
xσ

− G(t, xσ, xΔ)
xσ

}
+ (zσ)2

α(xΔ)γ+1

xxσ

−zΔz
α(xΔ)γ

x
− zσzΔ α(xΔ)γ

x

= (zσ)2
{

F (t, xσ)
xσ

− G(t, xσ, xΔ)
xσ

}
+αzzσ(xΔ)γ−1

{
zσ

z

(xΔ)2

xxσ
− zΔ

zσ

xΔ

x
− zΔ

z

xΔ

x

}
.

We put

r =
xΔ

x
and s =

zΔ

z
.

Then

zσ

z

(xΔ)2

xxσ
− zΔ

zσ

xΔ

x
− zΔ

z

xΔ

x
=

z + μzΔ

z
r©2 + (�s)r − sr

= r©2 + μsr©2 − sr + (�s)r

= r©2 + s(μr©2 − r) + (�s)r

= r©2 + s(�r) + (�s)r

= (r � s)©2 − s©2

= (r � s)©2 − (zΔ)2

zzσ
.

Altogether we have shown now that

−wΔ = (zσ)2
{

F (t, xσ)
xσ

− G(t, xσ, xΔ)
xσ

}
+αzzσ(xΔ)γ−1(r�s)©2 −α(zΔ)2(xΔ)γ−1.

Hence, if xxσ > 0, then we can estimate (apply (H1)–(H7))

(8.54) −wΔ ≥ K(zσ)2(q − p) − α(zΔ)2(xΔ)γ−1.

Using these preliminaries, we now may start the actual proof of the theorem. As-
sume that x is a solution of (8.29) which is positive on [t0,∞) for some t0 ≥ a (a
similar proof applies to the case when x is eventually negative). Define

(8.55) y = α(xΔ)γ .

Then for t ≥ t0, x(σ(t)) > 0, f(xσ(t)) > 0, and

yΔ(t) = G
(
t, xσ(t), xΔ(t)

)
− F (t, xσ(t)) ≤ f(xσ(t))[p(t) − q(t)] < 0,

and therefore y is strictly decreasing on [t0,∞). Assume that there exists t1 ≥ t0
with y(t1) =: c < 0. Then

α(s)
[
xΔ(s)
]γ

= y(s) ≤ y(t1) = c for all s ≥ t1
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and so [
xΔ(s)
]γ ≤ c

α(s)
for all s ≥ t1.

Therefore

xΔ(s) ≤ c1/γ

[α(s)]1/γ
for all s ≥ t1.

Integrating from t1 to t ≥ t1 provides

x(t) − x(t1) =
∫ t

t1

xΔ(s)Δs ≤ c1/γ

∫ t

t1

Δs

[α(s)]1/γ

for all t ≥ t1 so that

x(t) ≤ x(t1) + c1/γ

∫ t

t1

Δs

[α(s)]1/γ

(8.30)−→ −∞,

contradicting the positivity of x on [t0,∞). Therefore y(t) > 0 for all t ≥ t0 and
hence xΔ(t) > 0 for all t ≥ t0. Now, since y is positive and decreasing on [t0,∞),
we find 0 < y(t) ≤ y(t0) for all t ≥ t0. Let M = 1/y(t0). Then

xΔ(t) ≤ 1
[α(t)M ]1/γ

and hence [xΔ(t)]γ−1 ≤ 1
[α(t)M ]1−1/γ

for all t ≥ t0. Using this in (8.54), we obtain

(8.56) −wΔ ≥ K(zσ)2(q − p) − α1/γ

M1−1/γ
(zΔ)2.

Integrating (8.56) from t0 to t ≥ t0 provides (note that w(t) > 0 for all t ≥ t0 by
(8.53))

w(t0) ≥
∫ t

t0

{
K[zσ(s)]2[q(s) − p(s)] − [α(s)]1/γ

M1−1/γ
[zΔ(s)]2

}
Δs

(8.52)−→ ∞,

which is impossible. The proof is therefore complete.

We remark that in case γ = 1, M1−1/γ = 1 so that (8.52) is independent of the
number M . Similar remarks also hold for the results that follow.

Corollary 8.4.10. Assume (H1)–(H7). Suppose that (8.30) holds. Furthermore
assume that there exists a positive differentiable function δ such that for all con-
stants M > 0,
(8.57)

lim sup
t→∞

∫ t

a

⎧⎨⎩K[q(s) − p(s)]δσ(s) − [α(s)]1/γ

M1−1/γ

(
δΔ(s)√

δ(s) +
√

δσ(s)

)2
⎫⎬⎭Δs = ∞.

Then every solution of (8.29) is oscillatory on [a,∞).

Proof. Define z =
√

δ and note that

zΔ =
δΔ

√
δ +

√
δσ

.

If (8.57) holds for δ, then (8.52) holds for z =
√

δ. Thus the claim follows from
Theorem 8.4.9.
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From Theorem 8.4.9 and Corollary 8.4.10, we can obtain different conditions for
oscillation of all solutions of (8.29) by different choices of δ(t). For instance, let
δ(t) ≡ 1 or δ(t) = t. By Corollary 8.4.10 we then have the following two results.

Corollary 8.4.11. Assume (H1)–(H7). Suppose that (8.30) holds. If

(8.58) lim sup
t→∞

∫ t

a

[q(s) − p(s)]Δs = ∞,

then every solution of (8.29) is oscillatory on [a,∞).

Corollary 8.4.12. Assume (H1)–(H7). Suppose that (8.30) holds. If for all con-
stants M > 0,

(8.59) lim sup
t→∞

∫ t

a

{
K[q(s) − p(s)]σ(s) − [α(s)]1/γ

M1−1/γ(
√

s +
√

σ(s))2

}
Δs = ∞,

then every solution of (8.29) is oscillatory on [a,∞).

Example 8.4.13. Again let T ⊂ [1,∞) be a time scale which is unbounded above.
On T we consider the perturbed nonlinear dynamic equation

(8.60) xΔΔ + xσ

(
1

tσ(t)
+

1
t2

+ (xσ)2
)

=
(xσ)3

2tσ(t) ((xσ)2 + (xΔ)2 + 1)
.

Let

α(t) ≡ 1, γ = 1, f(u) = u, K = 1, p(t) =
1

2tσ(t)
, q(t) =

1
tσ(t)

,

and

F (t, u) = u

(
1

tσ(t)
+

1
t2

+ u2

)
, G(t, u, v) =

u3

2tσ(t)(u2 + v2 + 1)
.

Then (8.60) is in the form (8.29) and the conditions (H1), (H2), (H4), (H5), (H7),
and (8.30) are clearly satisfied. Because of q(t) − p(t) = 1/(2tσ(t)) > 0, (H3) is
satisfied as well. Next, (H6) follows from

F (t, u)
f(u)

=
1

tσ(t)
+

1
t2

+ 2u2 ≥ 1
tσ(t)

= q(t)

and
G(t, u, v)

f(u)
=

u2

2tσ(t)(u2 + v2 + 1)
≤ 1

2tσ(t)
= p(t).

Finally, (8.59) follows from the estimate∫ t

a

{
[q(s) − p(s)]σ(s) − 1

(
√

s +
√

σ(s))2

}
Δs

=
∫ t

a

{
1
2s

− 1
(
√

s +
√

σ(s))2

}
Δs

≥
∫ t

a

{
1
2s

− 1
(
√

s +
√

s)2

}
Δs

=
1
4

∫ ∞

a

1
s
Δs

(8.43)−→ ∞.
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By Corollary 8.4.12, every solution of (8.60) oscillates. We remark that the same
statement is also true for the equation

xΔΔ + xσ

(
c

tσ(t)
+

1
t2

+ (xσ)2
)

=
d(xσ)3

tσ(t) ((xσ)2 + (xΔ)2 + 1)
,

provided d > 0 and c > d + 1/4.

Theorem 8.4.14. Assume (H1)–(H7). Suppose that (8.30) holds. Moreover as-
sume that there exists a differentiable function z such that for all constants M > 0,
(8.61)

lim sup
t→∞

1
tm

∫ t

a

(t − s)m

{
K[q(s) − p(s)] [zσ(s)]2 − [α(s)]1/γ

M1−1/γ

[
zΔ(s)
]2}

Δs = ∞,

where m ∈ N is odd. Then every solution of (8.29) is oscillatory on [a,∞).

Proof. We proceed as in the proof of Theorem 8.4.9. We may assume that (8.29)
has a nonoscillatory solution x such that x(t) > 0, xΔ(t) ≥ 0, (α(xΔ)γ)Δ(t) ≤ 0
for t ≥ t0. Define w by (8.53) as before. Then we have w(t) > 0 and (8.56) holds.
Then from (8.56) we have, using integration by parts given in Theorem 8.2.12 (vi)
and Theorem 8.2.7∫ t

t0

(t − s)m

{
K[zσ(s)]2[q(s) − p(s)] − [α(s)]1/γ

M1−1/γ
[zΔ(s)]2

}
Δs

≤ −
∫ t

t0

(t − s)mwΔ(s)Δs

= (t − t0)mw(t0) − (−1)m+1

∫ t

t0

m−1∑
ν=0

(σ(t) − s)ν (t − s)m−ν−1w(σ(s))Δs

< (t − t0)mw(t0).

Hence

lim sup
t→∞

1
tm

∫ t

t0

(t − s)m

{
K[zσ(s)]2[q(s) − p(s)] − [α(s)]1/γ

M1−1/γ
[zΔ(s)]2

}
Δs ≤ w(t0),

which contradicts (8.61).

Note that when z(t) ≡ 1, then (8.61) reduces to

(8.62) lim sup
t→∞

1
tm

∫ t

a

(t − s)m[q(s) − p(s)]Δs = ∞,

which can be considered as an extension of Kamenev type oscillation criteria for
second order differential equations. When T = R, then (8.62) becomes

lim sup
t→∞

1
tm

∫ t

a

(t − s)m[q(s) − p(s)]ds = ∞,

and when T = Z, then (8.62) becomes

lim sup
t→∞

1
tm

t−1∑
s=a

(t − s)m[q(s) − p(s)] = ∞.

Next, we give some sufficient conditions when (8.30) does not hold, which guar-
antee that every solution of (8.29) oscillates or converges to zero in [a,∞).
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Theorem 8.4.15. Assume (H1)–(H7). Suppose that (8.31) and (8.50) hold. As-
sume there exists a differentiable function z such that (8.52) holds for all constants
M > 0. Then every solution of (8.29) is oscillatory or converges to zero in [a,∞).

Proof. We proceed as in Theorem 8.4.9 and assume that (8.29) has a nonoscillatory
solution such that x(t) > 0 for t ≥ t0 > a. From the proof of Theorem 8.4.9
we see that there exist two possible cases of the sign of xΔ(t). The proof when
xΔ is eventually positive is similar to the proof of Theorem 8.4.9 and hence is
omitted. Now suppose that xΔ(t) < 0 for t ≥ t1. Then x is decreasing and
limt→∞ x(t) = b ≥ 0. We assert that b = 0. If not, then x(σ(t)) > b > 0 for
t ≥ t2 > t1. Then there exists t3 > t2 such that f(x(σ(t))) ≥ Kb for t ≥ t3. Define
the function y by (8.55). Then from (8.52) for t ≥ t3, we obtain

yΔ(t) ≤ −[q(t) − p(t)]f(x(σ(t))) ≤ −Kb[q(t) − p(t)].

Hence, for t ≥ t3 we have

y(t) ≤ y(t3) − Kb

∫ t

t3

[q(s) − p(s)]Δs < −Kb

∫ t

t3

[q(s) − p(s)]Δs,

where y(t3) = α(t3)
[
xΔ(t3)
]γ

< 0. Integrating the last inequality from t3 to t we
have ∫ t

t3

xΔ(s)Δs ≤ −(Kb)1/γ

∫ t

t3

(
1

α(s)

∫ s

t3

[q(τ) − p(τ)]Δτ

)1/γ

Δs.

By (8.50) we get
x(t) → −∞ as t → ∞,

a contradiction to the fact that x(t) > 0 for t ≥ t0. Thus b = 0 and x(t) → 0 as
t → ∞.

As in the proof of Theorem 8.4.15 we can prove the following theorem.

Theorem 8.4.16. Assume (H1)–(H7). Suppose that (8.31) and (8.50) hold. As-
sume there exists a differentiable function z such that (8.61) holds for all constants
M > 0. Then every solution of (8.29) is oscillatory or converges to zero in [a,∞).

8.5. Positive Solutions of Nonlinear Dynamic Equations

Here we give a classification scheme for the eventually positive solutions of a
class of second order nonlinear dynamic equations in terms of their asymptotic
magnitudes. Necessary as well as sufficient conditions for the existence of posi-
tive solutions are provided. Our presentation follows the recent paper [197]. We
consider the second order nonlinear dynamic equation

(8.63) yΔΔ(t) + r(t)f (yσ(t)) = 0, t ∈ T

according to limiting behavior and then provide sufficient and/or necessary condi-
tions for their existence, where r ∈ Crd ([t0,∞), [0,∞)), r(t) �≡ 0 for t ∈ T, t0 > 0,
and f(y) > 0 is nondecreasing for any y ∈ R \ {0}.

We note that if T = R, then (8.63) becomes the differential equation

(8.64) y′′(t) + r(t)f(y(t)) = 0, t ∈ R.
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The asymptotic behavior of solutions of (8.64) has been studied by several authors
under different conditions, see Naito [231, 233]. If T = Z, then (8.63) becomes the
difference equation

(8.65) Δ2yn + rnf(yn+1) = 0, n ∈ Z,

which has been discussed in detail by many authors, one can refer to [123, 171,
181, 193, 212].

Let y be a positive solution of (8.63). From (8.63) we have

yΔΔ(t) = −r(t)f (yσ(t)) ≤ 0,

which implies that yΔ is nonincreasing. Thus we claim that

yΔ(t) ≥ 0 for t ≥ t0.

If not, then there exists a sufficiently large t1 ≥ t0 such that yΔ(t) < −c for t ≥ t1,
where c > 0 is a constant. Hence, for t > t1, we obtain

y(t) − y(t1) =
∫ t

t1

yΔ(s)Δs <

∫ t

t1

(−c)Δs = −c(t − t1).

This means that limt→∞ y(t) = −∞, which contradicts y(t) ≥ 0.

In view of (8.63), there are positive constants α and β such that

α ≤ y(t) ≤ βt for t ≥ t0.

From above, we can see that the set of positive solutions C of (8.63) can be parti-
tioned in the following three classes:

C[max] :=
{

y ∈ C : lim
t→∞ yΔ(t) = α > 0

}
,

C[int] :=
{

y ∈ C : lim
t→∞ y(t) = ∞ and lim

t→∞ yΔ(t) = 0
}

,

and

C[min] :=
{

y ∈ C : lim
t→∞ y(t) = β > 0

}
.

In the following, we will give several necessary and/or sufficient conditions for the
existence of positive solutions of (8.63).

Theorem 8.5.1. Equation (8.63) has a positive solution in the class C[max] if and
only if

(8.66)
∫ ∞

t0

r(s)f (bσ(s)) < ∞ for some b > 0.

Proof. Let y ∈ C[max] be a solution of (8.63). Then

lim
t→∞ yΔ(t) = α > 0 for t ≥ t0.

Hence there exist a sufficiently large t1 such that
1
2
α < yΔ(t) <

3
2
α for t ≥ t1

so that
1
2
αt < y(t) <

3
2
αt for t > t1.
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Set b = 1
2α. Then the nondecreasing property of f implies that

(8.67) f(y(t)) ≥ f(bt) and f (yσ(t)) ≥ f (bσ(t)) .

Integrating both sides of (8.63) from t1 to t, we see

yΔ(t1) − yΔ(t) =
∫ t

t1

r(s)f (yσ(s)) Δs.

Taking limits on both sides of the above equality, we get

lim
t→∞

∫ t

t1

r(s)f (yσ(s)) Δs = yΔ(t1) − α,

which implies that

(8.68)
∫ ∞

t1

r(s)f (yσ(s)) Δs < ∞.

From (8.67) and (8.68), it follows that∫ ∞

t1

r(s)f (bσ(s)) Δs < ∞.

Conversely, assume that (8.66) holds. Then there exists a large number T such
that

(8.69)
∫ ∞

t

r(s)f(bσ(s))Δs <
b

2
for t ≥ T.

Consider the sequence {xn}∞n=0 defined by

x0(t) =
b

2
for t ≥ T

and for n ∈ N0,

xn+1(t) =
b

2
+

1
t

∫ t

T

∫ ∞

τ

r(s)f
(
σ(s)xσ

n(s)
)

ΔsΔτ for t ≥ T.

In view of (8.69), the sequence {xn(t)}∞n=0 is well defined. In fact,

x1(t) =
b

2
+

1
t

∫ t

T

∫ ∞

τ

r(s)f
(

b

2
σ(s)
)

ΔsΔτ

≤ b

2
+

t − T

t

∫ ∞

T

r(s)f (bσ(s)) ΔsΔτ

≤ b

2
+
∫ ∞

T

r(s)f (bσ(s)) Δs

<
b

2
+

b

2
= b

and
x1(t) ≥ x0(t) for t ≥ T.

By induction and the nondecreasing property of f , we have

(8.70) xn+1(t) ≥ xn(t) for t ≥ T, n ∈ N0.

Next, we will prove that {xn(t)}∞n=0 is bounded for t ≥ T . First,

x0(t) =
b

2
< b and x1(t) < b.
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If we assume xn(t) < b for t ≥ T , then σ(s)xσ
n(s) < bσ(s), and

xn+1(t) =
b

2
+

1
t

∫ t

T

∫ ∞

τ

r(s)f
(
σ(s)xσ

n(s)
)

ΔsΔτ

≤ b

2
+

1
t

∫ t

T

∫ ∞

τ

r(s)f (bσ(s)) ΔsΔτ

≤ b

2
+
∫ ∞

T

r(s)f (bσ(s)) Δs < b

for t ≥ T , which, by induction implies that {xn(t)}∞n=0 is bounded for t ≥ T . In
view of (8.70), we know that {xn(t)}∞n=0 is pointwise convergent to some function
x∗(t). By means of Lebesgue’s dominated convergence theorem, we obtain

x∗(t) =
b

2
+

1
t

∫ t

T

∫ ∞

τ

r(s)f
(
σ(s)xσ(s)

)
ΔsΔτ for t ≥ T

and
b

2
≤ x∗(t) < b.

Setting y(t) = tx∗(t), we find

y(t) =
b

2
t +
∫ t

T

∫ ∞

τ

r(s)f (yσ(s)) ΔsΔτ for t ≥ T.

Obviously, y ∈ C[max] is a solution of (8.63).

Theorem 8.5.2. Equation (8.63) has a positive solution in the class C[min] if and
only if

(8.71)
∫ ∞

t0

∫ ∞

τ

r(s)f(d)ΔsΔτ < ∞ for some d > 0.

Proof. Let y ∈ C[min] be a solution of (8.63). Then

lim
t→∞ y(t) = β > 0 and lim

t→∞ yΔ(t) = 0 for t ≥ t0.

Hence there exists a sufficiently large t1 such that
1
2
β < y(t) <

3
2
β for t ≥ t1.

Set d = 1
2β. Then the nondecreasing property implies

f(y(t)) > f(d) and f (yσ(t)) > f(d) for t > t1.

By integrating both sides of (8.63) from t to ∞ for t > t1, we obtain

β − y(t1) =
∫ ∞

t1

∫ ∞

τ

r(s)f (yσ(s)) ΔsΔτ,

which implies ∫ ∞

t1

∫ ∞

τ

r(s)f(d)ΔsΔτ < ∞,

i.e., (8.71) holds.

The rest of the proof of Theorem 8.5.2 is similar to that of Theorem 8.5.1, and
therefore we omit it here. The proof is complete.
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Theorem 8.5.3. If (8.63) has a positive solution in C[int], then

(8.72)
∫ ∞

t0

r(s)f(a)Δs < ∞ for some a > 0

and ∫ ∞

t0

∫ ∞

τ

r(s)f(bσ(s))ΔsΔτ = ∞ for every b > 0.

Proof. Let y ∈ C[int] be a solution of (8.63). Then limt→∞ y(t) = ∞ and
limt→∞ yΔ(t) = 0. Hence there exist two positive constants a and b and a suf-
ficiently large t1 > t0 such that a < y(t) < bt for t > t1, which, in view of the
nondecreasing property of f , implies that

f(y(t)) ≥ f(a) and f (yσ(t)) ≤ f(a)

and

(8.73) f(y(t)) ≤ f(bt) and f (yσ(t)) ≤ f(bσ(t)) for t > t1.

From equation (8.63) we have

(8.74) yΔ(t) +
∫ t

t1

r(s)f (yσ(s)) Δs = yΔ(t1) for t > t1.

In view of limt→∞ yΔ(t) = 0, (8.74) yields∫ ∞

t1

r(s)f (yσ(s)) Δs = yΔ(t1),

and so ∫ ∞

t1

r(s)f(a)Δs < ∞,

which implies that (8.72) holds.
Further, in view of limt→∞ yΔ(t) = 0, we obtain

(8.75)
∫ ∞

s

r(s)f (yσ(s)) Δs = yΔ(s) for s > t1.

Integrating both sides of (8.75) from t1 to t, we obtain

y(t) − y(t1) =
∫ t

t1

∫ ∞

τ

r(s)f (yσ(s)) ΔsΔτ ≤
∫ t

t1

∫ ∞

τ

r(s)f (bσ(s)) ΔsΔτ

for t > t1. Hence, (8.73) and limt→∞ y(t) = ∞ imply∫ ∞

t1

∫ ∞

τ

r(s)f (bσ(s)) ΔsΔτ = ∞.

The proof is complete.

Theorem 8.5.4. Equation (8.63) has a positive solution in C[int] provided that

(8.76)
∫ ∞

t0

r(s)f (aσ(s)) Δs < ∞ for some a > 0

and

(8.77)
∫ ∞

t0

∫ ∞

τ

r(s)f(b)ΔsΔτ = ∞ for every b > 0.
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Proof. In view of (8.76) and (8.77), there exist two positive constants a and b and
a sufficiently large t1 such that

b

t
< a and

b

t
+

1
t

∫ t

t1

∫ ∞

τ

r(s)f (aσ(s)) ΔsΔτ < a for t ≥ t1.

Consider the sequence {xn(t)}∞n=0 defined by

x0(t) = 0

and for t ≥ t1, n ∈ N0,

xn+1(t) = Pxn(t) =
b

t
+

1
t

∫ t

t1

∫ ∞

τ

r(s)f
(
σ(s)xσ

n(s)
)

ΔsΔτ.

It is easy to see that {xn(t)}∞n=0 is well defined. In fact,

x1(t) =
b

t
< a and xσ

1 (t) < a for t ≥ t1

and

x2(t) =
b

t
+

1
t

∫ t

t1

∫ ∞

τ

r(s)f
(
σ(s)xσ

1 (s)
)

ΔsΔτ

≤ b

t
+

1
t

∫ t

t1

∫ ∞

τ

r(s)f (aσ(s)) ΔsΔτ < a

for t ≥ t1. Also, if we assume that xn(t) < a for t ≥ t1, then xσ
n(t) < a and

xn+1(t) =
b

t
+

1
t

∫ t

t1

∫ ∞

τ

r(s)f
(
σ(s)xσ

n(s)
)

ΔsΔτ

≤ b

t
+

1
t

∫ t

t1

∫ ∞

τ

r(s)f (aσ(s)) ΔsΔτ < a

for t ≥ t1, which, by induction, shows that {xn(t)}∞n=0 is bounded, i.e.,

0 ≤ xn(t) < a for t ≥ t1, n ∈ N0.

In view of x0(t) ≤ x1(t) and the nondecreasing property of f , we have

xn+1(t) ≥ xn(t) for t ≥ t1, n ∈ N0.

Hence, Lebesgue’s dominated convergence theorem implies that

x∗(t) =
a

t
+

1
t

∫ t

t1

∫ ∞

τ

r(s)f
(
σ(s)x∗(σ(s))

)
ΔsΔτ

for t ≥ t1. Set y(t) = tx∗(t). Then

y(t) = a +
∫ t

t1

∫ ∞

τ

r(s)f (yσ(s)) ΔsΔτ for t ≥ t1.

It is easily verified that y ∈ C[int] is a solution of (8.63).
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8.6. Oscillation of Emden–Fowler Equations

In this section we explore the solution properties of

(8.78) uΔ2
(t) + p(t)[u(σ(t))]γ = 0

on a time scale T (unbounded above) which contains only isolated points (a so-called
discrete time scale), with the eventual goal of showing that if

∫∞
a

σ(t)p(t)Δt = ∞,
then equation (8.78) is oscillatory. The function p is defined on T and γ is a quotient
of odd positive integers. Some of the proof techniques in this section are similar to
those in the book by Agarwal [2] on difference equations. The results presented in
this section are adopted from Akın-Bohner and Hoffacker [21, 22].

By a solution u of the given dynamic equation we shall mean a nontrivial solution
which exists on [a,∞) for some a ∈ T. We now define oscillation and nonoscillation
in this setting.

Definition 8.6.1. A solution u is called oscillatory if for any t1 ∈ [a,∞), there
exists t2 ∈ [t1,∞) such that u(t2)u(σ(t2)) ≤ 0.

The dynamic equation (8.78) itself is called oscillatory if all its solutions are
oscillatory. If the solution u is not oscillatory, then it is said to be nonoscillatory.
Equivalently the following definition can be made.

Definition 8.6.2. The solution u is nonoscillatory if it is eventually positive or
negative, i.e., there exists t1 ∈ [a,∞) such that u(t)u(σ(t)) > 0 for all t ∈ [t1,∞).

The dynamic equation (8.78) itself is called nonoscillatory if all of its solutions
are nonoscillatory.

Example 8.6.3. A given dynamic equation can have both oscillatory and nonoscil-
latory solutions. Take

uΔ2
(t) +

8
3
uΔ(t) +

4
3
u(t) = 0,

where t ∈ T = Z. Solutions to this difference equation are easily found (see [144]).
Two solutions are

u1(t) = (−1)t and u2(t) =
(

1
3

)t

.

Clearly u1 is oscillatory and u2 is nonoscillatory.

Example 8.6.4. Let T be a time scale such that μ(t) ≥ 1 for all t ∈ T. The
dynamic equation

uΔ2
(t) +

8
3
uΔ(t) +

4
3
u(t) = 0

is regressive. Then for t0 ∈ T,

e 1
3
(t, t0) and e−1(t, t0)

are two solutions of the above dynamic equation. However

e 1
3
(t, t0)e 1

3
(σ(t), t0) =

(
1 +

1
3
μ(t)
)

[e 1
3
(t, t0)]2 > 0

and
e−1(t, t0)e−1(σ(t), t0) = (1 − μ(t))[e−1(t, t0)]2 ≤ 0.
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Thus e 1
3
(t, t0) and e−1(t, t0) are nonoscillatory and oscillatory solutions of the above

dynamic equation, respectively.

The following are some basic properties of solutions of equation (8.78).

Lemma 8.6.5. If u is a nontrivial solution of equation (8.78) with

u(a)u(σ(a)) ≤ 0 for some a ∈ T,

then either
u(a) �= 0 or u(σ(a)) �= 0.

Proof. Let t = ρ(a) for a ∈ T and suppose u(a) = 0. We desire to show that
u(σ(a)) �= 0. By equation (8.78) we have uΔ2

(ρ(a)) = 0, or expanding

uΔ(a) − uΔ(ρ(a))
μ(ρ(a))

= 0,

which implies that

u(σ(a)) − u(a)
μ(a)μ(ρ(a))

− u(a) − u(ρ(a))
μ2(ρ(a))

= 0.

However if both u(a) = 0 and u(σ(a)) = 0, then it must be the case that u(ρ(a)) = 0.
This process can be continued for t = ρ2(a), etc., implying that the solution u is
actually trivial. But this contradicts the assumption that our solution is nontrivial.
Similarly, if we assume u(σ(a)) = 0, then it must be the case that u(a) �= 0. Thus
either u(a) �= 0 or u(σ(a)) �= 0.

Remark 8.6.6. If in addition u(a) = 0, then

μ(ρ(a))u(σ(a)) = −μ(a)u(ρ(a)).

Thus an oscillatory solution of equation (8.78) must change sign infinitely many
times.

Lemma 8.6.7. Assume p(t) ≤ 0 for all t ∈ T, and for every a ∈ T, p(t) < 0 for
some t ∈ [σ(a),∞). If u is a solution of equation (8.78) with

(8.79) u(ρ(a)) ≤ u(a)

and

(8.80) u(a) ≥ 0

for some a ∈ T, then u and uΔ are nondecreasing and nonnegative on [a,∞).

Proof. We will show the desired result by mathematical induction on t. Let t = ρ(a)
for a ∈ T in equation (8.78). Then by our assumption on p, (8.79), and (8.80),

(8.81) uΔ2
(ρ(a)) = −p(ρ(a))[u(a)]γ ≥ 0

and

uΔ(ρ(a)) =
u(a) − u(ρ(a))

μ(ρ(a))
≥ 0.

It follows from (8.81) that

uΔ2
(ρ(a)) =

uΔ(a) − uΔ(ρ(a))
μ(ρ(a))

≥ 0.
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Therefore uΔ(a) ≥ uΔ(ρ(a)) ≥ 0. Suppose the desired result is true for t = σn−1(a)
for some n ∈ N \ {1}, i.e.,

(8.82) uΔ(σn(a)) ≥ uΔ(σn−1(a)) ≥ 0

and

(8.83) u(σn(a)) ≥ u(σn−1(a)) ≥ 0.

We wish to show that the desired result is true for t = σ(σn−1(a)) = σn(a) for
some n ∈ N \ {1}. By (8.82),

0 ≤ uΔ(σn(a)) =
u(σn+1(a)) − u(σn(a))

μ(σn(a))
.

Because of this and by (8.83),

u(σn+1(a)) ≥ u(σn(a)) ≥ 0.

Therefore
uΔ2

(σn(a)) = −p(σn(a))[u(σn+1(a))]γ ≥ 0.

Using

uΔ2
(σn(a)) =

uΔ(σn+1(a)) − uΔ(σn(a))
μ(σn(a))

≥ 0

and (8.82),
uΔ(σn+1(a)) ≥ uΔ(σn(a)) ≥ 0.

Hence by induction the result holds.

Remark 8.6.8. Similarly, if p is as in Lemma 8.6.7, u(ρ(a)) ≥ u(a), and u(a) ≤ 0
for some a ∈ T, then u and uΔ are nonincreasing and nonpositive on [a,∞).

The next result follows immediately from Lemma 8.6.7.

Lemma 8.6.9. If p is as in Lemma 8.6.7, then all nontrivial solutions of equation
(8.78) are nonoscillatory and eventually monotone.

Lemma 8.6.10. Assume that p(t) ≥ 0 for all t ∈ T, and for every a ∈ T, p(t) > 0
for some t ∈ [σ(a),∞). If u is a nonoscillatory solution of equation (8.78) such
that u(t) > 0 for all t ∈ [a,∞), then

(8.84) u(σ(t)) > u(t) for all t ≥ a

and

(8.85) 0 < uΔ(σ(t)) ≤ uΔ(t) for all t ≥ a.

Proof. If u is a nonoscillatory solution of equation (8.78), then since u(t) > 0 for
t ∈ [a,∞), we have u(t)u(σ(t)) > 0, which implies that u(σ(t)) > 0 on [a,∞) as
well. Thus on [a,∞),

uΔ2
(t) = −p(t)[u(σ(t))]γ ≤ 0

Using

uΔ2
(t) =

uΔ(σ(t)) − uΔ(t)
μ(t)

,

we have
uΔ(σ(t)) − uΔ(t)

μ(t)
≤ 0,
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and so for t ∈ [a,∞)

(8.86) uΔ(σ(t)) ≤ uΔ(t).

It remains to show that (8.84) holds which will imply that 0 < uΔ(σ(t)). Assume
not. Then we have u(σ(b)) ≤ u(b) for some b ∈ [σ(a),∞). By (8.86) we have

(8.87) 0 ≥ uΔ(b) ≥ uΔ(σ(b)) ≥ · · · ≥ uΔ(σn(b)) ≥ . . . .

However there exists a sequence {tn}n∈N ∈ T such that tn → ∞ and p(tn) < 0.
Thus

uΔ2
(tn) = −p(tn)[u(σ(tn))]γ < 0.

But

uΔ2
(tn) =

uΔ(σ(tn)) − uΔ(tn)
μ(tn)

< 0,

so infinitely many of the inequalities in (8.87) must be strict, contradicting the fact
that u(t) > 0 for all t ∈ [a,∞).

Remark 8.6.11. If instead u is a nonoscillatory solution of equation (8.78) such
that u(t) < 0 for all t ∈ [a,∞), then

u(σ(t)) < u(t) and 0 > uΔ(σ(t)) ≥ uΔ(t) for all t ≥ a.

Remark 8.6.12. For a, t ∈ T with t > a we can write t = σn(a) for some n ∈ N.
Thus we can write

t − σ(a) = σn(a) − σ(a) =
n−1∑
i=1

μ(σi(a)).

If instead t < a, then we can write t = ρn(a) for some n ∈ N, so

σ(a) − t = σ(a) − ρn(a) =
n∑

i=0

μ(ρi(a)).

Theorem 8.6.13. Assume p(t) ≤ 0 for all t ∈ T, and for every a ∈ T, p(t) < 0
for some t ∈ [σ(a),∞) and for some t ∈ (−∞, ρ(a)]. Let u and v be solutions of
equation (8.78) satisfying

(8.88) u(b) ≤ v(b) and u(σ(b)) > v(σ(b))

for some b ∈ T. Then for t ∈ [σ(b),∞),

(8.89) u(t) − v(t) ≥ t − b

μ(b)

(
u(σ(b)) − v(σ(b))

)
,

and for t ∈ (−∞, b],

(8.90) u(t) − v(t) ≤ σ(b) − t

μ(b)

(
u(b) − v(b)

)
.

In addition u(t) > v(t) for all t ∈ [σ(b),∞), u(t) < v(t) for all t ∈ (−∞, ρ(b)], and
u(t) − v(t) is nondecreasing for all t ∈ T.

Proof. Fix r ∈ T with r > b and let w(σn(r)) = u(σn(b)) − v(σn(b)) for n ∈ N0.
From (8.88) it is clear that

w(r) = u(b) − v(b) ≤ 0 and w(σ(r)) = u(σ(b)) − v(σ(b)) > 0.
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By induction we shall show that

(8.91) w(σn(r)) ≥

n−1∑
i=0

μ(σi(b))

n−2∑
i=0

μ(σi(b))
w(σn−1(r)) > 0,

where n ∈ N \ {1}. From equation (8.78) we have

uΔ2
(b) = −p(b)[u(σ(b))]γ ≥ −p(b)[v(σ(b))]γ = vΔ2

(b),

and so it follows that for n = 2, t = σ2(b),

w(σ2(r)) = u(σ2(b)) − v(σ2(b))

= u(σ(b)) + μ(σ(b))uΔ(σ(b)) − v(σ(b)) − μ(σ(b))vΔ(σ(b))

= w(σ(r)) + μ(σ(b))
(
uΔ(σ(b)) − vΔ(σ(b))

)
= w(σ(r)) + μ(σ(b))

(
uΔ(b) + μ(b)uΔ2

(b) − vΔ(b) − μ(b)vΔ2
(b)
)

≥ w(σ(r)) + μ(σ(b))
[
w(σ(r)) − w(r)

μ(b)

]
≥ w(σ(r)) + w(σ(r))

μ(σ(b))
μ(b)

=
μ(b) + μ(σ(b))

μ(b)
w(σ(r)) > 0.

Hence (8.91) is true for n = 2. Now suppose that (8.91) is true for some n ≥ 2. We
wish to show that (8.91) holds for n + 1. As before we have that

uΔ2
(σn−1(b)) ≥ vΔ2

(σn−1(b)).

Hence

w(σn+1(r)) = u(σn+1(b)) − v(σn+1(b))

= u(σn(b)) + μ(σn(b))uΔ(σn(b)) − v(σn(b)) − μ(σn(b))vΔ(σn(b))

= w(σn(r)) + μ(σn(b))
(
uΔ(σn(b)) − vΔ(σn(b))

)
= w(σn(r)) + μ(σn(b))

(
uΔ(σn−1(b)) + μ(σn−1(b))uΔ2

(σn−1(b))

−vΔ(σn−1(b)) − μ(σn−1(b))vΔ2
(σn−1(b))

)
≥ w(σn(r)) + μ(σn(b))

[
w(σn(r)) − w(σn−1(r))

μ(σn−1(b))

]

≥ w(σn(r)) + w(σn(r))
μ(σn(b))

μ(σn−1(b))
− μ(σn(b)

μ(σn−1(b))

n−2∑
i=0

μ(σi(b))

n−1∑
i=0

μ(σi(b))
w(σn(r))

=

⎡⎢⎢⎣1 +
μ(σn(b)

μ(σn−1(b))
− μ(σn(b)

μ(σn−1(b))

n−2∑
i=0

μ(σi(b))

n−1∑
i=0

μ(σi(b))

⎤⎥⎥⎦w(σn(r))
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=

n∑
i=0

μ(σi(b))

n−1∑
i=0

μ(σi(b))
w(σn(r)) > 0.

Thus (8.91) holds for n+1 as well. From (8.91) and (8.88), it is clear that u(t) > v(t)
for all t ∈ [σ(b),∞). Further we have

w(σn(r)) ≥

n−1∑
i=0

μ(σi(b))

n−2∑
i=0

μ(σi(b))
w(σn−1(r))

≥

n−1∑
i=0

μ(σi(b))

n−2∑
i=0

μ(σi(b))

n−2∑
i=0

μ(σi(b))

n−3∑
i=0

μ(σi(b))
w(σn−2(r))

=

n−1∑
i=0

μ(σi(b))

n−3∑
i=0

μ(σi(b))
w(σn−2(r))

≥ . . .

≥

n−1∑
i=0

μ(σi(b))

μ(b)
w(σ(r))

=
σn(b) − b

μ(b)
w(σ(r)),

which is the same as (8.89) for t = σn(b).

For the last part of the theorem, we let w(ρn(r)) = u(ρn(b)) − v(ρn(b)) for
n ∈ N0. By equation (8.78) we have

uΔ2
(ρ(b)) = −p(ρ(b))[u(b)]γ ≤ −p(ρ(b))[v(b)]γ = vΔ2

(ρ(b)).

In addition w(r) = u(b) − v(b) ≤ 0 and w(σ(r)) = u(σ(b)) − v(σ(b)) > 0. For
t = ρ(r) we have

w(ρ(r)) = u(ρ(b)) − v(ρ(b))

= u(b) − μ(ρ(b))uΔ(ρ(b)) − v(b) + μ(ρ(b))vΔ(ρ(b))

= w(r) − μ(ρ(b))
(
uΔ(b) − μ(ρ(b))uΔ2

(ρ(b))
)

+μ(ρ(b))
(
vΔ(b) − μ(ρ(b))vΔ2

(ρ(b))
)

= w(r) − μ(ρ(b))
(
uΔ(b) − vΔ(b)

)
+ μ(ρ(b))μ(ρ(b))

(
uΔ2

(ρ(b)) − vΔ2
(ρ(b))
)

≤ w(r) − μ(ρ(b))
(
uΔ(b) − vΔ(b)

)
= w(r) − μ(ρ(b))

μ(b)
w(σ(r)) +

μ(ρ(b))
μ(b)

w(r)
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=
μ(ρ(b)) + μ(b)

μ(b)
w(r) − μ(ρ(b))

μ(b)
w(σ(r))

<
μ(ρ(b)) + μ(b)

μ(b)
w(r) ≤ 0,

so w(ρ(r)) < 0 holds as well. We shall show that

(8.92) w(ρn(r)) <

n∑
i=0

μ(ρi(b))

n−1∑
i=0

μ(ρi(b))
w(ρn−1(r)) < 0,

where n ≥ 2. Using the same relationships as in the previous part of the proof we
have

w(ρ2(r)) = u(ρ2(b)) − v(ρ2(b))

≤ w(ρ(r)) − μ(ρ2(b))
(
uΔ(ρ(b)) − vΔ(ρ(b))

)
= w(ρ(r)) − μ(ρ2(b))

μ(ρ(b))
w(r) +

μ(ρ2(b))
μ(ρ(b))

w(ρ(r))

=
μ(ρ2(b)) + μ(ρ(b))

μ(ρ(b))
w(ρ(r)) − μ(ρ2(b))

μ(ρ(b))
w(r)

<
μ(ρ2(b)) + μ(ρ(b)) + μ(b)

μ(ρ(b)) + μ(b)
w(ρ(r)) < 0,

so (8.92) is true for n = 2. Suppose (8.92) is true for n ≥ 2, then we wish to show
that it is true for n + 1. As before

uΔ2
(ρn+1(b)) ≤ vΔ2

(ρn+1(b)).

Thus

w(ρn+1(r)) = u(ρn+1(b)) − v(ρn+1(b))

= u(ρn(b)) − μ(ρn+1(b))uΔ(ρn+1(b)) − v(ρn(b)) + μ(ρn+1(b))vΔ(ρn+1(b))

= w(ρn(r)) − μ(ρn+1(b))
(
uΔ(ρn(b)) − vΔ(ρn(b))

)
+μ(ρn+1(b))μ(ρn+1(b))

(
uΔ2

(ρn+1(b)) − vΔ2
(ρn+1(b))

)
≤ w(ρn(r)) − μ(ρn+1(b))

(
uΔ(ρn(b)) − vΔ(ρn(b))

)
= w(ρn(r)) − μ(ρn+1(b))

μ(ρn(b))
w(ρn−1(r)) +

μ(ρn+1(b))
μ(ρn(b))

w(ρn(r))

<
μ(ρn(b)) + μ(ρn+1(b))

μ(ρn(b))
w(ρn(r)) −

μ(ρn+1(b))
n−1∑
i=0

μ(ρi(b))

μ(ρn(b))
n∑

i=0

μ(ρi(b))
w(ρn(r))

=

n+1∑
i=0

μ(ρi(b))

n∑
i=0

μ(ρi(b))
w(ρn(r)) < 0,
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and (8.92) holds for n + 1. As before we can use (8.92) to obtain

w(ρn(r)) <
σ(b) − ρn(b)

μ(b)
w(r)

for n ∈ N, which is equivalent to (8.90). In addition u − v is nondecreasing on T

and u(t) < v(t) for all t ∈ (−∞, ρ(b)].

Remark 8.6.14. In the case T = Z, (8.89) reduces to

u(t) − v(t) ≥ (t − b)
(
u(b + 1) − v(b + 1)

)
for t ≥ b + 1.

In addition, (8.90) reduces to

u(t) − v(t) ≤ (b + 1 − t)
(
u(b) − v(b)

)
for t ≤ b,

which is as expected from [2].

Remark 8.6.15. In Lemma 8.6.7 we assumed that u(a) ≥ u(ρ(a)), u(a) ≥ 0, and
concluded that u was nondecreasing on [a,∞). If we assume u(a) > u(ρ(a)) ≥ 0,
then u is strictly increasing on [ρ(a),∞) and u(t) → ∞ as t → ∞.

Proof. By assumption uΔ(ρ(a)) > 0. Using Lemma 8.6.7, uΔ is nondecreasing,
but this implies that uΔ(t) > 0 for t ∈ [ρ(a),∞). Thus u is strictly increasing on
[ρ(a),∞). Let z be a solution of equation (8.78) defined by

z(a) = z(ρ(a)) = u(ρ(a)).

By Lemma 8.6.7, z is nonnegative on [a,∞). Now apply Theorem 8.6.13 with
b = ρ(a). Since u(b) = z(b) and u(σ(b)) > z(σ(b)), we have from Theorem 8.6.13
that

u(t) ≥ u(t) − z(t) ≥ t − ρ(a)
μ(ρ(a))

(
u(a) − z(a)

)
=

t − ρ(a)
μ(ρ(a))

(
u(a) − u(ρ(a))

)
,

where u(a) − u(ρ(a)) > 0. Thus u(t) → ∞ as t → ∞.

The following corollary is a direct result of Theorem 8.6.13.

Corollary 8.6.16. If p is as in Lemma 8.6.7 and u, v are solutions of equation
(8.78) satisfying u(a) = v(a) and u(b) = v(b) for some a < b with a, b ∈ T, then
u(t) = v(t) for all t ∈ T.

Lemma 8.6.17. If p is as in Lemma 8.6.7, then for any σ(a) > b with a, b ∈ T,
there exists a unique solution of equation (8.78) with u(b) = u0 and u(σ(a)) = 0,
where u0 is any positive constant.

Proof. Let z be a solution of equation (8.78) such that z(σ(a)) = 0. If z(a) > 0
and z(ρ(a)) ≤ z(a), then Lemma 8.6.7 implies that z(σ(a)) ≥ z(a) > 0, which is a
contradiction. Thus z(ρ(a)) > z(a) > 0. Proceeding in this way we obtain

(8.93) z(b) > z(σ(b)) > · · · > z(a) > z(σ(a)) = 0.

Since z(σ(a)) = 0, if z(a) is also specified, then z(t) is uniquely determined for all
t ∈ [b, σ(a)] by equation (8.78). Thus in particular z(b) is determined by z(a). Let
f be the mapping from z(a) to z(b). From equation (8.78) it is clear that each
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z(t), t ∈ [b, ρ(a)], continuously depends on z(a), and so the function z(b) = f(z(a))
is continuous. If we let z(a) = u0, then (8.93) implies that f(u0) > u0; if we let
z(a) = 0 so that z(σ(a)) = z(a) = 0, then z(t) = 0 by Lemma 8.6.7, so f(0) = 0.
Thus since f is continuous, there exists β ∈ (0, u0), such that f(β) = u0. Therefore
there exists a solution u of equation (8.78) determined by u(σ(a)) = 0 and u(a) = β
which must satisfy u(b) = u0. Finally the uniqueness of the solution follows from
Corollary 8.6.16.

Theorem 8.6.18. If p is as in Lemma 8.6.7, then equation (8.78) has a posi-
tive nonincreasing solution u and a positive strictly increasing solution v such that
v(t) → ∞ as t → ∞. In addition, the nonincreasing solution u is uniquely deter-
mined once u(a) is specified.

Proof. If we choose a ∈ T, v(a) = 1 and v(σ(a)) > 1, then the existence of an
increasing solution v satisfying the stated properties is an immediate consequence
of Remark 8.6.15. We wish to show the existence of a positive nonincreasing solution
u. It is clear from Lemma 8.6.17 that for each n ∈ T, n ≥ max{1, σ(a)}, there is a
unique solution un(t), t ∈ T of equation (8.78) such that

(8.94) un(a) = ua, un(n) = 0.

Further, in view of (8.93) we know that for every n ≥ max{1, σ(a)},
(8.95) ua ≥ un(t) > un(σ(t)) ≥ 0 for t ∈ [a, ρ(n)].

We claim that for every n ≥ max{1, σ(a)},
(8.96) uσ(n)(t) > un(t) for t ∈ [σ(a),∞).

For this, by Theorem 8.6.13 it suffices to show that

uσ(n)(σ(a)) > un(σ(a)).

By way of contradiction assume uσ(n)(σ(a)) ≤ un(σ(a)). If uσ(n)(σ(a)) = un(σ(a)),
then since un(a) = uσ(n)(a) = ua, the solutions un and uσ(n) are identically equal.
However uσ(n)(σ(n)) = un(n) = 0, so both un and uσ(n) are identically zero, which
contradicts un(a) = ua > 0. On the other hand, if uσ(n)(σ(a)) < un(σ(a)), then
from Theorem 8.6.13 we have un(t) > uσ(n)(t) for all t ∈ [σ(a),∞). In particular
for t = n we find

0 = un(n) > uσ(n)(n) > uσ(n)(σ(n)) = 0,

which is also a contradiction. Hence (8.96) holds.
Combining (8.95) and (8.96), we find for each t ∈ [σ(a),∞), that the sequence

{un(t)}n∈T
is increasing, bounded above by ua, and eventually positive. For each

t ∈ T, let
u(t) = lim

n→∞un(t).

Then 0 < u(t) ≤ ua for t ∈ T, and from (8.95) we have u(t) ≥ u(σ(t)). Now since
n ∈ [σ(a),∞), un is a solution of equation (8.78), and we have

uΔ2

n (t) = −p(t) [un(σ(t))]γ .

Thus as n → ∞, we find that u is a nonincreasing positive solution of equation
(8.78).

Finally we show that the solution u is unique once ua is specified. For this let
z be any positive nonincreasing solution of equation (8.78) such that z(a) = ua.
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Then either z(σ(a)) < u(σ(a)), z(σ(a)) > u(σ(a)), or z(σ(a)) = u(σ(a)). In the
first case there exists n ∈ T and a solution un defined by (8.94) such that

z(σ(a)) < un(σ(a)) < u(σ(a)).

Since un(a) = z(a) and un(σ(a)) > z(σ(a)), Theorem 8.6.13 implies un(t) > z(t)
for all t ∈ [σ(a),∞). In particular this implies 0 = un(n) > z(n), which is a
contradiction. If instead z(σ(a)) > u(σ(a)), then Theorem 8.6.13 implies that

z(t) − u(t) ≥ t − a

μ(a)

(
z(σ(a)) − u(σ(a))

)
for t ∈ [σ(a),∞).

This means that z(t) becomes unbounded as t → ∞ since t−a
μ(a) → ∞ as t → ∞,

which is again a contradiction. Thus z(σ(a)) = u(σ(a)). By Corollary 8.6.16,
z(t) = u(t) for all t ∈ T.

Theorem 8.6.19. Let p be as in Lemma 8.6.10, a ∈ T, a ≥ 0, and γ > 1. If∫ ∞

a

σ(t)p(t)Δt = ∞,

then the dynamic equation (8.78) is oscillatory.

Proof. Let u be a nonoscillatory solution of equation (8.78) and u(t) > 0 for all
t ∈ [a,∞). Multiply both sides of equation (8.78) by σ(t)[u(σ(t))]−γ to obtain

σ(t)[u(σ(t))]−γuΔ2
(t) + σ(t)p(t) = 0.

Using the integration by parts formula for k ∈ [a,∞),∫ k

a

σ(t)[u(σ(t))]−γuΔ2
(t)Δt = k[u(k)]−γuΔ(k) − a[u(a)]−γuΔ(a)

−
∫ k

a

(
t[u(t)]−γ

)Δ
uΔ(t)Δt

yields

k[u(k)]−γuΔ(k)−a[u(a)]−γuΔ(a)−
∫ k

a

(
t[u(t)]−γ

)Δ
uΔ(t)Δt+

∫ k

a

σ(t)p(t)Δt = 0.

In view of Lemma 8.6.10 and the hypothesis, it must be the case that

(8.97)
∫ k

a

(
t[u(t)]−γ

)Δ
uΔ(t)Δt → ∞ as k → ∞.

We shall show that (8.97) is impossible.

Note that uΔ(t) > 0 implies (u−γ)Δ(t) < 0. Thus∫ k

a

(
t[u(t)]−γ

)Δ
uΔ(t)Δt =

∫ k

a

(
[u(σ(t))]−γ + t(u−γ)Δ(t)

)
uΔ(t)Δt

≤
∫ k

a

[u(σ(t))]−γuΔ(t)Δt,

and it suffices to show that

(8.98)
∫ k

a

[u(σ(t))]−γuΔ(t)Δt < ∞.
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We define r(s), a continuous function on [t, σ(t)] by

r(s) = u(t) + (s − t)uΔ(t).

Notice that r(t) = u(t), r(σ(t)) = u(σ(t)), and r′(s) = uΔ(t) > 0. Hence r(s) is
continuous and increasing for s ∈ [t, σ(t)]. From this we get

[u(σ(t))]−γuΔ(t) =
1

μ(t)

∫ σ(t)

t

[u(σ(t))]−γuΔ(t)ds

=
1

μ(t)

∫ σ(t)

t

[r(σ(t))]−γr′(s)ds

≤ 1
μ(t)

∫ σ(t)

t

[r(s)]−γr′(s)ds

=
1

μ(t)
1

1 − γ

(
[r(σ(t))]1−γ − [r(t)]1−γ

)
=

1
1 − γ

[r(σ(t))]1−γ − [r(t)]1−γ

μ(t)

=
1

1 − γ
(r1−γ)Δ(t).

This implies that for k ∈ T,∫ k

a

[u(σ(t))]−γuΔ(t)Δt ≤ 1
1 − γ

(
[r(k)]1−γ − [r(a)]1−γ

)
.

However since γ > 1 and r is an increasing function, it follows that (8.98) holds,
completing the proof.

Theorem 8.6.20. Let p be as in Lemma 8.6.10, a ∈ T, a ≥ 0, and γ > 1. Then
the dynamic equation (8.78) is oscillatory if and only if∫ ∞

a

σ(l)p(l)Δl = ∞.

Proof. If
∫∞

a
σ(l)p(l)Δl = ∞, then it was shown in Theorem 8.6.19 above that the

dynamic equation (8.78) is oscillatory. The other direction follows from the proof
of Theorem 8.6.22 below.

Remark 8.6.21. Since all of the points in the time scale are isolated, one can
rewrite

∫∞
a

σ(l)p(l)Δl as
∑

l∈[a,∞) μ(l)σ(l)p(l) (see Theorem 8.2.14 (ii)).

Theorem 8.6.22. Let p be as in Lemma 8.6.10. Then equation (8.78) has a
bounded nonoscillatory solution if and only if∫ ∞

a

σ(l)p(l)Δl < ∞,

where a ∈ T, a ≥ 0.

Proof. First suppose that equation (8.78) has a bounded nonoscillatory solution
u. Then there exists a ∈ T with a ≥ 0 such that u(t) > 0 for all t ∈ [a,∞). In
view of Lemma 8.6.10, u is increasing on [a,∞). Therefore u(t) is bounded above
and below by positive constants for all t ∈ [a,∞). Using the integration by parts

 



8.6. OSCILLATION OF EMDEN–FOWLER EQUATIONS 333

formula in Theorem 8.2.12 (vi), we see that any solution u of equation (8.78) also
satisfies

(8.99) tuΔ(t) = auΔ(a) + u(t) − u(a) −
∫ t

a

σ(l)p(l)[u(σ(l))]γΔl

for all t ∈ [a,∞). If
∫ t

a
σ(l)p(l)Δl → ∞ as t → ∞, then the right-hand side of

equation (8.99) must approach −∞. This implies that the left-hand side of equation
(8.99) is eventually negative. But this contradicts the fact that u is increasing.

To prove the converse, suppose
∫∞

a
σ(l)p(l)Δl < ∞. Using [53, Theorem 1.117],

it is easy to verify that any solution u of

(8.100) u(t) = 1 −
∫ ∞

t

(
σ(l) − t

)
p(l)[u(σ(l))]γΔl

is also a solution of equation (8.78). Choose a ∈ T with a ≥ 0 sufficiently large so
that

max
t∈[a,∞)

{∫ ∞

t

(
σ(l) − t

)
p(l)Δl, 2γ

∫ ∞

t

(
σ(l) − t

)
p(l)Δl

}
<

1
2
.

Consider the Banach space La of all bounded real functions x on [a,∞) with norm
defined by

‖x‖ = sup
t∈[a,∞)

|x(t)|.

We define a closed and bounded subset S of La as

S :=
{

x ∈ La :
1
2
≤ x(t) ≤ 1

}
.

Let T : S → S be an operator such that

(Tx)(t) = 1 −
∫ ∞

t

(
σ(l) − t

)
p(l)[x(σ(l))]γΔl, t ≥ a.

To see that the range of T is in S, note that if x ∈ S, then

(Tx)(t) ≥ 1 −
∫ ∞

t

(
σ(l) − t

)
p(l)Δl ≥ 1

2
.

Clearly (Tx)(t) ≤ 1. We will show that T is a contraction mapping on S. To see
this, define r(k) = kγ . By the (ordinary) mean value theorem,∣∣∣kγ − lγ

∣∣∣ ≤ (max
k≤ξ≤l

(ξγ)′
)
|k − l|.

Thus for any x, y ∈ S,∣∣∣[x(t)]γ − [y(t)]γ
∣∣∣ ≤

(
max

x≤ξ≤y
(ξγ)′
)
|x(t) − y(t)|

=

(
max

1
2≤ξ≤1

(ξγ)′
)
|x(t) − y(t)|

≤ 2γ|x(t) − y(t)|.
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Therefore∣∣∣(Tx)(t) − (Ty)(t)
∣∣∣ ≤

∫ ∞

t

(
σ(l) − t

)
p(l)
∣∣∣[x(σ(l))]γ − [y(σ(l))]γ

∣∣∣Δl

≤ 2γ

∫ ∞

t

(
σ(l) − t

)
p(l)
∣∣∣x(σ(l)) − y(σ(l))

∣∣∣Δl

≤ 2γ ‖x − y‖
∫ ∞

t

(
σ(l) − t

)
p(l)Δl

≤ 1
2
‖x − y‖ .

It follows that ‖Tx − Ty‖ ≤ 1
2 ‖x − y‖, and hence T is a contraction mapping on S.

By the Banach contraction mapping principle (Theorem 1.4.26), T has a unique
fixed point in S, which is our desired bounded nonoscillatory solution of (8.100).

Example 8.6.23. Consider

uΔ2
(t) = − 1

t[σ(t)]2
[u(σ(t))]γ for t ≥ a > 0.

Note that p(t) = 1
t[σ(t)]2 satisfies the conditions of Lemma 8.6.10 on [a,∞). Then∫ ∞

a

σ(s)p(s)Δs =
∫ ∞

a

1
sσ(s)

Δs = −
∫ ∞

a

(
1
s

)Δ

Δs =
1
a

< ∞.

Therefore by Theorem 8.6.22 this dynamic equation has a bounded nonoscillatory
solution on [a,∞), regardless of the time scale chosen.

Example 8.6.24. Consider

uΔ2
(t) = − 1

tσ(t)
[u(σ(t))]γ for t ≥ a > 0,

where γ > 1. Note that p(t) = 1
tσ(t) satisfies the conditions of Lemma 8.6.10 on

[a,∞). Then∫ ∞

a

σ(s)p(s)Δs =
∫ ∞

a

σ(s)
1

sσ(s)
Δs =
∫ ∞

a

1
s
Δs

(8.43)
= ∞.

So by Theorem 8.6.20 this dynamic equation is oscillatory on [a,∞), regardless of
the time scale chosen.

Theorem 8.6.25. Assume p is as in Lemma 8.6.10 and γ ∈ (0, 1). Then equation
(8.78) is oscillatory if and only if∫ ∞

a

[σ(l)]γp(l)Δl = ∞,

where a ∈ T, a ≥ 0.

Proof. Let u be a nonoscillatory solution of equation (8.78) such that u(t) > 0 for
all t ∈ [a,∞), where a ∈ T, a ≥ 0. By Lemma 8.6.10, u(t) is increasing and uΔ(t)
is positive and nonincreasing for t ∈ [a,∞). Fix j ∈ T such that j > 2a. Then for
all t ∈ [j,∞), we have

u(t) = u(a) +
∫ t

a

uΔ(l)Δl >

∫ t

a

uΔ(t)Δl = (t − a)uΔ(t) >
t

2
uΔ(t),
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i.e., u(σ(t))
uΔ(σ(t)) > σ(t)

2 . Dividing equation (8.78) by [uΔ(σ(t))]γ , using this inequality,
and integrating from j to t, we obtain

(8.101)
∫ t

j

uΔ2
(l)

[uΔ(σ(l))]γ
Δl +

1
2γ

∫ t

j

p(l)[σ(l)]γΔl < 0, t ≥ j.

By hypothesis, the second integral in (8.101) approaches ∞ as t → ∞, so the first
term approaches −∞. But we will show that this is impossible. To see this, let

r(k) = u(l) + (k − l)uΔ(l),

l ≤ k ≤ σ(l), l ≥ a, so that r is positive, continuous, and increasing. Further, let

s(k) =
r(k + μ(l)) − r(k)

μ(l)
for k ≥ a

so that s is positive and continuous. Since l ≤ k ≤ σ(l), we have

σ(l) ≤ k + μ(l) ≤ 2σ(l) − l.

Therefore

r(k + μ(l)) = u(σ(l)) +
(
k + μ(l) − σ(l)

)
uΔ(σ(l))

= u(σ(l)) + (k − l)uΔ(σ(l)).

This implies that

s(k) =
u(σ(l)) + (k − l)uΔ(σ(l)) − u(l) − (k − l)uΔ(l)

μ(l)

=
u(σ(l)) − u(l)

μ(l)
+ (k − l)

[
uΔ(σ(l)) − uΔ(l)

μ(l)

]
= uΔ(l) + (k − l)uΔ2

(l).

Therefore s′(k) = uΔ2
(l) ≤ 0 for l < k < σ(l), which implies that s is nonincreasing

and 0 < s(k) ≤ s(l) = uΔ(l). Then for l < k < σ(l) we have

uΔ2
(l)

[uΔ(σ(l))]γ
=

1
μ(l)

∫ σ(l)

l

uΔ2
(l)

[uΔ(σ(l))]γ
dk

≥ 1
μ(l)

∫ σ(l)

l

s′(k)
[s(σ(k))]γ

dk

=
1

μ(l)

∫ σ(l)

l

s′(k)
[s(k)]γ

dk

=
1

μ(l)
1

1 − γ

(
[s(σ(l))]1−γ − [s(l)]1−γ

)
=

1
1 − γ

(s1−γ)Δ(l).

It follows that∫ t

j

uΔ2
(l)

[uΔ(σ(l))]γ
Δl ≥ 1

1 − γ

∫ t

j

(s1−γ)Δ(l)Δl =
1

1 − γ

(
[s(t)]1−γ − [s(j)]1−γ

)
.

But [s(t)]1−γ > 0 and 0 < γ < 1 for all t ≥ a, so
∫ t

j
uΔ2

(l)
[uΔ(σ(l))]γ Δl is bounded

below which gives a contradiction and completes the proof. The necessity part is
contained in the sufficiency part of the next theorem.
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Definition 8.6.26. A solution of equation (8.78) is said to have asymptotically
positively bounded differences if there are positive constants a1 and a2 such that

a1 ≤ uΔ(t) ≤ a2

for all t ∈ [a,∞) for some a ∈ T.

Theorem 8.6.27. Let p be as in Lemma 8.6.10. Equation (8.78) has a solution
with asymptotically positively bounded differences if and only if∫ ∞

a

p(l)[σ(l)]γΔl < ∞,

where a ∈ T, a ≥ 0.

Proof. Assume that
∫∞

a
p(l)[σ(l)]γΔl < ∞, and fix a ∈ T with a ≥ 0 sufficiently

large so that
∫∞

a
p(l)[σ(l)]γΔl < 1

2 . Let u be the solution of equation (8.78) sat-
isfying u(a) = 0 and u(σ(a)) = μ(a) so that uΔ(a) = 1. We want to show that
1
2 ≤ uΔ(t) ≤ 1 for all t ∈ [a,∞). For this purpose, suppose that 1

2 ≤ uΔ(t) ≤ 1 for
all t ∈ [a,m], where m ∈ T with m ≥ a. Then u(t) > 0 for all t ∈ (a, σ(m)]. How-
ever from equation (8.78), uΔ2

(t) = −p(t)[u(σ(t))]γ ≤ 0 for all t ∈ [a,m]. Therefore
for all t ∈ [a, σ(m)] it follows that

u(t) ≤ u(a) + (t − a)uΔ(a) = t − a ≤ t.

From equation (8.78) and the above inequalities we obtain

uΔ(m) = uΔ(a) −
∫ m

a

p(l)[u(σ(l))]γΔl ≥ 1 −
∫ m

a

p(l)[σ(l)]γΔl ≥ 1
2
.

Also uΔ(m) ≤ uΔ(a) = 1. Therefore 1
2 ≤ uΔ(m) ≤ 1, and now by induction

1
2
≤ uΔ(t) ≤ 1

holds for all t ∈ [a,∞).

Conversely let u be a solution of equation (8.78) which has asymptotically pos-
itively bounded differences. Thus there exists a ∈ T with a ≥ 0 such that u(t) > 0
for all t ∈ [a,∞). Then as in Theorem 8.6.25, we find that

u(t) >
t

2
uΔ(t) for all t ≥ j > 2a.

Therefore for all t ∈ [j,∞) it follows that

uΔ(j) − uΔ(t) =
∫ t

j

p(l)[u(σ(l))]γΔl

>

∫ t

j

p(l)
(

σ(l)
2

uΔ(σ(l))
)γ

Δl

≥
(a1

2

)γ ∫ t

j

p(l)[σ(l)]γΔl ≥ 0.

If
∫ t

a
p(l)[σ(l)]γΔl → ∞ as t → ∞, then it must be the case that uΔ(t) → −∞ as

t → ∞. However by Lemma 8.6.10, uΔ(t) > 0 for all t ∈ [a,∞). This implies that∫∞
a

p(l)[σ(l)]γΔl < ∞.
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It is interesting to note that the proof technique impacts whether or not the
theorem holds for T = R as well as for the time scales we are interested in. For
example, Theorem 8.6.22 uses the contraction mapping principle, and it is well
known that this result is true for T = R. This suggests that a modification of the
proof techniques would generate the results on a wider selection of time scales.

8.7. Oscillation of First Order Delay Dynamic Equations

In this section we follow [37] and present an oscillation criterion for first order
delay dynamic equations on unbounded time scales, which contains well-known
criteria for delay differential equations and delay difference equations as special
cases. We illustrate our results by applying them to various kinds of time scales.

As is well known (see Theorem 2.2.6 or [118, Theorem 2.3.1]), a first order delay
differential equation of the form

y′(t) + p(t)y(t − τ) = 0

(where t ∈ R, p is continuous and positive, and τ > 0) is oscillatory provided

lim inf
t→∞

∫ t

t−τ

p(s)ds >
1
e

holds. It is also well known (cf. [118, Theorem 7.5.1]) that a first order delay
difference equation of the form

Δyn + pnyn−k = 0

(where n ∈ Z, pn > 0, k ∈ N, Δyn = yn+1 − yn) is oscillatory if

lim inf
n→∞

{
1
k

n−1∑
i=n−k

pi

}
>

kk

(k + 1)k+1

holds. In this section we present a generalization and extension of these two
results for first order delay dynamic equations (see also [299]) of the form

(8.102) yΔ(t) + p(t)y(τ(t)) = 0,

where t ∈ T, T is a time scale, p is rd-continuous and positive, the delay function
τ : T → T satisfies τ(t) < t for all t ∈ T and limt→∞ τ(t) = ∞, and yΔ(t) is the
delta derivative of y : T → R at t ∈ T.

Now let us assume that (8.102) possesses a positive solution y. Then

yΔ(t) = −p(t)y(τ(t)) < 0

so that y is decreasing and therefore

0 = −μ(t)
(
yΔ(t) + p(t)y(τ(t))

)
= y(t) − y(σ(t)) − μ(t)p(t)y(τ(t))

< y(t) − μ(t)p(t)y(t) =
(
1 − μ(t)p(t)

)
y(t).

Hence 1 − μ(t)p(t) > 0, which implies that −p ∈ R+ and that there exists λ > 0
such that −λp ∈ R+. The quantity

(8.103) α := lim sup
t→∞
t∈T

sup
λ>0

−λp∈R+

{
λe−λp(t, τ(t))

}
is therefore well defined. Now we can formulate the main result of this section.
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Theorem 8.7.1. If (8.102) has an eventually positive solution, then α defined by
(8.103) satisfies α ≥ 1.

The following two easy lemmas are needed in the proof of Theorem 8.7.1.

Lemma 8.7.2. Suppose −p ∈ R+ and s ∈ T. If

yΔ(t) + p(t)y(t) ≤ 0 for all t ≥ s,

then
y(t) ≤ e−p(t, s)y(s) for all t ≥ s.

Proof. We put f := yΔ + py and use Theorem 8.2.20 (see also [53, Theorem 2.77])
to solve

yΔ = −p(t)y + f(t), y(s) given.

Thus for t ≥ s,

y(t) = e−p(t, s)y(s) +
∫ t

s

e−p(t, σ(u))f(u)Δu.

The integrand is nonpositive as −p ∈ R+ and f ≤ 0, so our claim follows.

Lemma 8.7.3. For nonnegative p with −p ∈ R+ we have the inequalities

1 −
∫ t

s

p(u)Δu ≤ e−p(t, s) ≤ exp
{
−
∫ t

s

p(u)Δu

}
for all t ≥ s.

Proof. Fix s ∈ T, denote y(t) = −
∫ t

s
p(u)Δu, and observe that

yΔ(t) = −p(t) ≤ −p(t) − p(t)y(t).

We put f := yΔ + py + p and use Theorem 8.2.20 to solve

yΔ = −p(t)y + f(t) − p(t), y(s) = 0.

Thus for t ≥ s,

y(t) = e−p(t, s)y(s) +
∫ t

s

e−p(t, σ(u)) [f(u) − p(u)] Δu

≤ −
∫ t

s

e−p(t, σ(u))p(u)Δu

= e−p(t, s) − 1,

where we have used Theorem 8.2.19 (ix) (see also [53, Theorem 2.39]) in the last
step. This establishes the left part of the asserted inequality. For the right part we
use the representation [53, (2.15)]

e−p(t, s) = exp
{∫ t

s

ξμ(u)(−p(u))Δu

}
,

where we have for any p with −p ∈ R+

ξμ(u)(−p(u)) = −p(u)

if μ(u) = 0, and if μ(u) > 0,

ξμ(u)(−p(u)) =
Log(1 − μ(u)p(u))

μ(u)
=

ln(1 − μ(u)p(u))
μ(u)

= −p(u) − f(−μ(u)p(u))
μ(u)

≤ −p(u),
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where f : (−1,∞) → R is defined by f(x) = x − ln(1 + x) and hence satisfies
f(x) ≥ 0 for all x > −1.

Some remarks follow.

Remark 8.7.4. Let s ∈ T. If p is rd-continuous and nonnegative, then a similar
proof as in Lemma 8.7.2 can be used to show that if

xΔ(t) + p(t)x(σ(t)) ≤ 0 for all t ≥ s,

then
x(s) ≥ ep(t, s)x(t) for all t ≥ s.

Remark 8.7.5. If p is rd-continuous and nonnegative, then a similar proof as in
Lemma 8.7.3 can be used to show

1 +
∫ t

s

p(u)Δu ≤ ep(t, s) ≤ exp
{∫ t

s

p(u)Δu

}
for all t ≥ s.

Remark 8.7.6. Denote P :=
∫ t

s
p(u)Δu for t ≥ s, where p is nonnegative with

−p ∈ R+. Then by Lemma 8.7.3, 1−P ≤ e−p(t, s) ≤ eP . For all λ ∈ (0, 1] we have
−λp ∈ R+ and hence by Lemma 8.7.3, 1 − λP ≤ e−λp(t, s) ≤ eλP , so that

λ − λ2P ≤ λe−λp(t, s) ≤ λeλP

and therefore
1

4P
≤ sup

λ>0
−λp∈R+

{
λe−λp(t, s)

}
≤ 1

eP
.

Thus we always have
1

4 lim inft→∞
∫ t

τ(t)
p(s)Δs

≤ α ≤ 1

e lim inft→∞
∫ t

τ(t)
p(s)Δs

and
1
4α

≤ lim inf
t→∞

∫ t

τ(t)

p(s)Δs ≤ 1
eα

.

Now we have all the tools needed to prove our main result.

Proof of Theorem 8.7.1. Throughout we assume that y solves (8.102) and is even-
tually positive and that α < 1. We proceed in two parts showing

(8.104) lim inf
t→∞

y(τ(t))
y(t)

= ∞

and

(8.105) lim inf
t→∞

y(τ(t))
y(t)

< ∞.

This contradiction shows α ≥ 1 and hence finishes the proof. First we show (8.104).
Let β ∈ (1, 1/α). Then there exists T0 ∈ T such that

(8.106)
1

sup λ>0
−λp∈R+

{λe−λp(t, τ(t))} ≥ β for all t ≥ T0.

As y is eventually positive, it is eventually decreasing and hence y(τ(t)) ≥ y(t)
eventually so that

0 = yΔ(t) + p(t)y(τ(t)) ≥ yΔ(t) + p(t)y(t)
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implies by Lemma 8.7.2 that there exists T1 ≥ T0 with

y(τ(t))
y(t)

≥ 1
e−p(t, τ(t))

(8.106)
≥ β for all t ≥ T1.

Thus
0 = yΔ(t) + p(t)y(τ(t)) ≥ yΔ(t) + βp(t)y(t)

implies again by Lemma 8.7.2 that there exists T2 ≥ T1 with

y(τ(t))
y(t)

≥ 1
e−βp(t, τ(t))

=
β

βe−βp(t, τ(t))

(8.106)
≥ β2 for all t ≥ T2.

Proceeding in this manner we obtain a sequence {Tn} ⊂ T with

y(τ(t))
y(t)

≥ βn for all t ≥ Tn.

This proves (8.104) as β > 1. Now we show (8.105). Let M ∈ (1/4, 1/(4α)). By
Lemma 8.7.3 (see Remark 8.7.6) there exists T ∈ T such that∫ t

τ(t)

p(s)Δs ≥ M for all t ≥ T.

Now ∫ σ(t)

τ(t)

p(s)Δs ≥
∫ t

τ(t)

p(s)Δs ≥ M for all t ≥ T.

Let t ≥ T . We consider the function f : T → R defined by

f(u) =
∫ u

τ(t)

p(s)Δs − M

2

and find f(τ(t)) < 0 and f(t) > 0. By the intermediate value theorem (as given
in [53, Theorem 1.115]) there exists t∗ ∈ [τ(t), t) such that f(t∗) = 0, or f(t∗) < 0
and f(σ(t∗)) > 0. Hence

(8.107)
∫ σ(t∗)

τ(t)

p(s)Δs =
M

2
+ f(σ(t∗)) ≥ M

2

and

(8.108)
∫ σ(t)

t∗
p(s)Δs =

∫ σ(t)

τ(t)

p(s)Δs −
[
f(t∗) +

M

2

]
≥ M

2
− f(t∗) ≥ M

2
.

Now we can estimate

y(t∗) ≥ y(t∗) − y(σ(t))
(8.102)

=
∫ σ(t)

t∗
p(s)y(τ(s))Δs

≥ y(τ(t))
∫ σ(t)

t∗
p(s)Δs

(8.108)
≥ M

2
y(τ(t))

≥ M

2

(
y(τ(t)) − y(σ(t∗))

) (8.102)
=

M

2

∫ σ(t∗)

τ(t)

p(s)y(τ(s))Δs

≥ M

2
y(τ(t∗))

∫ σ(t∗)

τ(t)

p(s)Δs
(8.107)

≥ M2

4
y(τ(t∗)),

which proves (8.105).
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Now we proceed to give some illustrative examples and applications.

Example 8.7.7. Clearly, if T = R, then we get

sup
λ>0

−λp∈R+

{
λe−λp(t, τ(t))

}
= sup

λ>0

{
λe−λ

∫ t
τ(t) p(s)ds

}
=

1

e
∫ t

τ(t)
p(s)ds

,

and hence Theorem 8.7.1 yields the well-known result cited at the beginning of this
section as

α < 1 ⇐⇒ lim inf
t→∞

∫ t

τ(t)

p(s)ds >
1
e
.

We now consider a time scale of the form

(8.109) T = {tn : n ∈ Z} ,

where {tn} is a strictly increasing sequence of real numbers such that T is closed.
For such time scales we present the following results.

Corollary 8.7.8. Consider a time scale as described in (8.109). If

yΔ(t) + p(t)y(ρ(t)) = 0 for t ∈ T

has an eventually positive solution, then

lim inf
t→∞ {μ(t)p(t)} ≤ 1

4
.

Proof. We let τ(t) = ρ(t), find

λe−λp(t, τ(t)) = λ − λ2μ(τ(t))p(τ(t)),

maximize, and apply Theorem 8.7.1.

Example 8.7.9. If

y(4t) = y(t) − μ(t)p(t)y(t/4) for t ∈ {4n : n ∈ N0}
has an eventually positive solution, then

lim inf
n→∞ {4np(4n)} ≤ 1

12
.

Corollary 8.7.10. Consider a time scale as described in (8.109). If

yΔ(t) + p(t)y(ρ(ρ(t))) = 0 for t ∈ T

has an eventually positive solution, then

lim inf
t→∞

[N(t) + M(t)] [N(σ(t)) + M(t)]
[N(t) + N(σ(t)) + M(t)]3

≥ 1,

where

N(t) = μ(t)p(t) and M(t) =
√

[N(t)]2 + [N(σ(t))]2 − N(t)N(σ(t)).

Proof. We let τ(t) = ρ(ρ(t)), find

λe−λp(t, τ(t)) = λ
(
1 − λN(ρ(ρ(t)))

)(
1 − λN(ρ(t))

)
,

maximize, and apply Theorem 8.7.1.
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Example 8.7.11. Let h > 0. If

y(t + h) = y(t) − hp(t)y(t − 2h) for t ∈ {hn : n ∈ Z} = hZ

has an eventually positive solution, then

lim inf
t→∞
t∈hZ

[
p(t) + M̃(t)

] [
p(t + h) + M̃(t)

]
[
p(t) + p(t + h) + M̃(t)

]3 ≥ h,

where
M̃(t) =

√
[p(t)]2 + [p(t + h)]2 − p(t)p(t + h).

Theorem 8.7.12. Consider a time scale as described in (8.109). Let k ∈ N and
τ(tn) = tn−k for all n ∈ Z. If (8.102) has an eventually positive solution, then

(8.110) lim inf
t→∞

∫ t

τ(t)

p(s)Δs ≤
(

k

k + 1

)k+1

.

Proof. We assume that (8.110) does not hold and show α < 1, which is a contra-
diction with Theorem 8.7.1. Note now that

λe−λp(tn, τ(tn)) = λ

n−1∏
i=n−k

(
1 − λμ(ti)p(ti)

)

≤ λ

{
1 − λ

∫ tn

τ(tn)
p(s)Δs

k

}k

= λ(1 − λS)k,

where we used the arithmetic-geometric inequality and put

S =
1
k

∫ tn

tn−k

p(s)Δs =
∑n−1

i=n−k(ti+1 − ti)p(ti)
k

.

Now f(λ) = λ(1 − λS)k satisfies

f ′(λ) = (1 − λS)k − kλS(1 − λS)k−1 = (1 − λS)k−1
(
1 − (k + 1)λS

)
so that

f(λ) ≤ f

(
1

(k + 1)S

)
=

1
(k + 1)S

(
1 − 1

k + 1

)k

=
kk

S(k + 1)k+1
.

Hence α ≤
(

k
k+1

)k+1
1

lim inft→∞
∫ t

τ(t) p(s)Δs
< 1.

Example 8.7.13. If we let T = Z in Theorem 8.7.12, then we get the following
result: Let k ∈ N. If

y(n + 1) = y(n) − p(n)y(n − k) for n ∈ Z

has an eventually positive solution, then

lim inf
n→∞

n−1∑
i=n−k

p(i) ≤
(

k

k + 1

)k+1

.
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Example 8.7.14. If T = qZ :=
{
qk : k ∈ Z

}
∪ {0} with q > 1 in Theorem 8.7.12,

then we get the following result: Let k ∈ N. If

y
(
qn+1
)

= y (qn) − (q − 1)qnp(qn)y
(
qn−k
)

for n ∈ Z

has an eventually positive solution, then

lim inf
n→∞

n−1∑
i=n−k

qip(qi) ≤

(
k

k+1

)k+1

q − 1
.

For the remainder of this section we consider the equation

(8.111) xΔ(t) + p(t)x(τ(σ(t))) = 0,

where p and τ satisfy the same assumptions as before. Since λp ∈ R+ for all λ > 0,
clearly the quantity

(8.112) α∗ := lim inf
t→∞
t∈T

inf
λ>0

{
eλp(t, τ(σ(t)))

λ

}
is well defined. Our main result about equation (8.111) reads as follows.

Theorem 8.7.15. If (8.111) has an eventually positive solution, then α∗ defined
by (8.112) satisfies α∗ ≤ 1.

Proof. Throughout we assume that x solves (8.111) and is eventually positive and
that α∗ > 1. We proceed as in the proof of Theorem 8.7.1 and show that x satisfies

(8.113) lim inf
t→∞

x(τ(σ(t)))
x(t)

= ∞

and

(8.114) lim inf
t→∞

x(τ(σ(t)))
x(t)

< ∞.

This contradiction shows α∗ ≤ 1 and finishes the proof. We first show (8.113). Let
β∗ ∈ (1, α∗). Then there exists T0 ∈ T such that

(8.115) inf
λ>0

{
eλp(t, τ(t))

λ

}
≥ β∗ for all t ≥ T0.

As x is eventually positive, it is eventually decreasing, and hence we conclude that
x(τ(σ(t))) ≥ x(σ(t)) eventually so that

0 = xΔ(t) + p(t)x(τ(σ(t))) ≥ xΔ(t) + p(t)x(σ(t))

implies by Remark 8.7.4 that there exists T1 ≥ T0 with

x(τ(σ(t)))
x(σ(t))

≥ ep(t, τ(σ(t)))
x(t)

x(σ(t))

(8.115)

≥ β∗ x(t)
x(σ(t))

≥ β∗ for all t ≥ T1.

Therefore
0 = xΔ(t) + p(t)x(τ(σ(t))) ≥ xΔ(t) + β∗p(t)x(t),

implies again by Remark 8.7.4 that there exists T2 ≥ T1 with
x(τ(σ(t)))
x(σ(t))

≥ eβ∗p(t, τ(σ(t)))
x(t)

x(σ(t))
= β∗ eβ∗p(t, τ(σ(t)))

β∗
x(t)

x(σ(t))
(8.115)

≥ (β∗)2
x(t)

x(σ(t))
≥ (β∗)2 for all t ≥ T2.
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Proceeding in a way similar as in the first part of the proof of Theorem 8.7.1, we
obtain (8.113). Now we show (8.114). By Remark 8.7.5 (see also Remark 8.7.6)
there exists M > 0 and T ∈ T such that∫ t

τ(σ(t))

p(s)Δs ≥ M for all t ≥ T

so that ∫ σ(t)

τ(σ(t))

≥
∫ t

τ(σ(t))

p(s)Δs ≥ M for all t ≥ T

and hence

(8.116)
∫ σ(t)

τ(σ(t))

≥ M for all t ≥ T

holds. As in the second part of the proof of Theorem 8.7.1 we find t∗ ∈ [τ(σ(t)), t)
such that

(8.117)
∫ σ(t∗)

τ(σ(t))

p(s)Δs ≥ M

2
and

∫ σ(t)

t∗
p(s)Δs ≥ M

2
.

Now we can estimate

x(t∗) ≥ x(t∗) − x(σ(t))
(8.111)

=
∫ σ(t)

t∗
p(s)x(τ(σ(s)))Δs

≥ x(τ(σ(t)))
∫ σ(t)

t∗
p(s)Δs

(8.117)

≥ M

2
x(τ(σ(t)))

≥
(
x(τ(σ(t))) − x(σ(t∗))

)
(8.111)

=
M

2

∫ σ(t∗)

τ(σ(t))

p(s)x(τ(σ(s)))Δs

≥ M

2
x(τ(σ(t∗)))

∫ σ(t∗)

τ(σ(t))

p(s)Δs
(8.117)

≥ M2

4
x(τ(σ(t∗))),

i.e.,

(8.118) x(t∗) ≥ M2

4
x(τ(σ(t∗))).

Clearly (8.118) implies (8.114).

We can improve the condition from Theorem 8.7.15 by imposing an additional
assumption. Define now

(8.119) α̃ := lim inf
t→∞
t∈T

inf
λ>0

{
eλp(t, τ(t))

λ

}
Theorem 8.7.16. Assume that there exists K > 0 such that

(8.120)
∫ t

τ(σ(t))

p(s)Δs ≥ K for all large t ∈ T.

If (8.111) has an eventually positive solution, then α̃ defined by (8.119) satisfies
α̃ ≤ 1.
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Proof. We assume that x solves (8.111) and is eventually positive and that α̃ < 1.
We proceed as in the proofs of Theorems 8.7.1 and 8.7.15 in two parts to show

(8.121) lim inf
t→∞

x(τ(t))
x(t)

= ∞

and

(8.122) lim inf
t→∞

x(τ(t))
x(t)

< ∞.

With the same notation as in the proof of the first part of Theorem 8.7.15, we find

x(τ(t))
x(σ(t))

≥ ep(t, τ(σ(t)))
(8.115)

≥ β∗ for all t ≥ T1

and may proceed as in the proof of the first part of Theorem 8.7.15 to reach (8.121).
To show (8.122), note that there exists M > 0 and T ∈ T such that (8.116)
holds. Therefore we can proceed with the same calculation as in the second part of
Theorem 8.7.15 to obtain (8.118). Observe now the estimate

x(τ(σ(t))) ≥ x(τ(σ(t))) − x(t)
(8.111)

=
∫ t

τ(σ(t))

p(s)x(τ(σ(s)))Δs

≥ x(τ(t))
∫ t

τ(σ(t))

p(s)Δs
(8.120)

≥ Kx(τ(t))

for large t ∈ T, which combined with (8.118) yields (8.122).

Example 8.7.17. For T = Z and τ(t) = t − 2 for t ∈ Z, we have

eλp(t, τ(t))
λ

=
[1 + λp(t − 2)] [1 + λp(t − 1)]

λ
,

which is minimized for (√
p(t − 2) +

√
p(t − 1)

)2
.

Hence by Theorem 8.7.16,

lim inf
n→∞

(√
p(n) +

√
p(n + 1)

)2
> 1

and there exists K > 0 with p(n) ≥ K for all large n ∈ N, then

(8.123) x(n + 1) = x(n) − p(n)x(n − 1) for n ∈ Z

is oscillatory.

Example 8.7.18. For a more specific example of the kind as discussed in Example
8.7.17, consider (8.123) with

p(n) =

{
1/8 for n even
1/2 for n odd.

Here,

lim inf
n→∞ p(n) =

1
8

<
1
4
,

so the oscillation criterion from Corollary 8.7.8, i.e., the one known in the literature
for difference equations, does not apply. However,

lim inf
n→∞

(√
p(n) +

√
p(n + 1)

)
=
(

1√
2

+
1√
8

)
> 1,
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so Example 8.7.17, i.e., Theorem 8.7.16 applies and shows that the equation (8.123)
is oscillatory.

A similar discussion as in Example 8.7.17, applying Theorem 8.7.16 for T = Z,
yields the statements given in the following last examples of this section. Of course
similar examples (e.g., of the forms as presented earlier) can also be given for other
time scales.

Example 8.7.19. Consider a difference equation of the form

(8.124) x(n + 1) = x(n) − p(n)x(n − 2) for n ∈ Z,

where p is three-periodic and takes values as follows:

p(1) = a, p(2) = a, p(3) = b, . . . with a, b > 0.

Then (8.124) is oscillatory provided(
3a + M

a + M

)2
a + M + 2b

2
> 1, where M =

√
a2 + 8ab.

Example 8.7.20. Consider equation (8.124), where p is three-periodic and takes
values as follows:

p(1) = a, p(2) = b, p(3) = c, . . . with a, b, c > 0.

Let

m = abc

(
3

ab + ac + bc

)3/2

.

By the arithmetic-geometric inequality it can be shown that 0 < m ≤ 1. Now
define ϕ ∈ [0, π/2) such that

m = cos ϕ, and also put k = 2 cos
ϕ

3
.

Another way to calculate k is to use the formula

k =
(
m + i
√

1 − m2
)1/3

+
(
m + i
√

1 − m2
)−1/3

.

Then (8.124) is oscillatory provided

a + b + c +

√
3(ab + ac + bc)

2

[
k +

1
k

]
> 1.

8.8. Oscillation of Symplectic Dynamic Systems

In this section we investigate oscillatory properties of a perturbed symplectic
dynamic system on a time scale that is unbounded above. The unperturbed system
is supposed to be nonoscillatory, and conditions on the perturbation matrix are
given, which guarantee that the perturbed system becomes oscillatory. Examples
illustrating the general results are given as well. The results presented in this section
follow the recent paper [42].

We consider the symplectic dynamic system

(8.125) zΔ = S(t)z,
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i.e., S is a symplectic and rd-continuous 2n×2n matrix-valued function, along with
its perturbation

(8.126) zΔ = (S(t) + S̃(t))z,

which is also supposed to be symplectic. Recall from [11, 78] that S is called
symplectic (with respect to T) if

(8.127) ST (t)J + JS(t) + μ(t)ST (t)JS(t) = 0 for all t ∈ T,

where T is the time scale under consideration, J =

⎛⎜⎜⎝ 0 I

−I 0

⎞⎟⎟⎠, and the superscript

T stands for the transpose of the matrix indicated. Since we are concerned with
the oscillatory behavior of the systems (8.125) and (8.126), we assume that T is
unbounded above.

The results presented in this section are quite general as systems (8.125) contain
a variety of important systems as special cases, e.g., linear Hamiltonian differential
systems, linear Hamiltonian difference systems, Sturm–Liouville differential equa-
tions (of any order) Sturm–Liouville difference equations (of any order), self-adjoint
matrix differential systems, self-adjoint matrix difference systems, and symplectic
difference systems. Our oscillation criteria presented below are new even in many
of theses special cases, as will be illustrated.

Example 8.8.1. In case T = R, symplectic (differential) systems (8.125) are of
the form

z′ = H(t)z, where JH is symmetric, i.e., JH = HTJ T

(these are so-called linear Hamiltonian differential systems). In case T = Z, sym-
plectic difference systems (8.125) are of the form

z(t + 1) = S(t)z(t), where S is symplectic, i.e., STJS = J .

To begin with we recall some basic facts concerning symplectic dynamic systems
(8.125). As mentioned above, a symplectic dynamic system is a first order linear
dynamic system whose coefficient matrix satisfies (8.127). This identity implies
that the matrix I + μ(t)S(t) is symplectic for each t ∈ T, i.e.,

(I + μS)TJ (I + μS) = J
holds on T. This last identity is equivalent to (I + μS)J (I + μS)T = J , so a
symplectic dynamic system can be also characterized as a system (8.125) whose
coefficient matrix satisfies

(8.128) S(t)J + JST (t) + μ(t)S(t)JST (t) = 0 for all t ∈ T.

If we write S =

⎛⎜⎜⎝A B

C D

⎞⎟⎟⎠ with n × n matrix-valued functions A, B, C, and D,

then (8.127) and (8.128) read

(8.129)

⎧⎪⎨⎪⎩
C − CT + μ(AT C − CT A) = 0, C − CT + μ(CDT − DCT ) = 0,

BT − B + μ(BT D − DT B = 0), BT − B + μ(ABT − BAT ) = 0,

AT + D + μ(AT D − CT B) = 0, A + DT + μ(ADT − BCT ) = 0.

 



348 8. OSCILLATION OF DYNAMIC EQUATIONS ON TIME SCALES

Next, if Z and Z̃ are two 2n× n matrix-valued solutions of (8.125), then ZTJ Z̃ is
a constant n× n matrix (this is a so-called Wronskian type identity). A solution Z
is said to be a conjoined basis if rankZ ≡ n and ZTJZ ≡ 0. Oscillatory properties
of (8.125) are defined using the concept of focal points. A 2n × n matrix-valued
solution Z of (8.125) has no focal point in the interval I = (a, b] ⊂ T if X(t) is
invertible at all dense points t ∈ I and if

KerXσ(t) ⊂ KerX(t) and X(t)(Xσ(t))†B(t) ≥ 0

on Iκ (here, † denotes the Moore–Penrose generalized inverse). The system (8.125)
is called disconjugate on I if the solution Z =

(
X
U

)
given by the initial condition

X(a) = 0 and U(a) = I (the so-called principal solution of (8.125) at a) has no
focal points in I. System (8.125) is called nonoscillatory if there exists T ∈ T such
that it is disconjugate on (T, T1] for every T1 > T , and it is said to be oscillatory
in the opposite case.

In our treatment we will also need the concept of the principal and nonprincipal
solution of (8.125) at ∞ as introduced in [74] and studied in [43]. System (8.125)
is said to be eventually controllable if the trivial solution z =

(
x
u

)
≡
(
0
0

)
is the

only solution for which x ≡ 0 eventually. If (8.125) is eventually controllable
and nonoscillatory, then the first component X of any conjoined basis Z =

(
X
U

)
is eventually nonsingular, and for every T ∈ T there exists t1 > T such that the
matrix ∫ t

T

(Xσ)−1(τ)B(τ)(XT )−1(τ)Δτ

is positive definite whenever t > t1. Among all conjoined bases of an eventually
controllable and nonoscillatory symplectic dynamic system one can distinguish the
so-called principal solution at ∞, which is the conjoined basis Z̃ =

(
X̃
Ũ

)
with the

property that

(8.130) lim
t→∞X−1(t)X̃(t) = 0

for any conjoined basis Z =
(
X
U

)
for which the (constant) matrix ZTJ Z̃ is non-

singular. Any conjoined basis Z =
(
X
U

)
for which ZTJ Z̃ is a nonsingular matrix

is called a nonprincipal solution at ∞. Note that the principal solution at ∞ is
uniquely determined up to a right multiplicative constant nonsingular n×n matrix
factor, and that (8.130) is equivalent to

(8.131) lim
t→∞

(∫ t

(Xσ)−1(τ)B(τ)(XT )−1(τ)Δτ

)−1

= 0.

When investigating oscillatory properties of (8.125), a fundamental rôle is played
by the so-called Reid roundabout theorem, which relates oscillatory properties of
(8.125) to solvability of a certain associated Riccati type equation and to positivity
of the quadratic functional

F(z; a, b) :=
∫ b

a

zT (τ)
{
ST (τ)K + KS(τ) + μ(τ)ST (τ)KS(τ)

}
z(τ)Δτ
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with K =

⎛⎜⎜⎝0 0

I 0

⎞⎟⎟⎠, over the class of pairs z =
(

x
u

)
such that KzΔ = KS(t)z

and x(a) = x(b) = 0. This roundabout theorem for (8.125) is established in the
recent paper [128]. Here we use only a part of this roundabout theorem, which is
formulated in the next proposition (in a slightly modified form; compare with [78]
or [128]).

Proposition 8.8.2. Suppose that for every T ∈ T there exists a pair z =
(

x
u

)
such

that x ∈ C1
rd[T,∞), u ∈ Crd[T,∞) piecewise, xΔ = A(t)x+B(t)u, suppx ⊂ [T,∞)

(i.e., x(T ) = 0 and there exists T1 > T such that x(t) ≡ 0 for t > T1), and

F(z; T,∞) =
∫ ∞

T

zT (τ)
{
ST (τ)K + KS(τ) + μ(τ)ST (τ)KS(τ)

}
z(τ)Δτ < 0.

Then (8.125) is oscillatory.

Note also that for S =

⎛⎜⎜⎝A B

C D

⎞⎟⎟⎠ and z =
(

x
u

)
, the functional F(z; a, b) takes

the form

F(x, u; a, b) =
∫ b

a

⎧⎪⎪⎨⎪⎪⎩
(

x

u

)T

⎛⎜⎜⎝CT (I + μA) μCT B

μBT C (I + μD)T B

⎞⎟⎟⎠(xu
)⎫⎪⎪⎬⎪⎪⎭ (τ)Δτ.

Now we present a result concerning a certain transformation of (8.125); see
[78]. Let H,K : T → Rn×n be C1

rd-matrices such that H is nonsingular and

HT K = KT H, i.e., the matrix R =

⎛⎜⎜⎝H 0

K (HT )−1

⎞⎟⎟⎠ is symplectic. Consider the

transformation
z = Rz

of the symplectic dynamic system (8.125). This transformation transforms (8.125)
into the system

(8.132) zΔ = S̄(t)z with S̄ =

⎛⎜⎜⎝Ā B̄

C̄ D̄

⎞⎟⎟⎠ ,

which is again symplectic, and the matrices Ā, B̄, C̄, and D̄ are given by the
formulas

Ā = (Hσ)−1(AH + BK − HΔ)

B̄ = (Hσ)−1B(HT )−1

C̄ = (Kσ)T (HΔ − AH − BK) − (Hσ)T (KΔ − CH − DK)

D̄ = (HΔ − DT Hσ − BT Kσ)T (HT )−1.
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Consequently, if
(
X
U

)
is a solution of (8.125) such that X is nonsingular, setting

H = X and K = U , we have Ā = 0 and C̄ = 0 (this is obvious) and D̄ = 0 (this
follows from the fact that (8.132) is again symplectic, i.e., (8.129) hold for Ā, B̄,
C̄, and D̄).

In what follows we assume that the perturbation matrix S̃ from (8.126) is of the
form

(8.133) S̃ =

⎛⎜⎜⎝ 0 0

W (I + μA) μWB

⎞⎟⎟⎠ .

Let us briefly explain why we choose S̃ of the form (8.133). First we require that
the admissibility equation for the quadratic functional corresponding to (8.126),

KzΔ = K(S + S̃)z, is independent of S̃, i.e., KS̃z = 0 and hence S̃ =

⎛⎜⎜⎝0 0

Ĉ D̂

⎞⎟⎟⎠.

This requirement is perhaps not strictly necessary, but it is reasonable from the
application point of view as we will see in the last section. Another requirement
is that the perturbed system (8.126) is again a symplectic dynamic system, i.e.,
(8.127) and (8.128) must hold. This means that

(8.134)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ĈT (I + μA) = (I + μA)T Ĉ,

(I + μA)ĈT = μBD̂T ,

μD̂T B = μBT D̂,

Ĉ(I + μDT ) − (I + μD)ĈT = μ(D̂CT − CD̂T ),
D̂T (I + μA) = μBT Ĉ.

If μ = 0, then obviously D̂ = 0 and Ĉ = W is a symmetric matrix. Now suppose
μ �= 0. Then the fact that I + μS is symplectic implies

(I + μA)(I + μD)T − μ2BCT = I and rank(I + μA, μB) = n.

Hence, since (I + μA)μBT = μB(I + μA)T ,

Ker(I + μA, μB) = Im
(

μBT

−(I + μA)T

)
.

Now, the second identity in (8.134) implies that(
Ĉ

−D̂

)
∈ Im
(

μBT

−(I + μA)T

)
,

i.e., there exists an n × n matrix W such that

D̂T = μBT W and ĈT = (I + μA)T W.

Substituting this into (8.134), we find that W must be symmetric, and then all
identities in (8.134) are satisfied.

Now we are ready to present our oscillation criteria for systems (8.126). We first
give conditions that imply, assuming nonoscillation of (8.125), that the perturbed
system (8.126) is oscillatory.
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Theorem 8.8.3. Suppose that (8.125) is nonoscillatory and eventually controllable,
and let

(
X
U

)
be its principal solution at ∞. If

(8.135) W (t) ≤ 0 for large t ∈ T

and if there exists a pair
(

x̃
ũ

)
: T → R2n such that

(8.136) x̃ ∈ C1
rd, ũ ∈ Crd, x̃Δ = (Xσ)−1B(XT )−1ũ,

and

(8.137)
∫ ∞ {

ũT (Xσ)−1B(XT )−1ũ + (x̃σ)T (Xσ)T WXσx̃σ
}

(τ)Δτ = −∞,

then (8.126) is oscillatory.

Proof. Consider the transformation z = Rz̃ of (8.126) with

R =

⎛⎜⎜⎝X 0

U (XT )−1

⎞⎟⎟⎠ .

This transformation preserves the oscillatory behavior of (8.126) and transforms
(8.126) into

(8.138) z̃Δ =

⎛⎜⎜⎝ 0 B̄

W μWB̄

⎞⎟⎟⎠ z̃,

where

B̄ = (Xσ)−1B(XT )−1 and W = (Xσ)T WXσ.

To prove that (8.138) is oscillatory (and hence that (8.126) is oscillatory), according
to Proposition 8.8.2 it suffices to construct for every T ∈ T a pair z =

(
x
u

)
such that

xΔ = B̄u, x ∈ C1
rd, u ∈ Crd piecewise on [T,∞), suppx ⊂ [T,∞), and

F̃(x, u) < 0,

where

F̃(x, u) =
∫ ∞

T

⎧⎪⎪⎨⎪⎪⎩
(

x

u

)T

⎛⎜⎜⎝ W μWB̄

μB̄T W B̄ + μ2B̄T WB̄

⎞⎟⎟⎠(xu
)⎫⎪⎪⎬⎪⎪⎭ (τ)Δτ

=
∫ ∞

T

{
uT B̄u + (x + μB̄u)T W (x + μB̄u)

}
(τ)Δτ

=
∫ ∞

T

{
uT B̄u + (xσ)T Wxσ

}
(τ)Δτ.
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Define the pair
(

x
u

)
by

(
x

u

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0
0

)
if t ≤ T(

x1

u1

)
if t ∈ [T, t1](

x̃

ũ

)
if t ∈ [t1, t2](

x2

u2

)
if t ∈ [t2, t3](

0
0

)
if t ≥ t3,

where T ∈ T is arbitrary, t3 > t2 > t1 > T will be specified later, and
(

x1
u1

)
and
(

x2
u2

)
are solutions of xΔ = B̄u satisfying

x1(T ) = 0, x1(t1) = x̃(t1), x2(t2) = x̃(t2), and x2(t3) = 0,

i.e.,

x1(t) =
(∫ t

T

B̄(τ)Δτ

)(∫ t1

T

B̄(τ)Δτ

)−1

x̃(t1),

u1(t) =
(∫ t1

T

B̄(τ)Δτ

)−1

x̃(t1),

x2(t) =
(∫ t3

t

B̄(τ)Δτ

)(∫ t3

t2

B̄(τ)Δτ

)−1

x̃(t2),

u2(t) = −
(∫ t3

t2

B̄(τ)Δτ

)−1

x̃(t2).

Note that controllability of (8.125) implies that
∫ t

T
B̄(τ)Δτ is really invertible if t

is sufficiently large. Then

F̃(x, u) =
∫ t1

T

{
uT

1 B̄u1 + (xσ
1 )T Wxσ

1

}
(τ)Δτ

+
∫ t2

t1

{
ũT B̄ũ + (x̃σ)T Wx̃σ

}
(τ)Δτ

+
∫ t3

t2

{
uT

2 B̄u2 + (xσ
2 )T Wxσ

2

}
(τ)Δτ

≤ x̃T (t1)
(∫ t1

T

B̄(τ)Δτ

)−1

x̃(t1) + x̃T (t2)
(∫ t3

t2

B̄(τ)Δτ

)
x̃(t2)

+
∫ t2

t1

{
ũT B̄ũ + (x̃σ)T Wx̃σ

}
(τ)Δτ.

Here we have used (8.135). Now, let ε > 0 be arbitrary and t1 > T be fixed.
According to (8.137), t2 > t1 can be chosen in such a way that∫ t2

t1

{
ũT B̄ũ + (x̃σ)T Wx̃σ

}
(τ)Δτ < −x̃T

1 (t1)
(∫ t1

T

B̄(τ)Δτ

)−1

x̃1(t1) − ε.
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Finally, since
(
X
U

)
is the principal solution of (8.125), we have(∫ t

t2

B̄(τ)Δτ

)−1

=
(∫ t

t2

{
(Xσ)−1B(XT )−1

}
(τ)Δτ

)−1

→ 0 as t → ∞,

and hence t3 can be chosen such that

x̃T
2 (t2)
(∫ t3

t2

B̄(τ)Δτ

)−1

x̃2(t2) < ε.

Summarizing the previous computations we see that

F̃(x, u) < 0 if T < t1 < t2 < t3 are chosen as above,

and hence (8.138) is oscillatory. This means that (8.126) is oscillatory as well.

Our next result offers another oscillation criterion for (8.126).

Theorem 8.8.4. Suppose (8.135) and let
(
X
U

)
and
(

x̃
ũ

)
be as in Theorem 8.8.3;

however, instead of (8.137) we assume that the integral∫ ∞ {
ũT B̄ũ + (x̃σ)T Wx̃σ

}
(τ)Δτ

is convergent. Moreover, we suppose that

(8.139) x̃T (t)
(∫ t

B̄(τ)Δτ

)−1

x̃(t) → 0 as t → ∞.

If

(8.140) lim sup
t→∞

∫∞
t

{
ũT B̄ũ + (x̃σ)T Wx̃σ

}
(τ)Δτ

x̃T (t)
(∫ t

B̄(τ)Δτ
)−1

x̃(t)
< −1,

then (8.126) is oscillatory.

Proof. First note that the lower limit of integration in the integral in the denomi-
nator of (8.140) is not important. Indeed, since(∫ t

B̄(τ)Δτ

)−1

→ 0 as t → ∞

and (8.139) holds, we find for any a, b ∈ T

lim
t→∞

x̃T (t)
(∫ t

a
B̄(τ)Δτ

)−1

x̃(t)

x̃T (t)
(∫ t

b
B̄(τ)Δτ

)−1

x̃(t)
= 1.

We use the same
(

x
u

)
as in the proof of Theorem 8.8.3. Using the computation given

there, we have

F̃(x, u) ≤ x̃T (t1)
(∫ t1

T

B̄(τ)Δτ

)−1

x̃(t1) + x̃T (t2)
(∫ t3

t2

B̄(τ)Δτ

)−1

x̃(t2)

+
∫ t2

t1

{
ũT B̄ũ + (x̃σ)T Wx̃σ

}
(τ)Δτ

= x̃T (t1)
(∫ t1

T

B̄(τ)Δτ

)−1

x̃(t1) (1 + Γ1 + Γ2) ,
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where

Γ1 :=

∫ t2
t1

{
ũT B̄ũ + (x̃σ)T Wx̃σ

}
(τ)Δτ

x̃T (t1)
(∫ t1

T
B̄(τ)Δτ

)−1

x̃(t1)

and

Γ2 :=
x̃T (t2)

(∫ t3
t2

B̄(τ)Δτ
)−1

x̃(t2)

x̃T (t1)
(∫ t1

T
B̄(τ)Δτ

)−1

x̃(t1)
.

Now, let ε > 0 be such that the limit superior in (8.140) is less than −1 − 3ε. The
point t1 > T is now chosen such that∫∞

t1

{
ũT B̄ũ + (x̃σ)T Wx̃σ

}
(τ)Δτ

x̃T (t1)
(∫ t1

T
B̄(τ)Δτ

)−1

x̃(t1)
< −1 − 2ε

and t2 > t1 such that

Γ1 =

∫ t2
t1

{
ũT B̄ũ + (x̃σ)T Wx̃σ

}
(τ)Δτ

x̃T (t1)
(∫ t1

T
B̄(τ)Δτ

)−1

x̃(t1)
< −1 − ε.

Finally, t3 > t2 we take such that

Γ2 =
x̃T (t2)

(∫ t3
t2

B̄(τ)Δτ
)−1

x̃(t2)

x̃T (t1)
(∫ t1

T
B̄(τ)Δτ

)−1

x̃(t1)
< ε.

This is possible since
(∫ t

t2
B̄(τ)Δτ

)−1

→ 0 as t → ∞. Altogether, for these values

of t3 > t2 > t1 > T we have F̃(x, u) < 0, and hence (8.126) is oscillatory.

If instead of the principal solution of (8.126) at ∞ we use its nonprincipal
solution at ∞, then we get the following result.

Theorem 8.8.5. Suppose that (8.135) holds, let
(
X
U

)
be a nonprincipal solution of

(8.125) at ∞, and let
(

x̃
ũ

)
be as in Theorem 8.8.4. Moreover, we suppose that

(8.141) lim
t→∞ x̃T (t)

(∫ ∞

t

B̄(τ)Δτ

)−1

x̃(t) = ∞.

If

(8.142) lim sup
t→∞

∫ t {
ũT B̄ũ + (x̃σ)T Wx̃σ

}
(τ)Δτ

x̃T (t)
(∫∞

t
B̄(τ)Δτ

)−1
x̃(t)

< −1,

then (8.126) is oscillatory.

Proof. First of all note that since
(
X
U

)
is the nonprincipal solution of (8.126) at ∞,

the matrix integral∫ ∞
B̄(τ)Δτ =

∫ ∞ {
(Xσ)−1B(XT )−1

}
(τ)Δτ
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is really convergent [74]. We use again the computations from the proof of Theorem
8.8.3. For the pair

(
x
u

)
defined in the proof of that theorem we have

F̃(x, u) ≤ x̃T (t1)
(∫ t1

T

B̄(τ)Δτ

)−1

x̃(t1) + x̃T (t2)
(∫ t3

t2

B̄(τ)Δτ

)−1

x̃(t2)

+
∫ t2

t1

{
ũT B̄ũ + (x̃σ)T Wx̃σ

}
(τ)Δτ

= x̃T (t2)
(∫ t3

t2

B̄(τ)Δτ

)−1

x̃(t2) (1 + Γ3 + Γ4) ,

where

Γ3 :=

∫ t2
t1

{
ũT B̄ũ + (x̃σ)T Wx̃σ

}
(τ)Δτ

x̃T (t2)
(∫ t3

t2
B̄(τ)Δτ

)−1

x̃(t2)

and

Γ4 :=
x̃T (t1)

(∫ t1
T

B̄(τ)Δτ
)−1

x̃(t1)

x̃T (t2)
(∫ t3

t2
B̄(τ)Δτ

)−1

x̃(t2)
.

Let t1 > T be fixed and ε > 0 be such that the limit superior in (8.142) is less than
−1 − 3ε. By (8.141) and (8.142), t2 > t1 can be chosen in such a way that∫ t2

t1

{
ũT B̄ũ + (x̃σ)T Wx̃σ

}
(τ)Δτ

x̃T (t2)
(∫∞

t2
B̄(τ)Δτ

)−1

x̃(t2)
< −1 − 2ε

and

x̃T (t1)
(∫ t1

T
B̄(τ)Δτ

)−1

x̃(t1)

x̃T (t2)
(∫∞

t2
B̄(τ)Δτ

)−1

x̃(t2)
< ε.

Finally, we take t3 > t2 such that

Γ3 =

∫ t2
t1

{
ũT B̄ũ + (x̃σ)T Wx̃σ

}
(τ)Δτ

x̃T (t2)
(∫ t3

t2
B̄(τ)Δτ

)−1

x̃(t2)
< −1 − ε

and also

Γ4 =
x̃T (t1)

(∫ t1
T

B̄(τ)Δτ
)−1

x̃(t1)

x̃T (t2)
(∫ t3

t2
B̄(τ)Δτ

)−1

x̃(t2)
< ε.

Consequently, for these t3 > t2 > t1 > T we have F̃(x, u) < 0, and hence (8.126) is
oscillatory.

In the remainder of this section we present some corollaries and examples for
applications of our general oscillation criteria given above.

(i) The formulation of Theorems 8.8.3, 8.8.4, and 8.8.5 simplifies if the pair
(

x̃
ũ

)
appearing in these theorems is of the form

(
v
0

)
, where v ∈ Rn is a constant vector.

We formulate this simplification only for Theorems 8.8.3 and 8.8.4. Theorem 8.8.5
simplifies accordingly.
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Corollary 8.8.6. Suppose that (8.135) holds and let
(
X
U

)
be as in Theorems 8.8.3

and 8.8.4. If there exists v ∈ Rn such that∫ ∞
vT W (τ)vΔτ = −∞

or ∫ ∞
vT W (τ)vΔτ > −∞ and lim sup

t→∞

∫∞
t

vT W (τ)vΔτ

vT
(∫ t

B̄(τ)Δτ
)−1

v
< −1,

then (8.126) is oscillatory.

Proof. The statement follows immediately from Theorems 8.8.3 and 8.8.4 taking
into account that (8.139) is satisfied for x̃(t) = v due to the fact that

(
X
U

)
is the

principal solution of (8.125).

(ii) Here we consider the case T = R, i.e., μ ≡ 0. In this case (8.126) is the
linear Hamiltonian system

(8.143)
(

x

u

)′
=

⎛⎜⎜⎝ A B

C + W −AT

⎞⎟⎟⎠(xu
)

with symmetric matrices B, C, and W . Oscillatory properties of (8.143) in case
A ≡ 0 (using the variational method presented above) were investigated in [75].
In that paper only the possibility

(
x̃
ũ

)
=
(
v
0

)
with a constant vector v ∈ Rn was

considered, so the results presented are new even for linear Hamiltonian differential
systems.

(iii) The higher order Sturm–Liouville differential equation

L(y) :=
n∑

ν=0

(−1)ν
(
rν(t)y(ν)

)(ν)

= 0

with rn(t) > 0 can be written (using a suitable substitution) as the linear Hamil-
tonian system

x′ = A(t)x + B(t)u, u′ = C(t)x − AT (t)u

with

A(t) = (aij)1≤i,j≤n, where aij =

{
1 if j = i + 1, 1 ≤ i ≤ n − 1
0 otherwise

and

B(t) = diag
{

0, 0, . . . , 0,
1

rn(t)

}
and C(t) = diag

{
r0(t), . . . , rn−1(t)

}
.

Oscillatory properties (with applications in spectral theory of differential operators)
of the equation

(8.144) L(y) + q(t)y = 0

viewed as a perturbation of the nonoscillatory equation L(y) = 0 were investigated
in several recent papers, see e.g., [76, 127] and the references given therein. Writing
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equation (8.144) as a linear Hamiltonian system (8.143), the perturbation matrix
W is of the special form

W = diag
{

0, 0, . . . , 0, q
}

.

Using our method, one can investigate oscillatory properties of the equation

L(y) + M(y) = 0, where M(y) =
m∑

ν=0

(−1)ν
(
qν(t)y(ν)

)(ν)

with qm(t) > 0 and m < n. In this case the perturbation matrix W is

W = diag
{

q0, . . . , qm, 0, 0, . . . , 0
}

.

If the operator M is of higher or equal order than L, i.e., m ≥ n, then this per-
turbation does not fit into our setting. However, in applications, the perturbation
operator is usually of lower order than the original one, and it is also a partial
justification why the perturbation matrix S̃ is of the form as considered here.

As an example of the application of this general idea to fourth order differential
equations we give the following oscillation criterion.

Corollary 8.8.7. Consider the fourth order differential equation

(8.145) y′′′′ − (q1(t)y′)′ + q0(t)y = 0

with q1(t) ≤ 0 and q0(t) ≤ 9
16t4 eventually. If there exist c1, c2 ∈ R such that

(8.146)
∫ ∞{

q1(τ)(h′(τ))2 +
(

q0(τ) − 9
16τ4

)
h2(τ)
}

dτ = −∞,

where h(t) = c1t
(3−√

10)/2 + c2t
3/2, then (8.145) is oscillatory.

Proof. As the “unperturbed” nonoscillatory equation we take the fourth order Euler
equation

(8.147) y′′′′ − 9
16t4

y = 0.

Equation (8.147) has solutions

y1(t) = t(3−
√

10)/2, y2(t) = t3/2, ỹ1(t) = t3/2 ln t, ỹ2(t) = t(3+
√

10)/2.

By a direct computation one can verify that

X =

⎛⎜⎜⎝y1 y2

y′
1 y′

2

⎞⎟⎟⎠ , U =

⎛⎜⎜⎝−y′′′
1 −y′′′

2

y′′
1 y′′

2

⎞⎟⎟⎠
is the principal solution of the linear Hamiltonian system corresponding to (8.147),
and (8.145) can be written as a system (8.143) with

A =

⎛⎜⎜⎝0 1

0 0

⎞⎟⎟⎠ , B =

⎛⎜⎜⎝0 0

0 1

⎞⎟⎟⎠ , C =

⎛⎜⎜⎝ 9
16t4 0

0 0

⎞⎟⎟⎠ ,

and

W (t) = diag
{

q1(t), q0(t) −
9

16t4

}
.
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We take x̃(t) = c and ũ(t) = 0 with c =
(
c1
c2

)
and apply Theorem 8.8.3. Then

x̃T Wx̃ = cT XT WXc = (c1y
′
1 + c2y

′
2)

2q1 + (c1y1 + c2y2)2
(

q0 −
9

16t4

)
,

and (8.137) reduces to (8.146).

Note that for the sake of simplicity in the previous corollary we used Theo-
rem 8.8.3 (with the special choice x̃ = c and ũ = 0). Computing explicitly the
expressions

cT

(∫ t {
X−1B(XT )−1

}
(τ)
)−1

c and cT

(∫ ∞

t

{
X̃−1B(X̃T )−1

}
(τ)
)−1

c

with

B =

⎛⎜⎜⎝0 0

0 1

⎞⎟⎟⎠ and X̃ =

⎛⎜⎜⎝ỹ1 ỹ2

ỹ′
1 ỹ′

2

⎞⎟⎟⎠
(the functions ỹ1 and ỹ2 are given in the previous proof), one can formulate also
oscillation criteria which are special cases of Theorems 8.8.4 and 8.8.5. These
reformulations yield new results even for the special equation (8.145).

(iv) Now we deal with the discrete case T = Z. In this case, (8.126) reduces to
the symplectic difference system

(8.148) zk+1 = (I + Sk)zk.

Basic properties of solutions of (8.148) (e.g., the Reid roundabout theorem) have
been established in [33, 40]. However, oscillation criteria for general symplectic
difference systems (in terms of the coefficient matrices I + A, B, C, and I + D of
(8.148)) have not been established yet; so the results of Theorems 8.8.3, 8.8.4, and
8.8.5 are new also for systems (8.148). We refer here to the papers [44, 62, 77,
90, 127, 238] and the references contained therein, where oscillatory properties of
special cases of (8.148) like discrete Hamiltonian systems or higher order Sturm–
Liouville difference equations are investigated.

8.9. Notes

Most of the preliminary results given in Section 8.2 are from the books by
Bohner and Peterson [53, 55]. The reader may also refer to Hilger’s original paper
[124, 125]. Other interesting references concerning the time scales calculus contain
[4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20, 26, 27, 32, 38, 39, 45, 47,
48, 49, 50, 51, 52, 54, 56, 69, 85, 86, 87, 88, 125, 126, 143]. The results
from Section 8.3 and Section 8.4 are adopted from Bohner and Saker [58] and [57],
respectively. For Section 8.5, see Huang and Li [197]. Results from the two papers
by Akın-Bohner and Hoffacker [21, 22] are presented in Section 8.6. Results related
to Section 8.7 can be found in [37, 299]. Finally, the contents of Section 8.8 is
taken from Bohner and Došlý [42].
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[38] Martin Bohner and José Castillo. Mimetic methods on measure chains. Comput. Math.

Appl., 42(3-5):705–710, 2001. Advances in Difference Equations, III.
[39] Martin Bohner, Steven Clark, and Jerry Ridenhour. Lyapunov inequalities for time scales.

J. Inequal. Appl., 7(1):61–77, 2002.
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[75] Ondřej Došlý. On the existence of conjugate points for linear differential systems. Math.
Slovaca, 40:87–99, 1990.

[76] Ondřej Došlý. Oscillation and spectral properties of a class of singular differential operators.
Math. Nachr., 188:49–68, 1997.
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[118] István Győri and Gerasimos Ladas. Oscillation Theory of Delay Differential Equations.
Oxford University Press, New York, 1991.

[119] Jack Hale. Theory of Functional Differential Equations. Springer-Verlag, New York, second
edition, 1977. Applied Mathematical Sciences, Vol. 3.

[120] Godfrey H. Hardy, John E. Littlewood, and George Pólya. Inequalities. Cambridge Univer-
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