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Chapter 1

Preliminary remarks,
Notation

1.1 Notation

Functional Analysis is a fundamental part of Mathematics developed in the
first half of the 20th century. It has become a very important tool in modern
mathematics, in particular for partial differential equations. If T had to say
in a few lines what Functional Analysis is about I would say this: Functional
Analysis is about solving equations F'(z) = y, where F' is a linear map between
vector spaces X and Y. If X and Y were finite dimensional then this would
just be Linear Algebra. The vector spaces we are concerned with will be infinite
dimensional. In fact, they will mostly be function spaces. For example, if
Q2 C R" is a domain in R™, i.e. an open connected subset of R", and if C*(Q)
denotes the set of all functions f : 2 — R which are k times differentiable with
continuous derivatives then the Laplace operator

is a linear map from C?(2) into C°(Q2). Finding a solution u € C?(Q) to Pois-
son’s equation Au = f with given f € C°(Q) can then be viewed as solving
an inhomogeneous linear equation between suitable vector spaces. It is this ab-
stract point of view that makes Functional Analysis so powerful: There is a large
number of partial differential equations (elliptic partial differential equations)
which can all be treated in the same way because they have the same abstract
functional analytic origin. The vector spaces considered in Functional Analysis
will carry particular topological structures, and the linear maps F' will mostly
be continuous with respect to the given topologies on X and Y.

Some remarks on notation: Vector spaces will always be over the real or over



the complex numbers. We denote the sets of natural numbers, integers, ratio-
nal, real and complex numbers by N, Z, Q, R and C respectively. The set N
contains 0, otherwise we write N*. The letter 2 will denote a domain in R™
(not necessarily bounded). I will also write 'z := y’ if I want to define x to be y.
The term 'z = 3’ means that z,y are both defined and I am claiming that they
are equal. Sometimes we will write Oru, 0y, u or Dyu for the partial derivative

B%:k' We will frequently use the following notation: If & = (aq,...,q,) is an
n—tuple of integers ay > 0 then we write |a| :=ay + -+ + «,, and
dlely
D% :=

(03 (7
ox{" ---Oxp"

We will write C*(Q) for the set of all functions f : Q — R so that all derivatives
D f exist whenever |a| < k, they satisfy sup,cq [D® f(z)| < 400, and they can
be extended continuously up to the closure € of 2. We also write

CE(Q) := {f € C*(Q) | supp(f) C Q is compact }

with

supp(f) := {z € Q[ f(z) # 0}

(”functions with compact support”). We use the notation C*° () for the set of
all infinitely differentiable functions (”smooth functions”).

1.2 Baire’s lemma

In this section we will prove Baire’s lemma which we will need later on. Let
(X, d) be a metric space.

[e]
Definition 1.2.1 A subset A C X is called nowhere dense if A= ().
In particular, a nowhere dense set does not contain any open ball.

Theorem 1.2.2 Let (X,d) be a complete metric space, and let (U;)ien be a
sequence of open dense sets. Then the countable intersection

Ui
ieN
s also dense in X.

Proof:
Let z € X. We have to show that for all numbers € > 0

B.(z)N (ﬂ Ui> 40

ieN



with B.(z) := {y € X |d(z,y) < ¢}. We know that B.(z) N U; is not empty
and open. Pick 2y € B.(z) NU; and &1 < § so that

B, (z1) C Be(z)NUs.

Now B, (z1) N Uz is not empty and open as well. Pick o € B, (z1) N Uz and
g2 < % so that

B52 (1’2) C le (CEl) N Us.

Continuing this iteration, we obtain sequences of points (z,)n,en and positive
numbers (€, )pen so that

Bepiy (@nt1) € Be, (@) N Unpt

and .
Ent1 < ?n
Because X is complete the intersection (1, Be, () is not empty. Let & be

an element in this intersection. By construction
Z € B, (zn) C Be(z)NU,

for all n € N, hence
e B.(z)N (ﬂ Ui> .
ieN

O

Exercise 1.2.3 Let (X, d) be a metric space. Show that the following two state-
ments are equivalent:

e The space (X,d) is complete, i.e. every Cauchy sequence is convergent.

o Let B, (xr) be any sequence of open balls with
B, (x) C Be, (z) C Be,_, (vx—1) and g \, 0.

Then (), Be, () # 0.

We continue with some equivalent formulations of Baire’s lemma. The set U; C
X is open and dense if and only if the complement X\U; is closed and nowhere
dense. Indeed, if U; is open and dense then the complement is closed and any
open ball around a point « € X\U; has to intersect U;. This means that X\U; =
X\U; does not contain any open ball, i.e. it is nowhere dense. Conversely, if
X\U; is closed and nowhere dense then U; is open and X\U; does not contain
any open ball which implies that U; is dense.




Theorem 1.2.4 Let (X,d) be a complete metric space, and let (A;)ien be a
sequence of closed nowhere dense subsets of X. Then the union | J;cn Ai has no
interior points.

O

Theorem 1.2.5 Let (X,d) be a complete metric space, and let (A;);en be a
sequence of closed subsets of X. Assume that the union |J,cn Ai contains an
open ball. Then there is some k € N so that the set Ay also contains an open
ball.

Exercise 1.2.6 Prove the above two versions of Baire’s lemma.

Remark:
Theorem 1.2.5 is the most commonly used version of Baire’s lemma.

1.3 Brief review of Integration

In this section we briefly review some basic facts about integration without
proofs, and I assume that you are familiar with them. You may find the proofs
in books about measure theory, for example in the book by Wheeden and Zyg-
mund. Here are the ’big three’, the convergence theorems of Lebesgue integra-
tion (theorem of monotone convergence by Beppo Levi, Lebesgue’s convergence
theorem and Fatou’s lemma):

Theorem 1.3.1 (B. Levi, monotone convergence)

Let fn : Q — R be a sequence of functions in L'(Q) such that fn(x) < foi1(2)
almost everywhere and sup,, fQ fn(x)dx < co. Then the sequence f, converges
pointwise almost everywhere to some limit f which is also in L'(Q) and ||f. —
fllzr@) — 0 as n — oo.

Theorem 1.3.2 (H. Lebesgue)
Let fn, : Q — R be a sequence of functions in L*(S2). Suppose that

o fn(x) — f(z) for almost every x € 2,

e There is an integrable function g : @ — R such that |f(x)| < |g(x)| for
all n and for almost every x € Q.

Then || fn — fllL1) — 0 as n — oo.



Lemma 1.3.3 (Fatou’s lemma)
Let fn, : Q — R be a sequence of functions in L*(S) such that

e for almost every x € Q and every n we have f,(x) >0,
o sup, [, fu(z)de < co.

For each x € Q we define f(x) :=liminf, f,(z). Then f is integrable and

/f(x)d:c < liminf/ fo(z)dz.
Q n Jo

The following result is very important:

Theorem 1.3.4 The space C$°(Q) is dense in L1(Q), i.e. for every e >0 and
f € LY(Q) there is some ¢ € C$°() such that

ll6 — fHLl(Q) <Ee.

O

We conclude our summary of integration theory with the theorems of Tonelli
and Fubini. Assume that Q7 C R™ and 25 C R™? are open domains. Moreover,
let F': Q1 x Q25 — R be a measureable function. Here is Fubini’s theorem:

Theorem 1.3.5 (Fubini)
Suppose that F € L*(Q x Q). Then for almost all x €

F(z,%) € L*(Q2) and F(x,y)dy € L*(Qy).
Qo
Also for almost all y € Qg
F(x,9) € L'() and / F(x,%)dx € L'(s).
Q

Moreowver,

/Ql (/Q F(x,y)dy> dz = /Q (/Q F(ﬂc,y)dx) dy = /QQ F(z,y)dzdy.

O



Hence finiteness of the integral le v, F (z,y)dzdy implies finiteness of the iter-

ated integrals [, (fﬂz F(z, y)dy) dr and [, (le F(x, y)dm) dy. The converse
is not true, even if the iterated integrals both exist and are equal, the function
F need not be integrable over Q; x Q5 (see Wheeden-Zygmund p. 91 for a
counterexample). However, the converse is true if F' is not negative, which is
Tonelli’s theorem.

Theorem 1.3.6 (Tonelli)

Assume that F is not negative. Then for almost every x € Qi the func-
tion F(x,*) is a measureable function on Q. Moreover, as a function of z,
sz F(x,y)dy is measureable on Q1 and

/91 </Q F("T’y)dy> dr = /QQ F(x,y)dzdy.



Chapter 2

Normed Linear Spaces

2.1 Norms

Let X be a vector space over the real or over the complex numbers. A norm
on X is a real valued function X — R, which we denote by |z| satisfying the
following conditions:

e |z| > 0 with equality if and only if x = 0,
o |z +y| <|z|+ |y|, 'subadditivity’
e For all A € R we have |Az| = || - |z].
A norm on a vector space X induces a metric on X by
d(x,y) =[x —y.
This metric is invariant under translations and homogeneous, i.e.

d(x+ z,y+ 2) =d(z,y) , ddz,\y) = |\ d(z,y).

Definition 2.1.1 If a vector space X equipped with a norm is complete, i.e.
every Cauchy sequence converges, then (X, |.|) is called a Banach space.

Definition 2.1.2 Let X be a vector space. Two different norms |.|1 and |.|2
are called equivalent if there is a constant ¢ > 0 such that

1
clzli <lzl2 < g|93|1

forallx € X.



Equivalent norms on X induce the same topology on X. We observe the fol-
lowing:

1. A subspace Y of a normed linear space is again a normed linear space.

2. If X,Y are two normed linear spaces, then we denote the set of all ordered
pairs (z,y) withz € X, y € Y by X®Y. The space XY can be equipped
with a norm by defining

(@ y)h= 2l + [yl s [(2,y)le = max{|z], [y[} or [(z,y)|s == V/|=[> + [y,

Exercise 2.1.3 Show that |.|x, k = 1,2,3 above are indeed norms and show
that they are equivalent norms.

Let X be a normed linear space and let Y be a subspace. If Y C X is closed
then there is a natural norm on the quotient space X/Y as follows:

Proposition 2.1.4 Let X,Y be as above with Y closed. If [x] € X/Y is an
equivalence class of elements of X modulo Y then the following defines a norm
on X/Y:
:= inf = inf .
|[]] nf |2 = inf |z +y|
If moreover X is a Banach space then X/Y is also a Banach space with the
above norm.

Proof:

We first check that |[z]| is indeed a norm. If A € R we trivially have |A[z]| =
[A] [[£]]. In order to check the triangle inequality, let € > 0 and pick representa-
tives z. € [z], ye € [y] so that

x| <] + ¢ and |yc| < |[y][ +¢

which is possible by definition of the norm |[z]|. Since z. + y. is a representative
of the class [z] + [y] we estimate

inf |z|
2€[z]+[y]

|z + yel
|I5|+‘y6|
|[z]] + [[y]] + 2e.

|[2] + [yl

IN A IA

Since € > 0 was arbitrary, we conclude |[z] + [y]| < |[z]| + |[y]|- We clearly have
[[z]| > 0 for all [z] € X/Y. Assume now that |[z]| = 0. We would like to show
that [x] =0, i.e. x € Y for any representative = € [z]. Since

0= |[z]| = inf |z,
z€[z]



there is a sequence zj, € [z] with |z;| — 0 as k — co. Since the elements xj, are
all equivalent modulo Y, we can find a sequence (yx)ren C Y such that

TEk =21 — Yk, k> 2.

Now |zg| = d(z1,yx) — 0, i.e. viewing X as a metric space the sequence yy,
converges to x1. Because Y is closed by assumption the element z; then also
belongs to Y which implies [z] = 0.

Assume now that X is a Banach space. We know now that the quotient X/Y is
a normed space with the norm |[z]| as above. Let |[z,]| be a Cauchy sequence
in X/Y, ie. |[xn] — [xm]| converges to zero as n,m tend to infinity. We have
to show that the sequence ([z,])nen converges in X/Y. It is sufficient to show
that the sequence ([z,])nen has a convergent subsequence.

Since ([zn])nen is a Cauchy sequence we may find a subsequence ([zy,])ken
such that

1
|[xn)€+1] - [xnkH < 27]6 v k 6 N.
We claim now that every class [x] € X/Y has a representative x € [x] such that
x| < 2{[]].

If this were not true then there would be some [z] € X/Y such that for all
representatives x € [x]
ol 2 21[e]] =2 inf o]
zrE|T

which is clearly absurd proving the claim. Pick now representatives x,, € [zn,]
so that

1
|xnk+1 - xnk| <2 |['Tnk-+1] - [mnk” < 2]§7_1
We then get for [ € N
l
|$nk+z - xnk' < Z ‘xnk+m T Tnpgm—1
m=1
Lo
< Z 2k+m—2
m=1
B 1 -1 1
T~ 9k—1 om
2 ) 2m
1 1

hence the sequence (z,, )ken is a Cauchy sequence in X. Since X is complete
it has a limit z € X. Now

llon,] = lo]l = Inf |2n, — 2+ y] < |2n, —2[—0

as k — oo completing the proof.



O

Proposition 2.1.5 If X is a finite dimensional vector space then any two
norms on X are equivalent.

Proof:
Let e1,...,e, be a basis for X. Then every element z € X has a unique
representation
n
Tr = Z €T; €4
i=1
and

||| maz = maxi<;<n |z

is a norm on X. It suffices to show that any norm on X is equivalent to the
norm ||.|lmaez- Let ||.|| be a norm on X. We estimate

n n
lall < 3 fel lleall < (maxicizalaid ) D llesll = ¢2lmas
i=1 =1

where ¢ = Y| |le;||. We have to show the reverse inequality, i.e. we have to
show that there is some positive constant ¢’ such that ||z|mes < ¢||z] for all
x € X. If this were not true then for every € > 0 there would be some z¢ € X
such that

ellzlmaz > [l2°]-

Hence ¢ # 0 and we may assume without loss of generality that
[2°[[mae = maxi<i<n|2i| =1

(otherwise consider z°/||z°||mqr instead of z€). We can now find a sequence
er "\, 0 and some 1 < ig < n so that

25| =1VkeN

and
rh — & as k — 0.
Let .
z = Z i€
i=1
so that

n
T — x°F = Z(fl —xF) e
i=1
We estimate

)
A

[l = | + flz= ||

n
(mar<iznlés = af*1) 3 lled + e
i=1

IA

10



which converges to zero as kK — oo. This implies = 0 and also & = 0 for all
1 < i < n in contradiction to [&;,| = 1.

2.2 Examples of Banach spaces

2.2.1 CF(Q), C*(Q) and Holder spaces

We denote by CF(Q) the space of k-times continuously differentiable functions
such that all derivatives up to order k£ are bounded in the supremum-norm, i.e.
we define for f € C*(Q)

Hf”ck(sz) = Z sup [ D f(z)|

0<al<k "€

and
CE Q) :=={f € C* | fller) < oo}

If 0 < 8 <1 then we define for f € C’k(Q)

|D* f(y) — D* f(z)]
I fllcrsy = I fller @) + sup
() (V) |O¢Z_kr’y€Q’I¢y |z — y|P

and

ChP(Q) == {f € C*Q) | fllers(@) < oo}

Functions in C%#(Q) are called Holder—continuous and Lipschitz—continuous in
the case 3 = 1. We will refer to the spaces C*#(Q) simply as Hélder spaces. If
Q) is a bounded domain, we define

C*(Q) := {f € C*(Q) | D*f extends continuously onto Q for all 0 < |a| < k}

and - -
CHA@) = {f € CE@) |1 fllgun ey < o0}
where the norms ||| o« @) and -1l ooy are defined in a similar way as above,

just replace Q by Q in the definition. Holder spaces are extremely important in
the theory of partial differential equations.

Exercise 2.2.1 Show that the product of two Hélder continuous functions f1 €

COP1(Q) and f, € C%P2(Q) is again Hélder continuous, i.e. there is v € (0,1]
such that fifa € CO7(Q). What is the correct Holder exponent v ¢

Theorem 2.2.2 Let Q C R"™ be a domain. Then the spaces Ci () and C*#(Q)
are Banach spaces with the norms ||.||cxq) and ||.|[cr.s(q) respectively.

11



Proof:

We will only consider the spaces C1(2) and C%#(€2). The general case follows
easily by iteration. First, the space CP(€2) is a Banach space with the supremum
norm ||.||co(q) for the following reason: If (f,) C CP(Q) is a Cauchy sequence
then for each £ > 0 there is N € N so that

|[fr(@) = f(@x)] <eVn,m >N, x € Q.

The sequence of real numbers (f,,(z)) is then also a Cauchy sequence for every
x € Q, hence it has a limit f(x) by the completeness of the real numbers. On
the other hand, we also have || f, — f|lco(q) — 0 since

[fu(z) = f(2)] = Tim |fn(2) = fru(2)] < lHminf|[fn = fnlloo@)

and
an — fHCO(Q) S 1%11}1&1; an — meCO(Q) — 0 for n — oo.

Since || fn — fllco(@) — 0 the sequence (f,,) converges uniformly to f so that f is
continuous and also bounded. Let now (f,,)nen be a Cauchy sequence in Cf (Q).
Then the sequences (9; fr)neN, (fn)nen, are Cauchy sequences with respect to
the supremum norm and therefore have continuous limits which we denote by g;
and f respectively. It remains to show that the limit f is differentiable and that
0if = g;. We define g := (g1, ...,94) (with d being the dimension of the domain
Q), Viu(z) := (O1fn(),...,0afn(z)), and for given z € Q we pick y € £ such
that zy ;== (1 —t)xz +ty € Q for all 0 < ¢ < 1. Then

[fn(y) = fn(@) = Vin(x) - (y —2)| = /O(an(xt)—vfn(l‘))-(y—x)dt

IA

1
jy — | / IV fule) — V()] dt

ly — 2|2V fn — gllco@) +
+ sup |g(x:) — g(2)]).
0<t<1

IN

For n — oo we obtain
1f(y) = f(x) —g(x) - (y—2)| < |y — x| sup |g(z:) — g(a)],
0<t<1

but supg<;<; |9(zt) — g(z)| converges to zero as y — x. This means that f
is differentiable in = with Vf(z) = g(z). This shows that C$(f2) is a Banach
space.

Let us now assume that (f,)nen is a Cauchy sequence in C%%(€2). The sequence
(fn) is also Cauchy for the supremum norm, hence there is a bounded continuous
function f so that || f, — fllco) — 0 as n — oo. We have to show that also

[f(y) = f(=@)]

sup 5 < 0.
cyeQ, oty T =Y

12



If € > 0 then there is N € N such that for all n,m > N

sup |f"<x)_fm(x)_(fn(y)_fm(y))l

2,y€Q, 70 |z —y|?

<e

because (f,) is a Cauchy sequence with respect to the norm ||.||co.s(q). For each
pair x,y € Q with x # y we may pass to the limit m — oo, and we obtain

[fu(@) = f(2) = (fuly) = fFW))]
|z —y|?

<e

f— )

which implies
@) = FWl | nl@) = fu(y)]
lw—yl® |z —y|?

hence f € C%F(Q), and ||f — fullco.sa) — 0 as n — oco.

Y

In the same way we have

Theorem 2.2.3 Let Q2 C R"™ be a bounded domain. Then the spaces C*(Q) and
C*B(Q)) are Banach spaces with the norms [-lor@y and ||l or.s g, respectively.

O

The following crucial theorem characterises precompact sets in C°(Q). It is
called the Ascoli-Arzela theorem.

Theorem 2.2.4 (Ascoli—Arzela) B
Let © C R? be a bounded domain. Then a subset A C C°(Q) is precompact if
and only if the following two conditions are satisfied

1.

¢ :=supsup |f(z)] < oo ("uniformly bounded”),
feAa weﬁ

sup [f(z) — f(y)| — 0 as [z —y| — 0.
feA

(7 equicontinuous”)

13



(here precompact means that every sequence in A has a subsequence which con-
verges in C%(Q).)

Proof:

Let (fn)nen C A be a sequence. We have to show that it has a convergent
subsequence. We will actually show that (f,) has a subsequence which is a
Cauchy sequence with respect to the norm ||.|| co(m Which is sufficient since

(C°(Q), [l o) is @ Banach space. We first pick a sequence (z;)ien of points

in Q which is dense in Q, for example take Q N Q¢ i.e. all points in Q with
rational coordinates. This is a countable set, we enumerate it and get {z;|i €
N} = QN Q% Since
supsup | fn(z)] = c < o0
n ozeQ

we have in particular
sup | fn(21)| < c.
n

Hence the sequence (f,,) has a subsequence (f1,)nen S0 that fi,(x1) converges
as n — oo by the completeness property of the real numbers. We still have

supsup | fin(z)| < c,
n ozeQ

hence the sequence (f1,) has a subsequence (f2,) so that fa,(z2) converges
for n — oco. Continuing this iteration we obtain a subsequence (fgn)nen of
(frx—1,n)nen so that fr,(z1) converges as n — oo. We consider now the ’diagonal
sequence’ (fpn)nen. It has the property that f,,(z;) converges for any i € N
as n — oo ("Cantor’s diagonal process’).

We will now show that the sequence f,, is Cauchy with respect to the norm
”'”00(5)' Pick € > 0. Then

1. Choose ¢ > 0 so that
€
|fee(y) = frr(z)] < SVkeN

whenever |z —y| < §. We have used here that the set A is equicontinuous.

2. Choose M € N so that for each = € Q there is an integer ¢ between 1 and
M so that |z — x;| < 4.
We used here that Q ¢ R¢ is compact, i.e. only a finite number of balls
Bj(x;) is necessary to cover €.
3. Choose N € N so that for all 1 <7 < M and n,m > N we have
€

Note that we are talking here about finitely many points x;, hence there
is no problem with finding such a number N which is good for all .

14



Note that N depends on M, M depends on ¢ > 0 which in turn depends on
€ > 0. We now estimate for arbitrary = € Q, n,m > N and for z; as in (2)

L E,E.¢
-3 3 3
= E.

Hence for given € > 0 there is an integer N > 0 such that for all n,m > N we
have

”fnn - fmmHCO(ﬁ) <e.

This is what we wanted to show.

O

Exercise 2.2.5 Use the Ascoli-Arzela theorem to derive the following useful
Corollary: Let & C R™ be a bounded domain. Let (fn)nen be a sequence in
C>°(Q) with the following property: For every multi-index o there is a constant
Ca > 0 such that

sup sup | D% fn ()| < cao.

xeQNEN

Then the sequence (fn)nen has a subsequence (fn,)ien so that fn, converges in
C*(Q) for every k € N.

We will see later that C>°(Q2) C C*(Q) is dense for all k£ > 0 if 2 is a bounded
domain with sufficiently 'nice’ boundary 9 (we will be more precise later if
we prove this statement). This implies that C°°(2) is not a Banach space if
equipped with any C*-norm. This motivates the following two exercises:

Exercise 2.2.6 Is it true that C>°(Q) is dense in C™*(Q) if a >0 ?

Hint: Let Q = (=1,+1), a = 1/2. Show that the function f(z) := \/|z| is in
CO1/2(Q) try to approzimate it in the Holder norm by smooth functions.

Exercise 2.2.7 Fréchet—metric on C*° (1) -
Let Q be a bounded domain. We define for f,g € C*(Q)

||f—9||ck(§)
1 + Hf - g”ck(ﬁ)-

d(f7 g) = Z 27+
k=0

Show that the above expression is always finite, and verify that d defines a metric
on C*°(Q) such that (C*°(Q)),d) is a complete metric space. Moreover, show
that d(fn, f) — 0 is equivalent to the convergence of the sequence fy to f with

respect to any C*-norm.
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Here are some more problems:
Exercise 2.2.8 Prove Dini’s theorem:

Let Q be a bounded domain and let f, € C°(Q), n € N so that fn(z) — 0 and
fu(x) > far1(x) for all z € Q. Then

[ fnllco@y — 0 as n — oo,

i.e. the sequence (f,) converges uniformly to zero.

Exercise 2.2.9 Comparison of Hiélder spaces:
Let Qﬁbe a bounded domain (mdg < a< fB<1. Show that bounded subsets of
CYB(Q) are precompact in CO(€).

2.2.2 LP(Q) and [?

If Q ¢ R" is a domain and p € R with 1 < p < 0o we define for measurable

f:Q9—=R )
» = Pd '
1l (/ﬂlf(x)l x)

LP(Q) :={f: Q — R [ is measureable and || f||z» ) < 0o}

and

The vector space (LP(Q),]].][Lr(q)) is not a normed space since || f|[zr(q) = 0
does not imply f = 0. We rather introduce the following equivalence relation
on the vector space LP(Q)). We say f,g € LP(Q) are equivalent if the set

{z e Q[ f(x) # g(x)}

has measure zero. We denote the vector space of equivalence classes by LP(12)
which then becomes a normed space. We remark that the proof of the tri-
angle inequality [|f + gllzr@) < [Ifllzr() + l9llzr(n) is not trivial (it is also
called ”Minkowski inequality”). We will discuss the proof in a moment. For
measureable f : Q — R we define

ess sup,cqf(z) = inf{c € RU{oo}|f(z) < c for almost all z € Q}
= inf{ sup |f(z): NCQ,|N|=0}
z€Q\N

and we denote by L°(Q) the equivalence classes of all measureable functions
with
[fllzoe () := ess sup,eqlf(z)] < oo

These are functions which are bounded except on a set of measure zero.

Exercise 2.2.10 Show that (L*°(Q), ||.||L=(q)) is a Banach space.

16



We will often be somewhat sloppy and talk about a measureable function being
in the space LP(f2) instead of referring to its equivalence class.

We will show a fundamental inequality ("Holder inequality”) for LP—spaces
which will imply among other things Minkowski’s inequality. After that we
will show that the spaces LP(2) are Banach spaces for 1 < p < oco.

Theorem 2.2.11 (Hdlder’s inequality)
Let Q € R™ be a domain and f € LP(Q), g € L1(Q) with 1 < p,q < 0o such that

1 1
Syio1
q P
Then fg € L'(Q) and
If9llzr) < I fllze@llgllLa(a)-
Proof:

The theorem is obvious if p = 1 and ¢ = oo or vice versa. Hence we assume
that 1 < p,q < co. Recall Young’s inequality which is

1 1
ab< —aP + -b? Va,b>0.
p q
The proof is evident: Since the logarithm function is concave on (0, cc) we have
1 1 1 1
log <ap + bq> > —loga? + —logb? = log(ab).
p q p q
Therefore,
1 1
|f(@)]g(x)] < Z;If(x)l” + 5|9($)|q
for almost all z € Q. We conclude that fg € L!(Q) and that

1
[ 1fol@de < S0y + Clalle

Replacing now f by Af, where A > 0 we obtain

/ Fol(x)dz <
q/p

Choosing now A = ||fHZ;(Q) ||g||Lq(Q) we obtain

/Q Fol(z)dz

?(Q) + HgHLq(Q

IN

1f 1o ||f\|Lp o
M eri@) oo WALr@)y gyacarn

La1(Q)
1 1
f P gl La ( + ) .
£z (Q)H Iz ) p g
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O

Before we proceed, let us note some useful consequences of Holder’s inequality.
The first one is Minkowski’s inequality:

Theorem 2.2.12 (Minkowski’s inequality)
Let 1 <p<ooand f,g € LP(Q). Then f+ g € LP(Q) and

ILf +aglleey < [Ifllze) + 9llr@)-

Proof:
The cases p = 1 and p = oo are obvious, so let us assume that 1 < p < co. We
have

[f(2) + g@)I” < (1f(@)] + lg(@)])” < 227 (If (@) + |g(2) ")

so that f +g € LP(Q2). Let now ¢ := -£5 so that % + % = 1. We use the trivial
inequality

f(2) + g(@) P < [f(2)][f(z) + (@) P~ + |g(2)] 1 f () + g() P

and we note that the function |f(x) + g(z)[P~! is in L9(Q). Then we conclude
from Holder’s inequality

/Q|f(=’1”) +g(x)Pdx < ||f||LP(Q)|Hf+g|p71”L4(Q) + ||g||LP(Q)|||fJrg‘pil”LQ(Q)

= (Il + l9llre) ( /Q (@) +g(:c)|pdw) v

If [,|f+ g[" = 0 then Minkowski’s inequality is trivially true. Otherwise we
_1
divide the above inequality by ([, |f(z) + g(x)\pdx)l P,

O

Exercise 2.2.13 Prove the following generalization of Hélder’s inequality: Let

Plye--yPn > 1 so that

1 1
7+...+7:1

and fr € LP*(Q), k=1,...,n. Then
/Q @) fu@dz < 1 fillim @ - [fallon -

Here are some simple consequences of Holder’s inequality

Corollary 2.2.14 Let Q@ C R™ be a bounded domain and 1 < p < ¢ < 0.
Then L1(2) C LP(QY) and

_1 _1
Q7% [ fllze) < QU9 flla) Vf € LI(Q).

18



Proof:
The case ¢ = oo is obvious, hence assume that ¢ < co. Using Holder’s inequality
we obtain

1wy = [ 1-If@pds
< M,y g AP, 3

QL E I 0

: P 94=p _
since £ 4+ L=£ =1,
q + q

O
Corollary 2.2.15 (interpolation inequality)
Assume that 1 <p<qg<r and 0 < X <1 with
1 A 1-2A
=4 .
q p r
If f € LP(Q) N L™(Q2) then also f € LI(Q) and
1£lza@) < 11 2ege) - 112y
Proof:
We have ;T + 5, =1 if we choose p; = T; and py = ﬁ. Then we obtain
from Hélder’s mequahty
[is@rae = [ 7@ 15@)0 -V
Q
< PN Lo |||f|(1 M| Lo o)
= Hf||LP(Q)Hf| LT(Q)
O

The following interesting result explains why the space L*(£2) is called like this
(if © is a bounded domain).

Proposition 2.2.16 Let Q& C R" be a bounded domain. For f € LP(Q), 1 <

p < oo we define )
1/p
w0)i= (g7 [ 1r@Pas)

If | fI? is merely measureable, but not integrable we set ®,(f) := 4+o00. Then for
every measureable function f:Q — R U {+o0}

Jim @, (f) = [ fll o= -
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Proof:
We have

1
@, (f) =177 fllLr(0)-
By corollary 2.2.14, ®,(f) viewed as a function of p is increasing with
P, (f) < [1fll=()-

Therefore, the limit lim, .., ®,(f) € RU {oo} exists, and it remains to show
that

[fll L) < Jim ®,(f)-

For K € R let
Ay = {z € Q|f(@)| > K}.

The set Ay, is measureable since f is and |Ax| > 0 if K < || f||(q). Moreover,

1 l/p 1 1
o,(f) > 12~} ( / If(x)l”dw> > |0 Ak K.

Passing to the limit p — oo we obtain

lim ®,(f) > K.

p— 00

Because this holds for all K < || f|| =) we conclude

Jim 2p(f) 2 [1f ]l 0)-

Theorem 2.2.17 (Fischer—Riesz)
The space (LP(2), ||.|[z» (o)) is a Banach space.

Proof:
Let (fx)ren C LP(Q2) be a Cauchy sequence. It suffices to show that (f;) has a
convergent subsequence. For every ¢ € N there is an integer N; so that

[ fn = fmllLe@) < 27° whenever n,m > N;.
We construct a subsequence (fi,) C (fx) so that

||fki+1 - fki

by setting k; := max{%, N;}. In order to simplify notation we will from now on
assume that

o) <277

et = frllore) <27F
so that

M ="l o1 — frllo) < oo
KEN
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We define l
Z | fet1(2) — fu(@)].

The sequence (g7 (z))ien is monotone increasing and consists of nonnegative
integrable functions since we have

/ [ (@)dz = lgill7s o) < (Z [ fe+1 = fullLe sz)) < MP.

By the theorem on monotone convergence the sequence (g7 );en converges point-
wise almost everywhere to some integrable function h. This implies by definition
of g; that the sequence (f(z))ren is a Cauchy sequence in R for almost every
x € Q) so that the pointwise limit

fla):= lim fi(z)

exists almost everywhere. We now apply Fatou’s lemma to the sequence of
integrable functions (|fx — fi|?)ren and conclude

/|f x)|Pde < hmlnf/ | fx(z (x)|Pdx
(i inf || fi = fill e m)

p

IN

Z I fes1 = frllrco)

k>l

which tends to zero as | — oo. This shows that the sequence (fy) converges to f
in the LP—norm and it also shows that f — f; € LP(Q2) and therefore f € LP(9).

O
During the proof of theorem 2.2.17 we have also proved the following:
Corollary 2.2.18 Let 1 < p < oo and let (fx)ken C LP() be a sequence

which converges in LP(2) to some f € LP(QY). Then there is a subsequence
which converges pointwise almost everywhere to f.

O

Exercise 2.2.19 Find a sequence (fy) C LP(Q) which converges in LP(Q) but
which does not converge pointwise almost everywhere. This means that the above
corollary only holds for a suitable subsequence not for the whole sequence (f).
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We have mentioned earlier that integrable functions can be approximated in L'
by continuous functions with compact support. We will show that C§°(f) is
dense in LP(02). We will use the concept of 'mollifiers’, a convenient method to
obtain approximations by smooth functions.

Theorem 2.2.20 C°(Q) is dense in LP(Q) if 1 < p < <.

Proof:

We use the result from measure theory that every integrable function can be
approximated in the L'-norm by continuous functions with compact support.
First, we view f € LP(f2) as a function on LP(R™) simply by continuing it
trivially outside the domain €. It is also sufficient to consider the case f > 0,
otherwise consider max{f,0} and —min{0, f} separately. We then define for

e (F@) k) for Jo| <k
min (f(x), or |z| <
Tulz) = { 0 for |z| > k.

so that each function fj is integrable. In view of | fi — f|? < |f|P the convergence
theorem of H. Lebesgue implies that fi — f with respect to the L?(R"™)—norm.
Hence for every € > 0 there is some integer k so that

€

Ife = fllzrmn) < 5

We can also find a continuous function ¢ € CJ(R™) so that

eP
Ife = ol mrny < 2 Tfp—1"

Since 0 < fr < k we may assume that 0 < ¢ < k as well, otherwise replace ¢
by min{max{¢, 0}, k}. We then have |f; — ¢| < 2k and

|fe — B|P < (2k)P 71| fr — &)
and therefore

||fk - ¢||1£p(9) < ||fk - ¢||1£p(Rn)

< ot
— 22p71kp71
ENP
< (5) -
We obtain
If = ollr) <e.

We introduce the concept of convolution:
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Proposition 2.2.21 Let 1 < p < oo, f € LP(R") and ¢ € L'(R"™). The
following integral exists

(f *o)(x) = oz —y)f(y)dy = o(y) f(z —y)dy
Rn Rn

and
1f* dlle@ny < (1l e eyl 1 ()
If g € C§°(R™) then f+ ¢ € C°(R™) and

D d)e) = [ Do — )iy

n

where DY denotes differentiation with respect to the variable x.

Definition 2.2.22 We call f ¢ the convolution of f with ¢. In the case where
¢ is smooth with compact support we call f * ¢ a mollifier of f.

Proof:

The case p = oo is trivial, it follows from the translation invariance of the
Lebesgue measure. Let us consider first the case p = 1. We remark that the
function ®(z,y) := ¢(x — y) is measureable on R™ x R™ if ¢ is (show this as an
exercise). Assume for the moment that both f and ¢ are not negative. Then
the product ¢(z — y)f(y) is a non negative measureable function on R™ x R".
We may apply Tonelli’s theorem and obtain

/R"XR” o(x —y)f(y)dedy = / ( - P(x — y)f(y)dy) dx

s ([ ote-ni)a

( f (y)dy> ( ¢($)d€v>
R’n. Rn
which can be written as

| rowa=([ sww) ([ swa).

This proves the case p =1 for ¢, f > 0. The general case then follows from the
estimate |f x ¢| < |f] * |@].

We are left with the case where 1 < p < co. Choosing 1 < ¢ < oo so that
1/p+1/q = 1 we use Holder’s inequality

(el < [ |TwoHe - )]st v)ldy

([ 1rwrioe-v) dy)l/p (] o y)|dy>1/q

= (IfI7 # 16D @)l e,

IN
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Raise to the power p and integrate so that
17 Olmey < B L1 el

[ an 1P s e

161171 (e

which is the desired inequality. We leave the situation where ¢ is smooth with
compact support as an exercise for the reader. One has to take care of the
following points: Using that ¢ is smooth with compact support show first that
f * ¢ is continuous, i.e.

[(f * @) (x + h) = (f * ¢)(x)] — 0 as [h] — 0.

Then justify differentiation under the integral sign.

IN

Flo ey

O

Let Q be a domain in R™. If Q' C  is a bounded subdomain so that Q' C Q
as well, then we use the shorthand notation ' CC Q. Let p be a nonnegative
smooth function with support in the unit ball in R™ so that

/n p(x)dr = 1.

An example for such a function is

p(z) = ¢ exp (\r\’%l) for |z| <1
0 for |z| >1,

where the constant ¢ > 0 is chosen so that the integral of p equals 1. Let
f € L},.(9Q),ie. every point in € has a neighborhood over which f is integrable.
Let ' CcC Q and e < dist(,9). We then define

fe(@) = (f % pe)(z) ,z € O,

where

Remarks: The function

y%f(y)p<x;y)

has support in the ball B.(z). Therefore the function f. is only defined on the
smaller domain €2’ unless we extend f trivially onto all of R™. The function f.
is smooth.

We use now the smooth functions f. for approximating LP—functions. This
procedure will also be used later for Sobolev spaces.
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Proposition 2.2.23 If f € C°() then the functions f. converge on every
subdomain Q' CC Q uniformly to f as e — 0.

Proof:
We have

- fwp (x;y) dy

en rR”

1 xr —
— f)p ( y) dy
€ JB.(x) €

/| - p(2)f(x —ez)dz.

If ' CC Q, e < 1dist(€,09) and recalling that the integral of the function p
over the unit ball equals 1 we obtain

sup |f(z) — fe(2)]

e

IN

IN

sup / p(2)f (@) — fla - e2)ldz
ve |Jjz1<1

sup / p(2) | (@) — fla — e2)|dz
zeQ J|z|<1

sup sup |f(@) — flz—e2)| [ ple)dz
2 |2|<1 |2<1

sup sup |f(z) — f(z — e2)|.

€ |2|<1

The function f is uniformly continuous on the compact set {x € Q| dist(z, Q') <
e}, therefore the right hand side tends to zero as e — 0.

O

Theorem 2.2.24 Let 1 < p < oo and f € LP(Q). Viewing f as an element in
LP(R™) by trivial extension we have

as e — 0.

Proof:
We write as before

|f= (@)

IN

‘ /| ICICRET

fe — [ in LP(R™)

/ P el
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1

) !
z)dz 2)|f(x —ez)Pdz
(/lzlqp() ) (/m”( fa—<2) )

(with Holder’s inequality)

( /| IS ez>|pdz> -

Let Q C Q be a subdomain and define a slightly larger domain by

IN

Q. = {z € Q|dist(z,Q) < e}.

We conclude with [, p(z)dz =1

/Qlfa(x)\”dx < /Q/|Z|<1p(z)|f(a:—sz)pdzdx

/|z|<1 o) ([ 156a - o ) a

(Fubini’s theorem)

</|z|g1 p(z)dz> (/Q |f(y)|de)

[ Fw)Pdy.
Q

€

IN

If QO = Q then we obtain || f-||zr(q) < [|f]|zr(q). Let now &’ > 0. We claim that

we can choose R > 0 so large that
5./
”f - fEHLp(Q\M) < Z (2'1)

for all sufficiently small ¢ > 0. It is important here that R does not depend on
€. This follows from the inequality

1ellooonmmton < Mlleemmmon

which we have just proved. We can then choose R so that

5/

||f||LP(Q\m) < g

which implies (2.1) for all ¢ < 1. By theorem 2.2.20 we can find ¢ € CJ(R")
with

/

€
1f = dllrmny < -
By proposition 2.2.23 we have for sufficiently small € > 0
EI
|6 — dellLronBroy < sup  |o(z) — ¢e(x)| < 1

zeQ, |z|<R
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(we apply proposition 2.2.23 as follows: Take ' = QN Br(0) and take for Q2 a
slightly larger domain). Using the fact that the LP—norm of (f — ¢). = f. — ¢«
is bounded by the LP-norm of f — ¢ we get

If = fellery < I = fell o Bmgay + I — fellzr@nbro)
/

13
< iRl If = &lle@n) +
¢ = dellLe@nBr0)) + Ife — dellLr@mn)

e e ¢
< Z+Z+Z+||f_¢””(m)
< €.

Theorem 2.2.25 The set C§°(2) is dense in LP(Q) if 1 < p < 0.

Proof:
Given f € LP(Q2) and ¢’ > 0 we have to find a smooth function ¢ with compact
support in  such that

If = @llr) <€

First we choose a domain €’ CcC Q such that

EJ
”f”Lp(Q\W) < §
Then we define .
[ f@) if e
' 0 if zeR™NY
By theorem 2.2.24 there is some 0 < & < 1dist(Q’, Q) so that
8/

||f— fe”m(ﬂ) < 3

Since f = 0 outside the domain € we also have

~ ~ ~ ~ ~ g/
HszLp(Q\W) =|f- fa||Lp(Q\ﬁ) <If- fEHLP(Q) < 3

so that
1 = Fellioy < 1o ioney + 1l + I1F = Fellioan < '

The function fs is smooth and its support is compact and contained in 2 by
our choice 0 < e < 1dist(Q', 09)
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Proposition 2.2.26 Let f € L*(Q) so that

[ @)z =0
Q
for all p € C§°(Q2). Then f =0 almost everywhere.

Proof:

Let E be a bounded measureable set with E C  and dist(E, Q) > 0. Denote
the characteristic function of E by x. i.e. x|g = 1 and zero otherwise. Define
now

Ce(@) = (x * pe)(2)

= Lo () a= [ e

For sufficiently small € > 0 the functions (. are smooth with compact support
in @ and 0 < (. (z) < 1. By theorem 2.2.24 we have (. — x in LP(R") as
e — 0 for all 1 < p < co. By corollary 2.2.18 we can extract a subsequence
which converges pointwise almost everywhere. Without loss of generality we will
therefore assume that (. — x pointwise almost everywhere. The convergence
theorem of H. Lebesgue now implies that f¢. — fx in L'(Q) and

which equals

0= [ f@)@de — [ flo)x(@)ds = / f(z)dz,
Q Q E
/Ef(x)dx =0 (2.2)

which holds for arbitrary measureable sets E as specified above. Let now Q' CC
Q2 be a bounded subdomain. Define

i={z e Q| £ f(z) > 0}

Apply now (2.2) to the measureable sets Y/, so that
[ 1r@ide= [ sz [ @iz =0,
[0 Q) Q.

We conclude f|o/ = 0 almost everywhere and also f = 0 almost everywhere
since ' was arbitrary.

O

Using convolutions we will now prove the following theorem which provides
criteria when a subset A C LP(R™) is precompact. It is the LP—version of the
theorem of Ascoli-Arzela. Let us first insert the following topological definition
and lemma:
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Definition 2.2.27 A subset A of a metric space (X, d) is called totally bounded
if for every € > 0 there is an integer N = N, > 0 and finitely many balls
Bi,...,Bn of radius € such that

U Bi D A.
1<k<N

Lemma 2.2.28 Let (X,d) be a complete metric space, and let A C X be a
subset. Then A is totally bounded if and only if it is precompact.

Proof:

Assume that A is precompact. If A was not totally bounded then we could find
some ¢ > 0 so that A can not be covered by finitely many balls of radius €. We
can now define a sequence (zj)ren C A inductively by

zei1 € A\ | Be(@).
1<i<k

This sequence has no convergent subsequence contradicting precompactness.
Assume now that A is totally bounded and let (xg)ren be a sequence in A.
We have to show that it has a convergent subsequence. Let ¢, be a sequence
of positive numbers converging to zero. We can cover A with finitely many
balls of radius 1. At least one of these balls, say Bc,, contains infinitely many
members of the sequence (xr). We may then cover the ball B., with finitely
many balls of radius 5, and at least one of those again contains infinitely many
of the points {zk}ren N Be,. Let this ball be B.,. Now cover B, N B., with
finitely many balls of radius €3. Then one of them, B., will contain infinitely
many of the points {xy }ren N Be, N Be,. Continuing this process we obtain an
infinite sequence of nested sets

C) = m Bai s Cl-i—l c ¢y

1<i<l

Each of the C; contains infinitely many elements of the sequence (x) and the
diameters of the sets C; tend to zero as | — co. For each [ € N we pick

Y1 € {zrfren NG

so that |y; — yir| < max{diam(C}), diam(Cy)} — 0 as I,I’ — oco. Hence (y;) is a
Cauchy sequence which converges since X is complete.

Theorem 2.2.29 (Fréchet—Kolmogorov)

Let1 <p<oo, QCR" adomain and Q' CC Q a bounded subdomain. Then
a subset A C LP(Q) is precompact in LP(SY) if the following conditions are
satisfied:
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1. supse 4 1f o) < oo,

2. For all €’ > 0 there is a number 0 < 6 < dist(Q,00) so that

sup || f(+ +h) = flloey <€
feA

for all h € R™ with |h| < 6. Here f(- + h) denotes the function x —
flxz+h).

Proof:

The idea of the proof is the following: We 'mollify’ the whole family A. We
then get a family of smooth functions which will satisfy the assumptions of
the Ascoli-Arzela theorem so that every sequence will have a uniformly con-
vergent subsequence. Uniform convergence on a bounded domain implies LP—
convergence.

We may assume first that the domain 2 is bounded since we are only inter-
ested in LP—convergence on the bounded domain ’. Otherwise replace Q with
a bounded one which contains €. Then we assume that all the elements f € A
are actually defined on all of R™ by trivially extending them outside 2. Denote
the extended version of f by f. Then the set

A={fe’®")|fc A}

is bounded in LP(R") and also in L'(R") (remember that € is now bounded
1). We claim that R ~

sup || f * pe — fllze(ar) <

feA

for all ¢ < §. Using the same method as in the proof of theorem 2.2.24, we
estimate

|(f*pe)(@) = fla)] = ‘/qu(?:)[f(ﬂr) flx —e2)]dz

< </|| p(2)| () <w—sz>|ﬂdz> .

Again, as in the proof of theorem 2.2.24 we use Fubini’s theorem and get

1500 Pl = [ o) ([ 1) - o= cps ) a:

< [ o) s IF = F B ds < €
|z|<1

|h|<e

if e < 6. We consider now the mollified families

Me = {(f * p)ley | | € A},
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where € < 4. We claim that each family M, satisfies the assumptions of the
Ascoli-Arzela theorem. First, we have

1 % pell o gy < llpell ooy [ Fll oy < Ce

for all f € A with a constant C. depending on € only. Recall that the set Ais
bounded in L'(R™). Now if 21,22 € R™ and f € A then we get using the mean
value theorem

|(F % pe)(@1) = (F+ pe)(w2)| = F@)lpe(e1 —y) = pelz2 —y)ldy

‘R"

IN

lz1 — 22| | pellcr (mm) 1 f1 21 (7 -

This means that each set M. is precompact in C°(Q) and therefore also in
LP(Y). We conclude the proof as follows: Given ¢’ > 0 we now fix € < § such
that

sup I1f* pe — fHLP(Q’) <ée.
feA

Because the set M, is precompact in LP(€') it is also totally bounded. Hence
we can cover it with finitely many balls of radius ¢’ with respect to the L?(Q')-
norm. Because of the above inequality we can now cover the set A with finitely
many balls of radius 2¢’. Hence A is also totally bounded in LP (') and therefore
precompact.

O

Exercise 2.2.30 Prove the following version of the Fréchet-Kolmogorov theo-
rem:

Theorem 2.2.31 Let 1 < p < co. Then a subset A C LP(R™) is precompact if
the following conditions are satisfied:

1. supgeq [|fllr@mn) < oo,

2. supseq (- + 1) = flle@ny — 0 as h — 0 (here f(- + h) denotes the
function © — f(x + h)),

3. Supfeq IfllLr R\ Br(0)) — 0 as R /" oc.

We close this section with the following definition: Denote by RN the set of all
sequences of real numbers. We write z = (z)ren € RN and

1/p
ol = (Z |xk|p> ,
k

||||; := sup |xg]|-
kEN
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Definition 2.2.32
17 :={z € RN ||z[;p < oo},
1°°:={x € RN |||z~ < oo}

The spaces (I7, ||.]l;») and (I°°, ||.|l;=) are Banach spaces. In fact, the spaces L?
can be defined on an arbitrary measure space instead of 2 C R™ equipped with
the Lebesgue measure. In this context the spaces [P,[*° are then the spaces
LP  L*>  where the underlying measure space are the natural numbers with the
discrete measure.

2.2.3 Sobolev spaces

In this section we will introduce a very important class of Banach spaces, the so—
called Sobolev spaces. These consist of LP—functions which have 'weak deriva-
tives’. They are extensively used in the theory of partial differential equations
(we will see some of their applications later on).

Definition 2.2.33 1. Let Q C R" be a domain and f € L}, (). We say

loc

that v* € L}, () is a weak derivative of f of order a if

/Q f(2) D*6(x) dx = (~1)1° / o() d(x) de

for all ¢ € C5°(2).

2. Assume that 1 < p < oo and k € N. We then define the Sobolev-space
WFP(Q) to be the set of all f € LP(Q)) which have weak derivatives up to
order k so that all weak derivatives are contained in LP(S).

We note that weak derivatives are unique. In fact if v® and w® were weak
derivatives of order « of the same function f then

/ (v(2) — " (2))é(a)dz = 0
Q

for all ¢ € C§°(©2), but then v* = w* almost everywhere by proposition 2.2.26.
We equip the Sobolev space W*?(Q) with the following norm:

I llkpe:= > ID*flre),

0< o<k

where D f denotes the weak derivative of f of order a. If f € WkP(Q)NCk(Q2)
then we have by partial integration

/ f(2) D(x) dx = (~1)l° / D f(x) $(x) da
Q Q
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for all ¢ € C§°(£2), hence the ’strong’ derivative in the usual sense coincides
almost everywhere with the weak derivative. This justifies the name 'weak
derivative’.

Example:

Let Q = (—1,+1). The function f(z) := |z| has a weak derivative, namely

) { 1 i <0
IT)=Y 41 if 2>0

Indeed, if ¢ is smooth with compact support in (—1,1) then

_/0 z¢! (z)dz + /01 z¢' (v)dx

—1

[ ol

—a0@)’s+ [ o@ds + 20w~ [ ola)as
1
= [ s@otw)da.

-1

On the other hand, the function g has no weak derivative. If it had then its
weak derivative h would have to satisfy

/ o(2)¢ (x)dz = —26(0) = — / h(a)o(a)ds

—1

for all ¢ € C§°((—1,1)). In particular, we have for all ¢ € C§°((—1,0))

- [ 01 W) (w)de,

which implies h = 0 almost everywhere on (—1,0). Similarly we conclude that
h = 0 almost everywhere on (0,1). We then obtain

$(0) =0V ¢ e C5°((—1,1)),

a contradiction.

Proposition 2.2.34 Let 1 < p < oo and k € N. Then (WFkP(Q),|.
Banach space

lkp,0) 08 a

Proof:

If (fi)ren is a Cauchy sequence with respect to the W*P-norm then all the
sequences (D f)ken are Cauchy sequences in LP () for all 0 < |a| < k. There-
fore there are g® € LP(Q) so that

LP(Q
DO f, Q) g°
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as k — oo. In particular, the sequence fj, itself converges in L? to some function
g = ¢°. It remains to show that g has derivatives up to order k and that they
are given by the functions g%, i.e. D%g = g®. We carry out the argument for
one derivative of first order. Higher derivatives are then done by iteration. We

know that 96 of
/Q fk(x)a—ml(a:)dx:— /Q %’;@m(x)dz

for all k and for all ¢ € C§°(€2) by the definition of weak derivative. Note that
Ofr/0x1 denotes here a weak derivative of f. Let 4 be the support of ¢. Then

e yotwyin = [ S0 @potars
Q or1

Qe 0xq

and we can justify

0
lim j(nc)<b(ac)dgc = / lim ——(x)¢(z)dx
k—o0 Q4 8%1
as follows: The sequence (9 fx/011)ken converges in LP(Q) to some gt € LP(Q).
In particular, we have also convergence in LP(€4). Since €, is bounded the
convergence is also in L'(Q). Since ¢ is smooth with compact support we also
have

O f 1

90,0 9 ¢
in L'(Qy), which implies

: O — [ i 2 _ / !
fim [ Gt @t = [ Jim @tz = [ o @t
The same argument yields
| 06 [ 06
Jm [ @55 @ = [ o) @

so that 06
/Q o) 5 (o) = / 0" (@)(z)dz

for all C§°(9). Hence g' is the weak derivative of g and both g, g are in LP((Q).

O

We consider now the normed space
(C=(@)NWFPQ), [|-]lk.p.0)

which is a linear subspace of W*?(Q). We define now
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Definition 2.2.35

H*P(Q) := C°(Q) N Wkp(Q)

Hy?(Q) = Cgo(Q) N WFr(Q),

where X denotes the closure of X with respect to the norm ||.||k.p.a-
The following theorem states that we can identify W*?(Q) with H*?(9).

Theorem 2.2.36 (Meyers—Serrin)

Let Q@ C R™ be a domain. Then C=(Q) N WHFP(Q) is dense in WEP(Q), i.e.
for every u € WFP(Q) there is a sequence (u;)jen C C(Q) NWHP(Q) so that
llu; — ullgpo — 0 as j — oo.

We first prove a weaker version of the above theorem:

Lemma 2.2.37 Let Q C R™ be a domain and u € WFP(Q). Then for every
subdomain Q' CC Q there is a sequence (u;j)jen C C(Q) NWHEP(Q) so that

luj = ullr.p0r — 0
as j — o0.

Proof:

Let e < dist(Y, 09). If we extend the function u trivially onto all of R™ then the
extended function may not have weak derivatives, i.e. the extension of w onto
in R" is of class LP, but not of class W*P. Whenever we use weak derivatives
of u we have to be careful that u is evaluated on Q only. Let u. = u * p. be the
mollifier of u, and denote the weak derivative of u of order o by D%u. We have
for x € &

1

D)) = = [ 0o (T2 )ty

= CU [ Toge (222w

1 r—y «
= —[»p () D%u(y)dy
g o) £

= (D%uxp)(2),

i.e. the operations 'mollifying’ and ’differentiating’ commute, or shortly
D%, = (D%u)..

(note that D*u. makes sense on all of R" while (D®u), is only defined on ).
We have shown earlier that u. — u in LP(Q2') as ¢ — 0. By the above equation
we also have D*u, — D%u in LP(§'). This just means that

lue = ullkp.00 — 0.
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If £ \, 0, then we take u; = u.,. Smoothness of u; is clear. We have D%u; €
L?(Q) because of

[D%ujl|Le() < |1D*(u* pe;)lle@) < 1D%pe; L@y llull L) < o0.
O

In order to prove the Meyers—Serrin theorem we have to decompose the open
set Q0 and the function w in ’smaller’ pieces and apply the local lemma 2.2.37
to each of them. There are less fancy versions of the Meyers—Serrin theorem
which require a domain with sufficiently regular boundary 0€2. They are based
on extending u as a W*P—function (!) onto all of R" where finally lemma 2.2.37
can be applied. The tool for cutting a function into smaller pieces is called a
‘partition of unity’. We just give the definition here.

Definition 2.2.38 Let A C R" be a subset and let (U;)jen be an open covering,
i.e. each set U; C R™ is open and their union contains A. An open covering
is called locally finite if every point x € A has a neighborhood B.(x) so that the
set

{7 e N|U; N Bc(2) # 0}

s finite.

Simple example: The intervals (—1/n,1/n),en are an open covering of A =
[-1/2,1/2], but any neighborhood of 0 hits infinitely many of these intervals,
so the covering is not locally finite. If we rather put A = [1/4,1/2] then the
same intervals are a locally finite open covering.

Definition 2.2.39 Let (U;),en be a locally finite open covering of a set A C R™
so that all the U; are bounded sets. A partition of unity associated to the locally
finite open covering (Uj)jen is a family of smooth functions (n;);en with the
following properties:

1. The function n; has compact support in Uj,
2. 1; 20,
3.3 ni(x) =1 forallz € A.

(Note that the sum in 3. is finite !)

We give the following statement without proof. The result is usually proved in
topology books for continuous partitions of unity (see J. Munkres, Topology-A
first course, chapter 4-5). Their proofs can easily be modified to the smooth
version. Another option are books about differentiable manifolds (M. Spivak,
Calculus on manifolds, p.63).
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Proposition 2.2.40 Let (U;);en be a locally finite open covering of a set A C
R" so that all the U; are bounded sets. Then there is a partition of unity.

We can now prove the Meyers—Serrin theorem:

Proof:

Let (Uj)jen be a locally finite covering of {2 so that each set U; is bounded and
U; C Q so that h; := dist(0,U;) > 0. An example for such a covering is the
following:

- 1 , _
U; = {zx e Q| 5-2‘1 < dist(z, 00) <2~2‘J} with j € Z.

The above sets are a locally finite covering of Q. If we take

U; = [UJ N By.5; (0)] U U U; N By.gs (0)\3%-21' (0)

i<j
then the sets U; are also bounded. Let (n;);en be a partition of unity and let

1
0<e; < ——.
! 2J+1||77j||ck(§)

If ¢ > 0 then we can find by lemma 2.2.37 functions u;. € C*>(Q) N Wh(Q)
such that
”u - ujﬁ”k,p,Uj < €cy.

Ue 1= E T]j’u,j,s

JEN

We define

so that

ue —u =Yy ni(uj. —u)

JEN

and all the sums above are finite sums. If ¢ € C5°(£2) then
[ nsudso = [ w@v(nye) — 00m) = [ olduu +uony).

therefore nju € W1P(Q) with weak derivative given by the product rule. We can
deal with higher derivatives by induction, and we conclude that n;u € Wkr(Q)
with
D¥(nju) = Y can[D V] DVu, Jal <k,
0<|v[<] o

where ¢, > 0 are suitable constants, and

D%, — D% = z Cay Z[Dafwrm (DVuj e — D).

0<|yI<] el JjeN
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Hence there is a constant C' depending only on k and the dimension n of the
domain so that

IDYue — Doy < C Y [Injlleroylluge — ullrpo,
JEN
< Ced cilnllen
jEN
< Ce.

O

The Approximation property by smooth functions is very useful. Instead of
proving statements about Sobolev functions directly one first does it for smooth
Sobolev functions since strong derivatives are easier to handle than weak deriva-
tives. Then the Meyers—Serrin theorem often implies that the desired properties
are also true for non-smooth Sobolev functions. Use approximation to do the
following exercises:

Exercise 2.2.41 (Product and Chain rule for Sobolev—functions)

1. Let Q C R™ be a domain and 1 < p,q < o0 so that 1/p+1/q = 1. If
feWFkP(Q) and g € W*4(Q) then the product fg is in W*1(Q) and the
weak derivatives of fg are given by the product rule.

2. Let Q,Q C R™ be domains and let 7 : Q0 — Q be a C' —diffeomorphism, i.e.
T is bijective with 7,71 continuously differentiable so that the derivatives
of T and 7' are bounded. If f € W*P(Q) then also f o1 € W*P(Q) and
the weak derivatives of f o T are given by the Chain rule.

In contrast to the Meyers—Serrin theorem we only have Hé P(Q) ¢ Whr(Q)
with strict inclusion unless = R™. Let I = (0,1). The following example

demonstrates that the spaces H'(I) and Hy' () are indeed different. Consider
a smooth function ¢ with compact support in I. We have

o(x) = / " (e

and therefore

1
()] < / 16/ () dt

J1o< 11

Denote by 1 the constant function 1. We have

so that

1< [¢(@)] +[1 = o(x)].
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Integrating over the interval I we obtain

| < /I|¢<x>\dx+/l|1—¢<x>|dx
< / 16/ ()] de + / 11— §(a)|de
< /I|<1—¢<m>>'|dx+/1u—¢<x>|dx

= [[1=@lli1r

i.e. smooth functions with compact support cannot approximate the constant
function 1 with respect to the H''!(I)-norm.

Exercise 2.2.42
Hy?(R") = WHP(R")

Sketch of proof: Because of Meyer—Serrin it is sufficient to approximate u €
C>®(R™) N WkP(R™) by a smooth function with compact support. Take n €
C§°(R™) with the following property n(z) = 1 if |z| < 1 and n(z) = 0if |z| > 2.
Consider now the sequence of smooth functions

T

i) i=n (%) ule) € G52 R

and show that ||u — wj||kpr» — 0 as j — oo.

An element u € WHP(Q) is an equivalence class of LP—functions with some
other properties. We would like to study the question whether we can do better
than that. For example, is it possible to choose a representative in the class
of w which is continuous, bounded or even differentiable. We are lead to the
Sobolev—embedding theorem, the most important result about Sobolev spaces.
We start with the following lemma:

Lemma 2.2.43 (Morrey)
Let I} C R™ be a cube whose edges are parallel to the coordinate axes and have
length l. Assume that p > n. Then

1 ll*% n
— [ u(x)dr — u(z)| < 9w
‘|Il|/1, (@) ()| = 1f%j§” J HLP(I,)

for alll >0, z € I; and u € C*(R").

Proof:
Because of translation invariance it suffices to consider the case x = 0. We have
by definition

1 1
— [ w(x)dr —u(0) = —
L] Jr, L] Jr,
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If x € I; then

u(z) —u(0)] =

pn (tm)dt’

/ Za u(te)x;dt
z/ Z|3ju(t:c)|dt,
0 =1

where we have used that |z;| <. Combining the two formulas yields

l /1 n/

— |0ju(tx)|dx | dt
il Jy |2 ), o)

= |M/ o Z/ |0;u(y)|dy | dt.

We now estimate the above integral over y with Hélder’s inequality. Let x:1, be
the characteristic function of the cube tI; and ¢ such that 1/p+1/¢ = 1.

IN

’m' | u(e)do - u(O)‘

[ 1oty = [ anwlosuwldy
t t

< ( [ vt >dy)1/q (/ |aju<y>|pdy)l/p
< penpso ([ | |aju<y>|pdy)1/p

because 0 < ¢t < 1. Recalling that [t;] = t™ ™ we obtain

I 1 1 . n
u(x)dm—u(O)‘ < m/o tTLt /q|Il|1/qZ||ajU,”Lp([l)
j=1

1 n
s (/ tn(ll/Q)dt) Z||8ju||m(h)
0

j=1

‘|fl| I

IN

The integral over ¢ is finite because of p > n, and it equals (1 —n/p)~!. We get
finally

1—-2 n
‘ l

u(z)dr —u(0)| < — Z 105ull Lo (1,)-

‘|Il| I P j=1
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We will prove now a special case of the Sobolev—embedding theorem:

Theorem 2.2.44 Let p > n and § = 1 — Then there is a continuous

embedding

n
o
WP (R") — C*P(R"),

i.e. there is a constant M > 0 so that every element u € WHP(R™) has a

representative in C%P(R™) such that

[ullco.s@ny < M lull1p.rn-

Proof:

We assume first that u € C>°(R™) N WHP(R"). Let x,y € R" and let I; C R"
ba a cube as in Morrey’s lemma which contains both x and y. We may choose
I = 2|z — y|. Morrey’s lemma implies

1
(@) —u)] < |ulx) - ~ u<x>dx+] / u(x)dx—U(y)‘
|| Jr, || Jy,
A &
< I_QZHGJU’HLP(IZ)
P j=1
20 |z — |7 &
= S ol
j=1
o that u(@)  u(y)]
u(z) — u(y
— s L n 2.3
2=t < e (2.3)

where ¢ = 2671 /3. Now let [ = 1 and x € I; so that |I;| = 1. Then

/ u(z)dz — u(z) /I | u(z)dz

I,
If x is the characteristic function of the cube I; then we estimate with Holder’s

inequality
/ u(x)dx
I,

Morrey’s lemma yields

u(z)] < +

S/I x(@)|u(x)|dr < |lul| r(gn)-

1 n
S > N05ullor,),

P j=1

/ u(x)dx — u(x)

I

so that
lu(z)| < cllulli,pre (2.4)

with a positive constant ¢ depending on (8 only. Consider now the general case
where u € W1P(R"). Using the Meyers—Serrin theorem we can find a sequence
u; in C*°(R™) N WHP(R") so that

v —ujll1,prn — 0 as j — oo.
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Inequalities (2.3) and (2.4) imply that the sequence (u;) is a Cauchy sequence
in the Holder space C*#(R"), hence u; — @ in C®P(R"), in particular, the
convergence is uniform and also pointwise. We therefore have

[az) — aly)l

|33—y‘5 < C”’U’HLPA,R“’

and
[u(z)| < cllu

|1,p,R”~

Because the sequence u; converges to v in L?(R"), there is a subsequence (u;, )
which converges pointwise almost everywhere, i.e.

lim uj, (z) = u(z)
k—o0
for almost all . On the other hand,
lim wj, (z) = a(x)
— 00
for all z, so that & = u almost everywhere. Then @ is the desired representative.

O

IfQCR"isanopenset,m>1,p>nand (= —% then we can prove exactly

in the same way that H""(€2) is continuously embedded into C™~14(Q). We
simply apply Morrey’s lemma to u € C§°(€2) and all its derivatives up to order
m — 1. We then use that

G5 () = Hy""(Q).

We conclude -
() Hy"(Q) = C=(Q).

m>1

Hence we may replace in theorem 2.2.44 the domain R™ by Q if (!) we substitute
Whr(R™) with HyP(Q).

Remark: The limit case p =n
Theorem 2.2.44 is false if p < n. As an example, consider the function

u(z) ::{ (log )" it lal <1

0 if |zl >1

with 0 < a < 1—1/n. The function u is obviously not continuous in the origin,
but it is in W1 (R™).

Exercise 2.2.45 Show that u € W1"(R").

The generalized version of theorem 2.2.44 is the following:
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Theorem 2.2.46 (Sobolev-embedding-theorem I) Let Q@ C R" be a do-
main, 1 <m € N and p > 1. We assume that

m—ﬁ:k—i—ﬁ
p

for some integer k > 0 and 0 < 8 < 1. Then
Hg"P(9) — C*P ()

is embedded continuously, i.e. there is a constant M > 0 such that for all
u € HY"P(Q) there is a representative in C*P(Q) which satisfies

lullgrs @ < M llullmp.o-

Note that this is not a straightforward consequence of theorem 2.2.44 because
we may have m — n/p = k + (8 also if p < n where theorem 2.2.44 does not
apply. We need a version of the embedding theorem which also works for p < n.
Of course, we cannot expect an embedding into Holder space but there is an
embedding Hy* () < L4(f) for a suitable ¢ > p. So we trade one derivative
for a better 'p’. The hope is then that ¢ > n so that theorem 2.2.44 is applicable
again. The following is another special case of the Sobolev embedding theorem
for WHP(R™) and p < n.

Theorem 2.2.47 Let 1 < p,q < oo with

n_n

qg P
Then we have for all u € WP (R™)

n—1
lullLarny < q- THVUHLP(RTL),
where ||Vu| p@ny := mazi<p<nl|Oru| Lemn)-

Remark: The assumptions in the theorem imply that p < n and that n > 2.
In the one—dimensional case we have

HuHLoo(R) < ||UIHL1(R) Y u €& Wl’l(R).

Show this as an exercise.

Proof:

Because of W1P(R™) = Hy?(R") it suffices to show the estimate for smooth
functions on R™ with compact support. Indeed, if u € W?(R") is arbitrary we
pick a sequence of smooth functions with compact support such that u; — u in
the WLP(R™)-norm. The estimate for smooth functions with compact support
then implies that (u;) is a Cauchy sequence in L7(R™) as well, hence (u;) also
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converges in L9(R"™) to some limit which agrees almost everywhere with u. The

inequality follows then easily for w.

So let u be a smooth function on R™ with compact support. Consider first the
n

case where p = 1, i.e. ¢ = -2~ (note that n > 2 by assumption). Then

n—1

lu(x)] =

o
/ aiu(l'lv"'7xi717€7xi+17"'7‘rn)d€
é / ‘aiu(xlv'"7xi717£7xi+17"';xn)|d£7
R
which we write shortly as
u(o)] < [ [0uuldss
R

This actually proves our exercise above. For ¢ = 1,...,n these are n inequalities
which we all multiply with each other. Hence

) 7T < [[ s

We integrate over the variable x; and obtain

/R|u\n’+1dgl < (/R|alu|dgl>"ll -/Rizf[Q(/Rmiuwgi)"'ll de;.

We use Holder’s inequality in the form

J172 £l < Tl with Y1/ =1
=2 1=2

1
n—1

where

This implies

1
1

fii= (/ |8iud§i> " and p; =n — 1.
R

/RZ__IEI2 (/R |5¢u|d§i>ni1 dé; < ﬁ </R2 Opuldes d&) T

= ) T 0; f
/R\u d&<(/R wdfl) [[(/R| ud£1d£>

=2

so that
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We integrate this inequality now with respect to xo. If n = 2 then we obtain
the desired estimate. If not then we have to use Holder’s inequality again:

| =g, A(/Raluw&)”ll H([R Oruldey d@)"ll a6

=3
1

: (/ |O2u|déy d§2>”1
R
(/ 61ud§1d§2> - </ 62ud§1d§2> .
R R

n

11 ( | 10cuides e dfi) T

=3

IN

IN

We continue by iteration and obtain

n 1

J = =
[ g < T f, oot —-ag)) ™ TL ([ owias---agyas) ™

=7+

)= ()
[ 1_I</R| | [ vl

ol gy = oy < IVl 3y (2.5)

hence

and therefore

If p > 1 then we would like to apply the above estimate to the function
g(n—1)

vi=lulT .
The function w is smooth with compact support and
n—1
M >p> 1.
n
Then v € C}(R") with
gin—1), am-1_
A 1

We conclude now

n—1 n—1

()™ = Uer)

< / |Vl used (2.5) here
-1 a(n—
_ q(n )/ |u|%—1 |Vl
n n
1/r
— 1 q(n—1
< % (/ |u‘(4( - )_1)7") ||VU||LP(R“)
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using Holder’s inequality with 1/p+ 1/r = 1, i.e. r = p/(p — 1). We have by
assumption

11 1
¢ p n
and
n—1 1 n-1 p-1 1
n r n  p q
so that ( 0
q\n —
(T — —Dr=q
Then

We note the following simple generalization.

Theorem 2.2.48 (Sobolev-embedding-theorem II) Let Q@ C R"™ be a do-
main. Moreover, let 1 < p,q < co and mqy > mg > 0 so that
n n

my — — =My — —
q

(this implies in particular that ¢ > p). Then there is a continuous embedding
HY () < HE™ (),
i.e. for every u € Hy""P(Q) we have

[ellmz.q.0 < Cllullm, p.o

with a suitable positive constant C only depending on n,mi and p.

Proof:

Sketch only. Fill out the details as an exercise.

Convince yourself that it suffices to consider the case mg = my — 1 since we can
obtain the result for smaller mgy by iterated application. If u € H)"""(Q) then
it is also in H™P(R™) by trivial extension (the subscript '0’ is of course the
reason why it works). Then all weak derivatives of order up to m; —1 = mg are
in H1?(R™) and then also in L4(R™).

Proof:
(Theorem 2.2.46, Sobolev-embedding-I)
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If m = 1 then p > n and k = 0, but we have already covered this case. So
assume that m > 1. We note that

E—Qn—k—n=1—ﬁewg)

hence there is a number n < ¢ < 0o so that

ﬁ:ﬁ—(m—k—l) fe1-"emog-"

qa p q p
We now invoke theorem 2.2.48 (Sobolev-embedding-IT) and we conclude that
HJ™P(Q) ¢ H}9(Q). On the other hand, the space Hy*(€) embeds into

CY7(Q) with v = 1 — % =m-k— % = 3 since ¢ > n. Now all the weak

derivatives D%u with |a| < k are in the space Hgnfk’p(ﬂ) and therefore also in
C%#(Q). Moreover, we have the estimate

”DaullcO-ﬂ(ﬁ) <C ||Dau||mfk’p’9 Vue H6n7p(Q)7 \04| <k.

At this point we do not know whether w is differentiable in the classical sense. We
have just shown that all weak derivatives up to order k have Holder continuous
representatives. Assuming now that u is smooth with compact support we may
write the above estimate as

HU”ckﬁ(ﬁ) <C ||u||m,p,ﬂ>

If a sequence of smooth functions with compact support u; now approximates an
arbitrary u € Hy""(Q), i.e. |[u—u;||m,po — 0as j — co. Then the sequence u,;
is also a Cauchy sequence in C*-#(Q) by the estimate above, hence it converges
and the limit coincides almost everywhere with w.

O

Remarks:

1. The Sobolev—embedding theorems 2.2.46 and 2.2.48 remain correct with
H"P() replaced by the larger spaces H™P(Q) if the domain Q has
Lipschitz—boundary, i.e. if the boundary is locally the graph of a Lips-
chitz continuous function. If this is the case then any u € H™P(§2) can
be extended to a slightly larger domain Q) as a Sobolev—function in

H"P(2). Then one uses the theorems 2.2.46 and 2.2.48 that we proved
in the lecture. We are not going to prove this extension result here.

2. In theorem 2.2.47 we proved an estimate of the form
[ullLany < ClIVullLe®n),

where 1 < p,q < co with

Do,
q p
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While the proof was rather tedious it is pretty easy to see why the expo-
nent ¢ has to satisfy the above equation: Assume we want to prove the
inequality [|u/|arn) < C'||Vul|Le@ny for allu € WHP(R™) but we are not
sure what is the right number ¢. If the inequality holds for u € W1P(R™)
then it must also hold for uy € W1P(R™) where uy(z) = u(Az), A > 0.

Now
1/q 1/q
foslle = ([ wowaieac) =xse ([ pupray)
Rn n
and

1/p 1/p
IVunllzr = ( [ Vu<Ax>|pdx> N ( / |w<y>|pdy)
R’n n

so that
[lulpe < CA\'r || Vul L.

+4 can only equal 1 for all A > 0 if the exponent

The expression \!~%
1- »ta equals 0.
3. In the Sobolev embedding theorems the conclusion holds also if we have

n n n
m——>k+Bandm; — — > mo — —
p p q

respectively instead of the corresponding equalities. The second one is not
so obvious, but the first one is clear since we have the trivial embeddings
H™P < H™=LP and CFF s Ck-15,

The following theorem is very useful for proving compactness.
Theorem 2.2.49 (Rellich—Kondrachov)

1. Let Q@ C R™ be a bounded domain. Moreover, let 1 < p,q < oo and
my > me > 0 integers so that

n n
my— — >mg — —
p
Then the embedding
H(;nhP(Q) [N HS”z#I(g)

from theorem 2.2.48 is compact, i.e. bounded sets in Hy"" P (Q) are pre-
compact in H)">(€2).

2. Let Q C R™ be a bounded domain, 1 < m € N and p > 1. We assume
that n
m——>k+p
p

for some integer k > 0 and 0 < B8 < 1. Then the embedding from theorem
2.2.46
Hy (@) = C4P(@)

18 compact.
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Proof:
(Second part only) )
We may choose p < 0o, k>0 and 0 < 3 < 1 so that

n n

b p

m —

Choose now r > 0 so large that Q@ C B,(0). Functions in H;"?(2) can be
extended trivially to functions in Hy""”(B,(0)), and the embedding

Hy" (B, (0)) < Hy""(B,(0))
is continuous by Holder’s inequality. On the other hand, the embedding
Hy""(B,(0) — C*(B,(0))

is continuous by the Sobolev—embedding theorem 2.2.46. The embedding

88 (B,(0)) — C*(B,(0))

is compact because of the Ascoli-Arzela theorem.

Remark:

We placed the domain ) into a ball for the following reason: There is only
an embedding C*(Q) ¢ C%#(Q), or CH#(Q) ¢ C*A(Q) with 3 < 3 if Q has
Lipschitz boundary, i.e. if the boundary is locally the graph of a Lipschitz
continuous function. Consider the following domain

Q= {(z,y) e R?|y < ]z| , 2?2 +y? < 1},
which has no Lipschitz boundary since there is a cusp at the origin. The function

| sign(x)y™ if y>0

is in C1(Q) if 1 < a < 2. Let a/2 < 8 < 1. Then

\u(x, \/M)_u(_‘rv | —{,C|)| |m|a/2—6

2] -

which tends to oo as |#| — 0. Therefore u & C%?(Q). If we change the domain
Q to
{(wy) eR? |y <laf , 2” +y* <1}

which has Lipschitz boundary, then u € C1(Q) as well, but u € C%#(Q) for all
0<p<1.
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2.3 Noncompactness of the unit ball, Uniform
Convexity

We will prove the following theorem which is the main tool for showing whether
a normed space is finite or infinite dimensional.

Theorem 2.3.1 The normed vector space X is infinite dimensional if and only
if the closed unit ball B := {x € X | |z| < 1} is not compact.

We start with a lemma

Lemma 2.3.2 LetY be a closed proper subspace of the normed vector space X .
Then there is z € X with |z| =1 and

1
|z —y| > 3 forallyeY. (2.6)

Proof:
Pick a point € X\Y. Because Y is closed we have

inf |x —y|=d> 0.

Jnf | —y|
We can then find a point yo € Y such that

|z — yo| < 2d.
We define 2’ := x — yo and note that for any y € Y’
"~y =]z —yo—y| > inf |z —y| =d.
|2 =yl =z —yo—yl > [nf lz =y

We now define

so that for any y € YV
1

1 , , 1
—y|l = — — > —.d=
‘Z y| |2/| ‘Z |Z Iy‘ 2d 2

Proof:

(theorem 2.3.1)

If X is finite dimensional then all norms are equivalent to the standard Euclidean
norm. In this case we have the Heine—Borel property, i.e. all closed bounded
sets are compact. We will show now that the closed unit ball is not compact
if X is infinite dimensional. We construct a sequence (z,)neN recursively as
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follows: Let 0 # x1 € X be arbitrary with |z1] = 1. If 2q,...,2,_1 are given,
then we construct z,, as follows: The space

Y, := Span{z1,...,zp_1}

is finite-dimensional, hence it is closed, and it is a proper subspace of X (recall
that X is infinite dimensional). Using the above lemma we can find an element
Zn € X with |z,| =1 and |z, —y| > 1/2 for all y € Y,,, in particular

1
Ty — x| > =V j<n
J 2

The sequence constructed like this has the property that any two elements xy,
and x; with j # k satisfy |x; —x| > 1/2. Hence (z,,)nen C B has no convergent
subsequence. Therefore B is not compact.

O

Definition 2.3.3 1. Let (X,|.|) be a normed vector space. The norm |.| is
called strictly subadditive if |x +y| = |z| + |y| and x,y # 0 implies that x
s a nonnegative multiple of y.

2. Let (X, ].]) be a normed vector space and denote by B the closed unit ball.
The space (X,|.|) is called uniformly convex if for every € > 0 there is
some § > 0 such that

x,y € Band|z—y|>c¢

imply that
z+y

<18

Example: The property of being uniformly convex is a geometric property,
not a topological property. A normed vector space may be uniformly convex
with respect to one norm, but not with respect to another equivalent norm.

If X = R? and
2l = \fe a3, Joh = o+ o]

then (X, |.]1) is uniformly convex, while (X, |.|2) is not.

If X is a normed vector space with strictly subadditive norm and = # y € OB

then they are not nonnegative multiples of each other and therefore |z + y| <

lz| + |y| = 2, ie.

Tty
2

<

Uniformly convex means that this condition holds uniformly.
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Proposition 2.3.4 If (X,|.|) is uniformly convex then the norm |.| is strictly
subadditive.

Proof:
Assume that |z + y| = |z| + |y| and x,y # 0. Dividing by |z| we may assume
that |z| =1 and |z +y| =1+ |y|. Then

T+ 1
o] = [0 m) e
= Iw+y|<1—1)
|z +
= |lztyl-1
= |yl
and also
Iz +y) — 2| =yl
We have
(oo 23 oo per- o 25)]
Then
lz+yl = x+y—1(x+ x+y)+1(a:+ x+y>’
2 |z + y| 2 |z + y|
< |y|+;‘x+|iiz|
and consequently
1§1‘x+ Tty .
2 |z + y|

The two vectors z and (x + y)/|x + y| have norm 1. They cannot be different
because of uniform convexity, hence
Tty
xr =
|z +yl

and z = Ay with A\ = (|]z + y| — 1)~!. This proves that the norm is strictly
subadditive.

O
The following theorem illustrates the importance of uniformly convex spaces.

Theorem 2.3.5 Let X be a uniformly convex Banach space. Moreover, let
C C X be a closed convex subset of X and let z € X. Then there is a unique
point yo € C so that

— 2| = inf |y - zl.
lvo — 2| = inf |y — 2
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If the set C' was compact then the conclusion of the theorem would be trivial
since the continuous function ¢ : C — [0,00) , ¢(y) := |y — z| would attain a
minimum at some point yg € C. The theorem is useful because the minimum
is attained on a closed convex subset which is not necessarily compact. In an
infinite dimensional Banach space there are much more closed, convex sets than
compact sets.

Proof:
If z € C then yy = z, so assume that z ¢ C. By translation we may assume
that z = 0. We have

inf |y| >0

Inf [y]

since 0 ¢ C and C' is closed. Let (y),)nen C C be a minimizing sequence, i.e.
! inf |y|.
‘yn| - yIEC' ‘y|

We write now y,, := y.,/|y,,| and

Yn + Ym 1 1 1
= —y, + ,%Z(

+) (catl + Emtl)

20ynl 20yl

where ¢,, ¢;, > 0 with ¢, +¢,,, = 1. Because C' is convex by assumption we have
Cnl + CmlYi, € C

as well, so that
‘Cny;:, + Cmy;n| > yuelg lyl.

We conclude that

n m 1 1 .
Yty > + inf |y|.
2 2lyn| - 2|yl /) vee

The right hand side of the above inequality converges to 1 as n,m — oco. Uni-

form convexity implies that the sequence (y,)nen must be a Cauchy sequence.

Otherwise, the expression

y'fL + y'ﬁl
2

would have to be smaller than 1 — § for some § > 0. By completeness the
sequence (y,) converges. The sequence y,, = |y/,|y» also converges to some
limit yo € C since C' is closed. By continuity we have |yo| = inf,ecc |y]-

O
We will show later that the LP—spaces and Sobolev W™ P—gpaces are uniformly

convex if 1 < p < co. In the case of p = 1, p = oo or C*spaces the corre-
sponding norms are not even strictly subadditive as the following trivial example
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illustrates: Let X = C°([—1,1]) with the supremum norm. Take f(x) = |z| and
g so that g(z) =0 for < 0 and g(z) = z for > 0. Then

If +allcoq=1,1) =2 = I fllcoq=1,17) + lgllco=1,17)>

but f,g are not multiples of each other. Hence the supremum norm on X =
C°([—1,1]) is not strictly subadditive and (X, |.||co(j—1,1)) is not uniformly con-
vex either. The next example shows that the above minimizing result may fail
if the Banach space is not uniformly convex.

Example:
Consider X = C°([—1,1]) with the supremum norm. Define

C::{feX’/Olf(t)dt:O,/Olf(t)dt:O}

which is a closed linear subspace of X and therefore convex. Let now z be a
continuous function so that

/_01 ()t =1, /01 ()t = —1.

Then we have for all f € C

0 1
/ <z—f><t>dt=1,/0 (= — )yt = 1

-1
hence
_max (2(t) = f(1)) 2 1
and similarly
Jin (2(t) - f(£) < -1

Equality holds if and only if

1 if —1<t<0
Z(t)f(t)—{—l if 0<t<1

which is certainly impossible because z — f is continuous. Hence we have

max (:() = f() = Lor min (2(t) - £(2)) < 1.

Therefore
llz = fllcogq=1,1) > 1.

On the other hand we can choose f € C so that

max (z(t) — f(¢)) and min (2(¢) — f(1)).

—1<t<0 0<t<1
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are as close to +1 and —1 as we wish, hence

inf ||z — _ =1

Jnf [l2 = Flleog-1.1)
The distance of z to the set C' equals 1, but there is no element in C' that has
distance 1 from the point z. There would have to be one if X were uniformly
convex. We will now show that the space LP(2) is uniformly convex for 2 <

p < 0o. The proof for 1 < p < 2 is more difficult, we will not do it here.

Lemma 2.3.6 (first inequality of Clarkson)
Let 2 <p < oo and let Q@ C R™ be a domain. Then

f+yg f g 1
< SUfIZs ) + 19lEn @) ¥ fr9 € LP(9).
9 LP(Q) 9 () ()

Proof:
It is enough to show the inequality

a+bl? a—b 1w »

R e IR 2.7

for all a,b € R and 2 < p. We claim that

af + 07 < (o® + B2V @, 5 > 0. (2.8)

The inequality (2.8) is trivially true for § = 0. Otherwise, dividing by P on
both sides, it suffices to show (2.8) for the case § = 1. Then there is nothing
more to do because the function

F:[0,00) —R

F(z):= (22 4+ 1)P/2 — 2P -1

is an increasing function with F'(0) = 0. Hence we have proved (2.8). Take now

a—b
2

and recall that the function x + |2|P/2 is convex for p > 2. Then

2 p/2
a2 + b2 p/2
- (57)

1
S(lal” + [bP).

—-b

2

a+b 2
2

a+b

p a—bp
2 +

2

IN
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O

Theorem 2.3.7 Let Q C R™ be a domain and 2 < p < oco. Then the space
LP(Q) is uniformly convez.

Proof:
Let £ > 0 and suppose that f,g € LP(Q) with

I fll ey, l9llzeo) < 1 and [|f — gllzr(o) > €.

Then Clarkson’s first inequality implies that

Hf+9 ' e
2 o) ~ 2p’
hence
Herg <1-94
2 e
with
eP 1/p
6=1-— (1 - 2p> > 0.

The proof of the following result is identical to the above theorem:

Theorem 2.3.8 Let Q C R™ be a domain, k > 1 an integer and 2 < p < oo.
Then the spaces W*P(Q) and H(lf’p(Q) are uniformly convez.
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Chapter 3

Linear Operators

3.1 Definitions and elementary properties

In this section X and Y will be normed vector spaces over the real numbers or
over the complex numbers. We denote the norms by ||.||x and .||y, but we will
sometimes drop the subscripts X and Y if there is no danger of confusion. We
will investigate linear maps T : X — Y, in particular continuous linear maps. If
X is finite dimensional then a linear map T as above is always continuous. This
is not the case if X is infinite dimensional. In a later chapter we will prove that
X is finite dimensional if and only if every linear map 7T : X — R is continuous.
We start with the following lemma

Lemma 3.1.1 If T : X — Y is linear then the following statements are equiv-
alent:

1. T is continuous

2. There is a point xg € X so that T is continuous in g

3.

sup ||Tz|y < o0
llzllx <1

4. There is a constant C > 0 so that |[Tz||y < C|z|x for allz € X.

Proof:
We show that (2) implies (3): There is some ¢ > 0 so that

T(Bs(x0)) € Bi(T(0))
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(here B,.(z) denotes the ball with radius r centered at z). If ||z||x < 1, ie.
x € B1(0), then ¢ + dz € Bs(xg), hence

T(xo) + 0T (x) = T(xo + dz) € B1(T(xp))
and therefore

. 1
T(x) € Byys(0),ie. [Ty < 5

We now show that (3) implies (4): Let C be the supremum in (3). Then if z # 0

x
el = lells - |7 ()
[l x
We show that (4) implies (1): Let z,z¢9 € X. Then

< Clz|x-
Y

[Tx — Taolly = |T(z — 2o)lly < Cllz —wollx

which converges to zero if x — xzg, hence T is continuous. The implication
(1)==(2) is trivial.

O

Definition 3.1.2 We define
L(X,)Y):={T: X =Y |T is continuous}

We call elements T € L(X,Y) ‘continuous operators’ or ’bounded operators’.
The following expression is called the operator norm of T € L(X,Y)

ITllex,yy = sup || Ty
el x <1

We wll also use the notation ||T|| instead.

By the previous lemma ||T|| < oo if T' is continuous. It is the smallest number
so that for all z € X
ITzlly < ITI ll2|/x-

It is clear that L(X,Y) is a vector space. The operator norm is also a norm on
L(X,Y).

Exercise 3.1.3 Verify that the operator norm is a norm.

Proposition 3.1.4 Assume that X,Y,Z are normed vector spaces. Let T €
L(X,Y) and S € L(Y,Z). Then ST € L(X,Z) and

ST < ISIHIT-

If Y is a Banach space then L(X,Y) equipped with the operator norm is also a
Banach space.
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Proof:
The first statement is immediate since the composition of continuous maps is
again continuous. The second statement follows from

IST|| = sup [[STx|
072 <1

Tx
w1721 s (1)
0|zl <1 | Tx||

< sup [Tz|- sup Syl
0]zl <1 0#llyll<1
= ISIIT-

Let T} be a Cauchy sequence in L(X,Y"). Since ||Tpz — Tiz|ly — 0 as k,I — o0
for any = € X, the sequence (T;z)ren is a Cauchy sequence in Y. Hence for
every x € X the pointwise limits

Tx:= lim Txp €Y

k—o0

exist and 7T is linear. Then

(T = T )x|ly

Jim (T — Ty)elly

IN

tim inf [|7; — 7| - | x

so that T — Ty, € L(X,Y) and

|T — Thlloix,yy < lilfgiofolf | T — T1]| — O

as k — oo.

We continue with a few definitions:

Definition 3.1.5 °
L(X) = L(X, X),

o We denote by ’Id’ (’identity’) the operator in L(X) which maps x onto x.

e The space X' := L(X,R) is called the dual space of X. Elements in X’
are also called linear functionals. We will discuss dual spaces in detail
when we prove the Hahn—Banach theorem and when we consider weak and
weak™ —topologies.

o The set of compact operators from X to'Y is defined by
K(X,Y):={T € L(X,Y) | T(B1(0)) is compact},
where B1(0) := {x € X ||z| < 1}. IfY is complete we may replace the
above definition by "T(B1(0)) is precompact”.
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o A linear map P € L(X) is called a projection if P?> = P.
e [fT € L(X,Y) then we define the kernel of T
kerT :={zx € X |Tz =0}
and the range of T
R(T)={yeY|dxe X : Tz =y}.

Since T is continuous the kernel of T is a closed subspace of X. The range
of T is in general not closed (see example below).

Example: B
Let I = (0,1) C R. We define a bounded linear operator T € L(C°(I)) as
follows:

@)= [ 1o fe oD,
This operator is indeed bounded, ||T'|] = 1, and
R(T) ={f € C'(I)| f(0) = 0} ¢ C°(I),
which is not closed.

Exercise 3.1.6 Let P,Q : X — X be linear operators with PQ — QP = Id.
Then at least one of the operators P and Q has to be unbounded. This rela-
tion comes up in Quantum Mechanics. It is called the Heisenberg uncertainty
principle.

Exercise 3.1.7 Consider the Dirac—sequence p. from the previous chapter. We
have shown that

(T f)(z) := (f = p:)(2)
defines an operator T. € L(LP(R™)) with ||T:|| < 1 because of || f * pellrr@mn) <
llpeller eyl fllLr(mr)- We have also shown that for p < oo

(T. — Id)f =2 0 Vf € LP(R™).

Answer the following question: Is it true that T. — Id in L(LP(R™)) ¢
We conclude this section with the following useful result

Proposition 3.1.8 Let X be a Banach space and T € L(X) with limsup,, . ||T™| = <
1 (this is for ezample satisfied if |T'|| < 1). Then Id—T has a continuous inverse

and
o

(Id—T)"' =y 1",

n=0

where the infinite series converges in L(X).
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Proof:
Let Sy := ZZ:O T™ and choose m and € < 1 such that [|T"| < 6™ for all n > m.
Then we conclude for m < k <

-l = 3 < S e 3 oo

k<n<l k<n<l k<n<co
as k — oo. Because L(X) is complete the limit

S = lerr;O Sk
exists in L(X). Moreover,

k
(Id-T)Spz=» (I" =Tz =z-T""z

n=0

which converges to x as k — oo because for large k we have ||[TF*lz| <
¢*+1||z|| — 0. On the other hand, the left hand side of the above equation
converges to (Id — T') Sz, so that

(Id— T)S = 1d.

The proof of S(Id —T') = Id is similar and we omit it.

3.2 The Banach—Steinhaus theorem

We start with the following fundamental result which is a consequence of Baire’s
lemma,

Proposition 3.2.1 Let (X,d) be a complete metric space. Moreover, let Y be
a normed vector space and let X C C°(X,Y) be a subset of the set of continuous
maps from X to Y. Assume that for every r € X

sup || f(z)] < oo.
fex

Then there is a ball B:(x¢) C X so that

sup sup [1£(2)]] < oo.
|lz—zo|<e fEX

Proof:
For k£ € N we define the sets

A= [z e X|If @) <k}

fex
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Every € X is contained in one of the sets Ay by assumption, hence
X = 4.
kEN

On the other hand, each set Ay is closed because the maps f are continuous.
By Baire’s lemma there is an integer ko so that the set Ay, does contain an
open ball B.(zg), i.e.

sup sup [ f(2)]| < ko.
meBs(IO) feX

O

The Banach—Steinhaus theorem (also known as the principle of uniform bound-
edness) is a special case.

Theorem 3.2.2 Let X be a Banach space, and let'Y be a normed vector space.
Assume that T C L(X,Y) with

sup ||Tz|| < oo ¥V z € X.
TeT

Then
sup ||T]| < oo.
TeT

Proof:

We define

X:={f € COX,R)| f(zx) = ||Tal|, T € T}.

By the above proposition there are a constant C' < oo and a ball B.(z() so that
ITz|| <CVTeT,|xr—x <e.
If « # 0 is arbitrary then we get for any T' € 7

]

|| <7l oe,
9

T
ITz|| = — HT (a:o + 5) — T (xo)
€ |z

ie. ||T| < 20/e.

3.3 The open mapping principle and corollaries
Definition 3.3.1 If XY are metric spaces then a map f : X — Y s called

open if
UcCX open = f(U) CY open.

62



Remarks:

If f is bijective then f is open if and only if f~! is continuous. Moreover, if
X,Y are normed vector spaces and T : X — Y is linear then it is open if and
only if there is some ¢ > 0 such that Bs(0) C T(B1(0)) C Y.

Theorem 3.3.2 (open mapping principle) Let X,Y be Banach spaces, and
let T € L(X,Y). Then T is open if and only if T is surjective.

Proof:

Let us start with the easy direction first. Assume that T is open. Then Bs(0) C
T(B1(0)) for some positive § implies that B,.(0) C T'(B,/5(0)) for any r > 0, i.e.
any ball in Y centered at the origin is contained in the range of T.

Assume now that T is surjective. We have to show that there is a positive
number ¢ such that Bs(0) C T(B1(0)). Since T is surjective we have

Y = | T(Bk(0))

keN

Baire’s lemma implies that there is an integer ko so that the set T'(By, (0))
contains an open ball B.(yg). This implies the following: For any y € B.(0)
there are points z; € By, (0) so that

Tz "= yo +y € B:(w).

Recalling that T is surjective we pick zo € X with Tzg = yo. We then obtain

( xj — Xo )_ 1 (T2, — yo) Yy
20k + [7ol) )~ 2(ko + Jwol) 7 ¥ T (ke + Jwo))

and
— X Z;
< < 1.
H ko + |zol) H H 2(ko + |ol) ‘ H2 (ko + |zol) H
We have shown that any element in the ball Bs(0) with
s_ €
2(ko + [wol)
is the limit of a sequence of the form Tz’ where |2/] < 1, i.e.
B5(0) € T(B1(0)), (3.1)

The second step of the proof consists of showing that there is a possibly smaller
radius 0 so that Bs(0) C T(B1(0)). Note that (3.1) implies the following: If
y € B5(0) then we can find z € B1(0) so that y—Tx € Bj/5(0) which means that
2(y — Tx) € Bs(0). We use this procedure to construct sequences y;, € Bs(0)
and z € B1(0) by demanding for

Yo=Y, Urt1 = 2(yr — Txy,).

63



We conclude

Yk+1 Yk —k
2k‘+1 = 27]6 — T(2 Z‘k;).

In the following sum, all the terms except two cancel each other

m
—k o ym+1
T (Z? :L’k> =Yy — omt1 —Y
k=0
as m — oo. We estimate

m m
S Fa <) 2P <2 <o,
k=0 k=0

m
k=0 meN

is a Cauchy sequence in X which converges to some

hence the sequence

x = ZQ‘kmk and |z| < 2.
k=0

Since T is continuous we get Tx = y. Since y € Bs(0) was arbitrary we have
shown that

Bs(0) € T(B2(0)) € T(B3(0))

and
Bs/3(0) C T'(B1(0)).

We note the following corollary

Corollary 3.3.3 (inverse map theorem) Let X,Y be Banach spaces, and
let T € L(X,Y) be bijective. Then the inverse T~ is continuous.

Proof:
The inverse is linear and by the open mapping principle 7" is open. Hence 7!
is continuous.

O

Remark:

Let X be a vector space equipped with two norms |.|; and |.|2 so that X is
a Banach space with respect to each of these norms. Assume moreover, that
there is a constant C' > 0 such that

|zl < Cla|y V2 € X.
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Then the two norms are equivalent. This can be seen as follows: Consider the
Banach spaces X; = (X,|.]1) and X3 = (X, ].|2). The above inequality is the
same as saying that the identity map

Id2X1 —>X2

is continuous. By the inverse map theorem its inverse Id : X5 — X; is also
continuous, i.e. there is another constant ¢ > 0 such that

2|1 < clz|a V2 € X.
So the two norms are equivalent.

Theorem 3.3.4 (Closed graph theorem) Let X,Y be Banach spaces. Let
T:X —Y be alinear map so that its graph G(T) := {(z,y) € X xY |y = Tz}
is closed in X xY. Then T is continuous.

Proof:
We take advantage of the remark above. We consider the following norms on
X:

|z|1 == |z| + |Tz| and |z|3 := |z|.

We claim that X equipped with the norm |z|; is a Banach space. Indeed, assume
that (zp)nen is a Cauchy sequence with respect to the norm |.|;. Then

| — |, |Txn — Txm| — 0 as n,m — oo.
Hence z,, — x with respect to the usual norm | .| on X and Tz, -y €Y, i.e.
G(T) > (zp, Txy) — (z,y).

Because the graph of T is closed we have z,y) € G(T), i.e. y = Tz and
|z, — x|t — 0. We have trivially |z|s < |z|;. By our remark above the two
norms are equivalent so that

|Tz| <|z) = |z|+ |Tz| < Clz| YV € X

which means that T is continuous.

3.4 Topological complements, right and left in-
verses of operators

In this section we are going to investigate closed subspaces of Banach spaces.
We will establish some properties which follow from the open mapping principle.

65



Definition 3.4.1 Let Y C X be a closed subspace of a Banach space X. An-
other subspace Z is called a topological complement of Y if

o 7 is closed

e X =Yo7

Proposition 3.4.2 Let Y C X be a closed subspace of a Banach space X, and
let Z be a topological complement of Y. Because every © € X has a unique
decomposition x =y + z withy € Y, z € Z we define the projections my : X —
Y, mz: X — Z by ny(x) := vy, nz(x) := z. Then the projections my, nz are
continuous linear operators.

Proof:
We equip the product space Y x Z with the norm ||(y, 2)|| := |y| + |2| so that
it becomes a Banach space (note that both Y, Z are closed). Then the linear
operator

T:YxZ—X

T(y,2):=y+=

is continuous and surjective. By the open mapping principle there is § > 0 so
that
Bs(0) € T(B1(0)).

This means that every € X with |z| < § can be written as a sum z = y + z,
yeY,ze Z, sothat [y| + |z| < 1. If x is now an arbitrary nonzero element in
X then

:My’ %z':'waz
) ) '
with |y/| +|2/| < 1 and
2
ol + 121 < 2ol

This implies
2 2
Ty (z)] = |y| < g\x| and |7z (z)| = |2] < 5'33'

which concludes the proof.

The reverse of the above proposition is true in normed vector spaces (easy!)
Exercise 3.4.3 Assume that Y, Z C X are subspaces of a normed vector space

X so that X =Y & Z. If the projection operators wy, 7y are continuous then
Y, Z must be closed.
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Closed subspaces Y C X of a Banach space which are finite dimensional or finite
co—dimensional have topological complements. The Hahn-Banach theorem is
needed for the part where dim(Y) < oco. We will show in the next chapter
that every closed subspace of a Hilbert space has a topological complement.
In contrast to the Hilbert space situation, Lindenstrauss and Tzafiri (On the
complemented subspaces problem, Israel J. Math., 9, (1971)) have shown that
every Banach space which is not isomorphic to a Hilbert space has a closed
subspace that does not admit any topological complement. Having a topological
complement or not is important for the construction of continuous right— or left
inverses of continuous linear operators.

Proposition 3.4.4 Assume X,Y are Banach spaces and T € L(X,Y) surjec-
tive. Then the following properties are equivalent:

1. T admits a (continuous) right inverse, which is an operator S € L(Y, X)
so that T o S = Idy.

2. The kernel of T admits a topological complement.

Proof:

Let S be a continuous right inverse. Then R(S) = S(Y") is a topological comple-
ment of ker(T"). Indeed, every x € X can be written as the sum of an element
in ker T and one in R(S):

z=(x—STz) + STz.

If xg € ker T'N R(S) then Txzy = 0 and there is yo € Y so that o = Syp. This
implies

0=Txo=TSyy = yo and xg = 0,
hence X = kerT @ R(S). In order to check whether R(S) is closed we pick a
sequence z € R(S) which converges to some z € X, and we have to show that
x € R(S) as well. We have x = Sy, for suitable y, € Y. Applying T we get
yr = Txy — Tx since T is continuous. Then xy = Sy, — STz = x.
Assume now that Z is a topological complement of ker T'. Then the projection
w7 : X — Z is continuous. If y € Y then let x € X be any point so that Tx = y.
We then define Sy := mzx. Note that this definition does not depend on the
particular choice of x.

O
We leave the following proposition as an exercise.

Proposition 3.4.5 Assume X,Y are Banach spaces and T € L(X,Y) injec-
tive. Then the following properties are equivalent:

1. T admits a (continuous) left inverse, which is an operator S € L(Y, X) so
that SoT = Idx.

2. The range of T is closed and admits a topological complement.
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Chapter 4

Hilbert spaces

4.1 Definitions, orthogonal complement, Uniform
convexity
Definition 4.1.1 Let X be a (real) vector space. A scalar product is a map

X x X — R, denoted by (z,y), which satisfies the following conditions for all
T,T1,T2,Y € X:

o Symmetry: (z,y) = (y,z),
o (w1 +w2,y) = (21,9) + (22,9), (ax,y) = a(z,y) Vo e R
o Positive definite: (x,x) >0 ifx #0

Two vectors x,y € X are called orthogonal if (z,y) = 0.

A scalar product induces a norm on X by |z| := 1/(z,2) (we will prove the
triangle inequality |z + y| < |z| + |y| below).

Definition 4.1.2 A vector space with a scalar product is called a Hilbert space
if it is complete with respect to the induced norm.

Example: The space L?(Q) becomes a Hilbert space if we define the scalar
product by

(. 9) 22y = /Q f(@)g@)dz or (f,9) 2@ = /Q f(@)g(x)da,

where we adopt the first definition if f, g are complex—valued. In the real valued
case the two are the same. In the same way W*2(Q2) and H(If’Q (€2) also become
Hilbert spaces with

(fs Pwr2(q) == Z (D*f,D%g) L2 (-

0<|al<k
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If the vector space under consideration is a complex vector space then we have
to modify the definition of scalar product as follows:

e (.,.): XxX—>C

e (y,7) = ( y) "skew—symmetry”

o (z1+z2,y) = (z1,9) + (2,9), (ax,y) = a(z,y) Va e C
o (z,z)>0ifx#0

Note that B
Az,y) = A(z,y) » (2,2y) = A(z,y)
where A € C. We derive now some simple inequalities and identities. Let X be

a complex vector space with a scalar product. Denote by |.| the norm induced
by the scalar product. If t € R and 0 # y € X then

|z + ty|* = |2|* + 2t Re(z,y) + t*|y|> > 0. (4.1)
Choosing now t = —Re(z,y)/|y|? and multiplying (4.1) by |y|?> we obtain
|2[*]y1* — 2(Re(z, 9))* + (Re(z,y))* = 0
and
(Re(z,y))? < |z[*|y|*.
Replace now = by Az where ) is a complex number with |A| = 1 so that A(z,y) €
R. Then we obtain the Cauchy—Schwarz inequality

(2, y)| < |2l ]yl

Choosing t = 1 in (4.1) and estimating the term in the middle with the Cauchy—
Schwarz inequality we obtain

lz +y? < (J2| + y])*.

This is the triangle inequality for the induced norm. Setting ¢ = +1 in (4.1) we
obtain the parallelogram identity

2+ y? + o — y|* = 20z + 2|y >

Hilbert spaces have many nice properties in comparison to general Banach
spaces. We will mention some of them in this section. Given a Banach space
(X,].]) it is a natural question to ask whether X is actually a Hilbert space in
the following sense: Is there a scalar product on X so that the induced norm
equals the given norm |.| ? There are some results in this direction. Here are
some of them

Theorem 4.1.3 (Fréchet—von Neumann—Jordan) Let (X, |.|) be a Banach
space and assume that the norm satisfies the parallelogram identity. Then X is
a Hilbert space.
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See the book by Yosida for a proof.

Theorem 4.1.4 (Kakutani) Let X be a normed vector space with dimension
equal or greater than three. Assume that every two—dimensional subspace Y of
X admits a projection P of norm < 1, i.e. there is P € L(X,Y) with Py =y
forally € Y and ||P|| < 1. Then the norm on X is induced by a scalar product.

For a proof see S. Kakutani, Some characterizations of Euclidean spaces, Jap. J.
Math., 16, (1940), pp. 93-97. It follows from the Hahn-Banach theorem (which
we will prove in the following chapter) that every one-dimensional subspace has
a projection P as in the theorem.

Theorem 4.1.5 Let X be a Hilbert space. Denote the norm induced by the
scalar product by |.|. Then (X, |.|) is a uniformly convex Banach space.

Proof:
Let ¢ > 0, z,y € X with |z|,|y| < 1 and |z — y| > . We obtain from the
parallelogram identity

o afgf el -5 -
Hence
m+y‘<1_6
with .
€
6=1— I_Z'

We have the following result

Theorem 4.1.6 Let X be a Hilbert space. Assume that C C X is a nonempty
closed convex subset of X. Then for every point xo € X there is a unique point
yo € C such that

_ — inf _
lzo — ol ylgclfco Yl

i.e. the point yy is closer to xg than any other point in C. Moreover, the point
Yo 18 characterized by the property

Yo €C, (o — Y0,y — %) <0VyeC.
Proof:

Existence of gy follows from our earlier result about uniformly convex Banach
spaces. We actually forgot in the earlier proof to show uniqueness of yy. So we
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will do it here. Apart from this, the only new feature here is the alternative
characterisation of the minimizer in terms of the scalar product. Let us first
show uniqueness. Assume that there are two distinct minimizers yo and y1, i.e.
ly1 — yo| > € for some € > 0. Let M := inf,cc |zo —y|- Then (yo +v1)/2 € C
and

Yo — Zo Y1 — Zo

2 + 2

M < yO;yl

< M/2+ M/2

—xo‘ﬁ

hence
Yo — o n Y1 — Xo
2M 2M

violating uniform convexity. Assume now that yg € C' satisfies

1=

— x| = inf |y — z0].
Yo — 2o ;Qc ly — ol
Let y € C so that z = (1 — t)yo + ty € C for all ¢t € (0,1]. We obtain

lyo — ol < |zo — [(1 —t)yo + tyl| = [(zo — yo) — t(y — vo)|
and
lyo — zo|® < |mo — yol® — 2t(zo — Yo,y — Yo) + 3|y — yo|*.
Dividing by t we get
2(z0 — Yo,y —yo) <tly —yol* VO <t <1

which implies
(o — Yo,y — yo) < 0.
Assume now that (zo — yo,y — yo) < 0 for all y € C. Then
lyo — mol® — [y — ol = lyol? — 2(x0, 90) — lyl* + 2(20, v)

which equals
2(z0 — 0,y — yo) — lyo — yI* < 0.
Therefore,
lyo — ol < |y — o
for all y € C.

O

Definition 4.1.7 Let X be a Hilbert space and let Y be a closed subspace. We
define another subspace of X, the orthogonal complement of Y, by

Yt ={reX|(z,y) =0V yecY}

The following proposition demonstrates that topological complements of closed
subspaces always exist in the Hilbert space setting.
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Proposition 4.1.8 Let X be a Hilbert space and let Y be a closed subspace of
X. Then Y+ is a topological complement of Y and (Y1)t =Y.

Proof:

By the properties of the scalar product Y is a vector space. Assume that x}, is
a sequence in Y1 which converges to some 2 € X. If we can show that z € Y+
then Y+ is closed. We compute for arbitrary y € Y’

(z,y) = (v — 21, y) + (Tk, y)
and

(@, 9)] < |z — x| |yl

by the Cauchy Schwarz inequality. Then (z,y) = 0 for all y € Y and Y is
closed. We now show that X = Y @ Y. Given z € X there is an element
y € Y which is closest to z, i.e. for any z € Y and any t € R

|z —yl> < |z —y+tz> = |z —y> + 2tRe (z — y, 2) + £*|2|?,

i.e. 2Re (z —y, z) > —t|z|? for all positive t and 2Re (z — y, z) < —t|z|? for all
negative t. Therefore, Re (x — y,2) = 0 and every x € X can be decomposed as
asumz=y+2z—ywhereycY andz —y € YL, If y € YNYL then we have
in particular (y,y) = |y|> = 0. i.e. y = 0. The last statement is an immediate
consequence.

4.2 Riesz—Fischer representation theorem and
Lax—Milgram lemma

In this section we assume that X is a vector space over the complex numbers.
The theorems we are going to prove have obvious counterparts for the real case.

Theorem 4.2.1 (Riesz—Fischer representation theorem)
Let X be a Hilbert space. The following map is a conjugate linear isometric
isomorphism between X and its dual space X' = L(X, C):

J: X — X
J(@)y = (y,2) , z,ye X

(‘congugate’ linear refers to J(ax) =a J(x) for a € C).

Proof:
It is clear that J(z) : X — C is linear. The same applies to J(az) =@ J(x) for
a € Cand J(x1+x2) = J(x1)+ J(22). The Cauchy—Schwarz inequality implies
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that J(z) is continuous, hence J is well-defined. Again, by Cauchy—Schwarz’
inequality
[/ ()]l x = sup [J(z)y| < |z].

lyl<1
On the other hand,
x
J(x)—| = ||
e
so that ||J(z)||x = |x|. Hence J is an isometry and injective. The real issue

is to show that J is surjective, i.e. we have to show that for every element
¢ € X' there is some x € X such that {(y) = J(z)y for all y € Y. Assume that
0 # ¢ € X'. Then ker/ is a closed proper subspace of X. Applying theorem
4.1.6, we can find for any element x € X a unique point Pz € ker{ which is
characterized by

— Pzl = inf _
‘.Z‘ xl yél{(leré ‘.Z‘ y|

and
Re(z — Px,y — Pz) <0V y € ker/.

Pick now e € X so that £(e) = 1 and define
ro:=e — Pe

so that f(xg) = f(e) — £(Pe) = 1, in particular, 2o # 0. We have now for all
y € ker/
Re(e — Pe,y — Pe) = Re(zg,y — Pe) <O0.

But this implies
(x0,y) =0V y € ker 4.

We compute for arbitrary € X

(x,20) = (z—L(x)w0,70) + (£(7)T0,T0)
= U(x)|xof

= () = () -

The following theorem is a very effective tool for proving existence of solutions
to linear elliptic partial differential equations.

and

O

Theorem 4.2.2 (Lax—Milgram lemma)

Let X be a Hilbert space, and let a : X x X — C ba a map which is linear
with respect to the first variable and conjugate linear with respect to the second
(a(x,ay) = aa(x,y)). Moreover, assume that
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e a is bounded, i.e. |a(z,y)| < C|z||y| for some constant C > 0,
e a(z,z) > c|z|? for some constant ¢ > 0,
* a(z,y) = a(y,z),

where 0 < ¢ < C < oo. Then there is a unique bijective linear operator A €
L(X) so that
a(y,z) = (y, Az) V z,y € X.

In addition, we have |A|| < C and |[A7Y|| < L.
Proof:

For every z € X the map y — a(y, x) is linear functional (this means an element
in the dual space X’) since

fa(-,2)|lx = sup |a(y,z)| < Clz.
ly|<1

By the Riesz—Fischer representation theorem there is a unique point in X which
we denote by Az, so that

a(y,z) = (y,Az) Vy € X.
Clearly, Az depends linearly on x and
|Az|? = (Az, Az) = |a(Ax, z)| < C|Az||z]

so that
[Az| < Claf,
hence A € L(X) and ||A|| < C. We estimate
cz* <a(z,z) = (v, Ar) < |z| |Az|

so that c|z| < |Az| and therefore ker A = {0}. The same estimate implies that
R(A) is closed. Indeed, let Axy, be a sequence in R(A) which converges to some
point y € X. Then

1
|z — x| < —|Axy — Azy| — 0 as k,l — oo,
c

so (zr) is a Cauchy sequence in X which must converge to some point = € X.
Since A is continuous we obtain Ax; — Ax which must equal y. This shows
that R(A) is closed. It remains to show that R(A) = X. Assume this is not
the case. We apply the orthogonal projection result, theorem 4.1.6: For every
xo € X\R(A) there is a unique element Pz € R(A) so that

Re(xg — Pxo,y — Pxo) <0V y € R(A)
or

Re(xg — Pxo,y) < Re(xg — Pxg, Pxo) <0V y e R(A)
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which is only possible if Re(zg — Pxo,y) =0V y € R(A). This is the same as
(xo — Pxo,y) =0V y € R(A).
If we take y := A(xg — Pxg) we obtain the following contradiction
0 = (g — Pxg, A(xg — Pxg)) = a(xg — Pxg,xo — Pxo) > c|lzg — Pxol?

which implies that g = Pxg € R(A) contradicting our initial assumption xy €
X\R(A).

O

4.3 Some Applications

4.3.1 Dirichlet Problem

A. Classical Formulation

Let 2 C R" be a bounded domain, f € C%(Q), a;; € C*(Q), i,j =1,...,n are
given real valued functions so that a;; = a;;. We also assume that there is a
constant ¢y > 0 such that

n

Z aij(z)&€ > coléP Ve, £ € R™

ij=1
We then say that (a;;)1<i j<n is elliptic (Note that for fixed € @ and ¢ > 0 the

set {£ € R"[ ), a;;(2)&&; = c is an ellipse). We are looking for a function

u € C%(Q)NC(Q) that solves the following boundary value problem (’Dirichlet—
problem’)

> a% <aij(x)$(x)> = f(z) for z € Q (4.2)

J

u(z) = g(z) for x € 99,

i,j=1

where g € C%(Q) N C%(Q) is a given function. In this section we will use the
notation 9; := 9/dx;. We can reduce this to the case u|gg = 0 by replacing u
with v — g. The Dirichlet—problem then becomes

> 0i(ai05u) = f = di(ai;d;g) in Q (4.3)
i,j ,J
uw = 0 on 9.

In order to shorten notation we write also

€; = Z aijajg.
J
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We multiply the PDE (’partial differential equation’) (4.3) with ¢ € C§°(Q2) and
we perform partial integration. We obtain

Q N\ G i

Conversely, if the above equation is satisfied for all ¢ € C§°(€2) then we can
reverse the partial integration, and we conclude that u satisfies the differential
equation (4.3). The functions ¢ are also called test functions.

B. Weak formulation in the Hilbert space H,>(f)

Instead of searching directly for classical solutions of the partial differential
equation (4.3) we define a more general notion of solution. Inspired by the
integral identity (4.4) we make the following definition

Definition 4.3.1 (Weak solution)
We call uw a weak solution of the Dirichlet problem (4.3) if u € H5’2(Q) and

/Q > 0iday0u+Y e+ f | =0 forall ¢ € Hy*(Q). (4.5)
1,7 %

In comparison to (4.4) the space of solutions and the space of test functions has
been chosen larger. Of course, every classical solution is also a weak solution.

C. Existence of a weak solution with Lax—Milgram lemma

We will prove the existence of weak solutions as in (4.5) using the Lax—Milgram
lemma. In the classical formulation (4.4) the function spaces involved are not
well-behaved while we are dealing with a Hilbert space in the case of weak
solutions. We only need to assume here that a;; € L> and e;, f € L*(Q).

Define for v, w € Hy*(Q) the following bilinear map
a(v,w) := / Z@ivaij ojw
Q%7

which is also symmetric. We claim that the Lax Milgram lemma can be applied
to a. We have

la(v,w)] <Y [laij ]| L@ 100] L2 @) 1050 ]| L2 @) < Clivlzallwlhize.
(2]
Ellipticity implies that there is a constant ¢y > 0 such that

Z ai;j (2)0iv(z)0v(z) > co|Vo(x)? ¥V o € Q, Vo = (dv,...,0,v)

i,j=1
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hence
la(v,v)| > co [ |Vo(z)|]*dz.
Q

If we can show the inequality

[ Jo@)Pas < cy /Q Vo) 2dz ¥ v € HE(Q), (4.6)

which is called Poincaré inequality, then the assumptions of the Lax Milgram
lemma are satisfied and there is a linear operator A € L(H,*(2)) such that

a(w,v) = (w, Av) ey ¥ v,w € Hy*(Q). (4.7)
Now v € Hy?(Q) is a weak solution if and only if

a(v,w) = F(w) ¥V w e Hy*(Q)

F(w) ::_/Qzaiwei_/ﬂfw~

We note that F € (Hy?(Q)) since

where

| (w)]

IN

[ fllzz o lwllz20) + Z leill2 ) 19iw]| L2 (o)

IN

C (max;|leil|L2(o) + 1fll2@) lwll1 2.0

The Riesz representation theorem guarantees the existence of some u € Hé 2(9)
such that

F(w) = (w,u) g1.2(q).

Putting all the pieces together we obtain for any w € Hé’Q (Q)

a(A  u,w) = a(w, A" u) D (w,u) g2 Riesz F(w).

This means that A~ is the desired weak solution. We are left with the proof
of the Poincaré inequality (4.6). If suffices to show the inequality for a smooth
function with compact support in €2 by an approximation argument. Let u €
C§°(Q). We view u as a smooth function on all of R™ by trivial extension. Let
Q = (a1,b1) X -+ x (an,b,) be a cube containing the closure of 2. We write

x=(x1,...,2,) and a = (aq,...,a,). We estimate for ar < xp < by
lu@)* = |u(z) - u(a)?
T 2
= / Ou(x1, .oy T—1,&, Tht 1y - -+, Ty )dTg
ag
Tk
< (mg— ak)/ |Ocu(@1, ..o Th1, &, T, - - )| Py,
ak
(with Holder’s inequality)
by
< (k- ak)/ |0k, o Th1, &, Thgts - - - 7$n)|2d$k~
ag

(s



Integrating over Q yields
/ lu(z)2dz < (b — ak)2/ |Opu(x)|*da
Q Q

which is the same as integrating over the domain Q. We get an estimate like
this for each k. Adding all of them yields the Poincaré inequality.

D. Regularity of weak solutions (some remarks only)

Having found a weak solution we pose the question whether a weak solution is
actually a classical solution in the sense of (4.3) or (4.4). This is a complicated
issue. Some references are the books by D. Gilbarg and N. Trudinger (Elliptic
partial differential equations of second order), A. Friedman (Partial Differential
Equations), J. Jost (Postmodern Analysis) or L. Evans (Partial Differential
Equations). The coefficients a,; will have to be more regular as previously
specified in the existence proof. Without going into details, the typical regularity
result for a weak solution u of (4.5) is an estimate of the form

[ullmiz220 < CUfllmza + l9lnt220 + ulnz20), (4.8)

this means the regularity of the weak solution is always two notches better than
the regularity of the data f. In particular, the weak solution will be smooth if
f and g are (by the Sobolev embedding theorem).

E. Remarks

We could prove existence of weak solutions of linear elliptic partial differential
equations with Dirichlet boundary conditions as in (4.2) in the Hilbert space
Hé’Q(Q) using the Lax Milgram lemma and the Riesz Fischer representation
theorem. So we did not need any Sobolev spaces W*? with p # 2. So why
bother with them ? There is also a notion of ellipticity for nonlinear differential
equations and the picture changes drastically in this case. In the nonlinear case
Sobolev spaces with p # 2 or Hélder spaces are usually used. We will discuss
variational methods later on which are a valuable tool to prove existence of
weak solutions for certain nonlinear PDE’s. We note that there is no universal
existence theorem of weak solutions for nonlinear elliptic partial differential
equations. What about the regularity issue 7 Regularity estimates like (4.8)
for linear elliptic PDE’s also exist in the general case p > 1 but there are much
harder to prove than the Hilbert space case. There is also a similar estimate
for Holder spaces (equally hard to prove). See the book by D. Gilbarg and N.
Trudinger or the paper by S. Agmon, A. Douglis and L. Nirenberg, Estimates
near the boundary for solutions of elliptic partial differential equations satisfying
general boundary conditions I, Communications on Pure and Applied Math.,
12, (1959). We remark that there is no regularity estimate relating [ul|cx+2(q)
to the C*-norms of f,g. In the chapter about Fredholm operators we will see
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why (another reason why the classical spaces C*(£2) are not suitable for partial
differential equations). Solving the regularity question for nonlinear elliptic
PDE’s is very difficult. There is no complete answer known to the question
for which nonlinear elliptic PDE’s there is regularity of weak solutions and for
which there is not.

4.3.2 Radon—Nikodym theorem

Let (M, M,v) and (M, M, pn) be two o—finite measure spaces with the same
underlying set M and the same c—algebra M. We assume that v(M) < oo.
The measure v is called absolutely continuous with respect to p if

AeM, u(Ad)=0= v(4)=0.

The Radon—Nikodym theorem then promises us a nonnegative integrable func-
tion h (with respect to the measure p) such that

V(A):/hduVAEM.
A

This is a classical result in measure theory, and we will see shortly that it can
be proved with the Riesz—Fischer representation theorem (the proof is due to
von Neumann). We confine ourselves to the case u(M) < oo, i.e. the measure
of the total space is finite with respect to both measures. Let X be the real
Hilbert space L?(u + v) with the norm

=/ 7 d(u+V))é-

It follows from the Cauchy—Schwarz inequality that
L*(u+v)c LY (u+v)C L*(v)

Then for any f € L*(u + v) we can define

() = /Mfdz/-

Again, by Cauchy—Schwarz we have

O =11, ez < eyl flzzwy < ezl flezgut),

hence ¢ € (L?(u + v))’. By the Riesz representation theorem we can find g €
L?(p + v) such that

()= [ sav=[ fodiusn)vseru.
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Write this as
[ fa-gyav=[ foduv fe Lty (4.9)
M M

We define the set Z := {z € M | g(z) < 0}, and we claim that u(Z) = 0. Take
now f =1 on Z and f =0 on the complement of Z. Then (4.9) becomes

/Z(l—g)dvz/zgdu~ (4.10)

By definition of Z we have for ¢ > 0

0 < /Z(l—g)dV=/ngu

/ gdv + / gdv
{g<—e} {0>g>—¢}

< —e-p({g <—e}),

so that u({g < —e}) = 0 for all € and also u(Z) = 0 proving the claim. We
now define Z := {& € M |g(z) > 1}, and we claim again that u(Z) = 0. We
argue indirectly and assume that pu(Z) > 0. Take f =1 on Z and f = 0 on
the complement of Z. Then we obtain again (4.10). This time the right hand
side is positive, but the left hand side is zero or negative since g > 1 on Z. By
absolute continuity of v with respect to u we also get ¥(Z) = 0 in both cases.
Summarizing, we have shown that the function g satisfies

0<g(z) <1 (u+ v)-almost everywhere.

We then modify the function g on a set of u-measure zero so that 0 < g(z) < 1
for all z € M. Because v is absolutely continuous with respect to p, the equation
(4.9) still holds for the modified function (which we denote again by g). We claim
that the desired function h in the theorem is given by

__9(=)
h(z) == T—g@)

Let £ € M be a measureable set and denote its characteristic function by xg.
Then we have for k € N

k—1

1—gF ;
f=T o= Y0 | xz e L®(u+v) C L(utv)
1—g =

so that we can insert it into equation (4.9). We obtain

[ a-gnedr= [ @l duv
M M -9
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We have (u + v)-almost everywhere 0 < (1 — ¢¥)xg /' xg as k — oo. The
monotone convergence theorem then implies that

k—o0

v(E) = /M lim (1 — g")xpdv

lim (1—g")xpdv
k—oo Jar

. g
1 1—g" du.
J, f, (49 e du

Fatou’s lemma then implies that

g . k g
7XEd#:/ liminf(1 — ¢%)xE dp < v(FE),
/Ml—g Mk—>oo( ) 1—g (E)

in particular, ﬁXE € L'(u). Applying the monotone convergence theorem
again (or the dominated convergence theorem) we finally get

g
V(E):/;;Ed'u

which is the assertion of the theorem.
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Chapter 5

The Hahn—Banach theorem,
Dual Spaces, Reflexivity

5.1 The different versions of the Hahn—Banach
theorem

Before we discuss the Hahn—Banach theorem, let us recall Zorn’s lemma. The
lemma deals with partially ordered sets. Let P be a set so that a relation is
defined on some pairs of points in P. We denote this relation by <. (The
‘official” definition is this: A relation R on the set P is a subset of P x P. We
write x < y if (x,y) € R). A partial ordering on P is then a relation < that
satisfies the following conditions:

o If r <yandy<zthenz <z,
e We have z < x for all z € P,

o If x <yandy <z then z=y.

The set P is called totally ordered if for any pair (z,y) € P x P either z < y or
y < z. For example the real numbers are totally ordered with the relation <=
less or equal’. The set P of all real valued function on [0, 1] becomes partially
ordered if we define f < g as f(x) < g(z) for all x € [0,1]. Given a subset
@ C P, an element z € P is called an upper bound for the set @ if z < z for all
x € Q. An element z of a partially ordered set P is called maximal if z < z for
any x € P implies that x < z as well.

Lemma 5.1.1 (Zorn’s lemma)

If every totally ordered subset of a nonempty partially ordered set has an upper
bound then the partially ordered set has a mazimal element.
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Theorem 5.1.2 (Hahn-Banach theorem, analytic version)
Let X be a vector space over the real numbers. Moreover, let p: X — R be a
map satisfying the following conditions:

e p(Ax) = Ap(x) for allz € X and A > 0,

o p(x+y) <plx)+ply) forall x,y € X.

Assume also thatY C X is a linear subspace and let g : Y — R be a linear map
satisfying g(x) < p(z) for all x € Y. Then there is a linear map G : X — R
such that

o G(x) =g(x) ifr ey,
o G(z) <p(x) forallz € X.

Proof:
We consider the following set:

P = {(Z,h)|Z is a linear subspace with Y C Z C X and
h:Z — R is a linear map so that h(z) = g(x) Vx € Y and
h(z) < p(z) Vx € Z}

We define a partial ordering on P as follows: We define
(Zl,hl) < (Z27h2) <= 71 C Zy and h2|Z1 = hl,

i.e. ho is an extension of h;. This is just a partial ordering, not a total ordering,
because the map ¢ in general has many different possible extensions onto larger
subspaces. The set P is not empty since it contains the element (Y, g). Assume
now that Q C P is a totally ordered subset, i.e.

Q = J{(Zi, ha)},
iel
where [ is some index set. Then for i,j € I either h; is an extension of h; or
vice versa (or both if Z; = Z; and hy = h;). The set @ has an upper bound
(Z,h) € P as follows:

Z=J%, hx):=hi(z) ifz € Z.
icl
Note that h is well-defined because @Q is totally ordered and that (Z,h) € P.
By Zorn’s lemma the partially ordered set P then has a maximal element which
we denote by (X', G). Our job will be to show that X’ must be the whole space
X. Then G is the desired map and the proof is complete. We argue indirectly
and assume that X’ # X. We pick 2o € X\X' and we define the following

linear subspace of X:
7 := X' @ Raxy.
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We claim that we can extend G onto the space Z so that (Z, Gestended) € P-
This would violate the maximality property of (X', G), i.e. we have (X', G) <
(Z, Gentended), but we do not have (Z, Geptended) < (X', G), and it would com-
plete the proof. We define

CTV(»;’QN&S'de@d(-'Ij + tSL'()) = G(Q?) + ta

for a suitable constant o which we will determine now such that (Z, Gegtended) €
P, i.e. we would like to have

G(z) +ta < p(x +tzg) Vz € X', t € R. (5.1)

This inequality is satisfied for ¢ = 0 since (X’,G) € P. For ¢t > 0 it leads to
o < PZFi20) ~Cl2) —p(T4m) -G (7).
t t t
and for ¢ < 0 it leads to

plottn) ~O) _ (%) (Y.

o>

In particular, (5.1) is satisfied if

sup (G(z) —p(x —xp)) < a < in)f(,(p(x + x0) — G(x)). (5.2)
rzeX’ e

If 2,2’ € X' are arbitrary points then we estimate

Gx)+G(') = Gx+2a)
< pla+a)
= plx —z0+2" +x0)
< pz —x0) + p(z + x0),

so that
G(z) — p(x — 20) < p(z’ + 20) — G(2') V 2,2" € X’

which means that (5.2) can be satisfied for some «.

We continue with a few easy corollaries.

Corollary 5.1.3 Let (X,]|.]) be a normed vector space. Let'Y be a linear sub-
space and let g : Y — R be a linear continuous map with norm

lglly: == sup [g(x)].
zeY, |y|<1

Then there is a linear continuous map G € X' so that G|y = g and

Gl xr = llglly-
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Proof:
Apply the Hahn—Banach theorem with p(x) := ||g||ly-|z|.

O

Corollary 5.1.4 Let (X,|.|) be a normed vector space. Then for every xo € X
there is some f € X' such that

11l = laol and f(zo) = |zo|*.

Proof:
Apply the previous corollary with Y = Rz and g(tzg) = t|zo|? so that ||g|ly" =
|zol.

O

The following corollary characterizes the norm on X by the norm on the dual
space:

Corollary 5.1.5 Let (X,].]) be a normed vector space. For every x € X

| = sup flx)] = max f(x)].
= feX’,\|f|\§1| @)l feX’,Hf||§1| @)

Proof:
The assertion is clear if z = 0. Suppose that x # 0. Then

[f(@)] < (1 f ]l fa] < |-

On the other hand there is f € X’ such that ||f|| = |z| and f(z) = |z|?. Define
now g := |z|~1 f so that

lgllx- = 1 and |g(z)| = [z].
o

We mentioned earlier the following statement which we will now prove using
the Hahn-Banach theorem:

Corollary 5.1.6 FEvery finite dimensional subspace Y of a normed vector space
X has a topological complement.

Proof:
Assume that {y1,...,yn} is a basis for Y. Then by the Hahn-Banach theorem
there are linear functionals /1, ...,#, € X' such that

1 if j=k&
Zj(yk):{o if j#£k
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(define ¢; on Y by the above formula, Hahn-Banach guarantees a continuous
linear extension onto all of X). Because all the ¢; are continuous the spaces
ker £; C X are closed for all j. Then

7 = ﬂ kerl; C X
1<j<n

is also a closed subspace, and it satisfies X =Y & Z.

The following theorem generalizes corollary 5.1.5

Theorem 5.1.7 Let X be a (real) normed vector space, and let Y be a linear
subspace. For any z € X we write

= inf |z —
d(2) ylgylz Yl

for the distance between z and the set Y. We also define
D(z) :==max{ |[((z)| : Le X", ||l|x <1, Ly =0}

Then for every z € X

Proof:
The assertion of the theorem is trivially true if z € Y. We have for all y € Y

[€(2)] = [€(2) = £(y)| = |€(z = y)| < |z =y

and therefore
D(z) < d(z2). (5.3)

In order to show equality, we consider the linear space Z consisting of all ele-
ments of the form y 4+ Az, y € Y, A € R. We define a linear functional ¢z on Z
by £z(y + Az) := Ad(z). We have

<Al inf |2 —y| = inf |Az — Ay| <
[z(y + A2)| < ] inf |z —y| = inf [Az — Ay < Az +y]

Y

so that
10zl z < 1.

We extend £z to a linear map L € X’ so that ||L||x <1 as well. If we set now
y =0 and A =1 then
L(z) =d(z) > D(z)

because of (5.3). On the other hand we also have L(z) < D(z) by definition of
D(z). This shows that D(z) = d(z).
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O

Definition 5.1.8 Let (X,|.|) be a normed vector space and let A C X be a
subset. The closed linear span of A is the smallest closed linear subspace of
X which contains A, i.e. it is the intersection of all closed linear subspaces
containing A.

The following theorem is a very valuable tool for deciding whether a given point
z € X is contained in the closed linear span of a set A.

Theorem 5.1.9 A point z in a normed vector space X belongs to the closed
linear span of a subset A if and only if every £ € X' which satisfies |4 = 0 also
satisfies £(z) = 0.

Proof:
If z is contained in the closed linear span of A, then there are elements z € X

of the form
n(k)

T = Zakjakj y Qkj GA, Qpj € R
j=1
so that z; — z. Now £(x) = 0 for all k£ and ¢ is continuous, hence ¢(z) = 0.
In order to prove the converse statement, assume that z does not belong to
the closed linear span Y of A. We have to find £ € X’ such that ¢|y = 0 but

() # 0. We define Y to be the linear subspace of X consisting of all elements
of the form y + Az where y € Y and A € R. We define £ € Y’ by

Ly + Az) =\

We have

ly+ Azl = N |5+ 2] 2 e,

where
c¢=inf |z —y| > 0.
yey ‘ y|

This shows that indeed ¢ € Y’ with norm bounded by ¢~!. We may extend 7 to
a linear functional ¢ € X’ by the Hahn—Banach theorem. Then ¢(y) = 0 for all
yeY and £(z) =1.

O

We note the following corollary. This is how we prove that a subspace of a
normed vector space is dense.

Corollary 5.1.10 Assume that X is a normed vector space and that Y is a

linear subspace such that Y # X. Then there is f € X' such that f # 0 but
f|y = O
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There is a geometric version of the Hahn—Banach theorem which we will dis-
cuss next. In the following let (X, |.|) be a normed vector space over the real
numbers.

Definition 5.1.11 An (affine) hyperplane in X is a set of the form
H:={xeX|f(zx)=2A},

where f : X — R is a nontrivial linear map and A € R. We will sometimes
write shortly {f = A}.

Lemma 5.1.12 A hyperplane H = {f = A} is closed if and only f is continu-
ous.

Proof:
The hyperplane H is clearly closed if f is continuous. Conversely, if H is closed
then its complement X\ H is open and not empty (note that f # 0). Pick a
point xg in the complement and assume that f(zg) < A (the case f(xg) > A is
handled similarly, we leave it as an exercise to the reader). Then pick an open
ball B.(xo) C X\H centered at xo. We then have f(z) < A for all x € B (o).
Indeed, we can never have f(x) = A on B.(xg) because the ball is contained
in the complement of H. On the other hand, f(x1) > A for some z1 € B.(z0)
is also impossible because tx1 + (1 — t)xg € Be(xg) for all 0 < ¢t < 1 and
fltxr + (1 —t)xo) = N if

o A (20)
f(@1) = f(=o)
a contradiction. It follows that

z

flzo+e—) <Aforall z € X,

K

Le. f(z) < \%I()\ — f(z0)) V z € X and also

so that f is continuous

O

Definition 5.1.13 Let A, B C X be subsets. We say that a hyperplane H =
{f = A} separates the sets A and B if

flx)<AVaeAand f(x) > AV 2z €B.
We say that H separates A and B in the strict sense if there is € > 0 such that

flx)<A—eVzeAand f(x) > X+eV xeB.
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Theorem 5.1.14 (Hahn—Banach theorem: First geometric version)
Assume that A, B C X are not empty, convex and disjoint subsets of X. Assume
moreover that A is open. Then there is a closed hyperplane which separates A
and B.

We start with two lemmas.

Lemma 5.1.15 Let C C X be an open convex set containing the origin. We
define for x € X

pe(z) = inf{a > 0] 2 e C}.

The map pc : X — [0,00) is called the gauge of C' and it has the following
properties:

1. pe(Az) =Apc(z) Ve e X, A >0,
2. pe(x+y) < pc(@) +pcly) Va,y e X,
3. there is K > 0 so that 0 < pc(x) < K |z],
4. C={z e X|pc(z) <1}.

Proof:

The first property is obvious. Let us start with property 4. Assume that z € C.
Since C'is open we also have (1 + ¢)x € C if ¢ is sufficiently small. Hence

1
1+e¢

/Lc(x) < < 1.

Now assume that pco(z) < 1. Then there is a number 0 < o < 1 such that

z/a € C. Then
x:a(g)Jr(lfoz)-O

is also in C because C' is convex and contains the origin. Let us now prove
property 2. Pick z,y € X and € > 0. By properties 1. we have

He <uc(;) +€) N u:égxif

and property 4. then implies

<1,

— e C.
pe(z) +e
By convexity of C' we have
T Y
T——+t(l—7)—=——€CVTel0l]
pe(z) + e ( )uc(y)+€ 0.1]
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If we choose 7 = (uc(z) +¢)/(ne(x) + pe(y) + 2¢) we obtain in particular

r+y
eC.
pe(x) + po(y) + 2¢

Properties 1. and 4. yield

pe(z +y)
pe(x) + pe(y) + 2

and po(z +y) < pe(r) + po(y) + 2¢ for all € > 0 which implies property 2. We
are left with property 3. Let € > 0 so that B.(0) C C (note that 0 € C' and C
is open). Then

1
po(r) < g|$‘

by definition of pc, hence K = 1/e.

O

Lemma 5.1.16 Let () # C C X be an open convez set and let xg € X\C. Then
there is a linear functional f € X' such that f(z) < f(xg) for all x € C. This
means that the hyperplane {f = f(xo)} separates the point {xo} and the convex
set C.

Proof:
We may assume by translation that the set C' contains the origin. Consider the
linear subspace ¥ = R - zp and the linear map g : ¥ — R defined by

g(Axg) := A

We claim that for all x € Y
9(v) < pe(x).
Indeed, if x = Az with A > 0 then by the previous lemma

po(z) = Apc(xo) > X = g(Azo) = g(x)

since peo(zo) > 1. If A < 0 the inequality is trivially true because pc(x) > 0
and g(z) < 0. By the Hahn-Banach theorem (analytic version) we can extend
g to f € X' such that f(z) < pco(x) for all z € X and f(xg) = 1. Property 4.
of the previous lemma then implies that f(z) < 1 whenever z € C, completing
the proof.

O

We can now proceed with the proof of the geometric version of the Hahn Banach
theorem (theorem 5.1.14).
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Proof:
DefineC:=A—-B:={ze€X|z=a—b,ac€ A,be B}. Then C is open since

C = UAfb.

beB

We leave it as an exercise to show that C' is also convex. Moreover, 0 ¢ C since
AN B = () by assumption. We translate the set C so that the translated set
C'+ g contains the origin. The set C'+ xg is of course still convex and open and
it does not contain xg. Using the lemma above we can find f € X’ such that
f(Z&) < f(zo) for all & € C' + x9. We conclude by linearity of f that f(z) <0
for all x € C. Writing x = a — b with a € A and b € B we get

fla) < f(b)Vaec A, be B.

Choose now « so that sup, f < a < infp f, hence the hyperplane {f = a}
separates the sets A and B.

O

Theorem 5.1.17 (Hahn-Banach theorem: Second geometric version)
Let A, B C X be non empty, convex disjoint subsets so that A is closed and B
is compact. Then there is a closed hyperplane which separates A and B in the
strict sense.

Proof:

If e >0and A, := A+ B.(0), B: := B+ B:(0) then A, and B, are both
open, not empty and convex. The notation A + B.(0) refers to {z € X |a =
a+z,a€ A, |z| <e} Ife> 0 is sufficiently small then A, N B, = (. Indeed,
if this were not true then we could find sequences e \, 0, xx € A, yp € B
such that |z — yx| < 2ek. Since B is compact by assumption, the sequence
(yr) has a convergent subsequence, hence we may assume that y, — y € B.
Then also x; — y which has to be in A because A is closed by assumption.
Hence y € AN B, a contradiction since A and B are disjoint. Using the previous
version of Hahn—Banach we can now separate the sets A, and B. by a closed

hyperplane {f = a}, i.e.

flrt+ez)<a< fly+ex)VeeA, yeB, |z <1l
This implies that

f@) +ellfllx <a<fly) —elflx VzeA, yeB,

which is the assertion of the theorem.
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We note (without proof) the following complex version of the Hahn—-Banach
theorem

Theorem 5.1.18 (Hahn—Banach: complex version)
Let X be a vector space over the complex numbers and let p: X — R be a map
satisfying

o p(Azx) = [Aplx) Ve e X, € C,
e plz+y) <p(x)+ply) VeoyeX.
Let'Y be a linear subspace of X, and let g : Y — C be a linear map satisfying

lg(y)| <ply) VyeY.

Then there is a linear map G : X — C so that G|y = g and |G(z)| < p(x) for
allz € X.

5.2 Reflexivity, the dual space of L?((2)

We introduce the important concept of reflexivity. We will use it here to char-
acterize the dual space of LP(2). We will explore it further in the following
chapter about weak convergence. Let (X,]|.|) be a normed vector space over
the real numbers. We denote by X" the so—called bidual space which is the
dual space of X’. There is a natural map from X into its bidual space

Jx : X — X"

Ix (@)l :=L(z), e X' zeX.

We have

[Jx@)llxw = sup  |l(x)] = |x]
X!, |€llxr <1

by corollary 5.1.5, the dual characterization of the norm. Hence the map J is
an isometry, in particular it is injective.

Exercise 5.2.1 If (X,|.|) is a Banach space then the range of Jx is closed in
X"

Definition 5.2.2 A Banach space (X, |.|) is called reflexive if the natural map
Jx above is surjective, i.e. Jx identifies the Banach space X with its bidual
space X".

Remark:
It is important in the definition of reflexivity that the natural map Jyx : X — X"
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is used for the identification. It is possible to construct an example of a non—
reflexive Banach space so that there exists a surjective isometry from X into
X" (see R.C. James, A non reflexive Banach space isometric with its second
conjugate space, Proc. Nat. Acad. Sci. USA, 37, (1951)).

So which Banach spaces are reflexive 7 We state the following theorem which
we will prove in the next chapter:

Theorem 5.2.3 (Milman)
Every uniformly convexr Banach space is reflexive.

In particular, Hilbert spaces are reflexive. We have shown earlier that the
spaces LP(Q) are uniformly convex if 2 < p < oco. Then they are also reflexive
for 2 < p < oo by Milman’s theorem. We will show that LP(Q) is actually
reflexive for 1 < p < oo. The Hahn-Banach theorem permits us to establish
some properties of reflexivity:

Theorem 5.2.4 A Banach space (X, |.|) is reflexive if and only if its dual space
X' is reflexive.

Proof:
Assume that X is reflexive. We have to show that the map

Jxr i X — X"

is surjective. Pick "’ € X"’. Define ¢ := 2/ o Jx € X'. Take now z" € X"
which is of the form Jx (z) for some € X since X is reflexive. We compute

JX’(Z)@‘N — ,’L‘H(f) — x//(x/ll OJX) — Jx(w)(xlllo JX) — .’I:/N(JX(J:)) — x///(xll)7

hence 2" = Jx/(£) and X' is also reflexive. Assume now that X’ is reflexive,
ie. Jxr: X' — X" is surjective. Arguing indirectly, we assume that X is not
reflexive, hence there is " € X"\ Jx(X). By the Hahn—Banach theorem (or one
of its corollaries) there is " € X" such that z"'(2"”) # 0 and 2”7, (x) = 0.
By reflexivity of X’ we can find ¢ € X’ such that Jx/(¢) = 2. Then ¢ is non
trivial and for all " € X" we have 2"’ (y") = Jx-(£)y" = y"(¢). On the other
hand, 0 = 2"'(Jx(x)) for all € X, which implies Jx(z)¢ = ¢(x) = 0 for all
r € X,ie. £=0, a contradiction.

O

Theorem 5.2.5 Every closed linear subspace of a reflexive Banach space is
again a reflexive Banach space.

Proof:
Let Y be a closed subspace of X. Consider the map

Jy:Y—>Y”.
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Let y” € Y and let i : Y < X be the inclusion. We define an element 2" € X"
by " (¢) := y" (£ o i) where £ € X'. Since X is reflexive we can find z € X such
that Jx(z) = 2", i.e.

lz)=Jx(z)l=y"(Loi)VIle X"

We claim now that x € Y. If we had = ¢ Y then we could find by the Hahn
Banach theorem some 2’ € X’ so that z/(x) # 0 but z’|y = 0. This is a
contradiction since

z'(x) #0 but 2’ 0i = 0.

Hence z € Y. It remains to show that Jy(z) = y”. Every bounded linear
functional £y € Y’ can be extended to a bounded linear functional on X, which
we denote by £. We have for all y € Y, using 2" = Jx(z) and 2 (¢) =y’ (£ 0 17)

Jy (x)ly = by (x) =l(x) =2"(0) =y (Loi) =1y"(ly),
which holds for all 4y € Y.

Using Milman’s theorem we will characterize the dual space of LP(€2).

Theorem 5.2.6 The dual space of LP(2), 1 < p < o0, is L1(Q), where %—i—é =
1.

Proof:

Let us assume first that 2 < p < co. In this case we have shown that LP(Q) is
uniformly convex (uniform convexity also holds for 1 < p < 2, we only mentioned
it without proof). We define an operator

T:LYQ) — (LP(2))
by
(Tu)v := / u(z)v(zx)de ,u € LI(Q), v e LP(),
Q
which is well-defined by Holder’s inequality. Also by Holder’s inequality

[Tull(ze)y =  sup  [(Tu)v| < ||ullLa).-
[[v]lLp ()<l

On the other hand, if we define

B 0 if u(z)=
f(x) ~—{ (@)1 2u(z) if u(z) #

then f € LP(Q) since

[ir@pds = [ jupre-ae = [ uw)ras,
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i.e.
-1
||f||LP(Q) = ||“||%q(g)-

Moreover,
s = [ F@pue)s = Julq,
so that (Tu)f
u
u q = T S Tu P /.
l[ull (o) v 1Tull(Lr ()

This is true for all u € L(Q), hence

1 Tull (e )y = l[ullLae),

and the map T is an isometry. We claim that it is surjective as well. Because
T is an isometry, the space T'(L?(Q)) C (LP(2))" is closed. We have to show
that it is also dense. This is the same (as a consequence of the Hahn Banach
theorem) as showing that every ¢ € (LP(Q2))"” which satisfies ¢|7(req)) = 0
must be trivial. By uniform convexity and Milman’s theorem, the space LP(2)
is reflexive, hence every ¢ € (LP(2))" can be written as Jpr(q)(h) for a suitable
h e LP(Q). If uw € L1(Q) we conclude

0=0¢(Tu) = / u(z)h(z)dx ¥ u € LYQ).
Q

This implies that A = 0 almost everywhere, for example by choosing u = |h|P~2h,

which implies ¢ = 0 so that L?(Q2) and (LP(R))’ are isometrically isomorphic

via the map 7" if 2 < p < co. Recall that a Banach space is reflexive if and only

if its dual space is. Because T is an isometry, the spaces LP(2) are also reflexive

for 1 < p < 2. Then the above proof also works for 1 < p < 2.

O

Exercise 5.2.7 Let m > 1 and 1 < p < oo. Show that the Sobolev space
W™P(Q) is reflexive. Hint: Identify W™P(Q) with a closed subspace of the
(m + 1)—fold product of LP(QY). You should then also show that X, +1LP(Q) is
reflexive.

Recall that the space C°([—1,1]) furnished with the maximum-norm is not
uniformly convex as we have shown earlier. It even fails to be reflexive.

Theorem 5.2.8 The space C°([—1,1]) furnished with the mazimum-norm is
not reflexive.

Proof:
If CY([—1,1]) were reflexive then we could identify it with its bidual space via
the isometry

Joo(-1p + C([=1,1)) — (C*([=1,1])))"
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Jeo 1.1 () = £(f).
Let £ € (C°([-1,1]))’. By the dual characterization of the norm we have

1l (co-1,1p) = b o).

max
(co([-1.11)", ”d’”(co([_l,”))//:l
Then there is f € CY([—1,1]) such that

1€ll¢co-1.apy = €(f) and [|f[lco(-1,17) = 1.
Define now ¢ € (C°([-1,1]))" by

0 1
o) = [ atw)iz = [ gle)is
so that for every g € C°([—1,1])

16(g)] < 2lglco—1,1))-

On the other hand, for any € > 0 we can find a bounded continuous function g
on [—1,1] so that

16(g)| > (2 =€) lglco—1.1))-
This shows that [|¢||co(-1,1))) = 2. For g = f we now obtain a contradiction
since there is no continuous (!) function with sup |f| =1 and

=/ O f(@)de /0 fade =2,
|

We conclude this section with some remarks: Theorem 5.2.6 is also called the
Riesz representation theorem. In a similar spirit one can show the following
theorem

Theorem 5.2.9 Let ¢ € (L1(2))'. Then there is u € L* () such that
o(v) = / u(z)v(x)de ¥V v € L(Q).
Q

Moreover, |ulp=@) = |¢ll(L1 (). Hence we may identify the dual space of
LY (Q) with L>=(Q).

For a proof, see the book by H. Brezis. The space L(£2) is not reflexive (we
can prove this in the next chapter). Then by the above theorem L*(2) is also
not reflexive. In fact, the dual space of L>(Q) contains L*(£2), but it is strictly
larger than L'(Q). For a description of (L>°(Q))" see the book by Yosida p.
118. The following is a nice exercise related to the Hahn Banach theorem
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Exercise 5.2.10 Show that there is ¢ € (L°°(2))’ so that there is nou € L1(Q)
satisfying

o(f) = /Q u(a) f(2)dz Vf € I2(9).

Here is another way to see that C°([—1,1]) is not reflexive.

Definition 5.2.11 A normed vector space (X, |.]|) is called separable if it con-
tains a dense countable set.

Theorem 5.2.12 Let (X,|.]|) be a normed vector space. If its dual space (X',|.|x)
is separable then so is (X,].]).

Proof:
There is a sequence ({)gen which is dense in X’'. We can find a sequence
(zr)ren C X such that

1
|zk| =1 and £y (xy) > §\€k|xf

by the definition of the norm on X’. We claim that the closed linear span of
the set (zy) is all of X. Suppose this is not true. Then we can find £ € X’ such
that £(x) = 0 for all k but |£|x» = 1. The sequence (¢) is dense in X', hence
there is some ¢;, such that

1
|€ — €k|X’ < g
The norm of ¢ equals 1, therefore
2
|€k|X’ > g
We arrive at the following contradiction:
1 1 1
3 > [lw) = brlzn)| = [r(zn)] > Sllx > 3.

Hence there is no such ¢ and the closed linear span is all of X. This means that
the set of all finite linear combinations of elements in {z;} is dense. Then the
set of all finite linear combinations of elements in {z;} with rational coefficients
is also dense in X, but this is a countable set. Hence X is separable.

O

The Banach space C°([—1,1]) (with maximum-norm) is clearly separable: Ev-
ery continuous function can be approximated by piecewise linear functions with
rational data (rational nodes, slope). The dual space (C°([—1,1])) however, is
not separable: Define linear functionals (¢;)_1<;<1 by

G(f) = f(1).
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We have
|£t|(CU([—1,1]))’ <1and [y — £t|(00([—1,1]))’ =2ift # .

So we have found a non—countable set in (C°([—1,1]))’ where two distinct ele-
ments have distance 2 from each other. Consider the set U = J_,.,<; Bi/2(¢t)

which is a non—countable union of pairwise disjoint balls. If (C°([—1,1]))’ were
separable with dense set D = (2} )ken C (C°([—1,1]))’ then D N By o(f) # 0
for all t. We define a map

®:DNU — [-1,1]

so that ®(z},) is the number ¢ such that xj € By 2(f;). This map is surjective,
but this is not possible since D NU is countable but [—1, 1] is not. This shows
that (C%([—1,1])) is not separable.

If C9([—1, 1]) were reflexive then C°([—1,1]) and (C°([—1,1]))” are isometrically
isomorphic, in particular, (C°([—1,1]))” would be separable. Then (C°([-1,1]))’
would also be separable by the above theorem which is a contradiction.

This type of argument also works for LP—spaces after the following exercise:

Exercise 5.2.13 Show that LP(Q) is separable if 1 < p < oo, but not forp = co.

5.3 Application: Existence of a Green’s function
for the Laplace operator

Let @ C R? be a bounded domain with C'-boundary. Let f € C°(Q) and
¢ € C%(09Q). Assume that u € C?(2) is a solution of the boundary value
problem

Au(p) = f(p) for p € Q,
u(p) = ¢(p) for p € .

We would like to find a function G(p, q), defined for p € Q, ¢ € Q, p # g, so that
G(p,q) =0 for p € 90

and for g € Q2

wo) = [ oL ts s [ 6o i) iy (5.4)

[219] 0

where % denotes the outer normal derivative with respect to the p—variable, and
all integration is with respect to the p—variable. We try the following approach:
We write

1
G(p,q) = —5-1og lp — q| + 90(p, q),
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where gg is defined on Q x Q. For ¢ € € we want gg to satisfy the following
boundary value problem

Ago(p,q) = 0 for p € Q, (5.5)
1
90(p,q) = 5
Here, A is the Laplace operator with respect to the p—variable. If we can succeed
to solve the boundary value problem (5.5) then trivially G(p,q) = 0 if p € 0Q

and the representation formula (5.4) also holds.

log |p — ¢| for p € 9.

Exercise 5.3.1 Prove that (5.4) holds. Fizing q € Q and defining v(p) =
—% log |p — q| use Green’s second identity

ou v
[ 0o~ ssenip= [ (o050 —u 50 ) i

on the domain Q. := Q\B.(q) (or read the book by D. Gilbarg and N. Trudinger,
pp. 17-19).

We will use the Hahn—Banach theorem in order to show that we can solve
the boundary value problem (5.5). Denote by C the space of (real-valued)
continuous functions on 92 endowed with the maximum-norm. Define now the
following linear subspace of C:

H:={heC|IHcC*(Q)NC°Q): AH =0, H|sq = h}.
Fix now a point ¢ € §2. Define now a linear functional ¢, : H — R as follows:
tq(h) == H(q).

Harmonic functions v on a bounded domain €2 satisfy the maximum and mini-
mum principle

infv <wv(z) <supv Vz e
o0 90

(see D. Gilbarg, N. Trudinger, p. 15 for a proof). This implies in particular
that H is uniquely determined by its boundary condition h, so ¢, is well-defined.
The inequality

L,(h) = H(q) < h = |h

a(h) = H(q) < max |h(p)| = |h]

can be read as follows: The functional ¢, is in H’' and its norm is bounded by

1. The Hahn Banach theorem implies that ¢, can be extended from H to C so

that its norm is still bounded by 1. If w € R?\9Q then we define k(w) € C by

1

k = —

(p7 w) 271—

We observe that k depends differentiably on the parameter w, and k viewed as

a function of w is harmonic in R?\9Q. Moreover, if w ¢ Q then k(w) € H (just
permit p € Q in this case). We now define a function g(w, q) by

9(w, q) = Ly(k(w)).

log |p — w| where p € 9.
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Lemma 5.3.2 1. The function w — g(w,q) is harmonic on R?\09).

2. I; w g Q th@n
(U} ) = — lo | _w|
g 7q - 2 g q N

3. The function w — g(w,q) is continuous as w crosses the boundary of €2,
i.e. w— g(w,q) can be extended continuously onto all of R2.

Before we prove the lemma we remark that this implies the existence of the
Green’s function G, take gy = g.

Proof:
We compute using the linearity of ¢,

H(g(+ 2u.0) — gw,) = by (06w + 200 - bw)))

We pass to the limit ¢ — 0 and we use the fact that ¢, is continuous so that

d d
— glw+eu,q) =4, (ds k(w—l—au)) .

de e=0 e=0

Denoting the Laplace operator in the w-variable by A and using the above
property for second derivatives we obtain

Ag(w,q) = Ly(Ak(w)) =0

because k(w) is harmonic in w. This proves the first statement. If w ¢ Q then
k(w) € H and the original definition of ¢, can be used, i.e. £,(h) = H(q). Then
we get

9(1,) = €y ((w)) = k(g,w) = o loglg — u].

If w € Q is a point close to 02 then let wy € Q2 be the point on the boundary
closest to w. Then choose w’ € R?\Q such that (w+w')/2 = wy. The point w’
is the reflection of w at the boundary. By definition of the function g and by
linearity of £, we compute

o.0) = 9(0,0) = k() ~ w') = €, (5 tor =),

2 7 |k —w|

where * stands for a point on 9. Remember that k(w), k(w’) are functions
defined on 9. We assumed that 9Q has a C'-boundary. Then the tangents to
00 at p € 9N depend continuously on p and we get

Ip — wl
Ip —w'|
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uniformly in p € 9Q as dist(w, Q) — 0. Then

lp — wl
sup log .
peoa  |[p—w|

as w approaches the boundary. We have shown in the previous step that

g(w',q) = 5= log|w’ — g|, hence we conclude that

1
li =1 —
o im g(w,q) = 5 -loglg —pl,

which completes the proof of the lemma.
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Chapter 6

Weak and weak™
convergence

6.1 Weak and Weak" convergence

In this chapter we will introduce weaker notions of convergence on a normed
vector space (X, |.|) and its dual space X’ which will have nicer compactness
properties than the norm—convergence.

Definition 6.1.1 Let (X,|.|) be a normed vector space. Let x € X and let
(n)nen C X be a sequence. We say that (x,,) converges weakly to x (and we
write T, — ) if

O(xn) — Po(x) V ¢ € X'.

On the dual space X’ of a normed vector space (X, |.|) we consider the following
notions of convergence:

1. ’'Strong convergence’, i.e. £, — £ if ||¢,, — ]| x, — 0,
2. "Weak convergence’, i.e. £, — £ if ¢(¢,,) — ¢(¢) for all p € X",

3. "Weak* convergence’, i.e. £, — £ if ¢(£,) — ¢(£) for all ¢ € Jx(X) C X",
where Jx : X — X" is the natural isometry.

By definition of Jx, weak* convergence £,, — ¢ just means that
ly(z) — l(z) YV 2z e X.

The notion of weak* convergence on X’ is weaker than the notion of weak
convergence on X’. On reflexive Banach spaces, however, these two notions
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coincide.

Remarks:

e The weak limit of a sequence is unique. Indeed, if we had z,, — = and
Tn — y with  # y then we could separate the sets {x} and {y} in the
strict sense (geometric Hahn Banach theorem), and we would obtain a
contradiction,

o If z,, — x, ie. |z, — x| — 0 ('strong convergence’) then also x,, — z. The
converse is true if X is finite dimensional. In infinite dimensions weak
convergence usually does not imply strong convergence, but there are ex-
ceptions: In the space I' every weakly convergent sequence also converges
strongly. Such examples however, should be regarded as pathological.

The following proposition shows that weak convergence still has some properties
of norm—convergence: A weakly convergent sequence is bounded, and the norm
is lower—semi—continuous with respect to weak convergence. In the case of strong
convergence we have continuity of the norm: z,, — x implies |x,,| — |z|.

Proposition 6.1.2 Let (x,)nen € X be a sequence with x, — x for some
x € X. Then (|xn|)nen s a bounded sequence and

|z| < liminf |z,|.
n—oo
Proof:

Since ¢(xy,) — ¢(z) for all ¢ € X’ there are constants ¢, > 0 such that [¢(z,,)] <
cg for all n € N. Consider now the natural isometry

Ix: X — X", Jx(2)¢ = ¢(x)

so that
| Jx (20)0] <cy VneN, ¢ X'

We can apply the Banach—Steinhaus theorem to the family
(Jx(2) : X' — R)pen,
and we obtain existence of a positive constant ¢ such that
|Zn] = ||Ix (xn)]|x7 <cVmneN.

This proves the first assertion of the proposition. By the Hahn Banach theorem
there is ¢ € X’ such that ¢(z) = |z| and ||¢||x» = 1. We conclude

|z| = ¢(x) = lim ¢(z,) = liminf ¢(x,) < liminf ||¢|| x/|z,| = liminf |z, |.

O
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Here is the weak™ version of the above proposition. Since the proof is very
similar, we leave it as an exercise.

Proposition 6.1.3 Let ({,)nen C X' be a sequence with €, — { for some
Le X'. Then (||[n||x/)nenN is a bounded sequence and

n—oo

Definition 6.1.4 Let (X,|.|) be a normed vector space. We say that a subset
A C X is weakly closed if for every sequence (x,)nen C A with x,, — x we have
x € A. The weak closure of a set A, which we denote by Aw, 1s defined by

Zw = {1‘ S X ‘ El(mn)nEN C A DTy — 1'}

The following proposition characterizes the weak closure of a convex subset
AcCX.

Proposition 6.1.5 Let (X,|.|) be a normed vector space and let A C X be
convez. Then

—w

A=A4".

Proof:
We note that A ¢ A" without the convexity assumption on A. Indeed, let
x € A. Then there is a sequence z,, in A which converges to x strongly. Since
strong convergence also implies weak convergence, we also have x € A",
As for the reverse direction, assume that zg ¢ A and show that also z¢ & A,
By the Hahn Banach theorem (second geometric version) we can separate the
sets {79} and A in the strict sense, i.e. we can find ¢ € X', v € Rand € > 0
such that

d(zg) <y—cand p(x) >y+eVazeA

(if X is a complex normed vector space we have instead Re(¢(zo)) < v —
¢ and Re(¢(z)) > v +¢e V x € A). But then there can not be any sequence
(Zn)nen C A with @, — x0, hence z( & Av.

6.2 Weak sequential compactness

We know that the closed unit ball in an infinite dimensional normed vector space
is never compact, i.e. bounded sequences usually do not have convergent sub-
sequences. If we relax the notion of convergence to weak or weak™ convergence
then the situation looks much better.
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Definition 6.2.1 Let (X, |.|) be a normed vector space and let (X', ||.||x/) be
its dual space. A subset M C X (or M C X') is called weakly (or weakly*)
sequential compact if every sequence in M has a subsequence which converges
weakly (or weakly*) to some limit in M.

Theorem 6.2.2 Let X be a separable Banach space. Then the closed unit ball
in the dual space

Bi(0) = {£ € X'| |{l|x < 1}

18 weakly* sequential compact.

Proof:

Let {2 tnen C X be a dense countable set and let (¢ )ren C X' be a sequence
with ||[lg|lx: < 1. We have to show that there is a subsequence £, which is
weakly® convergent. We have for every n € N

[ ()| < ]l |2n| < fan] < o0

Then the sequence (¢;) has a subsequence, which we denote by (¢})ren, so that
(€} (z1))ken C R converges. We can then extract another subsequence from
(€H)ken, call it (£2)ken, so that (£2(x2))ren C R converges. We iterate this
procedure and take the diagonal sequence (¢¥)ren which has the property that

lim 0% (x,) =: (z,)

k—o0

exists for all n € N. We extend ¢ as a linear map onto the linear span of the
set Z = {xn}nen. We have for z € Z

0(2)] < limminf [l 021 < |2,

so that £ extends continuously to the closed linear span of {x;, }nen which is all
of X. Let now x € X and € > 0. Then we can find a sequence (z;) C Z such
that z; — x as | — 0o. We estimate

(6 = O)()]

(6 = O)(@ = 2)[ + (6 = O)(=)]
145 = Ll |2 — 21 + |(€ = O) (1))
2|z — 2| + (€} = O)(=1)]

3¢

|6k () — £()]

VAN VAN VAR VAN

where | > [(g) such that |z—2;| < € and then k > k(e, 1) such that |(£f —£)(z)| <
€. This shows weak® convergence.
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As an example consider X = L'(Q) which is separable and X’ = L>°(Q). In
this concrete example the above theorem implies the following: Let (ug)ren C
L>(Q) be a bounded sequence. Then there is a subsequence (ug,)ien and
u € L*(Q) such that

/ we, () g(z)de == | w(x)g(z)dz ¥ g € LM(Q).
Q Q

What is the corresponding statement for a bounded sequence in LP(Q)) with
1 <p<oo? Next we will see that the closed unit ball in (L°°(]0,1]))’ is not
weakly* sequential compact, in particular L>°([0, 1]) is not separable. Consider
0y € (L*°([0,1])), 0 < ¢ < 1, with

G =7 [ f@e . £ er=(o.0).

We have
[ell ooy = sup [G(f) < L.
1 fllLoo 0,17y <1

Assume now that there is a sequence ¢, N\, 0 such that ¢;, Xl as k — co. By
passing to a suitable subsequence of t; we may assume that the ratios txy1/tg
converge to zero. Define now

£ =D Xm0 € L([0,1]),
k

where X4, ,.+,) denotes the characteristic function of the interval [t y1,%x). We
compute

() = 3Dt~ ti)
k=
= (_1)kM + 1 Z (=)t — tigr)
b k=k+1

e — tht1 | Try1
= (_1)k th + th gtk+1(f)'

e COIlChlde l a

so that the sequence (¢, (f))ren has the two accumulation points +1 and —1,
hence (4, )ken can not be weak* convergent.

In the case of a reflexive Banach space bounded sequences have weakly conver-
gent subsequences.

Theorem 6.2.3 Let X be a reflexive Banach space. Then the closed unit ball
in X is weakly sequential compact.
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Proof:

Let us start with a sequence (zx)gen C X so that x| < 1. Let Z be the closed
linear span of the set {zx}ren. The space Z is a closed linear subspace of X
which is also separable and reflexive (remember that closed linear subspaces
of reflexive Banach spaces are reflexive). By reflexivity Z is isometrically iso-
morphic to Z” which is then also separable. This implies that Z’ is separable.
Then the closed unit ball in Z” is weakly* sequential compact. This means that
after passing to a suitable subsequence, the bounded sequence Jz(xp) C Z”
converges in weak* to some Jz(z) € Z”, i.e.

Jz(xp)l = b(xy) — Jz(x)l =L(x)V L e Z'.
Since every £ € X' is also contained in Z’ by restriction to Z, we obtain
Uzy) — l(x) Ve X,

ie. xp — x.

6.3 Lower semi—continuity and convexity

Definition 6.3.1 A function FF : X D A — R defined on a subset A of a
normed vector space is called weakly sequential lower semi—continuous in the
point x € A if for every sequence (zp)neNn C A with x, — x we have
F(z) < liminf F(z,).
n—oo
If F' is weakly sequential lower semi—continuous for every x € A then we say it
has ‘property (W)’.

Example (for lower semi—continuous):
In this example X = R so that weak convergence and strong convergence are
the same. We define functions F}, F5 by

z if z<1
Fl(x)'{m—l if z>1

T if <1
FQ(x)'_{x—l if z>1

The function Fj is lower semi—continuous in the point z = 1, but F5 is not:
If (z,) is a sequence converging to 1 so that the sign of x,, — 1 alternates
then the sequences Fi(z,) and F»(x,) do not converge, they have accumulation
points at 1 and 0. The limit inferior is the smallest accumulation point, hence
liminf, o F1(2,) = liminf, o Fa(z,) =0, but F1(1) = 0 while Fy(1) = 1.
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Property (W) together with the compactness result, theorem 6.2.3, implies the
solvability of a variety of minimizing problems. The following theorem is familiar
to us in thr framework of uniformly convex Banach spaces and Hilbert spaces.

Theorem 6.3.2 Let X be a reflexive Banach space. Assume A C X is not
empty, convex and closed, xo € X\ A. Then there exists a point a € A such that

— x| = inf |z — .
|a—ao| = inf |z — |

We will prove first the following generalization:

Theorem 6.3.3 (Variational Principle)

Let X be a reflezive Banach space and let A # 0 be a weakly closed subset, i.e.
A =A4". Suppose also that F : A — R is coercive on A and has property (W),
i.e.

o F(x,) — +oo for all sequences (zp)nen C A with |x,| — oo,
e For every x € A and every sequence (Tn)neN C A with z, — x

F(z) <liminf F(zy).

Then F is bounded from below on A, and there is xg € A such that
F(zo) = inf F(a),

i.e. F attains its infimum on A.

Remarks:

1. If A is bounded then the assumption of coerciveness is always satisfied,

2. An important class of examples for weakly closed sets are closed convex
sets A because A° = A = A in this case. In particular, closed linear
subspaces are weakly closed.

3. Theorem 6.3.2 is a consequence of the above theorem if we set F(z) =
|z — xo].

Proof:

Let us show first that F' is bounded from below. Arguing indirectly we assume
that inf 4 F = —oo. Then there is a sequence (z,) C A such that F(z,) < —n.
If the sequence (x,,) is not bounded then we obtain immediately a contradiction
with the assumption that F' is coercive. On the other hand, if the sequence (z,,)
is bounded then it has a weakly convergent subsequence (use theorem 6.2.3 and
the fact that X is reflexive), hence we may assume that x,, — x for some z € X.
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Actually, € A because A was assumed to be weakly closed. Therefore, using
property (W),
—o0 < F(z) < liminf F(x,) = —o0,

n—oo

which is a contradiction. Hence,

inf F=a¢cR.
A

Take now a minimizing sequence, i.e. a sequence (z,)nen C A such that
F(z,) — «

(such a sequence exists because « is the infimum of F' over the set A). By
coerciveness, the sequence (z,) must be bounded. Arguing as before, we obtain

T, ~x €A
after passing to a suitable subsequence. We then obtain

F(z) < liminf F(z,) = a,

n—oo

hence F(z) = «

Remark:
The Variational Principle only provides the existence of a minimum of F. In
order to show uniqueness of a minimum we need additional assumptions. For
example, if we assume that A is conves and F' is strictly convex in the sense
that

Ftz+(1—-t)y) <tFlz)+(1-t)Fly) Ve #y,0<t <1

then there is only one minimum. Indeed, if we had z; # zo with F(x;) =
F(z2) < F(z) ¥V x € A then 0 <t < 1 yields the contradiction

F(l‘l) < F(t.]}l + (1 — t) l‘g) < tF(.’L‘l) + (1 — t)F(l‘g) = F(afz) = F(acl)

Also in theorem 6.3.2 the minimum is in general not unique. There is only one
minimum if the norm is strictly subadditive, i.e.

z,y # 0 and |z + y| = || + |y| implies x = ty

for some t > 0. In the case of a uniformly convex Banach space the norm is
always strictly aubadditive, as we have shown, therefore the minimum is unique
(the same applies of course to the Hilbert space setting).

The following example shows that minimizing functions on infinite dimensional
normed vector spaces is much different than in the finite dimensional situation.
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If X is a finite dimensional vector space, F' : X D M — R is continuous, the
set M C X is closed and F' is coercive on M, then F attains its infimum on M.
Let us compare with the following infinite dimensional example:

Define X = C*([0,1]) with the obvious norm and

M :={ue X|u0)=0, v (1) =1},

which is a closed linear subspace of X. Define

1
F(U) = ||’U,/||Co([071]) +A (’u/(l‘))zdm,

which is a continuous function on X (Indeed, u, — u in the C'-norm implies
that F'(u,) — F(u)). Moreover, the map F' is coercive because

F(un) > |lugllcogo,yy — 00 if [lun (o, — o0 and uy, € M.
We claim that F' does not attain its infimum on M. We note that
F(u) > [luplcoqoay = W/ ()] =1V u e M.
On the other hand, the functions uy(z) := A~*z* are in M if A > 1 and

||u'>\||00([0,1]) =1VA>1

1
1
uh (2))2dx = —0as \ — oo.
A 2X — 1
o —

Therefore,
inf F =1.
M

The existence of a minimum u € M would imply in view of w/(1) =1

1
|| coo,17) = 1 and / (u/(x))?dx = 0,
0

which is a contradiction. The space C*([0,1]) is not reflexive (use a similar
argument as we did in the case of C°). Although F is continuous (with respect
to the Cl-norm) it it may not have property (W).

6.4 An application to a partial differential equa-
tion

Let (X,|.|) be a Banach space. A continuous map F : X — R is called Fréchet
differentiable at the point x € X if there exists a linear functional DF(x) € X’
such that

.1
%%W\F(:c—kh)—F(x)—DF(x)M =0
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If F is everywhere Fréchet differentiable then the map DF : X — X' is called
the Fréchet derivative of F. The directional derivative of F' in the direction of
h € X is given by

iF(ac +¢h) = DF(z)h.
de c=0

We call a point z € X critical if DF(z) = 0. The equation
DF(z)=0

is also called the Euler-Lagrange equation for the function F. Relative Max-
ima and Minima are examples for critical points, but there are also saddle type
critical points z, i.e. every neighborhood of z contains points 1, x2 such that
F(z1) < F(x) < F(z2). The Calculus of Variations deals with finding critical
points of maps F' : X — R as above. The Variational Principle which we proved
in the previous section guarantees the existence of a minimum under suitable
assumtions. The Calculus of Variations is a very old and vast part of mathemat-
ics. The purpose of this section is only to demonstrate that our rather abstract
Variational principle has very concrete applications. Weak solutions for many
nonlinear partial differential equations can be identified with critical points of
suitable functions F'. In such cases the Calculus of Variations yields existence
theorems for weak solutions. Our example is from the first section of the nice
textbook by Michael Struwe (Variational Methods and their Applications to
nonlinear partial differential equations and Hamiltonian systems). Let us intro-
duce some notation: We denote the standard Euclidean scalar product on R™
by (.,.). fQCR"isadomain and if u: Q - R, { = (&,...,&) : 2 — R”
are twice differentiable maps then we write

Vu = (O1u,. .., 0nu)

for the gradient and
V=) Okl

k=1

for the divergence of &.

Theorem 6.4.1 Let 2 C R™ be a bounded domain, 2 < p < co and q such that
1/p+1/q = 1. Moreover, let f € L1(Q2) be given. Then there exists a weak
solution u € HyP(Q) to the boundary value problem

—V-(|VuP2Vu) = finQ,
uw = 0 on 0N

in the sense that

/Q (IVu(@)P~2(Vu(z), Vo)) - f(@)é(x)) de = 0V ¢ € CF(Q).  (6.1)
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Remark:

An elementary computation using partial integration shows that the existence
of a classical solution u to the equation —V - (|Vu[P72Vu) = f would imply
formula (6.1). The operator —V - (|[Vu|P~2Vu) is called the p-Laplacian. In the
case p = 2 it reduces to —A.

Proof:
Recall the Poincaré inequality which we have proved earlier in (4.6),

/Q lv(z)|2dx < CO/Q (Vo(x)|*de ¥V v e Hy?(Q).
Our original proof can be slightly modified so that for p > 2
[ o@)pas < G /Q Vo(2)[Pde ¥ v € HEP(Q)
(we leave this fact as an easy exercise). This implies that there is a constant
¢ > 0 depending on p and on €2 so that
IV0ll 2o () < [0llipa < ¢lVollLr@) ¥ v € HyP(Q). (6.2)

Hence
[v]l == Vvl Lo (e

is a norm on the Sobolev space HO P(€) which is equivalent to the usual Wlﬂ’f
norm. Note that this is only true for bounded domains and only for H P(Q),
not for WP(2). Consider the following map from the Banach space X =
(HyP(Q), |- ||) into the real numbers.

:% /Q V()P dz — /Q F@)u(e)da

The map F is well-defined and continuous by Hélder’s inequality (and the above
version of the Poincaré inequality). We compute for h € X

e=0

—F h
R (u+eh)

1 i/ |Vu(z) +eVh(x)|P de

- [ s

/ PIVu()Pt L |Vu(z) + Vh(z)|

- [

/ (\w(xnp-%wx» Vh(z) — f(@)h(x)) dz,
Q

e=0

dx —
e=0
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which is exactly the left hand side of equation (6.1). On the other hand, the
linear map
DF(u): X — R
DF(u)h := / (|vu(x)|p*2<vu(x),w(x)> - f(x)h(x)) dx
Q
2

is continuous. Using Holder’s inequality and ¢ = oo we obtain

‘/ﬂ |Vu(z)|P~3(Vu(x), Vh(z)) do

< /Q V()P |Vh(z)| dz

( /Q |vu(x)de>p"l ( /Q Vh(m)pdx>1/p

= C|nl.

IN

The linear functional DF(u) also satisfies the condition of Fréchet derivative of
F at the point u € X. Because C5°(9) is dense in Hy'”(£2), the condition that
u € X is a weak solution (i.e. solves (6.1)), is then equivalent to the condition of
u being a critical point of the function F'. In particular, we have found a weak
solution if we can show that F' has a minimum. Hence we will complete the proof
by checking the assumptions of the Variational principle of the previous section.
The Banach space X is reflexive because LP(€2) is reflexive for 1 < p < oo (see
next section, Milman’s theorem) and X is isometrically isomorphic to a closed
linear subspace in II := LP(Q) x ... x LP(Q) (product (n+1) times) via the
isometry
HyP(Q) — 11
u— (u,01u, ..., Opu).

Moreover, the map F' above is coercive since with (6.2)

1
F(u) > EHUHP — [ fll e llull e (o)

1
> Z(Jull? = ¢ |u
p(H | [Jwll)

for a suitable constants ¢/,C > 0. Since p > 2 we obtain F(u) — +oo if
|u| — co. Assume now that u, — u in Hy?(€2). We have to show that

F(u) < liminf F(u,).

n—oo

First we note that the map
HyP(9) 5 u— / f(z

is a continuous linear functional if f € L(Q2). By definition of weak convergence
we then get
Q Q
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On the other hand, we have shown that u,, — u implies
lu|| < liminf |ju,]|
n—oo

which takes care of the first term in F. We now apply the Variational Principle
with A = X which implies that F' is bounded from below, and there is ug € X
such that

F(ug) = ig}f F,

i.e. ug is an absolute minimum of F' and therefore a critical point of F' complet-
ing the proof.

6.5 Weak topologies

We will put the concepts of weak and weak® convergence into a more general
framework. We start with some general remarks from point set topology. A
good reference is the book by James Munkres (Topology, a first course). If
(X,|.]) is a normed vector space then a subset U C X is called open if for every
z € X there is € > 0 and an open ball B.(z) ={y € X ||z —y| <e} CU. We
note that open sets in a normed vector space have the following properties:

e Unions of open sets are open,

¢ Finite intersections of open sets are open.
This can be formalized as follows:

Definition 6.5.1 Let X be a set and let T be a set consisting of subsets of X
so that

e 0, XeT,
e unions of sets U; € T are again in T,

o ifUy,..., U, €T then
() UieT.

1<i<k
Then the pair (X,T) is called a topological space, the system T is called a

topology on X. If (X,T) is a topological space then every set U € T is called
an open set.
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We just pointed out that open sets in a normed vector space (in the usual
sense) satisfy the conditions in the above definition. We say that the norm on
X induces a topology on X (also called the norm-topology). In general, every
metric space comes with a natural topology. On the other hand, there are many
topological spaces which do not carry any metric inducing the given topology.
We will see that the concepts of weak convergence and weak* convergence come
from a certain topology on the Banach space (X, |.|) which is always different
from the norm topology if X is infinite dimensional and which is often not
coming from any metric on X.

If (X1,771) and (X5, 72) are topological spaces then we can define the notions of
continuous maps, compactness and convergence of sequences.

Definition 6.5.2 o A map f: X1 — Xy is called continuous if for every
open set U C Xo the preimage f~1(U) C X3 is also open.

o Let x € X1 and (xn)nen. We say the sequence x,, converges to x with
respect to the topology Ty if for every set U € Ty containing x there is a
positive integer N such that x,, € U for alln > N.

o A subset A C X is called compact if the following is true: If (U;)icr C Ty
is any system of open maps such that | J;c; Ui D A (‘an open covering of
A’) then finitely many of the sets U; already cover the set A.

If the topological space is a normed vector space with the norm topology then
the above notions are equivalent to the usual ’e — d—definitions’.

Definition 6.5.3 Let X be a set with two topologies Ty and T3 defined on it.
We say that Ty is finer than 13 if 7o C 7Ty, i.e. the topology 11 has more open
sets than the topology 7.

The finest topology on a set X is
%iscrete = {A | AcC X}7

the set of all subsets of X. The least fine topology on a set X is the one which
just consists of the two sets X and the empty set, Teoarse := {X,0}. We will
always equip R™ with the topology induced by the Euclidean norm. Since all
norms on R are equivalent they all induce the same topology on R™ (you may
verify this as an exercise). The topology on a set X determines which maps

f+X—R

are continuous and which are not. For example, if we equip X with the finest
topology possible 7g;screte then any map f is continuous. On the other hand,
only finite subsets of X are compact. There are so many open sets and so many
possibilities to assemble open coverings of a set such that the chance to extract
a finite subcovering are very slim. If we equip X with the topology Z.oqrse then
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only constant maps f : X — R are continuous. On the other hand every subset
of X is compact because every open covering of any set just consists of X alone.
Summarizing, the finer the topology on a set X, the bigger the chance that a
given map f : X — R is continuous and the smaller the chance that a given
subset A C X is compact.

Let now (X,|.|) be a normed vector space. The dual space X’ consists of all
linear maps X — R which are continuous (with respect to the norm topology).
Denote the norm topology on X by 7. But the norm topology may not be the
most effective topology to make all £ € X’ continuous: Is it possible to find a
less fine topology 7, on X such that all £ € X’ are still continuous with respect
to the new topology 7, on X ? We make the following definitions:

Definition 6.5.4 Let (X,|.|) be a normed vector space. We define T,, to be
the least fine topology on X such that all maps £ € X' are still continuous with
respect to T, on X. This topology is called the weak topology on X.

Definition 6.5.5 Let (X,|.]) be a normed vector space. We define T to be
the least fine topology on X' such that all maps ¢ € Jx(X) C X" are still
continuous with respect to T* on X'. This topology is called the weak* topology
on X'.

At this moment it is not clear whether 7 and 7, are really different. It will
turn out that they are if X is infinite dimensional. If (X,7) is a topological
space then the system 7 is not very convenient to handle because it is usually
very large.

Definition 6.5.6 If X is a set then a basis on X is a nonempty collection B
of subsets of X which satisfy the following conditions:

o For every x € X there is at least one set B € B such that x € B,

e [fx € By N By for some By, By € B then there is a set Bs € B such that
r € B3 C B1NBs.

Then the topology T induced by B is defined as follows: A set U C X is said
to be open if for each x € U there is some B € B such that x € B and B C U.

Exercise 6.5.7 Verify that Tz as defined above satisfies the conditions of a
topology.

Every set B € B is trivially open, i.e. B C 7g. If 7’ is a topology so that
B Cc T' C T3 then we must have 7' = 7. This means that the topology on
X induced by the basis B is the least fine topology containing all the sets in
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B. Indeed, if U € 75 then for every = € U we can find a set B, € B such that
x € B, C U. On the other hand, B, € 7', and since 7’ is a topology

U=JB.eT,
zelU
hence 7 C T'.
Exercise 6.5.8 Let By be the set consisting of all open balls in the plane R2.

Show that it is a basis for the standard topology on R?. Show the same for the
set of all open rectangles in the plane.

We wish to characterize bases for the weak and the weak* topologies, and we
want to show that convergence with respect to these topologies coincides with
the notions of weak and weak™ convergence that we have introduced earlier.

Proposition 6.5.9 Let (X,|.|) be a normed vector space. We define a system
B of subsets of X as follows: We say that U € B for U C X if there are a point
xg € X, a number ¢ > 0 and finitely many linear functionals £1,..., 0, € X'
such that

U={zeX ||li(z—zo)|<eVi=1,...,k}

Then B is a basis which induces the weak topology T, on X.

Proof:
First, we have to check that B is a basis. Pick zo € X and any £ € X’. Then

xo € B:={z e X ||l(xr—x0)| <e} and B € B.
Now pick By, By € B, i.e.
Bi={zeX||lV@—z)<eVj=1,. k}

and
Byi={z e X | [P (x—2y)| <eaVi=1,... k}

for suitable é;l),ﬁl(g) € X', e1,69 >0, v1,72 € X and k1, ks € N. Assume that
r3 € B1 N By. Hence

51 =£&1 — |€§1)(1’3 — 1‘1)| > 0 and 52 =E&9 — |££2)(I’3 — 1‘2)| >0V Z,]
Define now
By :={z € X | |tV (x - z3)|, |6% (x — 23)| < min {61, 82} V4, }

which is a set from the collection B. Then trivially x3 € Bs. By linearity of

65-1),31(-2) and the triangle inequality we conclude also that Bs C By N By. This
shows that B is a basis.
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Now we have to make sure that the weak topology 7,, contains all the sets in
B. The weak topology must contain each of the sets

{.T,‘EX|Ei(l‘o)—5<£i($)<€i($o)+€} s izl,...,k

and therefore also U, which is a finite intersection of them. The topology 75
induced by the basis B leaves all £ € X’ continuous, hence 7., C 75, and by our
remarks before 7,, = 75 which is the assertion of the proposition.

O

There is a similar statement for the weak* topology:

Proposition 6.5.10 Let (X, |.|) be a normed vector space. We define a system
B* of subsets of X' as follows: We say that U € B* for U C X' if there
are a point by € X', a number ¢ > 0 and finitely many linear functionals
@1y, 0k € Ix(X) C X" such that

U:{ZEX/ | |¢i(£—€0)|<EVi:17...,k}.

Then B* is a basis which induces the weak® topology T.5 on X'.

Theorem 6.5.11 Let (X, ]|.|) be a normed vector space. The norm—topology T
and the weak topology on X coincide if and only if X is finite dimensional.

Proof:

Assume that X is finite dimensional. We have to show that 7 C 7, since
the reverse inclusion holds by definition. Hence let ¢y € X and let U be a
neighborhood of xy with respect to the norm—topology. Let R > 0 such that
Bpgr(zg) € U. We have to construct a weak neighborhood V' of zy such that
V C U (then U would be weakly open). Choose a basis ey, ..., e, of X so that
le;] = 1 for all i = 1,...,n. Every point x € X has a unique decomposition
z =", xie;. The maps

T T

define elements in X’. We have
n

|x — 20| < z; [4;(x — x0)| < nfg%xn [4;(x — x0)].
1=

Define now -
Vi={zeX| |£z’($—$0)|<g\7i:1,...,n}.

This is a weak neighborhood of zy and it satisfies V' C Bgr(z¢) C U.

As for the converse direction, assume that X is infinite dimensional. Any set
V as above with o = 0 contains an infinite dimensional dimensional linear
subspace of X. In particular open balls Bg(0) are not open with respect to the
weak topology.
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Exercise 6.5.12 Let (X,|.|) be an infinite dimensional normed vector space.
Show that the sphere S = {x € X | |z| = 1} is not closed with respect to the
weak topology (weakly closed=complement is weakly open).

We note that the notion of convergence with respect to the weak topology and
weak™ topology coincides with the definitions that we made earlier. Let us carry
this out for the weak topology (weak* topology works out in the same way).
A sequence (x,) converges to x with respect to the weak topology if for every
U € 7T, containing x there is an integer N such that x,, € U for all n > N. Let
us show that this implies z,, — z. Pick £ € X', € > 0 and define

Ui={yeX||ily—a) <e}.

For every € > 0 we can find N such that [{(z, — )| < e if n > N. But this
means that ¢(x,) — ¢(x), hence x,, — x because this consideration applies to
any £ € X’'. On the other hand, if U is any weakly open neighborhood of 2 then
it contains a set of the form

V={yeX||lily—2)|<eVi=1,...,k}

and ¢;(z,) — {;(x) for all i = 1,..., k implies that z,, € V C U for sufficiently
large n.

6.6 Proof of Milman’s theorem

We have seen in the previous sections that reflexive Banach spaces are very
important because of the compactness properties with respect to weak conver-
gence. Milman’s theorem states that uniformly convex Banach spaces are reflex-
ive. We then know that the spaces LP(2) (and W*P(Q), Hgf’p(Q)) are reflexive
for 1 < p < oo since we have already shown that they are uniformly convex
(although reflexivity can be established in these particular cases more directly
using the Riesz representation theorem). Milman’s theorem is nevertheless very
useful because uniform convexity is often easier to verify than the definition of
reflexivity. This does not work all the time because there are Banach spaces
which are reflexive but not uniformly convex.

Theorem 6.6.1 (D.P. Milman)
Every uniformly convex Banach space is reflexive.

Before we can prove the theorem we need two lemmas:

Lemma 6.6.2 Let X be a Banach space. Moreover let 4y,...,¢, € X' and
ai,...,an € R. Then the following two properties are equivalent:
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1. For any e > 0 there is some z. € X with |z.| <1 such that

[li(xe) —asl <eVi=1,...,n.

<

Y Bi,..., 0, € R.

n
> B
i=1

> Bits
i=1

X’

Proof:

Show that 1. implies 2.: For this purpose pick f1,...,8, € R and define

M :=3"", |B;| so that

Zﬂi&(%) - Zﬁiai = Zﬁz‘(&(xs) — ;)| < Me
i=1 i=1 i=1
and . . .
D B <|DBil|  lao|+Me <|> Bl + Me,
i=1 i=1 X/ =1 X/

which is true for any € > 0 so that 2. follows. Let us now show that 2. also

implies 1.: Consider « := (ay,...,a,) € R™ and define a linear map
d: X —R"
by

Property 1. above is the same as saying

a € ®(B),

where B is the closed unit ball in X. Arguing indirectly, we assume that o &

(B). In R™ we may separate strictly the sets {a} and ®(B), i.e.

P
6=1(01,...,0,n) € R" and ¢ € R such that
(®(x),08) <c<{a,pB) Ve B.

We obtain by definition of ®

> Biti(x)
i=1

Taking the supremum over all x € B we get

> Biti
i=1

n
<c< Zai@- whenever x € B.
i=1

n
<c< Z a; B3
/ =1

X

contradicting condition 2.
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If X is a Banach space we consider now the canonical embedding into its bidual
space
Jx : X — X".

Again, we denote the closed unit ball in X by B. Since Jy is an isometry the
set Jx(B) will be closed in Bx» C X", where Bx. denotes the closed unit ball
in the bidual space. If the Banach space is reflexive then Bx» = Jx(B). If we
equip X" with the weak* topology then Jx(B) is dense in Bx.

Lemma 6.6.3 Let X be a Banach space. Then Jx(B) is dense in Bx. with
respect to the weak* topology on X" .

Proof:

Pick ¢9 € Bx» C X" and a neighborhood U of ¢g with respect to the weak*
topology. We have to show that U N Jx(B) # 0. We characterized earlier a
basis for the weak* topology, hence we may assume without loss of generality
that

U={peX"||filp—¢o)<eVi=1,...,k},

where f; = Jx/(¢;) C X" are suitable elements in X" which are actually in the
image of Jx: : X’ — X' This means that

U={peX"||(¢p—0d0)l;)|<eVi=1,...,k}.
Hence we have to find a point « € B such that
|£l(l') — ¢0(£z)| <eVi=1,... k.

Writing now «; := ¢o(¢;) and using that ||¢o||x» < 1 we estimate for any
ﬂh cee 7577, €ER

n

Z Bils

i=1

<

Z B ®o (Z ﬂiéi)
i=1 i=1

since ||¢ol|x~» < 1, but this is property 2. of lemma 6.6.2, hence there is z. € X
with |z.| <1 so that

X’

\éi(zg)—ai|<€Vi:1,...,n.

Proof:

(Milman’s theorem, proof due to Kakutani)

Let (X,].]) be a Banach space and ¢ € X" with ||¢]|x» = 1. We have to find
some z € X with || = 1 such that Jx(z) = ¢, where Jx denotes the canonical
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isometry from X into its bidual space. Denote the closed unit ball in X by B.
Because the norm of ¢ equals 1 we may find a sequence (£,,),en C X’ such that

1
12 6(tn) 21—

By the previous lemma Jx (B) is dense in X" with respect to the weak* topology.
A typical weak* neighborhood of ¢ € X in X" is

U= € X" |Joa(d — 6)] < = Vi=1,....n},
where a; = Jx(£), so that
U, = {0 € X" | [(6s) — 6(:)] < % Vi—1,. . .n}.
Since Jx (B) N U, # 0 there are points x, € X with |z,| <1 such that
|[Tx () (6) — (Ei)| = [li(zn) — ¢(L)] < % Vi=1,...,n. (6.3)

We choose now m > n and obtain with the triangle inequality

2 > |xp+ T,
z |lnllxr|zn + zm]
> Ap(zy + )

1 1
> 9(t) =+ 0ll) —
ST

n m
> 92
n
which implies that
[T =

By uniform convexity of X the sequence (z,)nen must then be a Cauchy se-
quence, i.e. x, — z for some x € B. Inequality (6.3) then implies that

o(L;) = Li(z) Vi € N.

We want to show that Jx ()¢ = £(z) = ¢(¢) for all £ € X’ which would conclude
the proof of the theorem. We claim that x is unique. Assuming that there is
another € X with ¢(¢;) = £;(Z) for all integers ¢, we define a sequence (7))
in X by (x,%,2,%,...). The sequence () trivially satisfies inequality (6.3)
implying that (z],) is a Cauchy sequence and x = Z. Let now ¢ € X’ be an
arbitrary element with norm equals 1. We replace now the original sequence (¢;)
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by the sequence (¢, {1, {2, ...). Running the same argument as in the beginning
once again we get £ € X with

¢(£) = £(z) and ¢({;) = £;(Z) V i.

By the uniqueness which we have just proved we have = Z, hence ¢(¢) = ¢(x),
and we are done.
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Chapter 7

Spectrum of compact
operators

7.1 Spectrum
In this chapter we assume that (X, |.]|) is a complex Banach space.
Definition 7.1.1 Let T € L(X).
1. We define the resolvent set of T by
p(T)={ e C|ker(\ld—T)={0}, RIAId—T) = X}.
2. We define the spectrum of T by
o(T) = C\p(T).
3. We decompose the spectrum into the following sets:
(a) The point spectrum
op(T) i= {\ € o(T) | ker(Ad—T) # {0},
(b) The continuous spectrum
0.(T) :={N€o(T)| ker(Ald—T) = {0}, R(AId-T) # X but RAId—T) = X},
(¢) The residual spectrum

o (T) == {\ € o(T) | ker(\Id— T) = {0} and R(\Md—T) # X}
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We have A € p(T) if and only if AId — T is bijective. By the inverse mapping
theorem the inverse (AId — T')~! is again in L(X). We call (\Id — T)~! the
resolvent of T in A, and we denote it by R(\,T).

We have A € 0,(T) if and only if there is  # 0 such that Tz = Az. We then
call x an eigenvector associated to the eigenvalue A. If the Banach space X is
finite dimensional then the spectrum of a linear operator consists of the point
spectrum only, i.e. every point in the spectrum is an eigenvalue. In general,
this is not true as the following example shows:

Example:
Consider the following operator T' € L(C°([0,1]))

0= [ 1

We have R(T) = {f € C*([0,1])] £(0) = 0} which is not closed in C°([0,1]).
On the other hand, ker(T') = {0}. Therefore 0 € ¢,(T'). We remark for later
reference that the operator T is compact by the Ascoli-Arzela theorem (recall
that T' compact means that T'(B;(0)) is precompact).

Theorem 7.1.2 Let T € L(X). The resolvent set p(T)) C C is an open set,
and the resolvent function

CDp(T) — L(X)
A— R\, T)
is an analytic function which satisfies

RO T)|| 7Y < dist(\, o (T)).

Proof:
Let A € p(T). We have for any u € C
(A= w)Id — T = (\Id — T)(Id — p R(\, T)).
The operator S(u) :=1Id — p R(A, T) is invertible if
il - IR T < 1

(this follows from the Neumann series, proposition 3.1.8). Under this condition
we have A\ — pu € p(T) showing that the resolvent set is open. Using again
proposition 3.1.8 we obtain

RO\ = p,T) = S(n) "R\ T) = i pER(N,T)FH.
k=0

This shows that the resolvent function is analytic. If r = ||[R(A,T)|~! then
B, (\) C p(T), as we have just shown. But this implies that dist(A, o (7)) > r.
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Theorem 7.1.3 Let T € L(X) with X # {0}. Then o(T) C C is compact and
not empty. Moreover,

sup |\ = lim /7 < |17

Aeo(T)
The number sup e, (r) |A| s called the spectral radius of T'.
Proof:

Let A # 0. By proposition 3.1.8 (Neumann series) the operator Id — % is
invertible if ||T|| < A, and in this case

1 TN & TE
k=0

This shows that the spectral radius r satisfies r < ||T'||. Defining
P (T):= ) \m-izkpk

we obtain
A"Id =T = (Nd = T)P,(T) = P (T)(AId = T)

This shows that A € o(7") implies that A € o(T™). Because the spectral radius
of T™ is bounded by the operator norm of 7™ we conclude that |A™| < ||[T™]|

and therefore [A| < 3/||T™||, i.e.
r < liminf /|| T™].
m—0oQ
Our aim is now to show that also
r > limsup /|| T™|.
m—0o0

We know that the function A — R(X,T) is analytic, where A € C\B,(0) (ana-
lytic on the whole plane if o(T') = ()). By Cauchy’s integral theorem the integral

1

2mi Jop, (o)

MR\, T)dA

does not depend on s as long as j > 0 and s > r. Choosing s > ||T'|| we may
use the formula (7.1). Then

1 . 1 <
— NRAT)d\ = — > N TRk
2m 8B, (0) 2m 8B, (0) —o
= Lo g ([T i(i=k)0gqp ) T*
= %ZS o e
k=0
= TI

)
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since fo% e'U=k949 +£ 0 if and only if j = k. Hence we have for j > 0 and s > r

| / N R\, T)dA
0B.(0)

If s > r and j(k) — oo as k — oo we obtain

T < s M sup RO\ T)]
[A|=s
where the right hand side converges to s. Then

limsup {/[|T7]| < s

J—00

77| = < s’ sup RO\ 7).

[Al=s

1
2

for all s > 7. This implies the assertion about the spectral radius. If the
spectrum was empty we choose j = 0 and s\, 0 so that

[1d]| < s sup R\, T)|| — 0,
A<

hence Id = 0 and therefore X = {0}.

O

7.2 The spectral theorem for compact operators

Before we state and partly prove the spectral theorem for compact operators
T € K(X) we make some simple remarks: If X is infinite dimensional and
if T is a compact operator then 0 € o(T). Indeed, if we had 0 € p(T) then
T-! € L(X). But then Id = T~!T would also be a compact operator since T
is compact. On the other hand, the identity operator can only be compact in
finite dimensional normed vector spaces since these are the only spaces where
the open unit ball is precompact. Although 0 is in the spectrum of any compact
operator, it may not be an eigenvalue (see our previous example). One of the
statements of the spectral theorem is that all nonzero points in the spectrum
must be eigenvalues.

Theorem 7.2.1 (spectral theorem for compact operators, Riesz—Schauder)
Let T € K(X). Then

1. o(T)\{0} consists of at most countably many points which are all eigen-
values, and which may only accumulate at 0.

2. For X\ € o(T)\{0} we have
1 < ny :=max{n € N| ker(Ald— T)" ! # ker(\ld — T)"} < oc.

The number ny is called the order or the index of \ while the dimension
of ker(AId — T) is called the multiplicity of \.
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3. For X € o(T)\{0} we have
X = ker(A\ld— T)™ @ R(\d — T)"™.

Both subspaces are closed and T —invariant. The space ker(AId — T)™ is
finite dimensional. Moreover,

o(T|r((x 1a—y>y) = o (T)\{A}.

4. Let E\ be the projection onto the subspace ker((Ald — T)™) with respect
to the direct sum decomposition in 3. Then

EyoE,=0if A # p.

Before we embark on the proof of parts of the theorem we quickly insert a lemma
due to M. Riesz:

Lemma 7.2.2 (’Almost approximation lemma’, M. Riesz)
Let (X,]|.]) be a normed vector space and let Y be a closed proper subspace.
Then for every € > 0 there exists x € X such that |z| =1 and

dist(x,Y)>1—e.

Proof:
Let z € X with z € Y. Since Y is closed, it must have positive distance d from
the point z. We may now choose y € Y such that

d
d<lz—yl < .
N
Then
<=y
Xr =
|z — |

does the job. Indeed, if 3y’ € Y is any point then

—Y /

— _/ —_— —
VI e et/ et 1L IR S
|z =yl

|z =yl T d

/

=1-—=¢.

ly

We need another result first.
Lemma 7.2.3 Assume (X,|.|) is a Banach space and T € L(X) a compact
operator. Then the operator Id — T has finite dimensional kernel and closed

range. Moreover, if Id — T is injective then it is also surjective.

The above lemma makes up the first half of the proof of the following theorem.
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Theorem 7.2.4 Assume (X,|.|) is a Banach space and T € L(X) a compact
operator. Then the operator Id—T is a Fredholm operator of index zero, i.e. its
kernel and its cokernel X/R(Id — T) are finite dimensional, its range is closed
and

index(Id — T) = dim(ker(Id — T')) — dim(coker(Id—T')) = 0.

Remark: Lemma 7.2.3 implies the Fredholm alternative: The equation
(Id-T)z=y

has either a unique solution or there are finitely many linearly independent so-
lutions to the homogeneous equation (Id —7T")z = 0.

Proof:

(Lemma 7.2.3)

We organise the proof in several steps.

First step: Show that Id — T has finite dimensional kernel

If € ker(Id — T') then = T'z and
B1(0) Nker(Id — T') C T(B1(0)).

Since T is a compact operator the set T'(B1(0)) is precompact, hence the unit
ball in ker(Id —T') is precompact. But this is only possible if ker(Id —T") is finite
dimensional.

Second step: Show that the range of Id — T is closed

Assume that @ € R(Id — T) and that (Id — T)z, — = for a suitable sequence
(n)nen C X. We define

dy, := dist(z,, ker(Id — T'))

and we may assume without loss of generality that |z,| < 2d,. Otherwise, if
this is not true, then we may pick y,, € ker(Id — T) such that |z, — y,| < 2d,
and we consider Z,, := x,, — vy, instead of z,,. We first assume that the sequence
(d,) is not bounded. Then we may assume that d,, — oo after passing to a
suitable subsequence. Defining z,, := x,,/d, we obtain

(Id — T)zxy,

Id-T)z, =
(1= 7)z, = =

— 0

since ((Id — T")z,,) is a bounded sequence. We have |z,| < 2 and T is a compact
operator, hence the sequence Tz, has a convergent subsequence, i.e. assume
that Tz, — z after passing to some subsequence. We conclude

zZn=0d-T)zp+ Tz, — 2
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and (Id — T')z = 0 since T is continuous. But then

l2n—z2| > dist(zp, ker(Id—T)) = dist(fl—", ker(1d—T)) = S54(n: ksrad -7)

:]_7

a contradiction. So we have shown that the sequence (d,) must be bounded,
which also implies that the sequence (z,) is bounded. After passing to a sub-
sequence the sequence (Tx,) then converges to some z € X. But then

(Id-T)z, =0d-T)[Id - T)xp + Tz,] — Id—T)(x + 2)

and also
(Id-T)z, — x

hence z is in the range of Id — T'.
Third Step: Show that injectivity of Id—7 implies surjectivity of Id—T

We argue indirectly and assume that there is some x € X\R(Id —T). We claim
that (Id — T)"z € R((Id — T)")\R((Id — T)"*+1). Indeed if we had (Id — T)"z =
(Id — T)"*+1y for some n and some y then

(Id = T)"[z — (Id = T)y] =0

and by injectivity of Id — T" we conclude that 2 — (Id — T)y = 0, i.e. z has to be
in the range of Id — T which is a contradiction to our assumptions. This proves
the claim that

(Id — T)"z € R((Id — T)")\R((Id — T)"*1).

We also claim that the range of (Id—T")"*! is closed as well. Indeed, the operator
(Id—T)"*! can be written as identity plus some compact operator, and we have
just shown in the second step that such operators have closed range. We have

(Id — 7)™ :Id+n§: ( ”Z ! > (—T)*,

k=1

and we recall that a composition of a compact operator with a linear continuous
operator has to be compact as well. We may now pick points a,+1 € R((Id —
T)™*1) such that

(Id = T)"x — ap 41| < 2dist((Id — T)"z, R((Id — T)"*1))) # 0.
Considering

(Id —T)"z — apy1
|Id — T)"z — apiq

Lp 1=
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we estimate for y € R((Id — T)"*1)

14 = )7 — [anpr + |1~ 1)z — apn] o]
|(Id = T)"2 — an41
dist((ld — Tz, R((1d — T)"“)))
|(Id = )"z — ap+1|

|xn - y| =

Y

For m > n we get

Txn, — Tem| = |xn — (Md —T)zp + 2 — (Id — T)ap) | >

DN | =

because (Id — T)z,, + xm — (Id — T)z,y,) is in the range of (Id — T)"*! if m > n.
This means that the sequence (T'z,,) does not have any convergent subsequence.
On the other hand, the sequence (z,,) is bounded and T is a compact operator,
a contradiction.

O

We are now able to prove the first part of theorem 7.2.1. Assume that 0 # )\ &
op(T). Then the kernel of Id — % is trivial, and by lemma 7.2.3, the operator
Id — % is also surjective. Hence A € p(T), and we have shown that

a(T)\{0} C 0, (T),

i.e. every nonzero point in the spectrum must be an eigenvalue. Assume now
that the set o(7)\{0} is not finite. Then we pick pairwise distinct eigenvalues
An € o(T)\{0} and corresponding eigenvectors e, # 0. Define

X, :=Span{ey,...,en}.

We leave it as an exercise to the reader to show that the eigenvectors e,, are
linear independent because they all correspond to different eigenvalues. Hence
X, —1 is a proper subspace of X,,. Using the ’almost approximation lemma’ we
find z,, € X,, with

|z, = 1 and dist(z, Xp_1) >

N |

We may write x,, = ane,+I, for suitable a suitable vector Z,, € X, _1 and some
scalar a,. The subspace X,,_ is invariant under the operator T" by definition,
hence

Tx, — A\xp = apinen + 1T, — Apane, — ApZn € Xp—1.

We then estimate for m < n

1 1 1
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Hence the sequence (T'z,/A,) has no convergent subsequence. Because T is

compact the sequence z, /A, can not contain any bounded subsequence. This
implies that

1 |zn

Al [ An

i.e. A, — 0 which implies that 0 is the only accumulation point of the set
o(T)\{0}. In particular, the set o(7)\B,(0) must be finite for any r > 0,
therefore o(T)\{0} is countable.

— OO,
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