fundamental theorem of arithmetic

• every whole number greater than one is either a prime number or can be written as a product of prime numbers in a unique way.

fundamental theorem of arithmetic

Any integer greater than one is either a prime number itself, or can be written as a unique product of prime numbers.

The statement and proof of the fundamental theorem of arithmetic were contained in propositions 30 and 32 of Euclid's *Elements* in 300 BC.

Euclid was a Greek mathematician, often referred to as the "Father of Geometry".

examples

1 is	neither prime nor composite	11 =	a prime number
2 =	a prime number	12 =	2 x 2 x 3
3 =	a prime number	13 =	a prime number
4 =	2 x 2	14 =	2 x 7
5 =	a prime number	15 =	3 x 5
6 =	2 x 3	16 =	2 x 2 x 2 x 2
7 =	a prime number	17 =	a prime number
8 =	2 x 2 x 2	18 =	2 x 3 x 3
9 =	3 x 3	19 =	a prime number
10 =	2 x 5	20 =	2 x 2 x 5

© Jenny Eather 2015