fundamental theorem of arithmetic

- every whole number greater than one is either a prime number or can be written as a product of prime numbers in a unique way.

fundamental theorem of arithmetic

Any integer greater than one is either a prime number itself, or can be written as a unique product of prime numbers.

The statement and proof of the fundamental theorem of arithmetic were contained in propositions 30 and 32 of Euclid's Elements in 300 BC.

Euclid was a Greek mathematician, often referred to as the "Father of Geometry".

examples

1 is neither prime nor composite
11 = a prime number
2 = a prime number
$12=2 \times 2 \times 3$
3 = a prime number
$13=$ a prime number
$4=2 \times 2$
$14=2 \times 7$
$5=$ a prime number
$15=3 \times 5$
$6=2 \times 3$
$16=2 \times 2 \times 2 \times 2$
7 = a prime number
$8=2 \times 2 \times 2$
$9=3 \times 3$
$10=2 \times 5$
$17=$ a prime number
$18=2 \times 3 \times 3$
$19=$ a prime number
$20=2 \times 2 \times 5$

