Applied hydraulics water pressure and pressure forces

Ms Hala rawabdeh

Absolute and gauge pressure

$\mathrm{P}_{\mathrm{abs}}$: related to the vacuum,
$\mathrm{P}_{\text {gauge }}$: related the $\mathrm{P}_{\text {atm }}$

Ex:
$\mathrm{P1}_{\mathrm{abs}}=101.4+30=131.4 \mathrm{kPa}$ $\mathrm{Pl}_{\text {gauge }}=30 \mathrm{kPa}$
$\mathrm{P}_{2}{ }_{\text {abs }}=101 \cdot 4-30=71.4 \mathrm{kPa}$
P_{2} gauge $=-30 \mathrm{kPa}$

Pressure
Pressure between two points

$$
\begin{aligned}
x \text {-axis } & \rightarrow \\
\sum F_{x}= & P_{B} A-P_{A} A-W \sin \theta=0 \\
\therefore & W=\forall \gamma=A L \gamma \\
\sum & F_{x}= \\
& P_{B} X-P_{A} X-A L \gamma \sin \theta=0 \\
& P_{B}-P_{A}=L \gamma \sin \theta \\
\therefore h=L \sin \theta & P_{B}-P_{A}=\gamma h
\end{aligned}
$$

- If two points at same elevation $h=O$ and $P_{A}=P_{B}$
- If point A at atmosphere

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{B}}=\gamma \mathrm{h}+\mathrm{P}_{\mathrm{A}} \\
&=\gamma \mathrm{h}+\mathrm{P}_{\mathrm{atm}} \\
& \mathrm{P}_{\mathrm{abs}}=\mathrm{P}+\mathrm{P}_{\mathrm{atm}} \\
& \mathrm{P}_{\text {gauge }}=\mathrm{P}_{\mathrm{abs}}-\mathrm{P}_{\mathrm{atm}}
\end{aligned}
$$

so $P=\gamma h$

Pressure

- Pascal law: "Pressure applied at any point in a liquid is transmitted equally and undiminished in all direction to every other point in the liquid "
Application: Hydraulic jack

$$
\begin{array}{r}
\mathrm{W}=5000 \mathrm{~N} \uparrow \\
\text { Area } 1=16 \mathrm{~m} \neq 1
\end{array}
$$

$$
\begin{gathered}
F=? \\
\text { Area } 2=1 \mathrm{~m}^{2}
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{P}_{1}=\mathrm{P}_{2} \\
\frac{W}{A_{1}}=\frac{F}{A_{2}} \\
\frac{5000}{16}=\frac{?}{1} \\
\mathrm{~F}=312.5 \mathrm{~N}
\end{gathered}
$$

Pressure

Atmospheric Pressure: Torricelli experiment

Atmospheric pressure

Mercury head

$$
\begin{gathered}
P_{a t m}=\gamma_{H g} h_{H g} \\
\gamma_{H g}=13.6 \times \gamma_{\text {water }} \\
P_{\text {atm }}=13.6 \times 9810 \times 0.759 \approx 101325 \mathrm{pa}
\end{gathered}
$$

Water head $=10.33 \mathrm{~m}$

Pressure

Depth variation

$$
P_{2}=P_{1}+\gamma h
$$

- Oil with a specific gravity of 0.80 is 0.91 m deep in an open tank which is otherwise filled with water. If the tank is 3.05 m deep, what is the pressure at the bottom of the tank?

Answer: 28.135 kPa

Equal pressure

$$
\mathrm{P}_{1}=\mathrm{P}_{2}
$$

If the points on the surface be

1. in the same liquid
2. Same elevation
3. The liquid containing the points be connected
$\mathrm{P}_{1}=\mathrm{P}_{2}$
Patm $=$ Patm $+\gamma$ h

Manometer

Example: If water was added to one side of the manometer below until the height of water column reaches 40 cm . Both sides of the manometer are open to atmosphere. SG of $\mathrm{Hg}=13.6$

1. Determine the rise of mercury in the other side of the manometer.
2. The difference between the mercury height before and after adding

Answer 1. $\mathrm{hm}=2.94 \mathrm{~cm}$
2. The difference in $\mathrm{hm}=1.47 \mathrm{~cm}$
-للفرع التاني الحل من قاع المانوميتر
13.6*9810 (الانخفاض -30h) +water =13.6*9810(30+ الارتفاع (30)

Manometer

$$
P_{A}+\gamma_{w} \cdot y=P_{a t m}+\gamma_{m} \cdot h
$$

Liquid M

Manometer

- Example

Determine the pressure difference between A and B

Mercury specific gravity $=13.6$

Answer:
$\Delta P=30607.2$ Pascal

Manometer

Example: If water was added to one side of the manometer below until the height of water column reaches 40 cm . Both sides of the manometer are open to atmosphere. SG of $\mathrm{Hg}=13.6$. Determine the mercury height in two side after adding water(down and rise)

$$
\begin{align*}
& P=P_{B} \\
& +X\left(h_{W}\right)+X\left(13.6\left(30-h_{1}\right)=a t+X_{1} 13.6\left(30+h_{2}\right)\right. \\
& 40+408 \mp 13.6 h_{1}=408+13.6 h_{2} \\
& 40-13.6 h_{1}=13.6 h_{2} \tag{2}
\end{align*}
$$

(1) 4 (2)

$$
\begin{gathered}
40-13.6\left(0.01 \mathrm{~h}_{2}\right)=13.6 \mathrm{~h}_{2} \\
40-0.136 \mathrm{~h}_{2}=13.6 \mathrm{~h}^{2} \\
+0.136 \mathrm{hz}+0.136 \mathrm{~h}_{2} \\
40=13.736 \mathrm{~h} 2 \\
\therefore h_{2}=2.91 \mathrm{~cm} \\
h_{1}=0.01 \times 2.91 \Rightarrow h_{1}=0.029
\end{gathered}
$$

Manometer

- Manometers require readings of liquid levels at two points. However, we can create a single reading manometer by adding larger reservoir.

$$
\begin{aligned}
& \forall_{1} \text { down }=\forall_{2} \text { rise } \\
& A_{1} \Delta y=A_{2} h \\
& \Delta y=\frac{A_{2}}{A_{1}} h \approx \Delta y=\left(\frac{\Delta D_{2}^{2}}{\Delta_{1}} h(1)\right. \\
& P_{1}=P_{2} \\
& P_{A}+B_{h}(y+\Delta y)=P_{\text {atm }}+\gamma_{m}(h+\Delta y) \\
& P_{A}+\gamma_{w}(y+\Delta y)=\gamma_{m}(h+\Delta y)
\end{aligned}
$$

- Determine the pressure in kPa in the pipe if $\mathrm{h} 1=20 \mathrm{~cm}$, $\mathrm{h} 2=67 \mathrm{~cm}$.
- Also determine the change in liquid height ho for a 10 cm rise in h2. if the diameter of the manometer tube is 0.5 cm and the diameter of the manometer fluid reservoir is 5 cm

Answer: 1.87 .4 kPa
2. $\Delta y=0.1 \mathrm{~cm}$

$$
\begin{aligned}
& P_{1}=P_{2} \\
& P_{A}+h_{1} \gamma_{w}=h_{2} \gamma_{m} \\
& P_{A}=0.67 * 13.6 \times 9810-0.2 * 9810 \\
& P_{A}=87.4 \mathrm{kP} P_{9} \\
& V_{1}=\forall_{2} \\
& A_{1} \Delta y=A_{2} * 10 \mathrm{~cm} \\
& 4 y=\frac{0.5^{2}}{5^{2}} \times 10 \\
& 4 y=0.1 \mathrm{~cm}
\end{aligned}
$$

Manometer

Determine the pressure in the water pipe.

Manometer

Determine the pressure difference between points A and B .

Answer:
$P_{B}-P_{A}=912330 \mathrm{~Pa}$
$P_{A}-P_{B}=-912330 P a$

Manometer

Determine the difference in water pressure between 1 and 2. The manometer fluid is mercury ($\mathrm{SG}=13.6$). $\mathrm{h}=18 \mathrm{~cm}$ and $\mathrm{a}=8 \mathrm{~cm}$

Answer:

$$
\mathrm{P}_{1}-\mathrm{P}_{2}=22249.08 \mathrm{~Pa}
$$

