
Hydrology

Surface water

Infiltration

Infiltration equations

• Horton's Equation:

$$f = f_c + (f_0 - f_c)e^{-kt}$$

Total infiltration

$$F = f_c t + \frac{(f_0 - f_c)}{k} (1 - e^{-kt})$$

Infiltration equations

Kostiakov

$$f = akt^{a-1} + f_0$$

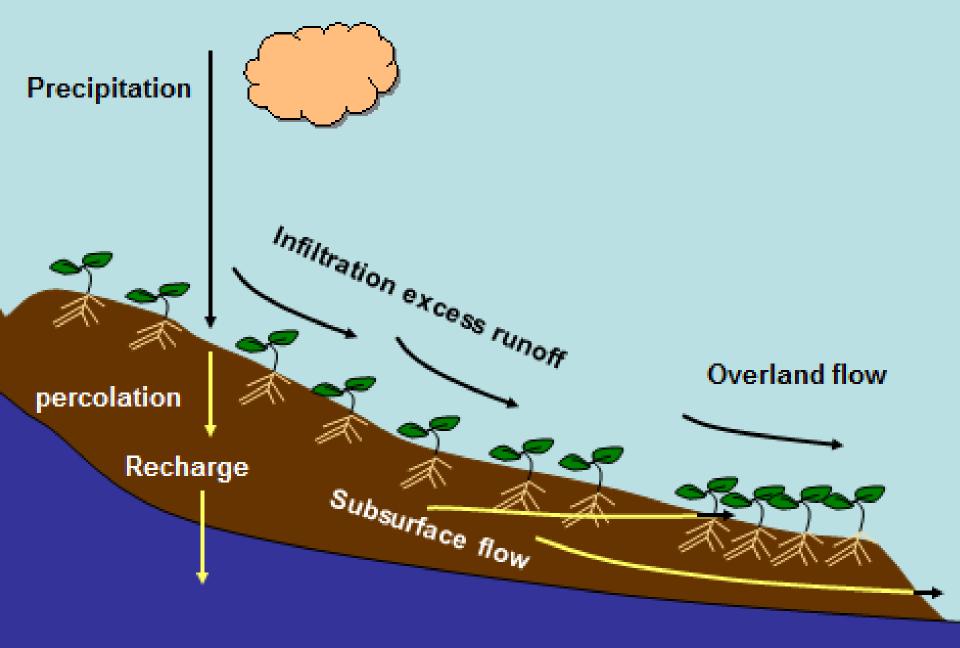
Total infiltration

$$F = kt^a + f_o t$$

Infiltration equations

• Philip's Equation

$$f = \frac{1}{2}St^{-\frac{1}{2}} + K$$


Total infiltration

 $F = St^{\frac{1}{2}} + Kt$

 $f \cong K \text{ as } t \rightarrow \infty$

Sources of streamflow

- 1. Watershed contribution (surface water):
 - a. Hortonian overland flow
 - b. Subsurface flow
 - c. Saturation overland flow
- 2. Ground water contribution

Hortonian overland

- Rainfall intensity > infiltration rate
- Beginning of the storm the infiltration rate is high enough to absorb rainfall
- Runoff start to occur when infiltration rate decreases
- Only a fraction of runoff reaches the streams because of depressions and interception by plant
- Important in arid regions.

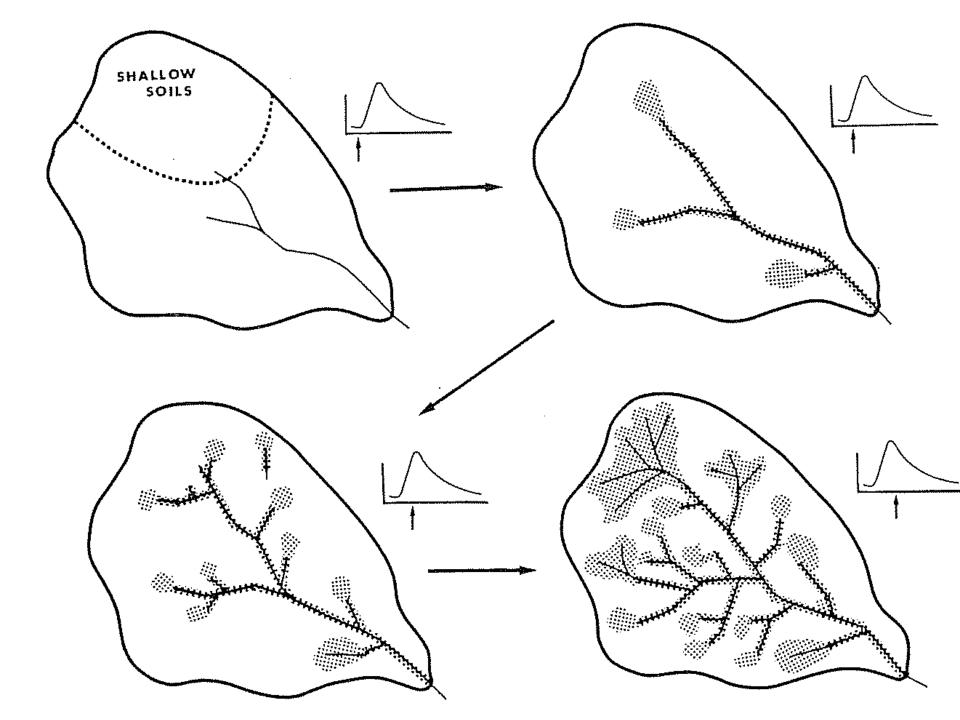
Subsurface flow

- As the soil becomes saturated, the soil water will move laterally to the stream flow.
- Flow based on Darcy's law (matrix flow) is slow compared to the overall flow to streams.
- Tracer studies showed that subsurface is faster than what is predicted by Darcy's equation indicating preferential flow, still contribution limited to area close to the stream.
- Important in humid area where infiltration is usually high.

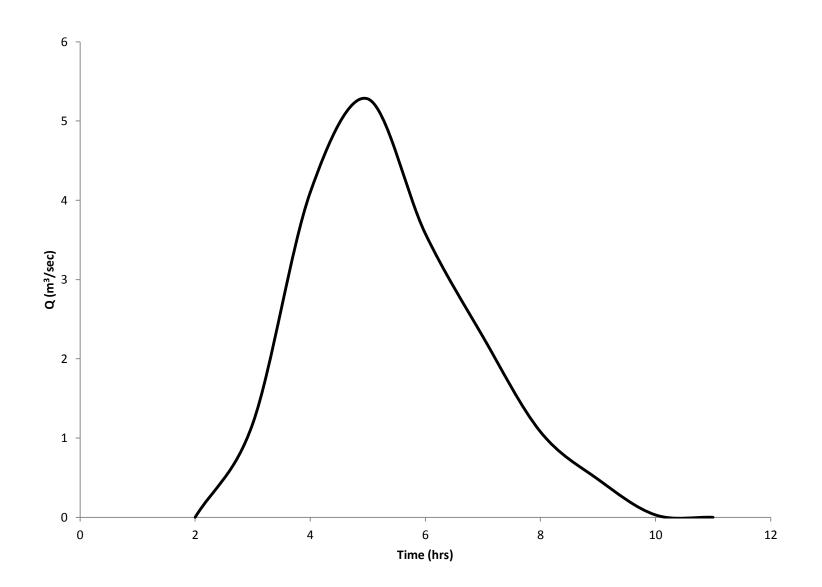
$$q = -K\left(\frac{\partial h}{\partial z} - \cos(\alpha)\right)$$

Saturation overland flow

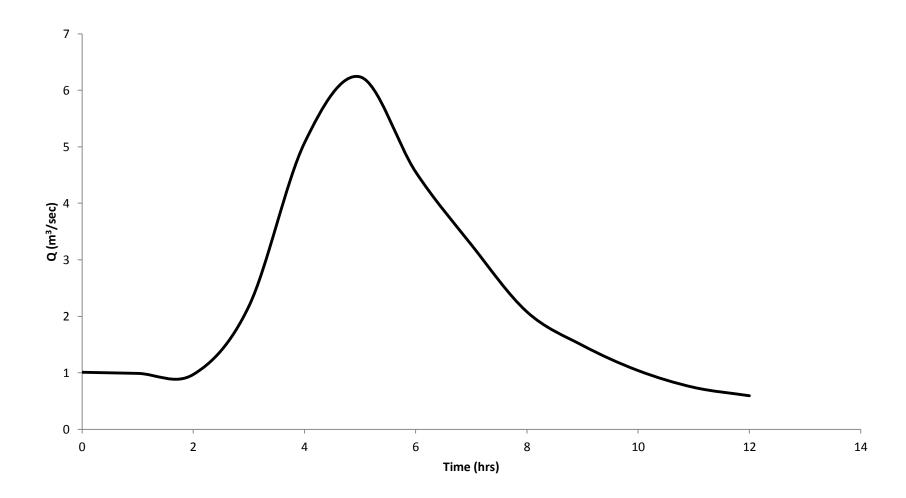
- As a result of subsurface flow the soil beneath the end of the slope or near the stream will become saturated.
- Saturation will also occur as a result of the rising water table.
- Precipitation over the saturated areas will be converted to overland


Hortonian vs Saturation overland flow

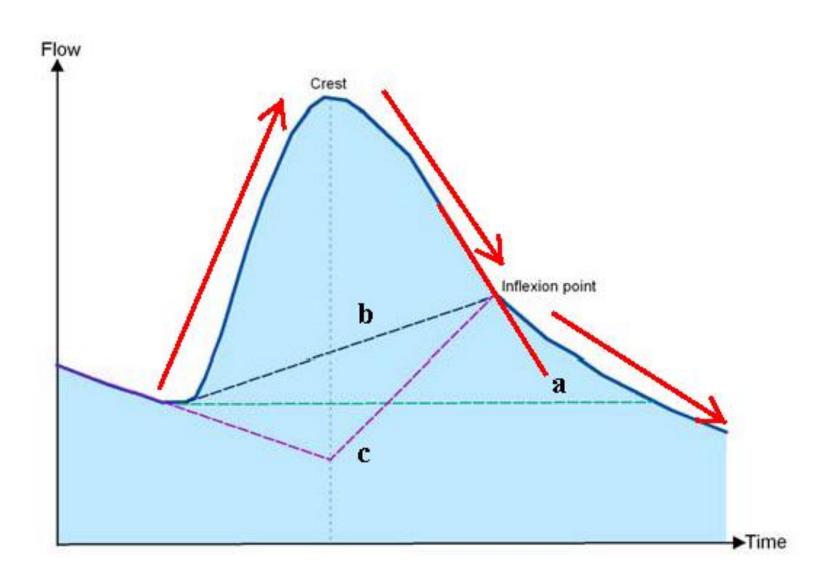
Hortonian overland flow \rightarrow saturation from above


Saturation overland flow \rightarrow saturation from below

Contributing area


Does all the watershed contribute to streamflow during any given rainfall event ?

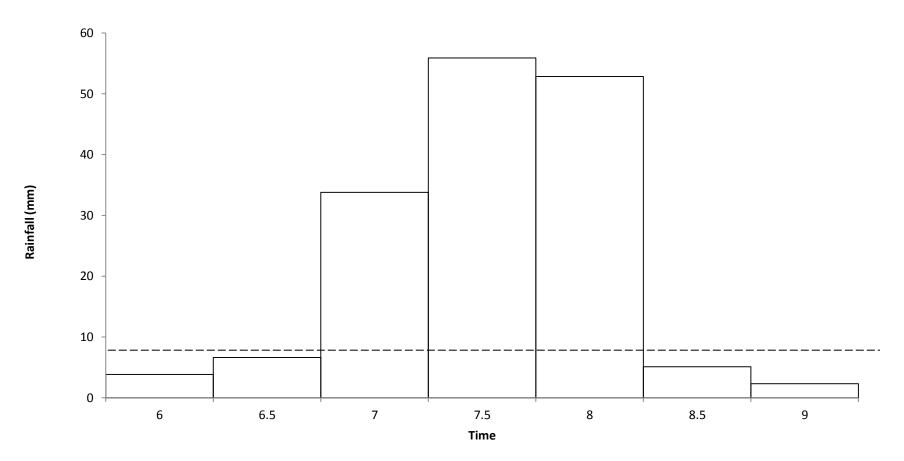
Ephemeral streams


Perennial streams

Base flow separation

- a. Straight line method
- b. Constant slope method
- c. Concave method

Base flow separation


"Excess Rainfall"

- *1.* Ø −Index
- 2. Green-Ampt
- 3. SCS curve number method

Ø –Index

Definition: constant rate (mm/hr) of abstraction

Ø –Index

Time	Rainfall (mm)	Direct runoff (m ³ /sec)
1:00 a.m.	3.8	
1:30 a.m.	6.6	
2:00 a.m	33.8	12.1
2:30 a.m.	55.9	54.5
3:00 a.m.	52.8	150.0
3:30 a.m.	5.1	258.6
4:00 a.m.	2.3	300.9
4:30 a.m.		221.8
5:00 a.m.		111.0
5:30 a.m.		52.3
6:00 a.m.		39.7
6:30 a.m.		23.5
7:00 a.m.		8.9

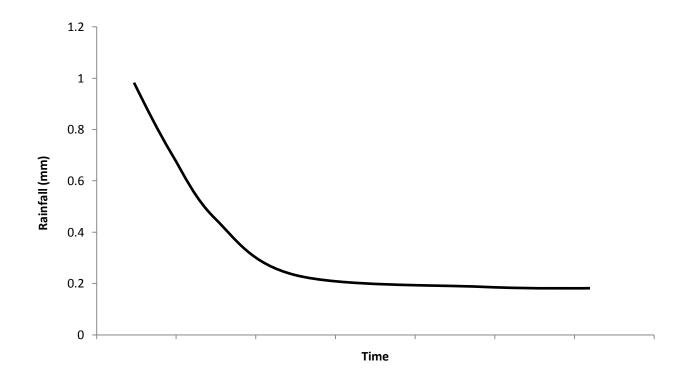
Total area of watershed is 18.2 km².

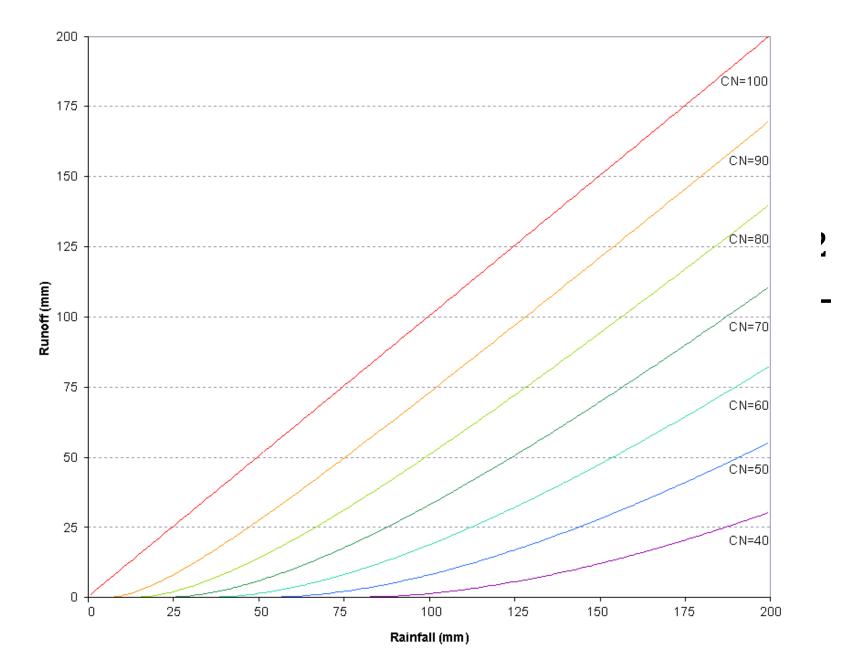
Depth of direct runoff:

$$\frac{\frac{12.1+54.5}{2}}{\frac{2}{23.5+8.9}} \times 1800 + \frac{\frac{54.5+150}{2}}{2} \times 1800 + \dots + \frac{1800}{2} \times 1800 = 2200852 \text{ m}^3$$

$$Runoff depth = \frac{2200852}{18.2 \times 10^6} = 0.121 m$$
$$= 121 mm$$

- $R_d = \sum_{m=1}^{M} (R_m \emptyset \Delta t)$ Trial 1: (include all rainfall increments) $121 = 160.3 - \emptyset \times 7 \times 0.5$ $\emptyset = 11.22 \text{ mm/hr} \Rightarrow \emptyset \times 0.5 = 6.55 \text{ mm}$
- Total effective rainfall = 126.7 mm (Ø need to be adjusted)


Note: negative values are meaningless \rightarrow need to adjust until there is no -ve when subtract the involved incremental rainfall depth from \emptyset


Trial 2 (only rainfall > 6.6 m)

 $121 = 142.5 - 3 \times 0 \times 0.5$ 0 = 14.33 mm/hr \rightarrow 14.33 x 0.5 = 7.165 mm Total effective rainfall = 121 mm

Time	Effective Rainfall (mm)	Direct runoff (m ³ /sec)
1:00 a.m.		
1:30 a.m.		
2:00 a.m	26.64	12.1
2:30 a.m.	48.74	54.5
3:00 a.m.	45.64	150.0
3:30 a.m.		258.6
4:00 a.m.		300.9
4:30 a.m.		221.8
5:00 a.m.		111.0
5:30 a.m.		52.3
6:00 a.m.		39.7
6:30 a.m.		23.5
7:00 a.m.		8.9

SCS Curve Number (CN)

SCS Curve Number (CN)

$$P = P_e + I_a + F_a$$
$$\frac{F_a}{S} = \frac{P_e}{P - I_a}$$

$$F_a = \frac{S(P - I_a)}{P - I_a + S}$$

$$I_a = 0.2 \times S$$

$$P_e = \frac{(P - 0.2 \times S)^2}{P + 0.8 \times S}$$

SCS Curve Number (CN)

$$S = \frac{1000}{CN} - 10 \text{ (inches)}$$

$$S = 25.4 \times \left(\frac{1000}{CN} - 10\right) \quad (mm)$$

Time	Rainfall (mm)	Cumul ative rainfall (mm)	l _a (mm)	F _a (mm)	Cumulative Effective rainfall (mm)	Effectiv e Rainfall (mm)	Effective rainfall (mm) By Ø-index
1:00 a.m.	3.8	3.8	3.8	0.0	0	0	0
1:30 a.m.	6.6	10.4	7.91	2.34	0.15	0.15	0
2:00 a.m.	33.8	44.2	7.91	18.92	17.37	17.22	26.64
2:30 a.m.	55.9	100.1	7.91	27.67	64.52	47.15	48.74
3:00 a.m.	52.8	152.9	7.91	31.07	113.92	49.40	45.64
3:30 a.m.	5.1	158	7.91	31.30	118.80	4.87	0
4:00 a.m.	2.3	160.3	7.91	31.39	121	2.2	0
4:30 a.m.							
5:00 a.m.							
5:30 a.m.							
6:00 a.m.							
6:30 a.m.							
7:00 a.m.							

Effective rainfall = 121 mm Total rainfall = 160.3 mm

$$121 = \frac{(160.3 - 0.2 \times S)^2}{160.3 + 0.8 \times S}$$

$$I_a = 0.2 \times 39.54 = 7.91 \, mm$$

$$39.54 = 25.4 \times \left(\frac{1000}{CN} - 10\right)$$

CN = 86.53

A: (Low runoff potential). The soils have a high infiltration rate even when thoroughly wetted. They chiefly consist of deep, well drained to excessively drained sands or gravels. They have a high rate of water transmission.

B: The soils have a moderate infiltration rate when thoroughly wetted. They chiefly are moderately deep to deep, moderately well-drained to well-drained soils that have moderately fine to moderately coarse textures. They have a moderate rate of water transmission.

C: The soils have a slow infiltration rate when thoroughly wetted. They chiefly have a layer that impedes downward movement of water or have moderately fine to fine texture. They have a slow rate of water

transmission.

D. (High runoff potential). The soils have a very slow infiltration rate when thoroughly wetted. They chiefly consist of clay soils that have a high swelling potential, soils that have a permanent water table, soils that have a claypan or clay layer at or near the surface, and shallow soils over nearly impervious material. They have a very slow rate of water transmission.

CN- Antecedent soil water

- Three conditions :
 - I. Dry condition (PWP) (CN1)
 - II. Average (CN2)
 - III. Wet (FC or above) CN3

CN- Antecedent soil water

 $CN1 = CN2 - \frac{20 \times (100 - CN2)}{100 - CN2 + \exp[2.533 - 0.0636 \times (100 - CN2)]}$

 $CN3 = CN2 \times \exp[0.00673 \times (100 - CN2)]$

$$CN1 = \frac{4.2 \times CN2}{10 - 0.058 \times CN2}$$
$$CN3 = \frac{23 \times CN2}{10 + 0.13 \times CN2}$$

CN2 examples

What is the CN2 for:

- Well drained sandy clay loam, cultivated with barley. Contoured seeding.
- Well drained planted with grasses. Soil :clay loam. Moderately grazed.
- Residential area. Impervious: 25%. Heavy clay claypan present.

Unit Hydrograph

• Definition:

Direct runoff resulting from 1 in (or 1 cm) of effective rainfall.

Unit hydrograph

n	$U_n (m^3 / s. cm)$
1	4.54
2	12.15
3	26.30
4	28.14
5	16.40
6	5.03
7	4.36
8	3.04
9	1.88

Convolution

$$Q_n = \sum_{m=1}^{n \le M} P_m \times U_{n-m+1}$$

n=N-M+1

.....

 $Q_1 = P_1 \times U_1$ $Q_2 = P_1 \times U_2 + P_2 \times U_1$ $Q_3 = P_1 \times U_3 + P_2 \times U_2 + P_3 \times U_1$ $Q_4 = P_1 \times U_4 + P_2 \times U_3 + P_3 \times U_2$

 $Q_N = 0 + 0 + \dots + P_M \times U_{N-M+1}$

Example

Determine the direct runoff for a storm of effective rainfall of 5 mm in the first half an hour, 10 mm in the second hour, and 15 mm in the third half an hour.

n	$U_n (m^3 / s.)$	U _n x	U _n x	U _n x
	cm)	0.5	1.0	1.5
1	4.54	2.27	4.54	6.81
2	12.15	6.075	12.15	18.225
3	26.30	13.15	26.3	39.45
4	28.14	14.07	28.14	42.21
5	16.40	8.2	16.4	24.6
6	5.03	2.515	5.03	7.545
7	4.36	2.18	4.36	6.54
8	3.04	1.52	3.04	4.56
9	1.88	0.94	1.88	2.82

n	U _n x	U _n x	U _n x	Q _n
	0.5	1.0	1.5	(m ³ /s)
1	2.27			2.27
2	6.075	4.54		10.615
3	13.15	12.15	6.81	32.11
4	14.07	26.3	18.225	58.595
5	8.2	28.14	39.45	75.79
6	2.515	16.4	42.21	61.125
7	2.18	5.03	24.6	31.81
8	1.52	4.36	7.545	13.425
9	0.94	3.04	6.54	10.52
10		1.88	4.56	6.44
11			2.82	2.82

$$Q_n = \sum_{m=1}^{n \le M} P_m \times U_{n-m+1}$$

$$Q_{1} = P_{1} \times U_{1-1+1}$$

$$12.1 = 2.664 \times U_{1} \Rightarrow U_{1} = \frac{12.1}{2.664} = 4.54 \frac{m^{3}}{cm.s}$$

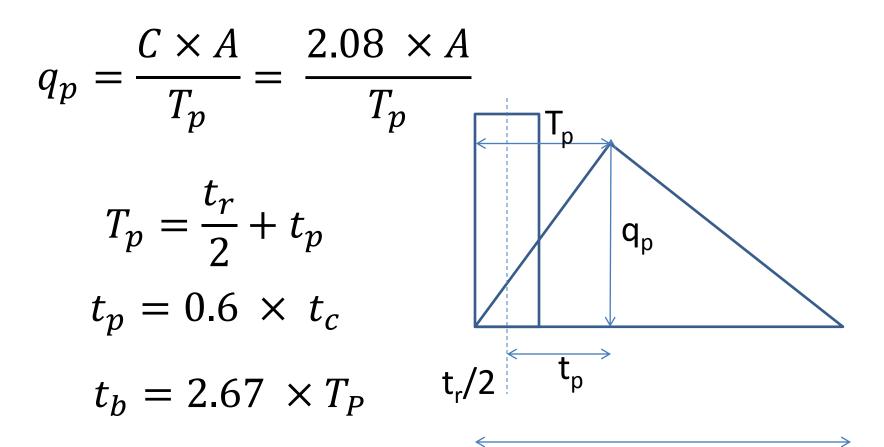
$$Q_{2} = P_{1} \times U_{2-1+1} + P_{2} \times U_{2-2+1}$$

$$54.5 = 2.664 \times U_{2} + 4.874 \times 4.54$$

$$U_{2} = \frac{54.5 - 4.874 \times 4.54}{2.664} = 12.15$$

Example- calculate the one hour unit hydrograph

Time (hour)	Effective Rainfall (cm(Direct runoff (m ³ /sec)
1	0.254	35.32
2	0.508	423.78
3	0	1412.60
4	0.254	1977.64
5		1765.75
6		1589.18
7		882.88
8		353.15
9		176.58
Total volume		3.06 x 10 ⁷ m ³
Area of watershed		3.02 x 10 ³ km ²


$$Q_n = \sum_{m=1}^{n \le M} P_m \times U_{n-m+1}$$

- $Q_n, n = N M + 1 = 9 4 + 1 = 6$
- $Q_1 = P_1 U_1$
- $Q_2 = P_1 U_2 + P_2 U_1$
- $Q_3 = P_1 U_3 + P_2 U_2 + P_3 U_1$
- $Q_4 = P_1 U_4 + P_2 U_3 + P_3 U_2 + P_4 U_1$
- $Q_5 = P_1 U_5 + P_2 U_4 + P_3 U_3 + P_4 U_2$
- $Q_6 = P_1 U_6 + P_2 U_5 + P_3 U_4 + P_4 U_3$

One hour unit hydrograph

Time (hour)	Effective Rainfall (cm(Ordinate (m ³ /(sec. cm))
1	1	139.04
2		1390.35
3		2780.71
4		2085.53
5		1390.35
6		695.18
7		
8		
9		
Volume		2.09 x 10 ⁷ m ³
Pe=Volume/Area		0.963 cm

Synthetic Unit Hydrograph -SCS

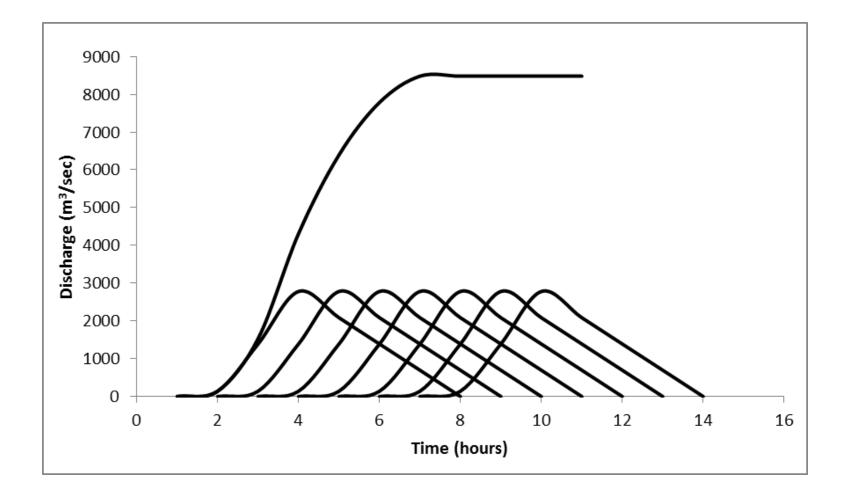
Example-Synthetic hydrograph

- Given
 - Watershed slope = 1.5%
 - Longest path = 2000 m
 - CN = 65
- Required

– 0.5 hour unit hydrograph

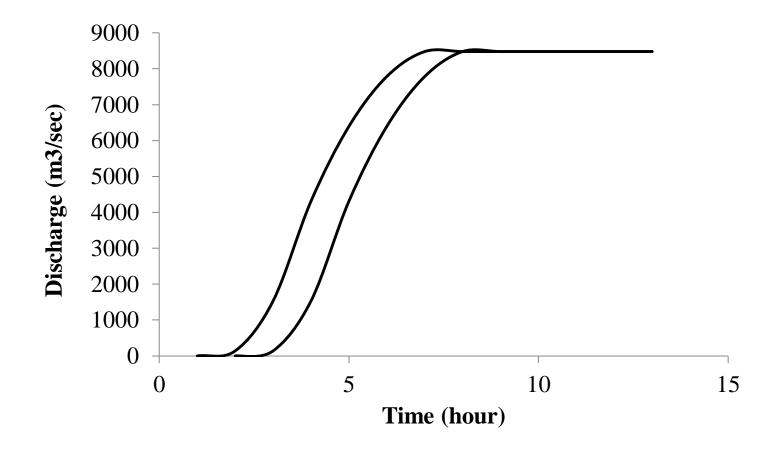
•
$$t_{lag} = \frac{L^{0.8} (\frac{1000}{CN} - 9)^{0.7}}{1900 \, S^{0.5}} \, \text{x1.67=3 hour}$$

- tp=0.6 x 3 = 1.8 hours
- Tp=0.25+1.8 = 2.05
- t_b=2.67 x 2.05 =5.47
- q_p=(2.08 x 3)/2.05=3.0439 m³/s


Check

- Area =0.5 * 3.049 * 5.47 * 3600 = 30020 m²
- = $30020/(3 \times 10^6 \text{ m}^2) = 0.01 \text{ m} = 1 \text{ cm}$

S - Hydrograph

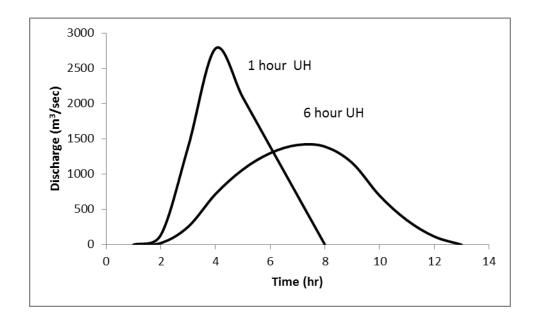

- Storms come in different durations. Therefore it is necessary to change the duration of the unit hydrograph
- Mathematical definition is: $g(t) \times \Delta t$ $= \Delta t(h(t) + h(t - \Delta t) + h(t - 2\Delta t) + \cdots$

S-Hydrograph

	Lag										
UH	1 hr	2 hr	3hr	4 hr	5 hr	6 hr	7 hr	8 hr	9 hr	10 hr	S
0											0
139.04	0										139.04
1390.35	139.04	0									1529.39
2780.71	1390.35	139.04	0								4310.1
2085.53	2780.71	1390.35	139.04	0							6395.63
1390.35	2085.53	2780.71	1390.35	139.04	0						7785.98
695.18	1390.35	2085.53	2780.71	1390.35	139.04	0					8481.16
0	695.18	1390.35	2085.53	2780.71	1390.35	139.04	0				8481.16
	0	695.18	1390.35	2085.53	2780.71	1390.35	139.04	0			8481.16
		0	695.18	1390.35	2085.53	2780.71	1390.35	139.04	0		8481.16
			0	695.18	1390.35	2085.53	2780.71	1390.35	139.04	0	8481.16
				0	695.18	1390.35	2085.53	2780.71	1390.35	139.04	8481.16

Lagging S-Hydrograph

S Hydrograph


$$g(t) \times \Delta t = \Delta t (h(t) + h(t - \Delta t) + h(t - 2\Delta t) + \cdots$$

$$g(t - \Delta t) \times \Delta t = \Delta t (h(t - \Delta t) + h(t - 2\Delta t) + \cdots$$

$$h(t) = g(t) - g(t - \Delta t)$$

$$h(t) \Delta t = \Delta t(g(t) - g(t - \Delta t))$$

(1)	(2)	(3)	(4)	(5) (6 hr UH)
Time (hr)	1-hr Shydrograph	6 – hr lag of (2)	(2)-(3)	(4) * (1/6)
1	0		0	0
2	139.04		139.04	23.17333
3	1529.39		1529.39	254.8983
4	4310.1		4310.1	718.35
5	6395.63		6395.63	1065.938
6	7785.98		7785.98	1297.663
7	8481.16	0	8481.16	1413.527
8	8481.16	139.04	8342.12	1390.353
9	8481.16	1529.39	6951.77	1158.628
10	8481.16	4310.1	4171.06	695.1767
11	8481.16	6395.63	2085.53	347.5883
12	8481.16	7785.98	695.18	115.8633
13	8481.16	8481.16	0	0

