Precipitation

Hydrology 604212

Lifting mechanisms

- Since:
- $\rho_{d}>\rho_{a}$
- As temperature increases saturated vapor pressure increases
- From precipitable water calculation we established that moist air is near the surface
- Then the moist air mass should be lifted to the upper atmosphere in order for precipitation to occur

Lifting mechanisms

- Three main mechanisms

1. Convective
2. Orographic
3. Frontal
a. cold front
b. warm front

Convective (thunderstorm)

Characteristics of Convective precipitation

- Intense
- Short duration
- Localized
- Occur during warmer months
- Occur in warm regions

Orographic lifting

Characteristics of Orographic precipitation

- Intense
- Diminishes as moist air travels away form the mountain

Frontal lifting - cold front

Warm air

Characteristics of precipitation resulting from cold front

- Intense
- Short duration
- Localized

Frontal lifting - warm front

Advancing warm front

Characteristics of precipitation resulting from warm front

- Less intense than precipitation resulting from cold fronts or convective precipitation
- Covers more areas than the other types of precipitation

Rainfall variability

- Rainfall varies in space (spatially) and time (temporally).
- Spatial \rightarrow different depths at different location \rightarrow Areal average
- Temporal \rightarrow rainfall intensity is not constant

Measurements

- Gages
- Non- recording gage
- Recording gage
- Float
- Balance
- Tipping bucket
- Rader

How to plot rainfall

- Hyetograph is a histogram of rainfall depth as a function of time.
- Rainfall mass curve is a plot of cumulative rainfall as a function of time

Rainfall intensity

Rainfall intensity

Time (hour)

Hyetograph

Time (min)

Precipitation

Thiessen polygons

Thiessen polygons

- Each polygon is represented by one rainfall gage
- Determine the area for each polygon
- Then:
- $\bar{P}=\sum_{n=1}^{N} A_{n} \times P_{n}$

Isohyetal lines

- Determine the area enclosed between any two Isohyetal lines
- The corresponding rainfall is the average of the two rainfall depths of the Isohyetal lines
- Multiply the area with average rainfall to get the volume between any two isohyetal lines
- Sum all the volumes and divide by the total area of the watershed.

Missing values - Inverse distance squared method

23 mm					
15 mm					
	P	D	1/D ${ }^{2}$	W	WxP
	23	2.8	0.13	0.13	3.02
P_{3}	15	1.3	0.59	0.61	9.16
11 mm	11	2.0	0.25	0.26	2.8
	Sum		0.97	1.00	15.02

