Precipitation

Hydrology 604212

Lifting mechanisms

- Since:
- $\rho_d > \rho_a$
- As temperature increases saturated vapor pressure increases
- From precipitable water calculation we established that moist air is near the surface
- Then the moist air mass should be lifted to the upper atmosphere in order for precipitation to occur

Lifting mechanisms

- Three main mechanisms
 - 1. Convective
 - 2. Orographic
 - 3. Frontal
 - a. cold front
 - b. warm front

Convective (thunderstorm)

Characteristics of Convective precipitation

- Intense
- Short duration
- Localized
- Occur during warmer months
- Occur in warm regions

Characteristics of Orographic precipitation

- Intense
- Diminishes as moist air travels away form the mountain

Frontal lifting – cold front

Characteristics of precipitation resulting from cold front

- Intense
- Short duration
- Localized

Characteristics of precipitation resulting from warm front

- Less intense than precipitation resulting from cold fronts or convective precipitation
- Covers more areas than the other types of precipitation

Rainfall variability

 Rainfall varies in space (spatially) and time (temporally).

- Spatial → different depths at different
 location → Areal average
- Temporal → rainfall intensity is not constant

Measurements

- Gages
 - Non- recording gage
 - Recording gage
 - Float
 - Balance
 - Tipping bucket
- Rader

How to plot rainfall

- Hyetograph is a histogram of rainfall depth as a function of time.
- Rainfall mass curve is a plot of cumulative rainfall as a function of time

Rainfall intensity

Time (hour)

Depth (mm)

Hyetograph

Time (min)

Thiessen polygons

Thiessen polygons

- Each polygon is represented by one rainfall gage
- Determine the area for each polygon
- Then:
- $\overline{P} = \sum_{n=1}^{N} A_n \times P_n$

Isohyetal lines

- Determine the area enclosed between any two Isohyetal lines
- The corresponding rainfall is the average of the two rainfall depths of the Isohyetal lines
- Multiply the area with average rainfall to get the volume between any two isohyetal lines
- Sum all the volumes and divide by the total area of the watershed.

Missing values – Inverse distance squared method

W

0.13

0.61

0.26

1.00

WxP

3.02

9.16

2.8

15.02