Atmospheric Water

Hydrology 0604212

- Precipitation depend on two factors

1. Amount of water vapor
2. Mechanisms in converting water vapor into precipitation.

Quantification of water vapor

- $\rho_{\mathrm{v}}=$ density of water vapor (M/V)
- $\rho_{a}=$ density of moist water (M/V)
- $\rho_{d}=$ density of dry air (M/V)

Specific humidity $\left(q_{v}\right)$: ratio of water vapor density to density of moist air.

- $q_{v}=\frac{\rho_{v}}{\rho_{a}}$

Quantification of water vapor

- But the volume of air depends on the temperature so in order to calculate the mass of water as water vapor we need to use the ideal gas law:

$$
P V=n R T
$$

Where
P: Pressure of gas (pa)
V : volume of gas (m^{3})
n : number of moles (mol)
R: ideal gas constant ($=8.314$ Joule/(K.mol)
T: Temperature (K)

Some units conversion

- Pressure units

$$
\text { Pressure }=\frac{\text { Force }}{\text { Area }}
$$

Force $=$ Mass x gravitational acceleration
$=\operatorname{Kg} \times \frac{m}{s^{2}}=\mathrm{N}$ (Newton)
$P=\frac{N}{m^{2}} \rightarrow \mathrm{pa}$

Some unit conversion

- Other pressure units
- 1000 pa = 1 Kpa
- 1 bar $=100000$ pa $\rightarrow 100 \mathrm{kpa}$
- 1 atm $=101325 \mathrm{pa} \rightarrow 101.325 \mathrm{kpa}$
- 1 bar $=1020 \mathrm{~cm} \rightarrow 10.2 \mathrm{~m}$ of water

Energy units:
1 Joule $=\mathrm{N} \times \mathrm{m}=\mathrm{Pa} \times \mathrm{m}^{3}$

Back to the ideal gas law

- The law can be written as:
- $P V=\frac{M}{M_{w}} R T$
$\rightarrow P=\frac{M}{V} \frac{R}{M_{w}} T$
$\Rightarrow P=\rho \frac{R}{M_{w}} T$

Back to the ideal gas law

- For water vapor

$$
e=P_{v}=\rho_{v} R_{v} T
$$

Where
$R_{v}=\frac{R}{M_{v}}$
Also for dry air and moist air
$R_{d}=\frac{R}{M_{d}} ; R_{a}=\frac{R}{M_{a}}$

Back to the ideal gas law

- For dry air

$$
P_{d}=\rho_{d} R_{d} T
$$

- For moist air

$$
P_{a}=\rho_{a} R_{a} T
$$

Note that according to Dalton's partial pressure law

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{a}}=\mathrm{P}_{\mathrm{d}}+\mathrm{e} \text { or } \\
& P_{a}=\rho_{d} R_{d} T+\rho_{v} R_{v} T
\end{aligned}
$$

Let's take look at the molecular weights

- Dry air consists of
- $\cong 78 \% \mathrm{~N}_{2}$
- $\cong 21 \% \mathrm{O}_{2}$
- < 1\% other gasses

Molecular weights
$\mathrm{N}=14 \mathrm{~g}$
$\mathrm{O}=16 \mathrm{~g}$
$\mathrm{H}=1 \mathrm{~g}$

Let's take look at the molecular weights

- M_{w} dry air= $28 \times 0.78+0.21 \times 32 \cong 29 \mathrm{~g}$
- M_{w} of water vapor $=18 \mathrm{~g}$
$\frac{M_{v}}{M_{d}}=\frac{18}{29} \approx 0.622$
$R_{d}=\frac{R}{M_{d}}=\frac{8.314}{0.029} \approx 287 \mathrm{~J} / \mathrm{Kg} . \mathrm{K}$
$R_{v}=\frac{R}{M_{v}}=\frac{8.314}{0.018} \approx 462 \mathrm{~J} / \mathrm{Kg} . \mathrm{K}$
$\frac{R_{d}}{R_{v}}=\frac{M_{v}}{M_{d}}=0.622 \rightarrow R_{d}=0.622 \times R_{v}$

Specific humidity again

- $P_{a}=\rho_{d} R_{d} T+\rho_{v} R_{v} T$
- $P_{a}=\rho_{d} R_{d} T+\rho_{v} \frac{R_{d}}{0.622} T$
- $P_{a}=R_{d} T\left(\rho_{d}+\frac{\rho_{v}}{0.622}\right)$
- $\frac{e}{p}=\frac{\rho_{v} R_{v} T}{R_{d} T\left(\rho_{d}+\frac{\rho_{v}}{0.622}\right)}=\frac{\rho_{v}}{0.622 \times\left(\rho_{d}+\frac{\rho_{v}}{0.622}\right)}$
- $q_{v} \cong 0.622 \frac{e}{p}$

$R a=f(R d)$

- $\rho_{a} R_{a} T=\rho_{d} R_{d} T+\rho_{v} R_{v} T$
- $R_{d}=0.622 \times R_{v}$
- $\rho_{a}=\rho_{d}+\rho_{v}$
- Put these information together \rightarrow
- $R_{a}=\frac{\rho_{d}}{\rho_{a}} R_{d}+\frac{\rho_{v}}{\rho_{a}} \frac{R_{d}}{0.622}$
- $R_{a}=\frac{\rho_{d}}{\rho_{a}} R_{d}+q_{v} \frac{R_{d}}{0.622}$ note that $\rho_{d}=\rho_{a}-\rho_{v}$
$\rightarrow R_{a}=R_{d}\left(1+0.608 q_{v}\right)$

Maximum water content in air

Maximum water content in air

- Saturation vapor pressure: Maximum water content the air can hold at a given temperature.

$$
e_{s}=611 \exp \left(\frac{17.27 T}{237.3+T}\right)
$$

T : Temperature $\left({ }^{\circ} \mathrm{C}\right)$

Maximum water content in air

- $\frac{\partial e_{S}}{\partial T}=\Delta=\frac{4098 e_{S}}{(237.3+T)^{2}}$
- Relative humidity:
- $R_{h}=\frac{e}{e_{s}}$
- Actual partial pressure can be calculated from dew-point temperature which is the temperature at which air becomes saturated and measured by wet bulb thermometer.

Examples

- Calculate e, R_{h}, q_{v} and ρ_{a} if we know T, and T_{d} and P_{a}.
If $P_{a}=1 \mathrm{~atm}, T=22^{\circ} \mathrm{C}$ and $T_{d}=17^{\circ} \mathrm{C}$ then

$$
\begin{aligned}
& e_{s}=611 \exp \left(\frac{17.27 \times 22}{237.3+22}\right)=2644.8 \mathrm{pa} \\
& e=611 \exp \left(\frac{17.27 \times 17}{237.3+17}\right)=1938.4 \text { pa }
\end{aligned}
$$

Examples

- $R_{h}=\frac{1938.4}{2644.8}=0.73 \rightarrow 73 \%$
- $\rho_{a}=\frac{P_{a}}{R_{a} \times T}$
- $R_{a}=R_{d}\left(1+0.608 q_{v}\right)$
- $q_{v}=0.622 x \frac{1938.4 p a}{101325 p a}=0.0119$
- $R_{a}=287(1+0.608 \times 0.0119)=$
- $289.1 \mathrm{~J} /(\mathrm{Kg} . \mathrm{K})$

Examples

- $\rho_{a}=\frac{101325}{289.1 \times(22+273)}=1.188 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

Which is more dense a dry air or moist air ?

Let's see
If $R_{h}=35 \%$ at the same temperature $T=22$ then

$$
\begin{aligned}
& e=0.35 \times 2644.8 \mathrm{pa}=925.7 \mathrm{pa} \\
& \qquad q_{v}=0.622 \times \frac{925.7 p a}{101325 p a}=0.005683
\end{aligned}
$$

Examples

- $R_{a}=287(1+0.608 x 0.005683)=288 \mathrm{~J} /(\mathrm{Kg}$ K)
- $\rho_{a}=\frac{101325}{288 x(22+273)}=1.193 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
- Decrease in water vapor increases air density
- With ρ_{a} is known, and for a known volume we can determine the weight of air and from q_{v} the weight of water vapor.

Examples

- For example for every $1 \mathrm{~m}^{3}$ of water the weight of water vapor at $R_{h}=0.73$ is :
- $1 \times 1.188 \times 0.0119=0.014137 \mathrm{~kg}=14.1 \mathrm{~g}$
- at $R_{h}=0.35$ is :
- $1 \times 1.192 \times 0.005683=0.006777 \mathrm{~kg}=6.8 \mathrm{~g}$

Can we use the same concept to calculate the mass of water in static atmospheric air column ?

Precipitable water

- We know the temperature decreases with altitude \rightarrow value e, R_{h}, q_{v} and ρ_{a} vary with altitude.
Generally

$$
m=\int_{z 1}^{z 2} q_{v} \rho_{a} A d z
$$

But we don't have a closed formulas to describe the relation of q_{v} and ρ_{a} also notice the interdependence between P and q_{v} and ρ_{a}

Precipitable water

- Therefore we need to approximate the solution i.e.
- divide the atmospheric column into section
- Calculate the atmospheric variables at the beginning and then end of each section
- Take the average values for the beginning and the end of the section.
- The averages approximately represents the atmospheric variables for each section

Precipitable water

- $m=A \sum_{n=1}^{N} \overline{q_{v 1}} \overline{\rho_{a}} \Delta H$
- The temperature decrease linearly as the altitude increases:
- $\frac{\partial T}{\partial H}=-\propto$

Thus:

$$
\mathrm{T}_{2}=\mathrm{T}_{1}-\propto\left(H_{2}-\mathrm{H}_{1}\right)
$$

Precipitable water

- Pressue
$\mathrm{P}=\rho_{\mathrm{a}} \mathrm{gH}$
Pressure also changes with elevation ∂P
$\overline{\partial H}=-\rho_{a} g$

And according to ideal gas law
$P=\rho_{a} R_{a} T$

Precipitable water

- $\frac{\partial P}{\partial H}=-\frac{P g}{R_{a} T}$
- Note that R_{a} was treated as constant
- $\frac{\partial T}{\alpha}=-\partial H$
- $\rightarrow \frac{\partial P}{p}=\frac{g}{R_{a} \alpha} \frac{\partial T}{T}$
- Taking advantage of In characteristics
- $\ln \left(\frac{P_{2}}{P_{1}}\right)=\frac{g}{R_{a} \alpha} \ln \left(\frac{T_{2}}{T_{1}}\right) \rightarrow\left(\frac{P_{2}}{P_{1}}\right)=\left(\frac{T_{2}}{T_{1}}\right)^{\frac{g}{R_{a} \alpha}}$

Precipitable water

To simplify the problem further we assume the static water column is fully saturated.

Let's the divide the water column into 2 km sections, let the temperature be $20^{\circ} \mathrm{C}$ and pressure at $\mathrm{H}=0$ is 1 atm , assume $R_{a}=287 \mathrm{~J} /(\mathrm{kg}$ K), Temperature lapse rate (α) $=0.0065^{\circ} \mathrm{C} / \mathrm{m}$

Precipitable water

- Solution
- Section $1\left(\mathrm{H}_{1}=0, \mathrm{H}_{2}=2 \mathrm{Km}\right)$

At H_{1}

$$
\begin{aligned}
& \mathrm{P}_{1}=101325 \mathrm{pa} \\
& e_{s 1}=2339 p a \\
& q_{v 1}=0.622 \times(2339 / 101325)=0.0144 \\
& \rho_{a 1}=101325 /(287 \times 293)=1.20
\end{aligned}
$$

Precipitable water

- At H_{2}

$$
\begin{aligned}
& \mathrm{T}_{2}=20-0.0065 \times 2000=7^{\circ} \mathrm{C} \\
& e_{\mathrm{s} 2}=1002 \mathrm{pa}
\end{aligned}
$$

$$
\mathrm{P}_{2}=\mathrm{P}_{1}\left(\frac{280}{293}\right)^{\frac{9.8}{287 \times 0.0065}}
$$

$\mathrm{P}_{2}=79832 \mathrm{pa} \rightarrow 79.83 \mathrm{kpa}$ $q_{v 2}=0.622 \times(1002 / 79832)=0.008$
$\rho_{a 2}=79832 /(287 \times 280)=0.99 \mathrm{~kg} / \mathrm{m}^{3}$

Precipitable water

- $\rightarrow \overline{q_{v}}=0.5 \times(0.008+0.0144)=0.0112$
- $\overline{\rho_{a}}=0.5 \times(1.2+0.99)=1.095 \mathrm{~kg} / \mathrm{m}^{3}$
- $M=1 \times 2000 \times 1.095 \times 0.0112=24.53 \mathrm{~kg}$

Section $2\left(H_{2}=2000, H_{3}=4000\right)$
At H_{3}

$$
T_{3}=7-0.0065 \times 2000=-6
$$

$e_{s}=390 \mathrm{pa}$

Precipitable water

- $\mathrm{P}_{3}=79832 \times\left(\frac{267}{280}\right)^{\frac{9.8}{287 \times 0.0065}}$
- $\mathrm{P}_{3}=62189 \mathrm{pa}$
- $\rho_{a 3}=62189 /(287 \times 267)=0.81 \mathrm{~kg} / \mathrm{m}^{3}$
- $q_{v 3}=0.622 \times(390 / 62189)=0.0039$
- $\overline{q_{v}}=0.5 \times(0.008+0.0039)=0.00595$
- $\overline{\rho_{a}}=0.5 \times(0.99+0.81)=0.9 \mathrm{~kg} / \mathrm{m}^{3}$
- $M=1 \times 2000 \times 0.9 \times 0.00595=10.71 \mathrm{~kg}$

$\begin{aligned} & \text { Elev } \\ & (\mathrm{m}) \\ & \hline \end{aligned}$	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	P (Kра)	$\mathrm{e}_{\text {s }}(\mathrm{Kpa})$	qv	$\begin{gathered} \text { Density } \\ \left(\mathrm{Kg} / \mathrm{m}^{3+}\right) \\ \hline \end{gathered}$	average qv	average density $\left(\mathrm{Kg} / \mathrm{m}^{3}\right)$	average mass (kg)	mass \%
0	20	101.325	2.34	0.01436	1.20				
2000	7	79.83	1.00	0.00781	0.99	0.01108	1.10	24.37	0.59
4000	-6	62.19	0.39	0.00390	0.81	0.00586	0.90	10.57	0.26
6000	-19	47.84	0.14	0.00177	0.66	0.00284	0.73	4.16	0.10
8000	-32	36.31	0.04	0.00071	0.52	0.00124	0.59	1.46	0.04
10000	-45	27.13	0.01	0.00025	0.41	0.00048	0.47	0.45	0.01
								41.01	1.00

