Hydrology

Introduction

Hydrology

- Hydro → Water
- Logy → science

Hydrology → water science

Hydrology definition

- Free dictionary : "The scientific study of the properties, distribution, and effects of water on the earth's surface, in the soil and underlying rocks, and in the atmosphere."
- Hydrology is the study of hydrologic cycle (Chow et al. 1988)
- Hydrology include all hydroscienes : Distribution, circulation, physical and chemical properties of the waters of the earth and its interaction with the environment and the human and living beings (Chow et al. 1988)

Global water

• Global water is *finite (no gain or loss)*

96.5% → Oceans

- 1.7% → Groundwater
- 1.7% → Polar ice
- 0.1%
 → Surface water and atmospheric

What is an aquifer

An aquifer is a geologic formation that can:

1. Store water

2. Transmit significant amounts of water

Other geologic formation that store water

- Aquiclude → does not allow the movement of water →
 impervious → e.g. clay layer
- Aquitard → allow the movement of water but small compared to the aquifer → semi- impervious

Continuity equation

change in storage(Δ)s = I(t) - Q(t)

Global water is finite \rightarrow $\Delta s = 0$

S: storage, (L³)

I(t): Input(s) as a function of time (t), (L^3/t) *Q(t)*: Output(s) as a function of time (t), (L^3/t)

Global water cycle

We can recognize 7 subsystems within the global water cycle:

- 1. Surface water storage (water storage above surface)
- 2. Soil water storage
- 3. Vadoze zone storage
- 4. Groundwater storage
- 5. Ocean storage
- 6. Atmospheric storage
- 7. Polar ice storage

Global water cycle – Surface water (ΔS)

 $\Delta S = P_{land} + GWF_{surface} + F_{sub} - I - E_{land} - SF_{ocean}$

P_{land}: precipitation over land (L³)*I*: Infiltration (L³)

E_{land}: Evaporation from land (L³)

 SF_{ocean} : stream flow to ocean (L³)

GWF_{surface} : ground water flow to surface water (L³)

 F_{sub} : subsurface flow to surface water (L³)

Global water cycle – Surface water ($\Delta Soil$) $\Delta Soil = I - T - E_{soil} - F_{sub} - DP$

I: Infiltration (L³)

DP: Deep percolation (L³)

T: Transpiration (L³)

Global water cycle – Vadoze Zone (ΔV)

$\Delta V = DP - RG$

RG: Recharge to the ground water (L³)

Global water cycle – Ground water (ΔGW)

$$\Delta GW = RG - GWF_{surface} - GWF_{ocean}$$

GWF_{ocean} : ground water flow to oceans (L³)

Global water cycle – Ocean storage (ΔΟ)

 $\Delta O = P_{ocean} + SF_{ocean} + GWF_{ocean} + M - E_{ocean}$

 P_{ocean} [:] Precipitation over the oceans (L³) E_{ocean} [:] Evaporatiom from the oceans (L³) *M*: Melting of ice cap (L³)

Global water cycle – Polar storage (ΔPolar)

$$\Delta Polar = -M - E_P$$

- *M*: Melting of polar ice (L³)
- E_p : evaporation (sublimation) of polar ice (L³).

Global water cycle – Atmospheric storage (ΔA)

 $\Delta A = E_{land} + T_{land} + E_{ocean} + E_p - P_{land} - P_{ocean}$

 $\Rightarrow \Delta A = E - P$

$$\Delta S = P_{land} + GWF_{surface} + F_{sub} - I - E_{land} - SF_{ocean}$$

$$\Delta Soil = I - T - E_{soil} - F_{sub} - DP$$

 $\Delta V = DP - RG$

$$\Delta GW = RG - GWF_{ocean} - GWF_{surface}$$

$$\Delta O = P_{ocean} + SF_{ocean} + GWF_{ocean} + M - E_{ocean}$$

$$\Delta Polar = -M - E_P$$

 $\Delta Surface + \Delta Soil + \Delta V + \Delta O + \Delta GW + \Delta Polar = P - E$

$\Rightarrow \Delta A = E - P$

Change in global water storage = 0