

What is Cluster Analysis?

Dmitriy (Dima) Gorenshteyn
Sr. Data Scientist,
Memorial Sloan Kettering Cancer Center

A form of exploratory data analysis (**EDA**) where **observations** are divided into meaningful groups that share common characteristics (**features**).

Pre-process Data

Structure of This Course

Structure of This Course

Let's Learn!

Distance Between Two Observations

Dmitriy (Dima) Gorenshteyn
Sr. Data Scientist,
Memorial Sloan Kettering Cancer Center

Distance vs Similarity

Distance vs Similarity

$$DISTANCE = 1 - SIMILARITY$$

	х	Υ
Blue	0	0
Red	12	9

dist() Function

```
print(two_players)
    X Y
BLUE 0 0
RED 9 12

dist(two_players, method = 'euclidean')

    BLUE
RED 15
```


More than 2 Observations

Let's practice!

The Scales of Your Features

Dmitriy (Dima) Gorenshteyn
Sr. Data Scientist,
Memorial Sloan Kettering Cancer Center

Distance Between Individuals

Observation	Height (feet)	Weight (lbs)
1	6.0	200
2	6.0	202
3	8.0	200

DISTANCE: 2

DISTANCE: 2

DISTANCE: 2

DISTANCE: 2

Scaling our Features

$$height_{scaled} = rac{height - mean(height)}{sd(height)}$$

DISTANCE: 0.06

DISTANCE: 10.7

scale() function

```
print(height_weight)

Height Weight
1   6   200
2   6   202
3   8   200
...   ...

scale(height_weight)

Height Weight
1   0.60   0.67
2   0.60   0.73
3   11.3   0.67
...   ...   ...
```


Let's practice!

Measuring Distance For Categorical Data

Dmitriy (Dima) Gorenshteyn
Sr. Data Scientist,
Memorial Sloan Kettering Cancer Center

Binary Data

	wine	beer	whiskey	vodka
1	TRUE	TRUE	FALSE	FALSE
2	FALSE	TRUE	TRUE	TRUE

Jaccard Index

$$J(A,B)=rac{A\cap B}{A\cup B}$$

Calculating Jaccard Distance

	wine	beer	whiskey	vodka
1	TRUE	TRUE	FALSE	FALSE
2	FALSE	TRUE	TRUE	TRUE

$$J(1,2) = rac{1 \cap 2}{1 \cup 2} = rac{1}{4} = 0.25$$

$$Distance(1,2) = 1 - J(1,2) = 0.75$$

Calculating Jaccard Distance in R

More Than Two Categories

	color	sport
1	red	soccer
2	green	hockey
3	blue	hockey
4	blue soccer	

	colorblue	colorgreen	colorred	sporthockey	sportsocce
1	0	0	1	0	1
2	0	1	0	1	0
3	1	0	0	1	0
4	1	0	0	0	1

Dummification in R

```
print(survey_b)
  color sport
    red soccer
2 green hockey
  blue hockey
4 blue soccer
library(dummies)
dummy.data.frame(survey b)
  colorblue colorgreen colorred sporthockey sportsoccer
```


Generalizing Categorical Distance in R

```
print(survey_b)
  color sport
    red soccer
2 green hockey
  blue hockey
4 blue soccer
dummy survey b <- dummy.data.frame(survey b)</pre>
dist(dummy survey b, method = 'binary')
2 1.0000000
3 1.0000000 0.6666667
4 0.6666667 1.0000000 0.6666667
```


Let's practice!