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Preface

Einstein explained in equations
Albert Einstein’s achievement in physics is proverbial. Many regard him as the
greatest physicist since Newton. What did he do in physics that’s so import-
ant? While there have been many books about Einstein, most of these explain
his achievement only in qualitative terms. This is rather unsatisfactory as
the language of physics is mathematics. One needs to know the equations
in order to understand Einstein’s physics: the precise nature of his contribu-
tion, its context, and its influence. The most important scientific biography
of Einstein has been the one by Abraham Pais: Subtle is the Lord . . . The
Science and the Life of Albert Einstein: The physics is discussed in depth;
however, it is still a narrative account and the equations are not worked out
in detail. Thus this biography assumes in effect a high level of physics back-
ground that is perhaps beyond what many readers, even working physicists,
possess. Our purpose is to provide an introduction to Einstein’s physics at
a level accessible to an undergraduate physics student. All physics equa-
tions are worked out from the beginning. Although the book is written with
primarily a physics readership in mind, enough pedagogical support material
is provided that anyone with a solid background in an introductory physics
course (say, an engineer) can, with some effort, understand a good part of this
presentation.

In historical context This is a physics book with material presented in the
historical context. Although it is not a scholarly history and there is hardly
any original work in the Einstein biography, historical material from secondary
sources is used to make the physics material more comprehensible and interest-
ing. For example, a more careful discussion of the results obtained by Hendrik
Lorentz will precede Einstein’s special relativity. Planck’s and Einstein’s work
on blackbody radiation are presented only after reviewing first the thermody-
namics and scaling results of Wilhelm Wien. Our opinion is that the history
conveyed through standard physics textbooks sometimes misses the proper
context of the discovery. The original Einstein story is actually more interesting
and illuminating.

Post-Einstein development Also, we do not stop at Einstein’s discovery,
but carry the discussion onto some of the advances in physics that had been
made because of Einstein’s contribution. We discuss gauge symmetry leading
to the Standard Model of particle physics as a legacy of Einstein’s invariance-
principle approach. As an example of Einstein’s unified field theory we present
the Kaluza–Klein unification of electromagnetism and gravitation in a space
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with an extra dimension. Such knowledge is needed to fully appreciate the
profound influence that Einstein’s physics had on subsequent development.

Can you answer these “Einstein questions”?
Physics students have already learnt aspects of Einstein’s physics—from seg-
ments in their course work or from popular accounts. Here is a list of 21
Einstein questions. Can you answer them?11Brief answers are given in Appendix C,

where the reader can also find the chapter and
section numbers where the discussion of, and
answer to, such Einstein questions are carried
out in the text.

1. Einstein’s research played a significant part in people’s acceptance of
the reality of the molecular constituents of matter. In one year, 1905, he
showed three separate ways to deduce Avogadro’s number from macro-
scopic measurements. What were the three areas in physics where these
deductions were made? Surprisingly, one of these was the blackbody
radiation.

2. Einstein’s celebrated Brownian motion paper did not have the words
“Brownian motion” in its title. How come?

3. Einstein’s 1905 photoelectric paper, where the idea of light quanta was
first proposed, and which was the work cited when he was awarded the
Nobel Prize, was concerned mostly with a statistical study of black-
body radiation. If the papers on quantum theory by Planck and by
Einstein were both concerned with blackbody radiation, what was their
key difference?

4. In the classical theory we have an “ultraviolet catastrophe” for the black-
body radiation. How does the postulate of energy quantization cure this
problem?

5. Einstein’s quantum theory of specific heat is historically important
because it is the first instance when the quantum idea was shown to be
relevant to physical systems well beyond the esoteric case of blackbody
radiation. His theory also clarified the questions about matter’s molecular
composition. How is that so?

6. The statement of wave–particle duality was made first by Einstein in
his 1909 study of fluctuations of radiation energy. Einstein and Bohr
had influenced each other’s work, especially with respect to the idea of
quantum transitions (the quantum jumps). How did quantum mechanics
and quantum field theory accommodate, in one elegant framework, sim-
ultaneously waves, particles, and quantum jumps? Famously, this is not
the resolution that Einstein was able to accept.

7. Einstein never accepted the orthodox interpretation of quantum mechan-
ics. Was he just too set in his ways to appreciate the new advances in
physics? How had Einstein’s criticism influenced subsequent investiga-
tion on the meaning of quantum mechanics?

8. By the time Einstein proposed his special theory of relativity, the Lorentz
transformation had already been written down. Einstein was unaware of
this latest development, as he was working (in the Swiss Patent Office)
outside an academic environment. Einstein’s derivation of this transform-
ation rule differed fundamentally from the way it was gotten by Lorentz
and others. How?

9. While the Michelson–Morley measurement did not play a direct role
in Einstein’s motivation for special relativity, there were other results
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(stellar aberration, Fizeau’s experiment, and Fresnel’s formula) that
Einstein had acknowledged as having had an influence. In what ways
were they relevant to Einstein’s motivation? How were they explained in
the final relativity theory?

10. The key element of special relativity is the new conception of time.
Just about all the counter-intuitive relativistic effects spring from the
relativity of simultaneity. What about the well-known result of “length
contraction”? Does it have this connection with time also? If so, how?

11. What is the difference between the special and general theories of relativ-
ity? Special relativity is applicable to electromagnetism, mechanics,
thermodynamics, etc. but not to gravity (why not?); on the other hand,
general relativity is the field theory of gravitation. Why then is special
relativity special and general relativity general? Why does the principle
of general relativity automatically bring gravity into the consideration?

12. Einstein originally dismissed Minkowski’s geometrical formulation of
his relativity theory as “superfluous learnedness”. What caused Einstein
to change this appraisal later on? With respect to the role of mathemat-
ics in the discovery of physics theory, how did Einstein’s view evolve?
Was Einstein a great mathematician as well as a great physicist? What
difference would it make?

13. What was the idea that Einstein called “my happiest thought”? Which
moment of elation was characterized by his biographer Pais as “by far
the strongest emotional experience in Einstein’s scientific life, perhaps,
in all his life”?

14. Einstein’s general relativity is said to be a geometric theory of gravity.
What does one mean by a “geometry theory”? How did Einstein get the
idea that “a gravitational field is simply spacetime with curvature”? To
what physical realm exactly does Einstein’s theory extend Newtonian
gravity?

15. One way to state the equivalence of inertia and gravitation is to say that
gravity can always be transformed away locally (by going to a reference
frame in free fall). Thus the essence of gravity is represented by its differ-
entials (tidal forces). How does this feature appear in the field equation
of general relativity (the Einstein equation)?

16. According to Einstein’s gravity theory, shaking a mass gives rise to grav-
itational waves. Because gravity is such a weak force, it is extremely
difficult to detect the resultant waves. At this moment there is no con-
firmed evidence for their direct detection. Nevertheless, consequences of
gravitational wave emission have been measured and found in agreement
with Einstein’s prediction. What are these indirect effects?

17. It is well known that black holes are regions where gravity is so strong
even light cannot escape. Black holes demonstrate the full power and
glory of general relativity also because, inside black holes, “the roles of
space and time are interchanged”! What does this mean? How does this
come about?

18. Planck’s discovery of Planck’s constant allowed him to construct, from
h, c, and GN, a natural unit system of mass-length-time. Through the
essential contribution by Einstein, we now understand each of these



x Preface

fundamental constants as the “conversion factor” that connects dispar-
ate realms of physics. Can you name these areas? What are Einstein’s
works that made these syntheses possible?

19. The modern study of cosmology started with Einstein’s 1917 paper. The
story was often told that Einstein regarded his introduction of the cosmo-
logical constant as “the biggest blunder of my life”. What is the source of
this piece of anecdotal history? What role does Einstein’s cosmological
constant play in our present understanding of the universe?

20. Special relativity, photons, and Bose–Einstein statistics are crucial
ingredients of modern particle physics. On the other hand, Einstein did
not work directly on any particle theory. Yet, one can still claim that the
influence of his ideas had been of paramount importance in the success-
ful creation of the Standard Model of particle physics. What is the basis
of this claim?

21. In the later years of his life, Einstein devoted the major part of his
physics effort in the search for a unified field theory. Was this just a
misguided chasing of an impossible dream? Based on our current under-
standing, what was the legacy of this somewhat less appreciated part of
his research?

Clearly the story is a fascinating one. But to understand it properly one needs
to know the relevant physics, to know some of the technical details. This, an
undergraduate physics student, with some help, should be able to do.

Atoms, quanta, and relativity—Our presentation
The material is logically divided into five parts: atoms, quanta, special/general
relativity, and later developments. Each of the 17 chapters has a detailed sum-
mary, in the form of a bullet list, placed at the beginning of the chapter. The
reader can use these lists to get an overview of the contents and decide which
part the book he or she wants to study in detail. For example, a reader may well
wish to postpone Chapter 1 for a later reading; it discusses Einstein’s doctoral
thesis and concerns the subject of classical hydrodynamics, which may not be
all that familiar to a present-day student.

Physics focus Although many of Einstein’s papers are discussed in this book,
his physics is not presented in the exact form as given in his papers. For
example, the derivation of the Lorentz transformation is different from that
given in Einstein’s 1905 paper, even though the assumption and result are the
same. In finding the general relativity field equation, Einstein’s original steps
are not followed because, after Einstein’s discovery, it had been shown by oth-
ers that the same conservation law condition could be obtained much more
simply by using the Bianchi identities. In other words, the focus of this book
is Einstein’s physics, rather than the strict historical details of his physics. It
is hoped that our presentation (without the obsolete notation of the original
papers) is more accessible to a modern-day reader.

As a textbook? Since Einstein’s legacy has permeated so many areas in
physics, a wide range of topics will be covered in our presentation. It is
hoped that after studying these lessons, a student will not only have learnt
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some history of physics and a better appreciation of Einstein’s achieve-
ment, but, perhaps more importantly, will have enhanced their understanding
of some of the basic areas in their physics curriculum (and a glimpse of
more advanced topics): thermodynamics, hydrodynamics, statistical mechan-
ics, Maxwell’s equations, special and general relativity, cosmology, quantum
mechanics, quantum field theory, and particle physics. Although this book is
written for a general-interest physics readership, it can be used as a textbook as
well—for a “Special Topics” course, or an “Independent Reading” course. One
possibility is to have the book function as the basis of a “senior year project”.
Working through the book may well be an enjoyable experience for both the
student and the instructor.
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• The existence of atoms and molecules as constituents of matter was
still being debated at the beginning of the twentieth century. Einstein’s
doctoral thesis provided another important piece of evidence for their
reality. He was able to derive two independent equations relating the
molecular size P and Avogadro’s number NA to properties of a macro-
scopic fluid, such as viscosity and the diffusion coefficient. The system
studied by Einstein was a fluid with small suspended particles.

• The first equation, η∗ = η
(
1+ 5

2ϕ
)
, relates the change of viscosity

coefficient (η→ η∗) by the solute particles to the fraction of volume
ϕ occupied by these suspended particles, which can be expressed in
terms of P and NA. This viscosity relation then becomes the equation
for the product P3NA.

• We obtain this η∗(η) relation from a solution of the Navier–Stokes
equation, the equation of motion for a viscous fluid. This equation
is related to that for an ideal fluid (the Euler equation), viewed as
a momentum conservation equation. The viscosity is then brought in
through the appropriate modification of the fluid’s energy–momentum
tensor. Solving the Navier–Stokes equation for the velocity and pres-
sure fields altered by the presence of solute particles, we then calculate
the change in viscosity through the change of heat loss from the fluid.

• As is the case throughout our presentation, we provide some of
the background material and all the calculational steps. Elementary
material and some details are relegated to the supplementary material
(SuppMat) sections at the end of the chapter. In SuppMat Section 1.4
we discuss the Euler equation as the statement of momentum conser-
vation. In SuppMat Section 1.5 the calculational details of the effective
viscosity due to the presence of solute particles are displayed.

• The second equation, D = μkBT , is obtained by a consideration of bal-
ancing the forces on the solute particles in the fluid. The fluctuation of
molecular motion gives rise to a diffusion force (D being the diffusion
coefficient). It is countered by the frictional force on a particle moving
in a viscous fluid (dissipation) obeying Stokes’ law, with the mobil-
ity μ related to the viscosity μ = 1/(6πηP). This second relation, also
known as the Einstein–Smoluchowski relation, is an equation in which
the combination of PNA enters.
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• Finally one can solve these two equations to obtain P and NA separ-
ately. This result allowed people to deduce the values of these crucial
parameters from simple table-top experimental measurements. The
agreement of these numbers with those obtained from completely dif-
ferent gaseous systems lent convincing support to the idea that matter
was composed of microscopic particles.

• As mentioned in the Preface, this first chapter on fluid mechanics is
likely to be a particularly difficult one for a present-day student. It is
placed at the beginning of the book for historical and logical reasons.
Still, one can skip this chapter (even the whole of Part I) without imped-
ing the understanding of later chapters, and return to this material when
one is so inclined at a later time.

1.1 Two relations of molecular size
and the Avogadro number

Even before his famous 1905 papers Albert Einstein (1879–1955) had already
published three papers, “Einstein’s statistical trilogy”, in Annalen der Physik
on the foundations of statistical mechanics: they form important parts of the
bridge going from Boltzmann’s work to the modern approach to statistical
mechanics (Einstein 1902, 1903, and 1904). Einstein completed his thesis “On
the determination of molecular dimensions” in April 1905 and submitted it to
the University of Zurich on July. His Alma Mater (Swiss) Federal Polytechnic
Institute ETH, also in Zurich, did not yet grant doctoral degrees. Shortly after
the thesis was accepted, he submitted a slightly shortened version to Annalen
der Physik in August. In his thesis work (Einstein 1905b), he provided an
important piece of supporting evidence for the idea that matter is composed
of material particles (atoms and molecules). He deduced the molecular size
P and Avogadro number NA (which in turn fixes the mass of the individual
molecule through the known molar mass) from a study of the effects due to
small suspended particles11In our discussion, we often refer to such

particles as “solute particles”.
on the viscosity and diffusion coefficient of a liquid

(a sugar solution, for example). This is in contrast to previous work where such
molecular dimensions were deduced from the kinetic theory of gases.

The key idea of Einstein’s thesis work is that particles suspended in a fluid
behave just like molecules in the solution (they differ only in their sizes).
He assumed the validity of classical hydrodynamics in the calculation of the
effects of solute molecules on the viscosity of a dilute solution. When treating
the molecules as rigid spheres with radius P, Einstein succeeded in obtaining
two independent relations from which he could solve for the two unknowns P
and NA in terms of macroscopic quantities such as viscosity and the diffusion
coefficient:

NAP3 = 2

5

(
η∗

η
− 1

)
3M

4πρ
(1.1)

NAP = RT

6πη

1

D
(1.2)
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where T is the absolute temperature, M is the molar mass (molecular weight),
ρ the mass density, R is the gas constant, D the diffusion coefficient, η the
viscosity coefficient of the liquid without the solute molecules (e.g. water),
and the effective viscosity coefficient η∗ of the liquid with solute molecules
(e.g. dilute solutions with sugar molecules). The second relation was the first
example of a fluctuation and dissipation relation as it shows that there is a
connection between diffusion and viscosity.2 2This fluctuation–dissipation relation will be

discussed further in the next chapter.
The calculated values of P and

NA were in accord with those that had been obtained from other methods. This
result is important for the consistency of the atomic theory of matter because it
shows that molecular dimensions deduced from widely disparate environments
are in agreement with each other.

Fig. 1.1 (a) A volume without solute parti-
cles having a viscosity η, vs. (b) a volume
with many suspended particles having an
effective viscosity η∗.

1.2 The relation for the effective viscosity

In this section we shall see how Einstein derived the relation (1.1). Basically, he
used the Navier–Stokes equation: it allowed him to calculate the dependence
of heat dissipation on the viscosity of the solution—with and without solute
particles (see Fig. 1.1). He deduced a simple relation between the effective
viscosity η∗ and the viscosity η of the ambient fluid without solute particles:

η∗ = η

(
1+ 5

2
ϕ

)
, (1.3)

where ϕ is the fractional volume occupied by the solute particles in the fluid,
and can easily be related to the molecular dimension to yield Eq. (1.1). The
assumptions Einstein used in this calculation are listed here:

• One can ignore (as small) the inertia of translational and rotational
motion of the solute molecules.

• The motion of any particle is not affected by the motion of any other
particles.

• The motion of a particle is due only to the stress it feels at its surface.
• One can take the boundary condition that the velocity field vanishes at

the particles’ surfaces.

1.2.1 The equation of motion for a viscous fluid

Some of the basic elements of fluid mechanics are presented in SuppMat
Section 1.4. We review how the conservation laws in a continuum system are
written as the equations of continuity. In particular the equation of motion for
an ideal fluid, the Euler equation,3 3v(x, t) and p(x, t) are, respectively, the velo-

city and pressure fields, and ρ is the mass
density.−∇p = ρ

∂v
∂t
+ (v ·∇) ρv (1.4)

can be viewed as a statement of fluid momentum conservation

∂

∂t
(ρvi)+ ∂

∂xj
τij = 0 (1.5)
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where we have followed the ‘Einstein summation convention’ of summing over
repeated indices.44Namely, we omit the display of the summa-

tion sign �j in �j
∂
∂xj
τij.

τij is the energy–momentum tensor for an ideal fluid

τij = pδij + ρvivj. (1.6)

With this view of the fluid equation of motion, we can extend it to the case of
a viscous fluid in a straightforward manner.

Navier–Stokes equation for viscous fluids
In a viscous fluid, there is internal friction resulting in the irreversible transfer
of momentum from points where the velocities are high to points where the
velocity is low. The simplest way to implement this feature is to add another
tensor, call it σij, to the ideal fluid stress tensor τij of (1.6). Since the viscosity
stress tensor must vanish in the limit of constant velocity, we can assume it
to be proportional to the first derivatives of the velocity ∂vi/∂xj; and since
the stress tensor should always be symmetric σij = σji, we arrive at the simple
form:

σij = η

(
∂vi

∂xj
+ ∂vj

∂xi

)
, (1.7)

where η is the viscosity coefficient. Replacing τij by τij + σij in the momentum
continuity equation (1.5), one obtains, after some algebra, the Navier–Stokes
equation. For an incompressible fluid [hence the condition ∇ · v = 0 as
discussed in (1.36)] it reads as

−∇p+ η � v = ρ
∂v
∂t
+ (v·∇) ρv (1.8)

where � is the Laplacian operator � = ∇ ·∇.
We will show how the (velocity and pressure field) solution of the Navier–

Stokes equation allows us to calculate the energy dissipation in terms of the
viscosity coefficients.

1.2.2 Viscosity and heat loss in a fluid

Our goal is to find the change of viscosity coefficient (η→ η∗) due to the
presence of the solute particles in a fluid and relate this change to the fraction
of volume ϕ occupied by these suspended particles. This viscosity relation then
becomes the equation (1.1) for the product P3NA.

We first calculate the change in viscosity through the change of heat loss
from the fluid. The rate of energy transfer in an incompressible viscous fluid
can be expressed as a volume integral

W = d

dt

∫ (
1

2
ρv2

)
dV =

∫
ρv·
(

dv
dt

)
dV . (1.9)

The integrand can then be rewritten by using the Navier–Stokes equation
of (1.8)

dvi

dt
= −v·∇vi − 1

ρ
∂ip+ 1

ρ
∂kσki (1.10)
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where σki is the stress tensor of (1.7) and we have used the incompressible
fluid condition ∂ivi = 0 of (1.36) to relate ∂kσki = η∂k(∂kvi + ∂kvi) = η � vi.
Substituting Eq. (1.10) into (1.9), we have the integrand

−ρviv·∇vi − v·∇p+ vi∂kσki = −ρv·∇
(

1

2
v2 + p

ρ

)
+ ∂k(viσki)− σki∂kvi

where to reach the right-hand side (RHS) we have combined the first two terms
of the left-hand side (LHS) into one and expanded the last one into two. The
second term on the RHS is a divergence. We now show that the first term is
also a divergence: vk∂k(. . .) = ∂k [vk(. . .)]− (. . .)∂kvk But the last term van-
ishes because of the incompressible fluid condition of (1.36). Thus the first
two terms on the RHS are divergences and their volume integral turns into a
surface integral, which vanishes at large distance because velocity vanishes at
large distance. In this way one finds

W = −
∫
σki∂kvidV . (1.11)

We see that the energy loss is proportional to the viscosity stress tensor of (1.7).

Effect of solute molecules on heat loss
Einstein then considered the effect of solute molecules on the energy dissipa-
tion of the viscous fluid—starting with one solute particle in the form of a rigid
sphere, then generalizing to a collection of such spheres. In this way he was
able to derive a relation between the viscosity coefficients with and without
solute particles as shown in Eq. (1.3). The steps are given below.

Fig. 1.2 A single sphere of radius P sus-
pended in a fluid with an ambient field of
ui = αijxj resulting in a net velocity field of
vi = ui + v′i. The origin of the coordinate sys-
tem is taken to be the center of the submerged
sphere.

Dissipation in an ambient fluid We can view the velocity field of the fluid
with one spherical particle at the center as composed of two components
v = u+ v′, where u is the “background field”, namely the velocity far from
the particle where the induced velocity v′ due to the presence of the solute
particle should be unimportant (Fig. 1.2). We take the simplest background
velocity having a linear gradient (so as to yield the simplest stress tensor with
viscosity)

ui = αijxj (1.12)

where αij is a constant traceless symmetric matrix: it is traceless because we
are dealing with an incompressible fluid ∂iui = αijδij = αii = 0; it must be
symmetric αij = αji as it is directly related to the symmetric stress tensor

σij = η
(
∂iuj + ∂jui

) = 2ηαij. (1.13)

From this we can also calculate the heat loss (per unit volume) in such a fluid
(without the solute particle) by Eq. (1.11) to yield the rate of energy loss as

W0 = −2ηαijαijV . (1.14)

Dissipation in a fluid with solute particles Einstein then considered the
effect of solute molecules. After a somewhat lengthy calculation5 5Details of this calculation are given in

SuppMat Section 1.5.
he found

that the above relation (1.14) is modified by an additional term

W = −2ηαijαijV − 5ηαijαijϕV (1.15)
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where ϕ is the fraction of the volume occupied by the solute molecules. Given
the assumptions listed at the top of this section, the fluid with solute particles
still satisfies the Navier–Stokes equation and can be characterized by an effect-
ive viscosity coefficient η∗. The heat dissipation in a fluid with suspended
particles (1.15), viewed this way, can also be written as

W = −2η∗αijαijV . (1.16)

Equating this to the expression in (1.15), Einstein found a simple relation
between η∗ and η as shown in Eq. (1.3).

1.2.3 Volume fraction in terms of molecular dimensions

We now show that, after expressing the volume fraction ϕ in terms of molecular
dimensions, Eq. (1.3) leads directly to the first relation claimed in (1.1). The
volume fraction is the product of n, the number of solute particles per unit
volume, and �, the volume occupied by each solute particle taken to be a rigid
sphere of radius P,

ϕ = n� where � = 4π

3
P3. (1.17)

We then show that the number density can be expressed as

n = ρ

M
NA, (1.18)

where ρ is the mass density of the solute molecules (mass per unit volume), NA

the Avogadro number (the number of particles in a mole volume), and M the
molecular weight (the mass of one mole of molecules) of the solute particles;
hence, M = NAm1, with m1 being the mass of an individual molecule. To show
the relation (1.18), let the total number of molecules in a volume V be N so
that

n = N
V
= Nm1

Vm1
= total mass

Vm1
= ρ

m1
= ρ

M
NA. (1.19)

We now substitute this result into (1.17)

ϕ = n� =
( ρ

M
NA

)(4π

3
P3

)
(1.20)

so that Eq. (1.3) becomes

η∗

η
− 1 = 5

2
ϕ = 5

2

( ρ
M

NA

)(4π

3
P3

)
. (1.21)

This, we see, is the relation (1.1) claimed at the beginning of this chapter.

1.3 The relation for the diffusion coefficient

Here we shall work out the second relation of Einstein’s thesis, Eq. (1.2), which
also plays a key role in Einstein’s Brownian motion paper to be discussed
in Chapter 2. This relation between diffusion and viscosity was derived on



1.3 The relation for the diffusion coefficient 9

the basis of thermal and dynamical equilibrium conditions, using a combined
technique of fluid dynamics and the theory of diffusion. Einstein studied the
viscous (frictional) force and the diffusion osmotic force acting on the solute
molecules in a dilute solution. Most of us are familiar with the picture of an
immersed sphere falling in a viscous fluid, reaching the terminal velocity when
the viscous drag force is balanced by gravity. Here we have the frictional force
balanced by, instead of gravity, the osmotic force.

We have the following situation: The uneven concentration, namely the pres-
ence of a density gradient, gives rise to a force, the osmotic force, which causes
fluid particles to diffuse. These moving particles are quickly slowed down
by the frictional force. This balance of osmotic and frictional forces allowed
Einstein to derive the result

D = μkBT (1.22)

with T being the absolute temperature. Boltzmann’s constant kB is related
to the gas constant and Avogadro’s number as kB = R/NA, and the mobility
μ is related to the molecular size and viscosity coefficient as μ = (6πPη)−1

through Stokes’ law. Eq. (1.22) leads to the second relation (1.2) in which the
combination NAP enters.

1.3.1 Osmotic force

The different concentration in the fluid gives rise to the osmotic force. One way
to express this is through the phenomenological diffusion equation6 6Since we are interested in the force in one

particular direction, we can simplify our writ-
ing to the one-dimensional (1D) case. Instead
of the full gradient operator ∂/∂xi, we just
need to work with ∂/∂x.

(Fick’s
first law)

ρv = −D
∂ρ

∂x
(1.23)

which states that the diffusion flux (i.e. the diffusion current density) ρv must
be proportional to the density gradient ∂ρ/∂x, and the proportionality constant
D is (defined to be) the diffusion coefficient.

To relate this to the osmotic force, we note that the pressure gradient has the
physical significance of a “force density” [cf. Eq. (1.39) in SuppMat Section
1.4]—namely, when multiplied by the volume factor −V∂p/∂x it is the total
force.7 7The total force is

∫
(−∂p/∂x) dV . Thus prop-

erly speaking what we should have is the
average −∂p/∂x. However, we are work-
ing in the framework of the phenomenolo-
gical Fick’s first law, and for consistency
higher derivatives of density and pressure are
assumed to be small. Thus we would have
∂p/∂x = ∂p/∂x anyway.

We are going to compare this force to the Stokes formula [of (1.29) to
be discussed below] for the frictional force on a single particle, so we need to
divide this total force by the total number of particles N . This yields the force
per particle:

Fos = − V

N
∂p

∂x
= −1

n

∂p

∂x
= − M

ρNA

∂p

∂x
, (1.24)

where we have used the relation (1.18), with ρ being the mass density, M the
molar mass (molecular weight), and NA the Avogadro number.

To relate (1.24) to the diffusion equation (1.23), one needs to replace the
pressure p by the density function ρ. For a dilute solution, Einstein assumed the
validity of the so-called van’t Hoff analogy—the behavior of solute molecules
in a dilute solution is similar to those of an ideal gas. The ideal gas law then
leads to
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pV = N
NA

RT or p = n
RT

NA
= RT

M
ρ. (1.25)

The total number of molecules divided by the Avogadro number N /NA is the
“mole number”, while the total number divided by the volume is the number
density n. To reach the last expression we have used the relation (1.18). Thus,
substituting this density–pressure relation into (1.24), the osmotic force on a
solute molecule can now be written as

Fos = − RT

ρNA

∂ρ

∂x
. (1.26)

1.3.2 Frictional drag force—the Stokes law

To study the drag force by a viscous fluid (of viscosity η) with a constant
velocity field u acting on an immersed rigid sphere of radius P, we first need
to find the induced velocity field. Namely, very much like the case when we
calculated the effective viscosity in SuppMat Section 1.5, we have88Of course, instead of ui = constant, we had

in the previous case an ambient field ui =
αijxj.

v = u+ v′,
where the induced velocity field vanishes when far from the immersed sphere.
Just like the previous case we solve the Navier–Stokes equation for the induced
velocity v′(r) and pressure p′(r), with a similar boundary condition of v = 0 at
the surface of the immersed sphere r = P. These results can be translated into
knowledge of the viscous stress tensor of Eq. (1.7):

σ ′ij = η

(
∂v′i
∂xj

+ ∂v′j
∂xi

)
. (1.27)

Recall that when the inertia force can be ignored (the substantial derivat-
ive of the velocity field Dv/Dt � 0), the Navier–Stokes equation reads (cf.
Eq. 1.10),

∂ip = −∂kσki.

Since the gradient of pressure is force per unit volume, the volume integral
on the RHS also has the physical meaning of force. The volume integral can
then be turned into a surface integral by the divergence theorem. We then have
(as we expect the drag force to be in the direction of the velocity field u, the
magnitude is just the projection of the force in the u direction F = F · û) the
drag force as

Fdg= −
∮
σ ′ijûinjdS (1.28)

where the surface integration is performed over the spherical surface of the
immersed particle. Namely, we sum over all the force elements at every point
of the surface, with n being the unit vector normal to the surface element, and
û is the unit vector in the direction of velocity ûi = ui/u.

To complete the calculation we naturally work with a spherical coordinate
system with û being the axis of the system. In the end we obtain99An outline of the calculation is provided in

SuppMat Section 1.6.
the drag force

to be

Fdg = 6πηuP. (1.29)
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which was first obtained by George Stokes (1819–1903). Clearly one would
expect the frictional force to be proportional to the viscosity coefficient η and
to fluid velocity u (or what amounts to the same thing, the velocity of the
sphere in a stationary fluid). One can further deduce that, to obtain the correct
dimension for the force, the product ηu has to be multiplied by a length factor.10 10From (1.28) we have the dimension rela-

tion of [force] = [σij] [length]2 while the
dimension of the viscous stress tensor σij in
(1.27) has [η] [time]−1. Thus, we have the
dimension relation of [force] = [η] [velocity]
[length].

Since the only length-scale available in this problem is the spherical radius P,
this allows us to understand all the nontrivial factors in the Stokes formula. The
remaining part is to calculate the coefficient, which turns out to be 6π .

We can also state the Stokes formula as a result for the mobility of the
immersed particle. Under the action of some force F, a particle acquires some
velocity u; the proportionality coefficient is defined to be the mobility of the
particle

u = μF. (1.30)

Thus in our case we can interpreted Stokes’ formula (1.29) as yielding an
expression for the mobility

μ = (6πηP)−1. (1.31)

This viewpoint will be developed further when we discuss the fluctuation–
dissipation relation in the next chapter.

When osmotic force is balanced by frictional force
As the frictional drag force (1.29) increases with velocity, until the osmotic
force is balanced by the frictional force Fos = Fdg and the velocity reaches its
terminal value umax = ω, we have

6πηωP = − RT

ρNA

∂ρ

∂x
or ρω = − 1

NAP

RT

6πη

∂ρ

∂x
. (1.32)

From the definition of the diffusion coefficient given in (1.23), we see that
Eq. (1.32) gives, for our case:

D = 1

NAP

RT

6πη
, (1.33)

which may be written in more compact form as (1.22) where we have used
the expression (1.31) for the mobility μ and Boltzmann’s constant kB = R/NA.
This relation is just the “second relation” (1.2) that Einstein obtained11 11This relation was also obtained independ-

ently by Marian Smoluchowski; hence it
is sometimes referred to as the Einstein–
Smoluchowski relation.

in his
doctoral thesis. He then solved these two coupled equations (1.1) and (1.2) to
obtain the parameters of molecular dimension, P and NA.

1.4 SuppMat: Basics of fluid mechanics

In this section we provide a rapid introduction to some of the basic elements in
fluid dynamics. We review the equation of motion for an ideal fluid, showing
that it can also be interpreted as a statement of momentum conservation.
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1.4.1 The equation of continuity

The conservation law of a continuum system (i.e. a field system) is written as
the equation of continuity. For the simplest case when the conserved quantity
is a scalar (e.g. energy, mass, or charge) the equation of continuity is

∂ρ

∂t
+∇ · ρv = 0. (1.34)

For definiteness, let us say we are discussing mass conservation. Performing
a volume integration on both terms: the first term becomes the rate of change
of mass in this volume

∫
ρdV , the second one is, by the divergence theorem,1212The divergence theorem (also known as

Gauss’ theorem) is presented in Appendix A.
See Eq. (A.25).

the mass flux ρv passing through the surface surrounding this volume. Thus
the equation is a conservation statement. We note that the flux density ρvi in
the ith direction1313The index i ranges over 1, 2, 3 for the x, y, z

components.
has the physical significance of

ρvi = mass

time× (cross-sectional area ⊥ to vi)
. (1.35)

Incompressible fluid
We shall assume that the fluid is incompressible; namely, the change of the
mass density dρ is small when compared to the flux change of the velocity
field, i.e. ρ can be treated as a constant. Equation (1.34) then turns this con-
dition into the statement that the velocity field of an incompressible fluid has
zero divergence:

∇ · v = 0. (1.36)

1.4.2 The Euler equation for an ideal fluid

The Euler equation as the equation of motion for an ideal fluid
The “F = ma” equation, the inertial force law, for an ideal fluid takes on the
form

−∇p = ρ
Dv
Dt

(1.37)

where we have on the RHS (mass density times acceleration) the substantial
derivative of the velocity field14

14While the first term on the RHS is the
change of velocity during dt at a fixed point,
the second term expresses the difference of
velocities (at a given instance) at two points
separated by the distance that the fluid ele-
ment has moved during dt. Namely, these two
terms together are the change of velocity of
a fluid element as it moves about in space.
The substantial derivative of the velocity thus
expresses the true acceleration of the particle,
hence is proportional to the applied force.

v(t, r):

Dv
Dt

= ∂v
∂t
+ (v ·∇) v. (1.38)

The gradient of the pressure field on the LHS can be viewed as the local force
per unit volume. This interpretation is particularly clear, if one takes pressure
as a vector field, i.e. the force vector perpendicular to the enclosure surface, so
that ∇p can be replaced by the divergence ∇ · p. In this way, one sees that the
volume integral of the divergence of the “pressure vector” turns into (via the
divergence theorem) a surface integral

−
∫

∇ · pdV =
∮

pdS. (1.39)

Since pressure is force per unit surface area, the surface integral on the RHS has
the physical meaning of force. This then suggests that −∇p should be viewed
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as force for unit volume, and the Euler equation (1.37) is the equation for the
second law of motion for the density functions of an ideal fluid.

The Euler equation as the momentum conservation equation
We can look at the Euler equation (1.37) in another way. It is the equation
of continuity expressing conservation of fluid momentum—just as Eq. (1.34)
expresses mass conservation. For the momentum field, instead of a simple mass
density ρ and a flux ρv, one needs to work with a momentum density ρv,
which is a vector (a one-index tensor); and so a momentum flux, analogous to
Eq. (1.35), must be a two-index tensor15 15This must be a quantity with two indices

because, as seen in the following equation,
it is the ratio of two quantities, each being a
quantity with an independent index. This is
in contrast to the flux density shown in (1.35)
where the numerator is a scalar (without an
index). We can also see from Eq. (1.5) that the
two-index property is required as the second
term must, like the first term, be a term
with one index, after the divergence operation
“takes away” one of the indices.

(think of it as a 3× 3 matrix)

Tij = ith component of momentum

time × (cross-sectional area ⊥ to vj)
. (1.40)

We leave it as an exercise for the reader to show that it is a symmetric tensor
Tij = Tji. The corresponding expression of momentum conservation, a gener-
alization of (1.34), is a set of three continuity equations (one for each index
value of i):

∂

∂t
(ρvi)+ ∂

∂xj
Tij = 0. (1.41)

The momentum flux tensor Tij for an ideal fluid is given by τij defined by

τij = pδij + ρvivj. (1.42)

This represents the completely reversible transfer of momentum, due simply
to the mechanical transport of different fluid particles and the pressure forces
acting on the fluid.16 16The explicit form displayed in (1.6) can be

easily understood from the definition of the
stress tensor given in (1.40). For example,
the result of τ11 = p+ ρv2

x is consistent with
the definition

T11 = x component of momentum

time × (area in yz plane)

which can be interpreted as “pressure”
because

T11 = x component of force

(area in yz plane)

as well as “mass density× v2
x” because

T11 = mass× (x component of velocity)2

(volume in xyz space)
.

For further discussion see Section 11.5.

Using this Tij = τij in Eq. (1.41),

vi
∂ρ

∂t
+ ρ

∂vi

∂t
+ ∂p

∂xi
+ ρvj

∂vi

∂xj
+ vi

∂ρvj

∂xj
= 0,

namely,

− ∂p

∂xi
= ρ

(
∂vi

∂t
+ vj

∂vi

∂xj

)
+ vi

(
∂ρ

∂t
+ ∂ρvj

∂xj

)
,

we see that this is just the Euler equation (1.37) because the first term on the
RHS is the substantial derivative of velocity (1.38) and the last term vanishes
because of mass conservation Eq. (1.34).

1.5 SuppMat: Calculating the effective viscosity

Here we provide some details of Einstein’s calculation of heat loss in a viscous
fluid with suspended particles, which are treated as rigid spheres with radius
P. We will first calculate the effect of one solute particle; the total effect of all
the solute particles is assumed to be a simple sum of individual molecules. A
helpful textbook reference is Landau and Lifshitz (1959).
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1.5.1 The induced velocity field v′

The Navier–Stokes equation (1.8) will be solved for the induced velocity v′
due to the presence of a solute particle in the fluid. The LHS terms in the
Navier–Stokes equation represent the inertia force, while the RHS represents
pressure and viscous forces, respectively. As stated in the listed assumptions at
the beginning of Section 1.2, we shall ignore the inertia force,1717Technically speaking, we are in the regime

of small Reynolds number (the pure num-
ber ρvP/η)—a measure of nonlinearity.
Otherwise turbulence would set in and pure
streamline motion completely breaks down.

the terms on
the LHS of Eq. (1.8). The equation we need to solve is now

∇p = η � v. (1.43)

Taking the curl of this equation, the LHS being the curl of a gradient must
vanish1818Cf. Eq. (A.20). For a discussion of this and

other subsequent vector calculus relations,
see Appendix A, Section A.1.

so we have from the RHS

�(∇× v) = 0. (1.44)

Since all equations are linear, the induced velocity and pressure also sat-
isfy these equations. In particular we also have the incompressible condition
∇ · v′ = 0. This means that v′ itself must be some curl v′ = ∇ × A, where A
must be an axial vector related to the ambient velocity field u. It is not difficult
to see that Ai must itself be a curl of the gradient, projected in the direction of
the ambient velocity ui = αijxj:

v′i =
[∇ ×∇ × α ·∇f (r)

]
i
= ∂i

[∇ · (α ·∇f
)]−�(α ·∇f

)
i

(1.45)

where the RHS is reached by using (A.12). The scalar function can be fixed by
the Navier–Stokes equation (1.44) in the form of f (r) = ar + b/r, with (a, b)
being constants.1919The constraint imposed by Eq. (1.44) turns

into a differential equation on the scalar func-
tion of �2f = 0. This leads, with the appro-
priate boundary condition, to �f = 2a/r,
which in turn has the solution f = ar + b/r.

Let us work out the terms on the RHS of (1.45) for such
an f (r):

∇ · (α ·∇f
) = ∂iαij∂j f = αij∂i∂j

(
ar + b

r

)

= αij∂i

[
xj

(
a

r
− b

r3

)]
= αijxixj

(
− a

r3
+ 3b

r5

)
,

where we have used αii = 0 to reach the last expression. Similarly,

∂i
[∇ · (α ·∇f

)] = αijxj

(
−2a

r3
+ 6b

r5

)
+ αjkxixjxk

(
3a

r5
− 15b

r7

)
(1.46)

and

−�(α ·∇f
)

i
= −(α ·∇)i�f = −(α ·∇)i

2a

r
= αijxj

2a

r3
, (1.47)

which just cancels the first RHS term in (1.46). Substituting (1.46) and (1.47)
and adding the ambient velocity field ui = αijxj into (1.45) we have for the full
velocity field

vi = ui + v′i = αijxj

(
1+ 6b

r5

)
+ αjkxixjxk

(
3a

r5
− 15b

r7

)
. (1.48)

Imposing the boundary condition
The two constants (a, b) can then be fixed by the boundary condition that, at
the surface of the solute particle r = P, the velocity vanishes vi = 0. This can
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happen only if both tensor coefficients vanish. We have two equations to solve
for the two unknowns, leading to

a = −5

6
P3, b = −1

6
P5. (1.49)

1.5.2 The induced pressure field p′

Knowing the induced velocity field v′ as given in (1.48), we now solve for the
induced pressure from (1.43), ∇p′ = η � v′. Our strategy is to turn the RHS
also into a gradient so we can identify p′ directly. Recall that v′ has the form as
given in (1.45)

�v′ = �[∇ ×∇ × (α ·∇f
)] = ∇ ×∇ × (α ·∇)�f = ∇[∇ · (α ·∇)�f

]
so that the RHS20 20To reach the RHS we have used the cross

product relation of Eq. (A.12) and dropped
a term (proportional to �2f = 0) from the
result that follows from this identity.

is a pure gradient. The Navier–Stokes equation then gives us
the result

p′ = η
[∇ · (α ·∇)�f

] = ηαij∂i∂j
2a

r
= ηαijxixj

6a

r5
. (1.50)

1.5.3 Heat dissipation in a fluid with suspended particles

We are now ready to calculate the dissipation of energy in a viscous fluid with
solute particles. Again we use the basic formula of Eq. (1.11).

W = −
∫

V
σki∂kvidV = −

∫
V
∂k(σkivi) dV (1.51)

where we have, consistent with our approximation of the Navier–Stokes equa-
tion of ignoring inertia force, dropped a term21 21The stress tensor σki includes not only the

viscosity term but also the pressure pδki. See
the discussion following (1.53).

involving ∂kσki. Up to this point
we have concentrated on calculating the velocity and pressure field of a fluid
with a single solute sphere, and hence the dissipation effect due to a single
solute particle. We shall now attempt to broaden the result to include the case
of a fluid with many solute spheres. Our volume integration will now cover a
large volume V containing many solute particles. Using the divergence theorem
Eq. (1.51) can be turned into a surface integral over the surface S enclosing V:

W = −
∮
S

σkivinkdS = −2ηαijαijV −
∮
S

σ ′kiαijxjnkdS (1.52)

where nk = xk/r is a unit vector normal to the surface element. On the RHS we
have separated out the dissipation term due to a fluid without solute particles
(with velocity field u) as derived in (1.14); what remains is the energy transfer
due to the presence of solute particles. Also on the RHS we have kept only the
leading-order term (in η)22 22Since σ ′ki is O(η), we only need to keep the

velocity to O
(
η0
)

so that vi = ui = αijxj.
when we replaced the total velocity field vi by the

ambient field of ui = αijxj in the integrand. We recall that

σ ′ij = η

(
∂v′i
∂xj

+ ∂v′j
∂xi

)
− p′δij. (1.53)

We will only keep the leading O
(
r−2
)

term in v′ from (1.48) because it will
be evaluated over a surface of large distance. We have also added a pressure



16 Molecular size from classical fluids

term2323The form of the additional pressure term
is suggested by (1.6). The stress tensor (1.7)
must be generalized in order that we keep
all terms of the same order in the viscosity
coefficient.

because the induced velocity also brings about extra pressure, as
calculated above in Eq. (1.50):

v′i = −
5

2
P3αlm

xixlxm

r5
and p′ = −5P3ηαij

xixj

r5
. (1.54)

On the other hand, if the fluid with solute particles has an effective vis-
cosity coefficient η∗, that leads us to identify the LHS of (1.52) with W =
−2η∗αijαijV . We then have an expression for the extra dissipative effect due to
the presence of solute particles:

2
(
η∗ − η

)
αijαijV =

∮
S

σ ′kiαijxjnkdS. (1.55)

Integrate over the surface area of all the immersed spheres
We will now take into account the effect of not only a single solute particle,
but all the immersed spheres. Our assumption is that the solute particles are
sufficiently far apart that they do not disturb each other’s effect too much. Their
total influence is a simple sum of the individual effects: We will first convert the
surface integral in (1.55), which is over the large area S over the large volume
V containing all the suspended spheres, into one over the surface area of all
the immersed spheres—in such a way that one does not have to deal with the
interior of these spheres, but only the fluid outside. We do this by subtracting,
and then adding back, these individual area integrals, each over the spherical
surface S1 that encloses a spherical volume V1:

αij

∮
S

σ ′kixjnkdS = αij

∮
S−�S1

σ ′kixjnkdS+ αij

∑∮
S1

σ ′kixjnkdS. (1.56)

Concentrating on the first term on the RHS, we apply the divergence theorem
to get

αij

∮
S−�S1

σ ′kixjnkdS = αij

∫
V−�V1

∂k
(
σ ′kixj

)
dV = αij

∫
V−�V1

σ ′ijdV . (1.57)

Again, consistent with our approximation as explained above, we have dropped
a ∂kσ

′
ki term. We can use (1.53) to convert this result back to a surface term2424The term p′δij in (1.53) does not contribute

because αij is traceless.

αij

∫
V−�V1

σ ′ijdV = 2ηαij

∫
V−�V1

∂iv
′
jdV (1.58)

= 2ηαij

∫
S

v′jnidS− 2ηαij

∫
�S1

v′jnidS. (1.59)

The first term on the RHS vanishes because v′ = 0 at the distant large sur-
face S, and only small spherical surface S1 terms (the second term) contribute.
Combining with the second term of (1.56) we have from (1.55).



1.5 SuppMat: Calculating the effective viscosity 17

2
(
η∗ − η

)
αijαij = αij

V

∑∮
S1

(
σ ′kixjnk − 2ηv′jni

)
dS (1.60)

= αij

V

∑∮
S1

[
η
(
∂kv′i + ∂iv

′
k

)
xjnk − p′xjni − 2ηv′jni

]
dS.

To reach the final expression, we have used the expression for σ ′ki from (1.53).

Plug in the contribution due to each solute particle
We now substitute in (1.60) the solutions (1.54) of the Navier–Stokes equation
(for a fluid with a single solute particle). It must be forewarned that the con-
tributions from the two terms in

(
∂kv′i + ∂iv′k

)
, although similar in appearance,

are not equal and they must be calculated separately:

∂kv′i = −
5

2
P3

(
αlm

δikxlxm

r5
+ 2αkm

xixm

r5
− 5αlm

xixkxlxm

r7

)

∂iv
′
k = −

5

2
P3

(
αlm

δikxlxm

r5
+ 2αim

xkxm

r5
− 5αlm

xixkxlxm

r7

)
.

Thus (
∂kv′i + ∂iv

′
k

) =− 5P3

(
αlm

δikxlxm

r5
− 5αlm

xixkxlxm

r7

)
− 5P3

(
αkm

xixm

r5
+ αim

xkxm

r5

)
and, with nk = xk/r,

η
(
∂kv′i + ∂iv

′
k

)
xjnk = 15ηP3αlm

xixjxlxm

r6
− 5ηP3αik

xkxj

r4
, (1.61)

while the other two terms in (1.60) yield

−p′xjni = 5ηP3αlm
xixjxlxm

r6
(1.62)

−2ηv′jni = 5ηP3αlm
xixjxlxm

r6
.

Altogether we have the result∮
S1

[
η
(
∂kv′i + ∂iv

′
k

)
xjnk − p′xjni − 2ηv′jni

]
dS

=
∮
S1

[
25ηP3αlm

ninjnlnm

r2
− 5ηP3αik

nknj

r2

]
r2d� = 5η

4πP3

3
αij (1.63)

where to reach the last expression, we have used the well-known identities of
integrating over the full solid angle25 25One first ‘guesses’ the tensor structure,

knowing that it must be constructed from the
only invariant tensor, the Kronecker delta,
with matching symmetry properties. The pro-
portionality constant can then be fixed by
selecting a particular index combination.

∮
nknjd� = 4π

3
δkj (1.64)

∮
ninjnlnmd� = 4π

15

(
δijδlm + δilδjm + δimδjl

)
.
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Summing over the contribution by all immersed spheres
We then obtain the final result by plugging (1.63) into (1.60):

2
(
η∗ − η

)
αijαij = 5ηαijαij

∑ 4πP3/3

V
,

where the summation is over the contribution from all solute particles. We have
ϕ as the fraction of the volume occupied by the immersed spheres

ϕ =
∑ 4πP3/3

V
(1.65)

and the resulting expression is simply the relation quoted above in Eq. (1.3),

η∗ = η

(
1+ 5

2
ϕ

)
. (1.66)

1.6 SuppMat: The Stokes formula
for the viscous force

Here we outline the calculation of the frictional force on an immersed sphere
in a viscous fluid. Since the calculational stages are similar to those used in
SuppMat Section 1.5, we shall often just point out the corresponding steps.
In both calculations we have a velocity composed of the ambient field and
an induced field v = u+ v′. In the effective viscosity calculation we have
ui = αijxj while in the Stokes case a constant ui. To fix the induced velocity,
both cases involve the Navier–Stokes equation in the form �(∇ × v′

) = 0. In
the previous case this leads to v′i =

[∇ ×∇ × α ·∇f (r)
]

i
while the present

case gives v′i =
[∇ ×∇ × uf (r)

]
i. Both scalar functions have the same form

f (r) = ar + b/r. Compared to the velocity and pressure fields of (1.48) and
(1.50), here we have

v′i = −ui

(
a

r
+ b

r3

)
+ n · uni

(
−a

r
+ 3b

r3

)
(1.67)

and

p′ = −ηn · u2a

r2
, (1.68)

with the unit vector ni = xi/r. Because of the difference in ambient fields, the
boundary conditions lead to different values for the constants: here we have

a = 3

4
P b = 1

4
P3. (1.69)

Setting the axis of the spherical coordinate system to be along the velocity u, so
that we have n · u = ur = u cos θ and uθ = −u sin θ , leads to the full velocity
components

vr = u cos θ

(
1− 3P

2r
+ P3

2r3

)
and vθ = −u sin θ

(
1− 3P

4r
− P3

4r3

)
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and the viscosity stress tensor elements

σ ′rr = 2η
∂vr

∂r
= 0 (1.70)

σ ′rθ = η

(
∂vr

r∂θ
+ ∂vθ

∂r
− vθ

r

)
= 3η

2P
u sin θ .

Including the induced pressure (1.68) as well in Eq. (1.28), we have

Fdg = −
∮ [

σ ′ij + p′δij
]

ûinjdS = −
∮ [

σ ′irûi + p′ûr
]

dS

=
∮ [−σ ′rr cos θ + σ ′rθ sin θ − p′ cos θ

]
r=P dS

=
∮ (

0+ 3ηu

2P
sin2 θ + 3ηu

2P
cos2 θ

)
dS

= 3ηu

2P
4πP2 = 6πηuP,

which is Stokes formula, Eq. (1.29).
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• Einstein advanced the first satisfactory theory of Brownian motion—
the jiggling motion of suspended particles in a liquid as seen under a
microscope. It provides us with direct visual evidence for the existence
of the point-like structure of matter. The theory suggests that we can see
with our own eyes the molecular thermal motion.

• The Brownian motion paper may be viewed as part of Einstein’s doc-
toral dissertation work on the atomic structure of matter; it continues
his pursuit of the idea that particles suspended in a fluid behave like
molecules in solution. The motion of a Brownian particle is governed
by the diffusion equation.

• Einstein was the first to provide a statistical derivation of the diffusion
equation. From its solution one can calculate its variance, showing dif-
fusion as fluctuations of a discrete system, like the prototype case of
random walks. The mean-square displacement of a Brownian particle
is related to the diffusion coefficient as 〈x2〉 = 2Dt.

• The Einstein–Smoluchowski relation (already discussed in the previ-
ous chapter) between diffusion and viscosity, D = kBT/(6πηP) with η
being the viscosity coefficient, is the first fluctuation–dissipation rela-
tion ever noted. This theory not only illuminates diffusion but also
explains friction by showing that they both spring from the same
underlying thermal process.

• Verification of Einstein’s theory came about through the painstaking
experimental work of Jean Perrin. This work provided another means
to measure the molecular size P and Avogadro’s number NA. It finally
convinced everyone, even the skeptics, of the reality of molecules.

Eleven days after Einstein completed his thesis on April 20, 1905, he sub-
mitted this “Brownian motion paper” to Annalen der Physik (Einstein 1905c).
This paper can be regarded as part of Einstein’s dissertation research and it
represents the culmination of his study of atomic structure of matter (extend-
ing back at least to 1901) by explaining the Brownian motion. To many of us,
before the advent of (field-ion) “atomic” microscopes in the 1960s, the most
direct visual evidence for atoms’ existence was viewing the jiggling motion of
suspended particles (e.g. pollen) in a liquid, as seen under a microscope. This
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Fig. 2.1 The zigzag motion of Brownian
particles as sketched by Perrin, at 30-second
intervals. The grid size is 3.2μ and the radius
of the particle is 0.53μ. Reproduction of
Fig. 6 in Perrin (1909).

“Brownian motion” was originally discussed in 1827 by botanist Robert Brown
(1773–1858). Although it was suggested soon afterwards that such Brownian
motion is an outward manifestation of the molecular motion postulated by the
kinetic theory of matter, it was not until 1905 that Einstein was finally able to
advance a satisfactory theory.

Einstein pioneered several research directions in his Brownian motion paper.
In particular he argued that, while thermal forces change the direction and mag-
nitude of the velocity of a suspended particle on such a small time-scale that it
cannot be measured, the mean-square displacement (the overall drift) of such a
particle is an observable quantity, and can be calculated in terms of molecular
dimensions. One cannot but be amazed by the fact that Einstein found a phys-
ics result so that a careful measurement of this zigzag motion (see Fig. 2.1)
through a simple microscope would allow us to deduce Avogadro’s number!

It is also interesting to note that the words “Brownian motion” did not appear
in the title of Einstein’s paper (Einstein 1905c), even though he conjectured that
the motion he predicted was the same as Brownian motion. He was prevented
from being more definitive because he had no access then to any literature
on Brownian motion. One should remember that in 1905 Albert Einstein was a
patent office clerk in Bern and did not have ready access to an academic library
and other research tools typically associated with a university.

2.1 Diffusion and Brownian motion

Einstein argued that the suspended particles in a liquid, differing in their stat-
istical and thermal behavior from molecules only in their sizes, should obey
the same diffusion equation that describes the chaotic thermal motion of the
liquid’s constituent molecules. Here we follow Einstein in his derivation of the
Brownian motion equation and show that it is just the diffusion equation.
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2.1.1 Einstein’s statistical derivation of the diffusion
equation

Einstein assumed that each individual particle executes a motion that is inde-
pendent of the motions of all the other particles; the motions of the same
particle in different time intervals are also mutually independent processes,
so long as these time intervals are chosen not to be too small. For simplicity of
presentation, we will work in a one-dimensional (1D) model. One is interested
in the displacement x(t) after the particle makes a large number (N) of discrete
displacement steps of size � in a time interval τ . The probability density fτ (�)
is introduced as

fτ (�)d� = dN

N
, or dN = Nfτ (�)d�. (2.1)

The probability should clearly be the same whether the step is taken in the
forward or backward direction: fτ (�) = fτ (−�).

Let ρ(x, t) be the number of particles per unit volume. One can then calculate
the distribution at time t + τ from the distribution at time t. The change of
particle density at the spatial interval (x, x+ dx) is due to particles flowing in
from both directions (hence the ±∞ limits),

ρ(x, t + τ ) =
∫ +∞

−∞
ρ(x+�, t)fτ (�)d�. (2.2)

One then makes Taylor series expansions on both sides of this equation, the
LHS being

ρ(x, t + τ ) = ρ(x, t)+ τ
∂ρ(x, t)

∂t
+ · · · (2.3)

and the RHS being∫ +∞

−∞

[
ρ(x, t)+�

∂ρ(x, t)

∂x
+ �2

2!
∂2ρ(x, t)

∂x2
+ · · ·

]
fτ (�)d�

= ρ(x, t)+
[∫ +∞

−∞
�2

2
fτ (�)d�

]
∂2ρ(x, t)

∂x2
+ · · · (2.4)

where we have used the conditions that the probability must add to unity and
fτ (�) is an even function of �:∫ +∞

−∞
fτ (�)d� = 1, and

∫ +∞

−∞
�fτ (�)d� = 0. (2.5)

Equating the leading terms of both the LHS and RHS, we obtain the diffusion
equation

∂ρ

∂t
= D

∂2ρ

∂x2
, (2.6)

with the diffusion coefficient being related to the probability density as

D = 1

2τ

∫ +∞

−∞
�2fτ (�)d�. (2.7)
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In practice D can be obtained from experiment. We should remark that the
fundamental assumption in this derivation is that fτ (�) depends only on �, not
on previous history. Such a process we now call “Markovian” in the study of
random processes. Einstein’s Brownian investigation is one of the pioneering
papers laying the foundation for a formal theory of stochastic processes.

In Chapter 1 we defined the diffusion coefficient D through (1.23) as
opposed to its introduction in Eq. (2.6). Their equivalence can be demonstrated
by taking the gradient of both terms in Fick’s first law (1.28) and turning the
equation into (2.6), sometimes called Fick’s second law, by using the equation
of continuity (written in 1D form again for simplicity1 1Just as the continuity equation in 3D is writ-

ten as ∂tρ + ∇ · ρv = 0, Fick’s second law
has the 3D form of ∂tρ = D∇2ρ.

)

∂ρ

∂t
+ ∂ρv

∂x
= 0. (2.8)

Fig. 2.2 Density distribution plotted for vari-
ous values of t. At t = 0 it is a delta func-
tion at x = 0; as t increases, the distribution
becomes broader and spreads out.

2.1.2 The solution of the diffusion equation
and the mean-square displacement

The solution to the diffusion equation (2.6) is a Gaussian distribution (Exercise:
check that this is the case)

ρ(x, t) = 1√
4πDt

e−x2/4Dt (2.9)

which is a bell-shaped curve, peaked at x = 0. Initially (t = 0) the density func-
tion is a Dirac delta function ρ(x) = δ(x = 0); as t increases, the height of this
peak, still centered around x = 0, shrinks but the area under the curve remains
unchanged. In other words, the probability of finding the particle away from
the origin (as given by the density ρ) increases with time. There is, on the aver-
age, a drift motion away from the origin (cf. Fig. 2.2). One can easily check
that it is properly normalized using the familiar result of Gaussian integrals (cf.
Appendix A.2).

Clearly the curve in Fig. 2.2 is symmetric with respect to ±x. This implies
a vanishing average displacement 〈x〉 = 0. But we have a nonzero mean-
square displacement (the variance) that monotonically increases with time
[cf. Eq. (A.44)]:

〈
x2
〉 = ∫ ∞

−∞
x2ρdx = 2Dt. (2.10)

We note that
〈
x2
〉

is just the width of the Gaussian distribution. Thus the broad-
ening of the bell-shaped curve with time (as shown in Fig. 2.2) just reflects the
increase of the mean-square displacement.

The basic point is that while the fluid density represents the overall coarse
(i.e. averaged) description of the underlying molecular motion, still, once the
density function is known, the fluid fluctuation of such motion, like the root-
mean-square (i.e. the variance) displacement, can then be calculated. Such a
fluctuation property shows up as an observable drift motion of the immersed
Brownian particles.
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2.2 Fluctuations of a particle system

To substantiate the claim that Brownian motion is evidence of the point-
like structure of matter, we now directly connect this Gaussian distribution
(2.9) and the mean-square displacement (2.10) to the fluctuations of a particle
system.22This is to be contrasted with the fluctu-

ation of a system of waves to be discussed in
Section 6.5.

Random walks being the prototype of a discrete system, we first
discuss the fluctuation phenomenon associated with this system.

2.2.1 Random walk

Consider a particle moving in one dimension at regular time intervals in steps
of equal size. At each instance it moves forward and backward at random. Let a
walk of N steps end at k steps from the initial point. F is the number of forward
steps and B the backward steps. Thus F + B = N and F − B = k. After a large
number of such walks (each ends at a different position), one is interested in
the distribution of the end-point positions. Namely, we seek the probability
p(k, N) of finding the particle at k steps from the origin after making N steps.
Since at each step one makes a two-valued choice, there are a total 2N possible
outcomes; the probability is evidently

p(k, N) = N!/F!B!
2N

= 2−NN!(
N+k

2

)! (N−k
2

)! . (2.11)

Since we expect the result to have the form of an exponential, we proceed by
first taking the logarithm of this expression,

ln p = −N ln 2+ ln N! − ln

(
N + k

2

)
! − ln

(
N − k

2

)
!.

Using Stirling’s formula33See Section A.3 for a proof of Stirling’s
formula.

of ln X! � X ln X − X for large X, we have

ln p = −N ln 2+ N ln N − N −
(

N + k

2

)
ln

(
N + k

2

)
+
(

N + k

2

)

−
(

N − k

2

)
ln

(
N − k

2

)
+
(

N − k

2

)

= −N

2

[(
1+ k

N

)
ln

(
1+ k

N

)
+
(

1− k

N

)
ln

(
1− k

N

)]
.

In the limit of small k/N, the logarithm can be approximated by ln(1+ ε) �
ε − ε2/2. The probability logarithm becomes ln p � −k2/2N, which can be
inverted and normalized (by a standard Gaussian integration) to yield

p(k, N) = 1√
2πN

e−k2/2N . (2.12)

Similarly using the Gaussian integral we also have〈
k2
〉 = ∫ k2p(k, N)dk = N, (2.13)
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which is the variance
〈
�k2

〉 = 〈k2
〉− 〈k〉2 because for our case 〈k〉 = 0. In par-

ticular one often uses the fractional variance to characterize the fluctuation
from the mean, leading to the well-known result√〈

�k2
〉

N
= 1√

N
. (2.14)

This is the characteristic of fluctuations in a discrete system.

2.2.2 Brownian motion as a random walk

So far in this calculation no scales have been introduced. For the problem of
calculating the displacement of a random walker, we will denote a displace-
ment step by λ and the time interval by τ so that x = kλ and t = Nτ . This
allows us to translate the above probability density into the number density
p(k, N) → ρ(x, t) with

ρ(x, t) = 1√
4πDt

e−x2/4Dt with D = λ2

2τ
. (2.15)

Thus we can interpret the solution (2.9) of the diffusion equation as represent-
ing, at some small scale, a Brownian particle executing a random walk. This
exercise in random walks emphasizes the discrete nature of the molecular pro-
cess underlying the diffusion phenomenon. We shall have occasion (in Section
6.1) to use this connection in the discussion of Einstein’s proposal for a discrete
basis of radiation—the quanta of light.

2.3 The Einstein–Smoluchowski relation

In the previous chapter on Einstein’s doctoral thesis (Einstein 1905b) we
derived this relation between the diffusion coefficient D and the viscosity η:

D = kBT

6πηP
(2.16)

with P being the radius of the suspended particle, T the absolute temperat-
ure, and kB Boltzmann’s constant, related to the gas constant and Avogadro’s
number as kB = R/NA. This relation was also obtained by the Polish physi-
cist Marian Smoluchowski (1872–1917) in his independent work on Brownian
motion (Smoluchowski 1906). Hence, it is often referred to as the Einstein–
Smoluchowski relation. Einstein in his Brownian motion paper (Einstein
1905c) rederived it and improved its theoretical reasoning in two aspects:

1. In his thesis paper, for the osmotic pressure Fos = −n−1∂p/∂x as shown
in Eq. (1.24), Einstein assumed the validity of the van’t Hoff analogy—
the behavior of solute molecules in a dilute solution are similar to those
of an ideal gas, and used the ideal gas law (1.25) to relate the pressure to
mass density, obtaining the result:

Fos = − RT

ρNA

∂ρ

∂x
. (2.17)
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In the Brownian motion paper, he justified the applicability of this
result on more general thermodynamical grounds. Consider a cyl-
indrical volume with unit cross-sectional area and length x = l. Under
an arbitrary virtual displacement δx, the change of internal energy is
given by

δU = −
∫ l

0
Fosρδxdx (2.18)

and the change of entropy by44One may be more familiar with the entropy
change under an isothermal expansion when
written δS = NkBδV/V = ρkBδV . In the case
here we have δV = δx because of unit cross-
sectional area.

δS =
∫ l

0

R

NA
ρ
∂δx

∂x
dx = − R

NA

∫ l

0

∂ρ

∂x
δxdx. (2.19)

We have performed an integration by parts in reaching the last expres-
sion. The relation (2.17) then follows from the observation that the
free energy of a system of suspended particles vanishes for such a
displacement, δF = δU − TδS = 0.

2. In his thesis paper, Einstein arrived at the result (2.16) by the balance
of the osmotic force and the frictional drag force (described by Stokes’
law) Fos = Fdg on a single molecule. In the Brownian motion paper
this would be obtained by a more general thermodynamical argument.
Consider the flow of particles that encounters the viscous drag force Fdg

reaching the terminal velocity ω. The mobility parameter μ is defined by
ω = μFdg = −μ∂U/∂x. The drift current density j = ρω produces a
density gradient which in turn produces a counteracting diffusion cur-
rent. This current is related to the diffusion coefficient by the diffusion
equation in the form of Fick’s first law (1.23)

D
∂ρ

∂x
= ρω = −ρμ∂U

∂x
. (2.20)

On the other hand, at equilibrium we must have the Boltzmann
distribution

ρ(x) = ρ(0)e−U(x)/kBT (2.21)

so that

∂ρ

∂x
= − ρ

kBT

∂U

∂x
. (2.22)

Substituting this into (2.20),

D
ρ

kBT

∂U

∂x
= ρμ

∂U

∂x
, (2.23)

we have

D = μkBT , (2.24)

which is the Einstein–Smoluchowski relation (2.16), upon using the
Stokes’ law of μ = (6πηP)−1 as derived in (1.29).
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2.3.1 Fluctuation and dissipation

The Einstein–Smoluchowski relation (2.16) is historically the first example of a
fluctuation–dissipation theorem, which would turn into a powerful tool in stat-
istical physics for predicting the behavior of nonequilibrium thermodynamical
systems. These systems involve the irreversible dissipation of energy into heat
from their reversible thermal fluctuations at thermodynamic equilibrium.

As illustrated in our discussion of the Einstein–Smoluchowski relation the
fluctuation–dissipation theorem relies on the assumption that the response of
a system in thermodynamic equilibrium to a small applied force is the same
as its response to a spontaneous fluctuation. Thus Browning motion theory not
only illuminates diffusion but also explains friction by showing that they spring
from the same underlying thermal process.

2.3.2 Mean-square displacement and molecular dimensions

Having demonstrated that the observable root-mean-square displacement of the
Brownian particle was related to the diffusion coefficient D, as shown in (2.10),
which in turn can be expressed in terms of molecular dimensions (molecular
size P and Avogadro number NA) through the Einstein–Smoluchowski relation
(2.16), Einstein derived the final result of

xrms =
√〈

x2
〉 = √2Dt =

√
2RT

NA

t

6πηP
. (2.25)

This is what we meant earlier when we said “a careful measurement of this
zigzag motion through a simple microscope would allow us to deduce the
Avogadro number!”

2.4 Perrin’s experimental verification

Precise observations of Brownian motion were difficult at that time. The results
obtained during the first few years after 1905 were inconclusive. Einstein was
skeptical about the possibility of obtaining sufficiently accurate data for such a
comparison with theory.

But in 1908 Jean Perrin (1870–1942) entered the field and came up with an
ingenious combination of techniques for preparing emulsions with precisely
controllable particle sizes,5 5Recall that Einstein’s calculation assumed

equal size P for all suspended particles.
and for measuring particle numbers and displace-

ments. For this series of meticulously carried out brilliant experiments (and
other related work) Perrin received the Nobel Prize in physics in 1926. The
Brownian motion work was summed up masterfully in his 1909 paper (Perrin
1909) from which we extracted Figs. 2.1 and 2.3.

In particular we have Fig. 2.3 in which Perrin translated 365 projected
Brownian paths to a common origin. The end-position of each path is then
projected onto a common plane, call it the x-y plane. The radial distance on
this plane (labelled by σ ) is marked by a series of rings with various σ values.
The 3D version of the solution (2.9) of the diffusion equation reads as
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Fig. 2.3 In order to check the diffusion
law, Jean Perrin parallel-transported 365
Brownian paths to a common origin. The end-
position of each path is then projected onto
a common plane. Reproduction of Fig. 7 in
Perrin (1909).

ρ(x, t) = 1

(4πDt)3/2
e−r2/4Dt (2.26)

where r is the 3D radial distance from the origin r2 = σ 2 + z2. As an infin-
itesimal ring-shaped volume is 2πσdσdz, one can calculate the number of
particles within each of the rings in Fig. 2.3 by a simple integration over the
vertical distance

�N = 2πσ�σ

(4πDt)3/2

∫ +∞

−∞
e−(σ

2+z2)/4Dtdz. (2.27)

A simple Gaussian integration yields

�N = σ�σ

2Dt
e−σ

2/4Dt, (2.28)

which is the theoretical curve plotted in Fig. 2.4.
Thus experiments were able to confirm in detail the theoretical predictions

by Einstein and Smoluchowski. This work finally convinced everyone, even
the skeptics, of the reality of molecules.

Fig. 2.4 Verification of the diffusion law in
Brownian motion. The solid line is the the-
oretical curve. Each bar in the histogram
represents the total number of paths with end-
points at given plane-radial distance (σ ) from
the origin according to the data as shown in
Fig. 2.3.
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• We present in this chapter some historical background for Einstein’s
revolutionary proposal that under some circumstance radiation could be
viewed as a collection of particles. This discovery was carried out in the
context of blackbody radiation. We shall cover the era that started with
Kirchhoff, showing (based on the second law of thermodynamics) that
cavity radiation was independent of the shape and material of the cavity.
Thus, the total energy density u(T) as well as the radiation density per
unit frequency ρ(ν, T) [related through u(T) = ∫ ρ(ν, T) dν] must be
universal functions.

• What are these universal functions of temperature T and frequency
ν? Again electromagnetic and thermodynamical reasoning yielded
the Stefan–Boltzmann law: u(T) ∝ T4, then Wien’s displacement law:
ρ(ν, T) = ν3f (ν/T); if one had the spectrum distribution at one temper-
ature, one knew the distribution at any other temperature. The next step
was to find the single-variable function f (ν/T).

• Wien’s distribution ρ(ν, T) = αν3 exp(−βν/T) gave a good fit to
the then available data, until the new spectra in the infrared region
became available in 1900. Planck postulated his distribution ρ(ν, T) =
αν3/[exp(βν/T)− 1] and found that it could fit both high- and low-
frequency measurements.

• Given the phenomenological success, Planck immediately set out to
find the physical basis of this distribution. Planck considered a cavity
composed of a set of oscillators. He first related the oscillator energy
to the radiation density U(ν, T) = (c3/8πν2

)
ρ(ν, T), then found the

entropy function S (corresponding to the Planck distribution) by integ-
rating over the entropy–energy relation dS = (dU)/T . The next step in
his program was to make a statistical analysis of this entropy so as to
reveal the physics behind the distribution.

• Using Boltzmann’s principle, S = kB ln W, with W being the micro-
state complexion, Planck did find such an account of the microstates.
But, in order for it to match the entropy result, he had to postu-
late that the energy of an oscillator (or the energy transmitted by the
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oscillators) must be quantized—energy could only be transmitted in
discrete packets ε = hν. It is important to observe that, to Planck, the
energy transmitted in the interaction between oscillators and radiation
might be quantized; he did not propose or believe that the energy of
radiation itself was intrinsically quantized.

• This thermal and statistical analysis then relates Planck’s constant h and
Boltzmann’s constant kB to the two constants (α,β) of Planck’s distri-
bution. In this way not only did Planck obtain h but he also obtained the
first accurate determination of kB.

• At various points of this chapter, we discuss electromagnetic radi-
ation as a collection of oscillators. The ratio of the oscillator energy
and frequency is an adiabatic invariant. From this we also provide a
thermodynamical derivation of radiation pressure, being a third of the
radiation energy density. These background materials are needed in
various discussions of electromagnetic radiation.

This is the first of the six chapters in Part II devoted to Einstein’s contribution
to the quantum theory. By and large, this involves the application of statistical
ideas. We start with Einstein’s 1905 “photoelectric paper” (Einstein 1905a) in
which he first put forward the proposal of “light quanta” (later identified with
point-like particles, photons). The Nobel Prize given to him in 1921 was based
on this paper. As we shall see, this research was in the area of blackbody11One can find an authoritative account of the

quantum postulate resulting from the study of
blackbody radiation in Kuhn (1978).

radiation. This chapter gives the highlights of the relevant background, starting
with the work by Gustav Kirchhoff (1824–87), Josef Stefan (1835–93), Ludwig
Boltzmann (1844–1906), and especially the displacement law by Wilhelm
Wien (1864–1928). Finally, all this led to the epoch-making research by Max
Planck (1857–1947), who first arrived at the idea of the quantum of energy.
Beyond the photoelectric paper, we shall also study Einstein’s 1907 work on
the quantum theory of specific heat, his first discovery of wave–particle dual-
ity in 1909, his 1916 papers on the absorption and emission of radiation, and
his 1924 work on Bose–Einstein statistics and condensation. Finally we will
also discuss the Einstein–Bohr debate, explaining why Einstein felt such aver-
sion to the orthodox interpretation of quantum mechanics advocated by the
Copenhagen School led by Niels Bohr (1885–1962).

The famous 1905 paper on light quanta (to be discussed in detail in
Chapter 4) had the title On a heuristic point of view concerning the produc-
tion and transformation of light. That in 1905 Einstein regarded the quantum
idea as being “heuristic”—as a provisional method to learn and to study—is of
course to be expected. But it is interesting to note that, all the way till the end
of his life in 1955, he still viewed quantum theory as a provisional, that is, an
incomplete theory.

3.1 Radiation as a collection of oscillators

In this Part II on quantum theory we shall at several instances make use of the
understanding that radiation can be thought of as a collection of simple har-
monic oscillators. This connection is valid both at the classical as well at the



3.1 Radiation as a collection of oscillators 33

quantum levels. That the oscillator energy is proportional to the oscillator fre-
quency under an adiabatic change (Section 3.5.1) and that radiation pressure is
one-third of the radiation energy density (Section 3.5.2) are the classical radi-
ation properties we shall use in deriving some of the basic properties of thermal
radiation: the Stefan–Boltzmann relation and the Wien displacement law. This
perspective of radiation as a collection of quantum oscillators also provides
us with a simple understanding of some of the basic features of quantum field
theory, as we shall discuss in Section 6.4.

We recall that the essential feature of oscillator dynamics is that the energy
required to produce a displacement from the equilibrium position is propor-
tional to the square of the displacement itself. Namely, the potential energy
of an oscillator is U = 1

2 kx2. This is also true for the electromagnetic field.
The energy in any mode of oscillation is proportional to the square of the field
strength (a ‘displacement’ from the normal state of field-free space). This is
the physics of the statement that radiation is a collection of oscillators. Next
we demonstrate this connection mathematically.

3.1.1 Fourier components of radiation obey harmonic
oscillator equations

Maxwell’s equations lead to the electromagnetic wave equation. For definite-
ness we shall write the wave equation2 2See the further discussion in Section 9.2.1.

For a compact derivation of the wave equa-
tion in the 4D spacetime formalism, see
Section 16.4.1. To derive (3.1) we have
taken the “Lorentz gauge” ∂μAμ = 1

c
∂�
∂t +∇ · A = 0. In fact we can further pick the

“radiation gauge”: � = 0 and ∇ · A = 0.
Similarly we could have written the wave
equation in terms of the fields (E, B). For our
discussion of a field as a collection of oscil-
lators, whether we work with (E, B) or A is
quite immaterial.

in free space in terms of the vector
potential A (with the magnetic field given by B = ∇ × A, and the electric field
by E = −∇�+ 1

c
∂A
∂t ):

1

c2

∂2A
∂t2

−∇2A = 0. (3.1)

We now make a Fourier expansion3

3Recall that the solution to the wave equa-
tion can be any waveform A(r, t) as long
as the dependence on (r, t) is through the
combination of (k · r± ωt) with angular fre-
quency ω = ck, the light speed c times the
wavenumber k. Fourier decomposition is just
a convenient way to display the solution as a
sum of sine and cosine functions.

of A(r, t):

A(r, t) = 1√
V

∑
k,α

(
ε̂

(α)
k Aα(k, t) eik·r + ε̂

(α)∗
k A∗α(k, t) e−ik·r

)
(3.2)

where ε̂
(α)
k is the polarization (unit) vector, α being the polarization index4

4The radiation gauge condition ∇ · A = 0
requires ε̂

(α)
k · k = 0, which corresponds to

the fact that there are only two independent
polarizations.

α = 1, 2; the volume factor V is required for normalization. Aα(k, t) are the
Fourier components for the wavevector k and polarization α. When we plug
this decomposition (3.2) into the wave equation (3.1), the spatial derivatives
have the effect of (the wavenumber k being the magnitude |k|)

∇2A(r, t) �⇒ −k2Aα(k, t) = −ω
2

c2
Aα(k, t).

Thus the wave equation (3.1) turns into

1

c2

∑
k,α

(
∂2

∂t2
+ ω2

)
Aα(k, t) = 0. (3.3)

Since Fourier components are independent, the above expression shows that
each of them must obey the simple harmonic oscillator equation5

5A familiar example is a particle moving
under the restoring force f = −κx where κ is
the spring constant. This leads to the equa-
tion of motion mẍ = −κx or

(
∂2

t + ω2
)

x = 0
(with ω2 = κ/m) just as in Eq. (3.3).

(having
angular frequency ω) with solution Aα(k, t) = Aα,ke−iωt. Namely, A(r, t) is a
superposition of plane waves, exp[i(k · r−ωt)] with ω = ck. Thus, already at
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the classical level, we can say that electromagnetic waves are a collection of
harmonic oscillators each characterized by (k,α). In later chapters we shall
quote this result in the simplified form of ignoring the polarization vector
by saying that the field is a plane wave with amplitude A and phase factor
φ = (k · r−ωt):

A(r, t) = Aeiφ . (3.4)

3.2 Thermodynamics of blackbody radiation

The quantum idea originated from the study of blackbody radiation. When
heated, a body (e.g. a tungsten filament) emits electromagnetic radiation at a
rate that varies with the temperature. When in thermal equilibrium with its
surroundings, a body emits and absorbs at the same rate. A convenient way to
study such equilibrium radiation is to investigate the radiation inside a cavity
heated to a given temperature. One observes the radiation through a small hole
in such an enclosure. This situation, in which the radiation once absorbed into
the cavity through the hole has little chance of being reflected back out again,
is similar to that of a perfect absorber (a blackbody). Such cavity radiation has
come to be called blackbody radiation.

3.2.1 Radiation energy density is a universal function

Let us denote the cavity radiation energy density by ρ—namely it is the energy
per unit volume, per unit radiation frequency ν. A priori we would expect it be
a function of temperature T , and the frequency of radiation ν, as well as the
cavity shape and material. However, in 1860 Kirchhoff used the second law
of thermodynamics to show that such radiation was independent of the shape
and material of the cavity, and so ρ = ρ(T , ν) only (Kirchhoff 1860). This
simplification greatly stimulated people’s interest in the problem of blackbody
radiation.

Most of us know of Kirchhoff’s law of electric circuits. Actually Kirchhoff
was also one of the founding fathers of spectroscopy (three laws are named
after him in that area as well). This prompted physicist/historian Abraham Pais
(1918–2000) to remark that, if we regard Planck, Einstein, and Bohr as the fath-
ers of quantum theory, then Kirchhoff can be said to be the grandfather. While
Planck and Einstein pioneered the idea of quanta from the study of blackbody
radiation, it was Kirchhoff’s work on spectroscopy (passing through Balmer
and Rydberg) that allowed Bohr to come up with his atomic model that was
decisive in launching the quantum theory in 1913.

Fig. 3.1 Two cavities A and B (having differ-
ent shapes and made of different material) are
connected through a hole and reach thermal
equilibrium with equal temperature TA = TB.

Here we outline Kirchhoff’s proof that blackbody radiation energy densities
are universal functions. Consider the cavities in Fig 3.1: one is large while the
other is small, one is in the shape of a sphere while the other is in the shape
of a cube, one is metallic while the other is ceramic—in other words, the two
cavities differ in volume, shape, and material composition. Let these two cav-
ities, call them A and B, be connected through a hole. When they reach thermal
equilibrium, we must have TA = TB. In such a situation the energy densities
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u = ∫ ρdν (i.e. the total density from summing over all frequencies) must be
equal, uA = uB, because otherwise their radiation fluxes would be different,
leading to TA �= TB, which is forbidden by the second law of thermodynam-
ics. In fact, a moment of reflection also makes it clear that the equality of
duA(T) = duB(T), being ρA(ν, T)dν = ρB(ν, T)dν, implies the equality of the
density functions ρA(ν, T) = ρB(ν, T) as well.

3.2.2 The Stefan–Boltzmann law

From Kirchhoff we learnt that energy densities u and ρ are universal functions
u(T) and ρ(T , ν). What are these universal functions? The first problem was
solved in the form of the Stefan–Boltzmann law:

u(T) = aSBT 4, (3.5)

where aSB is a constant, the Stefan–Boltzmann constant.6 6The Stefan–Boltzmann law can eventually
be derived from Planck’s distribution with the
Stefan–Boltzmann constant aSB expressed
in terms of Boltzmann’s constant kB and
Planck’s constant h.

It was first obtained
from experimental observation by Josef Stefan, and was then proven on the-
oretical grounds by his student Ludwig Boltzmann (Stefan 1879; Boltzmann
1884).

Consider a volume V of radiation at temperature T; the entropy S is related
to the heat function Q by dS = dQ/T . When combined with the first law, dQ =
dU + pdV , this leads to

dS = dU

T
+ p

dV

T
. (3.6)

Since radiation energy U is the product of energy density (a function of T) and
volume, U = u(T)V , we have dU = udV + V(du/dT)dT , and since radiation
pressure is related7 7See SuppMat Section 3.5.2 for a proof.to energy density by p = u/3, Eq. (3.6) becomes

dS = u

T
dV + V

T

du

dT
dT + u

3T
dV = 4u

3T
dV + V

T

du

dT
dT . (3.7)

The entropy S being a function of V and T ,

dS =
(
∂S

∂V

)
T

dV +
(
∂S

∂T

)
V

dT , (3.8)

a comparison of this to the expression for dS in Eq. (3.7) leads to(
∂S

∂V

)
T

= 4u

3T
, (3.9)

(
∂S

∂T

)
V

= V

T

du

dT
. (3.10)

The second derivative
(
∂2S/∂V∂T

)
can be obtained by differentiating: i.e.

taking ∂/∂T of (3.9) or ∂/∂V of (3.10). Equating these two expressions, we
have

4

3T

du

dT
− 4

3

u

T2
= 1

T

du

dT
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or

du

dT
= 4

u

T
or

du

u
= 4

dT

T
. (3.11)

Integrating both sides, we obtain the result ln u = ln T4+ constant, or

ln
(
uT−4

) = constant, (3.12)

which is the Stefan–Boltzmann law88It is also useful to get a qualitative under-
standing of this T4 result from the picture
of blackbody radiation as a gas of photons.
At temperature T , most of the photons have
energy � kT . Namely, most of the photons
have momentum p′ � kT/c. In the photon
momentum space these photons are contained
in a spherical volume (with radius p′) ∝ T3.
In this way we see that the total photon energy
in the phase space is a quantity proportional
to T4 times the (position space) volume, or
the energy per unit volume ∝ T4.

(3.5).

3.2.3 Wien’s displacement law

All the attention was now on the density distribution ρ(T , ν). The first
breakthrough was made in 1893 by Wilhelm Wien in the form of Wien’s
displacement law (Wien 1893). It was again based on electromagnetism and
thermodynamics; but the reasoning relied on dimensional analysis as well.
This displacement law Eq. (3.21) allowed one to reduce the function of two
variables ρ(T , ν) to a function of one variable f (ν/T), thus greatly simplifying
the task of eventually discovering the correct form of the radiation density.

Derivation of Wien’s displacement law
As we have already shown, even at the classical Maxwell theory level, radiation
(i.e. electromagnetic waves) can be regarded as a collection of simple harmonic
oscillators. For a given temperature the density ρ is defined as

du = ρ(ν, T)dν = N(ν)U(ν, T)

V
dν (3.13)

where N is the number of oscillators having frequency ν, U is the energy of a
radiation oscillator, and V is the volume (with no loss of generality, we take
the volume to be a cube with side-length L). Now consider how various terms
scale under an adiabatic change of volume V −→ V ′, thus L −→ L′.

1. We first consider the scaling property of the density ρ with respect to
the radiation frequency. Since the total number of oscillators does not
change, we have:

N(ν)dν = N′
(
ν ′
)

dν ′. (3.14)

Because frequency is the inverse of wavelength which scales with length
ν ∼ L−1, from (3.14) we must have N ∼ L,

N

N′ =
L

L′
. (3.15)

Similarly, because radiation energy (whether classical or quantum) scales
with frequency,99That the ratio of radiation energy to fre-

quency is an adiabatic invariant is shown in
SuppMat Section 3.5.1.

we also have

U

U′ =
L′

L
. (3.16)



3.2 Thermodynamics of blackbody radiation 37

Thus the combination NU is an adiabatic invariant and we can then
conclude that the density ρ scales as the cubic power of the frequency,

ρ

ρ ′
= UN/V

U′N′/V ′
=
(

L′

L

)3

=
( ν
ν ′
)3

. (3.17)

2. We now consider the temperature dependence of ρ(ν, T). The energy
density differential du should scale in the same way as u, which
by the Stefan–Boltzmann law (3.5) has a fourth-power temperature-
dependence:

du

du′
=
(

T

T ′

)4

. (3.18)

On the other hand, from u = ∫ ρdν and (3.17) we have

du

du′
= ρdν

ρ ′dν′
=
( ν
ν ′
)3 ( ν

ν ′
)
=
( ν
ν ′
)4

. (3.19)

Comparing Eqs. (3.18) and (3.19), we see that the ratio ν/T is invariant
under this adiabatic change:

ν

T
= ν ′

T ′
. (3.20)

Finally, in order for the density function ρ(ν, T) to satisfy both (3.17) and
(3.20), we must have Wien’s displacement law

ρ(ν, T) = ν3f
( ν

T

)
(3.21)

where f (x) is some one-variable function. As we can see that by using (3.20),

ρ(ν, T)

ρ (ν ′, T ′)
= ν3f (ν/T)

ν ′3f (ν ′/T ′)
= ν3

ν ′3
,

we have a result consistent with (3.17). This “displacement law” allows one to
deduce the radiation distribution at all other temperatures once one knows the
distribution at one temperature.

Fig. 3.2 Blackbody radiation spectrum dis-
tribution, peaked at νmax ∼ T . The three
density curves for temperatures of 200 K,
250 K, and 300 K have maxima around
the frequencies 1.2, 1.5, and 1.8× 1014 Hz,
respectively.

For a consistency check, we should confirm that the Stefan–Boltzmann law
(3.5) can be recovered from the displacement result (3.21):

u(t) =
∫
ρ(ν, T)dν =

∫
ν3f
( ν

T

)
dν = aSBT4 (3.22)

with the Stefan–Boltzmann constant given by the integral

aSB =
∫

x3f (x) dx. (3.23)

The peak of the radiation distribution scales linearly
as temperature
Now for each value of temperature, ρ(ν, T) can be plotted as a curve varying
with frequency ν. It is observed (see Fig. 3.2) that each curve peaks at some
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frequency νmax. Wien’s displacement law (3.21), as we shall immediately show,
has the corollary of

νmax

T
= constant. (3.24)

The constant here simply means some definite number. Thus, when the temper-
ature rises, the position of the maximum of the distribution is displaced towards
higher frequencies in proportion to T . The proof of (3.24) goes as follows. The
first derivative of ρ vanishes at ν = νmax; from Wien’s displacement law (3.21),
we have

3ν2
max f

(νmax

T

)
+ ν3

max

T
f ′
(νmax

T

)
= 0

with f ′(x) = df /dx. This is a differential equation xdf /dx+ 3f = 0 of one
variable (x = νmax/T), having some solution as displayed in (3.24).

The measured Wien’s displacement constant of (3.24) is commonly
expressed in terms of the wavelength at the peak (namely the dominant
component of the radiation)

λmaxT = 0.2897 cm · K � 3× 10−3 m · K.

• The 3 K cosmic background radiation peaks in the microwave range
λmax � 10−3 m, hence is often referred to as the cosmic microwave
radiation.

• The temperature on the surface of the sun is about T� � 6× 103 K; thus
it peaks around λmax � 0.5× 10−6 m = 500 nanometer. Our eyes have
evolved to be sensitive to this range of the electromagnetic spectrum—
the visible range.

• The basic feature that underlies the greenhouse effect is the following:
Visible light at a few hundred nanometers easily passes through the
glass of a greenhouse. It is absorbed and re-emitted at room temperat-
ure around 300 K, corresponding to a wavelength of λmax � 10−5 m, or a
thousand nanometers or so. This is in the infrared range and cannot easily
get through the greenhouse glass windows.

3.2.4 Planck’s distribution proposed

Since 1895 Max Planck had moved the focus of his research from thermody-
namical investigation to the problem of resonant scattering of an electromag-
netic wave by an oscillator and furthermore to blackbody radiation. He had
written a whole series of papers on these subjects. The ultimate goal of his pro-
gram was an explanation of irreversibility for conservative systems and, as a
by-product, an understanding of the blackbody radiation spectrum distribution.

Following his derivation of his displacement law (3.21), Wien proposed in
1896 a specific distribution that fitted the then known experimental data rather
well:

ρ(ν, T) = αν3 exp
(
−β ν

T

)
, (3.25)
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where α and β are two constants.10 10As we shall see, the constants α and β are
to be related to Boltzmann’s constant kB and
Planck’s constant h.

However, by 1900 H. Rubens (1865–1922)
and F. Kurlbaum (1857–1927) were able to extend the experimental observa-
tion down to the infrared regime, finding that Wien’s distribution no longer
gave a good match to the newly acquired data.11 11Rubens and Kurlbaum (1900) in agreement

with earlier data by Lummer and Pringsheim
(1900).

As soon as Planck was made
aware of this new development, this discrepancy, he proposed his distribution:

ρ(ν, T) = αν3

exp(βν/T)− 1
. (3.26)

Although some of his previous investigations had suggested this as the next
simplest possibility (after Wien’s distribution) for radiation entropy increase,
what Planck did was basically guesswork—only with the constraint that it
reduced to Wien’s distribution for large ν/T . Remarkably, this new distribu-
tion (3.26), the Planck distribution, fitted all the known blackbody radiation
data perfectly. Planck first presented this new radiation law in a meeting of the
German Physical Society on October 19, 1900 (Planck 1900a).

3.3 Planck’s investigation of cavity
oscillator entropy

After this phenomenological triumph, Planck immediately set out to discover
the physical significance of this success. For this purpose he needed to study the
cavity-wall molecules absorbing and emitting radiation in achieving thermal
equilibrium. Recalling Kirchhoff’s theorem stating that the cavity radiation
energy density is independent of cavity size, shape, and material composition,
Planck considered the case of a cavity wall being a collection of oscillators,
which absorb and emit electromagnetic radiation. This simple model of the
cavity molecules allowed him to study the blackbody radiation as resulting
from the oscillator/radiation interaction.

3.3.1 Relating the oscillator energy to the radiation density

We first present a result obtained by Planck (1900b) relating the radiation
energy density ρ(ν, T) in an enclosure to the time-averaged energy U(ν, T)
of a cavity oscillator12 12As we shall explain in Section 4.1.3, U

should be correctly interpreted as the average
energy of a radiation oscillator, rather than a
cavity-wall oscillator as first done by Planck.
We shall not discuss Planck’s derivation and
refer the interested reader to Pais (1982,
p. 369) and Longair (2003, p. 305–314) on
this subject.

with the same frequency ν bathed in the radiation field:

U(ν, T) = c3

8πν2
ρ(ν, T). (3.27)

This is sometimes call Planck’s law. It was obtained in 1899 by Planck through
an electromagnetic calculation in the context of a specific model of reson-
ant scattering of an oscillator. Remarkably the result, connecting the radiation
density ρ to the average energy of the cavity oscillator, is independent of any
properties (its mass, charge, etc.) of the oscillator. Plugging the distribution of
(3.26) into (3.27), we have

U = c3

8π

αν

exp(βν/T)− 1
. (3.28)
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This is Planck’s distribution expressed in terms of the energy (per unit
frequency) of an oscillator state.

3.3.2 The mean entropy of an oscillator

In order to understand the physical significance of (3.28), Planck used a
thermal and statistical approach. This was in contrast to other workers in the
field who had concentrated on the temperature dependence of the spectral
energy. Based on his previous thermodynamical work with Wien’s distribution,
Planck found an expression for the entropy of a cavity oscillator that is equival-
ent to Planck’s distribution given above. Keep in mind that entropy and energy
are additive functions of state. We can work with a single oscillator as well as
an ensemble of them, and the obtained properties can be easily translated back
and forth between them.

Let us first simplify the notation by replacing the two constants α and β in
(3.28) by their linear combinations, denoted by κ and ε:

c3

8π
αν = ε and βν = ε

κ
(3.29)

so that the Planck distribution takes on the form

U = ε

exp(ε/κT)− 1
. (3.30)

This relation can be inverted as an expression for the temperature:

exp
( ε

κT

)
=
(

1+ ε

U

)
, or

1

T
= κ

ε
ln
(

1+ ε

U

)
. (3.31)

One wishes now to find the equivalent result expressed in terms of the entropy
using the relation between entropy, energy, and temperature, dS = (dU)/T
when the volume is fixed. In this way we obtain the differential of the entropy

dS = 1

T
dU = κ

ε
ln
(

1+ ε

U

)
dU = κ

ε
[ln(U + ε)dU − ln UdU].

Up to an inconsequential constant, the entropy can be deduced by a straight-
forward integration

∫
ln xdx = x ln x− x:

S = κ

ε
[(U + ε) ln(U + ε)− U ln U],

or

S = κ

[(
1+ U

ε

)
ln

(
1+ U

ε

)
− U

ε
ln

U

ε

]
. (3.32)

To recapitulate, this result for entropy is equivalent to the Planck spectral law.
One can easily check this by a simple differentiation dS/dU = 1/T to show
that the relations of (3.31) and (3.30) are recovered. The constants (κ , ε) are
directly related to (α,β); in particular as in (3.29):

κ = c3

8π

α

β
, (3.33)
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and its product with the constant β is another constant,

h = βκ = c3

8π
α so that ε = hν. (3.34)

The following discussion will reveal the physical significance of the parameters
ε, h, and κ .

3.4 Planck’s statistical analysis leading
to energy quantization

3.4.1 Calculating the complexion of Planck’s distribution

Recall that the entropy constructed in the above discussion is that for a single
oscillator. Planck now proceeded to a thermodynamical and statistical study by
considering a system of N independent copies of such an oscillator. Since U of
(3.30) and the entropy S of (3.32) are average values, the total energy UN and
entropy SN of the whole system can be obtained by a simple multiplication:

UN = NU and SN = NS. (3.35)

Having this thermodynamic, i.e. macroscopic, description of the system in
terms of UN and SN , we proceed to decipher the physical meaning of such
a depiction.

Boltzmann’s principle
One of Boltzmann’s great achievements was his showing that the second law of
thermodynamics was amenable to precise mathematical treatment—the macro-
scopic notion of entropy SN could be related to a counting of the corresponding
microscopic states, the “complexions” WN :

SN = kB ln WN or S = 1

N
kB ln WN (3.36)

where kB is Boltzmann’s constant.13 13An interesting bit of history: Boltzmann
actually never wrote down this famous equa-
tion S = kB ln W, although such a relation
was implied in his study of ideal gases. It
was first done by Planck, and it was Einstein
who first called it, in 1905, the “Boltzmann
principle”. Also, the constant kB was first
introduced by Planck, and not by Boltzmann.

Planck now asked: what would be the microscopic statistical description
that corresponded to the entropy just obtained for the radiation distribution?
The hope was that an expression for the statistical weight WN that matched
the entropy of (3.32) would provide him with a deeper understanding of the
physical meaning of Planck’s distribution. Planck did find such an account of
the microstates (Planck 1900b, 1901). But, in order for it to match the entropy
result, he had to undertake, what he later described (Planck 1931) as, a “desper-
ate act”, to postulate that the energy of an oscillator (or the energy transmitted
by the oscillators) was quantized—energy could only be transmitted in dis-
crete packets. As it turns out, the packet of energy is just the quantity ε that
first appeared in Eq. (3.32). If we denote the total number of energy packets
(energy quanta) in this system of N oscillators by P, then

UN = NU = Pε. (3.37)
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Planck computed the complexion as the number of ways these P packets of
energies

(
ε′s
)

can be distributed among N oscillators. In Planck’s calculation,1414This is the description given by Planck in
the first edition of his book The Theory of
Heat Radiation.

“no regard is given to which energy packets, but only how many energy
packets are assigned to a given oscillator”. One can picture this as comput-
ing the different ways of distributing P identical balls into N boxes. It is
just the number of permutations of P balls (•) and N − 1 partition walls (�):
• • •| ••| • • • • • • •| • . . . , which leads to the expression of the probability

WN = (P+ N − 1)!
P !(N − 1)! �

(P+ N)!
P !N! . (3.38)

This gives rise to an entropy according to (3.36):

S = 1

N
kB ln WN = 1

N
kB {ln[(P+ N)!]− ln(P !)− ln(N !)} .

Applying Stirling’s formula for large X,

ln(X!) = X ln X − X, (3.39)

we have

S = 1

N
kB {(P+ N) ln(P+ N)− (P+ N)− P ln P+ P− N ln N + N}

= kB

{(
P

N
+ 1

)[
ln

(
P

N
+ 1

)
+ ln N

]
− P

N

[
ln

P

N
+ ln N

]
− ln N

}
.

All terms proportional to ln N cancel; the expression for the entropy is then
simplified to

S = kB

[(
1+ P

N

)
ln

(
1+ P

N

)
− P

N
ln

P

N

]
, (3.40)

which reproduces Planck’s entropy of (3.32) when we identify κ = kB, and the
number of quanta per oscillator by the relation (3.37): P/N = U/ε. This was
how Planck derived his distribution law. In this way we see that the parameters
we encountered in this discussion have the physical interpretation of

ε = energy quantum

κ = Boltzmann’s constant kB

h = Planck’s constant.

Energy quantization and Planck’s distribution
With the identification of βκ as Planck’s constant h, Eq. (3.29) can be seen as
the famous Planck relation for energy quantization1515We shall often use the common notation of

h̄ ≡ h/2π . In this way the quantum of energy
becomes ε = h̄ω, with ω being the angular
frequency ω = 2πν.

ε = hν. (3.41)

Planck’s distribution (3.30) can now be written as

U = hν

exp(hν/kBT)− 1
(3.42)
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and the radiation density function (3.26) in the more familiar form16 16One should thus keep in mind that the often
quoted expression (3.43) of Planck’s distri-
bution is composed of two parts: the aver-
age oscillator energy as given in (3.42) and
the radiation density distribution of (3.26)
through their relation as given by (3.27).

ρ = 8πh

c3

ν3

exp(hν/kBT)− 1
. (3.43)

Planck’s formula can fit all the blackbody radiation data perfectly. One of
the most impressive encounters between theory and experimental observation
was the discovery of the cosmic microwave background radiation (CMBR),
which is the relic radiation from the era of thermal equilibrium between
radiation and matter soon after the universe’s big bang beginning. The CMBR
was observed to follow perfectly the Planck distribution with a temperature
of T = 2.725± 0.002 K, to the extent that, when the observational data were
plotted on paper, the error bars were less than one-hundredth of the width of
the distribution curve itself (Mather et al. 1994), see Fig. 3.3.

Planck’s analysis was at variance with Boltzmann’s
statistical method
It should be pointed out that Planck’s statistical derivation of the complexion
WN differs from what Boltzmann would have done.17 17Another problematic aspect of Planck’s

derivation concerns its logical consistency.
Energy quantization was the conclusion he
drew from his distribution. Its derivation
relied on the energy density relation (3.27),
which was derived using classical radiation
theory with the implicit assumption of con-
tinuous energy variation.

First of all, Planck did
not suggest population from which a probability could be defined. His iden-
tification of the statistical weight (3.38) was stated without first giving an
independent definition of this quantity. Namely, he simply defined his prob-
ability as the expression (3.38). The proper Boltzmann statistical analysis will
be reviewed in Section 7.2.1 when we introduce the Bose–Einstein statistics.
The ultimate justification of Planck’s derivation would not come about until
the advent of modern quantum mechanics, with its notion of identical particles
and Bose–Einstein quantum statistics. We shall return to this question “why
did Planck find the right result” in Section 7.6.
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] Fig. 3.3 Measurement by the FIRAS instru-
ment on the COBE satellite showing that the
cosmic background radiation spectrum fitted
the theoretical prediction of blackbody radi-
ation perfectly. The horizontal axis is the
wavenumber or 1/[wavelength in cm]. The
vertical axis is the power per unit area per
unit frequency per unit solid angle in mega-
janskies per steradian. 1 jansky is 10−26

watts per square meter per hertz. In order to
see the error bars they have been multiplied
by 400; but the data points are consistent
with the radiation from a blackbody with
To = 2.725 K. Data from Fixsen et al. (1996).
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We note that Planck was not the first one to invoke a discrete energy unit.
Boltzmann, for example, had resorted to such a calculational device in his dis-
cussion of an ideal gas, but the energy element ε was always set to zero at the
end of the calculation to recover the continuous energy distribution. Planck,
however, found that his entropy formula could fit the experimental data only if
the energy packet was nonvanishing and proportional to the radiation frequency
ν as given in (3.41).

3.4.2 Planck’s constant and Boltzmann’s constant

Although at first Planck was reluctant to assign physical significance to his
energy quantum, he immediately attached great importance to the new con-
stant h. Namely, while he was not ready to suggest that a quantum revolution
was in the making, he was convinced the quantum h signified a new important
development in physics. He noted that the radiation spectral distribution led to
an accurate determination of Boltzmann’s constant kB.

Boltzmann’s constant and Avogadro’s number
By fitting the experimental data to his distribution, Planck was able to find the
numerical values of two constants: Planck’s constant and Boltzmann’s constant

(α,β) −→
Eqs. (3.33) + (3.34)

(h, kB).

In fact Planck’s determinations of kB and Avogadro’s number NA (through the
relation kBNA = R, the gas constant) were by far the most precise values com-
pared to those obtained by the kinetic theory of gases throughout the nineteenth
century. Because of this success, Planck was convinced that his quantization
relation was of fundamental significance, even though he thought Eq. (3.41)
was only a formal relation and saw no need for a real quantum theory of radi-
ation and matter of the kind that Einstein was to propose. In fact, Planck did not
believe the photon idea for at least 10 years after its initial introduction in 1905.

Planck’s constant and an absolute system of units
Planck’s constant h has the unit of action, i.e. (distance × momentum), or
(energy × time). Thus, h is often referred to as the quantum of action. The
product hc having the dimension of (energy × length) is a convenient factor to
use in converting different units.1818As an example, we can use this conversion

factor to arrive at Planck’s mass: Gravitation
potential energy being GN × (mass)2/r, the
product of (energy× distance) over Newton’s
constant has the dimension of mass squared;
we see that Planck’s mass can be defined as
the square root of hc/GN.

Planck noted in particular that this new constant h, when combined with
Newton’s constant GN and the velocity of light c, led in a natural way to defin-
ing the units of mass, length, and time, independent of any anthropomorphic
origin. We have the Planck system of units

Planck mass mP = √hc/GN

Planck length lP =
√

hGN/c3

Planck time tP =
√

hGN/c5.

Incorporating Boltzmann’s constant kB, one can also define the natural unit
for temperature, Planck’s temperature TP = k−1

B

(
hc5/GN

)1/2
. This system of
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units, truly independent of any body or substance, or culture, deserves the
name ‘natural units’. As physics has developed (to be explained in the sub-
sequent chapters of this book), we now understand that these three fundamental
constants, h, c, and GN, are also the basic conversion factors that allow us to
connect apparently distinct types of physical phenomena: wave and particle,
space and time, energy and geometry. Albert Einstein made essential contri-
butions to such unification results through his work on quantum theory and
special and general relativity.19 19See the index entry under ‘fundamental

constants’ and further discussions in Sections
6.1, 11.4, and 14.4. Our present-day inter-
pretation is that these Planck units are the
natural physical scales for quantum gravity
as the most basic physics theory. We note
the large size of the Planck energy mPc2 =
1.22× 1019 GeV and, correspondingly, the
small sizes of the Planck length and time,
all reflect the weakness of the gravitational
force. For further discussion see Chapters 15
and 17.

3.4.3 Planck’s energy quantization proposal—a summary

Let us reiterate this discussion of Planck’s discovery of energy quantization.
Based on Wien’s theoretical work and on the then newly obtained blackbody
radiation data, Planck made a conjecture of the density distribution (3.26) that
turned out to be a good fit to all the known experimental data. He then pro-
ceeded to seek out the physical significance of this distribution. Through a
thermal and statistical investigation of the cavity oscillators interacting with
the radiation, he was compelled to make the radical proposal that energy was
quantized.

As we have noted, Planck’s statistical steps were problematic. His argument
leading up to (3.38) was not justified in the then known theoretical frame-
work of Boltzmann’s statistical mechanics. Its ultimate rationalization would
not arrive until the advent of modern quantum statistics for identical photons
(Bose–Einstein statistics). Furthermore, Planck’s derivation of the relation
(3.27) was based on a specific model in the framework of classical electro-
magnetism and was not logically consistent with the energy quantization result
he eventually obtained. Rayleigh took the first step towards a correct approach
by counting radiation wave states (as discussed in Section 4.1.3). It was not
until 1923 that Bose derived (3.27) by counting photon states (as discussed in
Section 7.2.2).

What Planck envisioned was not so much the energy quantization of any
(cavity wall) material oscillator but rather the total energy of a large number of
oscillators as a sum of energy quanta of ε = hν. This counting device ε could
not be set to zero if one was to have the correct spectrum distribution. In fact,
for many years Planck himself did not believe the reality of energy quantiza-
tion, and said nothing about the radiation emitted by these material oscillators.
He firmly believed that the emitted radiation was the electromagnetic waves
described by Maxwell’s equations. Even after Einstein’s put forward the idea
of light quanta (Einstein 1905a), Planck resisted it for a long time after its
proposal.

3.5 SuppMat: Radiation oscillator energy
and frequency

In Section 3.1 we presented a calculation showing that even the classical radi-
ation field can be regarded as a collection of simple harmonic oscillators. Here
we first show that each oscillator has energy proportional to its frequency,
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or more accurately we show that the ratio of the oscillator energy and the
oscillator frequency is constant under an adiabatic change. From such consid-
erations one can also show that radiation pressure is one-third of the radiation
energy density.

3.5.1 The ratio of the oscillator energy and frequency
is an adiabatic invariant

The electromagnetic field is a set of simple harmonic oscillators with some
frequency ω = 2πν. We now argue that under an adiabatic deformation—
infinitesimal change of boundary conditions (e.g. slow change of volume of
the container of radiation) the ratio of energy to frequency of each of these
oscillator modes remains unchanged; it is an adiabatic invariant. This is an
example of the general result for any oscillatory system. A rigorous proof
would involve some rather advanced topics in classical physics, such as the
Hamilton–Jacobi equation and action angle variables. Here we shall illustrate
the result with a concrete example of an adiabatic variation of a simple
pendulum2020Our presentation follows that given in

Section 1.5 in Tomonaga (1962).
so that the deformation and the resultant change can be easily

understood.

Fig. 3.4 Adiabatic change of a simple pen-
dulum. As the string is slowly shortened (say,
by a pulley at P), the oscillation energy and
oscillation frequency will increase, but their
ratio stays invariant.

The simple pendulum
The pendulum has a mass m at the end of a weightless string of length l making
an angle θ with the vertical (Fig. 3.4). Pivoting at the other end of the string,
it has a moment of inertia I = ml2. The oscillation is driven by gravity, with a
torque τ = lmg sin θ where g is the acceleration of gravitation. The equation
of motion Iθ̈ = τ can be written out for small angles

l2θ̈ = −gl sin θ � −glθ . (3.44)

We have a minus sign because the torque restores the swing back towards the
θ = 0 direction. This is a simple harmonic oscillator equation θ̈ = −ω2θ with
angular frequency

ω =
√

g

l
. (3.45)

It has solution θ = � sin(ωt + φ). The system has kinetic energy

K = 1

2
Iθ̇2 = 1

2
ml 2ω2�2 cos2(ωt + φ), (3.46)

and the (gravitational) potential energy P = mgh, where the height h is
measured against the lowest point of the pendulum swing (see Fig. 3.4)
h = l− l cos θ � 1

2 lθ2 so that

P = 1

2
mglθ2 = 1

2
mgl�2 sin2(ωt + φ), (3.47)
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leading to a constant total energy

U = K + P = 1

2
mgl�2. (3.48)

Adiabatic change of oscillatory energy and frequency
We now consider an adiabatic variation of this simple pendulum. The pendu-
lum is in a state of proper oscillation; the slow deformation of the dynamics
system will be in the form of changing the string length gradually. For def-
initeness, consider the case of the string length being shortened δl < 0 by
exerting a certain tension T on the string. We do it so slowly that the sys-
tem remains in proper oscillation, but the frequency ω and oscillation energy
U will change. We shall show that the rate of frequency change and the rate of
oscillatory energy change are equal so that their ratio remains a constant under
this adiabatic variation.

The frequency variation can be found by a straightforward differentiation of
(3.45), yielding the result

δω

ω
= − δl

2l
. (3.49)

Namely, a shortening of the string length (δl < 0) results in higher frequency.
On the other hand, the variation of oscillatory energy cannot be obtained by

a similar differentiation of (3.48) because we must find a way to separate out
the variation of gravitational potential that’s not oscillating. We do this by com-
puting the work done by the applied tension, averaged over many oscillation
cycles,

δW = −δl 〈T〉 . (3.50)

The tension is to counter the gravitational pull (along the string direction) and
the centrifugal force ma = m(lθ̇ )2l−1:

T = mg cos θ + mlθ̇2 � mg− 1

2
mgϑ2 + mlθ̇ 2. (3.51)

With its time dependence displayed,

T = mg− mg�2

(
1

2
sin2(ωt + φ)− cos2(ωt + φ)

)
= T0 + Tosc,

where we have separated out the oscillatory part from the nonoscillatory force
T0 needed to pull up the weight. The shortening of the string takes place over
many oscillations; the average values of

〈
sin2(ωt + φ)

〉 = 〈cos2(ωt + φ)
〉 =

1/2 lead to 〈Tosc〉 = 1
4 mg�2. We are interested in the variation of oscillatory

energy δU = −δl 〈Tosc〉 = − 1
4 mg�2δl = −Uδl/(2l), thus the variation rate of

δU

U
= − δl

2l
, (3.52)

which is the same as the frequency variation (3.49):

δU

U
= δω

ω
. (3.53)
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Performing the integration on both sides of the equation, we find ln(U/ω) is a
constant, or equivalently, U/ω is an adiabatic invariant.

Result for one-dimensional oscillators in general
We conclude this subsection by consideration of a one-dimensional oscil-
lator having mass m and spring constant k so that the angular frequency is
2πν = √k/m. The oscillator energy U in terms of some generalized position
q and momentum p is

U = p2

2m
+ 1

2
kq2, (3.54)

or, dividing both sides by U,

1 = p2

2Um
+ q2

2U/k
. (3.55)

We recognize this as the equation of an ellipse in 2D momentum–position
phase space, with an area of

J = π
√

2Um
√

2U/k = 2πU

√
m

k
= U

ν
. (3.56)

Since the momentum–position phase space volume2121In more advanced language, the action

angle variable J =
∮

pdq is an adiabatic

invariant.

is adiabatic invariant, so
must be the ratio of oscillator energy to oscillator frequency.

3.5.2 The thermodynamic derivation of the relation
between radiation pressure and energy density

The relation between radiation energy density u and the average pressure p̄ as
exerted by radiation on the wall of its enclosure is

p̄ = 1

3
u. (3.57)

As we shall see, the factor of 3 follows from the fact that our physical space
has three dimensions. Another key input is that the radiation oscillator energy
scales like frequency under an adiabatic change as shown in the previous
section.

We start from the thermal relation (first law of thermodynamics)
dUs = −psdV the system in a state s with pressure ps, energy Us, and volume
V . Thus the mean pressure is

p̄ =
∑

s

n̄sps =
∑

s

n̄s

(
−∂Us

∂V

)
, (3.58)

where n̄s is the average number of modes (you can think of them as Fourier
modes) in the s state. We shall also assume, without loss of generality, that
the volume is a cube with side-length L; namely, V = L3. The radiation energy
of each oscillator mode changes in the same way, under an adiabatic change,
as the inverse wavelength of radiation. The wavelength scales with the length
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dimension of the system L = V1/3. We then have Us = CsV−1/3, with Cs being
some proportionality constant,

∂Us

∂V
= −1

3
CsV

−4/3 = −1

3

Us

V
, (3.59)

which, after substituting into Eq. (3.58), leads directly to the final result:

p̄ =
∑

s

n̄s

(
1

3

Us

V

)
= 1

3V

∑
s

n̄sUs = 1

3V
U = 1

3
u. (3.60)

We note that the key input in this derivation is the 3D nature of our physical
space as well as the fact that the radiation energy scales inversely with respect
to length change U ∼ L−1. This result of p̄ = u/3 will be derived again in
Section 7.5, from the picture of radiation as a gas of photons in a manner
entirely similar to the familiar derivation of the pressure/energy relation in the
kinetic theory of gases.
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• Einstein’s 1905 “photoelectric paper”, where he first proposed the idea
of quanta of light, was concerned mainly with blackbody radiation.

• The radiation density distribution ρ(ν, T), according to Planck, was dir-
ectly related to the average energy of cavity oscillators ρ = 8πν2c−3U.
Einstein applied the equipartition theorem of statistical mechanics
to this average energy U and was the first one to correctly derive
the Rayleigh–Jeans distribution law ρ(ν, T) = 8πν2c−3kBT , which is
the low-frequency limit of Planck’s distribution. We explain why the
sequence of events leading to the establishment of the Rayleigh–Jeans
law could be characterized as “Planck’s fortunate failure”.

• Blackbody radiation is the third area in which Einstein derived
Avogadro’s number from macroscopic measurements.

• While Planck obtained the relation ρ = 8πν2c−3U through an elec-
tromagnetic model of material oscillators, Rayleigh derived it as an
expression for the radiation oscillator energy U, by a counting of wave
states in an enclosure.

• Planck’s distribution gave an excellent account of the experimental data
in their entire frequency range. After showing that its low-frequency
limit had a firm theoretical foundation in classical physics, Einstein
then concentrated on the high-frequency part, the Wien limit law
ρ = αν3 exp(−βν/T), as representing the new physics.

• Like Planck, Einstein tried to find its physical significance through ther-
modynamic and statistical analysis by first translating this distribution
into its corresponding entropy S. Einstein used an elegant method to
find S by first relating the energy density per unit frequency ρ(ν, T)
directly to ϕ(ν, T), the entropy density per unit frequency.

• Unlike Planck, Einstein did not try to interpret the meaning of the
statistical weight W = exp(S/kB) by a direct counting of the possible
microstates. Rather, he investigated W’s volume-dependence, showing
that it had an analogous expression to that for the Joule expansion of an
ideal gas. This allowed him to suggest that in the high-frequency Wien
limit the blackbody radiation could be interpreted as a gas of quanta—
each quantum of radiation (at frequency ν) having an energy of hν. Thus
Einstein set himself against the then entrenched opinion of the physics
community that electromagnetic radiation was composed of waves.
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• At the end of his 1905 paper, he proposed to test this quantum of radi-
ation idea by the properties of the photoelectric effect, the phenomenon
first discovered by Hertz in 1887, which Lenard found in 1902 to have
properties that were difficult to explain based on the wave theory of
light. It took more than a decade of experimentation to confirm these
predicted properties based on the quantum picture of light. In 1921
the Nobel Foundation awarded the physics prize to Einstein, citing his
contribution to our understanding of the photoelectric effect.

As discussed in the previous chapter, stimulated by new observational data,
Planck made essentially a stab-in-the-dark extension of Wien’s distribution for
the blackbody radiation—that turned out to be a good fit to all the experimental
measurements. His attempt to find a deeper meaning of this result through a
thermodynamical and statistical study ended up compelling him to make the
energy quantization proposal. While Planck was reluctant to regard this as an
actual description of reality, Einstein was the first one to take the quantum
idea seriously, and to apply it to the physical system of electromagnetic radi-
ation (Einstein 1905a), and to the theory of specific heat in the following year
(Einstein 1907a). His quantum of light idea led him to explain various fea-
tures of the photoelectric effect (which were first found experimentally by
Philip Lenard (1862–1947) to have surprising properties), and to make pre-
dictions that were confirmed by detailed measurement by Millikan and others.
In fact Einstein himself regarded his March 1905 photoelectric paper as being
more revolutionary than his work on relativity (completed some three months
later).

In the introduction section of his 1905 paper, Einstein wrote of his general
motivation for this investigation. He was dissatisfied by the dichotomy of our
description of matter as composed of particles, while radiation was waves. His
seeking of a more symmetric world picture led him to the idea that under cer-
tain circumstances radiation could also be regarded as a gas of light quanta. It
is interesting to note that Louis de Broglie (1892–1987) was inspired by these
words to propose in 1923 that one could associate a wave to matter particles as
well. This de Broglie wave idea received immediate and enthusiastic support
from Einstein. Erwin Schrödinger (1887–1961) in turn found the reference to
de Broglie’s proposal in one of Einstein’s papers, and this led to his famous
equation for the matter wave.

4.1 The equipartition theorem
and the Rayleigh–Jeans law

Recall that one of Planck’s important contributions to blackbody radiation was
his (electromagnetic) derivation of the relation1

1A proper interpretation of U as the average
energy of a radiation oscillator was first pro-
posed by Lord Rayleigh. The derivation of
Eq. (4.1) by a counting of electro magnetic
wave states will be given in Section 4.1.3. Its
derivation by S. Bose (1924) by a counting
of photon states will be discussed in Section
7.2.2.

ρ = 8πν2

c3
U, (4.1)
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where ν is the radiation frequency, c the speed of light, ρ the radiation density,
and U is the average energy of a cavity-wall oscillator. Einstein pointed out
that classical physics could make a definite statement about this average energy
(Einstein 1905a).

4.1.1 Einstein’s derivation of the Rayleigh–Jeans law

Einstein proceeded in his 1905 paper to apply the equipartition theorem (EPT)
of classical statistical mechanics22See SuppMat Section 4.4 for some intro-

ductory comments on the equipartition the-
orem.

to charged cavity oscillators. Corresponding
to each degree of freedom, a physical system has a thermal energy of 1

2 kBT .
Since a 1D oscillator has two degrees of freedom (DOF)—kinetic and potential
energy—each oscillator should have a thermal energy of

U = kBT , (4.2)

which can then be translated, through Eq. (4.1), into a result for the radiation
density

ρ(ν, T) = 8πν2

c3
kBT . (4.3)

This spectrum distribution, which came to be known as the Rayleigh–Jeans
law, could only fit the low-frequency parts of the observational data, but not the
high-frequency parts. In fact it implied an infinite energy density i.e. suffering
from what Paul Ehrenfest (1880–1933) called the ‘ultraviolet catastrophe’:

u =
∫ ∞

0
ρdν = ∞. (4.4)

While the experimental validity was limited, the theoretical foundation of the
Rayleigh–Jeans law was solid in the context of the known physics at the
beginning of the twentieth century.

Supporting Planck’s determination of kB

The second section of Einstein’s 1905 photoelectric paper had the title of “On
Planck’s determination of the elementary quanta”. By “elementary quanta”
Einstein meant “fundamental atomic constants”. Recall (see Section 3.6.2) that
an important part of Planck’s result was his ability to deduce Boltzmann’s con-
stant kB by fitting the blackbody radiation data to his distribution. But the
theoretical foundation of Planck’s distribution was uncertain. Here Einstein
noted that the physical basis for the Rayleigh–Jeans law was firm and it
could fit the low-frequency data well enough to extract kB as well. Thus
Planck’s determination of Boltzmann’s constant was on more reliable ground
than Planck’s deduction from his own distribution. Since kB was the ratio
of the gas constant R divided by Avogadro’s number NA, Einstein obtained
NA = R/kB = 6.02× 1023. We note that this was the third theoretical proposal
made by Einstein in 1905 of finding Avogadro’s number: his doctoral thesis
involving the study of viscosity of a solution with suspended particles, his
Browning motion paper, and now by way of blackbody radiation.
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4.1.2 The history of the Rayleigh–Jeans law and “Planck’s
fortunate failure”

• June 1900, Rayleigh—Lord Rayleigh (John William Strutt, 1842–1919)
wrote a paper (Rayleigh 1900) applying the equipartition theorem to radi-
ation oscillators directly3 3This is in contrast to Planck’s material cavity

oscillators. More discussion on this issue will
be presented in the next subsection.

and he obtained the result of ρ = C1ν
2T . The

proportionality constant C1 was not calculated. Although this distribu-
tion was consistent with Wien’s displacement law,4

4It is in the form of ρ = ν3f (ν/T) with
f (ν/T) = C1(ν/T)−1.

it failed to account
for all the observational data. He suggested that this should be a “limit
law”: valid only in the limit of low radiation frequency and high temper-
ature (i.e. for small values of ν/T). To avoid the ultraviolet catastrophe
(for large ν/T) he introduced an ad hoc exponential damping factor
ρ = C1ν

2T exp(−C2ν/T).
• October–December 1900, Planck—The Planck spectrum distribution

was discovered; energy quantization proposed two months later. (Planck
1900a, b, 1901).

• March 1905, Einstein—What we now call the Rayleigh–Jeans law was
derived correctly by Einstein. He noted the solid theoretical foundation
of (4.3) and its consequential disastrous divergent radiation density.

• May 1905, Rayleigh again—Rayleigh returned to his ν2T result with
a derivation of the proportional constant C1. But he made a mistake,
missing a factor of 8.

• June 1905, Jeans—Adding it as a postscript to a previously completed
paper, James Jeans (1872–1946) corrected Rayleigh’s error. There’s an
interesting bit of history: Jeans never accepted the idea that (4.3) was only
a limit law. He explained away the incompatibility with experimental res-
ults by insisting that the observed radiation was somehow out of thermal
equilibrium.

• Einstein’s biographer Abraham Pais suggested that Eq. (4.3) should
really be called the Rayleigh–Einstein–Jeans law (Pais 1982, p. 403).

The “popular history” of blackbody radiation as sometimes presented in
textbooks may have left the impression that the Rayleigh–Jeans law preceded
Planck’s work. Somehow the failure of this solid piece of classical physics
(EPT leading to the ultraviolet catastrophe) had forced Plank to make his
revolutionary energy quanta proposal. Actually by temperament Planck was
a very conservative man; the last thing he would want was to be any sort of
revolutionary. The interesting point is that even though Rayleigh’s 1900 paper
did predate Planck’s by six months, somehow Planck failed to take note of this
work. It had been speculated that had he understood the significance of the
Rayleigh–Jeans law (i.e. its solid classical physics foundation5 5This should be qualified with the under-

standing that in those years the general valid-
ity of the equipartition theorem was in doubt.
Before Einstein’s 1906 work, as we shall dis-
cuss in Chapter 5, there was a great deal of
confusion as to EPT’s success in the area of
specific heat.

), Planck would
not have proceeded in proposing his distribution law. This sequence of events
could be characterized as “Planck’s fortunate failure”.

The above-mentioned popular history of the quantum revolution would have
been a better approximation of the actual history if Planck’s name had been
replaced by Einstein’s. In fact it was Einstein who first understood the signific-
ance of the Rayleigh–Jeans law’s inability to describe physical observation.
He concluded that the failure of this piece of solid classical physics in its
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confrontation with experiment meant that one had to alter the classical physics
in some fundamental way. As we shall see, Einstein’s method of arriving at
ε = hν was quite independent of Planck’s approach. (More on this point will
be discussed in Section 5.1.)

4.1.3 An excursion to Rayleigh’s calculation of the density
of wave states

While this chapter mainly concerns Einstein’s 1905 paper on blackbody radi-
ation, we digress in this subsection to discuss the derivation of (4.1) as first
given by Lord Rayleigh. Recall that Einstein followed Planck’s interpreta-
tion of U in (4.1) as the average energy of a cavity oscillator and applied the
equipartition theorem to an ensemble of charged oscillators in equilibrium with
thermal radiation (U = kBT for the kinetic and potential degrees of freedom of
a 1D oscillator). Rayleigh in his 1900 and 1905 papers took a more straight-
forward approach of proceeding directly to thermal radiation itself. In effect he
took U as the average energy (per frequency) of a radiation oscillator. Again
one has U = kBT , now for the two polarization degrees of freedom.

Recall our discussion in Section 3.1 showing that radiation (electromagnetic
waves) can be regarded as a collection of oscillators—what we called radiation
oscillators. This is the same U when we first discussed Wien’s displacement
law. In other words, the Planck relation (4.1) is now interpreted as a statement
about the “radiation density of states” (i.e. the number of states per unit volume
per unit frequency),

ρ = N

V
U with

N

V
= 8πν2

c3
(4.5)

where V is the volume and N the number of radiation states (oscillators).
Here we present Rayleigh’s method of counting radiation wave states

(Rayleigh 1900). Consider an electromagnetic wave in a cubic box V = L3

�nxnynz (x, t) = A sin kxx sin kyy sin kzzeiωt.

It propagates with a speed which is the product wavelength and frequency
c = λν. In the above expansion, ω is the angular frequency (2πν), and ki is the
i-component of wavevector k, which has a magnitude (wavenumber) equal to
2π divided by the wavelength. Since the boundary condition is vanishing amp-
litude at the cubic surface (hence the largest the wavelength can be is twice
the cubic side 2L), the possible wavelengths in any one, say x-direction, are
2L/nx where nx = 1, 2, 3, 4, . . . This decomposition into normal modes in each
direction leads to the wavenumber for 3D space as√

k2
x + k2

y + k2
z = k = 2π

λ
= 2π

2L
n (4.6)

with n =
√

n2
x + n2

y + n2
z , which is related to the wave frequency as

n

2L
= 1

λ
= ν

c
or n = 2L

c
ν . (4.7)
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Thus each wave state is specified by three positive integers (nx, ny, nz) and the
task of counting the number of states is equivalent to counting all the points,
labeled by (nx, ny, nz), in the 3D n-space. Since we have a dense set of points,
this count corresponds to the volume in n-space (Fig. 4.1):

Ndν = 2× 4πn2dn

8
. (4.8)

Here 4πn2 is the surface area of a sphere6

6This is a sphere in n-space—not to be con-
fused with physical space, which in our case
is a cube with side L.

with radius n and the factor of 2
accounts for the two polarization states. We have the factor of 8 in the denom-
inator because the counting must be restricted to the positive quadrant of the
sphere (nx, ny, nz all being positive). This is the factor missing in Rayleigh’s ori-
ginal calculation and subsequently corrected by Jeans. Replacing the variable
n by the frequency ν as in (4.7), we have

N

V
dν = π

V

(
2L

c

)3

ν2dν. (4.9)

Cancelling the volume factor V = L3, we obtain the claimed result for the dens-
ity of states N/V as given in (4.5). In short, Rayleigh’s enumeration of radiation
states involves the counting of the number of standing waves in the enclosure.

Fig. 4.1 The positive quadrant in the 3D
space of wavenumbers. In our notation k is
directly related to n as given in Eq. (4.6).

4.2 Radiation entropy and complexion á la
Einstein

We now discuss how the study of blackbody radiation led Einstein to the
proposal of light quanta.

4.2.1 The entropy and complexion of radiation
in the Wien limit

Einstein noted that his new result (4.3) is just the Planck distribution

ρ(ν, T) = αν3

exp(βν/T)− 1
(4.10)

taken to the limit of small βν/T so that exp(βν/T) = 1+ βν/T + · · · :
ρ(ν, T) −→

small
ν/T

α

β
ν2T . (4.11)

Since the theoretical foundation of the Rayleigh–Jeans law is well-understood
classical physics, the new physics must be represented by the opposite limit of
large ν/T:

ρ(ν, T) −→
large
ν/T

αν3 exp(−βν/T) (4.12)



56 Einstein’s proposal of light quanta

which is Wien’s distribution discussed in the previous chapter. The question
was then: what physics did this Wien limit law represent?

Introducing the entropy density per unit radiation frequency
Seeking the answer to this question, Einstein, like Planck, undertook a thermo-
dynamic and statistical study (Einstein 1905a). Here he used an elegant method
by first relating the energy density per unit frequency ρ(ν, T),

U

V
=
∫
ρ(ν, T) dν (4.13)

to the entropy density per unit frequency ϕ(ν, ρ),

S

V
=
∫
ϕ(ν, ρ) dν. (4.14)

through the equality of

∂ϕ

∂ρ
= ∂S

∂U
= 1

T
. (4.15)

The proof of this relation can be obtained by first showing that the differential
∂ϕ/∂ρ is independent of frequency ν. This follows from the requirement that
entropy must be maximized with the condition of constant energy,

δS− λδU = 0, (4.16)

where λ is the Lagrange multiplier (cf. Section A.4). Integrating over this
relation as in (4.14) and (4.13), we have

V
∫

∂ϕ

∂ρ
dρdν − λV

∫
dρdν = V

∫ (
∂ϕ

∂ρ
− λ

)
dρdν = 0. (4.17)

Since this must be valid for any density distribution, the integrand must also
vanish, yielding the condition ∂ϕ/∂ρ = λ. Thus the differential must be inde-
pendent of radiation frequency ν. We now consider the infinitesimal change of
entropy dS for the system changing from one equilibrium state to another for
the infinitesimal input of energy dU:

dU

T
= dS = V

∫
∂ϕ

∂ρ
dρdν = ∂ϕ

∂ρ
V
∫

dρdν = ∂ϕ

∂ρ
dU, (4.18)

hence the result displayed in (4.15), from which Einstein would deduce the
entropy density per unit frequency ϕ.

The radiation entropy corresponding to the Wien distribution
We first invert the Wien distribution of (4.12) and apply the result of (4.15)

βν

T
= lnαν3 − ln ρ = βν

∂ϕ

∂ρ
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namely, dϕ = 1
βv (lnαv3 − lnρ) dρ so that

ϕ =
∫

dϕ = lnαν3

βν

∫
dρ − 1

βν

∫
ln ρdρ

= ρ

βν
lnαν3 − ρ

βν
ln ρ + ρ

βν
. (4.19)

To reach the second line we have performed an integration by parts of the last
integral in the first line. Thus Einstein found the entropy density corresponding
to Wien’s limit (4.12) to be

ϕ = − ρ

βν

[
ln

ρ

αν3
− 1
]

. (4.20)

Multiplying the density by the volume, we have the entropy when the energy
density ρ is replace by U/V:

S = Vϕ = − U

βν

[
ln

U/V

αν3
− 1

]
. (4.21)

It should be noted that, while Planck worked on the entropy of cavity wall
oscillators [cf. Eq. (3.32)], here Einstein was working on the entropy corres-
ponding directly to the radiation energy density.7 7Apparently Einstein first thought that his

result was very different from that of
Planck’s. In this 1905 paper no reference
was made of Planck’s energy quantization
result. Only upon further investigation in a
year later did Einstein come to the conclu-
sion that their conclusions were compatible.
For further comments, see Section 5.1.

The entropy change due to the volume change
To find the physical significance of this entropy expression, instead of follow-
ing Planck to make a direct counting of microstates, Einstein took the key
step of concentrating on the volume dependence of the entropy change so
that he could implement his idea of comparing this result of radiation with
the corresponding result for an ideal gas. This would allow him to argue for a
particle nature of radiation—the quantum of light. If we make a volume change
V0 −→ V , with energy held fixed, we get from (4.21) the entropy difference of

S− S0 = U

βν
ln

V

V0
. (4.22)

Being in logarithmic form, it is straightforward to extract the complexion
through the Boltzmann relation of S− S0 = kB ln W. In this way Einstein found
the statistical weight W, associated with this volume change,

ln W = U

kBβν
ln

V

V0
or W =

(
V

V0

)U/(kBβν)

. (4.23)

4.2.2 The entropy and complexion of an ideal gas

To interpret radiation as a gas of light quanta, Einstein set out to find the ana-
logous complexion for a volume change of a simple ideal gas. We have the
ideal gas law

pV = nRT (4.24)
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where p is the pressure, n the number of moles, and R the gas constant

n = N
NA

and R = kBNA, (4.25)

N being the number of gas molecules and NA Avogadro’s number so that the
ideal gas law can be written in an even more transparent form as

pV = N kBT . (4.26)

To find the corresponding entropy, we start with its definition in terms of heat
energy change:

dS = dQ

T
= p

T
dV = kBN dV

V
,

where we have used the heat input as dQ = CVdT + pdV at a fixed temperature
dT = 0, and the ideal gas law of (4.26). Integrating both sides of this equation,
we get

S− S0 = kBN ln
V

V0
. (4.27)

This can be related to the statistical weight of an ideal gas associated with a
volume change by the Boltzmann relation S− S0 = kB ln W, leading to

W =
(

V

V0

)N
. (4.28)

4.2.3 Radiation as a gas of light quanta

A comparison of (4.23) and (4.28) suggested to Einstein that blackbody radi-
ation in the Wien limit could be viewed as behaving thermodynamically as if
it consisted of mutually independent quanta, a gas of photons—by turning N ,
the number of gas particles, in (4.28) into the number of light particles given
by (4.23)

N = U

kBβν
. (4.29)

Recall our previous identification in Eq. (3.29) of kBβν = ε, the energy
quantum, with kBβ = h being Planck’s constant. This result can then be
written as88A word about our notation: In the previ-

ous chapter we have used N to denote the
number of cavity oscillators, while here N
is the number of quanta in one oscillator.
Equation (3.32) gives the average energy of
the oscillator as U = (P/N) ε, where P/N is
the number of energy quanta per oscillator.
This is certainly consistent with the present
result of U = N ε.

U = N ε with ε = hν. (4.30)

The system is seen as a collection of quanta with their energy being given by
Planck’s relation. This is how Einstein first argued for a light-quanta descrip-
tion of blackbody radiation in the Wien limit, away from the regime of classical
physics. This was such a brilliant idea on the part of Einstein that, by a compar-
ison of the volume dependence, he could reach this conclusion of light quanta
without committing himself to any uncertain counting scheme of the blackbody
radiation complexion. His revolutionary step is to take this result as suggesting
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that laws of emission and absorption of radiation must be such as to be consist-
ent with a description of light as consisting of such light quanta. In particular
because light could only be emitted and absorbed in integral units of hν, it was
Einstein who interpreted Planck’s result as showing the energy of a resonant
oscillator itself must also be quantized.

4.2.4 Photons as quanta of radiation

After the trail-blazing work of Einstein and others, present-day readers would
naturally identify the light quanta as photons. In the above presentation we
had already referred occasionally to Einstein’s light quanta as photons. Strictly
speaking this would be a misrepresentation of the history. While the 1905 paper
certainly showed that radiation energy must be quantized in the Wien limit, it
would still be some time before Einstein committed himself to the idea of these
quanta as point-like particles. Namely, while Einstein had shown that radiation
in the Wien limit with a quantized energy had a thermodynamical behavior
similar to an ideal gas under volume change, he was not ready to commit him-
self to the proposition that these energy quanta, rather than spread out in space,
were concentrated at point-like sites. He finally came to the corpuscular inter-
pretation, when in 1909 he strengthened this view through the study of energy
fluctuations in radiation. This topic will be discussed in Section 6.1.

In this connection Planck’s constant h in the relation ε = hν can be viewed
as the fundamental physics constant acting as the conversion factor between
radiation and particles.

Fig. 4.2 (a) Photoelectric effect. (b) Electron
kinetic energy spectrum.

4.3 The photoelectric effect

In Sections 7, 8, and 9 of his 1905 paper, Einstein immediately applied his new
quantum idea to several physical situations. Particularly in Section 8, On the
generation of cathode rays by illumination of solid bodies, he put forth his pre-
diction for the photoelectric effect. This is the phenomenon first discovered in
1887 by Heinrich Hertz (1857–94), in which electrons are emitted from mat-
ter (metals and nonmetallic solids, liquids, or gases) as a consequence of their
absorption of energy from electromagnetic radiation of very short wavelength,
such as visible or ultraviolet light (see Fig. 4.2a). Taking into account the
photon energy hν, Einstein was able to deduce immediately the maximum
kinetic energy of the photoelectrons in terms of the incident light frequency:

Kmax = hν −W (4.31)

where W is the work function representing the threshold energy that an
electron must have in order to escape the parent matter. Thus the maximum
cathode ray energy spectrum was shown to be independent of the input light
intensity, explaining the 1902 experimental discovery of Lenard. It has a
linear dependence on the incident light’s frequency that can be represented,
see Fig. 4.2(b), by a 45◦ line in the graphic plot of Kmax vs. hν, independent
of the nature of the substance investigated. Only the number of emitted



60 Einstein’s proposal of light quanta

electrons depends on the intensity. All this was verified through a decade of
experimental measurement by others and by Robert A. Millikan (1868–1953),
who were able to determine Planck’s constant through Eq. (4.31) to an
accuracy of 0.5%. It is interesting to note that Millikan was initially convinced
that Einstein’s light quantum idea had to be wrong, because of the vast body
of evidence that had already shown the wave nature of light. He undertook a
decade-long painstaking experimental program99It required him to build an immaculate labor-

atory in order to prepare the very clean metal
surface of the photoelectrode.

to test Einstein’s theory. His
results confirmed Einstein’s predictions in every detail, but Millikan was not
convinced of Einstein’s interpretation, and as late as 1916 he wrote, “Einstein’s
photoelectric equation . . . cannot in my judgment be looked upon at present
as resting upon any sort of a satisfactory theoretical foundation”, even though
“it actually represents very accurately the behavior” of the photoelectric effect
(Millikan 1916). Thus, in this case, theory was way ahead of experiment. The
whole idea of particles of light was not commonly understood by the physics
community until 1924 when the result of Compton scattering was obtained
(see Section 7.1).

Other applications: Photoluminescence and photoionization
Aside from the application of the light quantum idea to the photoelectric effect,
in Section 7 of Einstein’s paper, one also finds the explanation of the Stokes
rule—the observation that the frequency of photoluminescent emission is less
than the incident light frequency—by energy conservation. In the last Section
9, Einstein also explained why the incident light must have a frequency, hence
energy, greater than the ionization potential of the gas in order for the pho-
toionization of the gas to take place. In this way, in this great Einstein paper
he proposed the quanta of radiation idea and put forward the various means to
test this idea.

4.4 SuppMat: The equipartition theorem

The equipartition theorem follows from the Boltzmann distribution of statist-
ical mechanics. Each degree of freedom corresponds to energy being a quad-
ratic function of position (as in the harmonic oscillator kx2/2) or momentum
(as the kinetic energy p2/2m and rotational kinetic energy L2/2I, etc.):

U = αq2 + βp2

where (q, p) are understood to be the generalized position and momentum. We
then have, from Boltzmann’s principle, the average thermal energy

Ū =
∫

U exp

(
− U

kBT

)
dqdp

∫
exp

(
− U

kBT

)
dqdp

.
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Concentrating on just one degree,

Ū =
∫
αq2 exp

(
−αq2

kBT

)
dq

∫
exp

(
−αq2

kBT

)
dq

= 1

2
kBT

where we have used the Gaussian integral results of Section A.2∫
exp(−ax2) dx =

√
π

a
, and

∫
x2 exp(−ax2) dx = 1

2a

√
π

a
.
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• Einstein’s proposal of light quanta was originally based on the
blackbody radiation in the Wien limit. A year later he came to the con-
clusion that his quantum idea was compatible with Planck’s energy
quanta. He provided a derivation of Planck’s spectrum distribution
that was, when compared to Planck’s deduction, simpler and less
problematic on theoretical ground.

• Einstein argued that the quantum idea should be applicable to thermal
properties of matter, as well as to radiation. His theory of specific heat
is historically important because it clarified the confused situation that
had cast doubt on the kinetic theory of gases and even the molecular
structure of matter. This is also the first instance when the quantum idea
was shown to be relevant to physical systems well beyond the esoteric
case of blackbody radiation.

• We present the Einstein model for the thermal properties of solids, as
well its improvement in the form of the Debye model invoking the
notion of quanta of sound waves (phonons). With these papers, we can
say: the quantum theory of solid state physics has begun.

Soon after proposing the idea of the light quantum, Einstein extended the
application of quantum theory in 1906 to the study of specific heat (Einstein
1907a). It cleared up the confused pattern of specific heats of gases, and came
up with a new theory of specific heats for solids that explained the temperat-
ure dependence observed in some solids. It is important historically as this is
the first instance when the quantum idea was shown to be relevant to physical
systems well beyond the esoteric case of blackbody radiation.

5.1 The quantum postulate: Einstein vs. Planck

It is commonly thought that Einstein’s idea of light quanta came about as an
extension of Planck’s work on the quantum of energy. But a close read of
Einstein’s 1905 paper (as discussed in the previous chapter) clearly shows that
this is not the case. In the last chapter we have seen how Einstein arrived at his
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idea of light quanta with ε = hν by way of a statistical study of Wien’s distri-
bution law of blackbody radiation. This is in contrast to Planck’s calculation
of the complexion W for the Planck spectral distribution, that is at variance
from the then standard statistical mechanical procedure. Planck’s work was
cited in Einstein’s paper (1905a) in two places: 1. (Planck 1900b) for Planck’s
relation (4.1) between oscillator energy and radiation energy density; and
2. (Planck 1900a) for Planck’s distribution as providing the best description of
radiation data. On the other hand, Planck’s energy quantization result (1900b,
1901) was not mentioned at all. In his discussion leading up to light quanta,
Einstein made no use of Planck’s spectrum result nor his statistical counting
method. Significantly, Einstein did not use Planck’s notation h for the quantum
of action (as we did in Chapter 4).1 1A very helpful historical study can be found

in Klein (1977).At the beginning of Einstein’s next paper on the quantum theory (Einstein
1906), after the opening paragraph summarizing his 1905 light quantum pro-
posal, he commented on his attitude towards Planck’s quantum result as
follows: “At that time it seemed to me that in a certain respect Planck’s theory
of radiation constituted a counterpart to my work.” He then stated his change
of opinion after a new analysis of Planck’s work, and concluded: “In my opin-
ion the preceding considerations do not by any means refute Planck’s theory of
radiation; they seem to me rather to demonstrate that, in his radiation theory,
Planck introduced a new hypothetical principle into physics—the hypothesis
of light quanta.” Namely, he and Planck, through different paths, had reached
the same conclusion that the energy of the radiation oscillators were quantized
as ε = hν. (Of course Einstein had gone further by interpreting this to mean
the quantization of the radiation field itself.) A few months later he proceeded
(Einstein 1907a) to give his derivation of Planck’s distribution according to
Boltzmann’s statistics (but without involving any explicit computation of the
statistical weight W).

5.1.1 Einstein’s derivation of Planck’s distribution

Consider the states of a radiation oscillator with its quantized energies: 0,
hν, 2hν, 3hν, . . . , namely, states having different numbers of energy quanta:
εn = nε with ε = hν. According to Boltzmann, the oscillator would have an
average number of quanta given by

〈n〉 =

∞∑
n=0

ne−nε/kBT

∞∑
n=0

e−nε/kBT

= −kBT
d

dε

[
ln

( ∞∑
n=0

e−nε/kBT

)]
. (5.1)

We can easily perform the last sum as it is a simple geometric series,

∞∑
n=0

e−nε/kBT = 1+ e−ε/kBT + e−2ε/kBT + · · · = 1

1− e−ε/kBT
.
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Consequently the average number is

〈n〉 = kBT
d

dε
ln
(
1− e−ε/kBT

) = kBT

1

kBT
e−ε/kBT

1− e−ε/kBT
= 1

eε/kBT − 1
. (5.2)

This immediately leads to the Planck’s expression (3.42) for the average
oscillator energy U = 〈n〉 ε as

U = hν

ehν/kBT − 1
. (5.3)

How did Einstein manage to get this outcome rather
than the expected classical EPT result of U = kBT?
The basic classical assumption of Boltzmann’s statistics would involve
equal probabilities for states having equal phase space volume, i.e. equal
energy. Here Einstein assumed equal probability for all energy states which of
course have different energies: 0, hν, 2hν, etc. We shall return to this point in
Chapter 7 when we discuss the new quantum statistics.22This 1906 derivation by Einstein differs

from Planck’s as well as the later one by
Bose (1924), to be discussed in Chapter 7.
Planck was dealing with cavity-wall oscil-
lators, rather than radiation oscillators. In
Einstein’s approach, nhν is the energy of the
nth state of a single radiation oscillator while
for Bose it is the energy of n photons.

How can the ultraviolet catastrophe be avoided because
of the quantum hypothesis?
In this derivation we see that since the oscillator energy separation between
states is ε = hν, the allowed states of the oscillation modes of very high fre-
quency are widely separated in energy. It takes a great deal of energy to excite
such a mode. But the Boltzmann factor exp(−ε/kBT) of statistical mechan-
ics tells us that the probability of finding a great deal of energy in any one
mode falls off rapidly with the energy. In this way the high-frequency diver-
gence can be avoided. Thus Planck’s energy quantization can lead to a radiation
distribution that avoids the ultraviolet catastrophe.

Einstein then argued that such a result for the oscillator energy should also
be applicable to material oscillators outside the realm of blackbody radiation,
such as atoms in gases and solids. With this observation, he proceeded to clarify
the great confusion that then existed with respect to the applicability of the
equipartition theorem to the study of gases and solids—in fact a confusion that
had clouded the whole notion of a statistical basis for thermodynamics.

5.2 Specific heat and the equipartition theorem

In the statistical mechanics of gases and solids we have the basic theorem
of equipartition of energy. It was a great triumph in explaining the regular-
ity of measured specific heat capacities. Here we are mainly interested in the
heat capacity C defined as the variation of internal energy with respect to
temperature (holding the volume fixed)

C =
(
∂U

∂T

)
V

. (5.4)
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We shall first review the situation in the pre-quantum era, and will then see
how the notion of quantum of energy brings clarity to our understanding of
this basic thermal attribute of matter.

5.2.1 The study of heat capacity in the pre-quantum era

As we indicated in Section 4.4, Boltzmann’s statistics leads directly to the
equipartition theorem (EPT), which was applied to the study of specific heats
of substances and produced many successful results—but also several puzzles.

• Monatomic gas—This is the simplest case. A monatomic molecule
has only three translational degrees of freedom (DOF), ε = (p2

x + p2
y+

p2
z

)
/2m. Thus, according to the EPT, the average thermal energy of the

gas must be 〈ε〉 = 3kBT/2. For a mole of the gas, we have

U = 3

2
NAkBT = 3

2
RT , (5.5)

where NA is the Avogadro number, and R = NAkB is the gas constant.
This leads to a molar specific heat of

C = ∂U

∂T
= 3

2
R (5.6)

in agreement with experimental measurement.
• Diatomic gas—We now have three translational and two rotational DOF3 3Rotational kinetic energy corresponds again

to a quadratic degree of freedom. See
Section 4.4.

(cf. Fig. 5.1), resulting in

C = 5

2
R, (5.7)

also in agreement with observation. What is notable is that this agree-
ment came about only when we had ignored the vibrational degrees of
freedom even though there was spectroscopic evidence for the existence
the vibrational mode (the presence of absorption lines consistent with
this interpretation).

• Polyatomic gas—Again, the EPT was successful, if we ignore the
vibrational degrees of freedom.

• Monatomic solid—Such a solid can be pictured as NA atoms located on
a 3D lattice. An atom at each lattice site can be thought of as a simple
harmonic oscillator. A 1D oscillator has two quadratic DOFs (kinetic
and potential energies), and a 3D oscillator has six. Thus there are a
total of 6NA degrees of freedom for such a solid, hence according to the
equipartition theorem, a total thermal energy of U = 3NAkBT leading to
a specific heat of

C = 3R. (5.8)

This result, first obtained by Boltzmann in 1876, explained the long-
standing observational pattern known as the Dulong–Petit rule: various
solid substances have a common specific heat value of 3R.

Fig. 5.1 Two rotational degrees of freedom
of a diatomic gas molecule, around the y and
z axes. It is difficult to excite the third rota-
tional mode because the moment of inertia I
around the x axis is very small, thus there is a
large rotational energy threshold of L2/2I for
this mode.
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• The confused situation—It is puzzling that, to obtain from the EPT cor-
rect values for the heat capacity of various substances, we must ignore
vibrational DOFs in the case of a gas, yet vibrational energy gives the
dominant contribution for a solid. Furthermore, while this rule worked
for simple solids, it was also known that the specific heat of some
solids (such as diamond) fell below the Dulong–Petit value and were
temperature-dependent. This confused state44In Einstein’s 1906 paper on specific heat,

he concentrated on the study of solids. There
was no discussion on the application of the
EPT to gases.

led certain sectors of the
physics community to cast doubt on the reality of molecules and atoms.

5.2.2 Einstein’s quantum insight

After Einstein’s derivation of Planck’s distribution law, he wrote (Einstein
1907a):

I believe that we must not content ourselves with this result. For the question arises:
If the elementary structures that are to be assumed in the theory of energy exchange
between radiation and matter cannot be perceived in terms of the current molecular-
kinetic theory, are we then not obliged also to modify the theory for the other
periodically oscillating structures considered in the molecular theory of heat? In my
opinion the answer is not in doubt. If Planck’s radiation theory goes to the root of the
matter, then contradictions between the current molecular-kinetic theory and experi-
ence must be expected in other areas of the theory of heat as well, which can be resolved
along the lines indicated. In my opinion this is actually the case, as I shall now attempt
to show.

Einstein realized that the quantum idea could clarify the confused situation
in specific heat. He argued that the distribution shown in Eq. (5.3) should be
applicable to other oscillators besides those of radiation. To thermally excite
a DOF, the thermal energy kBT must be comparable to or greater than the
relevant energy quantum hν; otherwise the exponential factor in Eq. (5.3) being
the dominant one in the denominator would lead to the suppression of this
degree of freedom55Just as in the opposite limit of kBT � hν,

we recover the classical result 〈ε〉 = kBT
from (5.3). 〈ε〉 � hν exp

(
− hν

kBT

)
≈ 0.

Einstein argued that the vibrational DOF could be ignored if hν � kBT .
Indeed one could answer the question concerning the size of the quantum of
vibrational energy in gases because an estimate of the quantum of vibration
energy hν could be obtained through the absorption spectroscopy of gases.
The vibrational absorption was known to be in the infrared, a wavelength on
the order of a micron corresponding to an energy quantum of hν � 1 eV, which
is much greater than the thermal energy kBT � 1/40 eV at room temperature
(T � 300 K):

exp

(
− hν

kBT

)
� e−40 � 1.

Thus, Einstein’s quantum energy insight explained why the vibrational degrees
of freedom of gases can be ignored at room temperature. This not only resolved
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the riddles in the study of specific heat, but also restored the confidence of the
physics community in the validity of the equipartition theorem of statistical
mechanics.

5.3 The Einstein solid—a quantum prediction

Since hν/kBT is a temperature-dependent factor, this quantum theory allowed
Einstein to make a prediction that for certain solids the Dulong–Petit rule
would fail as the quantum distribution (5.3) would lead to a suppression of
the heat capacity below the classical value of C = 3R at low temperature.

For this investigation, Einstein constructed a very crude model for the
thermal properties of the solid: all lattice sites vibrate at the same frequency
ν. Namely, for each solid there is one frequency; hence, in this discussion, ν
is taken to be a constant. According to (5.3), the internal molar energy of the
solid composed of 1D oscillators would simply be

U = NA
hν

ehν/kBT − 1
(5.9)

and the specific heat can then be calculated as

C =
(
∂U

∂T

)
V

= NA
∂

∂T

hν

ehν/kBT − 1

= NAkB
(hν/kBT)2 exp(hν/kBT)[

ehν/kBT − 1
]2 .

Generalizing to 3D vibration, we have Einstein’s result for the specific heat:

C = 3R

[
E
(

hν

kBT

)]
, (5.10)

where E(x) is what is now called the “Einstein function”:

E(x) = x2ex

(ex − 1)2
, (5.11)

where x = hν/kBT . Thus there is only one parameter characterizing each
solid—the lattice vibration frequency ν. This can also be expressed in terms of
the “Einstein temperature” kBTE = hν so that x = TE/T . We note the following
limits of the Einstein function E(x):

• High-temperature regime—When the temperature at which the specific
heat is measured is much higher than the Einstein temperature of the solid
(i.e. the thermal energy is much higher than the energy quantum, kBT �
hν so that x is small), the Einstein function can be approximated as

E(x) � x2

(1+ x− 1)2
= 1. (5.12)
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Then according to Eq. (5.10) C has the value of C = 3R, showing that
the Dulong–Petit rule applies at high temperature T � TE.

• Low-temperature regime—When the temperature at the measurement
is less than the Einstein temperature of the solid (x is large), the Einstein
function can be approximated as E(x) � x2e−x. We have an exponentially
suppressed specific heat

C = 3R

(
hν

kBT

)2

exp

(−hν

kBT

)
. (5.13)

The experimental result was found to be in qualitative agreement with
this prediction. The specific heat drops below the classical value at low
temperature because of freezing out the DOFs at the low-energy limit.
This is a direct consequence of the energy quantum hypothesis—the
presence of a threshold before a DOF can be excited. In fact a fit of
the measurement curve by Einstein (Fig. 5.2) showed an Einstein tem-
perature of diamond of TE � 1300 K which is much higher than room
temperature.

To recapitulate: Einstein had argued that there was already experimental
evidence for the violation of classical physics. Namely, even though clas-
sical physics demanded the validity of the Rayleigh–Jeans law, the observed
blackbody radiation spectrum could only be fitted by Planck’s distribution.
To Einstein this was the empirical grounds for the existence of the energy
quantum. He then extended this new theory of the radiation oscillator to include
oscillators of molecular kinetic theory. Thus Einstein’s 1907 paper would be
inadequately described as simply an application of the quantum theory to solids
and gases. Rather, his paper should be viewed as him arguing for the break
from classical physics in the form of a quantum theory. The new theory would
bring clarity not only to blackbody radiation, but to a whole range of physical
phenomena.
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Fig. 5.2 Temperature dependence of dia-
mond’s specific heat compared to Einstein’s
quantum theoretical prediction. The dia-
gram is from Einstein’s 1907 paper. The
vertical axis is the specific heat in units of
calories/mole; the horizontal axis is T/TE.
The theory curve is for TE = 1300 K. The
experimental points were the measurements
by H.F. Weber (1843–1912), Einstein’s
professor at ETH.
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5.4 The Debye solid and phonons

When more accurate data of specific heats for various solids at very low tem-
perature were obtained, Einstein’s theory did not match the measurements in
detail: the experimental curve decreases less rapidly than that predicted by
Einstein’s simple model. This inadequacy was remedied by a more sophist-
icated theory put forth in 1912 by Peter Debye (1884–1966). In the Einstein
model for the thermal properties of a solid, one takes ε to be a constant.
This means that one has made a very crude approximation of assuming all
oscillators (atoms) oscillate with the same frequency throughout the solid.
That the Einstein model fails at extremely low temperature means it fails in
the very low-frequency (hence, long wavelength) regime. A crystalline solid
has an intrinsic length-scale—the lattice spacing a. By the long-wavelength
region, we mean λ� a; namely, the Einstein model does not provide an
adequate description of motions covering many atoms—the correlated motions
involving groups of atoms. Debye’s theory was able to overcome this short-
coming (Debye 1912).

Debye modeled the solid as an elastic continuum. A disturbance in an elastic
medium is simply a sound wave. One way to motivate Debye’s approach is as
follows: Planck’s distribution (5.3) came out of a quantum description of the
electromagnetic wave field. The vibrations of lattice sites in a solid can also be
thought of as a field of waves—sound waves in this elastic continuum. Debye
then adapted (5.3) as a quantum description of this sound field. The quanta of
radiation were later termed photons; the quanta of sound waves are now called
phonons.

In this approach by Debye concentrating on the wave aspect of the problem,
we can simply take over Rayleigh’s calculation of the density of wave states
as presented in the previous chapter. The energy quantum of the sound wave
can be written as ε = hν = hcs/λ where cs is the speed of sound. Following
the treatment as presented in Section 4.1.3 we work with a cubic volume with
sides L. The longest wavelength being λ0 = 2L (or the smallest wavenumber of
k0 = π/L), the general wavelength should be λ = λ0/n with n = 1, 2, 3, 4, . . .
Keeping in mind the three spatial components of the wavevector, n is the
magnitude of a vector n with three components

n =
√

n2
x + n2

y + n2
z =

2L

λ
. (5.14)

which is related to the wave frequency as

n

2L
= 1

λ
= ν

c
or n = 2L

c
ν. (5.15)

The counting of states involves the counting of
(
nx, ny, nz

)
, i.e. integration over

the volume of the positive quadrant in 3D n space. Thus the steps are the same
as those taken in Section 4.1.3 except for the following three modifications:

1. The speed of the wave is now cs instead of c.
2. Because the electromagnetic wave has two polarization states while the

sound wave has three (two transverse and one longitudinal), Eq. (4.8)
now becomes
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Ndν = 3× 4πn2dn

8
. (5.16)

3. The limits of integration for the frequency integral. For electromagnetic
waves, the “medium” being a continuum (the vacuum) with no struc-
ture, this allows for a vanishing wavelength λmin = 0. Equivalently, there
is no upper limit to the radiation frequency νmax = ∞. That is not the
case for the Debye sound wave in a solid: The wavelength cannot be
less than (twice) the lattice spacing 2a, namely, λmin is of the order
(volume/NA)

1/3. In fact Debye fixed the upper limit νmax by relating it to
the total number of oscillators NA.

NA =
(

4π

3
n3

max

)
1

8
or nmax =

(
6NA

π

)1/3

. (5.17)

The total energy UN is now given by an integral

UN = 3
∫ nmax

0

4πn2

8
dn

nhν

enhν/kBT − 1
(5.18)

with n related to the frequency by (5.15). This integral can be evaluated with
the usual change of variable:

x ≡ hν

kBT
(5.19)

and the substitution of spatial volume V = L3 so that

UN = 3π

2

∫ xmax

0
V

(
2kBT

hcs

)3

x2dx
kBTx

ex − 1

= 12πV

h3c3
s
(kBT)4

∫ xmax

0

x3dx

ex − 1
, (5.20)

where the upper limit can be expressed in terms of the “Debye temperature”

hνmax ≡ kBTD, namely, xmax = TD

T
, (5.21)

which, after using (5.15) and (5.17), can be written as

TD = h

2kB

(
6NA

πV

)1/3

cs. (5.22)

The Debye temperature is directly related to cs, the speed of sound wave
propagation in a solid. Recall that cs = √B/ρ where ρ is the density and B
is the bulk modulus, characterizing the elasticity of the solid. Thus a solid with
a high TD has a stiff crystalline structure. Given that

1

T3
D

= 4πVk3
B

3NAh3c3
s

, (5.23)
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we can rewrite the total energy in Eq. (5.20) as

UN = 3
4πVk3

B

3NAh3c3
s

3NAkBT4
∫ xmax

0

x3dx

ex − 1

= 3NAkBT

(
T

TD

)3 [
3
∫ xmax

0

x3

ex − 1
dx

]
. (5.24)

5.4.1 Specific heat of a Debye solid

From this energy function UN(T) and we can calculate the predicted specific
heat C = (∂U/∂T)V .

• High-temperature regime: T � TD. Thus, xmax ∼ 0, and we can
assume that the integration variable x is small and the integrand has the
limiting value of x3

1+x−1 = x2 and thus[
3
∫ xmax

0

x3

ex − 1
dx

]
−→ x3

max =
(

T

TD

)−3

and UN −→ 3NAkBT ,

showing the correct classical physics limit of C = 3R.
• Low-temperature regime: T � TD. Thus, xmax ∼ large, and we have

the limit value of [
3
∫ ∞

0

x3

ex − 1
dx

]
= π 4

15

and

U −→ 3RT

(
T

TD

)3
π4

5
= 3π4R

5T3
D

T4. (5.25)

Fig. 5.3 Specific heat at low temperature
according to the models of the Einstein solid
and Debye solid. The graphs are plotted with
TE = TD. The inset shows the same two
curves in a log-log plot. Graph based on
Fig. 24.3 in Blundell and Blundell (2009).
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This implies a specific heat of

C = 12π 4R

5

(
T

TD

)3

, (5.26)

just the T3 dependence observed in experiments (see Fig. 5.3). By fit-
ting the specific heat curve of different materials in the low-temperature
regime, we can deduce their characteristic Debye temperature.

5.4.2 Thermal quanta vs. radiation quanta

In the case of radiation, we recover the classical description of the Rayleigh–
Jeans law in the high-temperature regime when the thermal energy is much
larger than the quantum of radiation energy (kBT � hν), and we have Wien’s
distribution at low temperature, where Einstein had shown the radiation having
the property of a gas of photons. For the Debye solid, an analogous situ-
ation holds. We have the high-temperature (kBT � hνmax = kBTD) classical
regime of Dulong–Petit, and at low temperature (T � TD) a solid behaves like
a collection of phonons.
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• The idea of light quanta was developed further by Einstein in 1909.
Through a study of radiation energy fluctuation, he proposed that light
had the complementary property of wave and particle. This is the first
statement ever on wave–particle duality.

• In this discussion, Einstein suggested that the energy quanta were car-
ried by point-like particles—what he termed then as “the point of view
of Newtonian emission theory”—what we now call the photon.

• We describe the parallel development in spectroscopy that eventually
led to Bohr’s quantum model of atomic structure. He postulated that,
like radiation, atoms also have quantized energies with transitions char-
acterized by quantum jumps; this led him to the successful explanation
of the hydrogen spectrum.

• In three overlapping but nonidentical papers in 1916–17, Einstein
used Bohr’s quantum jump idea to construct a microscopic theory
of radiation–matter interaction. Through what came to be known as
Einstein’s A and B coefficients, he showed how Planck’s spectral
distribution followed. The central novelty and lasting feature is the
introduction of probability in quantum dynamics.

• In Section 6.4, we present a brief introduction to quantum field theory.
The treatment of the harmonic oscillator in the new quantum mechan-
ics is reviewed. A quantized field is a collection of quantum oscillators.
We show that the Planck/Einstein quantization result is automatic-
ally obtained in this new theoretical framework. This had at last put
Einstein’s idea of the photon on a firm mathematical foundation.

• The noncommutivity of physical observables in the new quantum
theory brings about features that can be identified as creation and
annihilation of quantum states. This gives a natural description of the
quantum jumps of radiation emission and absorption. In fact they can
be extended to the depiction of creation and destruction of mater-
ial particles as well—a key characteristic of interactions at relativistic
energies.

• Finally we explain how the wave–particle duality first discovered by
Einstein in the study of radiation energy fluctuation is resolved in
quantum field theory.
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As we have already mentioned in Chapter 4, it would still be some years
before Einstein openly committed himself to a point-like particle interpret-
ation of light quanta. In Section 6.1 we shall discuss Einstein’s 1909 study
of radiation fluctuation that led him to show, for the first time, that light had
not just wave or just particle properties, but a sort of fusion of the two—what
came to be known as “wave–particle duality”. The next big event in quantum
history was the 1913 model for the structure of the atom conceived by Niels
Bohr, who applied the Planck/Einstein quantum to the study of the hydrogen
spectrum (Bohr 1913). Its spectacular success in effect launched a new era in
exploration of the quantum world—what we now call the ‘old quantum theory’.
Bohr’s ‘quantum jumps’ Ei − Ef = hν inspired Einstein in 1916 to propose a
detailed study of the radiation mechanism that takes place in a blackbody radi-
ation cavity. He introduced his famous A and B coefficients for the theory of
stimulated and spontaneous emissions of radiation. This is the first time that a
probability description was invoked in the description of quantum dynamics,
and it presaged some of the surprising consequences that would be obtained
later in quantum mechanics and quantum field theory. In Section 6.4 we shall
present some of the basic elements of quantum field theory to see how it is
capable of resolving in one elegant framework the apparent contradictions of
waves, particles, and quantum jumps. But Einstein never accepted this new
paradigm.

6.1 Wave–particle duality

We have pointed out that Planck did not himself consider the quantum of
action as relating directly to any physical entity, and the light quantum pro-
posal of Einstein met considerable resistance from the physics community.
This resistance can best be illustrated by the attitude of Robert Millikan,
who spent a decade verifying Einstein’s prediction for the photoelectric effect.
Describing his viewpoint in later years, Millikan wrote this way: “I spent ten
years of my life testing that 1905 equation of Einstein’s, and contrary to all
my expectations, I was compelled in 1915 to assert its unambiguous experi-
mental verification in spite of its unreasonableness since it seemed to violate
everything that we knew about the interference of light” (Millikan 1949).

When the idea of the light quantum ε = hν was proposed in 1905, there
was still the question as what forms the quantum would take. There is the
possibility that the energy is distributed throughout space as is the case with
waves, or as discontinuous lumps of energy, like particles. By 1909 Einstein
was more explicit in proposing that light in certain circumstances was com-
posed of particles (Einstein 1909a,b)—in contradiction to the well-established
wave properties of light. Waves cannot have particle properties and particles
cannot behave like waves. However, even without the detailed knowledge of
quantum electrodynamics, Einstein was able to make some definite statements
on the nature of light (wave vs. particle). His argument was based on a study
of the energy fluctuations in radiation. Einstein showed that light was neither
simply waves nor simply particles, but had the property of being both waves
and particles at the same time. The notion of wave–particle duality was born.
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6.1.1 Fluctuation theory (Einstein 1904)

In Chapter 2 we discussed Einstein’s theory of Brownian motion, which
involved the investigation of the fluctuation phenomenon. This is a subject
that had long interested Einstein. According to Boltzmann’s distribution, the
average energy is given by

〈E〉 =
∫

Ee−γEω(E) dE∫
e−γEω(E) dE

(6.1)

with ω(E) being the density of states having energy E and γ = (kBT)−1.
Einstein in 1904 found the following fluctuation relation, after making the
differentiation −∂/∂γ of 〈E〉 in (6.1):

〈
�E2

〉 = kBT2 ∂〈E〉
∂T

, (6.2)

where 〈
�E2〉 ≡ 〈(E − 〈E〉)2〉 = 〈E2〉− 〈E〉2 (6.3)

is the square deviation from the mean (the variance).
In 1904 Einstein was interested in finding systems with large fluctuations:〈

�E2
〉 � 〈E〉2, and he studied the volume dependence of such a system. It

is plausible to conclude that such an investigation led him to delve into
the volume dependence of radiation entropy, which (as we have shown in
Chapter 4) was the crucial step in his arriving in 1905 at the idea of light quanta.
A study of the fluctuation theory is also instrumental in his finally arriving at
the view that light quanta are point-like particles.

6.1.2 Energy fluctuation of radiation (Einstein 1909a)

Consider a small volume ṽ, immersed in thermal radiation (see Fig. 6.1) having
energy in the frequency interval (ν, ν + dν) as

〈E〉 = ṽρ(ν, T) dν (6.4)

(cf. the original definition of radiation energy density ρ given in Section 3.2.3).
In his 1909 papers, Einstein used (6.2) to calculate the variance from the
various radiation density distributions ρ(ν, T). For this small volume one
obtains 〈

�E2
〉 = ṽkBT2dν

∂ρ

∂T
. (6.5)

This general result holds whether the system is randomly distributed as waves
or particles, because it is based on Boltzmann’s principle and on the fact
that the spectral density at a given frequency depends on temperature only.
The fluctuation formulas for the different distribution laws are presented
below.

Fig. 6.1 A small volume ṽ immersed in
thermal radiation at temperature T .
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Radiation in the Rayleigh–Jeans limit fluctuates like waves
For the radiation described by the Rayleigh–Jeans distribution (4.3)

ρRJ = 8πν2

c3
kBT , (6.6)

the fluctuation formula (6.5) leads to

〈
�E2

〉
RJ = ṽ

8πν2

c3
k2

BT2dν = c3

8πν2

〈E〉2
ṽdν

. (6.7)

To reach the last expression we have used (6.6) and (6.4) to replace temperature
by the average energy. In the following we shall argue that such a variance
reflects the wave nature of the system.

Fluctuations of a wave system A system of randomly mixed waves should
display fluctuations. Although the light in an enclosure is distributed uniformly,
at a certain point in space and time a light wave of a certain frequency may
interfere, constructively or destructively, with another wave of slightly different
frequency. This beat phenomenon would cause the energy in this small volume
to be larger or smaller than the average value. The result given in (6.7) just
reflects a fluctuating wave system. The key feature of wave fluctuation is that,
for each radiation oscillator (i.e. degree of freedom, or mode), we have the
remarkable result (derived in SuppMat Section 6.5) that the fluctuation in the
energy density

√
�u2 has the same magnitude as the (average) energy density

u itself:
√
�u2 = u. (6.8)

This result can be translated into the variance and average energy of the wave
system by a consideration of the involved degrees of freedom. The average
energy of the system 〈E〉 requires the summation of all modes, thus a multiplic-
ation of the oscillator number in the (ν, ν + dν) interval Ndν and the average
energy density u for each oscillator:

〈E〉 = Ndνu. (6.9)

The calculation of the variance
〈
�E2

〉
involves a similar sum, i.e. the same

multiplication factor,
〈
�E2

〉 = Ndν�u2. The result in (6.8) then implies

〈
�E2

〉 = 〈E〉2
Ndν

. (6.10)

We have already calculated the wave mode number in Chapter 4 as displayed
in (4.5):

Ndν = 8πν2

c3
ṽdν. (6.11)

Substituting this expression into (6.10) we obtain a result in agreement with the
relation (6.7). This wave fluctuation result is to be expected as the Rayleigh–
Jeans law follows from the classical Maxwell wave theory.
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Radiation in the Wien limit fluctuates like particles
For radiation described by the Wien distribution, cf. Eq. (4.12),

ρW = 8πhν3

c3
e−hν/kBT (6.12)

we have 〈E〉 = ṽρW and, from formula (6.5), the fluctuation result

〈
�E2

〉
W
= ṽhν

8πhν3

c3
e−hν/kBT = hν〈E〉, (6.13)

which is clearly different from result expected from fluctuation of system of
waves. In fact the fractional fluctuation has the form√〈

�E2
〉

〈E〉 =
√

hν

〈E〉 . (6.14)

This is exactly the fluctuation that one would expect of a system of particles.
We have already discussed such a situation in Chapter 2 on Brownian motion.
In particular we have shown that Brownian motion can be modeled as random
walks. Equation (2.14) demonstrates that any system of random discrete entit-
ies would have a fractional deviation of N−1/2 as is the case displayed in (6.14)
because, in our case, we have 〈E〉 = Nhν.

This result then strengthened Einstein’s original proposal that blackbody
radiation in the Wien limit behaves statistically like a gas of photons.

Planck distribution: Radiation fluctuates like particles and waves
Observationally, radiation is correctly described throughout its frequency
range by the Planck spectral law. We now calculate the energy fluctuation from
Planck’s distribution

ρ = 8πh

c3

ν3

exp(hν/kBT)− 1
. (6.15)

Remarkably we find the result is simply the sum of two terms, one being the
Rayleigh–Jeans terms of (6.7) and the other being the Wien term of (6.13):

〈
�E2

〉
P =

〈
�E2

〉
RJ +

〈
�E2

〉
W . (6.16)

This shows that radiation is neither simply waves nor simply particles. This led
Einstein to suggest in 1909 that radiation can be viewed as a “fusion” of waves
and particles.

Einstein proceeded to the calculation of the pressure fluctuation using
explicitly the particle property of a light quantum: a photon has momentum
p = hν/c. Thus, together with the suggestion of light’s dual nature, Einstein
now stated for the first time his view that quanta were carried by point-like
particles.
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6.2 Bohr’s atom—another great triumph
of the quantum postulate

While quantum theory has its origin in the study of blackbody radiation, there
was also a parallel development in spectroscopy of the radiation emitted and
absorbed by atoms. Bohr’s quantum model of the hydrogen atom brought great
success in this area. Thus, together with blackbody radiation, they formed the
twin foundations of the quantum theory.11For a clear exposition of the ‘old quantum

theory’, we recommend Tomonaga (1962).

6.2.1 Spectroscopy: Balmer and Rydberg

We mentioned in Chapter 3 that, besides blackbody radiation, Gustav
Kirchhoff also made major contributions in spectroscopy. But we will
start our story with the Swiss high-school mathematics teacher Johann
Balmer (1825 – 98). The hydrogen spectrum is particularly simple: it has
four lines in the visible range: Hα = 6563 Å, Hβ = 4861 Å, Hγ = 4341 Å,
Hδ = 4102 Å (Fig. 6.2). In 1885 Balmer made the remarkable discovery that
these wavelengths follow a pattern when written in units of H = 3645.6 Å:

Hα = 9

5
H, Hβ = 16

12
H, Hγ = 25

21
H, and Hδ = 36

32
H.

He then extended this to the relation (the Balmer formula) as

λ = n2

n2 − 4
H, (6.17)

which covers the original four lines with n = 3, 4, 5, 6, and, as it turned out,
could also account for the other lines in the ultraviolet region.

This pattern was later generalized to other hydrogen lines by Johannes
Rydberg (1854–1919) in the form of

1

λ
= R

(
1

m2
− 1

n2

)
(6.18)

with the Rydberg constant R = 4/H and both (m, n) being integers. The case
m = 2 reduces to the Balmer series (visible), m = 1 to the Lyman series
(infrared, found in 1906), and m = 3 to the Paschen series (ultraviolet, found
in 1908).

65
62
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Hα Hβ Hγ Hδ H∞

48
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01

,7

43
40

,5

Fig. 6.2 Hydrogen spectral lines Hα , Hβ ,
Hγ , Hδ , . . . Picture from Tomonago (1962).
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6.2.2 Atomic structure: Thomson and Rutherford

The discovery of the first subatomic particle, the electron, is traditionally attrib-
uted to J.J. Thomson (1856–1940), for his measurement of the charge-to-mass
ratio of cathode ray particles in 1897. He proposed a theory of atomic structure
that pictures electrons as being embedded in a sphere of uniformly distributed
positive charges—a sort of raisins-and-pudding model. The size of the atom
had to be put in by hand as there was no way to construct any length-scale
from the fundamental constants of charge and mass (e, m) from classical phys-
ics. The spectral lines are supposed to result from periodic oscillations of the
electrons. However if one identifies the emission lines with the fundamental
frequencies, there is no way to get rid of the unwanted higher harmonics.

During the period around 1910, Ernest Rutherford (1871–1937) and his col-
laborators performed a series of alpha particle scattering experiments. The
large scattering angle result led Rutherford to suggest that an atom is mostly
empty space, with all the positive charges concentrated in a compact center and
electrons circulating around this atomic nucleus. Such a model of the atom still
had the deficiencies of no natural path to an atomic size and the presence of
higher harmonics. Furthermore, the circulating electrons, according to classic
electromagnetism, must necessarily radiate away their energies and spiral into
the nucleus. It did not seem to have a way to explain the atom’s stability.

6.2.3 Bohr’s quantum model and the hydrogen spectrum

Niels Bohr was familiar with Rutherford’s atom. In 1913 he found a way to
construct an atomic model that overcame the difficulties that Rutherford (and
Thomson) had encountered. Moreover, he was able to predict in a simple way
the spectrum of the hydrogen atom, with the Rydberg constant expressed in
terms of fundamental constants (Bohr 1913). The new input that Bohr had was
the quantum of Planck and Einstein.

Planck’s constant naturally leads to an atomic scale
We have already mentioned that there is no way to construct an atomic
length-scale from the two relevant constants (m, e) of classical mechanics and
electromagnetism. With the introduction of Planck’s constant, this can be done:

l = h2

me2
. (6.19)

One can easily check that this has the dimension of a length.2 2Keeping in mind the Coulomb energy, we
see that e2 has the dimension of (energy·
length). The mass m has (momentum2/

energy). Thus the denominator me2 has
(momentum2·length). With the numerator
h2 being (momentum·length)2, the ratio
h2/(me2) has the dimension of a length.

Putting in the
values of the electron mass, the charge and Planck’s constant (m, e, h), one
finds an l of about 20 Å, roughly in the range of the atomic-scale. The Rydberg
constant of (6.18) must have the dimension of inverse length, and as we shall
see, it is indeed inversely proportional to the length-scale displayed here.

Stationary states and quantum jumps
Bohr reasoned that, since radiation energy is quantized, the atomic energies
should similarly form a discrete set. He hypothesized that atoms should be
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stable at these quantized values En, with n = 0, 1, 2, 3, . . . Namely, he postu-
lated the existence of a set of stationary states. The absorption and emission
of radiation then corresponds to ‘jumps’ among these quantized states. A state
with energy Em can absorb a photon of frequency ν and makes the transition to
a higher energy state En, provided energy conservation is respected (the Bohr
frequency rule):

ν = En − Em

h
. (6.20)

Such a transition is depicted in Fig. 6.3(a). Significantly, Bohr proposed the
revolutionary concept that one must reject any attempt to visualize or to explain
the behavior of the electron during the transition of the atom from one station-
ary state to another. In fact we can interpret Einstein’s photoelectric effect as
such a transition, if the kinetic energy of the final state electron is ignored. If we
accept this possibility, it is then entirely natural to stipulate the inverse process:
when an atom makes a downward transition n → m, it should be accompanied
by the emission of a photon, as pictured in Fig. 6.3(b). When the frequency
rule (6.20) is expressed in terms of wavelength, we have

1

λ
= ν

c
= En

hc
− Em

hc
. (6.21)

Comparing this with the Rydberg formula (6.18), Bohr had a way to connect
the atomic energy levels to the Rydberg constant:

En = −R
hc

n2
, (6.22)

consistent with the initial assumption that atomic energies are quantized. The
energy is negative because it is the binding energy. It is interesting to relate
that Bohr was unaware of the Balmer/Rydberg formulas when he started out in
his search for an atomic theory. When he was finally told of the Balmer series
in 1913, it was a great revelation to him. He later recalled:33As recounted by Heilbron (1977). “As soon as I saw
Balmer’s formula, the whole thing was clear to me.”

Fig. 6.3 Transitions between atomic states
n ↔ m. (a) Absorption of a photon with
energy hν. (b) Emission of a photon.

Quantization of angular momentum
Bohr then hypothesized that once in these stationary states, the electron’s
motion was correctly described by classical mechanics. The total energy is
the sum of the kinetic and potential energies:

En = mv2
n

2
− e2

rn
. (6.23)

If for simplicity we take the orbits to be circles, the velocity vn is related to the
centrifugal acceleration v2

n/rn, which is fixed by the balance of centrifugal and
Coulomb forces mv2

n/rn = e2/r2
n. In this way we find from (6.23) that the total

energy is just one-half of the potential energy,

En = − e2

2rn
. (6.24)
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This simple relation makes it clear that quantized energies imply a set of quant-
ized orbits. The higher the energy (i.e. less negative) the larger would be the
orbital radius rn.

What determines the choice of these quantized orbits? Bohr suggested two
ways to proceed and he demonstrated that both approaches led to the same
conclusion. One can either make the assumption that the classical description
will be valid for the description of states with large quantum number n, hence
large orbits. (This became known later on as the correspondence principle.) Or,
the same result was obtained by Bohr with the postulate of angular momentum
quantization

Ln = nh̄ ≡ n
h

2π
. (6.25)

Let us see how Bohr used angular momentum quantization4 4In Bohr’s 1913 paper, he acknowledged that
J.W. Nicholson was the first one to dis-
cover in 1912 the quantization of angular
momentum. We also note that, when the cir-
cular electron orbit assumption is relaxed to
allow for elliptical trajectories, as first done
by Arnold Sommerfeld, the quantum num-
bers must be extended, besides the principal
quantum number n, to include the orbital
quantum number l = 0, 1, . . . , n− 1.

to deduce
the quantized orbits and quantized atomic energies. The total energy can
be expressed in terms of the orbital angular momentum E = L2/2I. For the
presently assumed circular orbits, we have (6.24) with a moment of inertia
I = mr2

n:

e2

2rn
= |En| = L2

n

2mr2
n

= n2 h̄2

2mr2
n

; (6.26)

the last equality follows from (6.25). This fixes the radii of the quantized orbits:

rn = n2 h̄2

me2
= n2a (6.27)

where a = h̄2/(me2) is the Bohr radius—just the atomic-scale l of (6.19)
divided by (2π)2. We can use (6.24) to translate this into the atomic energy

En = − e2

2a

1

n2
. (6.28)

This in turn predicts, through (6.22), the Rydberg constant to be

R = −n2

hc
En = e2/h̄c

4π

1

a
= α

4π

1

a
, (6.29)

where we have introduced the shorthand, fine structure constant α = e2/h̄c �
1/137. Putting back all the fundamental constants of (m, e, h), we have

R = 2π2me4

ch3
, (6.30)

which was in good agreement with the experimental value of R.
One more bit of interesting history—a sort of icing-on-the-cake (cf. Section

15.6, Longair 2003). One of the first applications made by Bohr of his new the-
ory was to explain the lines in the observed spectrum of the star ς -Puppis. They
were thought to be hydrogen lines because of their similarity to the Balmer
series. Bohr showed they were really those of the singly ionized helium He+
which according to the new theory should have exactly the same spectrum as
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hydrogen with only the Rydberg constant being four times larger RHe/RH =
4—as the factor e4 in (6.30) has to be replaced by (Ze2)2 with the atomic num-
ber Z = 2 for helium. But it was pointed out to him that the experimental value
was not exactly 4 but 4.00163. Bohr then realized that the electron mass m in
(6.30) should more accurately be the ‘reduced mass’ μ = memN/(me + mN)
when the finite nuclear mass mN was taken into account. Since the helium nuc-
leus is four times larger than the hydrogen nucleus, one then has a ratio of
Rydberg constants that is in much closer agreement with observation:

RHe

RH
= 4

1+ me/mN

1+ me/4mN
= 4.00160. (6.31)

Here is another instance of the importance of high-precision measurements!

6.3 Einstein’s A and B coefficients

During the five-year period prior to 1916, Einstein was preoccupied with the
development of general relativity (see Chapters 12–14), which he finalized in
1915–16. In late 1916 he returned his attention to the study of quantum the-
ory (Einstein 1916b,c). Having been inspired by Bohr’s papers,55When Einstein heard about Bohr’s result on

astrophysical helium spectrum in a meeting in
Vienna in September 1913, he was astonished
and said: ‘Then the frequency of light does
not depend at all on the orbiting frequency
of the electron. And this is an enormous
achievement. The theory of Bohr must be
right.’ (see p. 137, Moore 1989).

he obtained
new insights into the microscopic physics concerning the emission and absorp-
tion of radiation. In constructing his theory of atomic structure Bohr had
used Einstein’s quantum idea, which was originally obtained from a thermal
statistical study of blackbody radiation. Now Einstein used Bohr’s idea of
quantum jumps (Fig. 6.3) to construct a microscopic theory of the emission
and absorption of radiation by molecular states to show that the resulting radi-
ation distribution is just the Planck spectral law. He found that he could obtain
Planck’s spectral distribution if, and only if, the quantum jump between two
molecular states m � n involved a monochromatic energy quantum obeying
Bohr’s frequency condition (6.20). Notably, Einstein’s 1916 theory involved
the introduction, for the first time, of a probabilistic description of quantum
dynamics.

Furthermore, Einstein showed that, if the radiation is pictured as a collection
of particles, the energy exchange �ε = hν between molecules and radiation
would also entail the exchange of momentum. For massless photons, relativity
dictates a momentum transfer of �p = hν/c. In this way he showed that the
Planck distribution of radiation energy is precisely compatible with a Maxwell
velocity distribution for the molecules. The results Einstein obtained in this
investigation, in particular those related to stimulated emission of radiation,
laid the foundation for the later invention of the laser and maser. Another
aspect of the work was the forerunner of the theory of quantum vacuum
fluctuation.

6.3.1 Probability introduced in quantum dynamics

Einstein considered a system in thermal equilibrium, consisting of a gas
of particles (called molecules) and electromagnetic radiation (with spectral
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density ρ). Let ε1, ε2, ε3, . . . be the energies of the molecular states. The
relative probability of molecules in the different states is given by Boltzmann’s
statistics as

Pn = gne−εn/kBT (6.32)

where gn is the number of states having the same energy εn (called the degen-
eracy of the state). The various interactions between radiation with these
molecules are considered. The two molecular states with energies εn > εm, as
depicted in Fig. 6.3, will be the focus of the following discussion.

Spontaneous emission
Consider first the emission of a photon with the molecule making the n → m
transition as depicted in Fig. 6.3(b). Here Einstein introduced a probabilistic
description. He argued that since it is possible for a classical oscillator to
radiate without the excitation (i.e. without any perturbation) by an external
radiation field, the rate of the probability change (the change of the molecular
number) for this spontaneous emission may be written as(

dPn

dt

)
em−sp

= Am
n Pn (6.33)

where Am
n is a constant with the lower index denoting the initial state, and

the upper index the final state. Einstein noted that this mechanism of spontan-
eous emission of radiation is generally identical to Rutherford’s 1900 statistical
description of spontaneous decay of radiative matter. While Einstein could not
explain the puzzle of a statistical theory he was the first one to note that it could
only be understood in the quantum-theoretical context. Furthermore, Einstein
immediately expressed his misgiving that such a probabilistic description
seemed to imply an abandonment of strict causality.

Stimulated absorption and emission
In a field of radiation, a molecular oscillator changes its energy because the
radiation transfers energy to the oscillator. Depending on the phases of the
molecular oscillator and the oscillating electromagnetic field, the transferred
work can be positive (absorption) or negative (emission). We call such a
processes ‘induced’ or ‘stimulated’ because of the presence of the radiation
perturbation. We expect the rate of change to be proportional to the radi-
ation density ρ. For the induced absorption, we denote the molecular number
change by (

dPm

dt

)
abs

= Bn
mρPm. (6.34)

Similarly for the stimulated emission, we have(
dPn

dt

)
st−em

= Bm
n ρPn. (6.35)
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The radiation density is fixed to be Planck’s distribution
What is the form of the radiation spectral density such that it is compatible
with this microscopic description of radiation–matter interaction? To reach
equilibrium, the absorption and emission rates must balance out:(

dP

dt

)
abs

=
(

dP

dt

)
st−em

+
(

dP

dt

)
sp−em

(6.36)

or

gmBn
me−εm/kBTρ = gne−εn/kBT

(
Bm

n ρ + Am
n

)
. (6.37)

We further assume that the energy density ρ goes to infinity as the temperature
increases to infinity (T →∞). The large ρ factor means that we can ignore the
Am

n term in the parentheses; in this way we obtain66In Einstein’s original paper this was justified
by the experimental condition that for large
temperature (ν/T → 0) the spectral density
ρ ∼ ν2T →∞. It can also be supported by
the so-called ‘principle of detailed balance’—
due to microscopic reversibility in thermal
equilibrium.

gmBn
m = gnBm

n . (6.38)

To simplify our writing we shall from now on absorb the degeneracy factor
g into the B coefficient. The spectral density that satisfies this dynamic
equilibrium condition (6.37) then becomes

ρ = Am
n

Bm
n

1

e(εn−εm)/kBT − 1
(6.39)

which is just Planck’s law when we apply the Bohr quantum condition (6.20)
together with fixing the coefficient ratio to be

Am
n

Bm
n

= αν3. (6.40)

The constant α can further be determined, for example, by the Rayleigh–Jeans
law. Thus

Am
n

Bm
n

= 8πν2

c3
hν. (6.41)

Recall that we have used the expression for the radiation density of states (4.1)
in the derivation of the Rayleigh–Jeans law.

6.3.2 Stimulated emission and the idea of the laser

Einstein’s prediction of stimulated emission became a key element in the inven-
tion of the LASER—light amplification by stimulated emission of radiation.
Such a device can produce high-intensity collimated coherent electromagnetic
waves. In essence a laser is a cavity filled with a “gain medium”. We can
illustrate the function of this medium by assuming it to be composed of some
two-state atoms (e.g. such as the one shown in Fig. 6.3). A positive feedback
process, based on stimulated emission, is instituted. The frequency of the input
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radiation is arranged to match the emission frequency of the medium. This
process is amplified by the stimulated emission. If the cavity is enclosed by
two mirrors so that light is repeatedly passing back and forth through the gain
medium, more and more atoms reside in the excited states (called population
inversion) and its intensity can be greatly increased. Because the light origin-
ates from a single transition between two fixed levels (unlike an ordinary light
source with many different transitions), it is monochromatic with a great deal
of coherence. Clearly the invention of the laser required many technical break-
throughs before its realization in the 1950s; nevertheless its basic idea came
from the prediction of stimulated emission made by Einstein in 1916.

While stimulated emission can still be understood as a perturbation by an
existing field, it would involve a new theoretical framework to understand
spontaneous emission. In this case a new photon would have to be created.
If it is due to some perturbation, how would the vacuum be the cause? This
brings us to the topic of quantum field theory.

6.4 Looking ahead to quantum field theory

At the beginning of this chapter, we discussed the riddle of radiation’s wave–
particle duality as shown by Einstein’s calculation of energy fluctuations
(6.16). The Planck’s formula for blackbody radiation leads to two terms,
one showing the radiation as a system of waves and another as particles.
This heightens the apparent contradiction of Einstein’s original discovery of
thermal radiation (in the Wien limit) behaving thermodynamically like a gas of
particles, even though radiation has the familiar wave property of interference,
etc. Here we first explain the resolution as provided by the advent of quantum
mechanics in 1925–26. The other key property of light quanta that they obey
Bose–Einstein statistics will be discussed in Chapter 7.

The new quantum theory is the work of Louis de Broglie, Werner Heisenberg
(1901–76), Max Born (1882–70), Pascual Jordan (1902–80), Wolfgang Pauli
(1900–58), Erwin Schrödinger, and Paul Dirac (1902–84). In particular elec-
tromagnetic radiation is described by a quantized field. This is the subject of
quantum electrodynamics. We shall provide, very briefly, some of the basic
elements of quantum field theory (QFT).7 7A lively and insightful introduction to QFT

can be found in Zee (2010).
Of course, Einstein never accepted

quantum mechanics as a complete theory. His objection to this new quantum
theory was mainly in the area of the interpretation of measurement. That will
be the topic of our Chapter 8.

6.4.1 Oscillators in matrix mechanics

Recall our discussion in Section 3.1 that a radiation field (as a solution to
Maxwell’s wave equation) can be thought of as a collection of oscillators.
Fourier components of waves obey simple harmonic oscillator equations. A
quantized radiation field is a collection of quantum oscillators—simple har-
monic oscillators as described by quantum mechanics. Quantum field theory
is usually presented as the union of quantum mechanics and special relativ-
ity. This is so as the Maxwell wave equation satisfies special relativity. When
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this radiation theory is generalized to other particles, one would work with
other relativistic wave equations such as the Dirac equation and Klein–Gordon
equation. But the basic features of a quantized field discussed below remain
the same.

The essence of quantum mechanics is that physical states are taken to be
members of a linear vector space, the Hilbert space, obeying the superpos-
ition principle (the basic property of waves), and physical observables are
operators represented, for example, by matrices. These observables obey
the same dynamical equations as in classical physics, but the kinematics
are changed because they, being operators, may no longer be mutually
commutative. Thus two operators Â and B̂ may have nonvanishing commutator
ÂB̂− B̂Â ≡ [Â, B̂

] �= 0. As we shall see, this noncommutivity brings about
the particle nature of the system. Planck’s constant enters the theory through
these commutation relations.

Simple harmonic oscillator Hamiltonian in terms of ladder
operators
Here is the quantum mechanical description of a simple harmonic oscillator.
The total energy (sum of kinetic and potential energies) is represented by the
Hamiltonian operator, which can be expressed in terms of the position and
momentum operators (x̂, p̂). With the angular frequency ω, the Hamiltonian is
given by

Ĥ = p̂2

2m
+ 1

2
mω2x̂2. (6.42)

The momentum and position operators are postulated to satisfy the ‘canonical’
commutation relation [

x̂, p̂
] = ih̄. (6.43)

We can factorized the oscillator Hamiltonian, in terms of the ladder
operators:88Since x̂ and p̂ are Hermitian operators, these

ladder operators are each other’s Hermitian
conjugates, â†

+ = â− and â†
− = â+.

â± = 1√
2m

(∓ip̂+ mωx̂). (6.44)

A simple calculation shows that they have the product relations

â+â− = Ĥ + iω

2

[
x̂, p̂
]

and â−â+ = Ĥ − iω

2

[
x̂, p̂
]

. (6.45)

From the sum and difference of these two expressions, we obtain the
Hamiltonian

Ĥ = 1

2
(â+â− + â−â+) (6.46)

and the commutator of the ladder operators, which is just a simple transcription
of (6.43), [

â∓, â±
] = ±h̄ω. (6.47)
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An application of this commutation relation to (6.46) leads to

Ĥ = â∓â± ∓ 1

2
h̄ω. (6.48)

Raising and lowering energy levels by â±
Consider the states â± |n〉, obtained by applying the ladder operators â± to an
energy eigenstate |n〉 with Ĥ |n〉 = En |n〉. To find the energy of such states, we
probe them by the Hamiltonian operator in the form of (6.48):

Ĥâ± |n〉 =
(

â∓â±â± ∓ 1

2
h̄ωâ±

)
|n〉 . (6.49)

Since (6.47) implies the commutation relation[
â∓â±, â±

] = [â∓, â±
]

â± + â∓
[
â±, â±

] = ±h̄ωâ± + 0, (6.50)

the RHS of (6.49), after interchanging the order of â∓â± and â± by the
commutator (6.50), becomes

Ĥâ± |n〉 =
(

â±â∓â± ± h̄ωâ± ∓ 1

2
h̄ωâ±

)
|n〉 .

We can factor out â± to the left and use the expression of Ĥ as given in (6.48)
to have

Ĥ (â± |n〉) = â± (H ± h̄ω) |n〉
= â± (En ± h̄ω) |n〉 = (En ± h̄ω) (â± |n〉) . (6.51)

This calculation shows that the states â± |n〉 are also eigenstates of the
Hamiltonian with energy values En ± h̄ω. This explains why â+ is called the
raising operator and â− the lowering operator.

The quantized energy spectrum derived
Just like the classical oscillator case, the energy must be bounded below. We
denote this lowest energy state, the ground state, by |0〉. Since the ground state
cannot be lowered further, we must have the condition:

â− |0〉 = 0. (6.52)

From this we deduce that the ground state energy E0 does not vanish:

Ĥ |0〉 = E0 |0〉 =
(

â+â− + 1

2
h̄ω

)
|0〉 = 1

2
h̄ω |0〉 . (6.53)

Namely E0 = 1
2 h̄ω, which is often referred to as the zero-point energy. On the

other hand, all the excited states can be reached by the repeated application of
the raising operator9 9The proportionality constants will be

worked out below when we discuss the
normalization of quantum states.

to the ground state:

(â+)n |0〉 ∼ |n〉 . (6.54)
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According to (6.51), each application of â+ raises the energy by one h̄ω unit:
we thus derive the energy of a general state |n〉:

Ĥ |n〉 = En |n〉 =
(

n+ 1

2

)
h̄ω |n〉 (6.55)

with n = 0, 1, 2, . . . and

En =
(

n+ 1

2

)
h̄ω. (6.56)

This result agrees, up to a constant of h̄ω/2, with the Planck oscillator energy
quantization proposal. Before we move on to quantum field theory we note two
technicalities of the quantum theory of oscillators.

The zero-point energy A comparison of (6.46) and (6.48) with (6.56) shows
clearly that the zero-point energy, E0 = 1

2 h̄ω, originates from the noncom-
mutivity of the position with momentum, or equivalently the h̄ω factor in the
commutator (6.47). Physically one can understand the presence of this ground
state energy by the uncertainty principle. Even in the absence of any quanta, an
oscillator still has the natural length-scale of x0 = √h̄/mω; thus, the uncer-
tainly principle1010The uncertainty relation is a direct mathem-

atical consequance of the noncommutivity of
observables.

for the position and momentum observables, �x�p � h̄,
requires a minium momentum of p0 =

√
mh̄ω. This translates into a minium

energy of E0 = p2
0/2m = 1

2 h̄ω—just the zero-point energy.

The number operator and the normalization of oscillator states A simple
comparison of (6.55) with (6.48) suggest that we can define a ‘number oper-
ator’ n̂ ≡ â+â−/(h̄ω) so that Ĥ = (n̂+ 1

2 )h̄ω and n̂ |n〉 = n |n〉. This operator
is Hermitian n̂† = â†

−â†
+/(h̄ω) = n̂, with real eigenvalues n = 0, 1, 2, . . . . All

quantum mechanical states must be normalized (as they have the interpretation
of a probability): 〈n |n〉 = ||n〉|2 = 1, and 〈n− 1 |n− 1〉 = ||n− 1〉|2 = 1, etc.
From these we can find out how the ladder operators act on the number states
â− |n〉 = c |n− 1〉 with the coefficient c determined as follows. Starting with

〈n| â+â−
h̄ω

|n〉 = 〈n| n̂ |n〉 = n, (6.57)

we have, using the hermiticity properties â†
± = â∓,

nh̄ω = 〈n| â+â− |n〉 = |â− |n〉|2 = |c|2 ||n− 1〉|2 = |c|2 ,

hence c = √nh̄ω. Similarly we can work out the effects of â+. Thus the effects
of the ladder operators are

â− |n〉 =
√

nh̄ω |n− 1〉 and â+ |n〉 =
√
(n+ 1) h̄ω |n+ 1〉 . (6.58)

6.4.2 Quantum jumps: From emission and absorption
of radiation to creation and annihilation of particles

A quantum radiation field is a collection of quantum oscillators. The energy
spectrum of the field for each mode is given by the quantized energy as
shown in (6.56). Thus the Planck/Einstein quantization result is automatically
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obtained in the framework of quantum field theory. The first application of the
new quantum mechanics to the electromagnetic field was given in the famous
three-man paper (Dreimännerarbeit) of Born, Heisenberg, and Jordan (1926).
This had at last put Einstein’s idea of the photon on a firm mathematical found-
ation. The new quantum mechanics also yields the correct hydrogen spectrum,
as shown by Pauli (1926) in matrix mechanics and by Schrödinger (1926) in
wave mechanics.

Vacuum energy fluctuation
The new feature of (6.56) is the presence of the zero-point energy. Since the
ground state of a field system is identified with the vacuum, quantum field
theory predicts a nonvanishing energy for the vacuum state. While the presence
of this constant energy term would not affect quantum applications such as
the photoelectric effect and specific heat, as we shall see, there are observable
effects associated with this nonvanishing vacuum energy. In fact what we have
is the fluctuation of the energy in the vacuum state. We have already discussed
the zero-point oscillator energy from the viewpoint of the position–momentum
uncertainty relation. We also have the uncertainty relation11 11Time is not a dynamical observable repres-

ented by an operator in quantum mechanics.
The uncertainty relation follows from the
Heisenberg equation of motion with �t being
the characteristic time that a system takes to
change.

between energy
and time, �E�t � h̄. This suggest that, for a sufficiently short time interval,
energy can fluctuate, even violating energy conservation. The vacuum energy
is the (root-mean-square) average of the fluctuation energy.

Emission and absorption of radiation
That the formalism of the quantum oscillator allows one to raise and lower the
field energy by units of h̄ω can naturally be used to describe the quantum jumps
of emission and absorption of radiation. In particular, the amplitude for the
emission (i.e. creation) of an energy quantum is directly related to the matrix
element:

〈n+ 1| â+ |n〉 =
√
(n+ 1) h̄ω. (6.59)

The equality follows from (6.58), leading to an emission rate proportional to
the factor (n+ 1).

This is just the result first discovered by Einstein. From the RHS of (6.36)
we have the total (induced and spontaneous) emission rate,(

dPn

dt

)
em

=
(
ρ

Bm
n

Am
n

+ 1

)
Am

n Pn =
(

ρc3

8πhν3
+ 1

)
Am

n Pn, (6.60)

where we have used the relation for Einstein’s A and B coefficients (6.41). The
language of quantum field theory allows us to express this emission rate in
terms of the number of light quanta n :(

dP

dt

)
em

∝ (n+ 1) P, (6.61)

because, according to Eq. (4.1), we have the energy (per radiation oscillator)
U = ρc3/8πν2 and U/hν = n. While the factor of n on the RHS of (6.61)
corresponds to the stimulated emission, the factor of 1 in (n+ 1) reflects the
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spontaneous emission. Thus in quantum oscillator language, the spontaneous
emission term comes from the commutation relation (6.47). It has exactly the
same origin as the zero-point energy. This linkage between the vacuum energy
and spontaneous emission suggests to us that we can identify spontaneous
emission as brought about (i.e. due to the perturbation) by the vacuum energy
fluctuation.

Creation and annihilation of particles
In the above we have seen that the raising and lowering ladder operators of the
oscillator provide us with a natural description of emission and absorption of
radiation in units of the energy quanta. In modern language this is the emission
and absorption of photons.

Even with the success of the quantum field theory treatment of radiation,
we still have, at this stage, a dichotomy: on one hand we have radiation with
its quanta that can be freely created and destroyed; on the other hand, mater-
ial particles such as electrons and protons were thought to be eternal. Further
development of quantum field theory showed that material particles can also
be thought of as quanta of various fields, in just the same way that the photon
is the quantum of the electromagnetic field. These matter fields are also collec-
tions of their oscillators, with their corresponding ladder operators identified
as the creation and annihilation operators of these material particles.

This is a major advance in our understanding of particle interactions. Until
then the interactions among particles were described by forces that can change
the motion of particles. Photons are just like other particles except they have
zero rest-mass. While there is no energy threshold for radiation, given enough
energy all particles can appear and disappear through interactions. The first
successful application of this idea was in the area of nuclear beta decay. The
nucleus is composed of protons and neutrons. How is it then possible for one
parent nucleus to emit an electron (and a neutrino) while changing into a
different daughter nucleus? Enrico Fermi (1901–54) gave the quantum field
theoretical answer to this puzzle. He modeled his theory of beta decay on
quantum electrodynamics and described the process as the annihilation of a
neutron in the parent nucleus followed by the creation of a proton in the final
state nucleus along with the creation of the electron (and the neutrino).

Ranges of interactions
In a field theory the interaction between the source particle and test particle is
described as the source particle giving rise to a field propagating out from the
source and the field then acting locally on the test particle. Since a quantized
field can be thought of as a collection of particles, this interaction is depicted
as an exchange of particles between the source and test particles. Since the
exchanged particle can have a mass, the creation of such an exchange particle
(from the vacuum) would involve an energy nonconservation of �E � mc2.
But the uncertainty principle �E�t ≥ h̄ only allows this to happen for a
time interval of �t � h̄/mc2. This implies a propagation, hence an interac-
tion range, of R � c�t � h̄/mc (the Compton wavelength of the exchanged
particle). Electromagnetic interaction is long range because the photon is mass-
less. Based on such considerations, Hideki Yukawa (1907–81) predicted the
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existence of a meson, about a couple of hundred times more massive than the
electron, as the mediating quantum of nuclear forces which were known to
have a finite range of about a fermi (= 10−15 m).

We conclude by noting the central point of quantum field theory: The essen-
tial reality is a set of fields, subject to the rules of quantum mechanics and
special relativity; all else is derived as a consequence of the quantum dynamics
of these fields (Weinberg 1977).

6.4.3 Resolving the riddle of wave–particle duality
in radiation fluctuation

In this last section we return to the issue of wave–particle duality displayed
by the radiation energy fluctuation discussed at the beginning of this chapter.
How does quantum field theory resolve the riddle of the radiation fluctuation
having two factors (6.16): a wave term plus a particle term?

In quantum field theory a field is taken to be an operator. The above dis-
cussion of the radiation field being a collection of quantum oscillators means
the replacement of a classical field (a complex number) Aeiφj , with appropriate
normalization, by an operator âj−eiφj + âj+e−iφj with

[
âj−, âk+

] = h̄ωδjk. The
calculation of the energy fluctuation of such a wave system follows the same
lines as that for classical waves (cf. SuppMat Section 6.5). However the non-
commutivity of quantum oscillator operators â± gives rise to extra terms, as
shown in (6.47). The result is that, instead of the classical wave result of (6.8),
we now have the mean-square energy density

�u2 = u2 + uh̄ω. (6.62)

For the system average we follow the same procedure used in Section 6.1,
to obtain 〈E〉 = Ndνu and

〈
�E2

〉 = Ndν�u2, and, using the density of states
result N = 8πν3/c3 of (4.5), to arrive at the final result of

〈
�E2

〉 = 〈E〉2
Ndν

+ 〈E〉 h̄ω = c3

8πν2

〈E〉2
vdν

+ 〈E〉 hν. (6.63)

This is just the result (6.16) that Einstein obtained in 1909 from Planck’s dis-
tribution. Thus these two terms, one wave and one particle, can be explained
in a unified framework. Recall that it was based on this result that Einstein first
proposed the point-like particles as the quanta of radiation. Alas, as already
mentioned above, Einstein never accepted this beautiful resolution of the great
wave–particle riddle, as he never accepted the framework of the new quantum
mechanics.

The extra particle-like term comes from the commutator (6.47) which is
equivalent to

[
x̂, p̂
] = ih̄. Thus it has the same origin as the zero-point energy

and the energy quantization feature of the quantized wave system. This eleg-
ant resolution of the wave–particle duality was discovered by Pascual Jordan
(Born, Heisenberg, and Jordan 1926).12 12There is ample historical evidence show-

ing that Jordan was alone responsible for this
section of the Dreimännerarbeit.

Somehow this result is not well-known
generally; the full story of, and a careful re-derivation of, Jordan’s contribution
was given by Duncan and Janssen (2008).
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Quantum field theory can account for another fundamental feature of a sys-
tem of many particles: its quantum statistics property. As we shall discuss in
the next chapter, photons obey Bose–Einstein statistics and the new quantum
mechanics requires its state to be symmetric under the exchange of any two
photons. It turns out that the commutation relation that is being discussed in
this section [cf. Eq. (6.47)] is just the elegant mathematical device needed to
bring about this required symmetry.1313For a fermionic system, the particle

creation and annihilation operators are
postulated to obey anticommutation relations
âj−âk+ + âk+âj− ≡

{
âj−, âk+

} = h̄ωδjk so
that a multi-fermion system is antisymmetric
under the interchange of two identical
fermions.

This quantum statistical property leads
directly to the Planck distribution for a thermal photon system. Planck’s dis-
tribution yields a fluctuation showing the wave–particle duality. Thus quantum
field theory gives a completely self-consistent description of the electromag-
netic radiation. In this theory one can see the effects of waves and particles
simultaneously.

6.5 SuppMat: Fluctuations of a wave system

Here is a calculation of the fluctuations of randomly superposed waves. This
presentation follows that given by Longair (2003, p. 369). The energy density
is proportional to the field squared |F|2. For the case of electromagnetic waves,
F can be the electric or magnetic field. We assume that all polarization vectors
are pointing in the same direction, reducing the problem to a scalar field case,
and all waves have the same amplitude A. [Cf. Eq. (3.4) in Section 3.1] In this
way, we have the energy density as

|F|2 = A2

⎛
⎝ N∑

j=1

eiφj

⎞
⎠∗ ( N∑

k=1

eiφk

)
= A2

⎛
⎝N +

∑
j�=k

ei(φk−φj)

⎞
⎠ . (6.64)

When the phases of the waves are random, the second term in the parentheses
being just sines and cosines, averages out to zero:

u = 〈|F|2〉 = NA2. (6.65)

Namely, the total average energy density of a set of incoherent waves is simply
the sum of the energy density of each mode.

To calculate the mean-squared energy, we need to calculate the square of the
energy density (6.64). The result is

∣∣|F|2∣∣2 = A4

∣∣∣∣∣∣
⎛
⎝N +

∑
j�=k

ei(φk−φj)

⎞
⎠
∣∣∣∣∣∣
2

= A4

⎛
⎝N2 + 2N

∑
j�=k

ei(φk−φj) +
∑
j�=k

e−i(φk−φj)
∑
l �=m

ei(φm−φl)

⎞
⎠ .

Again the second term (with coefficient 2N), as well as most of the terms in
the double sum, average out to zero. The terms in the double sum that survive
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are those with matching indices j = l and k = m; there are thus N2 such terms.
The result then is 〈∣∣|F|2∣∣2〉 = A4

(
N2 + 0+ N2

) = 2N2A4. (6.66)

We have the variance of the fluctuating wave energy:

�u2 =
〈∣∣|F|2∣∣2〉− 〈|F|2〉2 = N2A4 = u2. (6.67)

This is the claimed result for wave fluctuations as displayed in (6.8).
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• The physics community’s acceptance of the photon idea did not come
about until the discovery and analysis of Compton scattering in 1923.
We present a short introduction to this subject. The remainder of this
chapter is devoted to the statistical analysis of photons as identical
bosons.

• Just about all of Einstein’s principal contributions to quantum theory are
statistical in nature: his first paper on the photon, his work on specific
heats, on stimulated and spontaneous radiative processes, and now on
quantum statistics. This last effort was prompted by a paper that S. Bose
sent to him in 1924.

• Bose was dissatisfied with the logical foundation of Planck’s radiation
theory. He presented a derivation of Planck’s distribution using the
particle approach from the very beginning. We present Bose’s deriv-
ation in detail so as to understand the implicit assumptions he made in
this pioneering work.

• In the meantime de Broglie put forth his idea that matter, under cer-
tain circumstance, could behave like waves. This inspired Einstein to
extend Bose’s analysis of radiation to systems of matter particles. Here
he made the discovery of the astounding possibility of Bose–Einstein
condensation (BEC).

• The papers of de Broglie and Einstein directly influenced Schrödinger
in his creation of the Schrödinger equation. This prompted Pais to
bestow onto Einstein the title of “godfather of wave mechanics”.

• The ultimate understanding of Planck’s spectral distribution came about
in modern quantum mechanics with its notion of indistinguishable
particles. A multiparticle system must be described by a wavefunction
that is either symmetric or antisymmetric under the interchange of two
identical particles. The spin-statistics theorem instructs us that particles
with half-integer spin obey Fermi–Dirac statistics and particles with
integer spin (like photons) obey Bose–Einstein statistics.

• Section 7.4 is devoted to some basics of Bose–Einstein condensation.
In particular we show that this phenomenon of a macroscopic number
of particles “condensing” into the momentum space ground state can
only take place when the particles’ wavefunctions start to overlap. The
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production of BEC and a demonstration of its macroscopic quantum
behavior in the laboratory setting was achieved in the 1990s. We briefly
describe this success.

• In SuppMat Section 7.5, we discuss radiation pressure resulting from
photon collisions with the enclosure. In SuppMat Section 7.6, we show
why, in the context of modern quantum statistics, Planck found the right
answer using the statistical weight he wrote down in 1900. In SuppMat
Section 7.7, we discuss the role of particle indistinguishability, making
it possible for BEC to take place.

As we have already recounted previously, there was persistent resistance
to Einstein’s 1905 photon proposal. This lasted till 1923 when Arthur H.
Compton (1892–1962) performed X-ray scattering off a graphite target and
provided the analysis showing that a light quantum has not only energy but
also momentum. This brought about the general acceptance of the photon idea.
Arnold Sommerfeld (1868–1951), one of the leading lights in physics, had this
to say about the result of Compton scattering (Sommerfeld 1924): “It is prob-
ably the most important discovery which could have been made in the current
state of physics.” With this general acceptance, the investigation of radiation
made further progress with the first correct statistical analysis of radiation as
a specific case of Bose–Einstein quantum statistics. These will be the main
topics of this chapter.

Fig. 7.1 The momentum diagram of Comp-
ton scattering: A photon with momentum p
scatters off an electron to produce another
photon

(
p′
)

with the recoil electron having
momentum pe.

7.1 The photon and the Compton effect

Compton carried out experiments with X-rays scattering on a graphite target.
In the classical theory, these incoming electromagnetic waves cause electrons
in the carbon atoms to oscillate with the same frequency as the incident waves
and re-emit the final state waves with the same frequency. In the particle pic-
ture of light, a photon carries momentum as well as energy. The energy E
and momentum p are related1

1This is compatible with a classical radiation
field with field energy density (u) given
by u = (E2 + B2

)
/2 and field momentum

density given by the Poynting vector
S = E× B/c, with their magnitudes related
by u = cS, because, in an electromagnetic
wave, the electric and magnetic field
strengths are equal, E = B.

by ε = pc, which is the m = 0 case of the

general relativistic energy and momentum relation ε2 = (pc)2 + (mc2
)2

. For
a quantized photon energy ε = hν, one has the simple relation between photon
momentum and wavelength

p = hν

c
= h

λ
. (7.1)

The particle description of this scattering of light by electrons leads to a dis-
tinctive result.2

2This analysis was independently worked out
by Compton (1923) and Debye (1923).

From momentum–energy conservation, one expects the final
state photon to have a smaller momentum than the incident photon, hence a
longer wavelength. The exact relation between this shift of wavelength and
scattering angle can easily be worked out (see Fig. 7.1). One starts with the
energy conservation relation:

ε + mc2 = ε ′ +
√(

pec
)2 + (mc2

)2
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which, after using (ε − ε′) = (p− p′)c, can be written as[
(p− p′)c+ mc2

]2 = (pec
)2 + (mc2)2. (7.2)

The corresponding momentum conservation relation can similarly be written
down, with the electron recoil momentum being pe = p− p′. This implies an
equation among the magnitudes of the various momenta,

p2
e = p2 + p′2 − 2pp′ cos θ . (7.3)

Eliminate p2
e from Eqs. (7.2) and (7.3), we immediately obtain the correlation

between wavelength shift and scattering angle as

λ′ − λ = λc(1− cos θ ). (7.4)

We have used the definition of the Compton wavelength λc = h/mc, which
is a very small length λc = 0.0024 nm even for an electron mass. In order to
see such a tiny wavelength shift, it helps to work with an electromagnetic wave
having short wavelength in the first place. This explains why the effect was dis-
covered in the scattering experiment involving X-rays. Still, it was remarkable
that Compton was able, in the first experiment making measurements at scatter-
ing angles of 45◦, 90◦, and 135◦, to determine the Compton wavelength λc to
an accuracy that was less than one percent off the modern value. Compton con-
cluded his paper (Compton 1923) this way: “The experimental support of the
theory indicates very convincingly a radiation quantum carries with it directed
momentum as well as energy.”

We have in Section 3.4.3 derived the result for radiation pressure and radi-
ation energy density p = u/3 by way of thermodynamic arguments. It may
be easier for a modern-day reader to understand this result from the view-
point of momentum changes as suffered by photons after collisions with the
enclosure wall (cf. SuppMat Section 7.5). In the next few sections we shall see
how the idea of the photon would finally lead to a more consistent and deeper
understanding of blackbody radiation.

7.2 Towards Bose–Einstein statistics

The Compton scattering result was obtained in 1923. This had finally estab-
lished the reality of photons for the general community of physicists. In 1924
Einstein received a letter from Satyendranath Bose (1894–1974) of Kolkata
asking his opinion of an enclosed paper,33The paper was written in English and sumit-

ted to Philosophical Magazine in 1923. After
its rejection by that journal, Bose sent it
to Einstein who translated it into German
and arranged its publication in Zeitschrift der
Physik (Bose 1924). A re-translation back
into English can be found in the American
Journal of Physics (Bose 1976).

in which Bose used the particle
properties of a photon (having the energy–momentum relation of ε = pc with
p2 = p2

x + p2
y + p2

z ) to obtain another derivation of Planck’s spectral distribu-
tion of blackbody radiation. He stated that he was motivated by the observation
that Planck’s derivation was not logically self-consistent. Planck arrived at
a non-classical physics result of energy quantization while using a relation
between radiation density ρ(ν, T) and average energy U of an oscillator,

ρ = 8πν2

c3
U, (7.5)
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deduced by a classical electromagnetic calculation (cf. Section 3.2.1). In
Section 4.1.3 this result was obtained by a counting of wave states. Bose set
out with a particle approach from the very beginning.

After deriving this density of states, Bose proceeded to deduce Planck’s
distribution. Bose’s approach is to adhere closely to Boltzmann’s procedure.
In contrast to Planck’s method (cf. Sections 3.3.1 and 3.3.2), his statistical
analysis involves a counting of phase space cells. But to have the calculation
ending in Planck’s distribution, rather than Boltzmann’s, clearly he had to devi-
ate from the latter’s procedure. In order to see all this, we shall first provide a
brief review of Boltzmann’s statistical program.

7.2.1 Boltzmann statistics

Boltzmann’s analysis proceeded by identifying particles with cells in position–
momentum phase space. He also used the device of discrete energy packets ε,
but would set ε = 0 at the end of a calculation in order to recover a continuous
energy. One regards the P energy packets as forming P+ 1 energy levels, with
the lowest level having zero energy ε0 = 0, the second level having energy
ε1 = ε, so on up to the highest level εP = Pε. The N particles (cells) can have
various energies; such a configuration (label it as σ ) can be described by a set
of cell numbers

(
N0, N1, N2, . . . , NP

)
. N0 is the number of cells at the ground

level ε0, N1 is the number at the next level ε1, etc. Namely, we have the total
number of particles and total energy as given by

N =
P∑

j=0

Nj, U =
P∑

j=0

εjNj =
P∑

j=0

jεNj. (7.6)

The probability complexion for such a macrostate configuration σ is calculated
by counting the number of ways N cells can have different energies (i.e. N is
divided into different sets of cells). We note that the number of ways we can
select out N0 cells from the total N is N!/[N0!

(
N − N0

)!], then the number of
ways to select out N1 cells from the remaining N − N0 is

(
N − N0

)!/[N1!
(
N −

N0 − N1
)!], etc. Thus the total number of ways one can divide up N oscillators

into a distribution of
(
N0, N1, N2, . . . , NP

)
is the product4 4In the so-called “correct Boltzmann count-

ing” procedure, one would insert the ad hoc
factor of 1/N! in order to make the res-
ultant entropy an extensive thermodynam-
ical function. This is ultimately justified
by quantum mechanics with its concept of
identical particles. We do not make this inser-
tion here because this feature is irrelevant for
our present discussion.

Wσ = N!
N0!
(
N − N0

)! ×
(
N − N0

)!
N1!
(
N − N0 − N1

)! × · · ·
= N!

N0!N1! . . .NP! , (7.7)

leading to the entropy

S = kB ln Wσ = kB

⎛
⎝ln N! −

∑
j

ln Nj!
⎞
⎠

≈ kB

⎛
⎝N ln N −

∑
j

Nj ln Nj

⎞
⎠ ,



98 Bose–Einstein statistics and condensation

where we have approximated the factorial logarithms by Stirling’s formula
(cf. Appendix A, Section A.3). One then maximizes the entropy, under the
constraint of the two conditions given in (7.6), to find the configuration that
corresponds to the equilibrium state:

0 = δ
∑

j

(
Nj ln Nj + ANj + BεjNj

)
=
∑

j

δNj
(

ln Nj + 1+ A+ Bεj
)

where we have used the Lagrangian multipliers A and B to incorporate the
two constraint conditions (cf. Appendix A, Section A.4). For an independent
variation δNj, the coefficient must vanish

ln Nj = −α − βεj + constant (7.8)

giving the primitive form of the Boltzmann distribution, Nj ∝ exp(−α − βεj).
One then has to appeal to analysis of other systems such as an ideal gas to fix
the parameters α and β = kBT , etc.

7.2.2 Bose’s counting of photon states

Bose obtained the relation (7.5) by a counting of the photon states (instead
of wave states as done by Rayleigh). His approach was to count the cells in
the particle’s position–momentum phase space, which is quantized in units of
Planck’s constant h3. First, we will show that quantum theory naturally tells us
that the phase space volume for an oscillator is quantized in this way.

As we have already shown in Eq. (3.55) in SuppMat Section 3.5.1, the
energy equation of a 1D harmonic oscillator with frequency ν traces out an
elliptical curve in the 2D phase space dqdp, with an area equal to the ratio of
the oscillator energy to its frequency U/ν. In quantum theory, the oscillator
energy (above the zero-point energy) is quantized, Un = nhν. Thus, each
oscillator state occupies an elliptical area of h. Clearly for 3D oscillators with
phase space d3qd3p, the 6D volume has a volume of h3—each oscillator state
occupies a phase space volume of h3.

Density of photon states
Recall the relation of radiation energy density ρ in terms of the number of
radiation oscillators N and their respective energy U, see Eqs. (3.13) and (4.5);
we have ρdν = (UN/V)dν. Bose counted the number of photon states N by
counting the number of cells occupied in the 6D phase space:

Ndν = 2
d3qd3p

h3
= 2V

h3
4πp2dp (7.9)

where the factor of 2 corresponds to the two polarization states of a photon.5
5Previously this factor of 2 had always been
introduced as the two polarizations of the
electromagnetic wave. But here Bose in 1924
was inserting it when working with photons.
The whole idea that a particle can have
intrinsic spin was not proposed until 1925
(for the electron). Nevertheless, Bose intro-
duced this factor of 2 in his derivation with
the comment: “it seems required”!

The momentum variable p is then replaced by the frequency ν through the
relation of p = ε/c = (h/c)ν so that

Ndν = 8πV

h3

(
h

c

)3

ν2dν or ρ = N

V
U = 8πν2

c3
U. (7.10)

This is Planck’s relation (7.5).



7.2 Towards Bose–Einstein statistics 99

Bose’s derivation of the Planck distribution
Just like Planck, Bose then proceeded to a statistical calculation of the
complexion that would lead to Planck’s spectral distribution. Recall that all
Einstein’s previous discussions of blackbody radiation had avoided any explicit
statistical analysis. In fact he had mildly criticized Planck’s statistical approach
as being without foundation (cf. Section 3.4.1). But he was supportive of
Bose’s new analysis.

Bose assumed that there are Ns quanta, distributed among Zs phase space
cells (i.e. potential states that a photon can occupy) at frequency νs (the super-
script s is a label of the state, having frequency interval dν). These cells can
be at different energy levels. There are ws

r cells each holding r quanta, having
energy εs

r = rhνs: thus ws
0 cells at ground state εs

0 = 0, ws
1 cells at εs

1 = hνs, and
ws

2 cells at εs
2 = 2hνs, etc. In total there are N photons in the frequency interval

dν. Their relations can be expressed as

N =
∑

s

Ns, U =
∑

s

Nshνs, (7.11)

Ns =
∑

r

rws
r, Zs =

∑
r

ws
r.

The number of microstates, according to Bose, should “simply” be the product
of the number of ways (for each νs) that Zs cells can be partitioned into a
distribution of

(
w0, w1, w2, . . . ,

)
, much like (7.7):

W =
∏

s

Zs!
ws

0!ws
1!ws

2! . . .
. (7.12)

Just as in Section 7.2.1, one then maximizes the logarithm of this statistical
weight δ ln W = 0 with

ln W =∑
s

Zs ln Zs −∑
s,r

ws
r ln ws

r

holding the total number of cells Zs and total energy U fixed. Using the
method of Lagrangian multipliers β and λs (see Appendix A.3), he obtains
the condition6 6From (7.11), we insert into δ ln W = 0 the

factors λsδZs = λs∑
r δws

r = 0 and βδU =
β
∑

s δNshνs = β
∑

s,r rδws
rhνs = 0.

∑
s

∑
r
δws

r

(
ln ws

r + 1+ λs + rβhνs) = 0 (7.13)

which implies the solution

ln ws
r = −rβhνs + constant

or ws
r = Ase−rβhνs

with the coefficient As related to Zs =∑
r

ws
r by:

ws
r = Zs(1− e−βhνs)

e−rβhνs
. (7.14)

Bose proceeds to calculate the photon number distribution by7 7Here one uses the result of
∑

r rxr = x/(1−
x)2, which can be gotten from the famil-
iar geometric series

∑
r xr = 1/(1− x) by

a simple differentiation with respect to the
variable x.

Ns =
∑

r

rws
r = Zs

(
1− e−βhνs)∑

r

r
(
e−βhνs)r

= Zs e−βhνs

1− e−βhνs = Zs

eβhνs − 1
. (7.15)
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Using his result (7.10) for the density of states Zs = 8πνs2V/c3, Bose deduces
the total radiation energy in the interval

U

V
dν =

∑
s

Nshνs

V
dν = 8πν2

c3

hν

eβhν − 1
dν. (7.16)

The Lagrangian multiplier can be fixed as β = 1/kBT by noting that the
entropy is S = kB ln W, and differentiating with respect to energy must be iden-
tified with the absolute temperature T = ∂U/∂S. In this way Bose arrives at the
Planck’s distribution:

ρ(ν, T) = 8πh

c3

ν3

ehν/kBT − 1
. (7.17)

Implicit assumptions in Bose’s derivation
Bose’s statistical counting method, compared to Planck’s, certainly looks more
like the traditional Boltzmann procedure. Clearly he had gone beyond the
established approach so that he was able to arrive at Planck’s distribution
instead of the usual Boltzmann result. Apparently Bose did not realize in what
fundamental ways his derivation departed from the usual classical statistical
mechanical method. He made no comments about these assumptions in his
paper. And in later years he remarked that he did not realize “what he did was
all that new”!

Instead of counting photons directly, he divided the phase space into cells,
and asked how many photons were in a cell (rather than which photons were in
a cell) and thus implicitly assumed indistinguishability of photons. He assumed
statistical independence of cells. Thus there is no statistical independence of
particles. In his calculation he imposed the condition of conservation of phase
space cells (i.e. Zs =∑r ws

r = constant). Since each cell has an indefinite num-
ber of photons, he had implicitly assumed photon number nonconservation
(i.e. N =∑s Ns �= constant). Interestingly, this constant Zs condition is actu-
ally irrelevant for his result, as we see in the above calculation that the
corresponding Lagrangian multiplier λs drops out in the result of the cell dis-
tribution (7.14). Furthermore, he had also assumed that (in modern language)
the photon has intrinsic spin—again without much of a comment.

7.2.3 Einstein’s elaboration of Bose’s counting statistics

Einstein arranged the publication of Bose’s paper and he also sent in a related
contribution (Einstein 1924), extending Bose’s case of photon statistics to
the general case of noninteracting particles (i.e. atoms and molecules). In
the meantime (1923–24) Louis de Broglie made his suggestion that matter,
under certainly circumstances, could have wave-like behavior. Einstein was
very enthusiastic about this idea. His paper (Einstein 1925) was the first of any-
one who actually referred to de Broglie’s new suggestion of matter waves. He
justifies his application of Bose’s photon counting method to matter particles
by saying that if particles can be waves, they should obey similar statistics to
photons.
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Density of nonrelativistic particle states
To count the nonrelativistic gas particle states, Einstein followed Bose by
calculating the corresponding phase space volume in units of h3 as in (7.9):

Ndν = d3qd3p
h3

= V

h3
4πp2dp. (7.18)

Instead of photons, we have nonrelativistic particles with the momentum p
related to the kinetic energy ε by p = √2mε so that

Ndν = 2πV

h3
(2m)3/2 ε1/2dε = Z(ε) dε. (7.19)

The particle density (number per unit energy) Z(ε) is given by

Z(ε) = 2V

√
ε

π

(
2πm

h2

)3/2

. (7.20)

Particles obeying Bose–Einstein statistics are called bosons.

Distribution of identical bosons
Einstein improved upon Bose’s method in his derivation of the distribution
of gas particles. Recall our comment that it is irrelevant to impose the condi-
tion Zs =∑r ws

r = constant. Instead of working with the statistical weight of
(7.12), Einstein wrote down the complexion in a form more similar to Planck’s
Eq. (3.38):

W =∏
s

(
Ns + Zs − 1

)!
Ns!(Zs − 1

)! �∏
s

(
Ns + Zs

)!
Ns!Zs! . (7.21)

This is a counting of the ways that one can distribute Ns identical particles
into Zs cells.8 8Recall in Eq. (3.34) that Planck was count-

ing the ways of distributing P quanta into N
oscillators.

Einstein then maximizes ln W under the constraint of holding
the particle number N = �Ns and the energy U = �Nsεs fixed—by using two
Lagrangian multipliers, which can eventually be identified with 1/kBT and the
chemical potential μ:

Ns = 1

e(εs−μ)/kBT − 1
. (7.22)

This came to be known as Bose–Einstein statistics. Because photon number is
not conserved (that is, photons can be freely emitted and absorbed), there is not
the requirement of N = �Ns, and the Lagrangian multiplier μ, identified with
the chemical potential, is absent (or, μ = 0):

Ns = 1

eεs/kBT − 1
. (7.23)

This is the correct distribution for photons as discussed in Section 7.2.2.
Using the expression for the density of states obtained in (7.20), the total

number density is

N =
∫ Z(ε) dε

e(εs−μ)/kBT − 1

= 2V√
π

(
2πm

h2

)3/2 ∫
ε1/2dε

e(εs−μ)/kBT − 1
. (7.24)
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The discovery of Bose–Einstein condensation
For the case of the ground state (with εs = 0) we have from (7.22):

N0 = 1

e−μ/kBT − 1
.

The requirement that N0 > 0 (i.e. e−μ/kBT > 1) implies that the chemical poten-
tial μ must in general be nonpositive. Einstein discovered that when the
temperature drops below a certain temperature (called the condensation tem-
perature Tc) when the chemical potential approaches zero (from below) the
above expression for the ground state population becomes macroscopic in size:

N0 = kBT

−μ ≫ 1. (7.25)

Einstein commented on this remarkable result:

I maintain that, in this case, a number of molecules steadily growing with increas-
ing density goes over in the first quantum state (which has zero kinetic energy) while
the remaining molecules distribute themselves according to the parameter value of
μ = 0 . . . A separation is effected; one part condenses, the rest remains a ‘saturated
ideal gas’.

Einstein had discovered a purely statistically induced phase transition, which
we now call “Bose–Einstein condensation”. In Section 7.4 we shall provide a
more detailed discussion of this condensation phenomenon.

7.3 Quantum mechanics and identical particles

Modern quantum mechanics came into being in 1925–26. In this new the-
ory physical states are identified with vectors and physical observables with
operators of the Hilbert space. These vectors and operators may appear rather
differently depending on what basis vectors one chooses to represent this geo-
metric space. This is reflected in the two separate discoveries of quantum
mechanics. In the spring of 1925 Werner Heisenberg, following his study of
dispersion relations, had proposed a rather abstract version of a quantum the-
ory, which came to be known as matrix mechanics. At the end of 1925 Erwin
Schrödinger wrote down his wave equation thus initiated wave mechanics.
The hydrogen spectrum was obtained in both matrix and wave mechanics.
Soon, in 1926, P.A.M. Dirac, and independently Heisenberg and Schrödinger,
had shown that wave and matrix mechanics are equivalent to each other:
they were just two different representations of the same theory. In the fol-
lowing discussion we shall mostly use the more accessible language of wave
mechanics.

7.3.1 Wave mechanics: de Broglie–Einstein–Schrödinger

In 1924 Louis de Broglie proposed in his doctoral thesis that, associated
with every matter particle (with momentum p) there was also a wave with
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wavelength λ = h/p (de Broglie 1924). Recall that Einstein had introduced the
idea of light quanta—particle-like properties of radiation; he stated his gen-
eral motivation as wanting to have a more symmetric description of matter
and radiation. In fact de Broglie explicitly acknowledges that his matter wave
idea was inspired by this particle–wave dualism9 9Recall our discussion in Section 6.1 of

Einstein’s 1909 investigation of radiation
fluctuation leading him to the notion of
particle–wave duality. In a paper submitted at
the beginning of 1925 Einstein showed that
a relation, just like Eq. (6.16), holds as well
for his quantum gas of material particles as
discussed in Section 7.2.3.

as stated in Einstein’s 1905
photon paper. Thus we should not be surprised that de Broglie’s matter wave
idea received Einstein’s enthusiastic support. The question: What would be the
equation that governs the behavior of this matter wave? It is also of historical
interest to note that Erwin Schrödinger first became aware of de Broglie’s idea
from reading Einstein’s 1924–25 papers. This led directly to the creation of
his wave equation, which immediately came to be known as the Schrödinger
equation, at the end of 1925.

7.3.2 Identical particles are truly identical in quantum
mechanics

The concept of identical particles in quantum mechanics is qualitatively dif-
ferent from any analogous notion in classical physics. In classical physics
ultimately no particles can be identical. Two electrons with identical charge
and mass can still be distinguished because we can in principle follow their
individual trajectories and tell apart which is which particle. In quantum mech-
anics, it is impossible to have precise particle trajectories. In classical physics
we can also in principle distinguish two particles by putting labels on them (e.g.
paint them different colors) without interfering with their motion. In quantum
mechanics, on the other hand, it is not possible to keep track of particle tra-
jectories or to put extra labels involving an incompatible observable.10 10Because observables are represented by

operators. Two observables are said to be
incompatible if their respective operators do
not commute, ÂB̂− B̂Â ≡ [Â, B̂] �= 0. This
leads to an uncertainty relation of their
observable values, �A�B ≥ h̄. The ‘extra
label’ that one would wish to place on a
particle must be an incompatible one as a
particle has already been labeled by a com-
plete set of compatible observables.

Thus
identical particles are truly identical in quantum mechanics. The interchange
of any two identical particles leaves no observable consequence—no change
in the measurement probability. The wavefunction, being the probability amp-
litude, must therefore be either symmetric or antisymmetric with respect to
such an exchange of identical particles. As we commented at the end Section
6.4, quantum field theory can account for symmetry properties of the identical
particle nature of a field’s quanta. The commutation relation discussed in
Eq. (6.47) is just the elegant mathematical device needed to bring about this
required symmetry.

7.3.3 Spin and statistics

In the meantime the quantum mechanical concept of particle spin had
emerged.11 11Electron spin was first proposed by

Uhlenbeck and Goudsmit (1925).
It was then proposed that there is a direct relation between the

particle spin and the symmetry property of a wavefunction, and hence the
statistical properties of such identical particles. A system of particles having
integer spin (e.g. photons with spin 1) must have a symmetric wavefunction
and obey Bose–Einstein statistics; these particles are called bosons. A system
of particles with half-integer spin (e.g. electrons with spin 1/2) must have an
antisymmetric wavefunction, and obey Fermi–Dirac statistics. They are called
fermions. The spin-statistics theorem was proven by Wolfgang Pauli and others



104 Bose–Einstein statistics and condensation

in the framework of quantum field theory (based on quantum mechanics and
special relativity) (Pauli 1940).

7.3.4 The physical implications of symmetrization

The physical implications of the concept of indistinguishable particles are
remarkable. The antisymmetric property of the fermionic wavefunction means
that two identical fermions cannot be in the same state. This explains Pauli’s
exclusion principle—crucial, among other consequences, in the explication of
the structure of multi-electron atoms. The totally symmetric wavefunction of
a boson system also leads to highly counter-intuitive results. Just consider the
calculation of statistical weight. Boltzmann’s statistics (7.7) would yield results
that are in accord with our intuition. For instance, compare the two cases of dis-
tributing 10 (distinguishable) particles into two cells: in one case 10 particles
are in one cell and none in the other cell, and in the other case each cell has
five particles. The ratio of weights for these two cases is

10!
10!0! :

10!
5!5! = 1 : 252.

This is to be contrasted with the quantum distribution of 10 identical bosons
yielding the rather counter-intuitive result of the statistical weight for each case
being unity—hence the ratio 1 : 1 for the above-considered situation. In each
case there is only one totally symmetric wavefunction. When Einstein first
worked out the Bose–Einstein (BE) counting, he commented:

The BE counting “expresses indirectly certain hypothesis on the mutual influences of
the molecules which for the time being is of a quite mysterious nature.”

While we now know that this is just the correlation induced by the require-
ment of a totally symmetric wavefunction,1212For a discussion of the role of particle

indistinguishability making BE condensation
possible, see SuppMat Section 7.7.

on a deeper physical level this
mutual influence is still no less mysterious today.

The final resolution of the counting schemes of Bose (1924),
Einstein (1905), and Planck (1900)
We have seen how quantum Bose–Einstein statistics naturally explains how
Bose’s implicit assumptions are all justified. It also justifies Einstein’s ori-
ginal classical statistical mechanical argument of Wien radiation being a gas
of photons. Even though Einstein avoided making an explicit calculation of
the statistical weight, since he used the analogy of a classical ideal gas, impli-
citly he had assumed the Boltzmann statistics of (7.7). However we can justify
it now because in the Wien limit (εs � kBT) the average photon number (7.23)
is vanishing small: Ns = e−εs/kBT � 0. Thus in this limit, the statistical weight
of Boltzmann counting (7.7) is indistinguishable from Bose–Einstein (W = 1).
The Planck spectral distribution is of course understood as the consequence
of BE statistics. Nevertheless it is useful to work out the way of seeing how
Planck’s statistical analysis can lead to the correct result. This calculation can
be found in the SuppMat Section 7.6.
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7.4 Bose–Einstein condensation

Let the energies of the first excited and the (lowest energy) ground states
be ε1 and ε0 = 0 so that they have the energy gap �ε = ε1. If the available
thermal energy is not much bigger than this energy gap kBT � �ε, it would
not surprise us to find many molecules in their ground state. On the other hand,
Bose–Einstein condensation (BEC) is the phenomenon that, at a temperature
below some critical value Tc, a macroscopic number of molecules would stay
in (“condense into”) the ground state, even though the available thermal energy
kBT is much bigger than the energy gap, kBT � �ε. What Einstein had shown
was that the chemical potential can be extremely small (|μ| � ε1) in the low-
temperature regime T < Tc. For example, liquid helium has an energy gap of
ε1 � 10−18 eV. But below a temperature of � O(1 K), i.e. a thermal energy
of � O

(
10−4 eV

)
, the chemical potential of helium13 13Helium exhibits superfluid behavior below

the critical temperature of 2.17 K. We can
estimate the size of its chemical potential by
the relation (7.25), −μ = kBT/N0, with the
approximation N0 � N because a significant
fraction of all molecules would have con-
densed into the ground state. We then obtain
a value −μ = (10−4 eV · K−1

)× (1 K)×
10−22 = 10−26 eV.

has such a small value
μ � −10−26 eV that the Bose–Einstein distribution (7.22) would imply

N1 = 1

e(ε1−0)/kBT − 1
� kBT

ε1
. (7.26)

Comparing this to the ground state occupation number given in (7.25), one
finds that most of the molecules would condense into the ground state,

N0

N1
= ε1

−μ � 1. (7.27)

One must bear in mind this is condensation in momentum space (rather than
the everyday condensation in configuration space).

Bose–Einstein condensation as a macroscopic quantum state That a mac-
roscopic number of molecules are in one quantum state would lead to quantum
mechanical behavior on the macroscopic scale. This was first pointed out in
1928 by Fritz London (1900–54). London suggested that superfluid helium
was an example of a Bose–Einstein condensate. His related work on super-
conductivity also decidedly influenced the later development of BCS theory in
which electron pairs (the Cooper pairs) form the Bose–Einstein condensate.14 14London later substantiated his original sug-

gestion by showing that the phase change
of superfluid helium had properties consist-
ent with a BEC transition (London 1938).
The BCS theory is named after its originat-
ors: John Bardeen, Leon Cooper, and Robert
Schrieffer.

7.4.1 Condensate occupancy calculated

To calculate the condensation temperature, below which a macroscopic frac-
tion of the particles are in the ground state, we must know how to add up
the occupancy for every state. Only then can we compare the occupancy in
the ground state with those in the excited states. In general the total particle
number N is given by (7.24) where the discrete sum can be replaced by integ-
ration using the density of states Z(ε). This replacement, while applicable for
the excited states, is not valid for the ground state, as Z(ε = 0) = 0. We will
simply separate out the ground state with its occupancy labeled N0:

N = N0 + Nex

= 1

e−μ/kBT − 1
+ 2√

π

(
2πm

h2

)3/2

V
∫ ∞

0

√
εdε

e(ε−μ)/kBT − 1
. (7.28)
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As we have already discussed, the chemical potential is extremely small in
the region T < Tc. Nevertheless, μ must be kept in N0 because ε0 = 0, while
setting μ = 0 in Nex,

N = −kBT

μ
+ 2√

π

(
2πm

h2

)3/2

V
∫ ∞

0

√
εdε

eε/kBT − 1
. (7.29)

Let us carry out the calculation for Nex with a change of integration variable
x = ε/kT:

Nex =
(

2√
π

∫ ∞

0

√
xdx

ex − 1

)(
2πmkBT

h2

)3/2

V = 2.612
V

vQ
(7.30)

where vQ =
(

h2

2πmkBT

)3/2
is the particle’s quantum volume.1515The quantum volume is the cube of the

quantum length vQ = l3Q with lQ =
h/(2πmkBT)1/2, also called the “de Broglie
thermal wavelength” because, except for
a O(1) factor of

√
π , it is the de Broglie

wavelength associated with the thermal
momentum p = (2mkBT)1/2.

Rewriting this in

terms of the particle’s physical volume v = V/N, we have

Nex

N
= 2.612

v

vQ
. (7.31)

In other words, the fraction of particles in the excited states is directly propor-
tional to how small a particle’s quantum volume has become with respect to its
physical volume.

7.4.2 The condensation temperature

Because of the absence of a significant number of molecules in the ground state
when T > Tc, we can define the condensation temperature Tc by Nex(Tc) ≡ N.
Namely, we have the relation

Nex = 2.612

(
2πmkBTc

h2

)3/2

V = N (7.32)

or

Tc = h2

2πmkB

(
N

2.612V

)2/3

. (7.33)

Furthermore, taking the ratio of Eq. (7.30) and Eq. (7.32), we have

Nex

N
=
(

T

Tc

)3/2

, (7.34)

which is plotted in Fig. 7.2.

Fig. 7.2 Fractional ground state as a function
of temperature.

Tc for noninteracting helium Let us use (7.33) to calculate the condensation
temperature for the He system: one mole N = NA = 6× 1023 of helium with
molar volume V = 27.6 cm3. This yields Tc(He) = 3.1 K, which is not too far
off from the experimental value of 2.17 K, considering that we have completely
ignored mutual interactions, which are rather complicated collisions involving
many particles.
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Behavior of the chemical potential when T ��� Tc

From (7.34) we can also see the behavior of the chemical potential

N = N0 + Nex = −kBT

μ
+ N

(
T

Tc

)3/2

or
kBT/N

μ
=
(

T

Tc

)3/2

− 1.

(7.35)
Thus

μ(T) =
kBT
N(

T
Tc

)3/2 − 1
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−kBT

N
for T → 0

−kBTc

N

2Tc

3δT
for T → (Tc − δT).

(7.36)

Namely, the chemical potential, which started out being extremely small in
magnitude at low temperature, suddenly increases at the condensation temper-
ature (as shown by the factor Tc/δT). It is this behavior that brings about the
phase transition at Tc.

Overlap of wavefunctions when T ��� Tc

Instead of μ, it is useful to have a more direct way to understand the mean-
ing of the condensation temperature. From Eq. (7.31) Nex/N = 2.6

(
a/lQ

)3
where a and lQ are the interatomic separation

(
v = a3

)
and the quantum

length
(
vQ = l3Q

)
, respectively. Thus at T = Tc when Nex = N, we have a � lQ.

Namely, the condensation temperature is the low temperature when the thermal
de Broglie wavelength ∼ 1/

√
T , hence the effective quantum size of atoms,

becomes so large that atomic wavefunctions begin to overlap. As the temper-
ature falls below Tc the overlap is enhanced, more particles condense into the
ground state, and N0 becomes ever increasing.

7.4.3 Laboratory observation of Bose–Einstein
condensation

The prediction of BEC is for noninteracting bosons. Thus a dilute gas is much
closer to theoretical considerations, rather than the dense helium case. The
helium density has the value(

N

V

)
He

= 6× 1023

27.6
cm−3 = 2× 1022 cm−3. (7.37)

In a modern experiment, using a laser and magnetic cooling techniques, exper-
imenters have achieved the confinement of O

(
104
)

atoms (e.g. rubidium 86) in
a volume V = 10−9 cm3, thus a density of(

N

V

)
gas

= 104

10−9
cm−3 = 1013 cm−3 (7.38)

which is a billion times smaller than the helium case. This implies a decrease
in condensation temperature, through (7.33),
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Tgas
c = mHe

mRb

[
(N/V)gas

(N/V)He

]2/3

THe
c

= 4

86

[
1013

1022

]2/3

THe
c � 10−7 K. (7.39)

Given this extremely low condensation temperature the experimental study
of BEC of a low-density gas is very difficult. One can use laser cooling and at
the same time trap the atoms in a magneto-optical trap. Further manipulation
of the trapped atoms by evaporation cooling enables experimentalists to reach
the critical temperature when the BEC takes place. The positions of the atoms
can be recorded using laser beams. In Fig. 7.3 we display the result of one such
experiment. With this technique, the signature of the BEC is the appearance of
a sharp peak. The atoms in the condensed phase are in the ground state (of
the momentum space) and expand only slowly once released from the trap.
The atoms in the excited states move relatively rapidly out of their steady state
positions.

D
en

si
ty

–400 0 400
Position (μm)

<0.5 μK

<0.5 μK

0.7 μK

1.2 μK

T = 1.2 μK

Fig. 7.3 Observation of BEC in a trapped
atomic gas with Tc = 1.7 μK when a cent-
ral peak appears representing the probabil-
ity |ψ |2. As the temperature is lowered, the
thermal cloud is depleted, and atoms accu-
mulate in the Bose condensate: the number
of particles on the wing-sides (excited state
particles) diminishes while the central peak
(ground state particles) rises. Reproduction of
Fig. 7 from Stenger et al. (1998).

The success of producing dilute-gas BEC in the laboratory setting at
Boulder, MIT, and elsewhere came about some 70 years after its first theor-
etical proposal by Einstein. The 2001 Nobel Prize for Physics was awarded to
Eric Cornell (1961– ), Wolfgang Ketterle (1957– ), and Carl Wieman (1951– )
for their experimental work in this area.

Fig. 7.4 Momentum change of a photon
bouncing off a wall.

7.5 SuppMat: Radiation pressure due to a gas
of photons

The pressure (P) is the force per unit area A and the force is the rate of
momentum change �p/�t:

P = force

area
= 1

�A�t
�p. (7.40)

We denote the photon momentum by p (not to be confused with the pressure
denoted by capital script P). A given photon with energy and momentum of
(ε, p) with ε = cp, colliding with the wall, imparts a momentum of �p = 2pz,
where pz is the photon momentum component in the direction perpendicular
to the wall (call it ẑ). Let n(q) be the photon density function—the number
of photons per unit spatial volume and per unit momentum space volume,
in the momentum interval (p, p+ dp). The total pressure is the sum of the
momenta that all the photons deposit onto the wall; we need to integrate
over the momentum and configuration spaces (see Fig. 7.4). The configuration
space is the volume of the parallelepiped with base area �A and perpendic-
ular height c�t cos θ , with θ being the angle between the photon momentum
and the normal to the area (hence, pz = p cos θ ). All photons in this volume
[c�t cos θ�A] would collide with the wall in the interval of �t. The sum of
(7.40) is then
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P = 1

�A�t

∫
n(p)�pd3p[c�t cos θ�A]

=
∫

gz>0
n(p) 2pzd

3p
[

c
pz

p

]
= 2

3

∫
pz>0

[cp]n(p) d3p. (7.41)

To reach the last equality on the RHS, we have used the fact that radiation
is isotropic p2

x = p2
y = p2

z and thus the momentum magnitude squared is p2 =
p2

x + p2
y + p2

z = 3p2
z . Furthermore, the density function n(p) depends only on

p = |p| so that the integrand must be an even function of p; we can extend the
integration to the full range of (−∞, +∞) and thus remove the factor of 2:

P = 1

3

∫ +∞

−∞
[cp]n(p) d3p = 1

3

∫ +∞

−∞
[ε]n(p) d3p = 1

3
u. (7.42)

Namely, the integral is the radiation density—the sum of all photon energies
(ε) per unit spatial volume—as n is the number per unit spatial and momentum
volumes.

7.6 SuppMat: Planck’s original analysis in view
of Bose–Einstein statistics

We have already explained how Planck’s distribution can be derived as the
μ = 0 case of the Bose–Einstein statistics (7.21). In the context of later devel-
opment, it is perhaps still useful to take a closer look at Planck’s original
statistical weight written down in Eq. (3.34),

WN = (P+ N)!
P!N! , (7.43)

to see how it leads at the correct result despite of its unorthodox analysis.
Let us recall that P is the total number of quanta in a system of N oscillat-
ors. Planck converts this WN into the entropy of the oscillator S = SN/N =(
kB ln WN

)
/N = kB ln W, in term of the statistical weight of a single oscillator

W = (WN)
−N . Planck does not perform any maximization of the entropy, sub-

ject to the energy constraint, but simply makes the substitution U = (P/N)ε
and, after a differentiation of ∂S/∂U = 1/T , obtains the distribution

U = ε

eε/kBT − 1
. (7.44)

We now wish to interpret Planck’s analysis in view of Bose–Einstein statistics.
Accord to Bose–Einstein statistics, one starts with the statistical weight

of (7.21),

WN =
∏

s

(ns + 1)!
ns! . (7.45)

For our purpose, we have the density of states (degeneracy) Zs = 1, and we
have changed the notation for the photon number from Ns to ns (so as not to
have it confused with the oscillator number discussed above). To avoid the
maximization of entropy (with Lagrangian multiplier, etc.), we simply impose
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the energy condition U = �snsεs in the form of U = 〈n〉ε, where 〈n〉 is the
average number of photons in a state having energy εs = ε = hν. With this
average value, the statistical weight of (7.45) is simplified to

WN =
[
(〈n〉 + 1)!
〈n〉!

]〈n〉
. (7.46)

Taking its logarithm and using 〈n〉 = U/ε, we have

S = kB ln W = kB(ln WN)/〈n〉
= kB[(〈n〉 + 1) ln(〈n〉 + 1)− 〈n〉 ln〈n〉]

= kB

[(
U

ε
+ 1

)
ln

(
U

ε
+ 1

)
− U

ε
ln

U

ε

]
,

which is just the entropy expression (3.40) obtained by Planck, leading to
Planck’s distribution of (7.44) or equivalently, the average photon number:

U

ε
= 〈n〉 = 1

eε/kBT − 1
. (7.47)

7.7 SuppMat: The role of particle
indistinguishability in Bose–Einstein
condensation

It will be illuminating to see how Bose–Einstein condensation follows from
the indistinguishability of particles.1616Here we follow Schroeder (2000, p. 321). To see such an effect, we shall contrast
two cases—in one all particles are somehow distinguishable, while in the
other case, they are not.

N distinguishable particles
We shall discuss this case using two different approaches.

The approach of considering one-particle systems separately This is the
most straightforward approach. The partition function

Z1 =
∑
ε

e−ε/kT (7.48)

is essentially the number of accessible single-particle states. Namely, because
higher energy states are exponentially suppressed, it counts all states with
energy on the order of kT. Each state is roughly equally probable, hence there
is about equal chance 1/Z1 for a particle to occupy any one of these states. This
situation is not changed when we consider the whole system of N (independ-
ent) particles. The ground state being one of these many states, the fraction of
particles in the ground state, when compared to the particles in all the excited
state, is negligible. There is no BEC.

The approach of considering all N particles as a system The above
approach, while straightforward in explaining the absence of BEC for distin-
guishable particles, does not really highlight the crucial role played by the
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particles’ distinguishability. Here is an alternative approach of considering
the N particles as a whole. For an excited state of this system with energy
U, the associated probability17 17Since all the probabilities discussed here

have a common partition function in their
denominator, we shall not bother to display it.

is W(U) = e−U/kT . While the ground state
U0 ≡ 0 has a probability of W(0) = 1, a typical excited state with U = NkT
has a probability of W(U) = e−N . Thus it appears that the ground state
probability is overwhelmingly large. This conclusion is incorrect because we
have not taken into account the fact that while an individual excited state
has small probability, there are an enormous number (ν) of such excited
states. This multiplicity ν can be calculated by remembering that each one
of the distinguishable particles can be in any one of these Z1 single-particle
states. Thus ν = (Z1)

N , or Nex = νe−N = (Z1/e)N , which is a large number
as long as Z1 > e. [Comment: While Z1 can be large, the likely situation is
still Z1 � N.] Hence we have the situation that vastly more particles are in the
excited state, confirming the above argument that there is no BEC.

N indistinguishable particles
The probability of an N-particle system being in each of the excited states is
still e−N . However, the number of excited states (of the system as a whole)
ν for the case of N indistinguishable particles is much less than that for
the distinguishable case. Now ν is the number of ways one can distribute N
indistinguishable particles among the various single-particle states (Z1):

ν =
(

N + Z1 − 1

N

)
= (N + Z1)!

N!Z1! � (N + Z1)
N+Z1

NN ZZ1
1

, (7.49)

where we have used Stirling’s approximation of X! � XX . For N � Z1 we have

ν � NN+Z1

NN ZZ1
1

=
(

N

Z1

)Z1

. (7.50)

While this is still fairly large, but the product νe−N � 1, and we expect that it is
now possible for a significant fraction of the particles to be in the ground state.
This indicates why BEC becomes possible in a system of identical bosons.
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• According to the orthodox interpretation of quantum mechanics (Niels
Bohr being its leading voice), the attributes of a physical object (pos-
ition, momentum, spin, etc.) can be assigned only when they have
been measured. Einstein advocated, as more reasonable, the local real-
ist viewpoint that a physical object has definite attributes whether they
have been measured or not.

• The orthodox view that measurement actually produces an object’s
property implies that the measurement of one part of an entangled
quantum state would instantaneously produce the value of another part,
no matter how far the two parts have been separated. Einstein, Podolsky,
and Rosen devised a thought experiment in order to shine a light on this
“spooky action-at-a-distance” feature of the orthodoxy; its discussion
and debate have illuminated some of the fundamental issues related to
the meaning of quantum mechanics.

• Such discussions led later to Bell’s theorem showing that these seem-
ingly philosophical questions could lead to observable results. The
experimental vindication of the orthodox interpretation has sharpened
our appreciation of the nonlocal features of quantum mechanics.
Nevertheless, the counter-intuitive picture of objective reality as offered
by quantum mechanics still troubles many, leaving one to wonder
whether quantum mechanics is ultimately a complete theory.

8.1 Quantum mechanical basics—superposition
and probability

Recall our discussion of wave–particle duality in Section 6.1. Physical objects
are found to be neither simply waves nor simply particles, but to have wave and
particle attributes simultaneously—two seemingly contradictory properties at
the same time. In the new quantum mechanics (QM) they are represented by
quantum states, which are taken to be vectors in a linear algebra space, called
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the Hilbert space. These vectors can be added and obey equations that are
linear—hence display the property of waves. These waves are interpreted as
probability waves.

In less abstract language, a central quantity in quantum mechanics is the
wavefunction, for example, the position wavefunction ψ(x). It satisfies the
Schrödinger wave equation, which is a linear differential equation; any lin-
ear combination of its solutions is still a solution. The wavefunction ψ(x) has
the interpretation that when we make a measurement of a particle’s position,
|ψ(x)|2 dx is the probability of finding the particle in the interval (x, x+ dx).
Namely, there is the possibility of a quantum mechanical position state in
which the particle is in more than two, in fact an infinite number of, positions
simultaneously.

Before a measurement is made, the particle can be in all these positions sim-
ultaneously. A measurement of the position would yield one particular value,
say xA. To make a measurement of a particle’s position finding any particu-
lar value, according to the orthodox interpretation, is a random process, only
subject to the likelihood as predicted by the probability distribution given by
the wavefunction. Many physicists were ill at ease with the probability feature
being built right into the foundation of the theory. Einstein famously objected:
“God does not play dice!”

8.2 The Copenhagen interpretation

If a measurement of the position finds the particle to be at xA, then immedi-
ately afterwards one should find the particle at xA as well. Namely, due to the
measurement, the particle “jumps” from the state being simultaneously in all
positions to a state with definite position at xA. According to the interpretation
of the wavefunction as given above, the measurement causes the “collapse” of
the wavefunction. Thus there are two fundamentally distinctive categories of
physical processes in quantum mechanics:

1. Smooth evolution of the wavefunction: The Schrödinger equation com-
pletely determines the behavior of the wavefunction. There is nothing
random about this description.

2. Quantum mechanical measurement: A measurement to obtain a par-
ticular result, according to quantum mechanics, is a random process. The
theory only predicts the probability of getting any particular outcome.
A measurement, which involves the interaction between the micro and
macro realms of physics, collapses the wavefunction. This collapse of the
wavefunction is not described by the Schrödinger equation; it is necessar-
ily a non-local process as the wavefunction changes its value everywhere
instantaneously.

8.2.1 The Copenhagen vs. the local realist interpretations

The first category of processes is noncontroversial, while questions related to
measurement (the second category) bring out the strangeness of the QM theory.
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One asks the question: “If the measurement finds the particle at xA, where was
the particle just before the measurement?”

• Local realists: “A particle has an objective reality; it has a set of attrib-
utes whether they have been measured or not. Therefore, it was at xA

just before the measurement finding it at xA.” According to Einstein,
Schrödinger, et al., this is the answer a reasonable theory would have
given.

• Orthodox quantum mechanical interpretation: Bohr, Heisenberg,
Born, and Jordan, et al. (the Copenhagen School) would have replied:
“The particle was not really anywhere.” Not only it is impossible to know,
but it’s not even meaningful to ask such a question (like asking the marital
status of a table). The framework of every theory determines the relev-
ant issue; in quantum mechanics, such a question should not have even
been asked! Thus, a Copenhagen theorist would say: “The measurement
compels the particle to assume a position. Observations not only disturb
what’s measured, they produce it.”

To local realists, like Einstein, a particle must have objective reality (mass,
spin, position, etc.) independent of whether these properties are being meas-
ured or not. (The moon is there whether you look at it or not.) Thus quantum
mechanics must be an incomplete theory—the particle is at xA, yet the theory
cannot tell us it is so.

8.3 EPR paradox: Entanglement and nonlocality

From 1928 onward, Einstein had engaged Niels Bohr (the leading proponent
of the Copenhagen school) in a series of debates (some public, but mostly
private) as to the meaning of measurements in quantum mechanics. To sharpen
his argument, to bring out the strangeness of the theory more clearly, Einstein,
with his collaborators Boris Podolsky and Nathan Rosen, published in 1935 a
paper in which a thought experiment was discussed in order to bring out clearly
the underlying nonlocal nature of quantum mechanics.11Bohr’s rejoinder can be found in Bohr

(1935).
The influence of this

paper has grown over the years as subsequent developments showed that the
question it raised was of fundamental importance to the meaning of quantum
mechanics.

Local reality in physics Let us recall briefly the history of the locality
concept in physics. One aspect of Newton’s theory of gravitation that he him-
self found unsatisfactory is the invocation of the “action-at-a-distance” force.
Somehow the source particle can act instantaneously on the test particle some
distance away. The same situation holds for Coulomb’s law. This was later
remedied with the introduction of the Faraday–Maxwell field. In a field the-
ory such an interaction is pictured as a two-step process: the source particle
brings about a field everywhere (with the field emanating from the source
and propagating outward at a finite speed). The field then acts on the test
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particle locally. Thus, through field theory, locality was restored back to phys-
ics. Einstein now points out that quantum mechanics brought about a new form
of nonlocality.

The EPR thought experiment We shall present the Einstein–Podolsky–
Rosen (EPR) “paradox” as simplified and sharpened by David Bohm (1917–
92). Consider the decay of a spin-zero particle, for definiteness take it be a
neutral pion (a spin-zero elementary particle), into an electron and positron
pair (both have spin one-half):

e+ ←− π0 −→ e−.

The decay products will speed away from each other in opposite directions. To
have angular momentum conservation, the spins of the daughter pair must be
opposite each other in order for their sum to be a spin-zero state. In quantum
mechanics such a final state is a superposition of two states: in one the electron
spin is up, in another it’s down:2 2The minus sign, which is irrelevant for

our discussion, reflects the relative phases of
Clebsch–Gordan coefficients in the addition
of two spin-1/2 states to form a spin-zero
angular momentum state.

ψ0 = 1√
2

(
ψ

(−)
↑ ψ

(+)
↓ − ψ

(−)
↓ ψ

(+)
↑
)

(8.1)

whereψ (−) is the wavefunction of the electron e−, andψ (+) is the wavefunction
of the positron e+. The subscripts indicate their respective spin orientation (in
some definite direction, say the z direction). Since these two terms have coef-
ficients with equal magnitude, there is equal probability for either outcome to
take place. These two terms, the two (product) wavefunctions ψ (−)

↑ ψ
(+)
↓ and

ψ
(−)
↓ ψ

(+)
↑ , superpose to make up one quantum state as the final state of this

decay process.

The entangled states

We now measure the spin orientations of the e+e− pair. Let us concentrate on
the electron spin. There is a 50% chance of finding the electron’s spin being
up and 50% chance down. But once the electron spin is measured, say finding
it to be spin up, we are 100% sure that the positron spin must be down—this
is so no matter how far away the positron has traveled: to the other side of the
lab bench, or to the other side of the galaxy. One can perform such a measure-
ment repeatedly and the spin orientations of these widely separated particle
pairs are always 100% correlated. Such a correlation3 3Mathematically, it has the feature that the

probability of finding any particular combina-
tions of electron and positron spin states is not
a simple product of probabilities of finding
electron and positron spin states separately.

of the spin states is
described as being “entangled”. In quantum mechanics, these two particles are
in one entangled quantum state; any change will affect both particles together
instantaneously.

Entanglement as viewed by local realists To a local realist this entangle-
ment by itself does necessarily represent a deep puzzle. We encounter this sort
of total correlation often in our daily experience. Let’s say Chris and Alex have
two coins, one gold and the other silver. They also have two boxes, each hold-
ing one coin so that Chris carries one and Alex the other. After they departed
from each other, Chris opens his box finding a silver coin. It does not matter
how far he had travelled, he knows immediately that Alex has the gold one.
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Thus to a local realist, the perfect correlation of the e+e− spins simply means
they were correlated before they were measured. Namely, since the beginning,
the silver coin had been in the box Chris took and the gold coin in the box
Alex had.

Copenhagen interpretation of entanglement However the interpretation
given by the Copenhagen school is very different. This orthodox view would
say that, before the measurement, the electron and positron were not in definite
spin states. Their quantum state is not just one or the other, but a superposition
of these two possibilities: the electron is in both spin up and down states, while
the positron also does not have definite spin, but always has its spin pointing in
the opposite direction to the electron spin. Because the electron and positron
are entangled, according to the orthodox interpretation, a measurement of the
electron spin compels the positron, no matter how far away it had traveled,
to jump into some definite spin state (opposite to that of the measured elec-
tron). Einstein found such an instantaneous effect so strange that he called it
“spooky action-at-a-distance”. This comes about because of the claim that the
states do not have any definite attributes until they have been measured. It is
the measurement here that compels the positron to jump into its spin state over
there!

Local realist hidden-variable theories To the local realists, the two
particles always had some definite spin orientation, yet quantum mechanics
can only predict it with some probability. This just means that quantum mech-
anics is an incomplete theory. The suggestion is made that there is a set of yet
unknown variables; their specification in a more complete theory would then
lead to definitive predictions. Such local realist theories are often referred to as
“hidden-variable theories”.

Hidden-variable theories can account for the quantum mechanical res-
ult in simple situations In simple situations, for example, measuring the
spin components in the same orientation or in two perpendicular orienta-
tions, hidden-variable theories can account for the quantum mechanical result
Putting this in more quantitative terms, both hidden-variable theories and QM
will find the average (as denoted by 〈. . .〉) product value of electron and
positron spins (in units of h̄/2) in any particular direction, whether in the
z direction or x direction, to be〈

S(−)
z S(+)

z

〉 = 〈S(−)
x S(+)

x

〉 = −1. (8.2)

The precise quantum mechanical calculation is presented in SuppMat
Section 8.4, see Eq. (8.23). The same result can be understood in the frame-
work of the local realist interpretation: as any pair of electrons and positrons
is produced, its members have opposite spin immediately after their birth. This
clearly holds as well when we average over all the measured values.

In the above we discussed only one spin orientation at a time. Now consider
measuring spins in two independent directions, say the z and x directions. A
quantum mechanical calculation [Eq. (8.24) below] shows that
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〈
S(−)

z S(+)
x

〉 = 0. (8.3)

It is not difficult for hidden-variable theories to reproduce this result. For
example, one can have a theory that allows independent spin orientations in
the two perpendicular directions to have electron spin up and positron spin
down, randomly (namely, equally likely). They all average out to zero.

8.3.1 The post-EPR era and Bell’s inequality

Many (most?) working physicists took an agonistic viewpoint. Since these
issues concern the interpretation of the situation before measurements, one can
adopt a “shut-up-and-calculate” attitude. One just uses the Schrödinger equa-
tion to compute quantities of practical interest and ignores the “philosophical
puzzles”. Then came the surprise when John S. Bell (1928–90) published a
paper (Bell 1964) showing that what were assumed for the situations “before
the measurement” (e.g. whether e+e− spins were already correlated) actually
have experimentally observable consequences (Bell’s inequality). Since the
1980s a whole series of experimental results have demonstrated that the local
realist viewpoint4 4Here we ignore the “many-worlds interpret-

ation” of quantum mechanics, advocated by
Hugh Everrett. Some would argue this inter-
pretation as the ultimate “realist” theory.

is not supported by observation. The orthodox way of inter-
preting entanglement has gained ground. It is interesting to note that currently
the researchers whose work has more bearing on these “philosophical issues”
are actually the ones pursuing the very practical ends of constructing “quantum
computers”, for which QM entanglement is of paramount importance. One way
or another, Einstein’s thoughts on the deep meanings of quantum mechanics
still exerts an influence on current investigations.

Bell’s inequality derived
Basically, what Bell did was to extend the above discussion of spin values Sz

and Sx to more than two directions. In such richer systems, one can deduce
relations that can distinguish the local realist interpretation from that of QM,
independent of the assumed forms of any hidden-variable theory.

Let us again consider the spin measurement of an electron and positron pro-
duced by a parent system having zero angular momentum. We can measure the
spin in any direction perpendicular to the e+e− pair’s motion (call it the ŷ dir-
ection); we broaden our consideration from just the ẑ and x̂ directions to three
directions

(
â, b̂, ĉ

)
in the x-z plane. According to the local realists, the particles

must have definite spin values at all times: the electron’s spin in the â direc-
tion can take on value of S(−)

a = ±1 (in units of h̄/2), similarly S(−)
b = ±1 and

S(−)
c = ±1. For notational simplicity we will write the electron spin values as

S(−)
a ≡ E(a, λ) = ±1, S(−)

b ≡ E(b, λ) = ±1, and S(−)
c ≡ E(c, λ) = ±1, respect-

ively. We have explicitly displayed their dependence on the hidden variable λ.
For positron spins, S(+)

a , S(+)
b , and S(+)

c , we write P(a, λ) = ±1, P(b, λ) = ±1,
and P(c, λ) = ±1, respectively. Since they must form a spin-zero system, we
must have E(a, λ) = −P(a, λ), E(b, λ) = −P(b, λ), and E(c, λ) = −P(c, λ).

Instead of presenting Bell’s original derivation, we shall present one only
involving simple arithmetic (d’ Espagnat 1979). The electron spin in three
directions

(
â, b̂, ĉ

)
has 23 = 8 possible configurations. Thus in the local
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realist’s approach we can think55From the Copenhagen viewpoint, it is not
allowed even in principle to think of any
definite spin states before their measurement.

of the following possible electron and positron
spin configurations as soon as the particles are produced:

Ea Eb Ec ←→ Pa Pb Pc

N1 + + + − − −
N2 + + − − − +
N3 + − + − + −
N4 + − − − + +
N5 − + + + − −
N6 − + − + − +
N7 − − + + + −
N8 − − − + + +

(8.4)

Ni is the number of events having the spin configuration in the ith row. Thus
there are N1 events with S(−)

a = E(a, λ) = +1, E(b, λ) = +1, and E(c, λ) =
+1, etc. (The exact values of Ni are to be determined, hopefully, in some
hidden-variable theory.) Because the electron and positron spins must be anti-
aligned (in order to have zero total angular momentum), the positron spin
configuration in the second group of columns must be exactly opposite to those
in the electron column (first group): thus Pa = −Ea and Pb = −Eb, etc.

The probability of having the ith row configuration is pi = Ni/�N with
�N being the total number of events. Thus, according to the local realists (lr)

approach, the average value of a spin product
〈
S(−)

a S(+)
b

〉
lr
≡ 〈a, b〉 is

〈a, b〉 =
∑

i

(pi) [E(a) P(b)]i =
∑

i

Ni [E(a) P(b)]i /�N. (8.5)

From the table in (8.4) we see that the values of the spin products are
[E(a) P(b)]1,2,7,8 = −1 and [E(a) P(b)]3,4,5,6 = +1 (with the row number being
indicated by the subscript). This allows us to write out weighted sums such as
(8.5) explicitly,

〈a, b〉 = (−N1 − N2 + N3 + N4 + N5 + N6 − N7 − N8) /�N.

Similarly, we can calculate the average product value for spins in the a and c
direction:

〈a, c〉 = (−N1 + N2 − N3 + N4 + N5 − N6 + N7 − N8) /�N;

thus

〈a, b〉 − 〈a, c〉 = 2 (−N2 + N3 + N6 − N7) /�N. (8.6)

We also have

〈b, c〉 = (−N1 + N2 + N3 − N4 − N5 + N6 + N7 − N8) /�N,

1 = (+N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8) /�N,

or

1+ 〈b, c〉 = 2 (N2 + N3 + N6 + N7) /�N. (8.7)
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A comparison of (8.6) and (8.7) leads to Bell’s inequality,

|〈a, b〉 − 〈a, c〉| ≤ [1+ 〈b, c〉] , (8.8)

or, in the explicit notation of spin products, the average values according to the
local realists (lr) must obey∣∣∣〈S(−)

a S(+)
b

〉
lr
− 〈S(−)

a S(+)
c

〉
lr

∣∣∣ ≤ [1+ 〈S(−)
b S(+)

c

〉
lr

]
. (8.9)

This result is independent of any assumption of the Ni values. The significance
of Bell’s inequality is that any realist hidden-variable theory must satisfy such
a relation.

The quantum mechanical result
How does Bell’s inequality compare to quantum mechanics result? The
quantum mechanical (QM) result for the correlation of spin components in
two general directions (with angle θab between them) is calculated in (8.27)
below: 〈

S(−)
a S(+)

b

〉
QM
= − cos θab. (8.10)

The two sides of Bell’s inequality (8.9) have the quantum mechanical values

LHS = |− cos θab + cos θac| (8.11)

and

RHS = 1− cos θbc. (8.12)

To see that Bell’s inequality is incompatible with this QM result, consider, for
example, the case of

(
â, b̂, ĉ

)
with â and b̂ being perpendicular, θab = π/2, and

ĉ being 45◦ from â and b̂: θac = π/4 and θbc = π/4. Thus, the LHS (8.11)
would be

∣∣− cos π
2 + cos π

4

∣∣ = 1/
√

2 � 0.7; and the RHS (8.12) would be
1− cos π

4 � 0.3, which is clearly not greater than the LHS, as required by
Bell’s inequality. That is, in this situation, no matter what choice one makes
of the Ni values, the hidden-variable theory will not be able to mimic the QM
prediction.

8.3.2 Local reality vs. quantum
mechanics—the experimental outcome

John Clauser (1942– ) and his collaborators were the first ones to carry out, in
1972, an experimental test of Bell’s inequality and found that the spooky pre-
diction of QM do occur (Clauser and Shimony 1978). Alain Aspect (1947– )
and his collaborator performed experiments (Aspect et al. 1981) and were able
to show more convincingly that such entanglement connections also take effect
instantaneously (at a speed faster than light speed), with results in agreement
with QM. Thus the nonlocal feature, what Einstein termed the “spooky action-
at-a-distance” effect, does seem to be a fundamental part of nature. Quantum
entanglement seems to say that if you have a system composed of more than
one particle, the individual particles are actually not individual. It leaves us
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with a rather strange picture of reality as it seems one is not allowed in principle
to assign objective attributes, independent of actual measurements.

John Bell, when referring to the implications of Aspect’s experiment, speaks
for many when he said,

For me it’s a dilemma. I think it’s a deep dilemma, and the resolution of it will not be
trivial; it will require a substantial change in the way we look at things.

An aside: Quantum computer
Nowadays, physicists do not regard the peculiarities of quantum systems as
a problem, but rather an opportunity. A proper appreciation of the profound
counter-intuitive properties of quantum multiparticle systems and the nature of
entanglement allows the possibility of using this peculiar behavior for potential
applications such as quantum computing. A quantum computer is a device that
makes direct use of QM phenomena, such as superposition and entanglement,
to perform operations on data. Quantum computing will be a revolutionary new
form of computation.

Conventional computers manipulate bits, each of which can take on values
of 0 or 1. Thus two bits can be in four states: 00, 01, 10, 11, and n bits encom-
pass 2n states. But a classical computer can only be in any one of these states
sequentially.

Quantum computers manipulate quantum bits, called qubits, which are
quantum states, i.e. a superposition of the classical states. Namely, a quantum
computer can be in many of the classical states simultaneously. For example,
using an electron spin (with spin up or down), a qubit can be in |↓〉 ≡ |0〉 and
|↑〉 ≡ |1〉 states, as well as in the state of a |0〉 + b |1〉; and a two-qubit system
in a |00〉 + b |10〉 + c |01〉 + d |11〉, etc. The complex numbers a, b, c, d are the
relative phases and amplitudes within the superposition. Thus, while a classical
computer acts on binary numbers stored in the input register to output another
number, a quantum computer acts on the whole superposition in qubits of its
input register, thus achieving enormous parallelism.

* * *

The 2005 reprint of Pais’ Einstein biography (Pais 1982) includes a new
Foreword by Roger Penrose (1931– ). This short essay is, in this author’s
opinion, a particularly insightful appraisal of Einstein’s scientific achievement.
Relevant to our discussion of Einstein’s view of quantum mechanics, Penrose
has this to say:

It must be said that some of Einstein’s objections to quantum theory have not really
stood the test of time—most notably it was “unreasonable” that the theory should pos-
sess strange non-local aspects (puzzling features Einstein correctly pointed out). Yet,
his most fundamental criticism does, I believe, remain valid. This objection is that the
theory seems not to present us with any fully objective picture of physical reality. Here,
I would myself side with Einstein (and with certain other key figures in the development
of the theory, notably Schrödinger and Dirac) in the belief that quantum theory is not
yet complete.



8.4 SuppMat: Spin correlations 121

8.4 SuppMat: Quantum mechanical calculation
of spin correlations

In quantum mechanics, a state |ψ〉 is a vector6 6A reader who is not familiar with Dirac nota-
tion may simply think of the “ket” vector |ψ〉
as a column vector, and the “bra” vector 〈φ|
as a row vector. The inner product is repres-
ented by a bracket 〈φ| ψ〉 which is the scalar
resulting from the multiplication of a row
and a column vector. Similarly, an operator
is represented by a matrix, and the expecta-
tion value 〈ψ |A|ψ〉 as the multiplication of
a row vector and a matrix, then with another
column vector.

in the Hilbert space. It can be
expanded in term of a complete set of basis vectors {|i〉}:

|ψ〉 =∑
i
ψi |i〉 . (8.13)

The basis vectors are usually taken to be the eigenvectors of some operator A
(representing some observable): A |i〉 = ai |i〉, where ai is a number (the eigen-
value). This means that if the system is in the state |i〉, a measurement of the
observable A is certain to obtain the result of ai. The coefficient of expan-
sion ψi = 〈ψ |i〉 is interpreted as the probability amplitude. A measurement
of A of the system in the general state of |ψ〉 will result in obtaining one, say
aj, of the possible eigenvalues {ai}, with probability pj =

∣∣ψj

∣∣2. The familiar
wavefunction ψ(x) is simply the coefficient of expansion in the representation
space having position eigenstates {|x〉} as basis vectors. In this case Eq. (8.13)
becomes

|ψ〉 =
∫

dxψ(x) |x〉 . (8.14)

The orthonormality condition of the basis vectors 〈i| j〉 = δij means we have
〈j |A| i〉 = δijai. Thus the average value of an observable A:

〈A〉 =∑
i

piai =∑
i
|ψi|2 ai, (8.15)

can be obtained efficiently by taking the expectation value of an operator (i.e.
sandwich the operator between the bra and ket vectors of the state):

〈A〉 =∑
i,j
ψ∗j ψiδijai =∑

i,j
ψ∗j ψi 〈j |A| i〉 = 〈ψ |A|ψ〉 . (8.16)

To reach the last expression we have used the expansion of Eq. (8.13).

8.4.1 Quantum mechanical calculation of spin average
values

Spin states
Here we shall mostly deal with spin eigenstates |s, m〉, which are labeled by
eigenvalues of the total spin S2 = S2

x + S2
y + S2

z and one spin component, say
Sz, respectively:

S2 |s, m〉 = s(s+ 1) h̄2 |s, m〉 , Sz |s, m〉 = mh̄ |s, m〉 . (8.17)

In our notation of setting 1
2 h̄ ≡ 1, we shall simply label the spin state by

suppressing the s value and concentrate on Sz with m = ± 1
2 :

Sz |Sz±〉 = ± |Sz±〉 . (8.18)

In the representation space spanned by the basis vectors |Sz±〉
|Sz+〉 ≡ |↑〉 =̇

(1
0

)
, |Sz−〉 ≡ |↓〉 =̇

(0
1

)
, (8.19)
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the spin operators Sx,y,z are represented by the Pauli matrices σx,y,z

Sz =̇ σz =
(

1 0
0 −1

)
, Sx =̇ σx =

(
0 1
1 0

)
, (8.20)

as can be checked by

Sz |↑〉 = |↑〉 and Sz |↓〉 = − |↓〉 . (8.21)

Spinless state resulting from adding two spin 1
2 states

Adding the electron and positron spin operators S(−) + S(+) = S we can have
total spin S = 1 or S = 0. Concentrating on the S = 0 state with its z compon-
ent Sz = S(−)

z + S(+)
z and spin value m(−) + m(+) = Ms = 0, the total spin state

is labeled as |S = 0, Ms = 0〉 ≡ |0, 0〉. This total spin-zero state is related to the
individual electron/positron Sz eigenstates

∣∣S(−)
z +〉 ∣∣S(+)

z −〉 ≡ ∣∣↑(−)↓(+)
〉
, etc. as

|0, 0〉 = 1√
2

(∣∣↑(−)↓(+)
〉− ∣∣↑(−)↓(+)

〉)
. (8.22)

This is an example of the expansion discussed in (8.13). Namely, the final
state is a superposition of the electron/positron states with the z component
of electron spin up and positron spin down and vice versa, with respective
expansion coefficients ±1/

√
2. This is the same relation as (8.1) but expressed

in terms of Dirac notation. Thus the probability of finding the state with the
electron spin up and positron spin down is 1/2 and the probability of finding
the state with the electron spin down and positron spin up is also 1/2.

8.4.2 Spin correlation in one direction

From this we can check that the quantum mechanical formalism yields the
average value

〈
S(−)

z S(+)
z

〉
QM =

〈
0, 0
∣∣S(−)

z S(+)
z

∣∣ 0, 0
〉 = −1, (8.23)

showing that the electron–positron spins must point in the opposite directions.
Because of (8.22), this involves calculating the type of terms such as

S(−)
z S(+)

z

∣∣↑(−)↓(+)
〉 = (S(−)

z

∣∣↑(−)
〉) (

S(+)
z

∣∣↓(+)
〉) = − ∣∣↑(−)↓(+)

〉
,

leading to S(−)
z S(+)

z |0, 0〉 = − |0, 0〉 and the claimed result of (8.23) because of
the normalization condition 〈0, 0| 0, 0〉 = 1. This calculation expresses the fact
that S(−)

z and S(+)
z are in different spin spaces so we can have S(−)

z act directly
on
∣∣↑(−)

〉
and S(+)

x act directly on
∣∣↓(+)

〉
as in (8.21).
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8.4.3 Spin correlation in two directions

Two directions that are perpendicular
We also expect 〈

S(−)
z S(+)

x

〉
QM = 〈0, 0| S(−)

z S(+)
x |0, 0〉 = 0. (8.24)

Namely, spin values in perpendicular directions are uncorrelated. In contrast to
(8.21), the spin operator Sx flips the spin in the z direction:

Sx |↑〉 = |↓〉 and Sx |↓〉 = |↑〉, (8.25)

because, as the representations in (8.19) and (8.20) show,(
0 1
1 0

)(
1
0

)
=
(

0
1

)
,

(
0 1
1 0

)(
0
1

)
=
(

1
0

)
.

A simple exercise shows that
〈
0, 0
∣∣S(−)

x S(+)
x

∣∣ 0, 0
〉 = −1. We next calculate the

action of S(−)
z S(+)

x on the state |0, 0〉 of (8.22):

S(−)
z S(+)

x |0, 0〉 = S(−)
z S(+)

x

(∣∣↑(−)↓(+)
〉− ∣∣↓(−)↑(+)

〉)
/
√

2

= (∣∣↑(−)↑(+)
〉+ ∣∣↓(−)↓(+)

〉)
/
√

2. (8.26)

When multiplied with the bra vector 〈0, 0| of (8.22), the ortho-
gonality conditions7 7An even simpler way is to note that∣∣↑(−)↑(+)

〉=|S = 1, Ms = +1〉≡|1,+1〉 and∣∣↓(−)↓(+)
〉 = |1,−1〉; then the orthogonality

condition is 〈0, 0| 1,+1〉=〈0, 0| 1,−1〉 = 0.

such as
〈↑(−)

∣∣ ↓(−)
〉 = 〈↓(+)

∣∣ ↑(+)
〉 = 0 lead to

〈0, 0| S(−)
z S(+)

x |0, 0〉 = 0.

Two general directions
Here we calculate the quantum mechanical expectation value of a product of
spins in two general directions, calling them â and b̂. We are free to choose
â = ẑ and b̂ in the x-z plane: b̂ = cos θ ẑ+ sin θ x̂. Thus S(−)

a = S(−)
z and S(+)

b =
cos θS(+)

z + sin θS(+)
x :〈

0, 0
∣∣∣S(−)

a S(+)
b

∣∣∣ 0, 0
〉
= cos θ

〈
0, 0
∣∣S(−)

z S(+)
z

∣∣ 0, 0
〉+ sin θ 〈0, 0| S(−)

z S(+)
x |0, 0〉.

Knowing the results of (8.23) and (8.24), we immediately have〈
0, 0
∣∣∣S(−)

a S(+)
b

∣∣∣ 0, 0
〉
= cos θ (−1)+ sin θ (0) = − cos θ . (8.27)
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• Relativity is explained as a coordinate symmetry. Special relativity
means that physics is the same in all inertial frames; general relativity,
in all coordinate frames.

• The equations of Newtonian mechanics are covariant under Galilean
coordinate transformations. This is called Galilean (or Newtonian)
relativity. Its absolute time leads to the familiar velocity addition rule:
u′ = u− v with v being the relative velocity between two inertial
frames. Since Maxwell’s equations predict an electromagnetic wave
propagating with speed c making no reference to any coordinate frames,
these equations do not have Galilean symmetry.

• It was universally accepted in the nineteenth century that Maxwell’s
equations were valid only in the rest-frame of the aether—the purported
elastic medium for light propagation. The outstanding issue in physics
was termed ‘electrodynamics of a moving body’—the problem of mat-
ter moving in the aether-frame and its manifestation in electromagnetic
phenomena.

• We discuss the observational result of the aberration of starlight and
Fizeau’s experimental measurement of the light speed in a moving
medium, which was found to be in agreement with Fresnel’s formula
constructed under the hypothesis that the aether was partially entrained
by a moving body.

• By the 1890s Lorentz presented a theory of aether–matter interaction
which could account for stellar aberration, Fizeau’s experiment, and
Fresnel’s drag. The key element in his theory is the introduction of the
‘local time’, which he took to be a mathematical construct that facil-
itated his proof: Maxwell’s equations are unchanged, up to first order
in v/c, under a Galilean transformation when augmented by this effect-
ive ‘local time’. We present the calculational details of this ‘theorem of
corresponding states’ of Lorentz in a SuppMat section.

• The Michelson–Morley experiment was capable of detecting an
O
(
v2/c2

)
deviation of light speed from the value c. Their famous null

result forced Lorentz to introduce the idea of length contraction. The
subsequent modification of the Galilean position transformation and
local time led him to the Lorentz transformation, under which the
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Maxwell equations remain unchanged (to all orders) for a body moving
in the aether frame.

• Einstein was strongly motivated by the aesthetics of symmetry prin-
ciples. He was seeking a physical description that would have the
widest validity—in this case, the invariance principle of relativity. He
motivated this in the opening paragraph of his 1905 paper by the
magnet–conductor thought experiment.

• But if the relativity principle was valid for Maxwell’s equations, this
would apparently be in conflict with the constancy of light speed
implied by these equations. After years of rumination on this subject,
Einstein realized that the classical concept of time had no experi-
mental foundation, and (when signal transmission is not instantaneous)
the notion of simultaneity, and hence the measured time, must be
coordinate-dependent. With this new insight he was able to work out
the entire theory of special relativity in just five weeks.

• In Section 9.4.3, we give a summary of the influence that prior invest-
igators in physics and philosophy had on Einstein in his formulation of
the special theory of relativity.

9.1 Relativity as a coordinate symmetry

Relativity means that physically it is impossible to detect absolute motion. We
are all familiar with the experience of sitting in an airplane, and not able to
“feel” the speed of the plane when it moves with a constant velocity; or, in
a train and observing another passing train on the next track, we may find
it difficult to tell which train is actually in motion. This can be interpreted
as saying that no physical measurement can detect the absolute motion of an
inertial frame of reference. Hence the basic notion of relativity—only relative
motion is measurable.

One can describe relativity as a “coordinate symmetry”—the laws of phys-
ics are unchanged under a coordinate transformation. Special relativity is the
symmetry when we restrict our coordinate frames to inertial frames of refer-
ence; in general relativity we allow all coordinate frames including accelerated
frames as well. Because the laws of physics are the same in different coordin-
ate frames, there is no physical effect we can use to tell us which coordinate
frame we are in. Hence absolute motion is not detectable.

9.1.1 Inertial frames of reference and Newtonian relativity

What is an inertial frame of reference? What is the transformation that takes us
from one inertial frame to another?

Inertial frames of reference are the coordinate systems in which, according
to Newton’s first law of motion, a particle will, if no external force acts on it,
continue its state of motion with constant velocity (including the state of rest).
Galileo Galilei (1564–1642) and Isaac Newton (1643–1727) taught us that a
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physical description would be the simplest when given in these coordinate
systems. The first law of motion provides us with the definition of an inertial
system; its implicit message that such coordinate systems exist is its phys-
ical content. There are infinite sets of such frames, differing by their relative
orientation, displacement, and relative motion with constant velocities. For
simplicity we shall ignore the transformations of rotation and displacement
of the coordinate origin, and concentrate on the relations among the recti-
linear moving coordinates—the boost transformation. Consider a coordinate
system

{
r′i
}

moving with a constant velocity vi with respect to another coordin-
ate frame {ri}. The relation between these two inertial frames is given by the
Galilean transformation (Fig. 9.1)

r′i = ri − vit. (9.1)

Since time is assumed to be absolute t′ = t, and the velocity of a particle meas-
ured in these two frames is ui = dri/dt and u′i = dr′i/dt′, respectively, we have
the familiar velocity addition rule:

u′i = ui − vi. (9.2)

Because the relative velocity vi is constant, a particle’s acceleration remains the
same with respect to these two frames a′i = ai. When we multiply this by the
invariant mass ma′i = mai, this means that force is also unchanged, F′i = Fi. In
this way we see, for example, that Newton’s law of gravitation has the same
equation-form in these two frames:

F = GN
mAmB

r3
AB

(rA − rB) and F′ = GN
mAmB

r′3AB

(
r′A − r′B

)
where rAB = |rA − rB|, etc. That the equations of Newtonian mechan-
ics and gravitational theory are form-invariant (i.e. they are “covariant”)
under coordinate transformation among inertial frames is called Newtonian
relativity.1 1It is also called Galilean relativity as it is

the symmetry under Galilean transformation,
first described qualitatively by Galileo.

O O' x'
x

y

v

vt

P

y'

Fig. 9.1 The point P is located at (x, y) in the
S system and at

(
x′, y′

)
in the S′ system, which

is moving with velocity v in the x direction.
The coordinate transformations are x′ = x−
vt and y′ = y.

9.2 Maxwell’s equations

James Clerk Maxwell (1831–79) formulated a consistent theory that unified
electricity, magnetism, and optics. The simplest way to see that Maxwell’s
equations are not covariant under Galilean transformation is through a dis-
cussion of electromagnetic waves. Writing down Maxwell’s equations in
the Heaviside–Lorentz unit system,2 2See Appendix A, Eq. (A.35) for a discus-

sion.
we have the magnetic Gauss’ law and

Faraday’s law:

∇ · B = 0, ∇ × E+ 1

c
∂tB = 0, (9.3)

then the Coulomb–Gauss law and Ampere’s law (with displacement current).

∇ · E = ρ, ∇ × B− 1

c
∂tE = 1

c
j, (9.4)

where ρ and j are, respectively, the charge density and current density.



130 Prelude to special relativity

9.2.1 The electromagnetic wave equation

According to Faraday’s law, a changing magnetic field induces an electric field,
while a changing electric field, which is the displacement current, induces,
according to Ampere’s law, a magnetic field. The mutual induction can bring
about a sustained propagation of the electromagnetic field (a wave) in free
space. We can easily demonstrate mathematically that Maxwell’s equations in
free space (ρ = j = 0) imply a wave equation. We do this by first taking the
time derivative of Faraday’s equation

∇ × ∂tE+ 1

c
∂2

t B = 0. (9.5)

After applying Ampere’s law ∂tE = c∇ × B to the first term and using the
vector identity

(∇ ×∇ × B)i = εijk∇j(∇ × B)k = εijkεklm∇j∇lBm = −∇2Bi, (9.6)

where we have summed over repeated indices, and used the vector identity
[cf. Eq. (A.11)] εijkεklm = δilδjm − δimδjl and the no-monopole law ∇mBm = 0
of (9.3), we can then turn Eq. (9.5) into the wave equation for the magnetic
field33It is obvious that we can derive exactly the

same wave equation for the electric field.
in free space:

∇2Bi − 1

c2
∂2

t Bi = 0. (9.7)

The solution is that the field, which depends on position r and time t, is some
function depending only on their combination k · r− ωt, with the magnitude
k multiplied by the angular frequency ω equal to c. This solution is a wave
propagating with a constant speed c—the same speed in any inertial frames
of reference. Symbolically we can write this as an equality of the light speed
c′ measured in coordinate frame S′ in relative motion with respect to another
frame S in which the light speed is c:

c′ = c. (9.8)

The constancy of light velocity clearly violates the velocity addition rule
of (9.2), which is a direct consequence of the Galilean transformation. This
suggests that Maxwell’s equations do not have Galilean symmetry.44One expects the violation to be O(v/c). See

Section 9.5.1 for some details.

The wave theory of light triumphed in the nineteenth century
In the seventeenth century, two rival theories were proposed to explain the
propagation of light: the corpuscular theory of Newton and the wave theory
of Christiaan Huygens (1629–95). However, by the mid-nineteenth century
the wave theory became dominant because only this theory could explain the
observed interference phenomena. Furthermore, after Maxwell’s prediction of
the electromagnetic wave with a propagation speed just matching that of the
measured light speed, any doubt that light propagated as a wave was removed.
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9.2.2 Aether as the medium for electromagnetic wave
propagation

Because the only experience one had with waves in that era was with mech-
anical waves (the sound wave being the prototype), it was universally assumed
that light waves would also require an elastic medium for their propagation.
Thus the existence of a luminiferous aether was generally believed. Since light
travels everywhere with high speed, one had to assume (again based on one’s
experience with mechanical waves) that this medium must be extremely stiff,
yet it could permeate into all available spaces, large or small.

In the corpuscular theory of light one would expect its velocity (like the
speeds of bullets) to be constant with respect to the source that emits the light
particles. The conventional velocity addition rule (9.2) should apply. In wave
theory the light propagation velocity should be independent of the motion
of the source, but constant relative to its medium. The constancy of light
speed predicted by Maxwell’s wave theory seemed to imply that this theory
of electromagnetism applies only in the rest-frame of aether.

“The electrodynamics of a moving body” was then an outstanding prob-
lem for nineteenth-century physicists, all subscribers of the wave theory. How
should electromagnetism be described for sources and observers moving with
respect to the aether-frame? In particular the solar system was pictured as filled
with aether and the earth was viewed to be traveling in this aether-frame (exper-
iencing an “aether wind”). Thus electromagnetic phenomena, for example the
propagation of light on the moving earth, were expected to show deviations
from Maxwell’s description. In this debate, an issue that had been raised was
whether the aether would be dragged along by the moving object (e.g. the
earth). If this drag was complete, then even a moving observer would not detect
any deviation from Maxwell’s predictions. But a whole range of possibilities,
from full to partial drag of aether, had been suggested.

9.3 Experiments and theories prior to special
relativity

Here we will provide a summary of some of the relevant experimental and
theoretical results that were likely known to Einstein when he formulated his
new theory in 1905.

9.3.1 Stellar aberration and Fizeau’s experiment

The effects of objects moving in the aether-frame that were under active discus-
sion were stellar aberration and Fizeau’s experiment. Einstein explicitly cited
them as having had an influence on his thinking when formulating his theory
of special relativity. Stellar aberration is the effect of earth’s velocity (moving
around the sun) on the apparent direction of light coming from a star. Fizeau’s
experiment involved the measurement of light velocity in moving water. Both
phenomena were interpreted as having a bearing on the issue of whether the
aether was being dragged along by a moving body.
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Stellar aberration and the velocity addition rule
The phenomenon of stellar aberration was first reported in 1725 and later
explained by James Bradley (1693–1762). When a star is observed, its appar-
ent position is displaced from its true position because the velocity of light is
finite and the resultant velocity is the vector sum of this light velocity and the
velocity of the observer. As the earth moves around the sun, the star appears to
trace out a circle.

For simplicity of discussion we will assume that the original direction of
the starlight is vertically downward and this velocity addition results in the
tilting of the incoming light direction.55Recall our experience with this tilting effect

when moving in the rain. Rain drops are seen
to follow, instead of a vertically downward
direction, oblique trajectories.

The velocity addition can most easily
be carried out in the rest-frame of the earth. In this system the star moves in a
direction opposite to the original orbital direction of the earth. The tilting angle
(Fig. 9.2) is clearly given by

tanα = v

c
, (9.9)

which is independent of the distance between the star and the observer.66One is not to confuse aberration with
the phenomenon of stellar parallax, which
involves the observation of relatively nearby
astronomical objects. The distances for
objects in our astronomical neighborhood can
be deduced from such a change of position
of the observer with respect to distant stars.
Even for the nearest stars, the parallax angle
is much smaller than the aberration angle.

Since
the earth’s orbital speed around the sun was known to be around 30 km/s, one
predicts the aberration angle α = 20.5 arc second, or an angular diameter of
2α = 41′′ in agreement with observation.

Fresnel’s drag coefficient and Fizeau’s experiment
The explanation of stellar aberration posed no problem for the corpuscular
theory of light. One simply applies the velocity addition rule of (9.2) with
u = c. For the wave theory with its propagation medium of aether, there is the
question whether the aether was dragged by or entrained within an object (e.g.
the earth, the telescope lens, etc.). Stella aberration would seem to imply that
the aether was dragged completely so that the light velocity remained the same
in a moving medium. Still now one needs to understand the bending of a light
ray in a moving medium. Augustin-Jean Fresnel (1788–1827) proposed a wave
theory in which the aether was unaffected by the motion of earth, but partially
entrained by another moving (v) medium, with an index of refraction n, so that
the velocity of light in that medium V , instead of c/n, becomes

V = c

n
+ v

(
1− 1

n2

)
. (9.10)

Fig. 9.2 Stellar aberration. The tilted light
ray passes through the telescope (a) in the
rest-frame of the sun, with the earth E in
motion; (b) in the rest-frame of earth, with the
star S in motion. (c) In a 12-month duration,
the star is seen to trace out a circle with an
angular diameter of 2α.
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Fig. 9.3 Schematic view of Fizeau’s experi-
ment. Water flows through a � shaped vessel;
the light emitted from S is split, at mirror M∗,
into two beams: one always propagates along
the direction of water flow, the other always
against it. Both light rays are detected at T .

In other words, the velocity addition rule (9.2) was still to apply,7 7As we will see in Section 10.6.1, this actu-
ally was an early signal for the modification
of the velocity addition rule of (9.2).

but the aether
is partially dragged with a drag coefficient of

(
1− 1/n2

)
. Stellar aberration

could be accommodated because air’s index of refraction is very close to unity,
and there is no modification of the light velocity.

While we may be less interested in the original justification of this for-
mula by Fresnel, involving the behavior of aether inside a moving body, the
important historical sequence of events was that this proposal was verified
by Hippolyte Fizeau (1819–96) in an 1851 experiment. Fizeau arranged his
apparatus so that the effect of moving water on light’s propagation speed
could be measured in an interferometer (Fig. 9.3). Remarkably, Fresnel’s for-
mula was verified. After Maxwell’s theory become the dominant framework to
understand electromagnetic waves, the question was then how could Fresnel’s
formula be derived in this theoretical framework?

9.3.2 Lorentz’s corresponding states and local time

One can summarize the above discussion of experiments and theories concern-
ing the effect of a moving body on light propagation as follows: to first order
in v/c, no deviation from Maxwell’s prediction had been observed. The ques-
tion was how could Fresnel’s formula (which explained both stellar aberration
and Fizeau’s experiment) be justified by the aether/matter interaction in the
framework of Maxwell’s theory of electromagnetism.

Lorentz’s program (1895)
Hendrik Lorentz (1853–1928) was one of the leading thinkers on electro-
magnetism8 8Among Lorentz’s contributions on electro-

magnetism is his proof that there are not
four fields (E, B, D, H): electric, magnetic,
displacement and magnetic strength, but two
microscopic fields (E, B), which is of great
historical importance.

and electromagnetic (EM) interactions of matter (called elec-
trons). To undertake this difficult theoretical investigation, he had to make
a series of ad hoc assumptions in order to derive the electromagnetic fields
resulting from the interaction of matter and aether in relative motion. One
then checks that these “transformed fields” (namely, the fields as seen by an
observer in motion with respect to the aether) still satisfied, at least up to
O(v/c), the same Maxwell equations so that the new wave equation in the
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moving frame would have a light speed not deviating from the value of c by
more than this order.

Lorentz characterized his program as seeking “the theorem of correspond-
ing states”: The theorem is essentially a calculational tool that sets up the
correspondence between the phenomena in moving systems and those in sta-
tionary systems by introducing transformed coordinates and fields. To every
state (solution of Maxwell’s equations) of an electromagnetic system in the
aether-frame with coordinates r, there exists a corresponding state (the trans-
formed field mentioned above) that would obey a set of equations identical in
form to Maxwell’s equations when expressed in terms of the coordinates r′
of a system moving with respect to the aether-frame.99The coordinates r and r′ are related by the

usual Galilean transformation.
If the form-invariance of

the equations is not exact, the noncompliant terms should be small, at most of
order v2/c2.

By the 1880s Lorentz made the remarkable discovery that his program could
be accomplished more efficiently if one followed a prescription of introducing
a mathematical quantity that he called the “local time” (it being a position-
dependent quantity):

t′ = t − v

c2
x. (9.11)

Lorentz was still working in the framework of an absolute time. His local time
was just a convenient mathematical device that summarizes a series of effects.
Although it worked in the formalism like the kinematical time, it had nothing
to do with the clock rate in a coordinate frame. But the part of the mathematics
used in checking Lorentz’s corresponding states as solutions of Maxwell-like
equations in the moving frame is, formally speaking, the same as checking
the covariance of Maxwell’s equations under the coordinate transformation of
observers in relative motion (say, in the x direction):

x′ = (x− vt), y′ = y, z′ = z, and t′ = t − v

c2
x. (9.12)

We carry out this calculation in SuppMat Section 9.5.2, where we find that the
transformed fields (i.e. the corresponding states in Lorentz’s investigation)

E′ = E+ 1

c
v× B and B′ = B+ 1

c
v× E, (9.13)

did obey Maxwell’s equations, if terms of order O
(
v2/c2

)
are dropped. This

means that the light speeds in these two frames in relative motion differ at
most by the order of v2/c2. This is an extremely small difference even for the
speed of earth’s motion in the solar system. In this way, Lorentz succeeded in
explaining, in one theoretical framework, all the experimental and theoretical
developments concerning issues related to light propagation. We shall refer to
these results as (Lorentz 1895), by the publication date when Lorentz’s work
was presented in detail. In this paper, one finds another innovation by Lorentz:
his assumption that the force on a charge q is given by a first-order equation

f = e

(
E+ 1

c
v× B

)
, (9.14)

which we now call the Lorentz force law.
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Lorentz’s explanation of stellar aberration and Fresnel’s formula
The explanation of stellar aberration and Fresnel’s formula in (Lorentz 1895)
actually would not involve the corresponding states, i.e. the transformed elec-
tromagnetic fields of (9.13). The spacetime transformation of (9.12) was all
that is needed. Of course Lorentz never took his local time t′ as physical time,
but a convenient summary of a set of EM effects. However, in terms of the cal-
culational steps, there is no difference; we would simply take Lorentz’s local
time to be the “transformed time coordinate”. As we shall see, the local time
was the key element in Lorentz’s explanation.

Fresnel’s drag coefficient derived For simplicity we shall work in one spa-
tial dimension of x. An electromagnetic wave can always be represented by
a function of space and time F(kx− ωt) with k being the wavenumber and ω
the angular frequency. The propagation speed is given by the ratio ω/k. The
product φ = kx− ωt, which counts the peaks and troughs of the wave, is its
phase. This counting could not be affected by the motion of the medium or
observer; it must be an invariant:

φ = kx− ωt = k′x′ − ω′t′. (9.15)

Substituting in the coordinate transformation of (9.12), we have

k′x′ − ω′t′ = k′(x− vt)− ω′
(

t − v

c2
x
)

= k′
(

1+ v

c2

ω′

k′

)
x− ω′

(
1+ v

k′

ω′

)
t.

Phase invariance (9.15) implies

k = k′
(

1+ v

c2

ω′

k′

)
, ω = ω′

(
1+ v

k′

ω′

)
, (9.16)

or, taking their ratio,

ω

k
= ω′

k′
1+ v k′

ω′

1+ v
c2

ω′

k′

. (9.17)

Let the wave speed in the S′ system be ω′/k′ = c/n; this relation, to first order
in the velocity v, immediately leads to the propagation speed ω/k = V as given
by Fresnel’s formula (9.10). We recall that in the aether theory Fresnel’s drag
also explained both stellar aberration and Fizeau’s experiment.

Fig. 9.4 (a) The light ray direction as defined
in the S′ system, which has a relative velo-
city v with respect to the S system. (b) The
relation between the two separately defined
tilting angles α and θ ′ is displayed.

Aberration of light We will not try to derive the aberration of light from
Fizeau’s drag coefficient, but rather to show that they both sprang from the
same physics: Lorentz’s local time. Since we will be concerned with directional
change, the invariant phase of the waves in 3D space will be written out:

φ = k · r− ωt = k′ · r′ − ω′t′. (9.18)

In particular from Fig. 9.4(a), we have a plane wave propagating in the x′–y′
plane

k′ · r′ − ω′t′ = k′ cos θ ′x′ + k′ sin θ ′y′ − ω′t′.
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Following essentially the same steps as the derivation of Fresnel’s formula
given above, we have

k′ · r′ − ω′t′ = k′
(

cos θ ′ + v

c2

ω′

k′

)
x+ k′ sin θ ′y− ω′

(
1+ v cos θ ′

k′

ω′

)
t

and obtain from (9.18)

k cos θ = k′
(

cos θ ′ + v

c

)
and k sin θ = k′ sin θ ′ (9.19)

as well as

ω = ω′
(

1+ v

c
cos θ ′

)
. (9.20)

Here we have used the approximation ω/k = ω′/k′ = c as we have already
shown that, using the local time, Lorentz had demonstrated that Maxwell’s
equations, hence its wave equation, are unchanged if terms of order v2/c2 or
higher are ignored. By taking the ratio of the two equations in (9.19) we obtain
the change of propagation directions

tan θ = sin θ

cos θ
= sin θ ′

cos θ ′ + v

c

, (9.21)

which can be inverted (v →−v) to read

tan θ ′ = sin θ

cos θ − v

c

.

Thus for a vertically incident light ray θ = 3π/2, we have tan θ ′ = c/v, or in
terms of the tilting angle α defined in the previous section, cf. Fig. 9.4(b),

tanα = cot θ ′ = v

c
,

which is just the required result of (9.9).
We also note that this same derivation also yields the Doppler frequency

shift effect as given in (9.20).
In short, at this point it seemed that Lorentz’s 1895 theory could account

for all the physics results about the electrodynamics of a moving body. But, in
the meantime, experimental exploration continued its forward march, from the
O(v/c) to the O

(
v2/c2

)
effects.

9.3.3 The Michelson–Morley experiment

Albert Michelson (1852–1931) in collaboration with E.W. Morley (1838–
1923) succeeded in performing in 1887 an experiment showing that the speed
of light has no measurable dependence on coordinate frames. From this set of
observations, one could conclude that the deviation must be less than the order
of v2/c2. The interferometer set-up involves two light rays with one traveling
along the direction of earth’s motion around the sun, and the other being in the
perpendicular direction (Fig. 9.5).

Fig. 9.5 A schematic version of the
Michelson–Morley interferometer.

Using the velocity addition rule of (9.2), the light velocity would be different
when traveling along a trajectory aligned or anti-aligned with the aether wind
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(i.e. the motion of the observer in the aether-frame), with the respective speeds
being c− v and c+ v. The time taken by a light pulse to cover a round trip
over a length l in the longitudinal direction would then be

�t� = l

c− v
+ l

c+ v
= γ 2 2l

c
, (9.22)

where we have used the shorthand (commonly referred to as the “Lorentz
factor”)

γ ≡
√√√√ 1

1−
(v

c

)2
. (9.23)

On the other hand, one can work out the round trip time �t⊥ to cover the same
length perpendicular to the aether wind by solving the equivalent problem in
one coordinate frame where the light travels along the diagonal length of a rect-
angular triangle with two perpendicular lengths being l and v� t⊥/2 (Fig. 9.6).
The Pythagorean relation yields (c� t⊥/2)2 = l2 + (v� t⊥/2)2, which has the
solution of

�t⊥ = γ
2l

c
. (9.24)

Thus we expect the time intervals for light traveling in the parallel and in the
perpendicular directions to differ by a factor of γ . Namely, their difference
would be tiny, being O(v2/c2),

�t� −�t⊥ =
{
γ 2 − γ

} 2l

c
�
{[

1+
(v

c

)2
]
−
[

1+ 1

2

(v

c

)2
]}

2l

c
=
(v

c

)2 l

c
,

where we have used the expansion of (1− ε)− 1
2 = 1+ ε/2+ · · · etc. for both

the γ 2 and the γ factors, and have discarded the higher order terms in v/c.
The interferometer of Michelson and Morley was capable of detecting such

a small time difference by observing the interference pattern when these light
beams were brought together after having travelled in their respective direc-
tions. Furthermore, it was predicted that a rotation of the interferometer by 90◦
should bring about a fringe shift of this v2/c2 order.

We can summarize the situation as follows: Newtonian relativity holds for
laws of mechanics. But one expected it to fail in optical and electromagnetic
phenomena. Lorentz constructed a theory of matter/aether interaction so that
the relativity principle still holds to the order of v/c. But his theory predicted
that it should fail at second order, leading to an effect that the Michelson–
Morley experiment should be able to detect. Their famous null result was the
strongest experimental evidence that light propagates at the same speed in all
inertial frames of reference. Related to this, Fresnel’s partially dragged aether
could not accommodate this Michelson–Morley result.

Fig. 9.6 Light traverses a length l as viewed
by an observer in motion perpendicular to the
light propagation direction.

9.3.4 Length contraction and the Lorentz transformation

In order to explain the null result of Michelson and Morley, Lorentz, and
independently G.F. Fitzgerald (1851–1901) although only in qualitative terms,
proposed in 1892 that the length of any object (under some yet to be understood
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molecular forces) would contract along the direction of relative motion with
respect to the aether-frame, by a factor of γ ,

l
� = l′

�

γ
(9.25)

where l′ is the length measured in the aether rest-frame. The travel time in the
longitudinal direction (9.22) would then be reduced by this factor, leading to
the equality �t� = �t⊥ and the no-fringe shift result of Michelson and Morley
(Lorentz 1895).

To implement this length contraction in his theorem of corresponding states,
Lorentz (starting in the late 1890s) inserted a factor γ in the longitudinal
coordinate relation in Eq. (9.12):

x′ = γ (x− vt), y′ = y, z′ = z. (9.26)

But for self-consistency1010The demonstration of this requirement pro-
ceeds as follows. Assume the modification
has the general form of ct′ = Act − B v

c x,
where (A, B) are even functions of the con-
stant velocity v. The result of A = B = γ

follows immediately when we require that the
inverse transformation be obtained when the
relative velocity is reversed v →−v.

another factor γ was also required for the local time
expression:

t′ = γ
(

t − v

c2
x
)

. (9.27)

As discussed in SuppMat Section 9.5, other γ factors must also be inserted into
the field transformation of (9.13):

E′
�
= E�, and E′⊥=γ

[
E⊥+1

c
(v× B)⊥

]
(9.28)

B′
�
= B�, and B′⊥=γ

[
B⊥−1

c
(v× E)⊥

]
.

Collectively the transformations displayed in (9.26), (9.27), and (9.28) are
known as the Lorentz transformation. Lorentz then obtained the astonishing
result (finally published in 1904) that the covariance of Maxwell’s equations is
exact—not just to the next order v2/c2, but to all orders!

Still, it should be emphasized that Lorentz always viewed results such as
Eq. (9.28) as dynamical consequences of the matter–aether interaction. These
results and the related Lorentz transformation are valid only for, and carry no
implication beyond, electromagnetism.

9.3.5 Poincaré and special relativity

Any discussion of the history of special relativity would be incomplete without
mention of the contribution and insight of Henri Poincaré (1854–1912). He
was among the first to stress the fundamental importance of the principle of
relativity—beyond any particular theories used to explain the nonobservability
of the aether medium. He was the first one to give a physical interpretation to
Lorentz’s local time. In this connection he stressed the coordinate-dependent
nature of time, and suggested the possibility of clock synchronization by light
signal exchanges. In this way he showed the possibility of interpreting the
local time as the time measured in a moving frame. He completed the proof
of Lorentz covariance of Maxwell’s equations by extending it to the case with
sources, and named the transformation rule the “Lorentz transformation”.
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However, he never gave up on the reality of aether. His formulation of
the relativity principle still distinguished observers at rest in the aether-frame
and those in motion. Over all, he never formulated a coherent theory that
completely discarded the notion of aether and absolute time.

9.4 Reconstructing Einstein’s motivation

Einstein thought hard about Maxwell’s theory of electromagnetism for many
years11 11When Einstein was asked by R.S.

Shankland in the early 1950s how long he
had worked on special relativity, he replied
that he had started at age 16 and worked for
10 years (Shankland, 1963).

before he published his special relativity paper in 1905. It was a self-
contained, and complete, theory on the new kinematics for all physics. Since
there was no prior publication by Einstein on this subject, it has always been
a difficult task for historians to reconstruct his motivation. Nevertheless, one
can get a general idea from some remarks made by Einstein in later years, and
by a careful reading of the 1905 paper itself. Our presentation will be brief; for
readers interested in more thorough accounts, I recommend (Norton 2004, Pais
1982, and Stachel 1995).

Looking over Einstein’s oeuvre, it is quite clear that his motivation for a
new investigation was seldom related to any desire to account for this or that
experimental puzzle. His approach often started with fundamental principles
that would have the widest validity in the field, and had always been motivated
by a keen sense of aesthetics in physics.12 12As an aside, I mention that Einstein

admired Albert Michelson greatly. As the
highest form of praise, he called Michelson
“a great artist in physics”. Shankland (1963),
reporting on his discussion of the Michelson–
Morley experiment with Einstein, made the
following comments: “Despite having had
little mathematics or theoretical training, yet
Michelson carried out such a successful
experimental program that probed the funda-
mental issues in physics . . . This he [Einstein]
feels was in large measure due to Michelson’s
artistic sense and approach to science, espe-
cially his feeling for symmetry and form.
Einstein smiled with pleasure as he recalled
Michelson’s artistic nature—here there was a
kindred bond.”

We recall his introductory remarks in his light quantum paper (Einstein
1905d) as reported in Chapter 4: He was dissatisfied with the asymmetric ways
matter and radiation were described: one as composed of particles and the other
as waves. He was seeking a more unified theory. Here he was concerned that
electromagnetism seemed to single out a particular frame of reference—the
aether-frame. He was looking for a more symmetric description, valid for all
frames. The principle of relativity would give us the same physics in all inertial
coordinate systems. And later on, in his general theory of relativity, he would
be seeking the same description in all frames.

Fig. 9.7 A magnet and a conductor in relat-
ive motion.

9.4.1 The magnet and conductor thought experiment

Einstein began his 1905 paper by the consideration of a simple electromagnetic
situation: one magnet and one conductor in relative motion. In the framework
of aether it gave rise to very asymmetric descriptions, depending how one
ascribes the motion with respect to the aether.

Case I The magnet is at rest (i.e. the rest-frame of the magnet coincides
with the aether-frame; call it the S coordinate system) giving rise to a mag-
netic field B. The conductor (having free charges q) is in motion, with
velocity v (Fig. 9.7). A charge moving with the conductor feels the Lorentz
force (9.14) per unit charge as:

f
e
= 1

c
v× B. (9.29)
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Case II The conductor is at rest (call it the S′ coordinate system). The mag-
net is in motion, giving rise to a changing magnetic field (Fig. 9.7). This
changing magnetic field, according to Faraday’s law, will induce an electric
field everywhere:

∇′ × E = −1

c
∂ ′t B. (9.30)

Translating this into the aether frame with1313For the relative velocity (−v) in the x dir-
ection, the derivative relation ∂ ′t = ∂t + v∂x

follows from the position transformation x′ =
x+ vt just as it is shown in Eq. (9.43). Also,
without a nontrivial local time, the spatial
derivatives are simply unchanged, ∇′ = ∇.

∂ ′t = ∂t + v ·∇, the RHS of
the above equation becomes −(v ·∇)B/c as we have ∂tB = 0 because the
magnet is at rest in the S frame. Using a vector identity, similar to (9.6), we
can expand this RHS further as

(v ·∇)B = v(∇ · B)−∇ × (v× B) = −∇ × (v× B).

After noting the Galilean derivative relation ∇′ = ∇, we have from (9.30)

∇ × E =1

c
∇ × (v× B).

This allows us to make the identification for the induced electric field.1414Formally the equality E = 1
c v× B may be

marred by the presence of a possible gradi-
ent factor ∇g. However in order to detect the
electric force, one has to use a conductor in
the form of a loop. Any possible gradient
term will not contribute to the loop line-

integral of the electromotive force:
∮

(∇g) ·

dl =
∮

dg = 0.

This
produces an electric force f = eE. This result is identical to that in (9.29) of
Case I:

E = 1

c
v× B = f

e
. (9.31)

Since Case I and Case II have the same relative motion leading to the same
electric force, Einstein pointed out that we should naturally ascribe the phys-
ical consequence to the relative motion of the magnet and the conductor. Yet
an aether theory would depict them as having very different origins, depend-
ing whether the descriptions were given in the aether-frame or not. Situations
such as this had compelled him to postulate the principle of relativity—not just
for mechanics but for all physics, including electromagnetism. Given the diffi-
culties of implementing Galilean symmetry in Maxwell’s equations, what one
has to do is to change, not the principle of relativity, but the relations among
inertial frames; they are not given correctly by the Galilean transformations.

When reading Einstein’s paper, the reader must keep firmly in mind that
Einstein was writing for a community of physicists who were deeply inculcated
in the aether theoretical framework. A present-day reader may well read the
magnet and conductor thought experiment and wonder why Einstein would
discuss this example in the first place. Being now imbued in the relativity frame
of mind, we now have the habit of viewing physics in the relativity way and
forget that here is Einstein, advocating this relativity approach for the first time.

In the same way a present-day student may be puzzled by the title of
Einstein’s paper: On the electrodynamics of moving bodies. Why was he talk-
ing about “moving bodies”? Where are the moving bodies in the paper? Again,
this aspect of the paper makes sense only when one remembers that Einstein
was using the standard name for a set of problems in the aether theory. There
are no “moving bodies” in his paper because he was precisely advocating that
the whole concept of aether should be abolished, and there was no need to
discuss moving bodies in the aether-frame.
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9.4.2 From “no absolute time” to the complete theory
in five weeks

The above discussion indicated that Einstein was looking for ways to make
electrodynamics compatible with the principle of relativity. But this goal
appeared to be in direct conflict with the fact that Maxwell–Lorentz theory
appeared to imply the existence of a privileged inertial frame (the aether-
frame). In fact in the many years of thinking about this problem, Einstein
toyed with the possibility of an electromagnetic theory based on some mod-
ified version of the Maxwell–Lorentz theory. After a long struggle with this
conflict, suddenly the solution came to him. This is a well-known story. Here
is how Einstein recounted it in his Kyoto Address How I created the theory of
relativity (Einstein 1922):

Why are these two things inconsistent with each other? I felt that I was facing an
extremely difficult problem. I suspected that Lorentz’s ideas had to be modified some-
how, but spent almost a year on fruitless thoughts. And I felt that was a puzzle not to be
easily solved.

But a friend15 15Michele Besso (1873–1955).of mine living in Bern helped me by chance. One beautiful day, I visited
him and said to him: “I presently have a problem that I have been totally unable to solve.
Today I have brought this ‘struggle’ with me.” We then had extensive discussions, and
suddenly I realized the solution. The very next day, I visited him again and immediately
said to him: “Thanks to you, I have completely solved my problem.”

My solution actually concerned the concept of time. Namely, time cannot be abso-
lutely defined by itself, and there is an unbreakable connection between time and signal
velocity. Using this idea, I could now resolve the great difficulty that I previously felt.

After I had this inspiration it took only five weeks to complete what is now known as
the special theory of relativity.

The key realization was based on the notion that concepts in physics,
even abstract ones, must ultimately be based on experience. Whatever defin-
ition one uses, there must be a way to falsify it. In this way, he realized
the absolute time was an abstract notion that could not be tested by exper-
iment. Any realistic definition would involve the notion of simultaneity.
Yet, if the signal transmission cannot be instantaneous, any definition of
two simultaneous events taking place at two separate locations would be
coordinate-frame dependent. If they are simultaneous to one observer, they
would not be so to another in motion with respect to the first observer.
Consequently, the time measurement would be coordinate-frame dependent
too. Here is a way that Lorentz’s local time can be realized as a phys-
ical transformation. Thus the realization of the principle of relativity would
involve a new kinematics. There would be consequences for physics far beyond
electromagnetism.

We will reiterate: the key idea of special relativity is the new conception
of time. Its realization by Einstein was what broke up the “log-jam” that had
obstructed his effort to make sense of Maxwell’s electromagnetism. As we
shall see, just about all the novel effects of special relativity can be traced back
to this fundamental idea about time.
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9.4.3 Influence of prior investigators in physics
and philosophy

Lorentz
Einstein admired Lorentz greatly. He had certainly read Lorentz’s 1895 paper,
in which a dynamical theory of matter/aether interaction was used to show
that Maxwell’s equation was unchanged up to O(v/c). All indications are that
he was not aware of Lorentz’s subsequent work, in particular the 1904 paper
where the full Lorentz transformation was worked out.1616We should keep in mind that Eimstein was

working in the Swiss Patent Office, outside
an academic environment and it was gen-
erally difficult to keep up with the latest
developments in physics.

Michelson and Morley
The question that has repeatedly been raised is how much the Michelson–
Morley experiment had influenced Einstein. On this, Einstein did not provide
us with any definitive answer. But his remarks made in later years indicate that
while he was aware of the Michelson–Morley result, it did not have a major
impact on his thinking. He viewed this experiment mainly as another valid-
ation of the relativity principle, which he already believed anyway. Namely,
the constancy of light speed was to him a manifestation of relativity in
electromagnetism.

Stellar aberration and Fizeau’s experiment
Most intriguingly Einstein on a number of occasions mentioned the importance
of stellar aberration and Fizeau’s experiment for the formulation of relativity
theory. Why were these works important to Einstein? A plausible explanation1717I learnt of this suggestion from Norton,

(2004). is that these effects, being directly related to Lorentz’s local time (as our dis-
cussion in Section 9.3.2 has shown), lent important experimental support to
what Einstein needed in proposing a coordinate-dependent time. Keep in mind
that special relativity is all about time, and here was the experimental evidence
for his new kinematics.1818See the discussion in Section 10.1. A

simple and elegant resolution of stellar aber-
ration and Fresnel’s formula (hence Fizeau’s
experiment) by special relativity will be
presented in SuppMat Sections 10.6.1 and
10.6.2.

The philosophical influence on Einstein
In the creation of special relativity, Einstein acknowledged the influence of
David Hume (1711–76) and Ernst Mach (1838–1916). In his Autobiographical
Notes (Einstein 1949) he wrote:

Today everyone knows, of course, that all attempts to clarify this paradox [of the con-
stancy of light speed and the principle of relativity] satisfactorily were condemned
to failure as long as the axiom of the absolute character of time, or of simultaneity,
was rooted unrecognized in the unconscious. To recognize clearly this axiom and the
arbitrary character already implies the essentials for the solution of the problem. The
type of critical reasoning required for the discovery of this central point was decisively
furthered, in my case, especially by the reading of David Hunme’s and Ernst Mach’s
philosophical writings.

In other words, these philosophical readings helped to liberate Einstein’s
thoughts from the straightjacket of the classical concept of space and time.
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9.5 SuppMat: Lorentz transformation
à la Lorentz

In this SuppMat section, the transformation properties of the free Maxwell’s
equations (A.35) are worked out in some detail. In the shorthand notation for
the derivatives:

∂t ≡ ∂

∂t
, ∂ ′t ≡

∂

∂t′
, ∂x ≡ ∂

∂x
, ∂ ′x ≡

∂

∂x′
, etc., (9.32)

we first display these equations in terms of their components:

Faraday’s law:

∂yEz − ∂zEy = −1

c
∂tBx (9.33)

∂zEx − ∂xEz = −1

c
∂tBy (9.34)

∂xEy − ∂yEx = −1

c
∂tBz (9.35)

Ampere’s law with displacement current:

∂yBz − ∂zBy = 1

c
∂tEx (9.36)

∂zBx − ∂xBz = 1

c
∂tEy (9.37)

∂xBy − ∂yBx = 1

c
∂tEz (9.38)

Gauss’ law for the electric field

∂xEx + ∂yEy + ∂zEz = 0 (9.39)

Gauss’ law for the magnetic field

∂xBx + ∂yBy + ∂zBz = 0. (9.40)

The source-free Maxwell’s equations have the symmetry (between electricity
and magnetism) under the “duality transformations”:

Ei → Bi and Bi →−Ei. (9.41)

Think of them as counterclockwise 90◦ rotations in planes spanned by the
(Ei, Bi) axes.

9.5.1 Maxwell’s equations are not Galilean covariant

Under the Galilean transformation (9.1) the two coordinate systems S and S′ in
relative motion (with constant velocity v along the x axis) are related by

x′ = x− vt, y′ = y, z′ = z, and t′ = t. (9.42)
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We can find the relation among the derivatives by the chain rule of partial dif-
ferentiation. As the time coordinate is in principle a function of the transformed
coordinates

(
t′, x′, y′, z′

)
, we have

∂

∂t
= ∂

∂t′
∂t′

∂t
+ ∂

∂x′
∂x′

∂t
+ ∂

∂y′
∂y′

∂t
+ ∂

∂z′
∂z′

∂t
= ∂

∂t′
− v

∂

∂x′
(9.43)

while the spatial coordinate derivatives are unchanged

∂

∂x
= ∂

∂x′
,

∂

∂y
= ∂

∂y′
,

∂

∂z
= ∂

∂z′
.

It is then clear that the only change of Maxwell’s equations will be terms such
as the RHS of (9.33)

−1

c
∂tBx = −1

c
∂ ′t Bx + v

c
∂ ′xBx.

Namely, Maxwell’s equations have noncovariant terms of O(v/c).

9.5.2 Lorentz’s local time and noncovariance at O
(
v2/c2

)

As discussed in Section 9.3.2, Lorentz was able to find in the 1880s that the
corresponding states (i.e. transformed fields) resulting from objects moving
with respect to the aether-frame do satisfy Maxwell’s equations—if one drops
the O

(
v2/c2

)
noncompliant terms. It was a very complicated dynamical theory

in order to obtain these new fields (called corresponding states). Namely in
this theory not only the space coordinates change, so do the electromagnetic
fields. Nevertheless, the involved mathematics in checking their compatibility
with Maxwell’s equations is identical to that when checking the covariance
by the transformed fields as seen by a moving observer. Since most of us are
more familiar with the latter language, this is how we will phrase the following
discussion.

The key to Lorentz’ success is his discovery of the local time (9.11). We
shall treat it as physical time being measured in the new coordinate, even
though Lorentz just thought of it as some mathematical quantity that summar-
ized a series of dynamical effects. In this manner one considers the coordinate
changes of

x′ = x− vt, y′ = y, z′ = z, and t′ = t − v

c2
x (9.44)

leading to derivative changes in a way entirely similar to (9.43)

∂

∂x
= ∂

∂t′
∂t′

∂x
+ ∂

∂x′
∂x′

∂x
+ ∂

∂y′
∂y′

∂x
+ ∂

∂z′
∂z′

∂x
= ∂

∂x′
− v

c2

∂

∂t′

or we have in general the derivative relations

∂x = ∂ ′x −
v

c2
∂
′
t , ∂y = ∂ ′y, ∂z = ∂ ′z, and ∂t = ∂ ′t − v∂ ′x. (9.45)

We now start checking the covariance of Maxwell’s equations by replacing
all the derivatives in Eqs. (9.33)–(9.40). The two Gauss’s laws (9.39) and (9.40)
lead to
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∂ ′xEx + ∂ ′yEy + ∂ ′zEz = v

c2
∂
′
t Ex (9.46)

∂ ′xBx + ∂ ′yBy + ∂ ′zBz = v

c2
∂
′
t Bx. (9.47)

One of the Faraday equations, (9.33), becomes

∂ ′yEz − ∂ ′zEy = −1

c
∂ ′t Bx + v

c
∂ ′xBx, (9.48)

which upon applying (9.47) for the ∂ ′xBx term becomes

∂ ′y
(

Ez + v

c
By

)
− ∂ ′z

(
Ey − v

c
Bz

)
= −1

c
∂ ′t Bx

(
1− v2

c2

)
. (9.49)

In exactly the same manner, the other two components of the Faraday law
become

∂ ′zEx − ∂ ′x
(

Ez + v

c
By

)
= −1

c
∂ ′t
(

By + v

c
Ez

)
(9.50)

∂ ′x
(

Ey − v

c
Bz

)
− ∂ ′yEx = −1

c
∂ ′t
(

Bz − v

c
Ey

)
. (9.51)

These equations, through the duality transformation of (9.41), lead to the
transformed Ampere’s law:

∂ ′y
(

Bz − v

c
Ey

)
− ∂ ′z

(
By + v

c
Ez

)
= 1

c
∂ ′t Ex

(
1− v2

c2

)
(9.52)

∂ ′zBx − ∂ ′x
(

Bz − v

c
Ey

)
= 1

c
∂ ′t
(

Ey − v

c
Bz

)
(9.53)

∂ ′x
(

By + v

c
Ez

)
− ∂ ′yBx = 1

c
∂ ′t
(

Ez + v

c
By

)
. (9.54)

Furthermore, from (9.48) we obtain

∂ ′yBz − ∂ ′zBy = 1

c
∂ ′t Ex − v

c
∂ ′xEx. (9.55)

A comparison of these six equations (9.49)–(9.54) with the original
Maxwell’s Eqs. (9.33)–(9.38) suggests that the covariance of these equations
requires the field transformation of

E′x = Ex, E′y = Ey − v

c
Bz, E′z = Ez + v

c
By,

B′x = Bx, B′y = By + v

c
Ez, B′z = Bz − v

c
Ey. (9.56)

(This was also what Lorentz had for the corresponding states.) In this way, we
have

∂ ′yE′z − ∂ ′zE
′
y = −

1

c
∂ ′t B

′
x

(
1− v2

c2

)
(9.57)

∂ ′zE
′
x − ∂ ′xE′z = −

1

c
∂ ′t B

′
y (9.58)

∂ ′xE′y − ∂ ′yE′x = −
1

c
∂ ′t B

′
z (9.59)
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and

∂ ′yB′z − ∂ ′zB
′
y =

1

c
∂ ′t E

′
x

(
1− v2

c2

)
(9.60)

∂ ′zB
′
x − ∂ ′xB′z =

1

c
∂ ′t E

′
y (9.61)

∂ ′xB′y − ∂ ′yB′x =
1

c
∂ ′t E

′
z. (9.62)

Finally we need to check the two transformed Gauss’ laws as given in (9.46)
and (9.47). The application of (9.56) to (9.46) gives us:

∂ ′xE′x + ∂ ′yE′y + ∂ ′zEz = v

c

(
1

c
∂ ′t Ex − ∂ ′yBz + ∂ ′zBy

)
= v2

c2
∂ ′xE′x,

where to reach the last expression we have used the relation in (9.55). Thus the
two Gauss’ laws have the transformed form of

∂ ′xE′x

(
1− v2

c2

)
+ ∂ ′yE′y + ∂ ′zEz = 0 (9.63)

∂ ′xB′x

(
1− v2

c2

)
+ ∂ ′yB′y + ∂ ′zB

′
z = 0. (9.64)

We see that Maxwell’s equations are satisfied in coordinate frame S′, with the
noncovariant terms in (9.57), (9.60), (9.63), and (9.64) being of order v2/c2.

9.5.3 Maxwell’s equations are Lorentz covariant

A notable feature of the non-covariant terms obtained in the previous subsec-
tion is that they all have the form of (1− v2/c2) = γ−2. We have also discussed
in Section 9.3.4 that the Fitzgerald–Lorentz proposal of longitudinal length
contraction (9.25) involves the same factor and was implemented by Lorentz
(1904) in such a way that it led to the Lorentz transformation as shown in (9.26)
and (9.27).

Following the same procedure used in the previous subsection, we can easily
show that Maxwell’s equations retain their form, to all orders of v/c, provided
that the fields transform like (9.56) but with some additional γ factors

E′x = Ex, E′y = γ
(

Ey − v

c
Bz

)
, E′z = γ

(
Ez + v

c
By

)
,

B′x = Bx, B′y = γ
(

By + v

c
Ez

)
, B′z = γ

(
Bz − v

c
Ey

)
. (9.65)

We shall not provide the details here as a similar calculation was carried out by
Einstein in his famous 1905 special relativity paper, which we report in Section
10.3 of the next chapter.
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• Einstein created the new theory of special relativity by following the
invariance principle. The principle of (special) relativity states that
physics equations must be unchanged under coordinate transformations
among inertial frames of reference. To this he added the principle of
constancy of light speed. These two postulates formed the foundation
of special relativity.

• These two postulates appeared at the outset to be contradictory: how
can light speed be the same in two different reference frames which are
in relativity motion? Einstein’s resolution of this paradox came when
he realized that the notion of simultaneity was a relative concept. Two
events that are viewed to be simultaneous by one observer will appear to
another observer as taking place at different times. Consequently, time
is measured to run at different rates in different inertial frames.

• From these two postulates Einstein showed that, when different
coordinate times are allowed, one could derive the Lorentz transform-
ation (t, r) → (t′, r′) in a straightforward manner: If the two frames O
and O′ are moving with relative speed v in the x direction, one has

�x′ = γ (�x− v�t), �y′ = �y, �z′ = �z

�t′ = γ
(
�t − v�x/c2

)
with γ = (1− v2/c2

)−1/2
> 1.

• Physical consequences follow immediately. A moving clock appears to
run slow (“time dilation”); a moving object appears to contract (“length
contraction”). This underscores the profound change in our conception
of space and time brought about by special relativity.

• It should be noted that just about all the counter-intuitive relativistic
effects spring from the new conception of time. Length contraction
is such an example. To measure the length of a moving object one
must specify the time when the front and back ends of the object are
measured.

• From the Lorentz transformation we can immediately deduce that the
familiar velocity addition rule u′ = u− v will have to be modified in
the relativistic regime so that the light speed remain unchanged c′ = c.
This is directly related to the invariance of a spacetime interval s′ = s
where s2 ≡ x2 + y2 + z2 − c2t2.
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• The electromagnetic fields also change when observed in different
frames. Einstein derived their transformation (E, B) → (E′, B′) from
the requirement that Maxwell’s equations maintain the same form in
different inertial frames.

• Einstein also showed that the Lorentz force law F = e[E+ 1
c (v× B)]

follows from Maxwell’s equations when combined with the Lorentz
transformation of the (E, B) fields.

• From a study of the relativistic work–energy theorem, Einstein dis-
covered that one can identify a particle’s energy with its inertia E =
γmc2, where γ = (1− v2/c2)−1/2. In order to confirm this identifica-
tion, he made a careful study showing that this energy can be converted
into other forms, such as radiation energy.

• In SuppMat Section 10.6 we work out the relativistic effects for wave
motion: Doppler’s effect, stellar aberration, and Fresnel’s formula, as
well as the transformation properties of radiation energy.

10.1 The new kinematics

In the last chapter we discussed how Lorentz had introduced the notion of
“local time”. But he never regarded this as something physical, connected dir-
ectly to the reading of a clock. Einstein’s penetrating insight was that if signal
transmissions were not instantaneous, simultaneity was coordinate-dependent.
Namely, two events that took place at separate locations and were seen to
be simultaneous in one inertial frame would be viewed in another as tak-
ing place at two different times. Since measurement of time always involves
ultimately comparing simultaneous events, time measurement (just as spatial
position measurement) would be coordinate-dependent. Upon the change of a
coordinate frame, not only spatial variables but time as well are expected to
undergo transformation. In his ground-breaking 1905 paper (Einstein 1905d),
he demonstrated that the Lorentz transformation was the correct transformation
among inertial frames of reference. The familiar Galilean relation was merely
its low-velocity (v � c) approximation. In short, Einstein proposed a new con-
ception of time; the resultant new kinematics deepened our understanding of
electromagnetism, and altered the physics beyond.

10.1.1 Einstein’s two postulates

While investigations in the nineteenth century involved the study of electro-
magnetic fields in the aether medium, Einstein cut right to the heart of the
matter. He concluded that there was no physical evidence for the existence
of aether. Physical descriptions would be much simplified and more natural
if aether was dispensed with altogether.11Recall our discussion in Section 9.4.1 of

the magnet–conductor thought experiment
that appeared in the introductory remarks of
Einstein (1905d).

From the modern perspective, what
Einstein had done was to introduce a principle of symmetry, the relativity
principle, as one of the fundamental laws of nature.

We have discussed Lorentz’s derivation of the Lorentz transformation. He
tried to use the electromagnetic theory of the electron to show that matter
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composed of electrons, when in motion, would behave in such a way to make
it impossible to detect the effect of this motion on the speed of light. This was
his way to explain the persistent failure of detecting any difference in the light
speed in different inertial reference frames. Einstein by contrast had taken as a
fundamental axiom that light speed is the same to all observers. The key fea-
ture of his new kinematics was the new conception of time that allowed the
constancy of the light speed.

Einstein thus stated the two basic postulates for this new theory of relativity:

• Principle of relativity—physics equations must be the same in all inertial
frames of reference.

• Constancy of light speed—the speed of light is the same in all coordinate
frames, regardless of the motion of its emitter or receiver.

10.1.2 The new conception of time and the derivation
of the Lorentz transformation

Time is coordinate-frame dependent
The most profound consequence of special relativity is the change it brought
to our conception of time. In fact, as we shall see, all major implications of
the theory can be traced back to the relativity of time. The revelation that came
to Einstein was that in a world with a finite speed of light, the time interval is
a frame-dependent quantity. Thus, any reference system must be specified by
four coordinates (x, y, z, t)—that is, by three spatial coordinates and one time
coordinate. One can picture a coordinate system as being a three-dimensional
grid (to determine the position) and a set of clocks (to determine the time of
an event), with a clock at every grid point in order to avoid the complication
of time delay between the occurrence of an event and the registration of this
event by a clock located a distance away from the event. We require all the
clocks to be synchronized (say, against a master clock located at the origin).
The synchronization of a clock located at a distance r from the origin can be
accomplished by sending out light flashes from the master clock at t = 0. When
the clock receives the light signal, it should be set to t = r/c. Equivalently,
synchronization of any two clocks can be checked by sending out light flashes
from these two clocks at a given time. If the two flashes arrive at their midpoint
at the same time, they are synchronized. The reason that light signals are often
used to set and compare time is that this ensures, in the most direct way, that
the new kinematical feature of universal light velocity is properly taken into
account.

Lorentz transformation derived from the two postulates
From the above stated postulates, we now find the relation between coordinates
(x, y, z, t) of one inertial frame O to those (x′, y′, z′, t′) of the O′ frame which
moves with a constant velocity v in the positive x direction. The origins of
these two systems are assumed to coincide at the initial time. Our algebraic
steps are different from those taken by Einstein in his 1905 paper, but the basic
assumptions and conclusion are of course the same.
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1. Consider the transformation (x, y, z, t) → (x′, y′, z′, t′). Because of y′ = y
and z′ = z, we can simplify our equation display by concentrating on the
2D problem of (x, t) → (x′, t′), and can write the transformation in matrix
form22Equation (10.1) is just a compact way of

writing x′ = a1x+ a2t and t′ = b1x+ b2t.
as (

x′

t′

)
=
(

a1 a2

b1 b2

)(
x

t

)
. (10.1)

If one assumes that space is homogeneous and the progression of time
is uniform, the transformation must be linear. Namely, the elements
(a1, a2, b1, b2) of the transformation matrix [L] must be independent of
coordinates (x, t): we make the same coordinate transformation at every
coordinate point (i.e. it is a global transformation). Of course these
position/time independent factors can depend on the relative velocity v.

2. The origin (x′ = 0) of the O′ frame has the trajectory of x = vt in the
O frame; thus reading off from Eq. (10.1) we have 0 = a1x+ a2t with
x = vt, leading to

a2 = −va1. (10.2)

3. The origin (x = 0) of the O frame has the trajectory of x′ = −vt′ in the
O′ frame; reading off from Eq. (10.1) we have x′ = a2t and t′ = b2t,
or equivalently, x′/t′ = a2/b2 = −v. When compared to Eq. (10.2), it
implies

b2 = a1. (10.3)

Substituting the relations (10.2) and (10.3) into the matrix equation
(10.1), we have x′ = a1(x− vt) and t′ = b1x+ a1t. Taking their ratio,
we get

x′

t′
=

a1

(x

t
− v
)

b1
x

t
+ a1

. (10.4)

4. We now impose the constancy-of-c condition: x/t = c = x′/t′ on
Eq. (10.4): c(b1c+ a1) = a1(c− v) leading to

b1 = − v

c2
a1. (10.5)

5. Because of Eqs. (10.2), (10.3), and (10.5), the whole transformation
matrix [L] has only one unknown constant a1

[L] = a1

(
1 −v

−v/c2 1

)
,

[
L−1
] = a1

(
1 v

v/c2 1

)
. (10.6)

In the above we have also written down the inverse transformation mat-
rix [L−1] by simply reversing the sign of the relative velocity. The last
unknown constant a1 can then be fixed by the consistency condition of
[L][L−1] = [1]:

a2
1

(
1 −v

−v/c2 1

)(
1 v

v/c2 1

)
=
(

1 0

0 1

)
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which implies that

a1 =
√

1

1− v2/c2
≡ γ . (10.7)

This is the same Lorentz factor γ we have encountered in the previous
chapter.

This concludes Einstein’s derivation of the Lorentz transformation. We note
that the above steps 1–3 just set up the consideration of two relative frames,
and step 5 is a consistency condition. Hence the only nontrivial act is step 4
when light speed constancy is imposed.

We can rewrite the transformation in a more symmetric form by mak-
ing the time coordinate have the same dimension as the other coordinate by
multiplying it by a factor of c:(

x′

ct′

)
= γ

(
1 −β
−β 1

)(
x

ct

)
,

(
x

ct

)
= γ

(
1 β

β 1

)(
x′

ct′

)
(10.8)

where we have introduced another often-used notation

β ≡ v

c
. (10.9)

We note that while 0 ≤ β ≤ 1, the Lorentz factor γ = (1− β2)−1/2 is always
greater than unity γ ≥ 1—it approaches unity only in the low-velocity (nonre-
lativistic) limit, and blows up when v approaches c.

At this point we would also like to write down the transformation properties
of the coordinate derivatives. For this purpose we introduce the commonly used
notation of

x0 ≡ ct, ∂0 ≡ ∂

∂x0
= 1

c

∂

∂t
and ∂ ′0 ≡

∂

∂x′0
= 1

c

∂

∂t′
.

Since ∂ixj = δij, and the Kronecker delta is unchanged under a Lorentz trans-
formation, we can deduce that the derivatives must transform oppositely as the
coordinates themselves, i.e. as their inverse, obtained by a simple sign change
of β in (10.8): (

∂ ′′x
∂ ′0

)
= γ

(
1 β

β 1

)(
∂x

∂0

)
. (10.10)

10.1.3 Relativity of simultaneity, time dilation,
and length contraction

Writing the Lorentz transformation as

x′ = γ (x− vt), y′ = y, z′ = z

t′ = γ
(

t − v

c2
x
)

(10.11)
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makes it clear that in the nonrelativistic limit of γ → 1 and v/c → 0, it reduces
to the Galilean transformation (9.1). Let us look at some of the physical con-
sequences that follow from the Lorentz transformation. We should keep in
mind that the coordinates (x, t) are really coordinate intervals, namely, they
are the interval between the coordinates (x, t) and the origin (0, 0).

Relativity of simultaneity
Let us suppose the time interval is zero in one coordinate system, t = 0, while
the position separation is nonzero, x �= 0. This is the situation of two simultan-
eous events taking place at separate locations in the O frame. We see that, in
the O′ frame, we have t′ = γ vx/c2 �= 0. Thus, simultaneity is relative.

Perhaps it will be helpful to think in terms of some concrete situation. An
example is shown in Fig. 10.1. Two light pulses are sent from the midpoint
towards the front and the back ends of a moving railcar. The arrival events
at the two ends are viewed by an observer on the car as simultaneous.
However for an observer standing on some stationary rail platform which the
train passes by, the light signals would arrive at different times, resulting in
the rail platform observer concluding that these two events as not simultaneous.

Time dilation and length contraction
We discuss here two other important physical implications of the special
relativity (SR) postulates, time dilation and length contraction:

A moving clock appears to run slow;
a moving object appears to contract.

These physical features underscore the profound change in our conception of
space and time brought about by relativity. We must give up our belief that
measurements of distance and time give the same results for all observers.
Special relativity makes the strange claim that observers in relative motion will
have different perceptions of distance and time. This means that two identical
watches worn by two observers in relative motion will tick at different rates
and will not agree on the amount of time that has elapsed between two given

Fig. 10.1 Simultaneity is relative when light
is not transmitted instantaneously. Two events
(x′1, t′1) and (x′2, t′2) corresponding to light
pulses (wavy lines) arriving at the opposite
ends of a moving train, after being emitted
from the midpoint (a1), are seen as simultan-
eous, t′1 = t′2, by an observer on the train as
in (a2). But to another observer standing on
the rail platform, these two events (x1, t1) and
(x2, t2) are not simultaneous, t1 �= t2, because
for this observer the light signals arrive at dif-
ferent times at the two ends of the moving
railcar [(b2) and (b3)].
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events. It’s not that these two watches are defective. Rather, it’s a fundamental
statement about the nature of time.

Time dilation Let the O′ frame be the rest frame of a clock. Because the
clock has no displacement in this frame, x′ = 0, we have from Eq. (10.11)
x = vt and

t′ = γ

(
1− v2

c2

)
t or �t = γ�t′. (10.12)

With γ > 1, we have the time dilation phenomenon—a moving clock appears
to run slow. Again it would be useful to illustrate this with a concrete descrip-
tion. In Fig. 10.2 time dilation shows up directly from the measurement by the
most basic of clocks:3

3A “basic clock” rests on some phys-
ical phenomenon that has a direct con-
nection to the underlying laws of physics.
Different clocks—mechanical clocks, bio-
logical clocks, atomic clocks, or particle
decays—simply represent different physical
phenomena that can be used to mark time.
They are all equivalent if their time intervals
are related to the basic-clock intervals by cor-
rect physical relations. We note that, while the
familiar mechanical pendulum is a conveni-
ent basic clock for Newtonian physics, it is no
longer so in relativity because the dynamical
equation for a pendulum must be modified
so that it is compatible with special relativity.
In short, a phenomenon such as time dilation
holds for any clock; but it is easier to see in
the case of a light clock, shown in Fig. 10.2.

a light-pulse clock. It ticks away the time by having
a light pulse bounce back and forth between two mirror-ends separated by a
fixed distance d.

d

(a)

(b)

v

Fig. 10.2 Light-pulse clock, with mirrors at
the top and bottom of a vertical vacuum
chamber, (a) at rest and (b) in motion to
the right in the horizontal direction. Viewed
by a comoving observer O′ as in (a), the
time interval is �t′ = d/c. However, for an
observer with respect to whom the clock is
moving with a velocity v, perpendicular to
the light-pulse path, the light pulse will be
viewed as traversing a diagonal distance D as
in (b). This involves a different time interval
�t = D/c = √d2 + v2�t2/c. Collecting �t
terms and using �t′ = d/c, we have the time
dilation result of �t = γ�t′.

Length contraction
To measure the length of a moving object in the O frame, we can measure the
two ends of the object simultaneously, hence t = 0. The measured length �x
is then related to its rest frame length �x′ by Eq. (10.11) as

�x = �x′

γ
. (10.13)

Since γ−1 is always less than unity, we have the phenomenon of (longitudinal)
length contraction of Lorentz and FitzGerald, discussed in Section 9.3.4.

Consider the specific example of length measurement of a moving railcar.4

4The set-up is similar to that as shown in
Fig. 10.1.

Let there be a clock attached to a fixed marker on the ground. A ground
observer O, watching the train moving to the right with speed v, can meas-
ure the length L of the car by reading off the times when the front and back
ends of the railcar pass this marker on the ground:

L = v(t2 − t1) ≡ v�t. (10.14)

But for an observer O′ on the railcar, these two clock-reading events correspond
to the passing of the two ends of the car by the (ground-) marker as the marker
is seen moving to the left. O′ can similarly deduce the length of the railcar in
her reference frame by reading the times from the ground clock:

L′ = v
(
t′2 − t′1

) ≡ v�t′. (10.15)

These two unequal time intervals in (10.14) and (10.15) are related by the
above-considered time dilation (10.12): �t′ = γ�t, because �t is the time
recorded by a clock at rest, while �t′ is the time recorded by a clock in motion
(with respect to the observer O′). From this we immediately obtain
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L = v�t = v�t′

γ
= L′

γ
, (10.16)

which is the claimed result (10.13) of length contraction.55We often use the O′ system for the rest-
frame of whatever we are most interested in
(be it a clock, or some object whose length
we are measuring as in �t = γ�t′ or �x =
γ−1�x′). When using the results in (10.12)
and (10.13), one must be certain which is
the the rest-frame in the case being discussed
and not blindly copy any written equation.
For example, in the derivation here we have
�t′ = γ�t rather than the usual �t = γ�t′
as written in Eq. (10.12).

We see that the derivation of length contraction invokes relativity of simul-
taneity (by way of time dilation). This follows simply from the fact that in order
to deduce the length of a moving object, one must make two separate measure-
ments of the front and back ends of that object. This means one must specify
the times when they are measured, as the above-given example illustrates. Even
the simplest way of making these two measurements simultaneously would
still involve the change of time because of relativity of simultaneity. In fact
one finds that just about all of the counter-intuitive results in special relativity
are in one way or another ultimately related to the new conception of time.
Thus one can conclude that the new conception of time is the key element of
special relativity.

The new kinematics for electromagnetic waves and beyond
Relativistic wave motion With this new kinematics, especially the notion of
relative simultaneity, special relativity can provide simple and elegant explica-
tions of puzzling phenomena: stellar aberration and Fizeau’s experiment, that
led up to Einstein’s creation of this relativity theory. The details of these SR
derivations are given in SuppMat Section 10.6.

Relativity beyond electromagnetism Einstein showed that the correct trans-
formation among inertial frames of reference was the Lorentz transformation,
which reduced to the Galilean relation in the low-velocity limit. In this way
it not only solved the problem of the electromagnetism of a moving body but
also pointed out that all physics must be reformulated so as to incorporate this
new kinematics. For example, Newtonian mechanics had to be extended to a
relativistic formulation in order that its equations be covariant under Lorentz
transformation. As we shall see, the difficulty in making Newton’s theory of
gravity compatible with special relativity was one of the motivations behind
Einstein’s eventual development of general relativity, which would also be the
field theory of gravitation.

10.2 The new velocity addition rule

Here we discuss how the apparent contradiction between relativity and light
speed constancy is resolved by the new kinematics.

10.2.1 The invariant spacetime interval

In this new kinematics, time is no longer absolute (no longer an invariant under
coordinate transformation). There is however a particular combination of space
and time intervals that is invariant. This is the combination

s2 ≡ x2 + y2 + z2 − c2t2. (10.17)

We will demonstrate this by an explicit calculation. Plug the Lorentz trans-
formation (10.11) into
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s′2 = x′2 + y′2 + z′2 − c2t′2 = γ 2(x− vt)2 + y2 + z2 − γ 2c2
(

t − v

c2
x
)2

= γ 2

(
1− v2

c2

) (
x2 − c2t2

)+ y2 + z2 = s2,

where we have used the relations in (10.11) and (10.17). What is the physical
meaning of this interval? Why should one expect it to be an invariant? s is
basically the time interval in the clock’s rest-frame, called proper time (τ ). In
the rest-frame, there is no displacement, hence x2 + y2 + z2 = 0, and we have

s2 = −c2t2 ≡ −c2τ 2. (10.18)

Since there is only one rest-frame (hence only one proper time), all observers
(i.e. all coordinate frames) can agree on this value. It must be an invariant.

We of course also remember that the velocity of light is also a Lorentz invari-
ant. So it should not be a surprise that the statements “c is absolute” and “s is
absolute” are equivalent. Namely, starting from either one of them, one can
prove the other, cf. Cheng (2010, Box 3.1, p. 42) and Section 10.2.2 below.

10.2.2 Adding velocities but keeping light speed constant

Writing the Lorentz transformation in terms of infinitesimal coordinate
intervals

dx′ = γ (dx− vdt) (10.19)

dt′ = γ
(

dt − v

c2
dx
)

,

we have the ratio

dx′

dt′
= dx− vdt

dt − v

c2
dx
=

dx

dt
− v

1− v

c2

dx

dt
or, in terms of particle velocities u = dr/dt,

u′x =
ux − v

1− vux

c2

. (10.20)

Similarly, we can write down the expressions for u′y and u′z.
This new velocity addition rule replaces the Newtonian one: for a particle

velocity also in the x direction (u = ux), the familiar rule, u′ = u− v, is simply
the low-velocity limit of (10.20). We are particularly interested to see how this
new rule can be compatible with the constancy of light velocity condition. If
we have the simple case of ux = c, we then have

u′x =
c− v

1− v

c

= c (10.21)

expressing the result c′ = c. For the case of light propagating in a general
direction, a brute force calculation of√

u′2x + u′2y + u′2z = c, (10.22)
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from formulas like (10.20) would be very tedious (hence prone to algebraic
mistakes). The most efficient way to prove (10.22) is through the invariance
of the spacetime interval ds′ = ds. In this case, they have vanishing invariant
separation ds′ = ds = 0. Namely, for a light signal we have

(ds)2

(dt)2
= dx2 + dy2 + dz2 − c2dt 2

dt 2
= u2 − c2 = 0. (10.23)

This implies 0 = [(ds′)/(dt)
]2 = u′2 − c2, or u′ = c.

10.3 Maxwell’s equations are Lorentz covariant

Since Maxwell’s equations already have the relativistic feature of a constant
speed of light, we expect they are already covariant under Lorentz transforma-
tion. We will actually use this expectation to derive the Lorentz transformation
properties of electric and magnetic fields (E, B). From our basic knowledge
of electromagnetism, we expect that these fields must change into each other
when viewed in reference frames that are in motion with respect to each other.
An electric charge at rest gives rise to an electric, but no magnetic, field.
However, the same situation when seen by a moving observer is a charge in
motion, which produces both electric and magnetic fields. Namely, different
inertial observers will find different electric and magnetic fields, just as they
would measure different position and time intervals.

10.3.1 The Lorentz transformation of electromagnetic
fields

We can derive the Lorentz transformation of the (E, B) fields from the require-
ment that Maxwell’s equations be Lorentz covariant. Namely, we ask how the
electromagnetic field must change (E, B) −→ (E′, B′) in order, for example,
that the homogeneous equations maintain the same form under a Lorentz
transformation: In some inertial frame O we have

∇ × E+ 1

c
∂tB = 0, ∇ · B = 0, (10.24)

while in another frame O′ moving in the+x direction with velocity v, we would
still have

∇′ × E′ + 1

c
∂ ′t B

′ = 0, ∇′ · B′ = 0. (10.25)

Let us start with the x component of Faraday’s equation in the O′ frame:

∂ ′yE′z − ∂ ′zE
′
y + ∂ ′0B′x = 0. (10.26)

Substituting in the Lorentz transformation of the derivatives, as discussed in
Eq. (10.10),

∂ ′0 = γ (∂0 + β∂x) ∂ ′x = γ (∂x + β∂0) , ∂ ′y = ∂y, ∂ ′z = ∂z. (10.27)
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we then have

∂yE′z − ∂zE
′
y + γ ∂0B′x + γβ∂xB′x = 0. (10.28)

Or, if we start with the no-monopole equation in (10.25), we would have

γ ∂xB′x + γβ∂0B′x + ∂yB′y + ∂zB
′
z = 0. (10.29)

Taking a linear combination of Eqs. (10.28)–β(10.29) and noting the cancella-
tion of the γβ∂xB′x terms, we get

∂y
(
E′z − βB′y

)− ∂z
(
E′y + βB′z

)+ (1− β2
)
γ ∂0B′x = 0.

Multiplying this equation by a factor of γ and noting (1− β2)γ 2 = 1, we have

∂y
[
γ
(
E′z − βB′y

)]− ∂z
[
γ
(
E′y + βB′z

)]+ ∂0B′x = 0.

After comparing Eq. (10.24) in the O frame, we can then identify

Bx = B′x, Ey = γ
(
E′y + βB′z

)
, Ez = γ

(
E′z − βB′y

)
. (10.30)

Starting with different components of Maxwell’s equations we can similarly
show that

Ex = E′x, By = γ
(
B′y − βE′z

)
, Bz = γ

(
B′z + βE′y

)
. (10.31)

Here we have written fields in the O frame in terms of those in the O′ frame; the
inverse transformation is simply the same set of equations with a sign change
for all the β factors. We should also note that the charge and current densities
(cρ, j) transform in the same way as the time and position coordinates (ct, r).

The field transformation rule displayed in (10.30) and (10.31) still seems
mysterious. Why should it be of this form? Is there a simple way to understand
it? In the next chapter, this rule can indeed be explained, cf. Eq. (11.37).

The different theories of Lorentz and Einstein
The Lorentz transformation was first written down by Lorentz in 1904. He
arrived at his transformation in the best tradition of “constructive theory”. He
systematically worked out the theory based in the general framework of an
aether as the medium of EM wave propagation; the theory was built up step by
step to accommodate the experimental result. It is strictly an electromagnetic
theory and the transformation properties of EM fields are supposedly a result
of the properties of the aether. For example Lorentz’s “principle of correspond-
ing states” is applicable only to the aether and not the covariance requirement
for all physics. Einstein, on the other hand, unaware of Lorentz’s final accom-
plishment, derived the Lorentz transformation entirely differently. Namely, the
transformation rule might be the same, but their respective interpretations were
very different. Einstein’s approach6

6Further remarks about construtive theories
versus theories of principle can be found at
the end of Chapter 16, and in Pais (1982,
p. 27).was an example of “theories of principle”.
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Thermodynamics is the prototype of a theory of principle; it is based on the
postulates of the impossibility of perpetual motion. The two postulates of spe-
cial relativity are the over-arching principles that imply a new kinematics and
dictate the development of the new physics in every aspect.

10.3.2 The Lorentz transformation of radiation energy

Recall that the EM radiation energy density is directly proportional to the field
amplitude squared

A2 = E2
x + E2

y + E2
z = B2

x + B2
y + B2

z ; (10.32)

thus the radiation energy U′ = A′2V ′ in the O′ frame is related to U = A2V in
the O frame by

U′ = A′2

A2

V ′

V
U (10.33)

where V is the volume that contains the EM radiation field. The transformation
relations (A′, A) and (V ′, V) are worked out in SuppMat Section 10.6.3. They
are, for a wave propagating in a direction making an angle θ with the direction
of relative motion (x),

A′

A
= γ

(
1− v

c
cos θ

)
(10.34)

V ′

V
=
[
γ
(

1− v

c
cos θ

)]−1
. (10.35)

Therefore, the radiation energy transforms as

U′ = γ
(

1− v

c
cos θ

)
U. (10.36)

We shall see in Section 10.5.2 that this equation will be used in Einstein’s
argument for his relation E = mc2.

10.4 The Lorentz force law

The field equations of electromagnetism are Maxwell’s equations, and the
equation of motion is given by the Lorentz force law, which describes the
motion of a charge in a given electromagnetic field. At one time there was a
discussion as to whether the Lorentz force law was independent of Maxwell’s
equations. Here Einstein showed that while the Lorentz transformation of fields
followed from the field equations (as discussed above in Section 10.3.1), the
Lorentz force law could be derived from the field transformation.

Einstein considered the following case of a charged particle (mass m and
charge e) in an electromagnetic field (E, B). At an instant when the particle is at
rest in the O frame, we have the equation of motion md2r/dt 2 = eE. An instant
later, the particle is in motion in the x direction, v = dx/dt. Consider another
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reference frame O′ with respect to which the particle is then momentarily at
rest; we then have

m
d2x′

dt′2
= eE′x, m

d2y′

dt′2
= eE′y, m

d2z′

dt′2
= eE′z (10.37)

which, after using the Lorentz transformation7 7In the calculation we use the fact that the
Lorentz transformation is linear.

of coordinates (10.11) and
(10.10) as well as fields (10.30) and (10.31), is viewed in the O frame as

mγ 3

(
d

dt
+ v

d

dx

)(
d

dt
+ v

d

dx

)
(x− vt) = mγ 3 d 2x

dt 2
= eEx

mγ 2

(
d

dt
+ v

d

dx

)(
d

dt
+ v

d

dx

)
y = mγ 2 d 2y

dt 2
= eγ

(
Ey − v

c
Bz

)

mγ 2

(
d

dt
+ v

d

dx

)(
d

dt
+ v

d

dx

)
z = mγ 2 d 2z

dt 2
= eγ

(
Ez + v

c
By

)
.

Namely,

mγ 3 d 2x

dt 2
= eEx, mγ

d2y

dt 2
= e
(

Ey − v

c
Bz

)
, mγ

d2z

dt 2
= e
(

Ez + v

c
By

)
.

(10.38)

The LHS of these equations can be shown8 8For details see SuppMat Section 10.7 below.(by Planck in 1906) as the three
components of the relativistic force

F = d

dt
γmv (10.39)

with γmv being the relativistic momentum. The RHS of the equations in
(10.38) is just the Lorentz force

F = e

(
E+ 1

c
v× B

)
(10.40)

and because v=vx̂, we have (v× B)x = 0, (v× B)y = −vBz, and (v× B)z =
vBy. Namely, this matches (10.40) with the component expression given
in (10.38).

10.5 The equivalence of inertia and energy

Einstein went on nest to derive, what Hendrik Lorentz termed in later years
as “the most remarkable conclusions of the theory of relativity”. That is, the
equivalence of inertia and energy.

10.5.1 Work–energy theorem in relativity

In the last section of his 1905 relativity paper, Einstein began with a rather
low key, commonplace statement: “next we determine the electron’s kin-
etic energy”. Consider a charged particle (an electron for example) being
slowly accelerated from 0 to a velocity v. The change in the particle’s kinetic
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energy K can then be attributed to the work done by the electrostatic force. The
work-energy theorem, according to Eq. (10.38), states

K =
∫

Fxdx = m
∫
γ 3 dv

dt
dx = m

∫ v

0
γ 3vdv

= m

2

∫ v

0

dv2(
1− v2/c2

)3/2 = mc2

[
1(

1− v2/c2
)1/2

]v

0

= mc2(γ − 1) . (10.41)

Some comments about this result are in order:

• Einstein noted that, since γ →∞ when v → c, it would not be physic-
ally possible for a particle to travel faster than the speed of light.

• Einstein did not point out here that the result of (10.41) could be
interpreted as indicating that a particle had the (total) energy99Sometimes this relation is written by oth-

ers as E = m∗c2, with m∗ = γm. We work
only with the rest-mass m and avoid such
a velocity-dependent ‘dynamical mass’ alto-
gether, as m∗ is not a Lorentz invariant
quantity.

of

E = γmc2. (10.42)

Namely, the equivalence of inertia and energy.
• The kinetic energy K has the correct nonrelativistic limit: When the velo-

city is nonzero but much smaller than c, the low-velocity expansion of the
Lorentz factor in (10.41) leads to the familiar result

K = mc2
[(

1− v2/c2)−1/2 − 1
]
� 1

2
mv2. (10.43)

It vanishes when the particle is at rest (γ = 1). This also suggests that
the particle has an energy of mc2 while at rest.

• Even if Einstein was immediately aware of this E = mc2 interpretation,
the revolutionary nature of this possibility may have given him pause. To
make sure that this energy can actually be converted to other (more famil-
iar) forms of energy he had to work out a concrete process. In any case,
this realization probably came to Einstein after he had sent out his paper.
Three months later he submitted another paper, which was essentially an
addendum to his main relativity paper.

10.5.2 The E = mc2 paper three months later

This paper (Einstein 1905e) submitted to Annalen in September 1905 had the
title Does the inertia of a body depend on its energy content? Einstein expli-
citly stated the result of (10.42) by considering the emission of light pulses by
an atom.

Since we are interested in the relation between inertial mass and energy, let
us first recall their relation in Newtonian mechanics: K = 1

2 mv2. As we have
this relation in the low-velocity limit of the relativistic theory, we have the
general definition of mass in terms of kinetic energy:

m = lim
v→0

(
K

v2/2

)
. (10.44)
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The next step is to get hold of the kinetic energy of an atom. Using this defin-
ition of the inertia, Einstein shows that the kinetic energy loss to radiation is
just that given by (10.41). Einstein considered the process of an atom at rest,
emitting two back-to-back radiation pulses. The energy difference of an atom
before and after emission is �E = E0 − E1. Let the back-to-back pulses be in
directions having an angle θ and an angle θ + π with respect to the x axis. Each
pulse carries an energy of L/2. Energy conservation can then be expressed as
�E = L. Since the change in kinetic energy involves the change of particle
velocity, Einstein studied this process in two different reference frames: in one
(the O frame), the atom is at rest; in another (the O′ frame) moving with velo-
city v in the x direction. In the O frame, we have �E = L; in the O′ frame the
corresponding energy conservation statement is �E′ = L′. From the Lorentz
transformation of radiation energy derived in (10.36) we have

L′ = γ
[(

1− v

c
cos θ

)
+
(

1+ v

c
cos θ

)] L

2
= γL.

Comparing the two energy conservation statements, we have

�E′ −�E = L′ − L = L (γ − 1) . (10.45)

The LHS of this equation may be rearranged:(
E′0 − E′1

)− (E0 − E1) =
(
E′0 − E0

)− (E′1 − E1
)

.

(E′0 − E0) is the energy difference of the atom (before light emission) as viewed
in two different reference frames: the O′ frame where the atom is moving,
versus the O frame where the atom is at rest The difference should just be the
kinetic energy, up to an additive constant C. A similar result holds for the atom
after light emission:

E′0 − E0 = K0 + C

E′1 − E1 = K1 + C. (10.46)

We can then conclude that the LHS of (10.45) is just the change of kinetic
energy of the atom,

K0 − K1 = L (γ − 1) . (10.47)

Dividing both sides by v2/2 and taking the low-velocity limit (we are allowed
to take any relative velocity of the two reference frames), we have from (10.44)
the relation

m0 − m1 = lim
v→0

L

(
γ − 1

v2/2

)
= L

c2
. (10.48)

This shows clearly that the energy L carried away by the radiation10
10In later publications, such as Einstein
(1907b), Einstein substantiated this claim that
the equivalence between energy and inertia
should hold for all forms of energy.

is just the
change of rest energy m0c2 − m1c2. In this way Einstein first stated explicitly
the equivalence of energy and inertia as shown in (10.42).
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10.6 SuppMat: Relativistic wave motion

10.6.1 The Fresnel formula from the velocity addition rule

In Section 9.3.1 we discussed the formula (9.10) that describes light speed in a
moving medium,

V = c

n
+ v

(
1− 1

n2

)
, (10.49)

which was originally constructed by Fresnel under the hypothesis that aether
was partially entrained by a moving body. It was found by Fizeau to be in
agreement with his measurement of light velocity in the medium of moving
water. Namely, the above relation was in agreement with the measured light
speed (V) in moving (−v) water having index of refraction (n).

Here we show that (10.49) can be easily justified in special relativity with its
new velocity addition rule of (10.20):

u′ = u+ v

1+ uv

c2

. (10.50)

Since we have the light velocity in still water as u = c/n, the above relation
becomes

u′ =
c

n
+ v

1+ v

cn

�
( c

n
+ v
) (

1− v

cn

)
� c

n
+ v

(
1− 1

n2

)

in agreement with Fresnel’s formula.

10.6.2 The Doppler effect and aberration of light

The frequency and wavevector of a propagating wave would change when
viewed in reference frames in relative motion. Our calculation is entirely sim-
ilar to that given in Section 9.3.2. As we shall see, relativity gives simple and
elegant proofs of the previously much discussed result of stellar aberration,
as well as the familiar Doppler effect. Naturally, all are generalized to the
relativistic regime.

Consider a plane wave propagating in the direction n̂ (a unit vector) which
lies in the x-y plane, making an angle θ with respect to the relative motion
velocity v = vx̂ of the two reference frames O and O′. The phase factor of
a wave � = ωt − k · r with k = ω/c just counts the peaks and troughs of a
wave; it cannot be coordinate dependent. Namely, the phase of a wave must be
a Lorentz invariant.

ω

c

(
ct − x cos θ − y sin θ

) = ω′

c

(
ct′ − x′ cos θ ′ − y′ sin θ ′

)
. (10.51)

Inserting the Lorentz transformation (10.11) and equating the coefficients of
t, x, and y, we obtain

ω = ω′γ
(
1+ β cos θ ′

)
(10.52)

ω cos θ = ω′γ
(
cos θ ′ + β

)
(10.53)

ω sin θ = ω′ sin θ ′. (10.54)
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Doppler formula
We can rewrite Eq. (10.52) by interchanging the frames of O and O′, with a
sign change of β:

ω′ = 1− v
c cos θ√

1− ( v
c

)2 ω. (10.55)

This is the relativistic Doppler formula. In contrast to the classical theory
where the Doppler effect is present only when the observer is moving along
the direction of light propagation, we have here a new (transverse) Doppler
effect ω′ = γω when light travels in the perpendicular direction θ = π/2. This
effect does not result from the compression or elongation of the wavelength,
but purely from relativistic time dilation.

Stellar aberration
By taking the ratio of Eqs. (10.54) and (10.53), we obtain

tan θ = sin θ ′
√

1− β2

cos θ ′ + β
(10.56)

which is the relativistic version of the stellar aberration result worked out in
Eq. (9.21).

10.6.3 Derivation of the radiation energy transformation

The Lorentz transformation of radiation amplitude is a simple application of
the transformation of EM fields derived in Section 10.3. This leads to the
transformation of the radiation energy density. To obtain the energy, we also
need the transformation of the volume factor. Let us assume that the EM wave
originates from a point source and it spreads out with a spherical surface wave-
front. This spherical wave will be seen as an ellipsoid in the moving frame. A
direct application of the spacetime transformation leads to the relation between
these two volumes, as will be worked out below.

The Lorentz transformation of wave amplitudes
The electromagnetic wave being a transverse wave, the fields are perpendic-
ular to the direction of propagation n̂, and the electric field E and magnetic
field B are mutually perpendicular to each other. Thus we have a right-handed
system with three axes (E, B, n̂). Let the propagation vector n̂ be in the x-y
plane making an angle θ with the x axis, and the electric field pointing in the
z direction:

Ex = Ey = 0, Ez = E, Bx = B sin θ , By = −B cos θ , Bz = 0.

A direct application of the field transformation as given in (10.30) and (10.31)
yields the transformed electric field components:

E′x = Ex = 0, E′y = γ
(
Ey − βBz

) = 0, E′z = γ
(
Ez + βBy

)
. (10.57)
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In an EM wave, the electric and magnetic field amplitudes are equal; we shall
call them A. Thus the last equation in (10.57) can be written as

A′ = γ (1− β cos θ)A (10.58)

because E′z = E′ ≡ A′, Ez = E ≡ A, and By = −A cos θ . This is the result1111Here we have calculated the transformed
amplitude through its relation to the electric
field components. As expected exactly, the
same result can be obtained through its rela-
tion to the magnetic field. Given our choice
of lining up the electric field along one of the
coordinate axes, the magnetic calculation will
be interesting but not exactly trivial.

quoted in Eq. (10.34) above.

The Lorentz transformation of a spherical volume
Let us consider a spherical electromagnetic wave of radius R centered at ctn̂
(with n̂ being a unit vector) and its wavefront described in the O frame as

(x− ctn̂x)
2 + (y− ctn̂y

)2 + (z− ctn̂z)
2 = R2, (10.59)

with a volume of V = 4πR3/3. This sphere in (10.59) would be seen by an
observer in frame O′ moving with velocity v = vx̂ as an ellipsoid because of
length contraction in the x direction. The mathematics is a simple application of
the Lorentz transformation to replace (x, y, z) by (x′, y′, z′). To simplify the writ-
ing, we will concentrate at the instant t′ = 0 so that x = γ x′, y = y′, z = z′,
and ct = γβx′. Equation (10.59) becomes

γ 2(1− βn̂x)
2 x′2 + (y′ − γβn̂yx′

)2 + (z′ − γβn̂zx
′)2 = R2 (10.60)

or, written in standard ellipsoid form,

x′2

X′2
+
(
y′ − γβn̂yx′

)2
Y ′2

+
(
z′ − γβn̂zx′

)2
Z′2

= 1. (10.61)

We see that this is an oblate spheroid centered at x′ = 0, y′ = γβn̂yx′, and
z′ = γβn̂zx′, with semimajor radii of

X′ = R

γ (1− βn̂x)
, Y ′ = Z′ = R. (10.62)

n̂ being a unit vector on the x-y plane making an angle θ with the x axis, we
have n̂x = cos θ . From this we find the volume of this ellipsoid as

V ′ = 4π

3
X′Y ′Z′ = V

γ (1− β cos θ )
. (10.63)

This is the result quoted in Eq. (10.35) above.

10.7 SuppMat: Relativistic momentum and force

The asymmetric appearance of the force equation in (10.38) is clearly due to
the fact that the x direction is the direction of relative motion v = dx/dt. In 1906
Max Planck argued that since one can equivalently view that, in the second
law of motion, force is (instead of mass × acceleration) the rate of change
of momentum, the correct relativistic momentum expression1212A simple argument for p = γmv will be

given in Section 11.2.3.
had an extra

factor of γ

p = γmv = mv√
1− v2/c2

. (10.64)
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Planck arrived at this expression by a consideration of the Lagrangian for-
mulation of mechanics of a point particle.13 13Eq. (10.64) will also be derived in Section

11.2.3 when we consider the vector trans-
formation property of a particle’s momentum.

Momentum is related to the
Lagrangian by the usual relation of p = ∂L/∂v. The surprising expression for
the x component of the force in (10.38) then comes about as follows:

dpx

dt
= d

dt
(γmv) = γm

dv

dt
+ mv

d

dt

(
1− v2

c2

)−1/2

= γm
dv

dt
+ γ 3m

v2

c2

dv

dt
= γm

dv

dt

(
1+ γ 2 v2

c2

)

= γ 3m
dv

dt
= mγ 3 d 2x

dt 2
. (10.65)

It should be noted that in the above calculation we were concerned with the
variation of the coordinate x with respect to time, holding (y, z) fixed. Consider
the momentum change in the other two directions. For example, in

dpx

dt
= d

dt

(
mγ

dy

dt

)
= mγ

d 2y

dt 2

we hold (x, z) fixed. This means the relative velocity (v = dx/dt), hence the γ
factor, are constants with respect to the differentiation.
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11.4 The geometric formulation—a
summary 179

• The geometric description of SR interprets the relativistic invariant
interval as a length in 4D Minkowski spacetime. The Lorentz trans-
formation is a rotation in this pseudo-Euclidean manifold, with a metric
equal to ημν = diag(−1,1,1,1).

• Just about all the relativistic effects such as time dilation, length
contraction, and relativity of simultaneity follow from the Lorentz
transformation. Thus, the geometric formulation allows us to think of
the metric ημν as embodying all of special relativity.

• The metric in general is a matrix with its diagonal elements being
the length of the basis vectors and off-diagonal elements showing the
deviation from orthogonality of the basis vectors. It is this geometric
quantity that allows us to define the inner product of the space.

• Tensors in Minkowski space are quantities having definite transforma-
tion properties under Lorentz transformation. If a physics equation can
be written as a tensor equation, it automatically respects the relativity
principle.

• Examples of tensors with one index (4-vectors) include the posi-
tion 4-vector, with components of time and 3D positions xμ = (ct, x),
and the momentum 4-vector with components of relativistic energy
and 3D momentum pμ = (E/c, p) = γm(c, v) with γ being the usual
Lorentz factor. Namely, we have the relativistic momentum p = γmv
and relativistic energy E = γmc2. From this we obtain the well-known
energy–momentum relation of E2 = p2c2 + m2c4 and the conclusion
that a massless particle always travels at velocity c.

• Examples of tensors with two indices (4-tensors of rank 2) include the
symmetric energy–momentum stress tensor Tμν = Tνμ (the source term
for the relativistic gravitational field) and the antisymmetric EM field
tensor Fμν = −Fνμ with the six components being the (E, B) fields.
As a result Maxwell’s equations can be written in a very compact
fashion.

• The spacetime diagram is presented in Section 11.3. It is a particularly
useful tool in understanding the causal structure of relativity theory.

• We also provide a summary of the various ideas and implications related
to the geometric formulation of special relativity. We note in particular
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that such a formulation is indispensable for the eventual formulation
of general relativity, which is a gravitational field theory with curved
spacetime identified as the gravitational field.

While Einstein’s special relativity, as presented in 1905, is an enormous simpli-
fication compared to the previous discussions of electrodynamics for a moving
body, an even simpler perspective is offered by the geometric formulation of
the theory. Building on the prior work of Lorentz and Poincaré, Hermann
Minkowski (1864–1909), the erstwhile mathematics professor of Einstein at
ETH, proposed in 1907 this version of Einstein’s special relativity. Minkowski
concentrated on the invariance of the theory, emphasizing that the essence of
special relativity was the proposition that time should be treated on an equal
footing as space. The best way to bring out this symmetry between space and
time is to unite them in a single mathematical structure, now called Minkowski
spacetime. The following are the opening words of an address he delivered
at the 1908 Assembly of German National Scientists and Physicians held in
Cologne, Germany (Minkowski 1908).

The views of space and time which I wish to lay before you have sprung from the soil
of experimental physics, and therein lies their strength. They are radical. Henceforth
space by itself, and time by itself, are doomed to fade away into mere shadows, and
only a kind of union of the two will preserve an independent reality.

Minkowski emphasized that time could be regarded as the fourth coordinate
of a 4D spacetime manifold. If the physics equations were written as tensor
equations in this spacetime, they would be manifestly covariant under Lorentz
transformation, that is, they would be automatically relativistic. Initially
Einstein was not impressed by this new formulation,1 1See Pais (1982, p. 152).calling it “superfluous
learnedness”. He started using this formulation only in 1912 for his geometric
theory of gravity, in which gravity is identified as the ‘structure’ of spacetime.
Namely, Einstein adopted this geometric language and extended it—from a
flat Minkowski space to a curved one. Finally in his 1916 paper on general
relativity, Einstein openly acknowledged its importance.

11.1 Minkowski spacetime

In the last chapter we have shown that the Lorentz transformation leaves
invariant the spacetime interval

s2 = −c2t2 + x2 + y2 + z2. (11.1)

Minkowski pointed out that this may be viewed as a (squared) length in a 4D
pseudo-Euclidean space. The Lorentz transformation is the general class of
length-preserving transformations (rotations) in this space.
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11.1.1 Rotation in 3D space—a review

Recall the mathematical representation of rotation (say, around the z axis) in
3D space ⎛

⎝ x′
y′
z′

⎞
⎠ =

⎛
⎝ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞
⎠
⎛
⎝ x

y
z

⎞
⎠ . (11.2)

This leaves invariant the length l2 = x2 + y2 + z2. In the index notation
(i = 1, 2, 3) we have

x′i = [R]ijxj (11.3)

with repeated indices (j) being summed over. In the geometrical perspect-
ive, rotation is a length-preserving transformation. This demands [R] be an
orthogonal matrix, with its inverse equal to its transpose:

x′ix
′
i = [R]ij[R]ikxjxk = δjkxjxk, or, in terms matrices [R]ᵀ[R] = [1].

This orthogonality condition can be used in turn to fix the form22The steps are similar to the derivation of the
Lorentz transformation given in Chapter 10.

of [R], with
(11.2) as an explicit example.

Rotational symmetry then requires that physics equations be covariant under
any rotational transformation. This can be implemented by writing them as
tensor equations. A tensor is a mathematical quantity having a definite trans-
formation under rotation (scalars, vectors, or tensors of higher rank). For
example, any two vectors such as Ai and Bi as well as a tensor of rank 2 (i.e. a
tensor with two indices) must transform as

A′i = [R]ijAj B′i = [R]ijBj (11.4)

and

C′ij = [R]ik[R]jlCkl, (11.5)

all with the same rotation matrix [R], and a factor of [R] for each index. Since
each term in a tensor equation must have the same transformation property,
such an equation will be automatically unchanged under rotation. We illustrate
this with the vector equation αAi + βBi = 0, with (α,β) being scalars. Each
term transforms as a vector and will automatically keep its form in the trans-
formed coordinate system: as αAi + βBi = 0 in one coordinate frame implies
α′A′i + β ′B′i = [R]ij

(
αAj + βBj

) = 0 in the transformed frame. Thus, in order
to implement rotational symmetry, all one needs to do is to write physics
equations as tensor equations.

11.1.2 The Lorentz transformation as a rotation in 4D
spacetime

The constancy of light speed requires33For a proof of this direct connection, see
Cheng (2010, p. 42).

the invariance of the general spacetime
interval s2 of (11.1). With this identification of s as the length, the Lorentz
transformation is simply “rotation” in spacetime. Concentrating on rotations in
the subspace spanned by the time coordinate (w ≡ ict) and one of the space
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coordinates (x), we have the length s2 = w2 + x2 being invariant under the
rotation, (

w′
x′

)
=
(

cos θ sin θ
− sin θ cos θ

)(
w
x

)
. (11.6)

Putting back w = ict, we have

ct′ = cos θ ct − i sin θ x

x′ = −i sin θ ct + cos θ x. (11.7)

After a re-parametrization of the rotation angle θ = iψ4 4cos(iψ) = (e−ψ + e+ψ
)
/2 = coshψ .and using the identities

cos(iψ) = coshψ and −i sin(iψ) = sinhψ , we recognize (11.7) as the usual
Lorentz transformation as shown in Eq. (10.8):(

ct′

x′

)
=
(

coshψ sinhψ

sinhψ coshψ

)(
ct

x

)
=
(

γ −βγ
−βγ γ

)(
ct

x

)
. (11.8)

To reach the last equality we have used

coshψ = γ and sinhψ = −β coshψ (11.9)

with the standard notation of

β = v

c
and γ = 1√

1− β2
. (11.10)

The relations (11.9) between ψ and the relative velocity v can be derived by
considering, for example, the motion of the x′ = 0 origin in the O system.
Plugging x′ = 0 into the first equation in (11.8),

x′ = 0 = ct sinhψ + x coshψ or
x

ct
= − tanhψ . (11.11)

The coordinate origin x′ = 0 moves with velocity v = x/t along the x axis of
the O system, thus β = − tanhψ . From the identity cosh2 ψ − sinh2 ψ = 1,
which may be written as coshψ

√
1− tanh2 ψ = 1, we find the relations

in (11.9).

11.2 Tensors in a flat spacetime

Once we have identified the Lorentz transformation as a rotation in spacetime,
all our knowledge of rotational symmetry can be applied to this relativity
coordinate symmetry. In particular 4D spacetime tensor equations are automat-
ically relativistic. First, we need to study in some detail the geometric structure
of this 4D spacetime manifold.

Fig. 11.1 Basis vectors for a 2D surface.

11.2.1 Tensor contraction and the metric

To set up a coordinate system for the 4D Minkowski space means to choose
a set of four basis vectors {eμ}, where μ = 0, 1, 2, 3. Each eμ, for a defin-
ite index value μ, is a 4D vector (Fig. 11.1). In contrast to the Cartesian
coordinate system in Euclidean space, this in general is not an orthonormal
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set, eμ · eν �= δμν , Nevertheless, we can represent such a collection of scalar
products among the basis vectors as a symmetric matrix, called55As we shall see in the subsequent discussion

gμν is directly related to the line element in a
geometric space. Hence the name ‘metric’.

the metric, or
the metric tensor:

eμ · eν ≡ gμν . (11.12)

We can display the metric as a 4× 4 matrix with elements being dot products
of basis vectors:

[g] =
⎛
⎝ g00 g01 ..

g10 g11 ..
: :

⎞
⎠ =

⎛
⎝ e0 · e0 e0 · e1 ..

e1 · e0 e1 · e1 ..
: :

⎞
⎠ . (11.13)

Thus, the diagonal elements are the (squared) lengths of the basis vectors,
|e0|2 , |e1|2, etc., while the off-diagonal elements represent their deviations
from orthogonality. Any set of mutually perpendicular bases would be rep-
resented by a diagonal metric matrix.

The inverse basis vectors and the inverse metric
In Cartesian coordinate space we have “the basis vector being its own inverse”
eμ · eν = δμν , i.e. the Cartesian metric for Cartesian space is simply the identity
matrix [g] = [1]. Minkowski spacetime being non-Cartesian, we can introduce
a set of inverse basis vectors {eμ}. The standard notation is to use subscript
indices to label regular basis vectors and superscript indices to label inverse
basis vectors. The relationship between regular basis vectors and inverse basis
vectors is expressed as an orthonormality condition through their dot products:

eμ · eν = δ ν
μ . (11.14)

Just like (11.12), we can define the inverse metric tensor gμν :

eμ · eν ≡ gμν and gμνgνλ = δ λ
μ . (11.15)

Inner products in terms of contravariant and covariant
components
Because there are two sets of coordinate basis vectors,

{
eμ
}

and {eμ}, there are
two possible expansions for each vector A:

Expansion of A Projections Component names

A = Aμeμ Aμ = A · eμ contravariant components of A

A = Aμeμ Aμ = A · eμ covariant components of A

(11.16)
The scalar product of any two vectors in terms of either contravariant or
covariant components alone would involve the metric matrices:

A · B = gμνAμBν . (11.17)

Similarly, A · B = gμνAμBν . One of the principal advantages of introducing
these two types of tensor components is that products are simplified—they can
be written without the metrics:

A · B = (Aνeν) · (Bμeμ
) = Aν

(
eν · eμ

)
Bμ = AμBμ. (11.18)
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The summation of a pair of a superscript and a subscript index is called a
contraction. It reduces the index number (called the rank) of each tensor by
one unit. A comparison of (11.18) with (11.17) and its subsequent equation
shows that the contravariant and covariant components of a vector are related
to each other through the metric:

Aμ = gμνAν Aμ = gμνAν . (11.19)

We say that tensor indices can be lowered or raised through contractions with
the metric tensor or inverse metric tensor.

11.2.2 Minkowski spacetime is pseudo-Euclidean

Consider in particular a 4D space with position coordinates being xμ with
Greek index μ = 0, 1, 2, 3 so that

xμ = (x0, x1, x2, x3
) = (ct, x, y, z). (11.20)

This is a 4-vector as it satisfies the transformation property, according to (11.8):

x′μ = [L]μνxν with [L]μν =

⎛
⎜⎜⎝

γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (11.21)

For the case of the vectors being infinitesimal coordinate vectors, A = B = dx,
the scalar product of (11.18) is just the invariant interval dx · dx = ds2:

ds2 = gμνdxμdxν . (11.22)

This equation relating the length to the coordinates is often taken as another
definition of the metric. It is just the infinitesimal version of Eq. (11.1) from
which we identify the metric for Minkowski spacetime as

gμν =

⎛
⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ≡ diag(−1, 1, 1, 1). (11.23)

It can be shown that the geometry of the manifold can be determined by the
metric, as geometric properties (length, angle, and shape) of the space are fixed
by the metric.6 6For further discussion, see Section 12.4.1.The metric elements themselves can in turn be determined
by length measurements. An inspection of (11.22) shows that once we have
picked the coordinate system (xμ) the elements of [g] are related to length
measurements of various ds2 (depending on the choice the xμ directions). The
metric (11.23) tells us that Minkowski spacetime is flat because its elements
are coordinate independent; it is pseudo-Euclidean as it differs from Euclidean
space by a sign change of the g00 element. This particular pseudo-Euclidean
metric is often denoted by the specific symbol ημν ≡ diag(−1, 1, 1, 1).

Position and position derivatives
We have chosen in (11.20) the position elements as components of a contrav-
ariant vector (with an upper index). Given the way one can raise and lower an
index as in (11.19), we see that the covariant version of the position vector is
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xμ = (−ct, x, y, z). While the position vector is “naturally contravariant”, the
closely related (4-) del operator is “naturally covariant”:

∂μ ≡ ∂

∂xμ
=
(

1

c

∂

∂t

∂

∂x

∂

∂y

∂

∂z

)
, (11.24)

so that ∂μxν = δ ν
μ . Also a contraction 2 version of the del operator, just

like (11.22), leads to the Lorentz-invariant 4-Laplacian operator (called the
D’Alembertian):

� ≡ ∂μ∂μ = − 1

c2

∂2

∂t2
+∇2, (11.25)

with the 3-Laplacian operator being ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. Thus
the relativistic wave equation has the form �ψ = −c−2∂2ψ/∂t2 +∇2ψ = 0.

Reflecting the fact that a contraction of a pair of contravariant and cov-
ariant vectors is a Lorentz scalar, the contravariant and covariant vectors
must transform oppositely (i.e. under a transformation matrix and an inverse
transformation matrix, respectively). In particular, we have(

x′0
x′1

)
=
(

γ −βγ
−βγ γ

)(
x0

x1

)
(11.26)

versus (
∂ ′0
∂ ′1

)
=
(
γ βγ

βγ γ

)(
∂0

∂1

)
. (11.27)

11.2.3 Relativistic velocity, momentum, and energy

Four-velocity
While the position 4-vector xμ is given by (11.20), the 4-velocity is not dxμ/dt,
because t is not a Lorentz scalar. The derivative that transforms as a 4-vector is
the one with respect to proper time τ , which is a scalar—directly related to the
invariant spacetime separation s2 = −c2dτ 2 as shown in Eq. (10.18):

Uμ = dxμ

dτ
= γ

dxμ

dt
= γ

(
c, vx, vy, vz

)
, (11.28)

where we have used the time dilation relation of t = γ τ and vx = dx/dt, etc.
We can form its length by the operation of contraction (11.18)

UμUμ = γ 2
(− c2 + v2

) = −c2, (11.29)

which is clearly an invariant.

Four-momentum
Naturally we will define the relativistic 4-momentum as

pμ ≡ mUμ = γ
(
mc, pNR

) = (E

c
, p
)

(11.30)

with pNR = mv being the familiar nonrelativistic momentum. We identify
the relativistic 3-momentum as p = γmv (as discussed in Section 10.7) and
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relativistic energy p0c = γmc2 ≡ E (as discussed in Section 10.5). Thus the
ratio of relativistic momentum and energy can be expressed as that of velocity
to c2:

p
E
= v

c2
. (11.31)

The momentum and energy transform into each other under the Lorentz trans-
formation just as space and time do. Following (11.29), we have the invariant
magnitude, which leads to the well-known energy and momentum relation:

pμpμ = −m2c2 = −E2

c2
+ p2. (11.32)

Massless particles always travel at speed c
When m = 0, we can no longer define the 4-momentum as pμ = mUμ; never-
theless, since a massless particle has energy and momentum we can still assign
a 4-momentum to such a particle,7 7While we do not have pμ = mUμ, we still

have the proportionality of the 4-momentum
to its 4-velocity, pμ ∝ Uμ, with the
4-velocity defined as Uμ = dxμ/dλ. Since
there is no rest-frame for a massless particle,
the curve parameter λ cannot be the proper
time (being defined in the rest-frame). In
fact one can choose λ in such a way that
pμ = dxμ/dλ.

with components just the RHS of (11.30).
When m = 0, the relation (11.32) with p = |p| becomes

E = pc. (11.33)

Plugging this into the ratio of (11.31), we obtain the well-known result that
massless particles such as photons and gravitons8

8Gravitons are the quanta of the gravitational
field, just as photons are the quanta of the
electromagnetic field.

always travel at the speed of
v = c. Hence there is no rest-frame for massless particles.

11.2.4 The electromagnetic field tensor

The four spacetime coordinates form a 4-vector, and, similarly, the energy
momentum components of a particle form another 4-vector. What sort of tensor
can six components of the EM fields E and B form? It turns out they are the
components of an antisymmetric tensor (rank 2) Fμν = −Fνμ:

Fμν =

⎛
⎜⎜⎝

0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

⎞
⎟⎟⎠ . (11.34)

Maxwell’s equations can then be written in compact form: Gauss’ and
Ampere’s laws of (9.4) are

∂μFμν = −1

c
jν (11.35)

where jν = (ρc, j) is the 4-current density, while Faraday’s law and the
magnetic Gauss’ law9 9The homogeneous Maxwell’s equations can

also be written in an equivalent form
∂μF̃μν = 0, with the dual EM field tensor
F̃μν = − 1

2 ε
μνλρFλρ . In terms of their ele-

ments the replacement of Fμν → F̃μν cor-
responds to the dual rotation of E → B and
B →−E, mentioned in Section 9.5. The task
of identifying Eq. (11.36) with the more
familiar Maxwell equations will be easier if
we proceed through this dual field tensor F̃μν .

of (9.3) are

∂λFμν + ∂νFλμ + ∂μFνλ = 0. (11.36)

That electromagnetic fields form a tensor of rank 2 means that under a
Lorentz transformation they must change according to the rule for higher rank
tensors—a transformation matrix factor for each index, cf. Eq. (11.5). Thus we
have

Fμν −→ F′μν = [L] λ
μ [L] ρν Fλρ . (11.37)
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One can easily check1010See Cheng (2010, Box 12.1, p. 287). that this is precisely the transformation relations (10.30)
and (10.31) derived in Section 10.4. The Maxwell equations are now writ-
ten in Minkowski tensor form (11.35) and (11.36), and their covariance under
Lorentz transformation is “manifest”.

11.2.5 The energy–momentum–stress tensor for a field
system

The structure of the charge 4-current density
The charge density ρ and 3D current density components ji can be trans-
formed into each other under a Lorentz transformation. This simply reflects
the fact that a stationary charge will be viewed as a current by a moving
observer. Thus together they form the four components of a 4-current density
jμ = (ρc, ji). Recall the physical meanings of charge density being charge (q)
per unit volume (�x�y�z) and current density, say in the x direction, being the
amount of charge moved over a cross-sectional area (�y�z) in unit time �t:

ρ = q

�x1�x2�x3
jx = q

�t�x2�x3
= cq

�x0�x2�x3
. (11.38)

Thus for the interpretation of all four components jμ we have the simple
compact expression

jμ = cq

�Sμ
(11.39)

where the symbol �Sμ stands for the Minkowski volume (a “3-surface”) with
one particular interval �xμ = 0 (i.e. the μ component x held fixed). We also
note that charge conservation of a field system is expressed in terms of the
continuity equation (cf. Section 1.4)

dρ

dt
+∇ · j = 0, (11.40)

which can be compactly written in this 4-tensor formalism as a vanishing
4-divergence equation ∂μjμ = 0.

The structure of the energy–momentum–stress 4-current density
The above 4-current relates the transformation and conservation of a scalar
quantity, the charge q. However, if we wish to generalize the case to energy
and momentum, which are themselves members of a 4-vector pμ, the relevant
currents must have two indices (hence rank 2):

Tμν = cpμ

�Sν
(11.41)

which is a 4× 4 symmetric matrix Tμν = Tνμ. The energy–momentum con-
servation of a system consisting of continuum medium (e.g. a field system) can
then be expressed by a vanishing divergence of Tμν :

∂μTμν = 0. (11.42)
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The physical meaning of Tμν′s ten independent components can be worked out
from (11.41):

• T00 is the energy density of the system.
• T0i = Ti0 are the three components of the momentum density or, equival-

ently, the energy current density.
• Tij is a 3× 3 symmetric matrix with diagonal elements being the pressure

(i.e. normal force per unit area) in the three directions and off-diagonal
elements being the shear (parallel) force per unit area.

In short, the energy–momentum tensor, also called the stress–energy tensor,
describes the distribution of matter/energy in spacetime. As we shall see, the
tensor Tμν will appear as the inhomogeneous source term for gravity in the
Einstein field equation in his general theory of relativity.

Stress–energy tensor for an ideal fluid
The case of the energy–momentum tensor of an ideal fluid is a particularly
important one. Here the fluid elements interact only through a perpendicular
force (no shear). Thus the fluid can be characterized by two parameters: the
mass density ρ and an isotropic pressure11 11Do not confuse pressure with the mag-

nitude of the 3-momentum, as both are given
the symbol p.

p (no viscosity). In the comoving
frame,12

12The comoving frame is defined as the
coordinate system in which the fluid ele-
ments themselves carry the position coordin-
ate labels and clocks that are synchronized.

where each fluid element may be regarded as momentarily at rest, the
stress tensor, according to (11.41), takes on a particularly simple form

Tμν =

⎛
⎜⎜⎝
ρc2

p
p

p

⎞
⎟⎟⎠ = (ρ + p

c2

)
UμUν + pgμν , (11.43)

where gμν is the inverse metric tensor, which for a flat spacetime is the SR
invariant ημν . To reach the last equality we have used the fact that in the
comoving frame the fluid velocity field is simply Uμ = (c, 0). Since ρ and
p are quantities in the rest (comoving) frame (hence Lorentz scalars), the RHS
is a proper tensor of rank 2 and this expression should be valid in every frame
(as Lorentz transformations will not change its form).

The even simpler case, when the pressure term is absent, p = 0, corresponds
to the case of a swamp of noninteracting particles, i.e. a “cloud of dust”.

Nonrelativistic limit and the Euler equation It is instructive to consider
the nonrelativistic limit (γ � 1) of the energy–momentum tensor of an ideal
fluid (11.43). In this limit, with Uμ = γ (c, vi) � (c, vi), since the rest energy
dominates over the pressure (which results from particle momenta), ρc2 � p,
the tensor in (11.43) takes on the form13 13Keep in mind that the matrix form of T /μν

in (11.43) is valid only for the comoving
frame, while that in (11.44) is for general
nonrelativistic moving frames.Tμν NR=

(
ρc2 ρcvi

ρcvj ρvivj + pδij

)
. (11.44)

The lower right element is actually a 3× 3 matrix, which one recognizes as the
ideal fluid tensor we used in Chapter 1, Eq. (1.6). From this the Euler equation
emerges14 14See Box 12.3, p. 293 in Cheng (2010) for

the details of this calculation.
as the nonrelativistic version of the energy–momentum conservation

equation of (11.42).



176 Geometric formulation of relativity

11.3 The spacetime diagram

Relativity brings about a profound change in the causal structure of space
and time, which can be nicely visualized in terms of the spacetime diagram
(Minkowski 1908) with time being one of the coordinates.1515To have the same length dimension for all

coordinates, the temporal axis is represented
by x0 = ct.

Let us first recall
the corresponding causal structure of space and time in pre-relativity physics.
Here the key feature of simultaneous events comes about in this way. For a
given event P at a particular point in space and a particular instant of time, all
the events that could in principle be reached by a particle starting from P are
collectively labeled as the future of P, while all the events from which a particle
can arrive at P form the past of P. Those events that are neither the future nor
the past of the event P form a 3D set of events simultaneous with P. This notion
of simultaneous events allows one to discuss in pre-relativity physics all of the
space at a given instant of time, and as a corollary, allows one to study space
and time separately. In relativistic physics, the events that fail to be causally
connected to event P are much larger than a 3D space. As we shall see, all
events outside the future and past lightcones are causally disconnected from
the event P, which lies at the tip of the (the future and past) lightcones in the
spacetime diagram.

11.3.1 Basic features and invariant regions

An event with coordinates (t, x, y, z) is represented by a worldpoint in the space-
time diagram. The history of events becomes a line of worldpoints, called a
worldline. In Fig. 11.2, the 3D space is represented by a 1D x axis. In par-
ticular, a light signal �s2 = �x2 +�y2 +�z2 − c2�t2 = 0 passing through
the origin is represented by a straight worldline at a 45◦ angle with respect to
the axes: �x2 − c2�t2 = 0, thus c�t = ±�x. Any line with constant velo-
city v = |�x/�t| would be a straight line passing through the origin. We
can clearly see that those worldlines with v = �x/�t < c, corresponding to
�s2 < 0, would make an angle greater than 45◦ with respect to the spatial axis
(i.e. above the worldlines for a light ray). According to relativity, no worldline
can have v > c. If there had been such a line, it would correspond to �s2 > 0,
and would make an angle less than 45◦ (i.e. below the light worldline). Since

45°

[time-like]

ct

x

= a history of events

[space-like]

worldline of
a light
signal

worldline

= a event (ct,x)
worldpoint

Fig. 11.2 Basic elements of a spacetime dia-
gram, with two spatial coordinates (y, z) sup-
pressed.
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�s2 is invariant, it is meaningful to divide the spacetime diagram into regions,
as in Fig. 11.3, corresponding to

space-like

space-like

time-like

light-like
(lightcone)

x
y

ct

Fig. 11.3 Invariant regions in the spacetime
diagram, with one of the spatial coordinates
suppressed.

�s2 < 0 time-like

�s2 = 0 light-like

�s2 > 0 space-like

where the names of the regions are listed in the right-hand column. The
coordinate intervals being c�t = ct2 − ct1, �x = x2 − x1, etc., consider the
separation of two events: one at the origin

(
ct1,x1

) = (0, 0), the other at a point
in one of the regions

(
ct2,x2

) = (ct, x):

• The light-like region has all the events which are connected to the origin
with a separation of �s2 = 0. This corresponds to events that are con-
nected by light signals. The 45◦ incline in Fig. 11.3, in which two spatial
dimensions are displayed, forms a lightcone. It has a slope of unity, which
reflects the fact that the speed of light is c. A vector that connects an event
in this region to the origin, called a light-like vector, is a nonzero 4-vector
having zero length, a null vector.

• The space-like region has all the events which are connected to the origin
with a separation of �s2 > 0. (The 4-vector from the origin in this region
is a space-like vector—having a positive squared length.) In the space-
like region, it takes a signal traveling at a speed greater than c in order to
connect an event to the origin. Thus, an event taking place at any point
in this region cannot be influenced causally (in the sense of cause-and-
effect) by an event at the origin.

• The time-like region has all the events which are connected to the origin
with a separation of �s2 < 0. One can always find a frame O′ such that
such an event takes place at the same location, x′ = 0, but at different
time, t′ �= 0. This makes it clear that events in this region can be causally
connected with the origin. In fact, all the worldlines passing through the
origin will be confined to this region, inside the lightcone.16

16The worldline of an inertial observer (i.e.
moving with constant velocity) must be a
straight line inside the lightcone. This straight
line is just the time axis of the coordinate
system in which the inertial observer is at rest.

• In Fig. 11.3, we have displayed the lightcone structure with respect to the
origin of the spacetime coordinates. It should be emphasized that each
point in a spacetime diagram has a lightcone. The timelike regions with
respect to several worldpoints are represented by the lightcones shown
in Fig. 11.4. If we consider a series of lightcones having their vertices
located along a given worldline, each subsequent segment must lie within
the lightcone of that point (at the beginning of that segment). It is the
clear from Fig. 11.4 that any particle can only proceed in the direction of
ever-increasing time. We cannot stop our biological clocks!

Fig. 11.4 Lightcones with respect to differ-
ent worldpoints, P1, P2, . . . , etc. along a time-
like worldline, which can only proceed in
the direction of ever-increasing time as each
segment emanating from a given worldpoint
must be contained within the lightcone with
that point as its vertex.

11.3.2 Lorentz transformation in the spacetime diagram

The nontrivial parts of the Lorentz transformation (11.26) of intervals are

�x′ = γ (�x− βc�t), c�t′ = γ (c�t − β�x) (11.45)
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(taken, for example, with respect to the origin). We can represent these
transformed axes in the spacetime diagram:

• The x′ axis corresponds to the c�t′ = 0 line. This corresponds, according
to the second equation above, to a line satisfying the relationship c�t =
β�x. Hence, the x′ axis is a straight line in the x-ct plane with a slope of
c�t/�x = β.

• The ct′ axis corresponds to the �x′ = 0 line. This corresponds, accord-
ing to the first equation above, to a line satisfying the relationship
�x = βc�t. Hence, the ct′ axis is a straight line with a slope of
c�t/�x = 1/β.

Depending on whether β is positive or negative, the new axes either
“close in” or “open up” from the original perpendicular axes. Thus we have
the opposite-angle rule: the two axes make opposite-signed rotations of ±θ
(Fig. 11.5). The x axis rotates by +θ relative to the x′ axis; the ct axis, by
−θ relative to the ct′ axis. The physical basis for this rule is the need to
maintain the same slope

(= 1; i.e. equal angles with respect to the two axes
)

for the lightcone in every inertial frame so that light speed is the same in every
frame.

ct
ct′

x′

x

P

θ

θ

Fig. 11.5 Lorentz rotation in the spacetime
diagram. The space and time axes rotate by
the same amount but in opposite directions so
that the lightcone (the dashed line) remains
unchanged. The shaded grid represents lines
of fixed x′ and t′.

Relativity of simultaneity, event-order, and causality
It is instructive to use the spacetime diagram to demonstrate some of the
physical phenomena we have discussed previously. In Fig. 11.6, we have two
events A and B, with A being the origin of the coordinate system O and O′:(
xA = tA = 0, x′A = t′A = 0

)
. In Fig. 11.6(a), the events A and B are simultan-

eous, tA = tB, with respect to the O system. But in the O′ system, we clearly
have t′A > t′B. This shows the relativity of simultaneity.

Fig. 11.6 (a) Relativity of simultaneity: tA =
tB but t′A > t′B. (b) Relativity of event order:
tA < tB but t′A > t′B. However, there is no
change of event order with respect to A for all
events located above the x′ axis, such as the
event C. This certainly includes the situation
in which C is located in the forward lightcone
of A (above the dashed line).

In Fig. 11.6(b), we have tA < tB in the O frame, but we have t′A > t′B in the O′
frame. Thus, the temporal order of events can be changed by a change of refer-
ence frames. However, this change of event order can take place only if event
B is located in the region below the x′ axis.17 This means that if we increase
the relative speed between these two frames O and O′ (with the x′ axis mov-
ing ever closer to the lightcone) more and more events can have their temporal
order (with respect to A at the origin) reversed as seen from the perspective
of the moving observer. On the other hand, for all events above the x′axis, the
temporal order is preserved. For example, with respect to event C, we have
both tA < tC and t′A < t′C. Now, of course, the region above this x′axis includes
the forward lightcone of event A. This means that for two events that are caus-
ally connected (between A and any worldpoint in its forward lightcone), their
temporal order cannot be changed by a Lorentz transformation. The principle
of causality is safe under special relativity.

17The x′ axis having a slope 1/β means that the region below it corresponds to (�x/�t) > c/β.
This is clearly in agreement with the Lorentz transformation �t′ = γ (�t − β�x/c) to have
opposite sign to �t.
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11.4 The geometric formulation—a summary

Let us summarize the principal lessons we have learnt from this geometric
formulation of special relativity:

• The stage on which physics takes place is Minkowski spacetime with
the time coordinate being on an equal footing with spatial coordinates.
“Space and time are treated symmetrically.” A spacetime diagram is often
useful in clarifying ideas in relativity.

• Minkowski spacetime has a pseudo-Euclidean metric ημν = diag(−1, 1,
1, 1), corresponding to an invariant length s2 = −c2t2 + x2 + y2 + z2.

• The length-preserving transformation in spacetime is a Lorentz trans-
formation, from which all the special relativistic effects such as time
dilation, length contraction, and relativity of simultaneity can be derived.
Thus, in this geometric formulation, we can think of the metric as
embodying all of special relativity.

• That one can understand special relativity as a theory of flat geometry
in Minkowski spacetime is the crucial step in the progression towards
general relativity. In general relativity, as we shall see, this geometric
formulation is generalized into a warped spacetime. The corresponding
metric must be position-dependent, gμν(x), and this metric acts as the
generalized gravitational potential.

• In our historical introduction, SR seems to be all about light, but the
speed c actually plays a much broader role in relativity:

− c is the universal conversion factor between space and time coordinates
that allows space and time to be treated symmetrically.

− c is just the speed so that �s2 = −c2�t2 +�x2 is an invariant interval
under coordinate transformations. This allows �s to be viewed as the
length in spacetime.

− c is the universal maximal and absolute speed of signal transmission:
Massless particles (e.g. photons and gravitons) travel at the speed c,
while all other (m �= 0) particles move at a slower speed.
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• Among Einstein’s motivations for general relativity we will concen-
trate on his effort to have a deeper understanding of the empirically
observed equality between gravitational and inertial masses. This equal-
ity is the manifestation in mechanics of the equivalence between inertia
and gravitation. Einstein elevated this equality to a general principle, the
equivalence principle (EP), in order to extract its implications beyond
mechanics. A brief history of EP is presented.

• In special relativity (1905) physics laws are not changed under the (e.g.
boost) coordinate transformation that connects different inertial frames
of reference. It is “special” because one is still restricted to inertial
frames. The equivalence between inertial and gravitation means that
any reference frame, even an accelerated one, can be regarded as an
inertial frame (with gravity). This loss of the privileged status of iner-
tial frames means we cannot incorporate gravity into special relativity.
Rather, Einstein taught us that we could use gravity as a means to
broaden the principle of relativity from inertial frames to all coordin-
ate systems including accelerating frames. Thus the general theory of
relativity (1915) is automatically a theory of gravitation.

• The generalization of EP to electromagnetism implies gravitational red-
shift, gravitational time dilation, and gravitational bending of a light ray.
In the process, we discuss the notion of the spacetime-dependent light
velocity and the gravity-induced index of refraction.

• By thinking deeply about EP physics, Einstein came up with the idea
that the gravitational effects on a body can be attributed directly to some
underlying spacetime feature and gravity is nothing but the structure
of warped spacetime. The relativistic gravitational field is the curved
spacetime. General relativity is a field theory of gravity.

• The mathematics of a curved space is Riemannian geometry. We present
some basic elements: Gaussian coordinates, metric tensor, the geodesic
equation, and curvature.

Soon after completing his formulation of special relativity, Einstein started
working on a relativistic theory of gravitation. In this chapter, we cover
mainly the period 1907–13, when Einstein relied heavily on the equivalence
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principle (EP) to extract some general relativity (GR) results. He also worked
with his friend and colleague Marcel Grossman (1878–1936), applying
Riemannian geometry to the gravity problem. Not until the end of 1915 did
Einstein find the correct field equation and worked out fully his formulation of
the general theory of relativity, his theory of gravitation.

12.1 Einstein’s motivations for general relativity

Einstein’s theory of gravitation has a unique history. It is not prompted by any
failure (crisis) of Newton’s theory, but resulted from the “pure thought” of one
person. “Einstein just stared at his own navel and came up with GR!”

From Einstein’s published papers one can infer several interconnected
motivations:

1. To have a relativistic theory of gravitation. The Newtonian theory is
not compatible with special relativity as it invokes the notion of an action-
at-a-distance force, implying a signal transmission speed greater than c.
Furthermore, inertia frames of reference lose their privileged status in the
presence of gravity.

2. “Space is not a thing.” This is how Einstein phrased his conviction
that physics laws should not depend on reference frames, which express
the relationship among physical processes in the world and do not have
independent existence.11In this connection one should discuss the

influence of Ernst Mach (1838–1916) on
Einstein. However such a study is beyond
the scope of this book. One can find a brief
presentation of Mach’s principle, as well as
a more extensive discussion of Einstein’s
motivation for GR in Chapter 1 of Cheng
(2010). See also the comments at the begin-
ning of Chapter 15.

3. Why are inertial and gravitational masses equal? One wishes for a
deeper understanding of this empirical fact.

12.2 The principle of equivalence between
inertia and gravitation

The equality between inertial and gravitational masses is closely related to
Einstein’s formulation of the equivalence principle. By studying the con-
sequences of EP, he concluded that the proper language for general relativity
is Riemannian geometry and gravity can be identified with the curvature of
spacetime.

12.2.1 The inertia mass vs. the gravitational mass

Let us recall the equation of motion in Newton’s gravitation theory. Consider
a particle with mass m in a gravitational field g. The gravitational force then is
F = mg. Newton’s second law, F = ma, then becomes

d2r
dt2

= g. (12.1)

This equation of motion has the distinctive feature that it is totally independent
of any of the properties of the test particle. It comes about because of the can-
cellation of the mass factors from both sides of the equation. However, as we
shall explain, these two masses represent very different physical concepts and
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their observed equality is an important experimental fact for which Einstein
was seeking an explanation.

• The inertial mass of F = mIa enters into the description of the response
of a particle to all forces.

• The gravitational mass of F = mGg reflects the response of a particle to
a particular force: gravity. The gravitational mass may be regarded as the
“gravitational charge” of a particle. (Recall the relation between the force
and electric charge/field: F = eE.)

Universal gravitational acceleration and mG = mI

Consider two objects A and B, composed of different materials (copper, wood,
etc.). When they are dropped in a gravitational field g (e.g. from the top of the
Leaning Tower of Pisa) we have the equations of motion

(a)A=
(

mG

mI

)
A

g, (a)B=
(

mG

mI

)
B

g. (12.2)

Part of Galileo’s great legacy is the experimental observation that all bodies
fall with the same acceleration (a)A=(a)B leading to the equality,(

mG

mI

)
A

=
(

mG

mI

)
B

. (12.3)

The mass ratio, having been found to be universal for all substances, can then
be set (by an appropriate choice of units) to unity, hence the result

mG = mI. (12.4)

Even at the fundamental particle physics level, matter is made up of pro-
tons, neutrons, and electrons (all having different interactions) bound together
with different binding energies, and it is difficult to find an a priori reason to
expect such a relation (12.3). As we shall see, this is the empirical foundation
underlying the geometric formulation of the relativistic theory of gravity that
is GR.

The equality of gravitational and inertial masses: A brief history
Galileo There is no historical record of Galileo having dropped anything
from the Leaning Tower of Pisa. Nevertheless, to refute the Aristotelean con-
tention that heavier objects would fall faster than light ones, he did report
performing experiments of sliding different objects on an inclined plane,
Fig. 12.1(a). (The slower fall allows for more reliable measurements.) More
importantly, Galileo provided a theoretical argument, “a thought experiment”,
in the first chapter of his Discourse and Mathematical Demonstration of Two
New Sciences, in support of the idea that all substances should fall with the
same acceleration. Consider any falling object. Without this universality of free
fall, the tendency of different components of the object to fall differently would
give rise to internal stress and could cause certain objects to undergo spon-
taneous disintegration. The nonobservation of this phenomenon could then be
taken as evidence for equal accelerations.

N

(a)

mI  a

mGg

T

(b)

mI a

mG g

Fig. 12.1 Both the gravitational mass and
inertial mass enter in phenomena: (a) sliding
object on an inclined plane, and (b) oscilla-
tions of a pendulum.
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Newton Newton went further by translating this universality of free fall
into the universal proportionality of the inertial and gravitational masses
(12.3) and built the equality mI = mG right into the foundation of mechan-
ics. Notably, he discussed this equality in the very beginning of his Principia.
Furthermore, he improved upon the empirical check of the Galilean result
(12.3) by experimenting with a pendulum, Fig. 12.1(b), finding:

δAB ≡
∣∣∣∣ (mI/mG)A − (mI/mG)B

(mI/mG)A + (mI/mG)B

∣∣∣∣ ≤ 10−3. (12.5)

The Eötvös experiment and modern limits At the end of the nineteenth
century, the Hungarian baron Roland von Eötvös pointed out that any devi-
ation from universality of this mass ratio (12.3) would show up as a horizontal
twist τ in a torsion balance, Fig. 12.2(b). Two weights composed of different
substances A and B are hung at the opposite ends of a rod, which is in turn
hung from the ceiling by a fiber at a midpoint, respective distances lA and lB
from the two ends. Because of earth’s rotation, we are in a noninertial frame
of reference. In order to apply Newton’s laws, we must include the fictitious
force, as represented by the centrifugal acceleration g′, Fig. 12.2(a). In the ver-
tical direction we have the gravitational acceleration g, and the (tiny and, for
our simplified calculation, negligible) vertical component g′v. In the horizontal
direction the only nonzero torque is due to the horizontal component g′h. The
equilibrium conditions of a vanishing total torque are:

vertical balance :
[
lA
(
mG
)
A − lB

(
mG
)
B
]

g = 0 (12.6)

horizontal balance :
[
lA
(
mI
)
A − lB

(
mI
)
B
]

g′h = τ . (12.7)

The equality of lA(mG)A = lB(mG)B from (12.6) means that the twist in (12.7)
is related to the sought-after nonuniversality:

τ =
[(

mI
mG

)
A
−
(

mI
mG

)
B

]
g′hlmG. (12.8)

In this way Eötvös greatly improved the limit of (12.5), to δAB ≤ 10−9. More
recent experiments by others, ultimately involving the comparison of falling
earth and moon in the solar gravitational field, have tightened this limit further
to 1.5× 10−13.

(b)

(a)

A

GLOBE

B

mI  g′

mGg

Fig. 12.2 The Eötvös experiment to detect
any difference between the ratio of gravita-
tional to inertial masses of substance A vs. B.
The centrifugal acceleration g′ can be decom-
posed into the vertical and horizontal com-
ponents, g′ = g′v + g′h.

12.2.2 “My happiest thought”

In the course of writing a review article on SR in 1907, Einstein came upon,
what he later termed, “my happiest thought”. He recalled the fundamental
experimental result of Galileo that all objects fell with the same acceleration.
“Since all bodies accelerate the same way, an observer in a freely falling labor-
atory will not be able to detect any gravitational effect (on a point particle) in
this frame.” Or, “gravity is transformed away in reference frames in free fall.”

Principle of equivalence stated
Imagine an astronaut in a freely falling spaceship. Because all objects fall with
the same acceleration, a released object in the spaceship will not be seen to
fall. Thus, from the viewpoint of the astronaut, gravity is absent; everything
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becomes weightless. To Einstein, this vanishment of the gravitational effect is
so significant that he elevated it (in order to focus on it) to a physical principle:
the equivalence principle.⎛

⎝Physics in a frame freely falling in a gravity field
is equivalent to

physics in an inertial frame without gravity

⎞
⎠ .

Correspondingly,⎛
⎝ Physics in a nonaccelerating frame with gravity g

is equivalent to
physics in a frame without gravity but accelerating with a = −g

⎞
⎠ .

No special relativity theory of gravitation
Thus according to EP, accelerating frames of reference can be treated in exactly
the same way as inertial frames. They are simply frames with gravity. Namely,
in the presence of a gravitational field, inertial frames of reference lose their
privileged status. This in turns means that special relativity is not applicable to
any gravity theory. From this we also obtain a physical definition of an inertial
frame, without reference to any external environment such as fixed stars, as
the frame in which there is no gravity. Inertial forces (such as the Coriolis
force) are just special kinds of gravitational forces. Einstein realized the unique
position of gravitation in the theory of relativity. Namely, he understood that
the question was not how to incorporate gravity into SR but rather how to use
gravitation as a means to broaden the principle of relativity from inertial frames
to all coordinate systems including accelerating frames.

12.3 Implications of the equivalence principle

If we confine ourselves to the physics of mechanics, EP is just a restatement
of mI = mG. But once it is highlighted as a principle, it allowed Einstein to
extend this equivalence between inertia and gravitation to all physics (not just
to mechanics, but also to electromagnetism, etc.). This generalized version is
sometimes called the strong equivalence principle. Thus the “weak EP” is just
the statement mI = mG, while the “strong EP” is the principle of equivalence
applied to all physics. In the following, we shall still call the strong equivalence
principle EP for short.

To deduce the implications of EP, one adopts an approach similar to that used
in our study of special relativity. In SR one compares the observations obtained
in different frames in relative motion; here one compares the reference frame in
free fall (thus no observed gravity) to the frame accelerating in a gravitational
field.

12.3.1 Bending of a light ray

Let us first study the effect of gravity on a light ray traveling (horizont-
ally) across a spaceship (Fig. 12.3) which is falling in a constant (vertical)
gravitational field g. From the viewpoint of the astronaut in the spaceship, EP
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(a)

(b)

g g g g

y

h

h

Fig. 12.3 According to the equivalence prin-
ciple, a light ray will ‘fall’ in a gravitational
field. (a) To the astronaut in the freely falling
spaceship (an inertial observer), the light tra-
jectory is straight. (b) To an observer outside
the spaceship, the astronaut is accelerating
(falling) in a gravitational field. The light ray
will be bent so that it reaches the opposite
side of the lab at a height h− gt2/2 below the
initial point at h.

informs us that there is no detectable effect associated either with gravity or
with acceleration: the light travels straight across the spaceship from one side
to the other. In this coordinate frame, the light is emitted at a height h, and
received at the same height h on the opposite side of the spaceship, Fig. 12.3(a).
But to an observer outside the spaceship, there is a gravitational field g and the
spaceship is accelerating (falling) in this gravitational field. The straight tra-
jectory of the light signal in the freely falling spaceship will appear to bend.
Thus, to this outside observer, a light ray is seen to bend in the gravitational
field, Fig. 12.3(b).

Ordinarily this effect is very small. However for a strong gravitational field,
like that at the surface of sun, the bending of starlight grazing past the sun can
be observed. In Section 12.3.4 we shall carry out the EP calculation to find this
angle of light deflection to be

δφ = 2GNM�
c2R�

= 0.875′′. (12.9)

where GN is Newton’s constant, and M� and R� are respectively the solar
mass and radius. We shall carry out this calculation after we have introduced
the concept of gravitational time dilation below. As we shall explain in Section
14.1, this is exactly half of the correct GR prediction for the solar deflection of
light from a distant star.

12.3.2 Gravitational redshift

Let us now consider the situation when the gravitational field direction is paral-
lel (or antiparallel) to the light-ray direction. We have a receiver placed directly
at a distance h above the emitter in a downward-pointing gravitational field g.
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Just as in the transverse case considered above, we first describe the situation
from the viewpoint of the astronaut (in free fall). EP informs us that the space-
ship in free fall is an inertial frame. Such an observer will not be able to detect
any physical effects associated with gravity or acceleration. In this free-fall
situation, the astronaut should not detect any frequency shift, Fig. 12.4(a): the
received light frequency ωrec is the same as the emitted frequency ωem:

(�ω)ff = (ωrec − ωem)ff = 0, (12.10)

where the subscript “ff” reminds us that these are the values as seen by an
observer in free fall.

(b)(a)

g

h

g g

g

Fig. 12.4 According to the equivalence prin-
ciple, the frequency of a light ray is redshifted
when moving up against gravity. (a) To an
inertial observer in the freely falling space-
ship, there is no frequency shift. (b) To an
observer outside the spaceship, this astro-
naut is accelerating in a gravitational field,
and the null frequency shift result comes
about because of the cancellation between
the Doppler blueshift and the gravitational
redshift.

From the viewpoint of the observer outside the spaceship, there is grav-
ity and the spaceship is accelerating (falling) in this gravitational field,
Fig. 12.4(b). Because it takes a finite amount of time �t = h/c for the light
signal to reach the receiver on the ceiling, it will be detected by a receiver
in motion towards the emitter, with a velocity u = g�t (g being the gravita-
tional acceleration). The familiar Doppler formula (10.55) in the low-velocity
approximation would lead us to expect a frequency shift of(

�ω

ω

)
Doppler

= u

c
. (12.11)

Since the receiver has moved closer to the emitter, the light waves must have
been compressed, and this shift must be toward the blue

(�ω)Doppler = (ωrec − ωem)Doppler > 0. (12.12)

We have already learned in (12.10), as deduced by the observer in free
fall, that the received frequency did not deviate from the emitted frequency.
Since this physical result must hold for both observers, this blueshift in (12.12)
must somehow be cancelled by some other effect. To the observer outside the
spaceship, gravity is also present. We can recover the null-shift result if light is
redshifted by gravity, with just the right amount to cancel the Doppler blueshift
of (12.11). (

�ω

ω

)
gravity

= −u

c
. (12.13)

We now express the relative velocity on the RHS in terms of the gravitational
potential difference2 2Recall the general relation g = −∇�

between the graviational field g and the
potential �.

�� at the two locations

u = g�t = gh

c
= ��

c
. (12.14)

When (12.13) and (12.14) are combined, we obtain the phenomenon of
gravitational frequency shift,

�ω

ω
= −��

c2
. (12.15)

Namely,

ωrec − ωem

ωem
= −�rec −�em

c2
. (12.16)
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A light ray emitted at a lower gravitational potential point (�em < �rec) with a
frequency ωem will be received at a higher gravitational field point as a lower
frequency (ωem > ωrec) signal, that is, it is redshifted, even though the emitter
and the receiver are not in relative motion.

In 1964 Robert Pound (1919–2010) and Glen Rebka (1931– ) were able to
verify this redshift effect in a terrestrial laboratory setting. Their experiment
involved measurement of a minute atomic frequency shift. Normally, it is not
possible to fix the frequency of an emitter or absorber to the required high
accuracy because of the energy shift due to thermal recoil of the atoms. This
difficulty was overcome by the discovery of the Mössbauer effect33The Mössbauer effect—When emitting light,

the recoil atom can reduce the energy of the
emitted photon. In reality, since the emitting
atom is surrounded by other atoms in thermal
motion, this brings about recoil momenta in
an uncontrollable way. (We can picture the
atom as being part of a vibrating lattice.)
As a result, the photon energy in differ-
ent emission events can vary considerably,
resulting in a significant spread of their fre-
quencies. This makes it impossible for a
measurement of the atomic frequency to be
carried out to high enough precision for pur-
poses such as testing the gravitational red-
shift. But in 1958 Rudolf Mössbauer (1929–
2011) made a breakthrough when he pointed
out, and verified by observation, that crys-
tals with high Debye–Einstein temperature
(Section 5.4), that is, having a rigid crystal-
line structure, could pick up the recoil by
the entire crystal. Namely, in such a situ-
ation, the emitting atom has an effective mass
that is huge. Consequently, the atom loses no
recoil energy, and the photon can pick up all
the energy-change of the emitting atom, and
the frequency of the emitted radiation is as
precise as it can be.

just a few
years earlier.

12.3.3 Gravitational time dilation

At first sight, this gravitational frequency shift looks absurd. How can an
observer, stationary with respect to the emitter, receive a different number
of wave crests per unit time than the emitted rate? Here is Einstein’s radical
and yet simple answer: while the number of wave crests does not change, the
time unit itself changes in the presence of gravity. The clocks run at different
rates when situated at different gravitational field points: there is a gravitational
time dilation effect.

Frequency being proportional to the inverse of the local proper time rate
ω ∼ 1/dτ , the gravitational frequency shift formula (12.16) can be converted
into a time dilation formula

dτ1 − dτ2

dτ2
= �1 −�2

c2
. (12.17)

Namely, the clock at a higher gravitational potential point will run faster. This
is to be contrasted with the special relativistic time dilation effect—clocks in
relative motion run at different rates. Here we are saying that two clocks, even
at rest with respect to each other, also run at different rates if the gravitational
fields at their respective locations are different. We also note that a common
choice of coordinate time t is a reading from a clock located far from the
gravitational source (hence � = 0), so the above formula can be read as the
relation of this coordinate time (t) and the proper time (τ ) at a location with
gravitational potential �:

dτ =
(

1+ �

c2

)
dt. (12.18)

Time dilation test by atomic clocks and the GPS system
The gravitational time dilation effects have been tested directly by compar-
ing the times kept by two cesium atomic clocks (Hafele and Keating 1972):
one flown in an airplane at high altitude h (about 10 km) in a holding pat-
tern, for a long time τ , over the ground station where the other clock sits.
After the correction of the various background effects (mainly SR time dila-
tions), the high-altitude clock was found to gain over the ground clock by
a time interval of �τ = (gh/c2)τ in agreement with the expectation given in
(12.17). Furthermore it can be worked out that gravitational time dilation must
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be taken into account in order for the Global Position System to be accurate
enough to determine distances within a few meters. Otherwise, the error would
accumulate to about 10 meters in every minute or so.4 4The GPS problem is worked out as Problem

4.3 in Cheng (2010, p. 377).

12.3.4 Gravity-induced index of refraction in free space

Clocks run at different rates at locations where the gravitational field strengths
are different (12.17). Since different clock rates will lead to different speed
measurements, even the speed of light can be measured to have different val-
ues! Namely, one can conclude that, according to an accelerated observer (or
equivalently in the presence of gravity), the speed of light deviates from c when
time is measured in a reasonable way.

We are familiar with the light speed in different media being characterized
by varying index of refraction. Gravitational time dilation implies that even in
the vacuum there is an effective index of refraction when a gravitational field is
present. Since a gravitational field is usually inhomogeneous, this index is gen-
erally a position-dependent function. At a given position r with gravitational
potential �(r) a determination of the light speed involves the measurement
of a displacement dr for a time interval dτ as recorded by a clock at rest at
this position. The resultant ratio dr/dτ = c is the light speed according to the
local proper time; this speed c is a universal constant. On the other hand, the
light speed according to the coordinate time t will be different. A reasonable
choice of time coordinate t is that given by a clock located far away from the
gravitational source where the potential is set to be zero. The relation between
coordinate and proper times, being given in (12.18), implies that the speed of
light as measured by a remote observer is reduced by gravity as

c(r) ≡ dr

dt
=
(

1+ �(r)

c2

)
dr

dτ
=
(

1+ �(r)

c2

)
c. (12.19)

Namely, the speed of light will be seen by an observer (with his coordinate
clock) to vary from position to position as the gravitational potential varies
from position to position. For such an observer, the effect of the gravitational
field can be viewed as introducing an index of refraction in space:

n(r) ≡ c

c(r)
=
(

1+ �(r)

c2

)−1

�
(

1− �(r)

c2

)
. (12.20)

To reiterate the key concepts behind this position-dependent speed of light,
we are not suggesting that the deviation of c(r) from the constant c means that
the physical velocity of light has changed, or that the velocity of light is no
longer a universal constant in the presence of gravitational fields. Rather, it
signifies that the clocks at different gravitational points run at different rates.
For an observer, with the time t measured by clocks located far from the grav-
itational source (taken to be the coordinate time), the velocity of light appears
to this observer to slow down. A dramatic example is offered by the case of
black holes (to be discussed in Section 14.5.2). There, as a manifestation of an
infinite gravitational time dilation, it would take an infinite amount of coordin-
ate time for a light signal to leave a black hole. Thus, to an outside observer,
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no light can escape from a black hole, even though the corresponding proper
time duration is perfectly finite.

Fig. 12.5 Wavefronts of a light trajectory.
(a) Wavefronts in the absence of gravity. (b)
Tilting of wavefronts in a medium with an
index of refraction varying in the vertical dir-
ection so that c1 > c2. The resultant light
bending is signified by the small angular
deflection dφ.

12.3.5 Light ray deflection calculated

Here we provide the EP calculation for the light deflection angle shown in
Eq. (12.9). We are familiar with the fact that a position-dependent index of
refraction leads to the bending of a light ray. The amount of deflection by a
transverse gravitational field can be calculated using the Huygens construc-
tion. Consider a plane light wave propagating in the+x direction. At each time
interval �t, a wavefront advances a distance c�t, see Fig. 12.5(a). The exist-
ence of a transverse gravitational field (in the y direction) means a nonvanishing
derivative of the gravitational potential d�/dy �= 0. From (12.20) we see that
a change of the gravitation potential means a change in n(r), hence c(r), and
this leads to tilting of the wavefronts. We can then calculate the amount of the
bending of the light ray by using the diagram in Fig. 12.5(b). A small angular
deflection can be related to distances as

(dφ) � (c1 − c2) dt

dy
� d[c(r)](dx/c)

dy
. (12.21)

Working in the limit of weak gravity with small �(r)/c2 (or equivalently
n � 1), we can relate d[c(r)] to a change of index of refraction as d[c(r)] =
cd[n−1] = −cn−2dn � −cdn. Namely, Eq. (12.21) becomes

(dφ) � −∂n

∂y
dx. (12.22)

But from (12.20) we have dn(r) = −d�(r)/c2, and thus, integrating (12.22),
we obtain the total deflection angle

δφ =
∫

dφ = 1

c2

∫ ∞

−∞
∂�

∂y
dx = 1

c2

∫ ∞

−∞
(∇� · ŷ) dx. (12.23)

The integrand is the gravitational acceleration perpendicular to the light path.
We shall apply the above formula to the case of a spherical source � =
−GNM/r, and 	� = r̂GNM/r2. Although the gravitational field will no longer
be a simple uniform field in the ŷ direction, our approximate result can still be
used because the bending takes place mostly in the small region of r � rmin.
See Fig. 12.6.

Fig. 12.6 Angle of deflection δφ of light by a
mass M. A point on the light trajectory (solid
curve) can be labeled either as (x, y) or (r, θ ).
The source at S would appear to the observer
at O to be located at the shifted position of S′.
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δφ = GNM

c2

∫ ∞

−∞
r̂ · ŷ
r2

dx = GNM

c2

∫ ∞

−∞
y

r3
dx, (12.24)

where we have used r̂ · ŷ = cos θ = y/r. An inspection of Fig. 12.6 also shows
that, for small deflection, we can approximate y � rmin, hence

r = (x2 + y2)1/2 � (x2 + r2
min)1/2 (12.25)

leading to

δφ = GNM

c2

∫ ∞

−∞
rmin

(x2 + r2
min)3/2

dx = 2GNM

c2rmin
. (12.26)

With a light ray being deflected by an angle δφ as shown in Fig. 12.6, the light
source at S would appear to the observer at O to be located at S′. Since the
deflection is inversely proportional to rmin, one wants to maximize the amount
of bending by having the smallest possible rmin. For light grazing the surface
of the sun, rmin = R� and M = M�, Eq. (12.26) gives an angle of deflection
δφ = 0.875′′ as shown in Eq. (12.9).

12.3.6 From the equivalence principle to “gravity
as the structure of spacetime”

Because the motion of a test body in a gravitational field is independent of the
properties of the body, Eq. (12.1), Einstein came up with the idea that the effect
on the body can be attributed directly to some spacetime feature and gravity is
nothing but the structure of warped spacetime. This can be phrased as gravity
not being a force; a test body in whatever gravitational field just moves freely in
“spacetime with gravity”. Any nontrivial motion is attributed to the structure of
spacetime brought about by gravity. Gravity can cause the fabric of spacetime
to warp, and the shape of spacetime responds to the matter in the environment.
We must first learn the mathematical language that describes curved spacetime.

12.4 Elements of Riemannian geometry

We have mentioned that Einstein did not at first appreciate a more mathemat-
ical formulation of his relativity theory. By 1912 when he became a professor
back in his Alma Mater ETH, he was fortunate to have the collaboration of his
long-time friend Marcel Grossmann, who introduced him to the tensor calculus
developed by E.B. Christoffel (1829–1900), G. Ricci-Curbastro (1852–1925),
and T. Levi-Civita (1873–1941). This is the mathematical language Einstein
needed to formulate his geometric theory of gravitation—gravity proffered as
the structure of Minkowski’s spacetime.

Riemannian geometry describes curved n-dimensional space. Since most
of us can only visualize, and have some familiarity with, a curved surface
(namely, the n = 2 case), we shall often use this simpler theory first pion-
eered by J. Carl Friedrich Gauss (1777–1855) to illustrate the more general
dimensional theory studied by G.F. Bernhard Riemann (1826–66).
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12.4.1 Gaussian coordinates and the metric tensor

Many of us have the habit of thinking of a curved surface as one embedded in
3D Euclidean space. Thus a spherical surface (radius R) is described by the 3D
Cartesian coordinates (X, Y , Z) as

X2 + Y2 + Z2 = R2.

Namely, the embedding coordinates are subject to a constraint condition. Gauss
pointed out that a much more convenient approach would be to choose a set of
independent coordinates equal to the dimension of the space (x1, x2, . . . , xn), for
example for 2D space with coordinates such as (θ ,φ), the polar and azimuthal
angles.

The geometry (angle, length, shape of space) can then be described by
length measurements through the entity called the metric gij (indices range
from 1 to n), which is directly related to the basis vectors of the space [cf.
Eqs. (11.12) and (11.22)]. It connects length measurements and the chosen
Gaussian coordinates at any given point in the space by

ds2 = gijdxidxj =
(

dx1 dx2
) (g11 g12

g21 g22

)(
dx1

dx2

)
, (12.27)

where we have written out explicitly, for the 2D case, the summation in the
form of matrix multiplication.

Metric for a 2-sphere
To illustrate this for the case of a spherical surface (radius R), one first sets up
the latitude/longitude system (i.e. a system of coordinates of polar angle θ and
azimuthal angle φ) to label points on the globe, then measures the distances
between neighboring points (Fig. 12.7). One finds that the latitudinal distances
dsφ (subtended by dφ between two points having the same radial distance)
become ever smaller as one approaches the poles dsφ = R sin θdφ, while the
longitudinal distance interval dsθ between two points at the same longitude
(dφ = 0) can be chosen to have the same value over the whole range of θ and φ.
From such a table of distance measurements, one obtains a description of this
spherical surface. Such distance measurements can be compactly expressed in
terms of the metric tensor elements. Because we have chosen an orthogonal
coordinate gθφ = eθ · eφ = 0, the infinitesimal length between the origin (0, 0)
and a nearby point (dθ , dφ) can be calculated55An infinitesimally small area on a curved

surface can be thought of as a (infinitesimally
small) flat plane. For such a flat surface ds can
be calculated by the Pythagorean theorem.

Fig. 12.7 Using distance measurements
along longitudes and latitudes to specify the
shape of the spherical surface.
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[ds2](θ ,φ) = (dsr)
2 + (dsφ)2

= R2dθ2 + R2 sin2 θdφ2. (12.28)

A comparison of (12.28) and (12.27) leads to an expression for the metric
tensor for this (θ ,φ) coordinate system to be

g(θ ,φ)
ab = R2

(
1 0
0 sin2 θ

)
. (12.29)

It is important to note that the metric is an “intrinsic” geometric quantity—that
is, it can be determined within the space under discussion without ever invoking
any embedding space.6 6Namely, it can be completely determined

by measurements by a being living within
the space; cf. the discussion that follows
Eq. (11.22).

Thus a metric description can be accomplished without
referring to any embedding space.

12.4.2 Geodesic equation

Here we will discuss an example of using a metric to determine a geometric
property of the space. Any curve in the space can be written in the form7 7For example xi(τ ) may be the trajectory of a

particle with the curve parameter τ being the
time variable.

of
xi(τ ), where τ is some “curve parameter” having, for example, a range of (0, 1).
We are interested in finding, for a given space, the shortest curve, called the
geodesic, that connects an initial xi(0) and final xi(1) positions. This can be
done as follows: the length of any curve is given by Eq. (11.22)—changing now
to a Greek index notation as appropriate for 4D spacetime for later discussion:

s =
∫

ds =
∫

L(x, ẋ) dτ (12.30)

with ẋμ = dxμ/dτ and

L(x, ẋ) =
√

gμν
dxμ

dτ

dxν

dτ
(12.31)

and the metric elements being functions of xμ. To determine the shortest (i.e.
the extremum) line in the curved space, we impose the extremization condition
for variation of the path with end-points fixed:

δs = δ

∫
L(x, ẋ) dτ = 0, (12.32)

which calculus of variation can translate (cf. Appendix A, Section A.5.2) into
a partial differential equation—the Euler–Lagrange equation:

d

dτ

∂L

∂ ẋμ
− ∂L

∂xμ
= 0. (12.33)

The geodesic determined by the Euler–Lagrange equation
As a mathematical exercise, one can show that the same Euler–Lagrange
equation (12.33) follows from, instead of (12.31), a Lagrangian of the form:

L(x, ẋ) = gμν ẋμẋν , (12.34)
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which without the square root is much easier to work with. With L in this form,
the derivatives in Eq. (12.33) become

∂L

∂ ẋμ
= 2gμν ẋν ,

∂L

∂xμ
= ∂g λρ

∂xμ
ẋ λẋ ρ , (12.35)

where we have used the fact that the metric function gμν depends on xμ,
but not ẋμ. Substituting these relations back into Eq. (12.33), we obtain the
geodesic equation,

d

dτ

(
gμν ẋν

)− 1

2

∂gλρ
∂xμ

ẋ λẋ ρ = 0, (12.36)

which determines the trajectory of the “shortest curve”, the geodesic. (One can
easily use this equation to check that the geodesics in a flat space are straight
lines and those on a spherical surface are great circles.)

We can cast (12.36) into a more symmetric form to facilitate a later com-
parison with the formal tensor differential in curved space. Carrying out the
differentiation of the first term and noting that the metric’s dependence on the
curve parameter τ is entirely through xμ(τ ):

gμν
d2xν

dτ 2
+ ∂gμν

∂x λ
dxλ

dτ

dxν

dτ
− 1

2

∂gλρ
∂xμ

dx λ

dτ

dxρ

dτ
= 0. (12.37)

Since the product (dxλ/dτ )(dxν/dτ ) in the second term is symmetric with
respect to the interchange of indices λ and ν, only the symmetric part of its
coefficient:

1

2

(
∂gμν
∂xλ

+ ∂gμλ
∂xν

)

can contribute. In this way the geodesic equation (12.36), after factoring out the
common gμν coefficient, can be cast (after relabeling some repeated indices)
into the form,

d2xν

dτ 2
+ �ν

λρ

dxλ

dτ

dxρ

dτ
= 0, (12.38)

where

�
μ
λρ =

1

2
gμν
[
∂gλν
∂xρ

+ ∂gρν
∂xλ

− ∂gλρ
∂xν

]
. (12.39)

�
μ
λρ , defined as this particular combination of the first derivatives of the metric

tensor, are called the Christoffel symbols (also known as the affine connection).
The geometric significance of this quantity will be studied in Chapter 13. They
are called “symbols” because, despite its appearance with indices, �μ

νλ are not
tensor elements. Namely, they do not have the correct transformation property
as tensor elements under a coordinate transformation, cf. (11.5). Clearly this
equation is applicable for all higher dimensional spaces (just by extending the
range for the indices). Of particular relevance to us, this geodesic equation
turns out to be the equation of motion in the GR theory of gravitation.
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12.4.3 Flatness theorem

A different choice of coordinates leads to a different metric, which is generally
position-dependent. What distinguishes a flat space (from a curved one) is that
for a flat space it is possible to find a coordinate system for which the metric is a
constant (like the case of Euclidean space where [g] = [1] or Minkowski space
in special relativity where [g] = diag(−1, 1, 1, 1) ≡ [η]). While it is clear that
flat and curved spaces are different geometric entities, they are closely related
because, as is familiar from our experience with curved surfaces, locally any
curved space can be approximated by a flat space. This is the content of the
so-called “flatness theorem”.

In a curved space with a general coordinate system xμ and a metric value
gμν at a given point P, we can always find a coordinate transformation
xμ → x̄μ and gμν → ḡμν so that the metric is flat at this point: ḡμν = ημν
and ∂ ḡμν/∂ x̄λ = 0,

ḡμν(x̄) = ημν + γμνλρ(0)x̄λx̄ρ + · · · . (12.40)

Namely, the metric in the neighborhood of the origin (P) will differ from ημν
only by the second-order derivative. This is simply a Taylor series expansion of
the metric at the origin—there is the constant ḡμν(0) plus second-order deriv-
ative terms γμνλρ(0)x̄λx̄ρ . That ḡμν(0) = ημν should not be a surprise; for a
metric value at one point one can always find an orthogonal system so that
ḡμν(0) = 0 for μ �= ν and the diagonal elements can be scaled to unity so that
the new coordinate bases all have unit length and the metric is an identity mat-
rix or whatever the correct flat space metric for the space with the appropriate
signature. The nontrivial content of (12.40) is the absence of the first derivative.

In short, the theorem informs us that the general spacetime metric gμν(x)
is characterized at a point (P) not so much by the value gμν |P since that can
always be chosen to be its flat space value, ḡμν |P = ημν , nor by its first deriv-
ative which can always be chosen to vanish ∂ ḡμν/∂ x̄λ|P = 0, but by the second
derivative of the metric ∂2gμν/∂xλ∂xρ , which is related to the curvature to be
discussed presently.

12.4.4 Curvature

In principle one can use the metric to decide whether a space is curved or not.
Only for a flat space can we have a metric tensor with all its elements being
constant. However, this is not a convenient tool because the values of the metric
elements are coordinate-dependent. Consider a 2D flat surface; the Cartesian
coordinate metric elements are constant, but they are not so had we used polar
coordinates.

2D curved surface
In this connection Gauss made the discovery that it is possible to define
a unique invariant second derivative of the metric tensor (∂2g) called the
curvature K, such that, independent of the coordinate choice, K = 0 for a flat
surface and K �= 0 for a curved surface. Since this curvature K is expressed
entirely in terms of the metric and its derivatives, it is also an intrinsic
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geometric object. We will not present Gaussian curvature in full, but only
indicate that for spaces of constant curvature (or, for any infinitesimal surface)
we have

K = k

R2

where R is the radius of curvature (it is simply the radius for the case of a
spherical surface), and k is the curvature signature: k = 0 for a flat surface;
k = +1 for a spherical surface (called “2-sphere” in geometry); and k = −1
for a hyperbolic surface, a “2-pseudosphere”.

Unlike the cases of the plane or the sphere, there is no simple way to visual-
ize this whole pseudosphere because its natural embedding is not into a flat
3D space with a Euclidean metric of gij = diag(1, 1, 1), but into a flat 3D
space88One can think of it as 3D Minkowski

spacetime with one time and two spatial
coordinates.

with a pseudo-Euclidean metric of gij = diag(−1, 1, 1). Compared to
the embedding of a sphere in a 3D Euclidean space (X, Y , Z) as X2 + Y2 +
Z2 = R2, it can be worked out that the embedding of the 2D k = −1 surface
in such a 3D pseudo-Euclidean space with coordinates (W, X, Y) corresponds
to the condition −W2 + X2 + Y2 = −R2. While we cannot draw the whole
pseudosphere in an ordinary 3D Euclidean space, the central portion of a saddle
surface does represent a negative curvature surface, see Fig. 12.8(b).

In cosmology we shall encounter 4D spacetime with 3D spatial space with
constant curvature: besides the flat 3D space, it is also possible to have 3D
space with positive and negative curvature: a 3-sphere and 3-pseudosphere.
When they are embedded in 4D space with metric gij = diag(±1, 1, 1, 1) with
coordinates (W, X, Y , Z), these 3D spaces obey the constraint condition

±W2 + X2 + Y2 + Z2 = ±R2. (12.41)

Curvature measures the deviation from Euclidean relations On a flat
surface, the familiar Euclidean geometrical relations hold. For example, the
circumference of a circle with radius r is S = 2πr. The curvature measures
how curved a surface is because it is directly proportional to the violation of
Euclidean relations. In Fig. 12.8 we show two pictures of circles with radius
r drawn on surfaces with nonvanishing curvature. The circular circumference
S differs from the flat surface value of 2πr by an amount controlled by the
Gaussian curvature, K:

lim
r→0

2πr − S

r3
= π

3
K. (12.42)

For a positively curved surface the circumference is smaller than, and for a
negatively curved surface larger than, that on a flat space.

(b)

(a)

θ

P

P

R

r

r

Fig. 12.8 A circle with radius r centered
on point P, (a) on a spherical surface with
curvature K = 1/R2, (b) on the middle por-
tion of a saddle-shaped surface, which has
negative curvature K = −1/R2.

Another simple example showing that curvature measures the deviation from
Euclidean relations is the connection of the angular excess ε of a polygon (the
difference of the total interior angles on a curved surface and the corresponding
Euclidean value) to the curvature K times the area σ of the polygon. For a 2D
surface it reads

ε = Kσ . (12.43)
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In Fig. 12.9 this relation9

9For a proof of a general spherical triangle
with arbitrary interial angles, see Section
5.3.2, p. 92 of Cheng (2010).

is illustrated by the case of a spherical triangle. We
also note that this angular excess can be measured by the directional change of
a vector being parallel-transported around this polygon.

1

90° 90°

90° 2

34

Fig. 12.9 A triangle with all interior angles
being 90◦ on a spherical surface (radius R)
has an angular excess of ε = π/2. This satis-
fies the relation of ε = Kσ with the curvature
K = R−2 and the triangular area σ = πR2/2.
The angular excess can be measured by the
parallel-transport of a vector around this tri-
angle (vector 1, clockwise to vector 2, to 3,
and finally back to the starting point as vec-
tor 4) leading to a directional change of the
vector by 90◦ (the angular difference between
vector 4 and vector 1).

Riemann–Christoffel curvature tensor
Starting with Gauss’s discovery of the curvature (a single component) in 2D
space, his pupil Riemann (plus further work by Christoffel) established the
existence of a rank-4 tensor, the curvature tensor, in an n-dimensional space:

Rμ
λαβ = ∂α�

μ
λβ − ∂β�

μ
λα + �μ

να�
ν
λβ − �

μ
νβ�

ν
λα. (12.44)

The Christoffel symbols � being first derivatives as shown in (12.39), the
Riemann–Christoffel curvature of (12.44), R = d� + ��, is then a nonlinear
second-derivative function of the metric,

[
∂2g+ (∂g)2

]
. It is independent of

coordinate choice and measures the deviation from flat space relations. Thus
for a flat space Rμ

λαβ = 0. As we shall see, a contracted version of this curvature
tensor enters directly into the GR field equation, the Einstein equation.

There are many (mutually consistent) ways to derive the expression of the
curvature tensor, as displayed in (12.44). One simple method involves the gen-
eralization of the 2D case to higher dimensions by calculating the parallel
transport of a vector Aμ around an infinitesimal parallelogram spanned by two
infinitesimal vectors aμ and bν . The directional change (dA)/A yielding the
angular excess, the higher dimensional generalization of (12.43) should then be

dAμ = Rμ
νλρAνaλbρ . (12.45)

Namely, the vectorial change is proportional to the vector Aν itself and to the
two vectors

(
aλbρ

)
spanning the parallelogram. The coefficient of proportion-

ality Rμ
νλρ is a quantity with four indices (antisymmetric in λ and ρ as the area

aλbρ should be antisymmetric) and we shall take this to be the definition of the
curvature tensor of this n-dimensional space. For an explicit calculation, see
Box 13.2, p. 311 in Cheng (2010).
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• General relativity (GR) is a geometric theory of gravitation: a gravita-
tional field is simply curved spacetime. The gravitational time dilation
implied by the equivalence principle of the last chapter can be inter-
preted as showing the warpage of spacetime in the time direction.

• The effect of the gravitational interaction between two particles is
described in GR as the source mass giving rise to a curved space-
time which in turn determines the motion of the test mass in such a
spacetime. The 10-component spacetime metric tensor is the relativistic
gravitational potential.

• This suggests that the GR equation of motion should be the equation
that describes the shortest curve (a geodesic) in a curved space. The
correctness of this identification is checked by its reduction to Newton’s
equation of motion in the limit of particles moving with nonrelativistic
velocities in a weak and static gravitational field. This limit calculation
clarifies the sense of how Newton’s theory is extended by GR to new
physical realms.

• We learn how to write a tensor equation that is covariant under gen-
eral coordinate transformations (principle of general relativity). While
tensors in curved spacetime are basically the same as those in flat
Minkowski space, ordinary derivatives must be replaced by covariant
derivatives in order to have proper transformation properties under local
(i.e. spacetime dependent) transformations.

• A covariant derivative differs from an ordinary derivative with the
addition of Christoffel symbols which are first derivatives of the met-
ric tensor. The metric being the relativistic gravitational potential, the
Christoffel symbols can then be identified with the gravitational field
strength. Thus the replacement of the ordinary derivative in a SR
equation by covariant derivatives automatically introduces gravity into
physics equations. In this manner, going from the SR equation of
motion for a free particle leads us to the geodesic equation, the GR
equation of motion for a ‘free particle’.

Einstein’s general theory of relativity is a geometric theory of gravity—
gravitational phenomena are attributed as reflecting the underlying curved
spacetime. In this theory gravity is simply warped spacetime. In this chapter
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we shall mainly study the general relativity (GR) equation of motion, the
geodesic equation, which describes the motion of a test particle in curved
spacetime. In the next chapter we take up the GR field equation, the Einstein
equation, which describes how the mass/energy source gives rise to curved
spacetime.

After accepting curved spacetime and Riemannian geometry as the appro-
priate mathematics for its description, we then discuss the tensor calculus in
such a curved space and learn how to write down the physics equations satisfy-
ing the principle of general relativity. In Section 13.4 we present the principle
of general covariance, which guides us to GR equations in curved spacetime.
A proper derivation of the geodesic equation as the GR equation of motion will
then be presented.

13.1 The equivalence principle requires a metric
description of gravity

How did Einstein get the idea for a geometric theory of gravitation? What does
one mean by a geometric theory?

13.1.1 What is a geometric theory?

By a geometric theory, or a geometric description, of any physical phe-
nomenon, we mean that the results of physical measurements can be attributed
directly to the underlying geometry of space and time. This can be illustrated
by the example describing a spherical surface (Fig. 12.7) that we discussed in
Section 12.4.1. The length measurements on the surface of a globe are different
in different directions: the east and west distances between any pairs of points
separated by the same azimuthal angle �φ become smaller as the pair move
away from the equator, while the lengths in the north and south directions for
a fixed φ remain the same. We could, in principle, interpret such results in two
equivalent ways:

1. Without considering that the 2D space is curved, we can say that the
physics (i.e. dynamics) is such that the measuring ruler changes its scale
when pointing in different directions—in much the same manner as the
Lorentz–FitzGerald length contraction of SR was originally interpreted.

2. The alternative description (the “geometric theory”) is that we use a
standard ruler with a fixed scale (defining the coordinate distance) and
the varying length measurements are attributed to the underlying geo-
metry of the curved spherical surface. This is expressed mathematically
in the form of a position-dependent metric tensor gab(x) �= δab.

In Chapter 12 we deduced several physical consequences from the empirical
principle showing the equivalence of gravity and inertia. In a geometric the-
ory gravitational phenomena are attributed as reflecting the underlying curved
spacetime which has a metric as defined in (12.27)
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ds2 = gμνdxμdxν . (13.1)

For special relativity (SR) we have the geometry of a flat spacetime with a
position-independent metric gμν = ημν = diag(−1, 1, 1, 1). The study of EP
physics led Einstein to propose that gravity represents the structure of a curved
spacetime gμν �= ημν , and gravitational phenomena are just the effects of
that curved spacetime on a test object. His theory is a geometric theory of
gravity.

13.1.2 Time dilation as a geometric effect

We will first recall the EP physics of gravitational time dilation—clocks run at
different rates at positions having different gravitational potential values—as
summarized in Eq. (12.18)

dτ (x) =
(

1+ �(x)

c2

)
dt (13.2)

between the coordinate time t and the proper time τ (x) at a location x hav-
ing gravitational potential �(x). As we shall see, this can be interpreted as a
geometric effect of curved spacetime.

For the gravitational time dilation of (13.2), instead of working with a com-
plicated scheme of clocks running at different rates, this physical phenomenon
can be given a geometric interpretation as showing a nontrivial metric. Namely,
a simpler way of describing the same physical situation is by using a stationary
clock at � = 0 (i.e. a location far from the source of gravity) as the “stand-
ard clock”. Its fixed rate is taken to be the time coordinate t. One can then
compare the time intervals dτ (x) measured by clocks located at other locations
(the proper time interval at x) to this coordinate interval dt. In this instance
Eq. (13.1) reduces down to ds2 = g00dx0dx0 because dxi = 0, as appropriate
for a proper time interval (the time interval measured in the rest-frame, hence
no displacement). The two sides of this equation can be written in terms of
the proper and coordinate times. According to Eq. (10.18) the line element
ds2 is just the proper time interval −c2dτ 2 and given that x0 = ct we then
have

(dτ )2 = −g00(dt)2 (13.3)

which by (13.2) implies

g00 = −
(

1+ �(x)

c2

)2

� −
(

1+ 2�(x)

c2

)
. (13.4)

This states that the metric element g00 deviates from the flat spacetime value of
η00 = −1 because of the presence of gravity. Thus the geometric interpretation
of the EP physics of gravitational time dilation is to say that gravity changes
the spacetime metric element g00 from −1 to an x-dependent function. Gravity
warps spacetime—in this case the warpage is in the time direction.
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13.1.3 Further arguments for warped spacetime
as the gravitational field

Adopting a geometric interpretation of EP physics, we find that the resultant
geometry has all the characteristic features of a warped manifold of space and
time: a position-dependent metric, deviations from Euclidean geometric rela-
tions, and at every location we can always transform gravity away to obtain a
flat spacetime, just as one can always find a locally flat region in a curved space.

Position-dependent metric
The metric tensor in a curved space is necessarily position-dependent. Clearly,
(13.4) has this property. In Einstein’s geometric theory of gravitation, the met-
ric function is all that we need to describe the gravitational field completely.
The metric gμν(x) plays the role of relativistic gravitational potentials, just as
�(x) is the Newtonian gravitational potential.

ωt

Fig. 13.1 Rotating cylinder with length con-
traction in the tangential direction but not
in the radial direction, resulting in a non-
Euclidean relation between circumference
and radius.

Non-Euclidean relations
In a curved space Euclidean relations no longer hold: for example, the ratio
of the circular circumference to the radius is different from the value of 2π
(cf. Section 12.4.4). As it turns out, EP does imply non-Euclidean relations
among geometric measurements. We illustrate this with a simple example.
Consider a cylindrical room in high-speed rotation around its axis. This accel-
eration case, according to EP, is equivalent to a centrifugal gravitational field.
(This is one way to produce “artificial gravity”.) For such a rotating frame, one
finds that, because of SR (longitudinal) length contraction, the radius, which
is not changed because the velocity is perpendicular to the radial direction, is
no longer equal to the circular circumference of the cylinder divided by 2π
(see Fig. 13.1). Thus Euclidean geometry is no longer valid in the presence
of gravity. We reiterate this connection: the rotating frame, according to EP,
is a frame with gravity; the rotating frame, according to SR length contrac-
tion, has a relation between its radius and circumference that is not Euclidean.
Hence, we say that in the presence of gravity the measuring rods will map out
a non-Euclidean geometry.

Local flat metric and local inertial frame
In a curved space a small local region can always be described approxim-
ately as a flat space. A more precise statement is given by the flatness theorem
(Section 12.4.3). Now, if we identify our spacetime as the gravitational field,
self-consistency would require that the corresponding flatness theorem be sat-
isfied. This is indeed the case because EP informs us that gravity can always
be transformed away locally. In the absence of gravity, spacetime is flat.
Thus Einstein put forward this elegant gravitational theory in which grav-
ity is identified as the structure of the spacetime with EP incorporated in a
fundamental way.

A 2D illustration of geometry as gravity
The possibility of using a curved space to represent a gravitational field can
be illustrated with the following example involving a 2D curved surface. Two
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masses on a spherical surface start out at the equator and move along two
geodesic lines as represented by the longitudinal great circles. As they move
along, the distance between them decreases (Fig. 13.2). We can attribute this
to some attractive force between them, or simply to the curved space causing
their trajectory to converge. That is to say, this phenomenon of two conver-
gent particle trajectories can be thought of either as resulting from an attractive
“tidal force”, or from the curvature of the space. A detailed discussion will be
presented in Section 14.3.2 in the next chapter.

Fig. 13.2 Two particle trajectories with
decreasing separation can be interpreted
either as resulting from an attractive force
or as reflecting the underlying geometry of a
spherical surface.

13.2 General relativity as a field theory
of gravitation

Recall that a field theoretical description of the interaction between a source
and a test particle is a two-step description:

Source particle −−→
Field

equation

Field −−→
Equation of

motion

Test particle

Instead of the source particle acting directly on the test particle through some
instantaneous action-at-a-distance force, the source creates a field everywhere,
and the field then acts on the test particle locally. The first step is governed
by the field equation which, given the source distribution, determines the
field everywhere. In the case of electromagnetism this is the Maxwell equa-
tions. The second step is provided by the equation of motion, which allows us
to find the motion of the test particle, once the field distribution is known.
The electromagnetic equation of motion follows directly from the Lorentz
force law.

Based on the study of EP phenomenology, Einstein made the conceptual
leap (a logical deduction, but a startling leap nevertheless) to the idea that
curved spacetime is the gravitational field. The effect of the gravitational inter-
action between two particles can be described as the source mass giving rise to
a curved spacetime which in turn influences the motion of the test mass.

Source −−→
Einstein field

equation

Curved spacetime −−→
Geodesic
equation

Test particle

While spacetime in SR, like all pre-relativity physics, is fixed, it is dynamic
in GR as determined by the matter/energy distribution. GR fulfills Einstein’s
conviction that “space is not a thing”: the ever changing relation of matter and
energy is reflected by an ever changing geometry. Spacetime does not have an
independent existence; it is nothing but an expression of the relations among
physical processes in the world.

All the equations must satisfy the principle of general relativity. It is import-
ant to note that the gravitational field is not a scalar, or a four-component vector,
but a 10-component1

1A symmetric tensor gμν = gνμ has 10
independent components, in contrast to
the electromagnetic field tensor which is
antisymmetric, Fμν = −Fνμ, having six
components.

symmetric tensor gμν(x). Here we shall first study the GR
equation of motion, the geodesic equation, which describes the motion of a test
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particle in a curved spacetime. The more difficult topic of the GR field equa-
tion, the Einstein equation, is deferred to the next chapter, after we have given
a more detailed discussion of the Riemann–Christoffel curvature tensor.

13.2.1 The geodesic equation as the general relativity
equation of motion

The metric function gμν(x) in (13.1) describes the geometry of curved space-
time. In GR, the mass/energy source determines the metric function through
the field equation. Namely, the metric gμν(x) is the solution of the GR field
equation. Knowing gμν(x), one can write down the equation of motion, which
fixes the trajectory of the test particle. In this approach, gravity is the structure
of spacetime and is not regarded as a force (that brings about acceleration).
Thus a test body will move in a force-free way in such a curved spacetime;
it is natural to expect2 2The correctness of this heuristic choice will

be justified by a formal derivation of the
geodesic equation in Section 13.4.2 below.

it to follow in this spacetime the shortest and straight-
est possible trajectory, the geodesic curve, that we have discussed in Section
12.4.2:

d2xν

dτ 2
+ �ν

λρ

dxλ

dτ

dxρ

dτ
= 0, (13.5)

with

�
μ
λρ =

1

2
gμν
[
∂gλν
∂xρ

+ ∂gρν
∂xλ

− ∂gλρ
∂xν

]
(13.6)

being the Christoffel symbols. The claim is that this geodesic equation is the
relativistic generalization of the Newtonian equation of motion (12.1)

d2r
dt2

= −∇�. (13.7)

In the following we shall demonstrate this connection. In the process we also
arrive at a more precise understanding of the sense that Einstein’s theory is
an extension of Newtonian gravity. As we shall see, it is much more than an
extension to higher speed particle motions.

13.2.2 The Newtonian limit

Supporting our claim that the geodesic equation is the GR equation of motion,
we shall now show that the geodesic equation (13.5) does reduce to the
Newtonian equation of motion (13.7) in the Newtonian limit of

a test particle moving with nonrelativistic velocity v � c,
in a weak and static gravitational field.

We now take such a limit of the GR equation of motion (13.5):

• Nonrelativistic speed
(
dxi/dt

)� c : This inequality dxi � cdt implies
that

dxi

dτ
� c

dt

dτ

(
= dx0

dτ

)
. (13.8)
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Keeping only the dominant term
(
dx0/dτ

) (
dx0/dτ

)
in the double sum

over indices λ and ρ in the geodesic equation (13.5), we have

d2xμ

dτ 2
+ �

μ

00

dx0

dτ

dx0

dτ
= 0. (13.9)

• Static field
(
∂gμν/∂x0

) = 0: Because all time derivatives vanish, the
Christoffel symbols of (13.6) takes the simpler form

�
μ

00 = −
1

2
gμν

∂g00

∂xν
. (13.10)

• Weak field hμν � 1: We assume that the metric is not too different from
the flat spacetime metric ημν = diag(−1, 1, 1, 1)

gμν = ημν + hμν (13.11)

where hμν(x) is a small correction field. ημν being a constant, we have
∂gμν/∂xλ = ∂hμν/∂xλ and the Christoffel symbols being derivatives of
the metric are of the order hμν . To leading order, (13.10) is

�
μ

00 = −
1

2
ημν

∂h00

∂xν

which, because ηνμ is diagonal, has (for a static h00) the following
components

−�0
00 = −

1

2

∂h00

∂x0
= 0 and �i

00 = −
1

2

∂h00

∂xi
. (13.12)

We can now evaluate (13.9) by using (13.12): the μ = 0 equation leads to

dx0

dτ
= constant, (13.13)

and the three μ = i equations are

d2xi

dτ 2
+ �i

00
dx0

dτ

dx0

dτ
=
(

d2xi

c2dt2
+ �i

00

)(
dx0

dτ

)2

= 0, (13.14)

where we have used
(
dxi/dτ

) = (dxi/dx0
) (

dx0/dτ
)

and the condition

of (13.13) to conclude
(
d2xi/dτ 2

) = (d2xi/dx0 2
) (

dx0/dτ
)2

. The above
equation, together with (13.12), implies

d2xi

c2dt2
− 1

2

∂h00

∂xi
= 0, (13.15)

which is to be compared with the Newtonian equation of motion (13.7).
Thus h00 = −2�/c2 and using the definition of (13.11) we recover
(13.4), first obtained heuristically in Section 13.1:

g00 = −
(

1+ 2�(x)

c2

)
. (13.16)
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We can indeed regard the metric tensor as the relativistic generalization of
the gravitational potential. This expression also provides us with a criterion to
characterize a field being weak as in (13.11):

[ |h00| � |η00|
] ⇒

[ |�|
c2
� 1

]
. (13.17)

Consider the gravitational potential at earth’s surface. It is equal to the grav-
itational acceleration times earth’s radius, �⊕ = g× R⊕ = O

(
107 m2/s2

)
, or

�⊕/c2 = O
(
10−10

)
. Thus a weak field is any gravitational field that is less

than ten billion g’s.

13.3 Tensors in a curved spacetime

The central point of EP, that gravity can be transformed away locally, fits
snugly in the Riemannian geometrical description of a curved space as being
locally flat. Einstein and Grossmann showed that tensor analysis in a curved
space is just the mathematical device that can be used to implement the general
principle of relativity in physics. GR requires that physics equations be covari-
ant under any general coordinate transformation that leaves invariant the infin-
itesimal length of (13.1). Just as special relativity requires a physics equation
to be a tensor equation with respect to Lorentz transformations,3 3Recall from Chapter 11 that the Lorentz

transformation can be regarded as a rotation
in 4D spacetime that leaves the length s2

invariant.

GR equations
must be tensor equations with respect to general coordinate transformations. In
this way, the principle of general relativity can be fulfilled automatically.

Physics equations usually involve differentiation. While tensors in GR are
basically the same as SR tensors as discussed in Chapter 11, the derivative
operators in a curved space require considerable care. In contrast to the case of
flat space, basis vectors in a curved space must change from position to posi-
tion. This implies that general coordinate transformations must necessarily be
position-dependent; they are local transformations. As a consequence, ordin-
ary derivatives of tensors, except for the trivial scalars, are no longer tensors.
Nevertheless it can be shown that one can construct “covariant differentiation
operations” so that they result in tensor derivatives.

13.3.1 General coordinate transformations

We will first discuss the properties of general coordinate transformations and
introduce the notation of expressing such transformations as partial derivative
matrices.

Metric and coordinate transformations are position-dependent
The coordinate transformations in special relativity (the Lorentz transforma-
tions) are position-independent “global transformations”. The rotation angles
and boost velocity are the same for every spacetime point; we rotate the same
amount of angle and boost with the same velocity everywhere. In GR we must
deal with position-dependent “local transformations”, the general coordinate
transformation. This position dependence is related to the fact that in a curved
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space the basis vectors {eμ} must necessarily change from point to point,
leading to position-dependent metric functions [see Eq. (11.12)]:

gμν ≡
[
eμ(x) · eν(x)

] = gμν(x). (13.18)

That the metric in a curved space is always position-dependent immediately
leads to the conclusion that a general coordinate transformation [�] must also
be position-dependent:44The metric [g] is a rank-2 tensor and thus,

according to (13.29), transforms as
[
g′
] =

[�][�][g] where we have symbolically rep-
resented the coordinate transformation by
[�]. If we differentiate both sides of this
relation, we get

∂
[
g′
] = 2[�][g](∂[�])+ [�][�](∂[g]).

(13.19)
For a flat space, one can always work
with a coordinate system having a position-
independent metric, ∂

[
g′
] = ∂[g] = 0. The

above relation then shows that the trans-
formation matrix must also be position-
independent, ∂[�] = 0. In a curve space the
metric must be position-dependent ∂[g] �= 0,
implying that the transformation also has
x-dependence, ∂[�] �= 0.

∂[�] �= 0. (13.20)

Having a position-dependent transformation means that an independent trans-
formation is performed at each location. Namely, the transformation is
nonlinear. The demand that physics equations be covariant under such
nonlinear transformations is much more severe. As we shall see below, it not
only imposes restrictions on the form of the physics equation but also requires
the presence of a “force field” (in our case, the gravitational field), which is
introduced via the covariant derivatives as will be presented in Section 13.4.1.

Coordinate transformation as a matrix of partial derivatives
The coordinate transformations in special relativity (the Lorentz transforma-
tions) leave invariant any finite separation s2 = gμνxμxν . In a curved space the
bases and metric necessarily vary from point to point. General transformations
in such a space are not expected to have such a finite invariant separation.
However, since a curved space is locally flat, it is possible to demand the
coordinate transformation

dx′μ = [�]μνdxν (13.21)

that leaves invariant the infinitesimal length. Equation (13.1) defines the metric
for a given coordinate system. Let us now recall the (chain-rule) differentiation
relation:

dx′μ = ∂x′μ

∂xν
dxν . (13.22)

A comparison of (13.21) and (13.22) suggests that the coordinate transforma-
tion can be written as a matrix of partial derivatives:

[�]μν =
∂x′μ

∂xν
. (13.23)

Therefore, the transformation for a contravariant vector is

Aμ −→ A′μ = ∂x′μ

∂xν
Aν . (13.24)

Writing out this equation explicitly, we have

⎛
⎜⎜⎝

A′0
A′1
A′2
A′3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x′0

∂x0

∂x′0

∂x1

∂x′0

∂x2

∂x′0

∂x3

∂x′1

∂x0

∂x′1

∂x1

∂x′1

∂x2

∂x′1

∂x3

∂x′2

∂x0

∂x′2

∂x1

∂x′2

∂x2

∂x′2

∂x3

∂x′3

∂x0

∂x′3

∂x1

∂x′3

∂x2

∂x′3

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

A0

A1

A2

A3

⎞
⎟⎟⎠ .
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This way of writing a transformation also has the advantage of preventing us
from mis-identifying the transformation [�]μν as a tensor. From now on, we
shall always adopt this practice.5 5This notation is also applicable to the global

transformation of SR discussed in previous
chapters. As an instructive exercise, one can
show that the elements of the Lorentz trans-
formation matrix (11.21) can be recovered
from partial differentiation of the Lorentz
boost formulas (10.10). Namely, the famil-
iar Lorentz transformation can also be writ-
ten as a matrix of partial differentiation. For
example, from t′ = γ

(
t − vx/c2

)
, or x′0 =

γ
(
x0 − βx1

)
we have ∂x′0/∂x1 = −γβ, etc.

Similarly, from the transformation property
of the del operator discussed in Eq. (11.27),

∂

∂x′μ
= [�−1

] ν
μ

∂

∂xν
, (13.25)

the chain rule of differentiation leads to the identification[
�−1

] ν
μ
= ∂xν

∂x′μ
. (13.26)

For covariant components of a vector, we have the transformation

Aμ −→ A′μ =
∂xν

∂x′μ
Aν . (13.27)

In general, contravariant and covariant components of a tensor, Tμν...
λ... ,

transform as a direct product of contravariant and covariant vectors
Tμν...

λ... ∼ AμBν . . .Cλ . . . For example, the simplest mixed tensor has the trans-
formation

Tμ
ν −→ T ′ μν = ∂xλ

∂x′ν
∂x′μ

∂xρ
T ρ
λ . (13.28)

In particular, the rank-2 metric tensor with two covariant indices transforms as

g′μν =
∂xα

∂x′μ
∂xβ

∂x′ν
gαβ . (13.29)

Because we have the expansion A = Aμeμ = Aμeμ, with the vector A being
coordinate independent, the transformations of the expansion coefficients Aμ

and Aμ must be “cancelled out” by those of the corresponding bases:

e′μ =
∂xν

∂x′μ
eν and e′ν = ∂x′ν

∂xρ
eρ . (13.30)

This is the reason that
{
Aμ

}
are called the covariant components: they trans-

form in the same way as the basis vectors, while the contravariant components
transform oppositely.

We remind ourselves that the description in Riemannian geometry is through
distance measurements (see Chapter 12). Coordinates in Riemannian geometry
have no intrinsic meaning as they are related to distance measurement only
through the metric. We are allowed to make all sorts of coordinate changes so
long as the metric changes correspondingly. Such a transformation will change
the individual terms in the physics equations; nevertheless, these equations still
retain their forms if they are tensor equations—each is a proper tensor and
transforms according to the rules as given in (13.28). Namely, the equations
are covariant and obey the principle of relativity.

13.3.2 Covariant differentiation

The above discussion would seem to imply that there is no fundamental differ-
ence between tensors in flat and in curved space. But as we shall demonstrate
below, this is not so when differentiation is involved.
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Ordinary derivatives of tensor components are not tensors
In a curved space, the derivative ∂νAμ is a nontensor. Namely, even though we
have Aμ and ∂ν being good vectors, as indicated by (13.24) and (11.27),

∂μ −→ ∂ ′μ =
∂xλ

∂x′μ
∂λ, (13.31)

the combination ∂νAμ still does not transform properly,

∂νAμ −→ ∂ ′νA′μ �= ∂xλ

∂x′ν
∂x′μ

∂xρ
∂λAρ , (13.32)

as required by (13.28). We can easily trace this difficulty by carrying out the
differentiation

∂ ′νA′μ = ∂ ′ν
(

[�]μν Aν
)

and comparing with the RHS of (13.32) to find that, because of (13.20), there is
an extra term. Thus ∂νAμ not being a tensor is related to the position-dependent
nature of the transformation, which in turn reflects (as discussed at the begin-
ning of this subsection) the position-dependence of the metric. Thus the root
problem lies in the “moving bases”, eμ = eμ(x), of the curved space. More
explicitly, because the tensor components are the projections66We take the dot product of the inverse basis

vector eν on both sides of the expansion A =
Aμeμ to obtain the result eν · A = Aν because
of the relation eν · eμ= δνμ as displayed in
(11.14).

of the tensor
onto the basis vectors, Aμ = eμ · V. The moving bases ∂νeμ �= 0 produce an
extra (second) term in the derivative:

∂νAμ = eμ · (∂νA)+ A · (∂νeμ) . (13.33)

Below we discuss the two terms on the RHS separately.

Covariant derivatives as expansion coefficients of ∂νA
In order for an equation to be manifestly relativistic we must have it as a
tensor equation such that the equation is unchanged under coordinate trans-
formations. Thus, we seek a covariant derivative Dν to be used in covariant
physics equations. Such a differentiation is constructed so that when acting on
tensor components it still yields a tensor:

DνAμ −→ D′
νA′μ = ∂xλ

∂x′ν
∂x′μ

∂xρ
DλAρ . (13.34)

As will be demonstrated below, the first term on the RHS of (13.33) is just this
desired covariant derivative term.

We have suggested that the difficulty with the differentiation of vector
components is due to the coordinate dependence of Aμ. By this reasoning,
derivatives of a scalar function � should not have this complication—because
a scalar tensor does not depend on the bases: �′ = �,

∂μ� −→ ∂ ′μ�
′ = ∂xλ

∂x′μ
∂λ�. (13.35)

Similarly, the derivatives of the vector A itself (not its components) transform
properly because A is coordinate-independent,

∂μA −→ ∂ ′μA = ∂xλ

∂x′μ
∂λA. (13.36)
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Both (13.35) and (13.36) merely reflect the transformation of the del operator
(13.31). If we dot both sides of (13.36) by the inverse basis vectors, e′ν =(
∂x′ν/∂xρ

)
eρ , we obtain

e′ν · ∂ ′μA = ∂xλ

∂x′μ
∂x′ν

∂xρ
eρ · ∂λA. (13.37)

This shows that eν · ∂μA is a proper mixed tensor as required by (13.28), and
a comparison with (13.34) demonstrates that it is just the covariant derivative
we have been looking for:

DμAν = eν · ∂μA. (13.38)

This relation implies that DμAν can be viewed as the projection of the
vectors7 7We are treating

[
∂μA

]
as a set of vectors,

each being labeled by an index μ. And DμAν

is a projection of ∂μA in the same way that
Aν = eν · A is a projection of the vector A.

[
∂μA

]
along the direction of eν ; we can then interpret DμAν as the

coefficient of expansion of
[
∂μA

]
in terms of the basis vectors:

∂μA = (DμAν
)

eν (13.39)

with the repeated index ν summed over.

Christoffel symbols as expansion coefficients of ∂νeμ

On the other hand, we do not have a similarly simple transformation rela-
tion like (13.36) when the coordinate-independent A is replaced by one of
the coordinate basis vectors (eμ), which by definition change under coordinate
transformations. Thus, an expansion of ∂νeμ in a manner similar to (13.39):

∂νeμ = −�μ
νλeλ or A · (∂νeμ) = −�μ

νλAλ, (13.40)

does not have coefficients
(−�μ

νλ

)
that are tensors. Anticipating the result,

we have here used the same notation for these expansion coefficients as the
Christoffel symbols introduced in Eq. (12.39).

Plugging (13.38) and (13.40) into (13.33), we find

DνAμ = ∂νAμ + �
μ
νλAλ. (13.41)

Thus, in order to produce the covariant derivative, the ordinary derivative ∂νAμ

must be supplemented by another term. This second term directly reflects the
position-dependence of the basis vectors, as in (13.40). Even though both ∂νAμ

and �
μ
νλAλ do not have the correct transformation properties, the unwanted

terms produced from their respective transformations cancel each other so that
their sum DνAμ is a good tensor.

Compared to the contravariant vector Aμ of (13.41), the covariant derivative
for a covariant vector Aμ takes on the form

DνAμ = ∂νAμ − �λ
νμAλ (13.42)

so that the contraction AμAμ is an invariant. A mixed tensor such as Tμ
ν , trans-

forming in the same way as the direct product AμBν , will have a covariant
derivative

DνTρ
μ = ∂νTρ

μ − �λ
νμTρ

λ + �ρ
νσTσ

μ . (13.43)
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There should be a set of Christoffel symbols for each index of the tensor—a
set of (+�T) for a contravariant index, a (−�T) for a covariant index, etc. A
specific example is the covariant differentiation of the (covariant) metric tensor
gμν :

Dλgμν = ∂λgμν − �
ρ
λμgρν − �

ρ
λνgμρ . (13.44)

Christoffel symbols and metric tensor
We have introduced the Christoffel symbols �μ

νλ as the coefficients of expan-
sion for ∂νeμ as in (13.40). In this section we shall relate such �

μ
νλ to the

first derivative of the metric tensor. This will justify the identification with the
symbols first defined in (12.39). To derive this relation, we need an important
feature of the Christoffel symbols:

�
μ
νλ = �

μ
λν (13.45)

i.e. they are symmetric with respect to interchange of the two lower indices.

The metric tensor is covariantly constant While the metric tensor is
position-dependent, ∂[g] �= 0, it is a constant with respect to covariant differ-
entiation, D[g] = 0 (we say, gμν is covariantly constant):

Dλgμν = 0. (13.46)

One way to prove this is to use the expression of the metric in terms of the
basis vectors: gμν = eμ · eν , and apply the definition of the affine connection,
∂νeμ = +�ρ

μνeρ , as given in (13.40):

∂λ
(
eμ · eν

) = (∂λeμ
) · eν + eμ · (∂λeν)

= �
ρ
λμeρ · eν + �

ρ
λνeμ · eρ . (13.47)

Written in terms of the metric tensors, this relation becomes

∂λgμν − �
ρ
λμgρν − �

ρ
λνgμρ = Dλgμν = 0, (13.48)

where we have applied the definition of the covariant derivative of a covariant
tensor gμν as in (13.44). This result of (13.46) can be understood as follows:
Recall our discussion of the flatness theorem in Section 12.4.3 that the derivat-
ive of the metric vanishes in the local inertial frame ∂λgμν = 0. However in this
particular coordinate frame, the Christoffel symbols are expected to vanish (as
∂νeμ = 0) and there is no difference between covariant derivatives and ordinary
derivatives; thus ∂λgμν = Dλgμν = 0. But once written in this covariant form,
it should be valid in every coordinate frame. Hence the result of (13.46). As we
shall discuss (see Section 15.3), this key property allowed Einstein to introduce
his “cosmological constant term” in the general relativistic field equation.

Christoffel symbols as the metric tensor derivative In the above discussion
we have used the definition (13.40) of Christoffel symbols as the coefficients
of expansion of the derivative ∂νeμ. Here we shall derive an expression for the
Christoffel symbols, as the first derivatives of the metric tensor, which agrees
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with the definition first introduced in (12.39). We start by using several versions
of (13.48) with their indices permuted cyclically:

Dλgμν = ∂λgμν − �
ρ
λμgρν − �

ρ
λνgμρ = 0

Dνgλμ = ∂νgλμ − �
ρ
νλgρμ − �ρ

νμgλρ = 0 (13.49)

−Dμgνλ = −∂μgνλ + �ρ
μνgρλ + �

ρ
μλgνρ = 0.

Summing over these three equations and using the symmetry property of
(13.45), we obtain:

∂λgμν + ∂νgλμ − ∂μgνλ − 2�ρ
λνgμρ = 0 (13.50)

or, in its equivalent form,

�λ
μν =

1

2
gλρ
[
∂νgμρ + ∂μgνρ − ∂ρgμν

]
. (13.51)

This relation showing �
μ
νλ as the first derivative of the metric tensor is called

the fundamental theorem of Riemannian geometry. It is just the definition stated
previously in (12.39). From now on we shall often use this intrinsic geomet-
ric description of the Christoffel symbols (13.51) rather than (13.40). The
symmetry property of (13.45) is explicitly displayed in (13.51).

13.4 The principle of general covariance

According to the strong principle of equivalence, gravity can always be trans-
formed away locally. Einstein suggested an elegant formulation of the new
theory of gravity based on a curved spacetime. In this way EP is a fundamental
built-in feature. Local flatness (a metric structure of spacetime) means that SR
(a theory of flat spacetime with no gravity) is an automatic property of the new
theory. Gravity is not a force but the structure of spacetime. A particle just
follows geodesics in such a curved spacetime. The physical laws, or the field
equation for the relativistic potential, the metric function gμν(x), must have the
same form no matter what generalized coordinates are used to locate, i.e. label,
worldpoints (events) in spacetime. One expresses this by the requirement that
the physics equations must satisfy the principle of general covariance. This is
a two-part statement:

1. Physics equations must be covariant under general (nonlinear) coordinate
transformations which leave the infinitesimal spacetime line element ds2

invariant.
2. Physics equations should reduce to the correct special relativistic form in

local inertial frames. Namely, we must have the correct SR equations in
the free-fall frames, in which gravity is transformed away. Additionally,
gravitational equations reduce to Newtonian equations in the limit of
low-velocity particles in a weak and static field.

13.4.1 The principle of minimal substitution

This provides us with a well-defined path to go from SR equations, valid in
local inertial frames with no gravity, to GR equations that are valid in every
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coordinate system in curved spacetime—curved because of the presence of
gravity. Such GR equations must be covariant under general local transforma-
tions. To go from an SR equation to the corresponding GR equation is simple:
we need to replace the ordinary derivatives [∂] in SR equations by covariant
derivatives [D]:

∂ −→ D (= ∂ + �). (13.52)

This is known as the minimal coupling because we are assuming the absence of
the curvature tensor terms, which vanish in the flat spacetime limit. Since the
Christoffel symbols � are the derivatives of the metric, hence the derivatives
of the gravitational potential, the introduction of covariant derivatives naturally
brings the gravitational field into the physics equations. In this way we can, for
example, find the equations that describe electromagnetism in the presence of
a gravitational field. For example, considering the inhomogeneous Maxwell
equation (11.35), we have the set of GR equations in curved spacetime,

DμFμν = ∂μFμν + �
μ
μλFλν + �ν

μλFμλ = −1

c
jν , (13.53)

which are interpreted as Gauss’s and Ampere’s laws in the presence of a
gravitational field.

13.4.2 Geodesic equation from the special relativity
equation of motion

Now that we have the GR equations for electromagnetism, what about the GR
equations for gravitation? Recall in the new theory, gravity is not regarded as a
force. Therefore, the GR equation of motion must be the generalization of the
force-free SR equation ∂Uμ/dτ = 0 leading to

DUμ

dτ
= 0, (13.54)

where Uμ is the 4-velocity of the test particle, and τ is the proper time.
We now demonstrate that this equation (13.54) is just the geodesic equa-

tion (13.5). Using the explicit form of the covariant differentiation (13.41), the
above equation can be written as

DUμ

dτ
= dUμ

dτ
+ �

μ
νλUν dxλ

dτ
= 0. (13.55)

Plugging in the expression of the 4-velocity in terms of the position vector88For the 4-velocity, we have Uμ = Dxμ/Dτ
= dxμ/dτ because dxμ/dτ is already a “good
vector” as can been seen from the fact that
(ds/dτ )2 = gμν (dxμ/dτ )(dxν/dτ ) is a scalar. Uμ = dxμ

dτ
, (13.56)

we immediately obtain

d2xμ

dτ 2
+ �

μ
νλ

dxν

dτ

dxλ

dτ
= 0, (13.57)

which is recognized as the geodesic equation (13.5). This supports our heur-
istic argument—“particles should follow the shortest and straightest possible
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trajectories”—used in Section 13.2.1 to suggest that the GR equation of motion
should be the geodesic equation.

We note again that special relativity should be valid in all branches of phys-
ics: electrodynamics, mechanics, etc., but not when gravity is present. It is
special because we restrict coordinate frames to inertial coordinates. It cannot
be applied to gravity because inertial frames no longer have privileged status
in the presence of gravity (being equivalent to accelerated frames). In fact one
can define an inertial frame as one without gravity. The general principle of
relativity is also applicable to all branches of physics, say, a GR formulation
of Maxwell’s equations. It is the correct physics description in the presence
of gravity, or equivalently, the correct physics equations that automatically
include gravitational effects.
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• We seek the GR field equation, which should be a generalization
of Newton’s equation ∇2� = 4πGNρ, with � being the gravita-
tional potential, ρ the mass density and GN Newton’s constant. The
energy–momentum tensor element T00 = ρc2 suggests that the RHS
be extended to Tμν while the LHS can be extended to a symmetric
rank-2 curvature tensor, which is a second derivative of the metric, the
relativistic potential.

• We show that the curvature tensor in a geometric theory of gravity has
the physical interpretation of tidal forces. We explain this identification
quantitatively through the Newtonian deviation equation, which is then
extended to the GR equation of geodesic deviation.

• Following Einstein we narrow down our search for the rank-2 curvature
tensor by the requirement of energy–momentum conservation in the
field system. In this effort, we study the symmetry and contraction of
the Riemann–Christoffel curvature as well as the Bianchi identity.

• The Einstein equation Rμν − 1
2 Rgμν =

(
8πGN/c4

)
Tμν is proposed to

be the GR field equation that determines the metric components gμν
once the source Tμν is given. As a result the spacetime becomes a
dynamical quantity. This GR field equation is shown to have the cor-
rect Newtonian limit. In this way Newton’s 1/r2 gravitational force law
is explained.

• The Einstein equation treats space and time on an equal footing. Its
nontrivial time dependence gives rise to gravitational waves. The exist-
ence of gravitational waves has been verified through the long-term
observation of the Hulse–Taylor binary pulsar system.

• The Einstein equation is a set of 10 coupled partial differential equa-
tions. Yet its exact solution for the case of a spherical source was
discovered soon after its proposal. The predictions embodied in the
Schwarzschild solution have been verified whenever precision meas-
urements can be performed. The gravitation redshift, the bending of
starlight by the sun and the perihelion advance of the planet Mercury
are the three famous classical tests of GR.

• The phenomenon of black holes demonstrates the full power and glory
of GR. Here the gravitational field is so strong that the roles of space
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and time are reversed when crossing the event horizon. As a result every
worldline, including those of a light ray, once inside the event horizon
must head into the center of the spherical mass. Alas, Einstein never
believed the reality of black holes.

As discussed in the last chapter, EP physics led Einstein to the idea of a geo-
metric description of gravity. Curved spacetime is the gravitational field; the
geodesic equation is the GR equation of motion. Here we shall study the GR
field equation, the Einstein equation, and its Schwarzschild solution.

In showing that the geodesic equation is the equation of motion, we have fol-
lowed the straightforward procedure in Section 13.4.2 of replacing the ordinary
derivatives in a SR equation by covariant derivatives to obtain their correspond-
ing GR equation. Unfortunately this procedure cannot be used in the case of
the field equation, because there is no SR field equation of gravity. (In fact, in
the special relativistic flat spacetime limit, there is no gravity.) We will have to
start from the Newtonian theory.

14.1 The Newtonian field equation

Newton formulated his theory of gravitation through the concept of an action-
at-a-distance force

F(r) = −GN
μm

r2
r̂ (14.1)

where GN is Newton’s constant, the point-source massμ is located at the origin
of the coordinate system, and the test mass m is at position r.

Just as in the case of electrostatics F(r) = qE(r), we can cast this in the form
F = mg. This defines the gravitational field g(r) as the gravitational force per
unit mass. Newton’s law, in term of this gravitational field for a point massμ, is

g(r) = −GN
μ

r2
r̂. (14.2)

Just as Coulomb’s law is equivalent to Gauss’s law for the electric field, this
field equation (14.2) can be expressed, for an arbitrary mass distribution, as
Gauss’s law for the gravitational field:∮

S
g · dS = −4πGNM. (14.3)

The area integral on the LHS is the gravitational field flux through any closed
surface S, and M on the RHS is the total mass enclosed inside S. This integ-
ral representation of Gauss’s law (14.3) can be converted into a differential
equation. We will first turn both sides into volume integrals by using the diver-
gence theorem on the LHS [Cf. Eq. (A.25) in Appendix A, Section A.1] and
by expressing the mass on the RHS in terms of the mass density function ρ∫

∇ · g dV = −4πGN

∫
ρ dV .
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Since this relation holds for any volume, the integrands on both sides must also
be equal:

∇ · g = −4πGNρ. (14.4)

This is Newton’s field equation in differential form. The gravitational potential11We have the familiar example of the poten-
tial for a spherically symmetric source with
total mass M given by � = −GNM/r.

�(r) being defined through the gravitational field g ≡ −∇�, the field equation
(14.4) becomes

∇2� = 4πGNρ. (14.5)

Einstein’s task was to seek the GR extension of this equation.

14.2 Seeking the general relativistic
field equation

We have already learned in Eq. (13.4) that the metric tensor is the relativistic
generalization of the gravitational potential and in Section 11.2.5 that the mass
density is the (0,0) component of the relativistic energy–momentum tensor Tμν :(

1+ 2�(x)

c2

)
→ g00(x) and ρ(x)c2 → T00(x). (14.6)

The GR field equation, being the generalization of the Newtonian field equa-
tion (15.22), must satisfy the principle of general relativity. It should be a tensor
equation with the following structure,[

Ôg
] = κ[T]. (14.7)

Namely, on the RHS we should have the energy–momentum tensor Tμν , which
describes the distribution of matter/energy in spacetime; on the LHS some dif-
ferential operator Ô acting on the metric [g]. Since we expect [Ôg] to have
the Newtonian limit of ∇2�, then [Ô] must be a second-derivative operator.
Besides the ∂2g terms, we also expect it to contain nonlinear terms of the type
(∂g)2. The presence of the (∂g)2 terms is suggested by the fact that energy,
just like mass, is a source of gravitational fields, and gravitational fields them-
selves hold energy—just as electromagnetic fields have an energy density that
is quadratic in the fields (E2 + B2). That is, the gravitational field energy dens-
ity must be quadratic in the gravitational field strength, (∂g)2. In terms of the
Christoffel symbols of (13.51) � ∼ ∂g, we anticipate [Ôg] to contain not only
∂� but also �2 terms as well.

Furthermore, because we have a rank-2 tensor Tμν = Tνμ that is symmetric
on the RHS, [Ôg] on the LHS must have these properties also. Thus the task of
seeking the GR field equation involves finding such a [Ôg] tensor:

[
Ôg
]

must have the property:

symmetric rank-2 tensor
(∂2g), (∂g)2 
 ∂�,�2.

(14.8)
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14.3 Curvature tensor and tidal forces

We now concentrate on the curvature tensor of spacetime. Starting with
Gaussian curvature (a single component) in 2D space, Riemann (plus further
work by Christoffel) established, in an n-dimensional space, the existence of a
rank-4 curvature tensor:

Rμ
λαβ = ∂α�

μ
λβ − ∂β�

μ
λα + �μ

να�
ν
λβ − �

μ
νβ�

ν
λα. (14.9)

The Christoffel symbols � being first derivatives as shown in (13.51), the
Riemann–Christoffel curvature of (14.9), R = d� + ��, is then a nonlinear
second-derivative function of the metric, [∂2g+ (∂g)2]. While Rμ

λαβ = 0 for
a flat space, it generally measures the deviation from flat-space relations. But
what is needed in Eq. (14.7) is a rank-2 symmetric tensor. Thus some form of
contraction of the Riemann–Christoffel curvature tensor is required. There can
be many versions of the contracted curvature; which one is the correct one?
Before answering this mathematical question, we first explain the physical
meaning of curvature in spacetime.

14.3.1 Tidal forces—a qualitative discussion

What is the physical significance of the curvature? Curvature involves second
derivatives of a metric. Since the metric tensor can be regarded as the relativ-
istic gravitational potential, its first derivatives are gravitational forces, and
its second derivatives must then be the relative forces between neighboring
particles. Namely, they are the tidal forces.

Here we give an elementary and qualitative discussion of tidal force and its
possible geometric interpretation. That will then be followed by a more mathe-
matical presentation in terms of “the Newtonian deviation equation” which
relates relative position change between two neighboring particles to tidal
forces. This in turn suggests the GR generalization, “the equation of geodesic
deviation” which relates the spacetime separation of two particles to the under-
lying spacetime curvature. Our purpose is mainly to provide a more physical
feel for the curvature in GR gravitational theory.

The equivalence principle states that in a freely falling reference frame the
physics is the same as that in an inertial frame with no gravity: SR applies
and the metric is given by the Minkowski metric ημν . As shown in the flat-
ness theorem (Section 12.4.3), this approximation of gμν by ημν can be done
only locally, that is, in an appropriately small region. Gravitational effects can
always be detected in a finite-sized free-fall frame as the gravitational field is
never strictly uniform in reality; the second derivatives of the metric come
into play.

Consider the lunar gravitational attraction exerted on the earth. While the
earth is in free fall toward the moon (and vice versa), there is still a detect-
able lunar gravitational effect on earth. It is so because different points on
earth will feel slightly different gravitational pulls by the moon, as depicted in
Fig. 14.1(a). The center-of-mass (CM) force causes the earth to “fall towards
the moon” so that this CM gravitational effect is “cancelled out” in this freely
falling terrestrial frame. After subtracting out this CM force, the remanent
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Fig. 14.1 Variations of the gravitational field
as tidal forces. (a) Lunar gravitational forces
on four representative points on earth. (b)
After taking out the center of mass (CM)
motion, the relative forces on earth are the
tidal forces giving rise to longitudinal stretch-
ing and transverse compression.

(relative) forces on the earth, as shown in Fig. 14.1(b), are stretching in the
longitudinal direction and compression in the transverse directions. They are
just the familiar tidal forces.22The ocean is pulled away in opposite dir-

ections giving rise to two tidal bulges. This
explains why, as the earth rotates, there are
two high tides in a day. This of course is
a simplified description as there are other
effects, e.g. solar tidal forces, that must be
taken into account.

Namely, in the freely falling frame, the CM grav-
itational effect is transformed away, but, there are still the remnant tidal forces.
They reflect the differences of the gravitational effects on neighboring points,
and are thus proportional to the derivative of the gravitational field. Since tidal
forces cannot be coordinate-transformed away, they should be regarded as the
essence of gravitation.

14.3.2 Newtonian deviation equation and the equation
of geodesic deviation

Here we provide first a quantitative description of the gravitational tidal forces
in the Newtonian framework, which suggests an analogous GR approach
showing the curvature tensor playing exactly the same role as tidal forces.

Newtonian deviation equation for tidal forces
The tidal effect concerns the relative motion of particles in a nonuniform grav-
itational field. Let us consider two particles: one has trajectory x(t) and another
has x(t)+ s(t). That is, the locations of these two particles measured at the
same time have a coordinate difference of s(t). The respective equations of
motion (i = 1, 2, 3) obeyed by these two particles are, according to Eq. (13.7),
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d2xi

dt2
= −∂�(x)

∂xi
and

d2xi

dt2
+ d2si

dt2
= −∂�(x+ s)

∂xi
. (14.10)

Consider the case where the separation distance si(t) is small and we can
approximate the gravitational potential �(x+ s) by a Taylor expansion

�(x+ s) = �(x)+ ∂�

∂x j
s j + · · · . (14.11)

From the difference of the two equations in (14.10), we obtain the Newtonian
deviation equation that describes the separation between two particle trajector-
ies in a gravitational field

d2si

dt2
= −

(
∂2�

∂xi∂x j

)
s j. (14.12)

Thus the relative acceleration per unit separation (d2si/dt2)/s j is given by a
tensor having the second derivatives of the gravitational potential (i.e. the tidal
force components) as its elements.

As an illustrative application of Eq. (14.12) we discuss the case of a spherical
gravitational source, e.g. the gravity due to the moon on earth (Fig. 14.1),

�(x) = −GNM

r
(14.13)

where the radial distance is related to the rectangular coordinates by
r = (x2 + y2 + z2

)1/2
. Since ∂r/∂xi = xi/r we have

∂2�

∂xi∂xj
= GNM

r3

(
δij − 3xixj

r2

)
. (14.14)

Consider the case of the “first particle” being located along the z axis
xi = (0, 0, r); the Newtonian deviation equation (14.12) for the displacement
of the “second particle”, with the second derivative tensor given by (14.14),
now takes on the form3 3Since we have taken x i = (0, 0, r), the term

x ix j on the RHS can be worked out with x1 =
x2 = 0 and x3 = r, etc.

d2

dt2

⎛
⎝ sx

sy

sz

⎞
⎠ = −GNM

r3

⎛
⎝ 1 0 0

0 1 0
0 0 −2

⎞
⎠
⎛
⎝ sx

sy

sz

⎞
⎠ . (14.15)

We see that there is an attractive tidal force between the two particles in the
transverse direction Tx,y = −GNMr−3sx,y that leads to compression; and a tidal
repulsion Tz = +2GNMr−3sz, leading to stretching, in the longitudinal (i.e.
radial) direction. This of course is in agreement with the conclusion we had
drawn from our qualitative discussion.

General relativistic deviation equation with curvature tensor
In GR, we shall follow a similar approach: The two equations of motion (14.10)
will be replaced by the corresponding GR equations of motion, the geodesic
equations; their difference, after a systematic Taylor expansion, leads to the
equation of geodesic deviation4 4See Problems 14.4 and 14.5 in Cheng (2010,

p. 335 and p. 407).
D2sμ

Dτ 2
= −

(
Rμ

ανβ ẋα ẋβ
)

sν , (14.16)
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with Rμ
ανβ being the Riemann–Christoffel curvature tensor given by Eq. (14.9)

and ẋα = ∂xα/∂τ . Clearly Eq. (14.16) is similar to Eq. (14.12). Thus we can
regard the curvature tensor as the relativistic generalization of the tidal forces.
In this geometric language we see that the cause of the deviation from a flat
spacetime trajectory is attributed to the curvature just as the convergent particle
trajectories shown in Fig. 13.3. Such considerations led Einstein to give grav-
ity a direct geometric interpretation by identifying these tidal forces with the
curvature of spacetime.

We also record another way in which the Rμ
ανβ tensor appears in a simple

equation,55See Problem 13.7 in Cheng (2010, p. 316
and p. 403).

involving the commutator of covariant derivatives acting on some
arbitrary tensor (here taken to be a contravariant vector Aμ)[

Dα , Dβ

]
Aμ = Rμ

λαβAλ. (14.17)

This relation will be used in our derivation of the Bianchi identity which will
help us to find the GR field equation.

14.3.3 Symmetries and contractions of the curvature tensor

We now discuss the contraction of the Riemann curvature tensor66Knowing its symmetry properties, we find
the number of independent components of a
curvature tensor in an n-dimensional space to
be N(n) = n2(n2 − 1)/12. Thus N(1) = 0: It
is not possible for a one-dimensional inhab-
itant to see any curvature; N(2) = 1: This is
just the Gaussian curvature K for a curved
surface; N(4) = 20: There are 20 independent
components in the curvature tensor for a 4D
curved spacetime.

with the
aim of finding the appropriate rank-2 tensor that can be used for the GR field
equation. We first note that the Riemann curvature tensor with all lower indices

Rμναβ = gμλRλ
ναβ (14.18)

has the following symmetry features:

• It is antisymmetric with respect to the interchange of the first and second
indices, and that of the third and fourth indices, respectively:

Rμναβ = −Rνμαβ (14.19)

Rμναβ = −Rμνβα. (14.20)

• It is symmetric with respect to the interchange of the pair made up of the
first and second indices with the pair of third and fourth indices:

Rμναβ = +Rαβμν . (14.21)

• It also has cyclic symmetry:

Rμναβ + Rμβνα + Rμαβν = 0. (14.22)

Since the symmetry properties are not changed by coordinate transforma-
tions, one can choose a particular coordinate frame to prove these symmetry
relations, and once proven in one frame, we can then claim their validity in
all frames. An obvious choice is the local inertial frame (with � = 0, ∂� �= 0)
where the curvature takes on simpler form, Rμναβ = gμλ

(
∂α�

λ
νβ − ∂β�

λ
να

)
. In

this way, we can use the fact that gμν = gνμ and �μ
νλ = �

μ
λν to check easily the

validity of the symmetry properties as shown in Eqs. (14.19)–(14.22).
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Contractions of the curvature tensor
We show how to reduce the rank of the Riemann tensor so it can be used in
the GR field equation. Because of the symmetry properties shown above these
contractions are essentially unique.

Ricci tensor Rμν This is the Riemann curvature tensor with the first and third
indices contracted,

Rμν ≡ gαβRαμβν = Rβ

μβν (14.23)

which is a symmetric tensor,

Rμν = Rνμ. (14.24)

If we had contracted different pairs of indices, the result would still be σRμν

with σ = ±1, 0. Thus the rank-2 curvature tensor is essentially unique.

Ricci scalar R Contracting the Riemann curvature twice, we obtain the Ricci
scalar field,

R ≡ gαβRαβ = Rβ

β . (14.25)

14.3.4 The Bianchi identities and the Einstein tensor

These contractions show that there is indeed a ready-made symmetric rank-2
curvature tensor, the Ricci tensor Rμν for the LHS of Eq. (14.7). Making
this choice [Ôg]μν = Rμν while working with Grossmann in 1913, Einstein
found that the resultant field equation did not reduce down to Eq. (14.5) in
the Newtonian limit. He then convinced himself that somehow the covariance
principle had to be given up for a gravity theory.7 7In late 1915 when Einstein returned to the

covariance approach (1915a) he was still
working with [Ôg]μν = Rμν , namely the
field equation Rμν = κTμν . But in the region
where the stress tensor vanishes Tμν = 0 (i.e.
outside the source) the field equation Rμν =
0 led to the correct precession value for
Mercury (1915b). Afterwards Einstein found
the correct field equation should be Gμν =
κTμν and had to withdraw the earlier proposal
(1915c). The equation he was working with
for the Mercury problem was correct because,
with Tμν = 0 he also had the trace conditions
T = R = 0, and the equation Rμν = 0 was
the same as the correct Gμν = 0 equation.

This erroneous detour caused
considerable delay in completing his GR program. Nevertheless, after a long
struggle, finally at the end of 1915, he returned to the covariance principle
and succeeded in finding the correct tensor [Ôg]μν = Gμν , now known as the
Einstein tensor

Gμν = Rμν − 1

2
Rgμν . (14.26)

The realization was that besides the Ricci tensor there is another rank-2
curvature tensor that satisfies the criterion for the geometry side of the field
equation: it’s the product of the Ricci scalar with the metric tensor itself. Thus
there is actually a variety of ways to construct a rank-2 curvature tensor. Any
combination of the form Rμν + aRgμν with a constant coefficient a will satisfy
the search criteria. What is the correct value of a?

To narrow down the choice, Einstein invoked the conservation law of
energy–momentum in the field system. This led him to the combination
(14.26). The calculation that he had to undertake is rather complicated; after
he published his GR papers in 1916, others had found a way to greatly
expedite the proof. It involves the mathematical relation called the Bianchi
identity.
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Recall our discussion of the energy–momentum tensor in Section
11.2.5 showing that conservation is expressed in the flat spacetime as a
4-divergenceless condition ∂μTμν = 0. Thus in a warped spacetime, it must
be the vanishing of the covariant divergence

DμTμν = 0.

Since Tμν is covariantly constant, so must be the LHS of (14.7). Namely, a
must be a value such that

Dμ(Rμν + aRgμν) = 0. (14.27)

The Bianchi identities
Starting with the Jacobi identity (for any double commutator).[

Dλ,
[
Dμ, Dν

]]+ [Dν ,
[
Dλ, Dμ

]]+ [Dμ,
[
Dν , Dλ

]] = 0, (14.28)

and by applying the relation (14.17) and the cyclic symmetry of (14.22), one
can prove88This is worked out in Problem 13.12 of

Cheng (2010, p. 317 and p. 406).
the Bianchi identities:

DλRμναβ + DνRλμαβ + DμRνλαβ = 0. (14.29)

We now perform contractions on these relations. When contracting (14.29)
with gμα , because of (13.46) showing that the metric tensor is itself cov-
ariantly constant, Dλgαβ = 0, one can push gμα right through the covariant
differentiation:

DλRνβ − DνRλβ + DμgμαRνλαβ = 0. (14.30)

Contracting another time with gνβ ,

DλR− DνgνβRλβ − DμgμαRλα = 0. (14.31)

In the last two terms, the metric just raises the indices,

DλR− DνRν
λ − DμRμ

λ = DλR− 2DνRν
λ = 0. (14.32)

Pushing through yet another gμλ in order to raise the λ index in the last term,

Dλ

(
Rgμλ − 2Rμλ

) = 0. (14.33)

Thus the constant in (14.27) is a = −1/2 and the combination (14.26) is
covariantly constant

DμGμν = 0. (14.34)

To summarize, Gμν , called the Einstein tensor, is a covariantly constant, rank-2,
symmetric tensor involving the second derivatives of the metric ∂2g as well as
the quadratic in ∂g. This is just the sought-after mathematical quantity on the
geometric side of the GR field equation.
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14.4 The Einstein equation

With the identification of Gμν with the LHS of Eq. (14.7), Einstein arrived at
the GR field equation

Gμν = Rμν − 1

2
Rgμν = κTμν . (14.35)

We recall that EP informs us that gravity can always be transformed away
locally (by going to a reference frame in free-fall); the essence of gravity is
represented by its differentials (tidal forces). Thus the presence of the curvature
of spacetime in the GR field equation can be understood. This equation can also
be written in an alternative form. A contraction of the two indices in (14.35)
leads to −R = κT , where T is the trace gμνTμν . In this way we can rewrite the
field equation as

Rμν = κ

(
Tμν − 1

2
Tgμν

)
. (14.36)

Given that the source distribution Tμν and the Ricci Rμν are symmet-
ric tensors, each of them has 10 independent elements. Thus the seemingly
simple field equation is actually a set of 10 coupled nonlinear partial differ-
ential equations for the 10 components of the gravitational potential which
is the spacetime metric gμν(x). We reiterate the central point of Einstein’s
theory: the spacetime geometry in GR, in contrast to SR, is not a fixed
entity, but is dynamically ever-changing as determined by the mass/energy
distribution.

14.4.1 The Newtonian limit for a general source

One can examine one aspect of the correctness of this proposed GR field equa-
tion by checking its Newtonian limit. A straightforward calculation similar
to that carried out in Section 13.2.2 shows that it does reduce to Newton’s
field equation [to be displayed in (15.22)] for a particle moving nonrelativ-
istically in a weak and static field.9 9For details of this limit calculation, see

Section 14.2.2 in Cheng (2010, p. 323).
This also gives us the identification of

κ = 8πGN/c4. The proportionality constant κ , hence Newton’s constant GN,
is the “conversion factor” that allows us to relate the energy density on the
RHS to the geometric quantity on the LHS. Recall our discussion in Section
3.4.2, Planck’s discovery of Planck’s constant allowed him to construct a nat-
ural unit system of mass-length-time from the constants of h, c, and GN. We
now see that, as it turns out, each of them is a fundamental conversion factor
that connects disparate types of physical phenomena: wave and particle, space
and time, and, now, energy and geometry. Albert Einstein made vital contribu-
tions to each of of these surprising unifications: quantum theory, and special
and general relativity.

In taking the above limit, we took the source to be nonrelativistic matter with
its energy–momentum tensor completely dominated by the T00 = ρc2 term.
Effectively we took the source to be a swarm of noninteracting particles. In
certain situations, with cosmology being the notable example, we consider the
source of gravity to be a plasma having mass density ρ and pressure p. Namely,
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we need to take an ideal fluid Tμν as in Eq. (11.43). A calculation entirely
similar to the Newtonian limit calculation mentioned above leads to

∇2� = 4πGN

(
ρ + 3

p

c2

)
. (14.37)

In this way Einstein’s theory makes it clear that in the relativistic theory not
only mass but also pressure can be a source of a gravitational field.

14.4.2 Gravitational waves

Newton’s theory of gravitation is a static theory; the field due to a source is
established instantaneously. Thus, while the field has nontrivial dependence on
the spatial coordinates, it does not depend on time. Einstein’s theory, being
relativistic, treats space and time on an equal footing. Just like Maxwell’s the-
ory, it has the feature that a field propagates outward from the source with a
finite speed. Thus, just as one can shake an electric charge to generate elec-
tromagnetic waves, one can shake a mass to generate gravitational waves.
By and large we are dealing with the case of a weak gravitational field. This
approximation linearizes the Einstein theory. In this limit, gravitational waves
may be viewed as small-curvature ripples propagating in a background of flat
spacetime. It is a transverse wave having two independent polarization states,
traveling at the speed of light.

These ripples of curvature can be detected as tidal forces. A major effort is
underway to detect this effect using gravitational wave interferometers, which
can measure the minute compression and elongation of orthogonal lengths that
are caused by the passage of such a wave. In the meantime there is already
indirect, but convincing, evidence for the existence of gravitational waves as
predicted by general relativity (GR). This came from the observation, span-
ning more than 25 years, of the orbital motion of the relativistic Hulse–Taylor
binary pulsar system (PSR 1913+16). Even though the binary pair is 16 light-
years away from us, the basic parameters of the system can be deduced by
carefully monitoring the radio pulses emitted by the pulsar, which effectively
act as an accurate and stable clock. From this record we can verify a number
of GR effects. According to GR the orbital period, because of the quadru-
pole gravitational wave radiation from the system, is predicted to decrease at
a calculable rate.1010See Eq. (15.71) in Cheng (2010). The observed orbital rate decrease has been found to be in
splendid agreement with the prediction by Einstein’s theory (Fig. 14.2).

14.5 The Schwarzschild solution

The Einstein equation (14.35) is a set of 10 coupled nonlinear partial differ-
ential equations. It came as a surprise that shortly after Einstein’s proposal,
Karl Schwarzschild (1873–1916) was able to find the exact solution1111The solution to Eq. (14.38) is worked out

in Cheng (2010, Sections 7.1 and 14.3). Our
presentation only discusses the Schwarzs-
child exterior solution. There is also the
Schwarzschild interior solution.

for the
most important case of a gravitational field outside a spherical source (a star).
Exterior to the source, we have Tμν = 0; the relevant equation is

Rμν = 0. (14.38)
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Fig. 14.2 Gravitational radiation damping
causes orbital decay of the Hulse–Taylor bin-
ary pulsar. Plotted here is the accumulating
shift in the epoch of periastron (Weisberg
and Taylor 2003). The parabola is the GR
prediction, and observations are depicted by
data points. In most cases the measurement
uncertainties are smaller than the linewidths.
The data gap in the 1990s reflects the down-
time when the Arecibo observatory was being
upgraded.

Here we merely present the solution, the Schwarzschild metric, in spherical
coordinates (ct, r, θ ,φ):

gμν =

⎛
⎜⎜⎝

g00 0 0 0
0 grr 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

⎞
⎟⎟⎠ , (14.39)

which differs from the flat spacetime value of g00 = −grr = −1 by

g00 = − 1

grr
= −

(
1− r∗

r

)
with r∗ = 2GNM

c2
(14.40)

where M is the source mass and r∗ is called the Schwarzschild radius. This is in
general an extremely small length factor. For example, the Schwarzschild radii
for the sun (M = M�) and earth (M = M⊕) are respectively:

r∗� � 3 km and r∗⊕ � 9 mm. (14.41)

Hence, in general, the ratio r∗/r, which signifies the modification of the flat
Minkowski metric, is a very small quantity. For the Schwarzschild exterior
solution to be applicable, r must have the same value at or outside of the radius
of the source mass, and so the smallest value that r can take is the radius R of
the spherical source: the above r∗ values translate into r∗/r of

r∗�
R�

= O
(
10−6) and

r∗⊕
R⊕

= O
(
10−9), (14.42)

for the case of the sun and the earth, respectively.
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14.5.1 Three classical tests

Experimental tests that might have been available in Einstein’s day were those
within the solar system which had only a weak field (namely, the deviation
from flat spacetime value being a small r*/r). A perturbative approach would
be adequate for Einstein to calculate observational predictions. Here are the
three famous instances where GR predictions were checked with observation.

Gravitational redshift
As we have already explained, the gravitational redshift follows directly from
the equivalence principle which is embodied in the time warpage in curved
spacetime as shown in Eq (13.4),

g00 = −
(

1+ 2�(x)

c2

)
, (14.43)

which matches (14.40) when we recall that the spherical Newtonian grav-
itational potential is � = −GNM/r. In principle, this gravitational redshift
Eq. (12.16)1212For a direct derivation of the gravitational

redshift (12.16) from a curved spacetime
g00 �= −1, see Box 6.2, p. 108 in Cheng
(2010).

can be tested by a careful examination of the spectral emission
lines from an astronomical object (hence a large gravitational potential differ-
ence). But because the effect is small, it is very difficult to separate it from the
background. While there were some tentative positive confirmations of this EP
prediction, conclusive data did not exist in the first few decades after Einstein’s
paper. Surprisingly, as we have already commented on in Section 12.3.2, this
EP effect of the gravitational redshift was first verified in a series of terrestrial
experiments when Robert Pound and his collaborators succeeded in the early
1960s in measuring the truly small frequency shift of radiation traveling up
h = 22.5 m, the height of an elevator-shaft in the building housing the Harvard
Physics Department: ∣∣∣∣�ωω

∣∣∣∣ =
∣∣∣∣gh

c2

∣∣∣∣ = O
(
10−15

)
. (14.44)

Bending of starlight by the sun
We recall that the equivalence principle leads to the prediction of bending of
starlight by the sun with a deflection angle of δφEP given in (12.26):

δφEP = 2GNM�
c2rmin

. (14.45)

As explained in Section 13.1.2, this is due to the time warpage g00 �= −1.
However, now we know from (14.40) that the full GR has not only warping in
time but also in space; in fact the warpages are directly related grr = −1/g00.
Here we calculate the effect of this extra warpage on the bending of the
light-ray, finding a doubling of the deflection angle.

Light-ray deflection: GR vs. EP Let us consider the light-like worldline
(ds2 = 0) in a fixed direction, dθ = dφ = 0:

ds2 = g00c2dt2 + grrdr2 = 0. (14.46)
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To an observer far from the source, using the coordinate time and radial
distance (t, r), the effective speed of light13 13Recall our discussion in Section 12.3.4.according to (14.46) is

c(r) ≡ dr

dt
= c

√
−g00(r)

grr(r)
. (14.47)

The influence of g00 �= −1 and grr �= 1 in (14.47) are of the same size and in
the same direction. Thus the deviation of the vacuum index of refraction n(r)
from unity is twice as large: compared to the result of (12.20), we now have

n(r) = c

c(r)
=
√
− grr(r)

g00(r)
= 1

−g00(r)
=
(

1+ 2
�(r)

c2

)−1

. (14.48)

Or,

c(r) =
(

1+ 2
�(r)

c2

)
c. (14.49)

According to Equations (12.21)–(12.24), the deflection angle being directly
proportional to this deviation from c, namely dφ ∝ d[c(r)], is twice as large,
resulting in a deflection angle δφ given by (14.45):

δφGR = 2δφEP = 4GNM�
c2rmin

, (14.50)

where rmin is the closest distance that the light ray comes to the massive object.
We should apply rmin = R�, the solar radius, for the case of a light ray grazing
the edge of the sun.

The deflection of 1.74 arcseconds (about 1/4000 of the angular width of the
sun as seen from earth) that was predicted by Einstein’s equations in 1915 was
not easy to detect and therefore to test. One needed a solar eclipse against the
background of several bright stars (so that some could be used as reference
points). The angular position of a star with light grazing past the (eclipsed)
sun would appear to have moved to a different position when compared to the
location in the absence of the sun (see Fig. 12.6). On May 29, 1919 there was
such a solar eclipse. Two British expeditions were mounted: one to Sobral in
northern Brazil, and another to the island of Principe, off the coast of West
Africa. The report by A.S. Eddington (1882–1944) that Einstein’s prediction
was successful in these tests created a worldwide sensation, partly for scientific
reasons, and partly because the world was amazed that so soon after World War
I the British should finance and conduct an expedition to test a theory proposed
by a German citizen.

The gravitational deflection of a light ray discussed above has some simil-
arity to the bending of light by a glass lens. The result in (14.50) becomes the
basic ingredient in writing down the lens equation. The whole field of gravita-
tional lensing has become an important tool in astrophysics, for detecting mass
distribution in the cosmos.
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Precession of Mercury’s perihelion
A particle, under the Newtonian 1/r2 gravitational attraction, traces out a
closed elliptical orbit. The presence other planets would distort such a tra-
jectory as shown in Fig. 14.3. For the case of the planet Mercury, such
perturbations could account for most1414Most of the raw observational value of

5600′′ is due to the effect of rotation of our
Earth-based coordinate system and it leaves
the planetary perturbations to account for the
remaining 574′′, to which Venus contributes
277′′, Jupiter 153′′, Earth 90′′, Mars, and the
rest of the planets 10′′.

of the planetary perihelion advance of
574 arcseconds per century. However there was still the discrepancy of 43 arc-
seconds left unaccounted for. Following a similar situation involving Uranus
that eventually led to the prediction and discovery of the outer planet Neptune
in 1846, a new planet, named Vulcan, was predicted to lie inside Mercury’s
orbit. But it was never found. This is the “perihelion precession problem” that
Einstein solved by applying his new theory of gravitation.

δφ

Fig. 14.3 A perturbed 1/r2 attraction leads
to an open orbit which may be described
as an elliptical orbit with a precessing axis.
For planetary motion, this is usually stated as
the precession of the minimal-distance point
from the sun, the perihelion.

One first sets up a relativistic orbit equation, which can be solved for r(φ)
by standard perturbation theory. With e being the eccentricity of the orbit,
α = (1+ e)rmin and ε = 3r∗/2α, the solution (see Fig. 14.4 for the coordinate
labels) is

Fig. 14.4 Points on an elliptical orbit are loc-
ated by the coordinates (r,φ), with some
notable positions at (rmin, 0), (rmax,π ), and
(α,π/2).

r = α

1+ e cos[(1− ε)φ]
. (14.51)

Thus the planet returns to its perihelion rmin not at φ = 2π (as is the case for a
closed orbit) but at φ = 2π/(1− ε) � 2π + 3πr∗/α. The perihelion advances
(i.e. the whole orbit rotates in the same sense as the planet itself) per revolution
by (Fig. 14.3)

δφ = 3πr∗

α
= 3πr∗

(1+ e)rmin
. (14.52)

With the solar Schwarzschild radius r∗� = 2.95 km, Mercury’s eccentricity
e = 0.206, and its perihelion rmin = 4.6 × 107 km, we have the numerical
value of the advance as δφ = 5× 10−7 radian per revolution, or 5× 10−7 ×
180
π
× 60× 60 = 0.103′′ (arcsecond) per revolution. In terms of the advance

per century,

0.103′′ × 100 yr

Mercury’s period of 0.241 yr
= 43′′ per century. (14.53)

This agrees with the observational evidence.
This calculation explaining the perihelion advance of the planet Mercury

from first principles gave Einstein great of joy. This moment of elation
was characterized by his biographer Pais as “by far the strongest emotional
experience in Einstein’s scientific life, perhaps, in all his life”. The Mercury
calculation and the correct prediction for the bending of starlight around the
sun, as well as the correct GR field equation, were all obtained by Albert
Einstein in an intense two-week period in November, 1915. Afterwards, he
wrote to Arnold Sommerfeld in a, by now, famous letter.

This last month I have lived through the most exciting and the most exacting period of
my life; and it would be true to say this, it has been the most fruitful. Writing letters has
been out of the question. I realized that up until now my field equations of gravitation
have been entirely devoid of foundation. When all my confidence in the old theory van-
ished, I saw clearly that a satisfactory solution could only be reached by linking it with
the Riemann variations. The wonderful thing that happened then was that not only did
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Newton’s theory result from it, as a first approximation, but also the perihelion motion
of Mercury, as a second approximation. For the deviation of light by the Sun I obtained
twice the former amount.

Recall that for several years Einstein had given up on the covariance prin-
ciple because the Ricci tensor Rμν based field equation could not reproduce the
Newtonian limit. The Riemann variation that he referred to above is the linear
combination that we now called the Einstein tensor.

14.5.2 Black holes—the full power and glory
of general relativity

In the above section, we discussed the geodesics of a particle (perihelion
precession) and light (bending trajectory) in the Schwarzschild geometry.
However, these GR examples by-and-large represent small corrections to the
Newtonian result. Here we study the spacetime structure exterior to any object
with its mass so compressed that its radius is smaller than the Schwarzschild
radius r∗ = 2GNM/c2. Such objects have been given the evocative name black
holes, because it is impossible to transmit outwardly any signal, any light, from
the region inside the Schwarzschild surface r = r∗. This necessarily involves
such strong gravity and curved spacetime that the GR framework is indispens-
able. As we shall see, here the spacetime is so warped that the roles of space
and time are reversed when one crosses the Schwarzschild surface.

Coordinate singularities
The Schwarzschild metric15 15By “metric” we include the considera-

tion also of the inverse metric which has
a [sin2 θ ]−1 term. Here we concentrate on
the static Schwarzschild metric. For a rotat-
ing spherical source we have the Kerr metric
which is more realistic physically but has
a complicated singularity structure. For a
basic introduction of the Kerr black hole, see
Cheng (2010), Section 8.4.

(14.39) has singularities at r = 0 and r = r∗, and
θ = 0 and π . We are familiar with the notion that θ = 0 and π are coordin-
ate singularities associated with our choice of the spherical coordinate system.
They are not physical, do not show up in physical measurements at θ = 0
and π , and can be removed by a coordinate transformation. However, the r = 0
singularity is real. This is not surprising as the Newtonian gravitational poten-
tial for a point mass already has this feature: −GM/r. What about the r = r∗
surface? Recall that the Riemann curvature tensor Rμνλρ is nontrivial only in
a curved space. The coordinate-independent product of the curvature tensor
RμνλρRμνλρ = 12r∗2/r6 is singular at r = 0, but not at r = r∗. This suggests
that at r = r∗ there is a coordinate singularity, i.e. it is not physical and can be
transformed away by a coordinate transformation.

The event horizon
While physical measurements are not singular at r = r∗, it does not mean that
this surface is not special. It is an event horizon, separating events that can be
viewed from afar, from those which cannot (no matter how long one waits).
That is, the r = r∗ surface is a boundary of communication, much like earth’s
horizon is a boundary of our vision.

A simple way to see that no light signal can be transmitted to an outside
observer is to show that any light source inside the r = r∗ surface would have
its emitted frequency viewed by an outside observer as suffering an infinite
gravitational redshift. Recall the relation (13.3) between coordinate time (t)
and the proper time (τ ),
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dτ = √−g00dt. (14.54)

The received frequency is ωrec ∝ 1/dt and the emitted frequency is ωem ∝
1/dτ . Hence

ωrec = √−g00ωem (14.55)

showing that ωrec → 0 as the Schwarzschild metric element g00 → 0 as r
approaches r∗. The vanishing of the received frequency means it would take
an infinite amount of coordinate time to receive the next photon.

Behavior of lightcones near the event horizon
The key property of an event horizon is that any time-like worldline can pass
through it only in one direction, toward the r = 0 singularity. Particles and
light rays cannot move outward from the region r < r∗. Traveling inside the
horizon, a particle inexorably moves towards the physical singularity at r = 0.
To see this involves a proper study of the lightcone behavior when crossing the
Schwarzschild surface.

Fig. 14.5 Lightcones in Schwarzschild
spacetime. Regions I and II are separated by
the Schwarzschild surface. Different light
rays correspond to (14.59) with different
constants. Note that the outgoing light rays
in region II also end at the r = 0 line.

A radial (dθ = dφ = 0) worldline for a photon in Schwarzschild spacetime
in Schwarzschild coordinates has a null line-element of

ds2 = −
(

1− r∗

r

)
c2dt2 +

(
1− r∗

r

)−1

dr2 = 0. (14.56)

We then have

cdt = ± dr

1− r∗/r
. (14.57)

This can be integrated to obtain, for some reference spacetime point of (r0, t0),

c
(
t − t0

) = ±(r − r0 + r∗ ln

∣∣∣∣ r − r∗

r0 − r∗

∣∣∣∣
)

, (14.58)

or simply,

ct = ± (r + r∗ ln
∣∣r − r∗

∣∣+ constant
)

. (14.59)

The + sign stands for the outgoing, and the − sign for the in-falling, light-like
geodesics, as shown in Fig. 14.5. To aid our viewing of this spacetime diagram
we have drawn in several lightcones in various spacetime regions. We note
that for the region far from the source where the spacetime becomes flat, the
lightcone approaches the expected form with ±45◦ sides.

The most prominent feature we notice is that the lightcones “tip over” when
crossing the Schwarzschild surface. Instead of opening towards the t = ∞ dir-
ection, they tip towards the r = 0 line. This can be understood by noting that
the roles of space and time are interchanged when crossing over the r = r∗
surface in the Schwarzschild geometry.

• In the spacetime region I outside the Schwarzschild surface r > r∗, the
time and space coordinates have the usual properties, being time-like
ds2

t < 0 and space-like ds2
r > 0 (cf. Section 11.3.1). In particular, lines

of fixed r (parallel to the time axis) are time-like, and lines of fixed t
are space-like. Since the trajectory for any particle must necessarily be



14.5 The Schwarzschild solution 233

time-like (i.e. every subsequent segment must be contained inside the
lightcone at a given worldpoint, as shown in Fig. 11.4), the lightcones
open upwards in the ever-larger t direction. In this region I of Fig. 14.5,
an observer is fated to have an ever-increasing t.

• In region II, inside the Schwarzschild surface, the roles of t and r are
reversed. A worldline of fixed time is now time-like. This comes about
because the (1− r∗/r) factor in the metric changes sign. For a world-
line to remain time-like (ds2 < 0), the particle can no longer stay put at
one position (dr �= 0), but is forced to move inward towards the r = 0
singularity.

The fact that the metric becomes singular at the r = r∗ surface means that
the Schwarzschild coordinates (t, r, θ ,φ) are not convenient for the discussion
of events near the Schwarzschild surface. Our description of the “tipping-over”
of the light-cones in Fig. 14.5 obtained by using Schwarzschild coordinates is
suspect as the function t(r) is singular across the r = r∗ surface. But coordinate
systems can be found so that the metric is not singular at r = r∗.

Black hole as a future singularity The lightcone behavior in the (retarded)
Eddington–Finkelstein (EF) coordinate system is plotted in Fig. 14.6(a). We
see now that lightcones tip over smoothly across the Schwarzschild surface.
Inside the horizon, both sides of lightcones bend towards the r = 0 line; the
r = r∗ surface is a one-way membrane allowing transmission of particles and
light only inward. Particles can only move inward from the r > r∗region I to
the r < r∗ region II, towards the r = 0 singularity, which is in the future. This
is the black hole, containing a future singularity.

Fig. 14.6 Lightcones in Eddington–
Finkelstein spacetime. (a) In retarded EF
coordinates (t̄, r) with a black hole, showing
two regions I and II with r = 0 as a line
of future singularities. (b) In advanced EF
coordinates (t̃, r) with a white hole, showing
two regions I′ and II′ with r = 0 as past
singularities.

White hole as a past singularity Since the Einstein equation is symmetric
under time reversal t →−t, there can be another set of solutions. In Fig. 14.6
(b) we have plotted the lightcones in another related system, the (advanced)
Eddington–Finkelstein coordinate system. Once again, the r = r∗ surface only
allows particles to cross in one direction—now particles can only move out-
ward from the interior r < r∗ region II′ to the r > r∗region I′. Thus we have
here a solution to Einstein’s equation that contains a past singularity at r = 0.
Such a solution has come to be called a white hole.

The geometric property that makes the r = r∗ Schwarzschild surface an
event horizon is that all points on such a surface have their lightcones entirely
on one side of the surface as shown in Fig. 14.7. In the case of a black hole,
they are on the side of r < r∗ as shown in Fig. 14.6(a); in the case of a white
hole, they are on the side of r > r∗ as shown in Fig. 14.6(b).

Fig. 14.7 A null surface is an event hori-
zon. The lightcones of all points on the
null surface are on one side of the surface.
All time-like worldlines (samples shown as
heavy arrowed lines) being contained inside
lightcones can cross the null surface only
in one direction. Thus, a null surface is a
“one-way memberane”.

The acceptance of black holes as reality
Black holes were studied extensively in the late 1930s by J.R. Oppenheimer
(1904–67) and his collaborators. The physical reality of such strong-gravity
objects was not at first believed by most physicists, including leading relativists
such as Einstein and Eddington. General acceptance by the physics community
did not occur until the 1960s. In this respect the theoretical work by teams led
by J.A. Wheeler (1911–2008) in the U.S.A. and by Y.B. Zel’dovich (1914–87)
in the Soviet Union, combined with modern astronomical observations, played
a decisive role.
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• In cosmology the universe is treated as one physical system, with the

galaxies being the constituent elements. On the cosmic scale the only
relevant interaction among galaxies is gravitation. The general theory
of relativity provides the natural framework for the study of cosmology.

• Spatial homogeneity and isotropy (the cosmological principle) leads to
a spacetime described by the Robertson–Walker metric, with an overall
scale factor a(t) that controls the time evolution of the universe.

• In GR, space is a dynamic quantity; the metric function of spacetime
is the solution to the Einstein equation. The big bang is not any sort
of ‘explosion of matter in space’, but an expansion of space itself. The
resultant scale factor a(t) naturally gives rise to the Hubble relation:
any two points separated from each other have a relative velocity that is
proportional to the separation distance.

• In the GR description, the cosmic curvature and time evolution are
directly related to the mass/energy content of the universe. In the
present epoch, the familiar form of matter (composed of atoms), called
‘baryonic matter’, is found to be less than one-fifth of the matter con-
tent. The other portion is ‘dark matter’. Its presence has been detected
by its gravitational attraction. The energy density ρ is measured in
units of the critical density: � ≡ ρ/ρc. Adding up the baryonic and
dark matter, �M = �B +�DM � 0.25. According to Einstein equation,
the inequality �M < 1 means that our universe should have negative
curvature, disagreeing with observation.

• Einstein was the first one to apply GR to the study of cosmology in
1917. Like everyone then, he assumed our universe was static. This is
an impossibility because in his GR theory, like the Newtonian theory,
gravity is always an attraction. However Einstein discovered that GR
naturally suggested a way to include a gravitational repulsion term that
can counter the usual attraction. Thus motivated, he introduced on the
geometric side of the Einstein field equation a term, called the cosmolo-
gical constant, that corresponds to a cosmic gravitational repulsion that
increases with distance.

• George Gamow claimed that Einstein said to him that the introduction
of the cosmological constant was ‘the biggest blunder of his life’. While
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it is quite possible that Einstein had some regret of having missed the
chance to predict the expanding universe, the discovery that the GR field
equation can accommodate a cosmic repulsion component is certainly
a great contribution to cosmology.

• A (large) cosmological constant is the key ingredient in the inflation-
ary cosmology of the big bang. Its prediction that the spatial geometry
of the universe must be, on the average, flat had been verified by
observation.

• A cosmological constant, with its repulsion feature, is also needed to
explain the 1998 discovery that the expansion of the universe is accel-
erating. Different methods of astrophysical study (supernovae redshift,
CMBR anisotropy, and galaxy distribution) have arrived at a concordant
picture, called �CDM cosmology, with the dark energy (cosmological
constant �) and cold dark matter being the two largest energy compon-
ents, with a sum � = �� +�M � 0.75+ 0.25 = 1 in agreement with
the requirement of a flat universe.

Cosmology is the study of the whole universe as a physical system:

What is its matter–energy content? How is this content organized?
What is its history? How will it evolve in the future?

The description gives a “smeared” picture with the galaxies being the constitu-
ent elements of the system. On the cosmic scale the only relevant interaction
among galaxies is gravitation; all galaxies are accelerating under their mutual
gravity. Thus the study of cosmology depends crucially on our understand-
ing of the gravitational interaction. Consequently, the proper framework for
cosmology is GR. The solution of Einstein’s equation describes the whole of
universe because it describes the whole of spacetime. Soon after the com-
pletion of his papers on the foundation of GR, Einstein proceeded to apply
his new theory to cosmology. In 1917 he published his paper, Cosmological
considerations on the general theory of relativity showing that GR can
describe an unbounded homogeneous mass distribution. Since then almost all
cosmological studies have been carried out in the framework of GR.

Einstein was very much influenced by the teaching of Ernest Mach in his
original motivation for general relativity.1 1A simple discussion of Einstein’s GR motiv-

ation in connection with Mach’s paradox can
be found in Chapter 1 of Cheng (2010).

Although his theory ultimately was
unable to embody the strong version of Mach’s principle that the total inertia
of any single body was determined by the interaction with all the bodies in the
universe, nevertheless he viewed his 1917 cosmology paper as the completion
of his GR program because it showed that the matter in the universe determines
the entire geometry of the universe.

15.1 The cosmological principle

Modern cosmology usually adopts the working hypothesis called the cosmolo-
gical principle—at each epoch (i.e. each fixed value of cosmological time t) the
universe is taken to be homogeneous and isotropic. It presents the same aspects
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(except for local irregularities22The observed irregularities in the universe
(i.e. the structure of stars, galaxies, clusters
of galaxies, superclusters, voids, etc.) are
assumed to arise because of gravitational
clumping around some initial density uneven-
ness. Various mechanisms for seeding such
density perturbations have been explored.
Most of the efforts have been concentrated
around the idea that they originate from
quantum fluctuations when the universe was
extremely compact. Furthermore it is theor-
ized that the universe in the earliest moments
passed through a phase of extraordinar-
ily rapid expansion, the “cosmic inflationary
epoch” (discussed in Section 15.3.2) and the
small inhomogeneities from quantum fluctu-
ation were inflated to astrophysical size and
they seeded the cosmological density perturb-
ation.

) from each point: the universe has no center and
no edge. The hypothesis has been confirmed by modern astronomical observa-
tion, especially the cosmic background radiation which is homogeneous to one
part in 105 in every direction. It gives rise to a picture of the universe as a
physical system of a ‘cosmic fluid’.

15.1.1 The Robertson–Walker spacetime

The cosmological principle gives rise to the geometry of the universe that can
be most conveniently described in the comoving coordinate system.

Comoving coordinate system
The picture of the universe discussed above allows us to pick a privileged
coordinate frame, the comoving coordinate system, where the coordinate time
and positions are chosen to be

t ≡ the proper time of each fluid element;

x i ≡ the spatial coordinates carried by each fluid element.

The comoving coordinate time can be synchronized over the whole system.
A comoving observer flows with a cosmic fluid element. Because each fluid
element carries its own position label the comoving coordinate is also the cos-
mic rest-frame—as each fluid element’s position coordinates are unchanged
with time. But we must remember that in GR the coordinates do not measure
distance, which is a combination of the coordinates and the metric. As we shall
detail below, viewed in this comoving coordinate, the expanding universe (with
all galaxies rushing away from each other) is described not by changing pos-
ition coordinates, but by an ever-increasing metric. Since the metric describes
the geometry of space itself, this emphasizes that the physics underlying an
expanding universe is not something exploding in space, but is the expansion
of space itself.

The Robertson–Walker metric
Just as Schwarzschild showed that spherical symmetry restricts the metric to
the form of gμν = diag(g00, grr, r2, r2 sin2 θ ) with only two scalar functions,
g00 and grr, here we discuss the geometry resulting from the cosmological
principle for a homogeneous and isotropic universe. The resulting metric, when
expressed in comoving coordinates, is the Robertson–Walker metric.33Named after American physicist H.P.

Robertson (1903–61) and English mathema-
tician A.G. Walker (1909–2001).

Because
the coordinate time is chosen to be the proper time of fluid elements, we must
have g00 = −1. The fact that the space-like slices for fixed t can be defined
means that the spatial axes are orthogonal to the time axes g0i = gi0 = 0. Let gij

be the 3× 3 spatial part of the metric; this implies the 4D metric that satisfies
the cosmological principle is block-diagonal:

gμν =
(−1 0

0 gij

)
. (15.1)

Namely, the invariant interval is

ds2 = −c2dt2 + gijdx idx j ≡ −c2dt2 + dl2. (15.2)



15.1 The cosmological principle 237

Because of the cosmological principle requirement (i.e. no preferred direction
and position), the time-dependence in gij must be an overall scale factor a(t),
with no dependence on any of the indices:

dl2 = a2(t) dl̃2 (15.3)

where the reduced length element dl̃ is t-independent, while the scale factor is
normalized at the present epoch by a(t0) = 1.

a(t)

Fig. 15.1 A three-dimensional map of the
cosmic fluid with elements labeled by
t-independent x̃i comoving coordinates. The
time dependence of any distance comes
entirely from the t-dependent scale factor of
the map.

One has the picture of the universe as a three-dimensional map (Fig. 15.1),
with cosmic fluid elements labeled by the fixed (t-independent) map coordin-
ates x̃i. Time evolution enters entirely through the time-dependence of the map
scale xi(t) = a(t)x̃i—as a(t) determines the size of the grids and is independ-
ent of the map coordinates x̃i. As the universe expands (i.e. a(t) increases), the
relative distance relations (i.e. the shape of things) are not changed.

At a give time, 3D space being homogeneous and isotropic, one naturally
expects this space to have a constant curvature (cf. Section 12.4.4). We will
not work out the details here; suffice to note that there are three types of such
spaces, labeled by a parameter k = ±1, 0 in gij, known as the “curvature signa-
ture”, with k = +1 for a positively curved 3-sphere called a “closed universe”,
k = −1 for a negatively curved 3-pseudosphere, an “open universe”, and k = 0
for a 3D flat (Euclidean) space, a “flat universe”. As expected from GR theory,
the mass/energy content of the universe will determine which geometry the
universe would have.

Distances in the Robertson–Walker spacetime
In an expanding universe with a space that may be curved, we must be very
careful in any treatment of distance. Nevertheless the time dependence of dis-
tance measurement is simple. The (proper) distance D(x̃, t) to a point at the
comoving distance x̃ and cosmic time t (i.e. the separation between emitter and
receiver on the spacetime surface of a fixed time from t0 to t), according to
Eq. (15.3), is

D(x̃, t) = a(t)D(x̃, t0) (15.4)

where D(x̃, t0) is the fixed (comoving) distance at the present epoch t0. This
implies a proper velocity of

V(t) = dD

dt
= ȧ(t)

a(t)
D(t). (15.5)

Evidently the velocity is proportional to the separation.4 4This was first derived by G. Lemartre and
independently by H. Weyl in 1925. See the
reference in Peebles (1984).

This is Hubble’s rela-
tion with the proportional constant ȧ(t)/a(t) called the Hubble constant H(t);
in particular its value at the present epoch is H0 = ȧ(t0). Recall that the appear-
ance of an overall scale factor in the spatial part of the Robertson–Walker
metric follows from our imposition of the homogeneity and isotropy condi-
tion. The result in (15.5) confirms our expectation that in any geometrical
description of a dynamical universe which satisfies the cosmological principle,
Hubble’s relation emerges automatically.
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15.1.2 The discovery of the expanding universe

Astronomers have devised a whole series of techniques that can be used
to estimate the distances ever farther into space. Each new one, although
less reliable, can be used to reach out further into the universe. During the
period 1910–1930, the “cosmic distance ladder” reached out beyond 100 kpc
(kiloparsec55The astronomical distance unit, parsec,

pc = 3.1× 1016 m = 3.26 light-years.
). The great discovery was made that our universe was composed of

a vast collection of galaxies, each resembling our own, the Milky Way. One nat-
urally tried to study the motions of these newly discovered “island universes”
by using the Doppler effect. When a galaxy is observed at visible wavelengths,
its spectrum typically has absorption lines because of the relatively cool upper
stellar atmospheres. For a particular absorption line measured in the laborat-
ory to have a wavelength λem; the wavelength received by the observer may,
however, be different. Such a wavelength shift

z ≡ λrec − λem

λem
(15.6)

is related to the emitter motion by the Doppler effect, which, for nonrelativistic
motion, can be stated as

z = �λ

λ
� V

c
, (15.7)

where V is the recession velocity of the emitter (away from the receiver).
A priori, for different galaxies one expects a random distribution of

wavelength shifts: some positive (redshift) and some negative (blueshift). This
is more or less true for the Local Group (galaxies near our own Milky Way).
But beyond the few nearby galaxies, the measurements over a 10-year period at
Arizona’s Lowell Observatory by Vesto Slipher (1875–1969) of some 40 galax-
ies, showed that all, except a few in the Local Group, were redshifted. Edwin
Hubble (1889–1953) at the Mt. Wilson Observatory, California, then attempted
to correlate these redshift results to the difficult task of estimating the distances
to these galaxies. He found that the redshift was proportional to the distance D
to the light-emitting galaxy. In 1929, Hubble announced his result:

z = H0

c
D (15.8)

or, substituting in the Doppler interpretation of (15.7),

V = H0D. (15.9)

Namely, we live in an expanding universe.66The first one to interpret Slipher’s redshift
result as indicating an expanding universe
was the Dutch mathematician and astronomer
Willem de Sitter (1872–1934) who worked
with a GR model devoid of matter content.

On distance scales greater than
10 Mpc, all galaxies obey Hubble’s relation: they are receding from us with
speed linearly proportional to the distance (Hubble 1929). The proportionality
constant H0, the Hubble constant, gives the recession speed per unit separation
(between the receiving and emitting galaxies). To obtain an accurate value of
H0 has been a great challenge as it requires one to ascertain great cosmic dis-
tances. Only recently has it become possible to yield consistent results among
several independent methods. We have the convergent value

H0 = (72± 5 km/s)Mpc−1, (15.10)
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where the subscript 0 stands for the present epoch H0 ≡ H(t0). An inspection
of Hubble’s relation (15.9) shows that H0 has the dimension of inverse time,
the Hubble time, which has the value of

tH ≡ H−1
0 = 13.6 Gyr. (15.11)

For reference, we note that the age of our earth is estimated to be around
4.6 Gyr.

Although Hubble is often claimed to be the discoverer of the expanding
universe, this is not entirely an accurate attribution. Hubble deduced the Hubble
relation from observational data and he never advocated the expanding universe
idea. It was the Belgian priest Georges Lemaître (1894–1966) who first wrote
down Hubble’s relation in 1927 in the context of an expanding universe model
based on general relativity7 7(Lemaître 1927, 1931). See the historical

comments, for example, in Peebles (1984).
and compared (15.9) with observational data.

15.1.3 Big bang cosmology

If all galaxies are rushing away from each other now, presumably they must
have been closer in the past. Extrapolating back in time there would be a
moment, ‘the big bang’, when all objects were concentrated at one point of
infinite density, taken to be the origin of the universe. This big bang cosmology
was first advocated by Lemaître.

During the epochs immediately after the big bang, the universe was much
more compact, and the energy associated with the random motions of matter
and radiation was much larger. Thus, we say, the universe was much hotter.
As a result, elementary particles could be in thermal equilibrium through their
interactions. As the universe expanded, it also cooled. With the lowering of
particle energy, particles (and antiparticles) would either disappear through
annihilation, or combine into various composites of particles, or “decouple”
to become free particles. As a consequence, there would be different kinds of
thermal relics left behind by the hot big bang. That we can speak of the early
universe with any sort of confidence rests with the idea that the universe had
been in a series of equilibria. At such stages, the property of the system was
determined, independent of the details of the interactions, by a few parameters
such as the temperature, density, pressure, etc. Thermodynamical investiga-
tion of the cosmic history was pioneered by Richard Tolman (1881–1948).
This approach to extract observable consequences from big bang cosmology
was vigorously pursued by George Gamow (1904–68) and his collaborator,
Ralph Alpher (1921–2007). Their theoretical work on big bang nucleosyn-
thesis, the cosmic microwave background, received observational confirmation
(Penzias and Wilson 1965), leading to the general acceptance of the big bang
cosmology.

A historical aside The first estimate of the value of Hubbles constant by
Hubble was too large by a factor of almost 10 (related to the calibration of
distance estimate by using Cepheid variable stars as the “standard candle”).
This led to an underestimation of the cosmic age that is smaller than some of
the known old stars. This “cosmic age problem” was one of the motivations
that led Hermann Bondi (1919–2005), Thomas Gold (1920–2004), and Fred
Hoyle (1915–2001) to propose in the early 1950s a rival theory to the big bang
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cosmology, the “steady state universe” (SSU).88In the steady state cosmology the expansion
rate, spatial curvature, matter density, etc. are
all time-independent. A constant mass dens-
ity means that the universe did not have a big
hot beginning; hence there cannot be a cos-
mic age problem. To have a constant mass
density in an expanding universe requires the
continuous, energy-nonconserving, creation
of matter. To SSU’s advocates, this spontan-
eous mass creation is no more peculiar than
the creation of all matter at the instant of
the big bang. In fact, the name ‘big bang’
was invented by Fred Hoyle as a some-
what dismissive description of the competing
cosmology.

The latter model was competit-
ive until the discovery in the mid-1960s of the cosmic microwave background
radiation, the afterglow of the big bang.

Age of the universe
How much time has evolved since this fiery beginning? What then is the age
of our universe?

By Hubble’s “constant”, we mean that, at a given cosmic time, H is inde-
pendent of the separation distance and the recessional velocity—the Hubble
relation is a linear relation. The proportionality coefficient between distance
and recessional speed is not expected to be a constant with respect to time:
there is matter and energy in the universe, their mutual gravitational attraction
will slow down the expansion, leading to a monotonically decreasing expan-
sion rate H(t)—a decelerating universe. Only in an “empty universe” do we
expect the expansion rate to be a constant throughout its history, H(t) = H0. In
that case, the age t0 of the empty universe is given by the Hubble time

[t0]empty = D

V
= 1

H0
= tH. (15.12)

For a decelerating universe full of matter and energy, the expansion rate must
be larger in the past: [H(t < t0)] > H0. Because the universe was expanding
faster than the present rate, this would imply that the age of the decelerating
universe must be shorter than the empty-universe age: t0 < tH.

What is the observational limit of the universe’s age? An important approach
to the phenomenological study has been the research work on systems of 105

or so old stars known as globular clusters. Astrophysical estimation of the ages
of globular clusters [t0]gc can then be used to set a lower bound on the cosmic
age t0:

12 Gyr � [t0]gc � 15 Gyr. (15.13)

15.2 Time evolution of the universe

In the above, we studied the kinematics of the standard model of cosmology.
The requirement of a homogeneous and isotropic space fixes the spacetime to
have the Robertson–Walker metric in comoving coordinates. This geometry is
specified by a curvature signature k and a t-dependent scale factor a(t). Here
we study the dynamics of the model universe. The unknown quantities k and
a(t) are to be determined by the matter/energy sources through the Einstein
field equation as applied to the physical system of the cosmic fluid. The theory
of the expanding universe was written down in 1922 by the Russian mathem-
atician Alexander Friedmann (1888–1925) working with a matter-filled GR
model (Friedmann 1922).

15.2.1 The FLRW cosmology

The Einstein equation (14.35) relates spacetime’s geometry on one side and
the mass/energy distribution on the another,
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Gμν︸︷︷︸
a,k

= κ︸︷︷︸
NewtonC

Tμν︸︷︷︸
ρ,p

. (15.14)

The spacetime must have the Robertson–Walker metric in comoving coordin-
ates. This means Gμν on the geometry side of Einstein’s equation is expressed
in terms of k and a(t). The source term on the right-hand side should also
be compatible with the homogeneity and isotropy requirement. The simplest
plausible choice for the energy–momentum tensor Tμν is an ideal fluid, spe-
cified by two scalar functions: mass density ρ(t) and pressure p(t) [as discussed
in Section 11.2.5, Eq. (11.43)]. Such dynamical equations for cosmology
are called the Friedmann equations. Because of the symmetry assumed from
the cosmological principle, there are only two independent component equa-
tions. One component of the Einstein equation becomes “the first Friedmann
equation”,

ȧ2(t)

a2(t)
+ kc2

R2
0a2(t)

= 8πGN

3
ρ, (15.15)

where R0 is a constant distance factor, “the radius of the universe”. Another
component becomes “the second Friedmann equation”,

ä(t)

a(t)
= −4πGN

c2

(
p+ 1

3
ρc2

)
. (15.16)

Because the pressure and density factors are positive we have a negative second
derivative ä(t): the expansion must decelerate because of mutual gravitational
attraction among the cosmic fluid elements. This cosmological model is called
the FLRW (Friedmann–Lemaitre–Robertson–Walker) universe.

The first Friedmann equation (15.15) can be readily rewritten as

− kc2

ȧ2R2
0

= 1−�, (15.17)

where � is the mass density ratio, defined9 9Plugging in Hubble’s constant at the present
epoch and Newton’s constant, we have
the critical mass density of ρc,0 = (0.97±
0.08)× 10−29 g/cm3, and, in another con-
venient unit, the critical energy density is

ρcc2 = (2.5× 10−3 eV
)4
/(h̄c)3.

as

� ≡ ρ

ρc
with the critical density ρc = 3H2

8πGN
. (15.18)

Equation (15.17) displays the connection between geometry and the matter/
energy distribution. If our universe has a mass density greater than the crit-
ical density (� > 1), the average curvature must be positive k = +1 (a closed
universe); if the density is less than the critical density (� < 1), then k = −1,
the geometry of an open universe having a negative curvature; and if ρ = ρc,
(i.e. � = 1) we have the k = 0 flat geometry.

For a simple one-component model universe, we can solve the cosmic equa-
tion to obtain the scale factor for various curvature signature values. We merely
note the qualitative behavior of a(t) as depicted in Fig. 15.2. For density less
than ρc the expansion of the open universe (k = −1) will continue forever; for
ρ > ρc the expansion of a closed universe (k = +1) will slow down to a stop
then start to re-collapse—all the way to another a = 0 “big crunch”; for the flat
universe (k = 0) the expansion will slow down but not enough to stop. Thus
the density ratio � (of density to the critical density) not only determines the
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Fig. 15.2 Time dependence of the scale
factor a(t) for open, flat, and closed universes.
The qualitative features of these curves are
the same for radiation- or matter-dominated
universes. All models must have the same
radius a0 and slope ȧ0 at the present epoch t0
in order to match the Hubble constant H0 =
ȧ0/a0. The origin of the cosmic time t = 0
is different for each curve. The straight line
corresponds to an empty universe with an age
t0 = tH .

geometry of the universe (from the positively curved and the negatively curved
universe) it also determines its fate (from expanding forever and a contracting
universe in the future).

15.2.2 Mass/energy content of the universe

What is the mass/energy density of our universe? This knowledge will
determine the geometry and expansion future of our universe.

Baryonic matter
In the present epoch, the radiation energy density is negligibly small compared
to the matter density �R � �M. The matter that we are familiar with is com-
posed of atoms and hence is dominated by the mass energy of protons and
neutrons. Such matter is called baryonic matter.1010In particle physics, protons and neutrons

belong to the class of particles called baryons,
while electrons and neutrinos are examples of
leptons.

Baryonic matter has elec-
tromagnetic interaction and can emit and absorb EM radiation. The baryonic
content is much larger than the visible shining stars, and its energy predomin-
antly resides in the interstellar and intergalactic medium. Still the total baryonic
density can be deduced when we compare the observed light nuclear density
with the prediction of the big bang nucleosynthesis. From such phenomenology
a density ratio of �B = 0.04 has been deduced.

Dark matter
There is compelling evidence that the vast majority of matter does not have
electromagnetic interactions. Hence we cannot see it through its emission or
absorption of radiation. Its presence can however be deduced from its gravit-
ational attraction. This “dark matter” is more than five times as abundant as
baryonic matter:

�M = �B +�DM � 0.04+ 0.21 � 0.25 (15.19)

That there might be a significant amount of dark matter in the universe was
first pointed out in the 1930s by Fritz Zwicky (1898–1974). He noted that,
given the observed radial velocities of the galaxies, the combined mass of the
visible stars and gases in the Coma cluster was simply not enough to hold them
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together gravitationally.11 11In this connection, it may be useful to
be reminded that a particle having a velo-
city greater than the “escape velocity” vesc =√

2GNM/r cannot be held gravitationally by
a spherical source with mass M.

It was reasoned that there must be a large amount
of invisible mass, the dark matter, that was holding this cluster of galaxies
together.

Galactic rotational curve The modern era began in 1970 when Vera Rubin
and her collaborators using more sensitive techniques, were able to extend the
rotation curve measurements far beyond the visible edge of gravitating sys-
tems of galaxies and clusters of galaxies. Consider the gravitational force that
a spherical (or ellipsoidal) mass distribution exerts on a mass m located at a
distance r from the center of a galaxy, see Fig. 15.3(a). Since the contribution
outside the Gaussian sphere (radius r) cancels out, only the interior mass M(r)
enters into the Newtonian formula for gravitational attraction. The object is
held by this gravity in a circular motion with centripetal acceleration of v2/r.
Hence

v(r) =
√

GNM(r)

r
. (15.20)

Thus, the tangential velocity inside a galaxy is expected to rise linearly with the
distance from the center (v ∼ r) if the mass density is approximately constant.
For a light source located outside the galactic mass distribution (radius R), the
velocity is expected to decrease as v ∼ 1/

√
r, see Fig. 15.3(b).

r

r r–1/2

ν

m

R

R

τ

(a)

(b)

Fig. 15.3 (a) Gravitational attraction on a
mass m due to a spherical mass distribu-
tion (shaded disk). The circle passing through
m represents the Gaussian spherical surface.
(b) The solid line is the observed rotation
velocity curve v (r). It does not fall as r−1/2

beyond R, the edge of the visible portion of a
galaxy.

The velocity of particles located at different distances (the rotation curves)
can be measured through the 21-cm lines of the hydrogen atoms. The sur-
prising discovery was that, beyond the visible portion of the galaxies (r > R),
instead of this fall-off, they are observed to stay at the constant peak value (as
far as the measurement can be made). This indicates that the observed object
is gravitationally pulled by other than the luminous matter; hence it constitutes
direct evidence for the existence of dark matter. Many subsequent studies con-
firm this discovery. The general picture that has emerged is that of a disk of
stars and gas embedded in a large halo of dark matter, see Fig. 15.4. In our
simple representation, we take the halo to be spherical. In reality the dark mat-
ter halo may not be spherical and its distribution may not be smooth. In fact
there are theoretical and observational ground to expect that the dark matter
spreads out as an inhomogeneous web and the visible stars congregate at the
potential wells of such a matter distribution. Recently a mammoth filament of
dark matter stretching between two galaxy clusters has been detected through
gravitational lensing (Dietrich et al. 2012).

Fig. 15.4 The dark matter halo surrounding
the luminous portion of the galaxy.

Cold vs. hot dark matter Neutrinos are an example of dark matter, in fact
they are called hot dark matter because (being of extremely low mass) they
typically move with relativistic velocities. From the study of galactic struc-
ture formation it has been concluded that most dark matter is in the form of
‘cold dark matter’ (i.e. made up of heavy particles). No known particles fit this
description. It is commonly held that there are yet to be discovered elementary
particles, e.g. supersymmetric particles that may be hundreds or thousands of
times more massive than the nucleons. Such WIMPs (weak interacting massive
particles) form the cold dark matter content of universe.

With �0 = �M,0 � 0.25 (< 1), it would seem that we live in a negatively
curved open universe (with k = −1). In the next section we shall discuss this
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topic further, and conclude that we need to modify Einstein’s equation (by the
addition of the cosmological constant). This theoretical input, together with
new observational evidence, now suggests that we in fact live in a k = 0 flat
universe, with the energy/mass density in the universe just equal to the critical
value.

15.3 The cosmological constant

One of Einstein’s great contributions to cosmology is his discovery that GR can
accommodate a form of cosmic gravitational repulsion when he introduced the
cosmological constant in his field equation.

15.3.1 Einstein and the static universe

Before the discovery by Lemaître and by Hubble of an expanding universe in
the late 1920s, just about everyone, Einstein included, believed that we lived in
a static universe. Recall that the then-observed universe consisted essentially of
stars within the Milky Way galaxy. But gravity, whether Newtonian or relativ-
istic, is a universal attraction. Hence, theoretically speaking, a static universe
is an impossibility. With the goal of obtaining a static universe solution from
general relativity (GR), Einstein altered his field equation to include a repulsion
component. This could, in principle, balance the usual gravitational attraction
to yield a static cosmic solution. Einstein discovered that the geometry side
(second derivatives of the metric) of his field equation (15.14) could naturally
accommodate an additional term. Mathematically it must be a symmetric rank-
2 tensor with a vanishing covariant divergence constructed out of the metric,
and he noted that the metric tensor gμν itself possessed all these properties,
in particular Dμgμν = 0. In this way the field equation (14.35) is modified to
become

Gμν +�gμν = κTμν . (15.21)

Such a modification will, however, alter its nonrelativistic limit to differ from
Newton’s equation

∇2� = 4πGNρ. (15.22)

In order that this alteration is still compatible with known phenomenology, it
must have a coefficient � so small as to be unimportant in all situations except
on truly large cosmic scales. Hence, this additional constant � has come to be
called the cosmological constant. As we shall explain below, the new term does
have the feature of increasing size with distance.

Properties of the cosmological constant term
� as vacuum energy and pressure While we have introduced this term as
an additional geometric term, we could just as well move it to the RHS of
Eq. (15.21) and view it as an additional source term of gravity. In particular,
when the regular energy–momentum tensor is absent Tμν = 0 (i.e. we are in
the vacuum state), the field equation becomes
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Gμν = −�gμν ≡ κT�
μν . (15.23)

Namely we can interpret the new term as the ‘energy–momentum tensor of the
vacuum’ T�

μν = −κ−1�gμν = (−c4�/8πGN)gμν . Just as Tμν for the cosmic
fluid’s ordinary radiation and matter depends on two functions of the energy
density ρ and pressure p, this vacuum-energy–momentum tensor T�

μν can be
similarly parametrized by the “vacuum-energy density” ρ� and “vacuum pres-
sure” p�. From the structure of the metric gμν these two quantities are related
to a positive cosmological constant � as follows: the vacuum-energy12 12In nonrelativistic physics only the relative

value of energy is meaningful—the motion
of a particle with potential energy V(x) is
exactly the same as one with V(x)+ C, where
C is a constant. In GR, since the whole
energy–momentum tensor is the source of
gravity, the actual value of energy makes a
difference.

per unit
volume,

ρ� = �c2

8πGN
> 0, (15.24)

is a constant (in space and in time) and the corresponding vacuum-pressure,

p� = −ρ�c2 < 0, (15.25)

is negative. Such a negative pressure, as we shall show, gives rise to a
gravitational repulsion.

� as gravitational repulsion that increases with distance In order to have a
physical feel for the cosmological constant, we shall take the Newtonian limit
of the Einstein field equation (cf. Section 14.4.1). For nonrelativistic matter
having a negligible pressure term, we recover the familiar equation (15.22)
corresponding to a gravitational attraction for a point mass M at the origin

gM = −GNM
r
r3

; (15.26)

but for a source having pressure comparable to its mass density, instead of
Eq. (15.22), the Newtonian limit becomes Eq. (14.37):

∇2� = 4πGN

(
ρ + 3

p

c2

)
. (15.27)

In GR not only mass, but also pressure, can be a source of a gravitational
field. Explicitly displaying together the contributions from ordinary matter and
vacuum energy, the density and pressure each has two parts: ρ = ρM + ρ� and
p = pM + p�. The Newton/Poisson equation (15.27) becomes

∇2� = 4πGN

(
ρM + 3

pM

c2
+ ρ� + 3

p�
c2

)
= 4πGNρM − 8πGNρ� = 4πGNρM −�c2, (15.28)

where we have used (15.25) and set pM = 0 because ρMc2 � pM. For the
vacuum energy dominated case of �c2 � 4πGNρM, the Poisson equation
can be solved (after setting the potential to zero at the origin) by ��(r) =
−�c2r2/6. Between any two mass points, this potential corresponds to a
repulsive force (per unit mass) that increases with separation r,

g� = −∇�� = +�c2

3
r, (15.29)
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in contrast to the familiar gravitational attraction of (15.26). With this pervasive
repulsion that increases with distance, even a small � can have a significant
effect in truly large dimensions.

Einstein’s static universe
We now consider the Friedmann equations (15.15) and (15.16) with a nonvan-
ishing cosmological constant,

ȧ2 + kc2/R2
0

a2
= 8πGN

3
(ρM + ρ�), (15.30)

ä

a
= −4πGN

c2

[
( pM + p�)+ 1

3
(ρM + ρ�)c2

]
. (15.31)

The RHS of (15.31) need not necessarily be negative because of the presence
of the negative pressure term p� = −ρ�c2. Consequently, a decelerating uni-
verse is no longer the inevitable outcome. For nonrelativistic matter (pM = 0),
we have

ä

a
= −4πGN

3
(ρM − 2ρ�) . (15.32)

The static condition of ä = 0 now leads to the constraint:

ρM = 2ρ� = �c2

4πGN
. (15.33)

Namely, the mass density ρM of the universe is fixed by the cosmological con-
stant. The other static condition of ȧ = 0 implies, through (15.30), the static
solution a = a0 = 1:

kc2

R2
0

= 8πGNρ� = �c2. (15.34)

Since the RHS is positive, we must have

k = +1. (15.35)

Namely, the static universe has a positive curvature (a closed universe) and
finite size. (Just like the case of a 2D spherical surface it is finite in size but
has no boundary.) The “radius of the universe” is also determined, according
to (15.34), by the cosmological constant:

R0 = 1√
�

. (15.36)

Thus, the basic features of such a static universe, the density and size, are
determined by the arbitrary input parameter�. Not only is this a rather artificial
arrangement, but also the solution is, in fact, unstable. That is, a small variation
will cause the universe to deviate from this static point.

Einstein’s biggest blunder?
Having missed the chance of predicting an expanding universe before its
discovery, Einstein came up with a solution which did not really solve the
perceived difficulty. (His static solution is unstable.) It had often been said that
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later in life Einstein considered the introduction of the cosmological constant
to be “the biggest blunder of his life!” This originated from a characterization
by George Gamow in his autobiography (Gamow, 1970):

Thus, Einstein’s original gravity equation was correct, and changing it was a mistake.
Much later, when I was discussing cosmological problems with Einstein, he remarked
that the introduction of the cosmological term was the biggest blunder he ever made in
his life.

Then Gamow went on to say,

But this blunder, rejected by Einstein, is still sometimes used by cosmologists even today,
and the cosmological constant � rears its ugly head again and again and again.

What we can conclude for sure is that Gamow himself considered the cos-
mological constant ‘ugly’ (because this extra term made the field equation less
simple). Generations of cosmologists kept on including it because the quantum
vacuum energy13 13See the discussion at the end of this chapter

of the quantum vacuum state having an
energy with just the properties of the cosmo-
logical constant.

gives rise to such a term and there was no physical principle
one could invoke to exclude this term. (If it is not forbidden, it must exist!) In
fact the discovery of the cosmological constant as the source of a new cosmic
repulsive force must be regarded as one of Einstein’s great achievements.

15.3.2 The Inflationary epoch

As we shall explain, the idea of a nonzero cosmological constant has been
the key in solving a number of fundamental problems in cosmology. Einstein
taught us the way to bring about a gravitational repulsion. Although the original
motivation (the static universe) may be invalid, this repulsive force was needed
to account for the explosion that was the big bang (inflationary epoch), and
was needed to explain how the expansion of the universe could in the present
epoch accelerate (dark energy).

The inflationary cosmology
The FLRW cosmology (with a small or vanishing �) has acute problems
related to its initial conditions:

• The flatness problem: gravitational attraction always enhances any initial
curvature.14 14From Eq. (15.17) we see that if k = 0 (a flat

geometry), we must have the density ratio
� = 1 exactly; when k �= 0 for a universe
having curvature, then [1−�(t)] must be
ever-increasing because the denominator on
the LHS is ever decreasing. Thus, the condi-
tion for a flat universe � = 1 is an unstable
equilibrium point—if � ever deviates from 1,
this deviation will increase with time.

In light of this property, it is puzzling that the present mass
density �0 has been found observationally to be not too different from
the critical density value (1−�0) = O(1). This means that � must have
been extremely close to unity (extremely flat) in the cosmic past. Such a
fine-tuned initial condition would require an explanation.

• The horizon problem: Our universe is observed to be very homogeneous
and isotropic. In fact, we can say that it is “too” homogeneous and iso-
tropic. Consider two different parts of the universe that are so far apart
that no light signal sent from one at the beginning of the universe could
have reached the other. Namely they are outside of each other’s horizons.



248 Cosmology

Yet they are observed to have similar properties. This suggests their being
in thermal contact sometime in the past. How can this be possible?

Exponential expansion in a �-dominated universe What type of cosmic
expansion would result from the gravitational repulsion as represented by a
dominant cosmological constant? As the energy density ρ� is a constant and
unchanged by an increasing volume, the more the space expands, the greater
is the vacuum energy and negative pressure, causing the space to expand even
faster. This self-reinforcing feature implies an exponential increase1515For a �-dominated source, the Friedmann

equation (15.30) becomes a rate equation:
da/dt = a/�t, having an exponential solu-
tion with �t = √3/(8πGNρ�).

of the
scale factor and its derivative, with the time constant �t related to �:

a(t) ∼ et/�t and ȧ(t) ∼ et/�t. (15.37)

In fact, we can think of this � repulsive force as residing in the space itself,
so as the universe expands, the push from this � energy increases as well.
(The total energy was conserved during the rapid expansion because of the
concomitant creation of the gravitational field, which has a negative potential
energy.)

Solving the initial condition problems The initial condition problems of the
FLRW cosmology can be solved if, in the early moments, the universe had gone
through an epoch of extraordinarily rapid expansion—the inflationary epoch.
This can solve the flatness problem, as any initial curvature could be stretched
flat by the burst of expansion.16

16From Eq. (15.17) we see that, starting
from some initial density �(t1), the expo-
nential expansion of (15.37) would make the
subsequent density ratio extremely close to
unity after several periods as can be seen in
1−�(t2)
1−�(t1) =

[
ȧ(t2)
ȧ(t1)

]−2 = e−2(t2−t1)/�τ . This can solve the horizon problem if the asso-
ciated expansion rate could reach superluminal speed. If the expansion rate
could be greater than light speed,1717As shown in Eq. (15.37), in an exponen-

tial expansion, the rate of expansion also
increases exponentially. This does not con-
tradict special relativity, which says that an
object cannot pass another one faster than
c in one fixed frame. Putting it in another
way, while an object cannot travel faster than
the speed of light through space, there is no
restriction stipulating that space itself cannot
expand faster than c.

then one horizon volume could have been
stretched out to a large volume that corresponded to many horizon volumes
after this burst of expansion. This rapid expansion could happen if there exis-
ted then a large cosmological constant �, which could supply a huge repulsion
to the system. Some ideas from particle physics, as first noted by Alan Guth
(1947– ) suggests such a large vacuum energy can indeed come about dur-
ing the “spontaneous symmetry breaking” phase transitions associated with a
“grand unified theory” (cf. Chapter 16). Although the general predictions of
inflation have checked out with observation, we should note that inflationary
cosmology, rather than just a specific theory, is really a framework1818In many ways it is like evolution in biology

as paradigms rather than just one specific
theory.

in which
to think of the big bang. The inflationary epoch almost certainly occurred and
there are many competing theories of inflation.

The most natural theory for the origin It is beyond the scope of this book
to give a proper quantum field theoretical discussion of inflationary cosmology.
Still, we should point out that to many investigators in this field the inflationary
theory of the big bang is the most ‘natural’ theory for the beginning of the
universe. It provides the framework to understand the origin of all matter and
energy, and the associated vacuum fluctuations are inflated to be the initial
inhomogeneity (the density fluctuation) needed to start the formation, through
gravitational clumping, of the observed structures—the stars, the galaxies, and
the clusters of galaxies, etc. Such a universe (with a flat spatial geometry) has a
vanishing total energy: all forms of energy are exactly balanced by the negative
gravitational energy.
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15.3.3 The dark energy leading to an accelerating universe

Inflation predicts a spatially flat universe
One of the firm predictions of inflationary cosmology is that the spatial geo-
metry of our universe must be flat, which was in fact confirmed by a whole
series of observations, starting with the high-altitude balloon observations of
CMBR anisotropy (by the Boomerang and Maxima collaborations) in the mid-
1990s. But there were problems associated with the implications of such a
geometrically flat universe:

• The missing energy problem: GR requires a flat universe to have a
mass/energy density exactly equal to the critical density, �0 = 1. Yet
observationally, including both the baryonic and dark matter as shown in
Eq. (15.19), we only find less than a third of this value. Thus, it appears
that to have a flat universe we would have to solve a “missing energy
problem”.

• The cosmic age problem: Our universe is now matter dominated, and its
expansion, as we suggested in the previous discussion, should be decel-
erating. From the study of the time evolution of the universe, one learns
that the age of a matter-dominated flat universe should be two-thirds of
the Hubble time,

(t0)flat = 2

3
tH � 9 Gyr, (15.38)

which is shorter than the estimated age of old stars. Notably the globu-
lar clusters have been deduced to be older than 12 Gyr as discussed in
(15.13). Thus, it appears that to have a flat universe we would also have
to solve a “cosmic age problem”.

Possible resolution of problems in a flat universe with dark energy
A possible resolution of these phenomenological difficulties of a flat uni-
verse (hence inflationary cosmology) would be to assume the presence of
dark energy: any form of energy having a negative pressure to give rise to
gravitational repulsion. The simplest example of dark energy19 19One should not confuse dark energy with

the energies of neutrinos, black holes, etc.
which are also ‘dark’, but are counted as
parts of the ‘dark matter’, as the associated
pressure is not negative and does not lead to
gravitational repulsion. From Eq. (15.27) we
find that dark energy is defined by the con-
dition of pressure being more negative than
−ρc2/3.

is Einstein’s
cosmological constant. Such assumed presence of a cosmological constant
must be completely different from the immense sized � present during the
inflation epoch. Rather, the constant dark energy density ρ� should now be
only a little more than two-thirds of the critical density to provide the required
missing energy.

� = �M +��
?= 1. (15.39)

A nonvanishing � would also provide the repulsion to accelerate the expansion
of the universe. In such an accelerating universe the expansion rate in the past
must have been smaller than the current rate H0. This means that it would take
a longer period (as compared to a decelerating or empty universe) to reach the
present era, thus a longer age t0 > 2tH/3 even though the geometry is flat. This
just might as well possibly solve the cosmic age problem mentioned above.
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The Hubble curve for an accelerating universe should turn upward
A Hubble curve (as in Fig. 15.5) is a plot of the luminosity distance2020The luminosity distance dL is the distance

deduced from the relation between the meas-
ured flux f and the intrinsic luminosity L of
the emitting object, f ≡ L/

(
4πd2

L

)
.

versus
the redshift (measuring recession velocity) of the light-emitting star. A straight
Hubble curve means a cosmic expansion that is coasting. This can only hap-
pen in an empty universe (cf. Fig. 15.2). If the expansion is accelerating, the
expansion rate H must be smaller in the past. From Eq. (15.8): HD = z, we see
that, for a given redshift z, the distance D to the light-emitting supernova must
be larger than that for an empty or decelerating universe when H ≥ H0. Thus
the Hubble curve for an accelerating universe would bend upwards.
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Fig. 15.5 A Hubble diagram: The Hubble
curve for an accelerating universe bends
upwards. A supernova on this curve at a given
redshift would be further out in distance than
anticipated.

Distant supernovae and the 1998 discovery
By 1998 two collaborations, “the Supernova Cosmological Project”, led by
Saul Perlmutter and “the High-z Supernova Search Team”, led by Adam Riess
and Brian Schmidt, each had accumulated some 50 Type-1a supernovae at high
redshifts—z: 0.4–0.7 corresponding to supernovae occurring five to eight bil-
lion years ago. They made the astonishing discovery that the expansion of the
universe was actually accelerating, as indicated by the fact that the measured
luminosities were on the average 25% less than anticipated, and the Hubble
curve bent upward.

Extracting �M and �� from the measured Hubble curve Since the matter
content �M would lead to a decelerated expansion and a downward bending
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Fig. 15.6 Discovery of an accelerating uni-
verse. The Hubble plot showing the data
points from Riess et al. (1998) and Perlmutter
et al. (1999) lying above the empty universe
(dotted) line. The dashed curve represents the
prediction of a flat universe without cosmolo-
gical constant, the solid curve being the best
fit of the observational data. The vertical axes
are distances (expressed in terms of “distance
modulus”). In the lower panel �(m−M) is
the difference after subtracting out the then
expected value for a decelerating universe
with �M = 0.3 and �� = 0. The graph is
based on Fig. 1 of Reiss (2000).
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Hubble curve and �� would lead to an accelerated expansion and a upward
bending Hubble curve, one can then extract the matter and dark energy contents
in the present epoch by fitting the Hubble curve to the observational data of
Fig. 15.6 with the result shown in Fig. 15.7.
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Fig. 15.7 Fitting �� and �M to the discov-
ery data of Fig. 15.6 obtained by the High-Z
SN Search Team and Supernova Cosmology
Project. The favored values of �� and �M

follow from the central values of CMB aniso-
tropy �� +�M � 1 (the straight line) and
those of the Supernova data represented by
confidence contours (ellipses) around �� −
�M � 0.5. The graph is based on Fig. 2 of
Riess (2000).

The extracted values not only solve the missing energy problem,

� = �M +�� � 0.25+ 0.75 = 1,

but from their values one can also calculate the age of the universe to find it
very close to that of an empty universe:

t0 = 1.02 tH � 14 Gyr. (15.40)

Remark We have mentioned earlier that the cosmological constant � is
expected to have such a small magnitude that it should be negligible on ordin-
ary astronomical scales. We can demonstrate this by showing that in the solar
system the gravitation repulsion due to ��, compared to the familiar gravita-
tional attraction, is totally unimportant. We take the ratio of the gravitational
repulsion (15.29) due to the dark energy g� = +r�c2/3 = +r8πGNρc,0�� to
the usual solar gravitational attraction (15.26) gM = −rGNM�/r3 to have:

∣∣∣∣g�gM

∣∣∣∣ = 8π��

3

ρc,0r3

M�
= O(10−22), (15.41)

where we have plugged in the critical mass density of (15.18) ρc,0 = (0.97±
0.08)× 10−29 g/cm3 and the average separation between the sun and earth, the
“astronomical unit”, r = AU = 1.5× 1013cm.

Further evidence of dark energy and the mystery of its origin
After the supernovae discovery, the presence of dark energy �� = 0.75 was
further confirmed by the analysis of the anisotropy power spectrum of the
cosmic microwave background radiation (CMBR), as well as of the distri-
bution of galaxies. Namely a consistent set of cosmic parameters has been
derived from totally different modes of astrophysical observations: Supernova
redshifts, CMBR, and the galaxy distribution.21 21For example, it has been shown that such a

dark energy is just the agent needed to explain
the observed slow-down of galaxy clusters’
growth (Vikhlinin et al. 2009).The problem of interpreting � as quantum vacuum energy The introduc-

tion of the cosmological constant in the GR field equation does not explain its
physical origin. In the inflation model one postulates that it is the energy of
the “false vacuum” of an inflation/Higgs field that acts like an effective cos-
mological constant driving the inflationary expansion. What is the physical
origin of the dark energy that brings about the accelerating expansion of the
present epoch? A natural candidate is the quantum vacuum energy (cf. Section
6.4.2). The zero-point energy of a quantized field automatically has the prop-
erty of having an energy density that is a constant thus giving rise to a negative
pressure. However such a quantum vacuum energy �q.vac, whilehaving the
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correct property, is expected to be much too large2222This involves an integration of all the
momentum degrees of freedom up to the
natural quantum gravity scale, which is
assumed to the Planck energy/momentum
scale of Section 3.4.2. This yields a ratio
of �q.vac/�� = O

(
10120

)
. Qualitatively we

can understand this result on dimensional
grounds:

�q.vac

��

= ρq.vac

ρc,0
=
[

(energy)q.vac

(energy)c,0

]4

because ρc2 = (energy)4/(h̄c)3 and the
natural scale for quantum gravity is the
Planck energy (energy)q.vac = mPc2 =
1.22× 1028eV and the critical energy
density is (energy)c,0 = 2.5× 10−3eV. For a
more detailed calculation, see Section 11.7,
p. 271 in Cheng (2010), where the possibility
of cancellation between boson and fermion
vacuum energies is also discussed.

to account for the observed
�� = O(1) .

The �CDM universe as the standard model of cosmology
Cosmology has seen major achievements over the past decade, to the extent
that something like a standard model for the origin and development of the
universe is now in place: the FLRW cosmology proceeded by an inflation-
ary epoch. Many of the basic cosmological parameters have been deduced
in several independent ways, arriving at a consistent set of results. These
data are compatible with our universe being infinite and spatially flat, hav-
ing matter/energy density equal to the critical density, �0 = 1. The largest
energy component is consistent with it being Einstein’s cosmological constant
�� � 0.75. In the present epoch this dark energy content is comparable in
size to the matter density �M � 0.25, which is made up mostly of cold dark
matter. Thus this standard model is often call the �CDM cosmology model.
The expansion of the universe will never stop—in fact having entered the
accelerating phase, the expansion will be getting faster and faster.
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• An introduction to the gauge theory is presented in this chapter. We start
with a review of gauge invariance in electromagnetism. That is followed
by a discussion of gauge symmetry in quantum mechanics, showing that
the gauge transformation must involve a spacetime-dependent change
of the phase of a charged particle’s wavefunction (i.e. field). This can
be viewed as a transformation in the (internal) charge space by changing
the particle field’s label.

• If we reverse the above procedure, instead of going from the change in
EM potential then to the wavefunction transformation, we start first with
the phase transformation in quantum mechanics. This initial step may
be understood as changing a spacetime-independent symmetry of the
quantum mechanics equation to a local symmetry—a procedure called
“gauging a symmetry”. EM potentials are viewed then as compensating
factors needed to implement such a local symmetry—the presence of
potentials (with appropriate transformation properties as gauge fields)
is required so that the physics equations are covariant under such local
symmetry transformations.

• We demonstrate how Maxwell’s electrodynamics can be “derived” from
the requirement of a local U(1) symmetry in the internal charge space.
In this way we understand the essence of Maxwell’s theory as special
relativity and gauge invariance. Much like the elevating by Einstein
of the equality of gravitational and inertial masses to the equivalence
principle of gravitation and inertia, we call the approach of finding
dynamics by promoting a global symmetry to a local symmetry, the
gauge principle. Using the gauge principle, we can then generalize this
approach to electromagnetism to the investigation of other fundamental
interactions.

• In 1919 Hermann Weyl first attempted to derive electromagnetism
from a local scale invariance. He was inspired by the success of gen-
eral relativity, Einstein’s new theory of gravity formulated as a local
spacetime symmetry. Weyl was ultimately successful in this endeavor;
this came after the advent of modern quantum mechanics (QM) in
1926 when Vladimir Fock discovered that QM wave equations with
electromagnetic coupling are invariant under local phase transforma-
tions. It was pointed out that Weyl’s scale change in spacetime should
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be understood as a spacetime-dependent U(1) phase change in the
charge space. However, Weyl’s original terminology of gauge (i.e.
scale) transformation has been retained in common usage.

• A U(1) phase change, being commutative, is an abelian transformation.
This was extended by C. N. Yang and R. L. Mills to the case of non-
communtative symmetries. The resultant equations are nonlinear—the
gauge fields themselves are charged (unlike the abelian case of the elec-
tromagnetic field being electrically neutral, but like gravity where the
gravitational field is itself a source of gravity). This richness is one
of the key ingredients that allowed nonabelian gauge theories (also
called Yang–Mills theories) to be the framework for modern particle
theory.

• We describe briefly the steps of going from quantum electrodynamics
to the formulation of the new theory of fundamental strong interaction,
quantum chromodynamics. The gauge theory of electroweak interac-
tions has a more complicated structure because its local symmetry
must be spontaneously broken (via the Higgs mechanism) to account
for the short-range nature of weak interactions. In sum, the success-
ful formulation of the Standard Model shows that fundamental particle
interactions are all gauge interactions. This is a mighty generalization
of Einstein’s symmetry principle, from spacetime to internal charge
spaces. It allowed us first to have a deeper understanding of electromag-
netism, which was crucial to our finding new theories for the strong and
weak interactions.

• Abelian gauge symmetry is discussed in detail (Sections 16.1–16.3)—
up to the point of seeing how Maxwell’s equations follow from gauge
symmetry. Quantum field theories of QED, QCD, and the Standard
Model are described qualitatively in the subsequent sections.

16.1 Einstein and the symmetry principle

One of Einstein’s greatest legacies in physics has been his bringing about of our
realization of the importance of symmetry in physics. His theory of relativity
was built on the foundation of invariance principles. Before Einstein, sym-
metries were generally regarded as mathematical curiosities of great value
to crystallographers, but hardly worthy to be included among the funda-
mental laws of physics. We now understand that a symmetry principle is not
only an organizational device, but also a method to discover new dynamics.
Einstein’s relativity theories based on coordinate symmetries have given us a
deeper appreciation of the structure of physics. His formulation of the sym-
metry among inertial frames of reference showed us the true meaning of the
Lorentz transformation; this allowed us to deduce all the (special) relativistic
effects in a compact way and to discover new equations for other branches
of physics (relativistic mechanics, etc.) so they could be compatible with the
symmetry principle of relativity. The extension of this principle from a special
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class of coordinates to all reference frames, his creation of general relativity,
showed us the way of using spacetime-dependent (local) symmetry to generate
dynamics—in the case of general relativity (GR), its gravitational interaction.

Ever since Einstein, a symmetry principle has been an essential guiding light
in our effort to make new discoveries in theoretical physics. The topic of sym-
metry in physics is a rich one, especially in quantum physics. In this chapter
we shall concentrate1 1We omit other important topics such as

the relation between symmetry and conser-
vation laws and degeneracy in the particle
spectrum, and discrete symmetries (parity
and time reversal invariance, etc.) and their
violation, etc.

on the gauge symmetry. It is one of the most import-
ant principles in fundamental physics. Local symmetry in some “internal” (or
“charge”) space has been the key to our discoveries of new basic physics, lead-
ing to the formulation of the Standard Model of particle physics. Starting from
the work of Hermann Weyl (inspired by Einstein’s GR discovery), we gradually
learnt that electromagnetism could be understood as arising from a spacetime-
dependent local symmetry (gauge symmetry) in the charge space. Namely, we
discovered another profound lesson contained in Maxwell’s equations: Besides
teaching us the proper relation among inertial frames of reference (as given by
the Lorentz transformation), these equations have such a structure as showing
that electromagnetism is a gauge interaction. This simple U(1) local symmetry
associated with electromagnetism was later generalized to the noncommuting
(Yang–Mills) gauge symmetry, which is a key element in the foundations of
modern particle physics.

16.2 Gauge invariance in classical
electromagnetism

We present in this chapter a pedagogical introduction to gauge theory. Since
most students have their first exposure to gauge invariance in classical elec-
trodynamics, this is where we will start—with a review of electromagnetic
(EM) potentials and their gauge transformation. We then discuss gauge trans-
formation in quantum mechanics. Because a quantum mechanical description
is through a Hamiltonian (or through other energy quantities such as a
Lagrangian), which can include a system’s coupling to electromagnetism only
through EM potentials, gauge symmetry plays an integral role in the QM
description.

Classical electromagnetism2 2Here we repeat the essential elements of
Maxwell’s equations, first in familiar 3D vec-
tor notation (as already discussed in Sections
A.1 and 3.1 as well as in Chapters 9 and
10) and then in the 4D spacetime formalism
(in Section 16.4 as we have already done in
Section 11.2.3).

Any field theoretical description of the inter-
action between two particles involves a “two-step description”. Call one the
“source particle”, giving rise to a field everywhere, which in turn acts locally on
the “test particle”. This two-step description can be represented schematically
as follows:

Source particle
field eqns−→ Field

eqns of motion−→ Test particle

The “field equations” tell us how a source particle gives rise to the field every-
where. For the case of electromagnetism, they are Maxwell’s equations. The
“equations of motion” tell us the effects of the field on the motion of a test
particle: how does the field cause the particle to accelerate. For the case of
electromagnetism, they form the Lorentz force law.



258 Internal symmetry

• Equations of motion (Lorentz force law):

F = e

(
E+ 1

c
v× B

)
(16.1)

we note that this equation has a “double duty”: It gives the definition
of the electric and magnetic fields as well as acting as the equation of
motion for a test charge placed in the electromagnetic field.

• Field equations (Maxwell equations):

– Inhomogeneous Maxwell equations:

∇ · E = ρ Gauss’s law (16.2)

∇ × B− 1

c

∂E
∂t
= 1

c
j Ampere’s law (16.3)

– Homogeneous Maxwell equations:

∇ · B = 0 Gauss’s law for magnetism (16.4)

∇ × E+ 1

c

∂B
∂t
= 0 Faraday’s law. (16.5)

16.2.1 Electromagnetic potentials and gauge
transformation

It is easy to solve the homogeneous Maxwell equations (16.4) and (16.5) by
noting that the divergence of any curl, as well as the curl of any gradient, must
vanish:33See the discussion leading up to Eq. (A.20)

in Appendix A1.
Eq. (16.4) can be solved if the B field is the curl of a vector potential A:

B = ∇ × A. (16.6)

Substituting this into (16.5), the vanishing curl ∇× (E+ 1
c
∂A
∂t

) = 0 implies
that the term in parentheses can be written as the gradient of a scalar potential
�:

E = −∇�− 1

c

∂A
∂t

. (16.7)

Thus we can replace (E, B) fields by scalar and vector potentials (�, A) through
the relations (16.6) and (16.7). Substituting these expressions into the inhomo-
geneous Maxwell equations of (16.2) and (16.3), we obtain the dynamics of
the potentials once the source distribution (ρ, j) is given. In other words, one
can regard the homogeneous parts of Maxwell’s equations as the “boundary
conditions” telling us that fields can be expressed in terms of the potentials,
and the true dynamics is contained in the inhomogeneous Maxwell equations.

Gauge invariance in classical electromagnetism
As outlined above we can simplify the description of the EM interactions by
using four components of potentials (�, A) instead of six components of (E, B).
However this replacement of (E, B) by (�, A) is not unique as the fields (E, B),
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hence also Maxwells equations, are invariant under the following change of
potentials (called a gauge transformation):

� −→ �′ = �− 1

c

∂χ

∂t
(16.8)

A −→ A′ = A+∇χ (16.9)

where χ = χ (t, r) (called a gauge function) is an arbitrary scalar function of
position and time. This invariance statement (gauge symmetry) can be easily
verified:

B = ∇ × A −→ B′= ∇ × A′ = ∇ × A+∇×(∇χ ) = ∇ × A = B

because the curl of a gradient must vanish. Similarly,

E = −∇�− 1

c

∂A
∂t

−→ E′= −∇�′ − 1

c

∂A′

∂t

= −∇�+ 1

c

∂∇χ
∂t

− 1

c

∂A
∂t
− 1

c

∂∇χ
∂t

= −∇�− 1

c

∂A
∂t
= E.

Gauge symmetry in classical electromagnetism does not seem to be very
profound. It is merely the freedom to choose potentials (Coulomb gauge, radi-
ation gauge, Lorentz gauge, etc.) to simply calculations. One can in principle
avoid using potentials and stick with the (E, B) fields throughout, with no arbit-
rariness. On the other hand, the situation in quantum mechanics is different.
As we shall see, the QM description of the electromagnetic interaction must
necessarily involve potentials. Gauge symmetry must be taken into account in
the QM description. As a consequence, it acquires a deeper significance.

16.2.2 Hamiltonian of a charged particle
in an electromagnetic field

Before moving on to a discussion of gauge symmetry in QM, we undertake
an exercise in classical EM of writing the Lorentz force law (16.1) in terms of
the EM potentials. This form of the force law will be needed in the subsequent
QM description of a charged particle in an EM field.

Lorentz force in terms of potentials
The ith component of the force law (16.1) may be written out in terms of the
potentials via (16.7) and (16.6):

m
dvi

dt
= −e∇i�− e

c

∂Ai

∂t
+ e

c
εijkvjεklm∇lAm. (16.10)

For the last term, we shall use the identity εijkεklm = δilδjm − δimδjl:

e

c
(v× B)i = e

c
εijkvjεklm∇lAm = e

c
[v · (∇iA)− (v · ∇)Ai] . (16.11)

The above expressions involve the differentiation of the vector potential A(r, t)
which depends on the time variables in two ways: through its explicit depend-
ence on t, as well as implicitly through its dependence on position r = r(t).
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(The particle is moving!) Thus its full time derivative has a more complicated
structure:

dAi

dt
= ∂Ai

∂t
+∇jAi

drj

dt
= ∂Ai

∂t
+ (v ·∇)Ai. (16.12)

The two factors on the RHS of this equation are just those that appear on
the RHS’s of Eqs. (16.10) and (16.11); thus they can be combined into a
− e

c
dAi
dt term:

m
dvi

dt
= −e∇i�− e

c

dAi

dt
+ e

c
v · (∇iA) (16.13)

which is then the expression of the Lorentz force in terms of (�, A) that we
shall use in the discussion below, cf. Eq. (16.19).

Hamiltonian of a charged particle in an Electromagnetic field
Recall in QM that we do not use the concept of force directly in our description
of particle interactions. Instead, the dynamics is governed by the Schrödinger
equation,44Here we start with elementary nonrelativ-

istic quantum theory. However, all the results
can be extended in a straightforward manner
to relativistic Klein–Gordon and Dirac equa-
tions. For these cases, the simplest approach
is (instead of the Hamiltonian) through the
Lagrangian density as discussed in Section
16.4.2.

which involves the Hamiltonian of the system. How do we introduce
EM interactions in the Hamiltonian formalism? What is the Hamiltonian that
represents the Lorentz force?

Recall that the Hamiltonian H(r, p) is a function of the position coordinate
r and the canonical momentum p, and the classical equations of motion are
Hamilton’s equations

dri

dt
= ∂H

∂pi
,

dpi

dt
= −∂H

∂ri
. (16.14)

One can easily check that for H = p2

2m + V(r), the first equation is just p = mv
(i.e. the canonical momentum is the same as the kinematic momentum) and the
second, the usual F = ma. Now we claim that the Hamiltonian description of
a charged particle (with mass m and charge e) in an EM field (represented by
the potentials �, A), is given by

H =
(

p− e

c
A
)2

2m
+ e�. (16.15)

To check this claim, let us work out the two Hamilton’s equations:

1. The first equation in (16.14): � being a function of r only,

vi ≡ dri

dt
= ∂

∂pi

⎡
⎢⎣
(

p− e

c
A
)2

2m
+ e�

⎤
⎥⎦ = 1

m

(
pi − e

c
Ai

)
.

Thus the canonical momentum (p) differs from the kinematic momentum
(mv) by a factor related to the charge and vector potential,

p = mv+ e

c
A, (16.16)

and the first term in the Hamiltonian (16.15) remains the kinetic energy
of 1

2 mv2 (the second one, the electric potential energy).
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2. We expect the second equation in (16.14) to be the Lorentz force law.
Let us verify this. Using the relation (16.16) between canonical and
kinematic momenta, we have the LHS as

dpi

dt
= m

dvi

dt
+ e

c

dAi

dt
. (16.17)

The RHS may be written as

−∂H

∂ri
= −∇i

⎡
⎢⎣
(

pj − e

c
Aj

) (
pj − e

c
Aj

)
2m

+ e�

⎤
⎥⎦

=
(

pj − e

c
Aj

)
m

e

c
∇iAj − e∇i�

= vj
e

c
∇iAj − e∇i� (16.18)

where we have again used the relation (16.16). Equating (16.17) and
(16.18) as in (16.14), we have

m
dvi

dt
+ e

c

dAi

dt
= e

c
v· (∇iA)− e∇i�, (16.19)

which we recognize as the expression (16.13) of the Lorentz force in
terms of the potentials, verifying our claim that Eq. (16.15) is the correct
Hamiltonian for the Lorentz force law.

We have demonstrated that the Hamiltonian for a charged particle moving in
an electromagnetic field can be compactly written in terms of the EM potentials
(�, A) as (16.15). Perhaps the more important point is that there is no simple
way to write the Hamiltonian, hence the QM description, in terms of the field
strength (E, B) directly. As a consequence, we must study the invariance of the
relevant QM equations under gauge transformation.

16.3 Gauge symmetry in quantum mechanics

Before launching into the study of gauge symmetry in QM, we shall take
another look at the Hamiltonian (16.15) for a charged particle in the presence
of an EM field. This prepares us for a new understanding of the theoretical
significance of EM potentials (�, A).

16.3.1 The minimal substitution rule

Given the Hamiltonian (16.15), the Schrödinger equation H� = ih̄∂t�, with
the coordinate space representation of the canonical momentum p =̇ − ih̄∇,
can be written out for a charged particle in an electromagnetic field as⎡

⎢⎢⎢⎣
(

h̄

i
∇ − e

c
A
)2

2m
+ e�

⎤
⎥⎥⎥⎦� = ih̄

∂�

∂t
. (16.20)



262 Internal symmetry

After a slight rearrangement of terms, it can be written as

− h̄2

2m

(
∇ − ie

h̄c
A
)2

� = ih̄

(
∂t + ie

h̄
�

)
�. (16.21)

When (16.21) is compared to the Schrödinger equation for a free particle,

− h̄2

2m
∇2� = ih̄∂t�, (16.22)

we see that the EM interaction (also referred to as the “EM coupling”) can be
introduced via the following replacement:

∇ −→
(

∇ − ie

h̄c
A
)
≡ D and ∂t −→

(
∂t + ie

h̄
�

)
≡ Dt. (16.23)

This scheme of introducing the EM coupling is called the minimal substitution
rule.55This is “minimal”, because of the absence of

other possible, but more complicated, coup-
lings, e.g. those involving the spin operator
and magnetic field σ · B, etc.

This procedure follows from the Hamiltonian (16.15) and is thus equival-
ent to the assumption of the Lorentz force law. While the procedure is simple,
one is naturally curious for a deeper understanding: Is there a natural justific-
ation for this minimal coupling scheme? Namely, why does the EM coupling
have the structure that it does?

Incidentally, the combinations (Dt, D) of ordinary derivatives with EM
potentials as defined in (16.23) are called covariant derivatives. As we shall
discuss below they have the sane geometrical and physical significance as the
covariant derivatives we encountered in our study of general relativity.

16.3.2 The gauge transformation of wavefunctions

Since QM must necessarily involve the EM potentials, one wonders how gauge
invariance is implemented here. A direct inspection of the effects of the gauge
transformations (�, A)−→ (

�′, A′
)

would show that the Schrödinger equation
(16.21) is not invariant under the transformation (16.8) and (16.9):

LHS −→ − h̄2

2m

(
∇ − ie

h̄c
A′
)2

� = − h̄2

2m

⎛
⎝∇ − ie

h̄c
A− ie

h̄c
∇χ︸ ︷︷ ︸
⎞
⎠2

�,

RHS −→ ih̄

(
∂t + ie

h̄
�′
)
� = ih̄

⎛
⎝∂t + ie

h̄
�− ie

h̄c
∂tχ︸ ︷︷ ︸
⎞
⎠�. (16.24)

Namely, there are these extra terms . . .︸︷︷︸ involving the gauge function χ that

do not match on two sides of the transformed equation; hence gauge invari-
ance is lost under (16.8) and (16.9). However, as observed by Fock (1926),
the invariance could be obtained if we supplement the transformations of
(16.8) and (16.9) by an appropriate spacetime-dependent phase change of the
wavefunction �(r, t),

�(r, t) −→ � ′(r, t) = exp

[
ie

h̄c
χ (r, t)

]
�(r, t), (16.25)
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so that the above-mentioned extra terms can be cancelled. The function χ in
the exponent is the same gauge function that appears in (16.8) and (16.9).
Let us see how the various terms in the Schrödinger equation (16.21) change
under this combined transformation (16.8), (16.9), and (16.25). First consider
the RHS:(
∂t + ie

h̄
�

)
� −→

(
∂t + ie

h̄
�′
)
� ′ =

(
∂t + ie

h̄
�− ie

h̄c
∂tχ

)
exp

(
ie

h̄c
χ

)
�.

When the time derivative ∂t acts on the product
[

exp
(

ie
h̄cχ
)
�(r, t)

]
, two

terms result: exp
(

ie
h̄cχ
)
∂t�(r, t)+ ( ie

h̄c∂tχ
)

exp
(

ie
h̄cχ
)
�(r, t), thus the effect of

“pulling the phase factor exp
(

ie
h̄cχ
)

to the left of the ∂t operator” will result in
another extra term which just cancels the unwanted term in (16.24):(

∂t + ie

h̄
�

)
� −→ exp

(
ie

h̄c
χ

)(
∂t + ie

h̄
�− ie

h̄c
∂tχ + ie

h̄c
∂tχ

)
�

= exp

(
ie

h̄c
χ

)(
∂t + ie

h̄
�

)
�. (16.26)

Similarly we have(
∇ − ie

h̄c
A
)2

� −→ exp

(
ie

h̄c
χ

)(
∇ − ie

h̄c
A
)2

�. (16.27)

As a consequence, the transformed equation

− h̄2

2m

(
∇ − ie

h̄c
A′
)2

� ′ = ih̄

(
∂t + ie

h̄
�′
)
� ′ (16.28)

becomes

exp

(
ie

h̄c
χ

)(
∇ − ie

h̄c
A
)2

� = exp

(
ie

h̄c
χ

)(
∂t + ie

h̄
�

)
�.

The same exponential factor exp
(

ie
h̄cχ
)

appears on both sides of the transformed
Schrödinger equation; they cancel, showing that the validity the transformed
equation (16.28) follows from the original equation (16.21), and we have gauge
invariance restored. From now on, whenever we refer to gauge transforma-
tion it is understood to be the combined transformations of (16.8), (16.9), and
(16.25).

16.3.3 The gauge principle

We will now turn the argument around and regard the transformation (16.25)
of the wavefunction as being more fundamental, and from this we can “derive”
the gauge transformation of the EM potentials, (16.8) and (16.9). The rationale
for doing it this way will become clear as we proceed. Our wish is to generalize
gauge symmetry beyond electromagnetism, and to use this symmetry as a tool
to discover new physics. In such an endeavor it is much easier to start with the
generalization of the gauge transformation of the wavefunction rather than that
for the potentials. More importantly, as we shall see, this reversed procedure
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will also explain why the electromagnetic couplings (16.23) have the structure
that they have.

This is similar to what Einstein did when he elevated the empirically
observed equality between gravitational and inertial masses to the principle
of equivalence between gravitation and inertia. With this focus, he then
applied EP to the physics beyond mechanics (cf. Sections 12.2 and 12.3).
In the same way, once the approach is formulated as the gauge principle for
electromagnetism, we can then apply it to the physics beyond, to strong and
weak interactions, etc.

The Schrödinger equation for a free charged particle
has global U(1) symmetry
It is easier to start the generalization process by starting with the gauge
transformation of the wavefunction because we can associate this part of the
gauge transformation to a more familiar symmetry transformation. Consider
the Schrödinger equation for a charged free particle,

− h̄2

2m
∇2� = ih̄∂t�. (16.29)

This equation is unchanged under the global phase change:

�(r, t) −→ � ′(r, t) = exp

(
ie

h̄c
χ

)
�(r, t). (16.30)

In contrast to the transformation as given in (16.25), here the phase factor
is a constant χ �= χ (r, t). Namely, we make the same phase change for the
wavefunction at all space-time points! This simple phase change is a “unitary
transformation in one dimension”;66The transformation U = eiχ is “unitary”

because it satisfies the condition U†U = 1; it
is in one dimensional because it is specified
by one parameter.

hence called a “global U(1) transforma-
tion”. Clearly Eq. (16.29) is invariant, as every term acquires the same phase
that can be cancelled out, and this theory possesses global U(1) symmetry. This
symmetry has the associated electric charge conservation law, as expressed by
the continuity equation

∂tρe +∇ · je = 0 (16.31)

with ρe = |�|2 and je = −ih̄
2m

(
�∗∇� −�∇�∗). We leave it as an elementary

QM exercise to prove that this continuity equation follows from the free
Schrödinger equation (16.29).

Gauging the symmetry
One may be dissatisfied with this global feature of the transformation: Why
should the wavefunctions everywhere all undergo the same phase change?
A more desirable form of symmetry would require the theory to be invari-
ant under a local transformation. Namely, we replace the phase factor in the
transformation (16.30) by a spacetime-dependent function

[χ = constant] −→ [χ = χ (r, t)], (16.32)
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just as in (16.25). That is, we want the freedom of choosing the phase of the
charge’s wavefunction locally: a different one at each spacetime point.

Now the Schrödinger equation (16.29) is not invariant under such a local
transformation as the derivative terms would bring down extra terms (because
of the spacetime-dependent phase) that cannot be canceled, indicating that the
equation is no longer symmetric. We can overcome this difficulty by repla-
cing ordinary derivatives (∂t, ∇) by covariant derivatives (Dt, D) as defined
in (16.23). They have the desired property that covariant (“change in the
same way”) derivatives of the wavefunction transform in the same way as the
wavefunction itself. Namely, just as � ′ = exp

(
ie
h̄cχ
)
�, we have

(Dt�)
′ = exp

(
ie

h̄c
χ

)
(Dt�) (16.33)

and similarly,

(D�)′ = exp

(
ie

h̄c
χ

)
(D�) and also

(
D2�

)′ = exp

(
ie

h̄c
χ

) (
D2�

)
. (16.34)

This replacement of derivatives

(∂t, ∇) −→ (Dt, D) (16.35)

calls to mind the principle of general covariance when going from special
relativity to general relativity as discussed in Section 13.4. Similar to the situ-
ation here, when proceeding from SR to GR we go from a global symmetry
to a local symmetry. This replacement (16.35) turns the Schrödinger equation
(16.29) into

− h̄2

2m
D2� = ih̄Dt�. (16.36)

Under the gauge transformations of (16.8), (16.9), and (16.25), we have

− h̄2

2m

(
D2�

)′ = ih̄(Dt�)′. (16.37)

The invariance of the equation can be checked because, through the relations
in (16.33) and (16.34), it is

− h̄2

2m

[
exp

(
ie

h̄c
χ

)] (
D2�

) = ih̄

[
exp

(
ie

h̄c
χ

)]
(Dt�) . (16.38)

With the exponential factors [. . .] canceled, this is just the original equation
(16.36). This completes the proof of the equation’s invariance7 7Properly speaking we should say “covari-

ance of the equation”, as the terms in an
equation are not invariant, but they trans-
form “in the same way” so that their rela-
tion is unchanged, and the same equation is
obtained for the transformed quantitites.

under such a
local transformation.

The covariant derivatives (16.23) are constructed by an artful combination
of the ordinary derivative with a set of newly introduced “compensating fields”
(�, A) which themselves transform in such a way to compensate, to can-
cel, the unwanted extra factors that spoil the invariance. The replacement of
ordinary derivatives by covariant derivatives as in (16.35) justifies the “prin-
ciple of minimal substitution”, used to introduce the EM coupling as done in
(16.23). Equation (16.36) is just the Schrödinger equation (16.21) for a charged
particle in an EM field that we discussed earlier. Thus we can understand this
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coupling scheme as resulting from requiring the theory to have a local U(1)
symmetry in the charge space (i.e. with respect to a change of the wavefunc-
tion phase associated with the particle’s charge). The general practice is that
such local symmetry is called gauge symmetry and the process of turning a
global symmetry into a local one as in (16.32) has come to be called “gauging
a symmetry”.

One can then understand the “origin” of the electromagnetic potentials
(�, A) as the gauge fields88From now on we shall often refer to (�, A)

as “fields”, rather than “potentials”, and the
equations they satisfy as field equations. This
is compatible with the general practice in
physics of calling any function of space and
time “field”.

required to implement such a gauge symmetry.
This procedure of understanding the origins of some dynamics (e.g. electro-
magnetism) through the process of turning a global symmetry into a local one
is now called the gauge principle.

We would like to emphasize the similarity of ‘gauging a symmetry’ and
‘turning the global Lorentz symmetry in special relativity into the local
coordinate symmetry of general relativity’. In both cases, we need to replace
the usual derivatives by covariant derivatives. In the case of gauge theory, this
introduces the gauge field; in the case of relativity this inserts a gravitational
field intensity (in the form of Christoffel symbols) into the theory.

16.4 Electromagnetism as a gauge interaction

The above discussion has allowed us to have a better understanding of the EM
coupling as displayed in the Hamiltonian of (16.15), which is equivalent to
the Lorentz force law. We will now show that gauge symmetry, together with
special relativity, allows us to “derive” the electromagnetic field equations, the
Maxwell equations. For this purpose we need a language that will simplify
the expression of relativistic invariance. This is provided by Minkowski’s four-
dimensional spacetime formalism (cf. Chapter 11). We first provide a rapid
review of this subject. Not only will this allow us to understand Maxwell’s
equations, it will also provide us, in a simple way, to infer the pattern of the
± signs and factors of c that have appeared in Eqs. (16.6)–(16.9), which were
written in non relativistic notation.

16.4.1 The 4D spacetime formalism recalled

Gauging the U(1) symmetry requires us to introduce the potentials (�, A)
and thus the existence of electromagnetism. As we shall demonstrate, the
requirements of gauge symmetry and Lorentz invariance (special relativity)
can basically lead us to Maxwell’s equations. For this we shall adopt the lan-
guage of 4-vectors and 4-tensors in 4D Minkowski spacetime (as discussed in
Chapter 11) so as to make it simpler to implement the condition of Lorentz
symmetry.

The principal message of special relativity is that the arena for physics
events is 4D Minkowski spacetime, with spatial and temporal coordinates
being treated on an equal footing (cf. Section 11.3). In this 4D space, a position
vector has four components xμ with index μ = 0, 1, 2, 3.

xμ = (x0, x1, x2, x3
) = (ct, x). (16.39)
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Noting that the contravariant and covariant tensor components are related, as
shown in (11.19), by the Minkowski metric ημν = ημν = diag(−1, 1, 1, 1), we
list some of the 4-position and 4-derivatives:

4D del operator ∂μ =
(

1

c
∂t, ∇

)
and ∂μ =

(
−1

c
∂t, ∇

)
(16.40)

momentum 4-vector pμ =
(

E

c
, p
)

with pμpμ = −E2

c2
+ p2 = −m2c2.

(16.41)

Maxwell’s equations
The six components of (E, B) are taken to be the elements of a 4× 4 antisym-
metric matrix: the “EM field tensor”, Fμν = −Fνμ as displayed in Eq. (11.34).
The inhomogeneous Maxwell equations (16.2)–(16.3) can then be written
compactly as

∂μFμν = −1

c
jν Gauss + Ampere (inhomogeneous Maxwell) (16.42)

where jμ ≡ (cρ, j) is the “4-current density”, and the homogeneous (16.4)–
(16.5) as

∂μF̃μν = 0 Faraday + mag-Gauss (homogeneous Maxwell) (16.43)

where F̃μν = − 1
2ε

μνλρFλρ is the dual field tensor.9 9The duality transformation (9.41) discussed
in Section 9.5.1 corresponds to Fμν → F̃μν .

Electromagnetic potentials
It is easy to see that, with the “4-potential” being Aμ = (�, A), namely,
� = A0 = −A0, the relation between potentials and the field tensor, (16.6) and
(16.7), can be summarized as (Fμν as the 4-curl of Aμ)

Fμν = ∂μAν − ∂νAμ, (16.44)

while the gauge transformations (16.8) and (16.9) can be compactly written in
the Minkowski notation as

Aμ−→A′μ = Aμ + ∂μχ . (16.45)

The electromagnetic field strength tensor Fμν , with components of (E, B),
being related to the potentials Aμ as in (16.44), is clearly unchanged10 10F′μν = ∂μA′ν − ∂νA′μ =

(
∂μAν − ∂νAμ

)+(
∂μ∂νχ−∂ν∂μχ

)=Fμν because ∂μ∂ν=∂ν∂μ.
under

this transformation (16.45).
Such a notation also simplifies the steps when showing that (16.44) solves

the homogeneous Maxwell equation (16.43):

∂μF̃μν = 1

2
εμνλρ∂

μFλρ = 1

2
εμνλρ∂

μ
(
∂λAρ − ∂ρAλ

) = εμνλρ∂
μ∂λAρ = 0.

The two RHS terms are combined when the dummy indices λ and ρ are
relabeled. The final result vanishes because the indices μλ are antisymmet-
ric in 4D Levi-Civita symbols ενμλρ but symmetric in the double derivative
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∂μ∂λ. When the relation (16.44) is plugged into the inhomogeneous Maxwell
equation (16.42), we have

∂μ
(
∂μAν − ∂νAμ

) = �Aν − ∂ν
(
∂μAμ

) = −1

c
jν

which, after imposing the Lorentz gauge condition ∂μAμ = 0, reduces to the
simple wave equation �Aν = − 1

c jν that we displayed in Section 3.1.
Similarly, the covariant derivatives Dt and D defined in (16.23) can be

combined into a “4-covariant derivative” as Dμ =
(

1
c Dt, D

)
so that

Dμ ≡
(
∂μ − ie

h̄c
Aμ

)
, (16.46)

and the minimal substitution rule is simply the replacement of ∂μ −→ Dμ.
We also take note of a useful relation between the commutator of covariant

derivatives and the field strength tensor [cf. Eq. (14.17)]

[
Dμ, Dν

] = − ie

h̄c
Fμν . (16.47)

This operator equation is understood that each term is an operator that
acts, from the left, on some spacetime-dependent test function (such as a
wavefunction). This can be verified by explicit calculation:[

Dμ, Dν

]
ψ

=
(
∂μ − ie

h̄c
Aμ

)(
∂ν − ie

h̄c
Aν

)
ψ −

(
∂ν − ie

h̄c
Aν

)(
∂μ − ie

h̄c
gAμ

)
ψ

= − ie

h̄c

{
∂μ (Aνψ)+ Aμ (∂νψ)− ∂ν

(
Aμψ

)− Aν

(
∂μψ

)}
(16.48)

= − ie

h̄c

(
∂μAν − ∂νAμ

)
ψ = − ie

h̄c
Fμνψ .

The relevance of this relation in a generalized gauge symmetry will be
discussed below—see the displayed equation (16.68).

16.4.2 The Maxwell Lagrangian density

We now add further detail to the statement: “the electromagnetic interaction is
a gauge interaction”, or equivalently, “electrodynamics is a gauge theory”. So
far we have concentrated on the “equation of motion” part of the field descrip-
tion (the Lorentz force law). Now we discuss the “field equation” part. In the
case of electromagnetism, it is Maxwell’s equation. A field can be viewed as
a system having an infinite number of degrees freedom with its generalized
coordinate being the field itself q = φ(x), where φ(x) is some generic field. For
such a continuum system, the field equation, as discussed in Section A.5.2, is
the Euler–Lagrange equation (A.64) written in terms of the Lagrangian density
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L (with a Lagrangian L = ∫ d3xL and an action S = ∫ d4xL(x)) which is a
function of the field and its derivatives L = L(φ, ∂μφ

)
:

∂μ
∂L

∂
(
∂μφ

) − ∂L
∂φ

= 0. (16.49)

Knowledge of the (Lorentz invariant) Lagrangian density L is equivalent to
knowing the (Lorentz covariant) field equation. Thus, knowledge of Maxwell’s
Lagrangian density:

L(x) = −1

4
FμνF

μν + 1

c
jνAν (16.50)

is tantamount to knowing Maxwell’s field equations. The Euler–Lagrange
equation for the Aμ(x) field is [namely, Eq. (16.49) with φ(x) = Aν(x)]:

∂μ
∂L

∂
(
∂μAν

) − ∂L
∂Aν

= 0, (16.51)

which is just the familiar Maxwell equation (16.42), as we have

∂L
∂Aν

= 1

c
jν , (16.52)

∂L
∂
(
∂μAν

) = ∂

∂
(
∂μAν

) (−1

4

(
∂αAβ − ∂βAα

)2)

= ∂

∂
(
∂μAν

) (−1

2
∂αAβ

(
∂αAβ − ∂βAα

))

= −Fμν . (16.53)

16.4.3 Maxwell equations from gauge and Lorentz
symmetries

From the above discussion, we see that a derivation of Maxwell’s Lagrangian
density (16.50) is tantamount to a derivation of Maxwell’s equations (16.42)
themselves. Gauging a symmetry requires the introduction of the gauge field;
in the case of U(1) symmetry, it is the vector Aμ(x) field. To have a dynamical
theory for the Aμ(x) field, we need to construct a Lagrangian density from
this Aμ(x) field and its derivatives ∂μAν (because the kinetic energy term must
involve spacetime derivatives). The simplest gauge-invariant combination of
∂μAν is

∂μAν − ∂νAμ = Fμν . (16.54)

The Lagrangian density must also be a Lorentz scalar (i.e. all spacetime indices
are contracted) so the resulting Euler–Lagrange equations are relativistic
covariant. The simplest combination11

11In principle, higher powers (FμνFμν)n are
also gauge and Lorentz symmetric. However
such terms are “nonrenormalizable” and our
current understanding of quantum field the-
ory informs us that they should be highly sup-
pressed (i.e. at the relevant energy scale we
consider, they make negligible contribution).

is the expression

LA = −1

4
FμνFμν . (16.55)
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One can then add 1
c jνAν as the source term to arrive at the result in (16.50).

(Factors like − 1
4 and c are unimportant—all a matter of system of units and

convention.)
The Maxwell equations were discovered by experimentation and deep

theoretical invention; but this derivation shows why the four equations,1212Of course these equations have already
been greatly simplified with the vector nota-
tion embodying rotational symmetry, which
is part of Lorentz invariance.

(16.2)–(16.5), take on the form they take. Their essence is special relativity plus
gauge invariance. With this insight of electromagnetism we can then generalize
the approach to the investigation of other fundamental interactions.

16.5 Gauge theories: A narrative history

The above discussion shows that we can understand electromagnetism as a
“gauge interaction”. From the requirement of a local U(1) symmetry in charge
space, the presence of a vector gauge field Aμ(x) is deduced. In the rather
restrictive framework of special relativity, its dynamics can be fixed (to be that
described by Maxwell’s equation). This way of using symmetry to deduce the
dynamics has been very fruitful in our attempts to understand (i.e. to construct
theories of) other particle interactions as well.

One of the crowning achievement in the physics of the twentieth cen-
tury is the establishment of the Standard Model (SM) of elementary particle
interactions.1313The progress of physics depends both on

theory and experiment. A proper account
of the experimental accomplishments in the
establishment of the Standard Model is how-
ever beyond the scope of this presentation.
This omission should not be viewed in any
way as the author’s lack of appreication of
their importance.

This gives a complete and correct description of all nongrav-
itational physics. This theory is based on the principle of gauge symmetry.
Strong, weak, and electromagnetic interactions are all gauge interactions. In
this section we give a very brief account of this SM gauge theory of particle
physics.

16.5.1 Einstein’s inspiration, Weyl’s program, and Fock’s
discovery

The rich and interesting history of gauge invariance and electromagnetic poten-
tials in classical electromagnetism is beyond the scope of our presentation; we
refer the curious reader to the authoritative and accessible account given by
Jackson and Okun (2001). Here we shall present a narrative of the develop-
ment of the gauge symmetry idea1414For a more detailed gauge theory survey

with extensive references, see Cheng and Li
(1988).

as rooted in Einstein’s general theory of
relativity.

What is the origin of the name “gauge symmetry”? The term eichinvarianz
(gauge invariance) was coined in 1919 by Hermann Weyl (1885–1955) in the
context of his attempt to “geometrize” the electromagnetic interaction and to
construct in this way a unified geometrical theory of gravity and electromag-
netism (Weyl 1918, 1919). He invoked the invariance under a local change of
the scale, the “gauge”, of the metric field gμν(x):

gμν(x) −→ g′μν(x) = λ(x)gμν(x), (16.56)

where λ(x) is an arbitrary function of space and time. Weyl was inspired by
Einstein’s geometric theory of gravity, general relativity, which was published
in 1916 (cf. Chapters 13 and 14). This was, of course, before the emergence of
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modern quantum mechanics in 1925–26. A key QM concept was to identify the
dynamical variables of energy and momentum with the operators−ih̄∂μ and, in
the presence of an electromagnetic field, with−ih̄∂μ + e

c Aμ as in the “minimal
substitutional rule”. In this context, Vladimir Fock (1898–1974) discovered
in 1926 that the quantum mechanical wave equation was invariant under the
combined transformation A′μ = Aμ + ∂μχ and

� ′(x) = exp

[
ie

h̄c
χ (x)

]
�(x); (16.57)

he called it the gradient transformation.15 15This designation originates from the trans-
formation A′μ = Aμ + ∂μχ . From the title of
the Fock (1926) paper, it is clear what Fock
wanted to emphasize is that this new sym-
metry, involving the transformation of �(x)
and Aμ(x), is a symmetry of charge space.
Thus in the first 40 years or so after the inven-
tion of the gauge principle, people often fol-
lowed the practice of designating global sym-
metry in charge space as ‘gauge symmetry of
the first kind’ and local symmetry in charge
space as ‘gauge symmetry of the second
kind’. But nowadays by gauge symmetry we
mean gauge symmetry of the second kind and
distinguish it from the first kind simply by
calling the latter global symmetry.

Given the central role played by
(16.57) in showing that here one is discussing transformations in charge space,
one would say that it was Fock who first discovered the modern notion of gauge
invariance in physics.

Fritz London observed in 1927 that, if the i was dropped from Fock’s expo-
nent in (16.57), this phase transformation becomes a scale change (16.56) and
the transformation of (16.45) and (16.57) was equivalent to Weyl’s old eich-
transformation (London 1927). However, when Weyl finally worked out this
approach later on he retained his original terminology of “gauge invariance”
because he believed that a deep understanding of the local transformation
of gauge invariance could come about only through the benefit of general
relativity.16

16The connection between gauge symmetry
and general relativity would be deepened fur-
ther with the advent of the nonabelian theory
of Yang and Mills in the 1950s.

Most importantly it was Weyl who first declared [especially in
his famous book: Theory of Groups and Quantum Mechanics (Weyl 1928,
1931)] gauge invariance as a fundamental principle—the requirement of the
matter wave equation being symmetric under the gauge transformation leading
to the introduction of the electromagnetic field. Subsequently this principle has
become the key pathway in the discovery of modern theories of fundamental
particle interactions; this calling a local symmetry (in charge space) a “gauge
symmetry” has become the standard practice in physics.

16.5.2 Quantum electrodynamics

We have so far discussed gauge symmetry in the quantum description of a
nonrelativistic charged particle interacting with an electromagnetic field. The
proper framework for particle interaction should be quantum field theory,17 17Some elementary aspects of quantum field

theory were presented in Section 6.4. For an
introduction to the Standard Model in the
proper quantum field theoretical framework,
see, for example, Cheng and Li (1984).

which is a union of quantum mechanics with special relativity. We first com-
ment on the prototype quantum field theory of quantum electrodynamics
(QED), which is the quantum description of relativistic electrons and photons.
However in this introductory presentation of gauge symmetry, we shall by and
large stay with a classical field description.

Dirac equation
QED is the theory of electrons interacting through the electromagnetic field.
While the EM field equation is already relativistic, we must replace the
Schrödinger equation by the relativistic wave equation for the electron, first
discovered by Paul Dirac. Namely, instead of the Schrödinger equation (16.29),
we should use the Dirac equation for a free electron,(

ih̄γ μ∂μ − mc
)
ψ = 0 (16.58)
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with ψ being the four-component electron spinor field and γ μ is a set
of four 4× 4 “Dirac gamma matrices” obeying the anticommutation rela-
tion {γ μ, γ ν} = −2gμν . In momentum space with pμ = (E/c, p) being the
4-momentum vector this equation becomes(

γ μpμ − mc
)
ψ = 0. (16.59)

When operated on from the LHS by (γ νpν + mc), this equation, after using the
anticommutation relation, implies18

(
pμpμ + m2c2

)
ψ = 0, which we recog-

nize as the relativistic energy momentum relation of (16.41). To couple it to
an EM field, we replace the derivative ∂μ in (16.58) by the covariant derivative
Dμ of (16.46):

(
ih̄γ μDμ − mc

)
ψ = 0—in just the same way as we obtained

Eq. (16.21) from the free Schrödinger equation (16.22). We can display the
role of the gauge field

(
Aμ

)
/electron field (ψ) cross-term as the source factor

by separating out and moving it to the RHS:(
ih̄γ μ∂μ − mc

)
ψ = e

c
γ μAμψ . (16.60)

Lagrangian density for QED
Instead of field equations, we can equivalently work with the Lagrangian
density. Thus instead of Eq. (16.58) we can concentrate on the equivalent
quantity

Lψ = ψ̄
(
ih̄γ μ∂μ − mc

)
ψ , (16.61)

which is manifestly Lorentz invariant, with ψ̄ being the conjugate ψ†γ0. As
discussed above, EM coupling can be introduced through the covariant deriv-
ative and, after adding the density LA of the EM field (16.55), we have the full
QED Lagrangian density

LQED = Lψ + LA + Lint. (16.62)

The interaction density,19

19Lψ and LA are the Lagrangians for free
electrons and photons as they are quadratic
(harmonic) in their respective fields, while
Lint represents the interaction as it has more
than two field powers (hence anharmonic).

which comes from part of the covariant derivative, is
just the source density in (16.50)

Lint = 1

c
jμAμ = e

c
ψ̄γ μψAμ (16.63)

where jμ is shown now as the 4-current density of electron. A graphical
representation of a gauge boson coupled to a current is shown in Fig. 16.1(a).

Fig. 16.1 (a) Trilinear coupling of a photon
to an electron; (b) weak vector boson W
coupled respectively to weak currents of
leptons and quarks.

18We first find (
γ νpν + mc

) (
γ μpμ − mc

) = γ νpνγ
μpμ − m2c2.

Since pνpμ = pμpν , we should symmetrize the gamma matrices as well:

1

2

{
γ ν , γ μ

}
pμpν − m2c2 = −pμpμ − m2c2 = 0.

To reach the last expression, we have used the anticommutation relation of gamma matrices.
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QED as a U(1) gauge theory
The discussion carried out in the previous sections of this chapter demonstrates
that one can “derive” LQED from the requirement of Lorentz and gauge sym-
metry. Namely, the theory can be understood as following from “gauging the
U(1) symmetry” of the free Dirac equation. The original global U(1) symmetry
is directly linked to the familiar electric charge conservation. The quantiza-
tion (and renormalization) procedure based on LQED is rather complicated and
is beyond the scope of this presentation. Still, what we need to know is that
the full QED theory can be worked out on the basis of this Lagrangian dens-
ity (16.62). We also note that quanta of the electromagnetic field are photons.
They can now be viewed as the gauge particles (spin-1 bosons) of QED the-
ory. Parenthetically, the common practice in quantum field theory of describing
electrons interacting through the electromagnetic field is “interaction through
the exchange of photons”. This language is particularly convenient when, as
we shall see, describing the strong and weak interactions. An important feature
of the QED Lagrangian is the absence of a term of the form of AμAμ because
it is forbidden by gauge invariance. Such a term would correspond to a gauge
boson (photon) mass. Thus gauge invariance automatically predicts a massless
photon, which accounts for the long-range nature of the (electromagnetism)
interaction that it transmits.20 20The relation between the range of interac-

tion and the mass of the mediating particle is
discussed in Section 6.4.2.

Because of its many redundant degrees of freedom, quantization of gauge
theory is rather intricate. The necessary renormalization program for QED
was successfully formulated through the work of Julian Schwinger (1918–94),
Richard Feynman (1918–88), Sin-Itiro Tomonaga (1906–79), and Freeman
Dyson (1923– ). The close interplay of high-precision experimental meas-
urement and theoretical prediction brought about this notable milestone in the
history of physics.

16.5.3 QCD as a prototype Yang–Mills theory

Here we shall discuss a highly nontrivial extension of the gauge symmetry of
electromagnetism. This extension makes it even clearer that the transformation
in the charge space involves the change of particle/field labels of the theory.

Abelian versus nonabelian gauge symmetries
The gauge symmetry for electromagnetism is based on the U(1) symmetry
group; its transformation involves the multiplications of phase factors to the
wavefunction � → � ′ = U� with U(x) = eiθ(x) and the wavefunction �(x)
is itself a simple function. A U(1) phase transformation is equivalent to a
rotation around a fixed axis in a 2D plane (in charge space). Hence U(1) is iso-
morphic to the 2D rotation group (also called the 2D special orthogonal group):
U(1) = SO(2). Clearly such transformations are commutative U1U2 = U2U1,
and the symmetry is said to be an abelian symmetry. On the other hand, gen-
eral rotations in 3D space are represented by noncommutative matrices. The
symmetry based on such rotations, called SO(3) = SU(2), is nonabelian sym-
metry. The corresponding wavefunction (i.e. field) � is a multiplet in some
multidimensional charge space; its components would correspond to different
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particle states. As it turns out, we can understand other elementary particle
interactions due to strong and weak forces as gauge interactions also, but their
gauge symmetries are nonabelian—their respective symmetry transformations
are noncommutative. Gauge symmetry with such noncommuntative transform-
ations was first studied in 1954 in particle physics by C.N. Yang (1922– ) and
Robert L. Mills (1927–99), hence nonabelian gauge theory is often referred to
as Yang–Mills theory.

Quarks and gluons From the heroic experimental and deep phenomenolo-
gical studies of the strong and weak interactions, it was discovered that strongly
interacting particles (called hadrons2121Examples of hadrons are the proton, neut-

ron, pion and omega, etc.
) are composed of even more element-

ary constituents. These spin-1/2 particles were invented and named quarks by
Murray Gell-Mann (1929– ). There are six ‘quark flavors’ (up, down, strange,
charm, bottom and top); each has three hidden degrees of freedom called
‘color’.2222‘Color’ is the whimsical name given to

the strong interaction charge and has noth-
ing to do with the common understanding
of different frequencies of visible EM waves.
Here we give an example of the type of phe-
nomenology from which the color degrees of
freedom were deduced. The omega baryon is
composed of three strange quarks. Being a
system of identical fermions, its wavefunc-
tion should be antisymmetric with respect to
the interchange of any two quarks. Yet both
its spin (3/2) and orbital angular momentum
(S-wave) wavefunctions are symmetric. Spin-
statistics is restored only when its antisym-
metric color (singlet) wavefunction is taken
into account.

Namely, each quark flavor can be in three different color states—they
form an SU(3) triplet representation in the color charge space:

q(x) =
⎛
⎝ q1(x)

q2(x)
q3(x)

⎞
⎠ . (16.64)

If it is an ‘up-quark’, we can call them, for example, ‘red’, ‘blue’, and ‘white’
up-quarks. This triplet undergoes the transformation, q′ = Uq, with U being a
3× 3 unitary matrix having unit determinant (hence called special unitary).
Namely, the particle fields can not only change their phases but the particle
labels as well. When this symmetry is “gauged” ( i.e. turned into a local
symmetry) we have the SU(3) gauge theory, called quantum chromodynamics
(QCD). Just as QED is the theory of electrons interacting through the exchange
of abelian gauge fields of photons, QCD is the fundamental strong interaction
of quarks through the exchange of a set (8) of nonabelian gauge particles
called gluons.

Yang–Mills gauge particles To implement such a local symmetry, we need
to introduce a covariant derivative involving gauge fields:

Dμ = ∂μ − igsGμ. (16.65)

This is the same as (16.46) of the abelian case (for simplicity of notation we
have suppressed, or absorbed, the factor h̄c). In the strong interacting QCD
case, in place of the electromagnetic coupling strength e we have the strong
coupling gs. Instead of the U(1) gauge field Aμ, we have Yang–Mills fields
Gμ. But now the Dμ and Gμ are matrices in the color charge space; the gluon
field matrix Gμ has eight independent components (being a traceless 3× 3
Hermitian matrix) corresponding to the eight gluons of the strong interaction.

The basic property for covariant derivatives in Yang–Mills theory is still the
same as that for the abelian case: the covariant derivative of a wavefunction(
Dμq

)
transforms in the same way as the wavefunction q(x) itself:

q′ = Uq and
(
D′
μq′
) = U

(
Dμq

)
. (16.66)
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We then have D′μ = UDμU−1 and more explicitly

∂μ − igsG
′
μ = U∂μU−1 − igsUGμU−1.

This means that the gauge fields must transform as

G′μ = UGμU−1 − 1

igs
U
(
∂μU−1

)
. (16.67)

One can easily check that in the abelian case with U = exp(igsχ ) this reduces
to Eq. (16.45). The factor UGμU−1 indicates that the gauge field itself
transform nontrivially under the gauge group. Namely, the gauge fields (or
gauge particles) themselves carry gauge charges.

The QCD Lagrangian Another place where one can see that nonabelian
gauge fields themselves carry gauge charges is in a property of the nonabelian
field tensor Fμν , which is similarly related to the covariant derivatives as
(16.47),

[
Dμ, Dν

] = −igsFμν . Working it out as in (16.48), we find

Fμν = ∂μGν − ∂νGμ − 1

igs

[
Gμ, Gν

]
(16.68)

showing a nonvanishing commutator because now Gμ is also a matrix in the
charge space. This nonabelian Fμν is now quadratic in Gμ. Thus when we
construct23 23The symbol “tr” in (16.69) stands for the

operation “trace”, taken in charge space, (i.e.
all charge space indices of the two Fμνs are
to be summed over in order to get a gauge
symmetric quantity).

the QCD Lagrangian density for the gauge field, like we did for the
abelian case of (16.55),

LA = −1

4
trFμνFμν , (16.69)

we get, besides quadratic
(
G2
)

terms, also cubic
(
G3
)

and quartic
(
G4
)

gauge field terms. While quadratic terms in L correspond to the free-particle
Lagrangian, higher powers represent interactions. Again, these cubic and
quartic couplings reflect the fact that nonabelian gauge fields, the gluons, must
now be charged fields. See Fig. 16.2. Very much like Eq. (16.62) for QED, the
Lagrangian density for QCD can be written down:

LQCD = Lq + LA + LqA. (16.70)

Lq = q̄(ih̄γ μ∂μ − mc)q is the Lagrangian density for free quarks, much like
Lψ in Eq. (16.61) for free electrons. Since the quark field is a triplet, a sum
of three terms (one for each color) is understood in Lq. The Euler Lagrange
equation for the gluon field based on LA is nonlinear,24 24This is entirely similar to the nonlinearity of

the Einstein field equation in GR. A gravita-
tional field carries energy (”gravity charge”),
thus is itself a source of a gravitational field.

reflecting the fact that
gluons carry color charges themselves. The quark (q)/gauge field (Gμ) coupling

Fig. 16.2 Cubic and quartic self-couplings of
charged gauge bosons. The similarity to the
trilinear couplings shown in Fig.16.1 should
be noted.
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LqA comes from the covariant derivative and is of a form entirely similar to the
QED interaction term (16.63)

LqA = 1

c
jμGμ = gs

c
q̄γ μGμq. (16.71)

However now the quark field q is a triplet and Gμ is a 3× 3 Hermitian matrix
in the color charge space. With nonvanishing off-diagonal terms in the color
matrix Gμ, a quark’s color charges can be changed by such a quark/gluon
coupling.

Asymptotic freedom and quark confinement The Yang–Mills gauge
particles as transmitters of interactions being charged, this feature leads to
the important physical consequence that the effective interaction strength (the
so-called “running coupling”) grows, logarithmically, as the distance between
quarks increases. Namely, we have an antiscreen effect on the color charge—
as the color charge is probed further away from the source, the effective
charge is seen to increase! The increase in coupling strength means that it
would take more and more energy to separate colored charges. Thus a colored
particle must be confined to short subnuclear distances. This explains why no
free quarks have ever been seen. All the observed strong-interaction particles
(hadrons) are colorless compounds of quarks and gluons. This short-range con-
finement effect explains why even though gluons, like photons, are massless,
the strong interaction they transmit, unlike the EM interaction, is neverthe-
less short-ranged. The other side of the same property (called asymptotic
freedom25

25This fundamental property of Yang–Mills
theory was discovered in 1973 by David
Gross (1941– ), Frank Wilczek (1951– ), and
David Politzer (1949– ).

) is that the effective coupling becomes small at short distances
and a perturbation approach can be used to solve the QCD equations in the
high-energy and large-momentum-transfer regime, leading to precise QCD
predictions that have been verified to high accuracy by experiments.

16.5.4 Hidden gauge symmetry and the electroweak
interaction

The Standard Model of particle interactions describes the strong, weak, and
electroweak interactions. We have already discussed the gauge theories of the
electromagnetic and strong interactions. We now discuss the gauge theory of
the weak interaction.

Fig. 16.3 (a) QED description of e+ e →
e+ e through the exchange of a vector
photon; (b) weak scattering ν + d → e+ u
as due to the exchange of a heavy vector
boson W. In this sense Fermi’s weak interac-
tion theory was based on the analog of QED.

The electroweak SU(2) × U(1) gauge symmetry
In the early 1930s Enrico Fermi proposed a quantum field description of weak
interactions. It was modeled on QED. His proposal26

26Fermi’s theory was invented to describe the
then only known weak interaction—the neut-
ron’s beta decay: n → p+ e+ ν̄. The neut-
ron/proton transition can be interpreted at the
quark level as a down/up transition because
a neutron has valence quarks of (ddu) and a
proton has (udu). The quark decay of d →
u+ e+ ν̄ is directly related to the scattering
ν + d → e+ u when the final antineutrino is
turned into a neutrino in the initial state as
depicted in Fig. 16.3(b).

can be translated and
updated in the language of quarks and weak vector bosons as follows. Just as
electron–electron scattering e+ e → e+ e is described in quantum field the-
ory as due to the exchange of a photon, the weak process of neutrino scattering
off a down-quark producing an electron and an up-quark ν + d → e+ u is due
to the exchange of a heavy vector boson W (see Fig. 16.3). Thus instead of
the trilinear coupling of eēAμ we need ν̄eW+

μ and ūdW+
μ , etc. (Here, except for

the photon, we use particle names for their respective fields.) Namely, unlike
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electrodynamics, weak interaction couplings change particle labels, or we can
say, “changes the weak interaction charge of a particle” (i.e. we can regard, for
example, a neutrino and an electron as different weak interaction states of a
leptonic particle).

This feature can be easily accommodated by a nonabelian gauge symmetry.
For example, in the weak charge space the electron and electron–neutrino can
be placed in an SU(2) doublet of leptons, and in the same way, the up- and
down-quarks form a weak doublet:27 27An SU(3) quark color triplet has compon-

ents of quarks with different ‘colors’, while a
quark weak doublet has different ‘flavors’.

l =
(
νe

e

)
and q =

(
u

d

)
. (16.72)

The lepton/gauge-boson coupling, much like the electron/photon coupling
shown in (16.71), can have the weak charge structure:28 28The discovery of parity violation in weak

interactions, through the work of T.D. Lee
(1926– ), C.N. Yang, and many others in
the mid-1950s, stimulated a great deal of
progress in particle physics. This symmetry
violation can be accommodated elegantly by
the stipulation that the above displayed weak
doublets involve only the left-handed heli-
city state of each particle. Parity violation
comes about because the left-handed states
and right-handed states have different weak
charges (i.e. they belong to different types
of weak multiplets). See footnote 36 in this
chapter for further comments.

g2 l̄γ μWμl = g2(ν̄e, ē)γ μ

(
W0

μ W+
μ

W−
μ −W0

μ

)(
νe

e

)
(16.73)

which (when only particle labels are displayed) contains a trilinear vertex
ν̄eW+

μ of an (electrically) charged gauge boson W+ coupled to an electron and
an antineutrino. Similarly, if we replace the lepton by the quark doublet we
can have a flavor-changing quark and gauge boson coupling like ūdW+

μ . See
Fig. 16.1(b).

One would naturally try to identify the neutral gauge boson W0
μ with the

photon. However, this would not be feasible because, as can be seen in (16.73),
W0

μ must couple oppositely to the neutrino and to the electron:
(
ν̄νW0

μ and
−ēeW0

μ

)
; similarly, oppositely to up- and to down-quarks

(
ūuW0

μ and−d̄dW0
μ

)
,

but all these fermions do not have electric charges opposite to their doublet
partners. While such a unification of the weak and electromagnetic interac-
tions, involving only a symmetry group of SU(2) with gauge bosons W0

μ and
W±

μ , does not work out, we can nevertheless achieve a partial unification by
the simple addition of another U(1) gauge factor, having an abelian gauge
boson Bμ. Namely, we have a unified theory of electromagnetic and weak inter-
actions (electroweak theory) based on the gauge symmetry of SU(2)× U(1).
While neither W0

μ nor Bμ can be the photon field, we can assign leptons and
quarks with new U(1) charges (called “weak hypercharges”) so that one of
their linear combination has just the correct coupling property for a photon
field Aμ:

Aμ = cos θwBμ + sin θwW0
μ (16.74)

Z0
μ = − sin θwBμ + cos θwW0

μ

where the mixing angle θw is called the Weinberg angle. The combination
Z0
μ, orthogonal to Aμ, is another physical neutral vector boson mediating yet

another set of weak interaction processes.29

29Historically the weak interactions that were
first studied are those mediated by the
charged vector bosons W±

μ ; they are called
charged current reactions. Thus one of the
firm predictions of this electroweak unifica-
tion is the existence of Z0

μ-mediated “neutral
current proccesses”.

We have only a “partial unific-
ation” because, to describe two interactions, we still have two independent
coupling strengths as each gauge factor comes with an independent gauge
coupling:30

30These gauge coupling constants are directly
related to the experimentally more access-
ible constants of electric charge and Weinberg
angle

e= g1g2(
g2

1 + g2
2

)1/2
and cos θw= g2(

g2
1 + g2

2

)1/2
.

g1 for U(1) and g2 for SU(2).
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Spontaneous symmetry breaking
Mass problems in electroweak gauge theory Gauge boson mass terms
are forbidden by gauge invariance. While gluons are massless, the QCD
gauge interaction is still effectively short-ranged because color particles
are confined within short distances. Now if the weak interaction is to be
formulated as a gauge interaction with the weak vector bosons W± and Z0

identified as gauge bosons, they would also be required to be massless. But
observationally the weak interaction is very short ranged (even shorter than the
strong interaction range) hence the interaction transmitters must be massive.3131The relation between the interaction range

and the mass of the mediating particle is
discussed in Section 6.4.2.

This had been a major obstacle in the formulation of weak interaction as a
gauge force. If we simply insert vector-boson mass terms (hence breaking
the weak gauge symmetry), one would end up with uncontrollable ultraviolet
divergences (technically speaking, making the theory unrenormalizable). This
is the gauge boson mass problem. There is also a fermion mass problem.
Symmetry (whether global or local) implies mass degeneracy of particles
belonging to the same symmetry multiplet. Thus all three color states of
the quark triplet (16.64) have identical masses. But to have a gauge theory
of the weak interaction with the weak doublets as shown in (16.72), such
fermion mass degeneracy would contradict observation, as the electron and
the neutrino have different masses me �= mν , so have the up- and down-quarks
mu �= md.

Symmetry is hidden The mass problems discussed above were solved even-
tually by spontaneous symmetry breaking (SSB).32

32Important contribtutions were made by
P.W. Anderson (1923– ), Y. Nambu (1921– ),
J. Goldstone (1933– ), S. Weinberg (1933– ),
J. Schwinger, P.W. Higgs (1929– ), and many
others.

This is the possibility that
physics equations with symmetry may have asymmetric solutions. A ferromag-
net is a familiar example: above the critical temperature (T > Tc) it is a system
of randomly oriented magnetic dipoles, reflecting the rotational symmetry of
the physics equation describing such a system. But, below the critical tem-
perature, all the dipoles are aligned in one particular direction—breaking the
rotational symmetry even though the underlying physics equation is rotational
invariant. This comes about because in a certain parameter space the theory
would yield a ground state, instead being symmetric (i.e. a symmetry singlet
state as shown in Fig. 16.4a), being a set of degenerate states related to each
other through the symmetry transformation (as shown in Fig. 16.4b). Since the
physical ground state (the vacuum state in a quantum field system) has to be
unique, its selection, out of the degenerate set, must necessarily break the sym-
metry. Thus, the ground state, a solution to the symmetrical equation, is itself
asymmetric. The rest of the physics (built on this vacuum state) will also have
asymmetric features such as nondegenerate masses in a multiplet, etc. Since
the underlying equations are symmetric while the outward appearance is not,
SSB can best be described as the case of a “symmetry being hidden”.Fig. 16.4 The potential energy function V(φ)

illustrates the occurrence of spontaneous
symmetry breaking. (a) Normal symmetry
realization: the ground state is a symmetry
singlet. (b) A case of hidden symmetry: the
ground state is a set of degenerate states—
the circle at the bottom of the wine-bottle
shaped energy surface; the selection of the
true vacuum as one point in this circle breaks
the symmetry. The small ball indicates the
location of the physical ground state.

The Higgs sector A hidden symmetry scenario can take place in both
global and local symmetries. For global symmetry, one has the interesting
consequence that such a hidden symmetry scheme leads to the existence of
massless scalar bosons (called Nambu–Goldstone bosons). One would then
be concerned with the following unpalatable prospect of a theory with local
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symmetry: not only do we have the unwanted massless vector gauge bosons,
we also have these unwanted massless scalar bosons. As it turns out, in the real-
ization of SSB in gauge theories (the Higgs mechanism) each of these two ills
is the cure of the other. The massless Goldstone scalar combines with the (two
states of) a massless vector boson to form (the three states of) a massive vector
boson. In the end we have a hidden gauge symmetry without any unwanted
massless states. The SU(2)× U(1) electroweak gauge theory starts out in the
symmetric limit with all particles (gauge bosons, leptons, and quarks) being
massless. The explicit realization of the Higgs mechanism involves the intro-
duction of a doublet of elementary (complex) scalar boson fields

(
φ+,φ0

)
,

and their dynamics is such that the ground state value of φ0 is a nonvanish-
ing constant. The vacuum is permeated with this constant scalar field. All the
particles, originally massless, gain their respective masses while propagating
in this vacuum. The electroweak theory has a structure such that the photon
gauge particle (as well as the neutrino states) remains massless. However this
scalar sector, often referred to as the Higgs sector, is less constrained by the
symmetry of the theory. In particular we are free to adjust the couplings of
the scalars to leptons and quarks in order to obtain their respective observed
masses. (Namely the Standard Model does not predict the lepton and quark
masses.) Of the complex doublet

(
φ+,φ0

)
we have four independent scalar

bosons; while φ± and one of φ0′s are “eaten” by the gauge bosons to make
three massive vector bosons of W±and Z0, the remaining scalar boson is a real
massive spin-0 particle. This ‘Higgs boson’ with characteristic couplings (to
leptons, quarks, photons, and other intermediate vector bosons) should be an
observable signature of the SSB feature of the electroweak theory.

The development of electroweak gauge theory
The Glashow–Weinberg–Salam model Many have contributed to the
development of the gauge theory of electroweak interactions. We mention
some milestones. Sheldon Glashow (1932– ) was the first one in 1957 to write
down an SU(2)× U(1) gauge theory and also made major contributions later
on in building a consistent quark sector of the theory. However in the original
Glashow model, the vector boson masses were introduced by hand, hence
it was not a self-consistent quantum field theory. In 1967 Steven Weinberg
formulated an electroweak gauge theory of leptons with gauge bosons and
electron masses generated by the Higgs mechanism. At about the same
time Abdus Salam (1926–96) presented an electroweak gauge theory with
spontaneous symmetry breaking as well, although not in a formal journal
publication. Their results did not generate great enthusiasm right away in
the physics community because the quantization33

33The quantization of Yang–Mills theory,
because of its many redundant degrees of
freedom, is highly nontrivial. Its consistent
program was finally achieved through the
work of many, by Bryce DeWitt (1923–
2004), R.P. Feynman, Ludvig Faddeev
(1934– ) and Victor Popov (1937–94), et al.

and renormalization34

34One of the important steps in the renor-
malization is the implementation of the
regularization procedure that renders the
divergent integrals finite so that the calcula-
tion is well defined for further mathematical
manipulations. The renormalizability of a
theory with symmetry depends critically on
the cancellation of divergences as enforced by
symmetry relations. The dimensional regular-
ization scheme, by going to a lower spacetime
dimension, makes theory finite without viol-
ating its symmetry properties. This elegant
procedure was invented independently by
several groups, among them G. ’t Hooft
(1946– ) and M.J.G. Veltman (1931– ).

of
nonabelian gauge theories were still being worked out in those years.

Yang–Mill theories are renormalizable with or without SSB For almost
two decades (1950s and 1960s), there was in fact a great deal of pessimism in
the physics community that quantum field theory could be the proper frame-
work for the study of strong and weak interactions. The strong interaction did
not appear to have a small coupling and its field equation could not be solved
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by the only known method: perturbation theory. Without knowing their solu-
tions, one did not know how to test such theories. While the weak interaction
had features of a gauge interaction and the perturbation should be applicable, it
was generally thought that quantum theory with massive vector bosons was not
renormalizable. It is in this light that one must appreciate the result obtained
in 1971 by Gerard ’t Hooft, a student of Martinus Veltman, proving that
Yang–Mills theory was renormalizable, with or without spontaneous symmetry
breaking. The significance of this achievement was appreciated very quickly by
their worldwide physics colleagues. This transformed the whole field of the-
oretical particle physics and brought about the renaissance of quantum field
theory in the 1970s.

We discussed QCD before electroweak theory, because QCD, without
the need of a hidden symmetry, is a simpler gauge theory to present.
Historically the nonabelian gauge theory for the weak interaction was success-
fully developed first. Politzer, Gross, and Wilczek then proved that Yang–Mills
theory, and only Yang–Mills theory, has the property of asymptotic freedom.
That allowed the QCD quantum field theory of strong interactions at the
short-distance regime to be solved perturbatively and tested experimentally.

16.5.5 The Standard Model and beyond

The Standard Model of particle interactions (Table 16.1) is a gauge theory
based on the symmetry group of SU(3)× SU(2)× U(1). QCD is the SU(3)
gauge theory for the strong interaction. The SU(2)× U(1) gauge theory with
spontaneous symmetry breaking describes the electroweak interaction. Even
though their coupling strengths are the same, the weak interaction appears to
be much weaker than the electromagnetic force because its effects are usually
suppressed by the large masses of the W± and Z bosons.

Grand unified gauge theories
The Standard Model has been remarkably successful in its confrontation with
experiment tests. Nevertheless it does not explain why the three generations
of leptons and quarks have the same charge and representation assignments.3535The theoretical structures for each of the

three generations (e, νe, u, d), (μ, νμ, c, s),
and (τ , ντ , t, b) in the Standard Model are
identical.

Furthermore, the theory must be specified by 18 parameters: three gauge coup-
lings, the SSB energy scale (which fixes the vector boson masses), three lepton
masses, as well as six masses and four angles of a complex mixing matrix of the
quarks, and, finally, the Higgs boson mass. The consensus is that the Standard

Table 16.1 Gauge symmetry, gauge bosons, and gauge couplings of the Standard Model.

interactions sym group vector gauge fields partial unification

Electromagnetic

Weak

U(1)

SU(2)

photon Aμ

weak vector bosons W±
μ , Zμ

⎫⎪⎪⎬
⎪⎪⎭

SU(2)× U(1)

electroweak

e and θw

Strong SU(3) gluons Ga
μ, a = 1, 2, . . 8 gs



16.5 Gauge theories: A narrative history 281

Model is only a low-energy effective theory of some more fundamental theory
with an intrinsic energy scale much higher than the electroweak scale.

As a first step going beyond the Standard Model, people have explored the
possibility of ‘grand unification’ of strong, weak, and electromagnetic interac-
tions in the framework of larger groups that are ‘simple’ (with only one gauge
coupling) that contain SU(3)× SU(2)× U(1) as their subgroup. Namely, in
the Standard Model the three interactions are still described by three separ-
ate gauge groups with distinctive coupling strengths. In a more unified simple
gauge group there is only one coupling strength—truly one gauge interac-
tion. This unified strength at some very high ‘grand unified’ energy scale �GU

can evolve into the distinctive couplings of strong, weak, and electromagnetic
couplings at a lower energy scale if there is another spontaneous symmetry
breaking taking place at �GU with all gauge bosons other than those belonging
to the SU(3)× SU(2)× U(1) group gaining masses O(�GU). The decoupling
of these heavy particles implies that the subgroup couplings g1, g2, and g3 will
evolve differently below the �GU scale, giving rise to the observed different
interaction strengths for the strong, weak, and electromagnetic forces observed
in our more familiar low-energy scales (see Fig. 16.5).

Fig. 16.5 Running coupling strengths as
a function of energy. Coupling constant
unification occurs at some super-high
energy (�GU = 1016 GeV?). Spontaneous
symmetry breaking of the unification gauge
group with a single gauge coupling gGU
will cause the gauge couplings of subgroup
SU(3)× SU(2)× U(1) to evolve differently
towards lower-energy regimes, giving rise to
the different interaction strengths as observed
of the strong, weak, and electromagnetic
forces.

Successful GUTs such as the gauge theory based on SU(5) have been
constructed; they can explain (as the coupling unification discussed above)
why the strong interaction is strong and why the weak interaction is weak.
Moreover all the quark lepton gauge charges can be understood based on a
simple assignment of GUT charges for these fermions.36 36That two-component fermions form the

fundamental representations of the Lorentz
group provides us with a natural explana-
tion of parity violation by fundamental inter-
actions. That QCD turns out to be parity
conserving is explained by the GUT charge
assignment which just leads to the same
SU(3) color charges for the left-handed and
right-handed quarks.

Their description
can in fact be improved upon with the introduction of supersymmetry; in
particular the precise coupling unification discussed above can come about
only by the inclusion of supersymmetric particles. This program is still a work
in progress; it very much needs guidance from experimental discoveries. In
this connection, we comment below on the distinction that Einstein made
between constructive theories versus theories of principle.

The Standard Model as a constructive theory and as a theory
of principle
Abraham Pais in his Einstein biography wrote37 37See Pais (1982, p. 27), based on

Einstein’s letter to his gymnasium teacher
H. Friedmann, March 18, 1929.. . . a distinction that Einstein liked to make between two kinds of physical theories. Most

theories, according to Einstein, are constructive, they interpret complex phenomena
in terms of relatively simple propositions. An example is the kinetic theory of gases,
in which the mechanical, thermal, and diffusional properties of gases are reduced to
molecular interactions and motions . . . then there are the theories of principle, which
use the analytic rather than the synthetic method . . . An example is the impossibility of
a perpetuum mobile in thermodynamics. Then Einstein went on to say, ‘The theory of
relativity is a theory of principle’.

We would like to suggest that the Standard Model of elementary particle
interactions is a good example of a theory that is both a constructive theory
and a theory of principle.

The discovery of the quark and lepton as the basic constituents of matter,
and that of the symmetry groups of SU(3) and SU(2)× U(1), followed the
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practice of a constructive theory with its trial-and-error theoretical propositions
followed by the experimental checks.

Einstein and the Standard Model Einstein did not participate directly in
the construction of the Standard Model as described above. Also, the Standard
Model is an example of a quantum field theory, which Einstein never accep-
ted as an acceptable theoretical framework. However the influence of his idea
has been of paramount importance in the successful creation of the Standard
Model. Besides the fundamental importance of special relativity, photons, and
Bose–Einstein statistics to particle physics, the use of local symmetry to gen-
erate dynamics (the gauge principle) is very much in the spirit of Einstein’s
theory of principle as represented in particular by his masterful deployment of
the invariance principle, and the equivalence principle. This approach of util-
izing an overarching principle in the search of the new patterns in Nature will
become even more relevant as we explore physical realms that are ever more
inaccessible to direct experimentation.



The Kaluza–Klein
theory and extra
dimensions

17
17.1 Unification of electrodynamics

and gravity 284

17.2 General relativity in 5D
spacetime 287

17.3 The physics of the Kaluza–Klein
spacetime 289

17.4 Further theoretical
developments 292

17.5 SuppMat: Calculating the 5D
tensors 293

• Einstein famously spent the latter half of his physics working life on
his program of unified field theories. His conviction was that a unifica-
tion program not only could combine his GR gravitational field theory
with Maxwell’s equations but also shed light on the quantum mystery.
In this chapter, we discuss the Kaluza–Klein (KK) theory which, in
many ways, is a shining example of Einstein’s unification program. It
has stayed relevant even for physics research in the twenty-first century.
However, the Kaluza–Klein theory uses the more conventional quantum
idea and does not illuminate its origin as Einstein had envisioned for a
unified theory.

• The Kaluza–Klein theory is a GR field theory in a spacetime with an
extra spatial dimension. The nonobservation of the extra fifth dimen-
sion is assumed to result from its compact size. (The extra dimension
is curled up.) The theory not only achieves a unification of gravitation
with electrodynamics but also suggests a possible interpretation of the
charge space and gauge symmetry as reflecting the existence of this
compactified extra dimension.

• By way of a long calculation, Theodor Kaluza has shown that the 5D
general relativity field equation with a particular geometry is com-
posed of two parts, one being the Einstein field equation and the other
the Maxwell equation. This remarkable discovery has been called “the
Kaluza–Klein miracle”. The details of this calculation are provided in
the SuppMat Section 17.5. We also discuss the motivation and meaning
of the assumed geometry for this 5D spacetime.

• As gauge symmetry was being developed, Oskar Klein showed that a
gauge transformation could be identified with a displacement in the
extra dimension coordinate in the KK theory. This went a long way
in explaining the KK “miracle”. Also it was demonstrated that the
relativistic Klein–Gordon wave equation in KK spacetime is equival-
ent to a set of decoupled 4D Klein–Gordon equations for a tower of
particles with increasing masses. Thus the signature of an extra dimen-
sion is the existence of a tower of KK particles, having identical spin



284 The Kaluza–Klein theory

and gauge quantum numbers, with increasing masses controlled by the
compactification scale.

• In the last section brief comments are offered of the more recent efforts
in the construction of unified theories with extra dimensions.

17.1 Unification of electrodynamics and gravity

17.1.1 Einstein and unified field theory

Unifying different realms of physics has always led to fresh insight into our
physical world. Maxwell’s and Faraday’s fusion of electricity and magnetism
brought new understanding of light and radiation. Einstein’s motivation for
new physics was often prompted by the promise of wider comprehension that a
new synthesis would bring. Recall his motivation for the principle of relativity.
His special relativity brought about the deep cognizance that space and time
were interchangeable. The resultant insight that spacetime was the arena in
which physical events took place ultimately brought about his geometric theory
of gravitation—in the form of a dynamical spacetime. Concurrently extending
his atomic hypothesis of matter (doctoral thesis and Brownian motion) as well
to radiation, his light quantum idea, he found that the electromagnetic field
could have the puzzling feature of being both wave and particle at the same
time. As we have discussed in Chapter 8, while Einstein appreciated the spe-
cific successes of the new quantum mechanics, he could not believe it as an
acceptable description of reality. It was in this context that Einstein had hopes
of finding a unification of electrodynamics and general relativity that would
also shed light on the quantum mystery. This was the driving force behind his
20-year effort in the unified field theory program.

17.1.2 A geometric unification

Einstein’s accomplishment in formulating a geometric theory of gravitation
naturally led him, and others, in efforts to find a geometric formulation of
Maxwell’s theory. As mentioned in Section 16.5.1, this was the original
motivation of Hermann Weyl and it eventually led to fruition in the form of
interpreting electrodynamics as a gauge interaction. If a more direct geometric
formulation of electromagnetism is possible, it would perhaps make the uni-
fication with gravity more likely. As we shall see in this chapter, a geometric
theory of electrodynamics was actually obtained through a unification attempt,
but it is the geometry of a spacetime with an extra dimension.

While gauge symmetry bears a resemblance to general relativity of being
also a local symmetry, the result still does not seem like much help in find-
ing a unified theory. Gauge invariance being a local symmetry, not in ordinary
spacetime, but in the internal charge space, the question naturally arises: what
exactly is this charge space? A possible answer was found11Kaluza’s paper was sent to Einstein in 1919,

but did not come out in print until two years
later (Kaluza 1921).

in 1919 by the
Prussian mathematician Theodor Kaluza (1885–1954). He suggested extend-
ing the general principle of relativity to a hypothetical 5D spacetime—the usual
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4D spacetime augmented by an extra spatial dimension.2 2Just about all attempts of extending space-
time dimensions involve extra spatial dimen-
sions. The need to have the extra dimensions
compactified would have to, in the case of an
extra time dimension, overcome the serious
causality difficulties associated with looped
times.

It was discovered that
a particular restricted 5D space geometry would lead to a 5D general theory of
relativity with a field equation composed of two parts, one being the Einstein
equation and another being the Maxwell equation.

The possibility of such a ‘miraculous’ unification was explained by the
Swedish physicist Oskar Klein (1894–1977) in the late 1920s when quantum
mechanics and gauge theory were being developed. Klein showed that, in
Kaluza’s 5D theory, a gauge transformation had the geometric significance
of being a displacement in the extra dimension. Thus charge space has the
physical meaning of being the extra space dimension. If this extra dimen-
sion is compactified (so as to have avoided direct detection), quantum theory
predicts the existence of a tower of particles with ever increasing masses
with the mass difference controlled by the compactification length size. This
unified field theory has come to be called the Kaluza–Klein (KK) theory.
However, the KK theory made use of the more conventional quantum idea
and did not shed light on its origin as Einstein had envisioned for the unified
theory.

The Kaluza–Klein theory postulates the existence of an extra spatial dimen-
sion. Our spacetime is actually five-dimensional; it was demonstrated that
electromagnetism can be viewed as part of 5D general relativity. That is, one
can “derive” electrodynamics by postulating the principle of general relativity
in a 5D spacetime. To prepare for the study of this embedding of electromag-
netic gauge theory in a 5D general relativity, we first recall the relevant parts
of gauge symmetry as well as of the GR theory.

17.1.3 A rapid review of electromagnetic gauge theory

Under a U(1) gauge transformation, the 4-vector potential (regarded as the
fundamental electromagnetic field) transforms as

Aμ−→A′μ = Aμ + ∂μθ (17.1)

where θ (x) is the gauge function, cf. Eq. (16.45). The EM field intensity, being
the 4-curl of the gauge field

Fμν = ∂μAν − ∂νAμ, (17.2)

is clearly invariant under the gauge transformation of (17.1). Requiring the
Lagrangian density to be a relativistic and gauge invariant scalar leads to a free
Maxwell density of

LEM = −1

4
FμνFμν . (17.3)

As discussed in Sections 16.4.2 and 16.4.3, the Euler–Lagrange equation
based on this LEM is the Maxwell equation. In this sense we say Maxwell’s
theory is essentially determined by (special) relativity and U(1) gauge
symmetry.
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17.1.4 A rapid review of general relativistic
gravitational theory

GR equations are covariant under the general coordinate transformation that
leaves invariant the spacetime interval

ds2 = gμνdxμdxν ,

where gμν is the metric tensor of the 4D spacetime. Just as the metric can be
interpreted as a relativistic gravitational potential, the Christoffel symbols

�λ
μν =

1

2
gλρ
[
∂νgμρ + ∂μgνρ − ∂ρgμν

]
, (17.4)

being the first derivative of the potential [cf. Eq. (13.6)] can be thought as the
gravitational field intensities. The Riemann–Christoffel curvature tensor [cf.
Eq. (14.9)]

Rμ
λαβ = ∂α�

μ
λβ − ∂β�

μ
λα + �μ

να�
ν
λβ − �

μ
νβ�

ν
λα, (17.5)

being the nonlinear second derivatives of the metric, is the relativistic tidal
forces, its contracted version enters into the GR field equation (14.35)

Rμν − 1

2
Rgμν = κTμν (17.6)

where the Ricci tensor Rμν and scalar R are contractions of the Riemann
curvature

Rμν ≡ gαβRαμβν and R ≡ gαβRαβ (17.7)

and Tμν is the energy–momentum tensor for an external source. κ is propor-
tional to Newton’s constant.

The Einstein–Hilbert action
Just as Maxwell’s equation can be compactly presented as the Euler–
Lagrangian equation resulting from the variation of the Maxwell action, the
Einstein equation (17.6) is similarly related to the GR Lagrangian density, the
Ricci scalar:

Lg = R, (17.8)

for the source-free case (Hilbert 1915, Einstein 1916d). Since only the product√−gd4x (where g is the determinant of the metric tensor gμν) is invariant under
the general coordinate transformation,33For such more advanced GR topics, see, for

example, Carroll (2004).
the relevant action, called the Einstein–

Hilbert action, is the 4D integral

Ig =
∫ √−gd4xLg =

∫ √−gd4xgμνRμν . (17.9)

We can then derive Eq. (17.6) as the Euler–Lagrange equation from the minim-
ization of this action. The variation of the action δIg has three parts involving
δRμν , δgμν , and δ

√−g. The integral containing the δRμν factor after an integ-
ration by parts turns into a vanishing surface term; the metric matrix being
symmetric4

4A symmetric matrix M can always be
diagonalized by a similarity transformation
SMSᵀ = Md . hence obeys the general relation ln(det gμν) = Tr(ln gμν) leading
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to the variation of δ
√−g = − 1

2

√−ggμνδgμν . Consequently the variation
principle requires

δIg =
∫ √−gd4x

(
Rμν − 1

2
Rgμν

)
δgμν = 0,

which implies the Einstein equation of (17.6). In this sense we can interpret the
general coordinate-invariant Ricci scalar R as representing the (source-free) 4D
gravitational theory.

17.2 General relativity in 5D spacetime

In this section we show how a particular version of the 5D spacetime metric
leads to the Ricci scalar being the sum of Lagrangian densities of Einstein’s
gravity theory and Maxwell’s electromagnetism.

17.2.1 Extra spatial dimension and the Kaluza–Klein
metric

One can motivate the geometric unification by the observation that while we
have the 4-potential Aμ in electromagnetism, the spacetime metric gμν is the
relativistic gravitational potential. One would like to combine these two types
of potentials into one mathematical entity.5 5Further discussion can be found in Section

17.3.1.Kaluza starts out by postulating a spacetime with an extra spatial dimension6

65D quantities will be denoted with a caret
symbol ^. The capital Latin index M =
(μ, 5) = (0, 1, 2, 3, 5) is for a 5D spacetime,
with the Greek index μ for the usual 4D
spacetime and the index 5 for the extra spa-
tial dimension. Our system skips the index 4,
so as not to be confused with another com-
mon practice of labeling the 4D spacetime by
the indices (1, 2, 3, 4) with the fourth index
being the time coordinate. In our system the
time component continues to be denoted by
the zeroth index.

x̂M = (x0, x1, x2, x3, x5) . (17.10)

However, the metric ĝMN for this 5D spacetime is assumed to have a particular
structure ĝMN = ĝ(kk)

MN having its elements related to the 4D gμν and Aμ as,

ĝ(kk)
μν = gμν + AμAν , ĝ(kk)

μ5 = ĝ(kk)
5μ = Aμ, ĝ(kk)

55 = 1. (17.11)

When displayed in 5× 5 matrix form, we have

ĝ(kk)
MN ≡

(
ĝ(kk)
μν ĝ(kk)

μ5

ĝ(kk)
5ν ĝ(kk)

55

)
=
(

gμν + AμAν Aμ

Aν 1

)
. (17.12)

Equivalently, the corresponding invariant interval in this 5D spacetime can be
written as

ds2
(kk) = ĝ(kk)

MN dx̂Mdx̂N = gμνdxμdxν + (dx5 + Aλdxλ)2. (17.13)

We should note the particular feature that, with gμν and Aμ being functions of
the 4D coordinate xμ, all the elements of the 5D metric ĝ(kk)

MN have no depend-
ence on the extra dimensional coordinate x̂5 and we also set ĝ(kk)

55 = 1. From this
point on we shall drop the cumbersome superscript label (kk) and the relation
ĝMN = ĝ(kk)

MN is always understood.
One can also check that the 5D inverse metric ĝMN must have the

components of

ĝμν = gμν , ĝμ5 = ĝ5μ = −Aμ, ĝ55 = 1+ AνAν , (17.14)
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or,

ĝMN =
(

gμν −Aμ

−Aν 1+ AλAλ

)
(17.15)

so that a simple matrix multiplication can check out the correct metric relation
ĝMNĝMN = δM

K .

17.2.2 “The Kaluza–Klein miracle”

From the 5D metric, we can obtain the other curved spacetime quantities by
the usual relations. The 5D Christoffel symbols, cf. Eq. (17.4), are first-order
derivatives of the 5D metric

�̂M
NL =

1

2
ĝMK (∂NĝLK + ∂LĝNK − ∂KĝNL) . (17.16)

The 5D Riemann curvature tensor is a nonlinear derivative of the 5D Christoffel
symbols, cf. Eq. (17.5):

R̂L
MSN = ∂S�̂

L
MN − ∂N�̂

L
MS + �̂L

ST �̂
T
MN − �̂L

NT �̂
T
MS. (17.17)

Contracting the pair of indices (L, S), we obtain the 5D Ricci tensor, cf.
Eq. (14.23),

R̂MN = R̂L
MLN = ∂L�̂

L
MN − ∂N�̂

L
ML + �̂L

LT �̂
T
MN − �̂L

NT �̂
T
ML. (17.18)

Contracting one more time, we obtain the 5D Ricci scalar, cf. Eq. (14.25),

R̂ = ĝMNR̂MN . (17.19)

Given Kaluza’s stipulation of the 5D metric, it is a straightforward, but rather
tedious, task to calculate the 5D Christoffel symbols, in terms of the famil-
iar 4D metric tensor and 4D electromagnetic potential, and then all the other
5D geometric quantities as listed in Eqs. (17.16)–(17.19). After an enormous
calculation,77The details of calculating the 5D Ricci scalar

R̂ in term of gμν and Aμ are provided in
SuppMat Section 17.5.

Kaluza obtained the remarkable result that the 5D Ricci scalar R̂,
which should be the Lagrangian density of a 5D general theory of relativity,
is simply the sum of the Lagrangian densities of the 4D general relativity R
and Maxwell’s electromagnetism, − 1

4 FμνFμν where Fμν is the Maxwell field
tensor (17.2):

R̂ = R− 1

4
FμνFμν , (17.20)

namely,

L(5)
g = L(4)

g + L(4)
EM. (17.21)

The Einstein and Maxwell equations are all components of the 5D GR
field equation.8

8It can be similarly shown that the 4D Lore-
ntz force law follows from the 5D geodesic
equation (the GR equation of motion). In this rather “miraculous” way a geometric unification of

gravitation and electromagnetism is indicated.
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17.3 The physics of the Kaluza–Klein spacetime

As indicated above, once we have the KK metric (17.11), the unification of
gravitation and electromagnetism follows by a straightforward calculation.
Thus the whole unification program relies on the structure of the KK metric.
What is the physics behind the KK metric ansatz?

17.3.1 Motivating the Kaluza–Klein metric ansatz

The amazing unification results having their origin in the KK prescription
(17.11) for the metric ĝ(kk)

MN ; it may be worthwhile to motivate the algebra that
can lead one to this metric ansatz.

The metric gμν being the gravitational potential and comparable to the EM
potential Aμ, one would like to fit both of them into the 5D ĝMN . What should
be the precise identification of the metric elements? Similarly, can one fit
the Christoffel symbols �μ

νλ and EM field tensor Fμν (both being first deriv-
atives of the potentials) into �̂M

NL? Or, after lowering the upper index in (17.16),

�̂M NL ≡ ĝMJ�̂
J
NL =

1

2
(∂NĝLM + ∂LĝNM − ∂MĝNL) . (17.22)

Out of the 50 elements, we will concentrate on the set with the indices M = μ,
L = 5, and N = ν in (17.22) as a possible match for the EM field intensity Fμν :

�̂μ 5ν = 1

2

(
∂ν ĝ5μ + ∂5ĝμν − ∂μĝν5

)
. (17.23)

This suggests the identification with − 1
2 Fμν if the 5D metric elements actually

do not depend on the x5 coordinate so that the middle term vanishes, ∂5ĝμν = 0,
and if ĝμ5 = ĝ5μ = Aμ. With the further simplifying assumption of ĝ55 = 1 and
ds2, Kaluza ends up trying the ansatz of (17.11), hence (17.13).

17.3.2 Gauge transformation as a 5D coordinate change

The invariant interval ds2
(kk) = ĝ(kk)

MNdx̂Mdx̂N , with the metric ĝ(kk)
MN not being the

most general 5D metric tensor, will not be invariant under the most general
coordinate transformation in the 5D spacetime x̂M → x̂′M . However, ds2

(kk), as
we shall show, is unchanged under a subset of coordinate transformations hold-
ing the 4D coordinates fixed and a local displacement of the extra dimensional
coordinate:

xμ → x′μ = xμ and x5 → x′5 = x5 + θ (x). (17.24)

Since we have gμν(x) depending on the 4D coordinate only, this leads to

g′μν(x) = gμν(x), and, of course, ĝ′55 = ĝ55 = 1. (17.25)

Most interestingly, according to the general transformation rule, cf.
Eq. (13.29), with ∂ x̂M/∂x′5 = δM

5 , we have

ĝ′5μ =
∂ x̂M

∂x′5
∂ x̂N

∂x′μ
ĝMN =

∂ x̂N

∂x′μ
ĝ5N

= ∂xν

∂x′μ
ĝ5ν +

∂x5

∂x′μ
ĝ55 = δνμĝ5ν −

∂θ

∂xμ
. (17.26)



290 The Kaluza–Klein theory

With the identification of ĝ5μ = Aμ, this is just the gauge transformation
of Eq. (17.1). It is then an easy exercise to check that the KK interval
of (17.13) is unchanged under this restricted 5D coordinate transformation
(17.25) and (17.26).

Recall the discussion in Chapter 16 and reviewed in Section 17.1 that elec-
tromagnetism can to a large extent be determined by the U(1) gauge symmetry.
As the U(1) transformation eiθ(x) is equivalent to a rotation by an angle θ , we
can have the literal realization of the gauge transformation as a displacement
along a circle if the x5 coordinate is compactified into a circle. (See further
discussion below.) That we can interpret gauge transformations as coordin-
ate transformations in an extra dimension goes a long way in explaining why
Maxwell’s theory is embedded in this higher dimensional GR theory.

17.3.3 Compactified extra dimension

We have explained that the 5D coordinate transformation that leaves the KK
interval invariant is a gauge transformation. Still, why does one restrict the
metric to this ĝ(kk)

MN form?
The key feature of the KK metric is that its elements are independent of

the extra dimensional coordinate x5. This is rather strange: one postulates a
spacetime with extra dimension

(
x0, x1, x2, x3, x5

)
yet the fields are not allowed

to depend on the extra coordinate x5!
Kaluza, the mathematician, is silent on the physical reality of the extra

dimension; but Klein, the physicist, proposes that the fifth dimension is real.
It has not been observed because it is extremely small; the extra dimension
is curled up. Just like a garden hose is viewed at a distance as a 1D line, upon
closer inspection one finds a surface composed of a series of circles (Fig. 17.1).
Here one of the two dimensions of the surface is compactified into circles. In
the same manner, Klein proposes that one spatial dimension of our 5D space-
time is compactified: every point in the observed 3D spatial space is actually a
circle.

Fig. 17.1 Compactified dimension. A 1D
line is revealed to be a 2D surface with one
dimension compactified into a circle.

17.3.4 Quantum fields in a compactified space

The Kaluza–Klein “miracle” was discovered by Kaluza, and was explained by
Klein, who used the then new quantum mechanics to deduce the consequence
of a compactified dimension. This also justifies the restrictions imposed on the
5D metric (Klein 1926).

Consider, as the simplest case, a scalar field φ
(
x̂M
) = φ

(
xμ, x5

)
satisfying a

5D relativistic wave equation (the Klein–Gordon equation):(
�(5) − m2

0c2

h̄2

)
φ
(
x̂N
) = 0 (17.27)

where �(5) is the five-dimensional D’Alembertian operator99Cf. Eq. (11.25). �(5) = �(4) +
∂2/∂x 2

5 . Since the extra dimension is a circle (with compactification radius a),
we have the identification of x5 and x5 + 2πa. Thus the wavefunction φ

(
x̂M
)

must satisfying the boundary condition of
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φ
(
xμ, x5

) = φ
(
xμ, x5 + 2πa

)
. (17.28)

The field must have a sinusoidal dependence on the x5 coordinate, and has the
harmonic expansion

φ
(
xμ, x5

) =∑
n
φn
(
xμ
)
eipnx5/h̄. (17.29)

In order that the boundary condition (17.28) is satisfied, the momentum in the
extra dimension must be quantized10 10Recall the similar problem of “a particle in

a box” in quantum mechanics.

pn = n
h̄

a
with n = 0, 1, 2, . . . (17.30)

A tower of Kaluza–Klein particles in 4D spacetime
To see the implications in the familiar 4D spacetime, we can write out the 5D
Klein–Gordon equation in the 4D spacetime(

�(5) − m2
0c2

h̄2

)
φ
(
x̂N
) = (�(4) + ∂2

5 −
m2

0c2

h̄2

)
φ
(
x̂N
) = 0,

which, after substituting in the series expansion, becomes

∑
n

[(
�(4) − n2

a2
− m2

0c2

h̄2

)
φ
(
xμ
)]

eipnx5/h̄. = 0.

Namely, we have an infinite number of decoupled 4D Klein–Gordon equations(
�(4) − m2

nc2

h̄2

)
φ
(
xμ
) = 0, (17.31)

with a tower of “Kaluza–Klein states” having masses

m2
n = m2

0 + n2 h̄2

a2c2
. (17.32)

Thus the signature of the extra dimension in 4D spacetime is a tower of KK
particles, having identical spin and gauge quantum numbers, with increasing
masses controlled by the compactification scale of a.

Compactification by quantum gravity?
The natural expectation is that the compactification is brought about by the
dynamics of quantum gravity. In this way the compactification radius should
be the order of the Planck length, discussed in Section 3.3.2. That the first KK
state has a mass of at least 1019 GeV would mean that such particles would
not be detectable in the foreseeable future. Nevertheless, the “decoupling” of
the large KK state masses do explain the basic structure of the KK metric
ansatz—the x5 independence of the metric elements.

Since only the n = 0 state is physically relevant, we have from Eqs. (17.30)
and (17.29) the approximation

φ
(
xμ, x5

) = φ0
(
xμ
)

(17.33)

and the x5 dependence of the theory disappears.
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17.4 Further theoretical developments

We have presented the Kaluza–Klein theory as an illustration of Einstein’s uni-
fied field theory. While it is an example of unification of fundamental forces, it
certainly does not have a bearing on Einstein’s loftier goal of a unified theory
that would explain the mystery of quantum physics. In fact KK theory makes
use of conventional quantum mechanics in extracting physical consequences
of a compactified spatial dimension.

Extending the original Kaluza–Klein theory
Scalar–tensor gravity theory Even restricted to the original theory, there is
no strong theoretical argument for setting the metric element g55 = 1. A more
natural alternative is to replace it by a field. This would lead to a scalar–tensor
theory of gravity, for which there is no experimental support.

From a circle to Calabi–Yau space From a modern perspective, the KK the-
ory cannot be a complete unified theory because the list of fundamental forces
must be expanded beyond the gravitational and electromagnetic interactions: it
must at least include the strong and weak particle interactions.1111In this connection, we note that Oskar Klein

in the late 1930s constructed a 5D theory
that attempted to include not only gravity and
electromagnetism, but also Yukawa-meson-
mediated nuclear forces. Although he did
not explicitly consider any nonabelian gauge
symmetry, his theory had foreshadowed the
later development of Yang–Mills theory, in
particular, charged gauge bosons, etc. He
presented these results in a 1938 conference
held in Warsaw, but never published them
formally. For an appreciation of this 1938
contribution see Gross (1995).

Nevertheless,
the modern development of particle physics has led to the discovery of super-
string theory as a possible quantum gravity theory that has the potential to
unify all fundamental forces. What is most relevant for our discussion here is
the finding that the self-consistency requirement of superstring theory requires
a spacetime to have 10 dimensions. Thus what is needed is not just one extra
dimension curled into a very small circle but six extra dimensions into a more
complicated geometric entity. A much discussed compactification scheme is
the Calabi–Yau space.12

12For a comprehensive and nontechnical dis-
cussion, see Yau and Nadis (2010).

In short, the spirit of Einstein’s unification program,
especially in the form of Kaluza–Klein extra dimensions, is being carried on in
the foremost theoretical physics research of the twenty-first century.

Speculations of a large extra dimension As the current thinking of unific-
ation theory is directly related to the quest for quantum gravity, the natural
unification distance scale is thought to be the Planck length, which is some-
thing like nine orders of magnitude smaller than the highest accelerator can
probe. This makes an experimental test of such theories extremely difficult.
Yet researchers have found the whole idea of extra dimensions so attractive
that there have been serious speculations on the possibility that the compacti-
fication scale is much larger than the Planck size. Maybe the extra dimension
is on the electroweak scale that can possibly be revealed in experiments being
performed at the Large Hadron Collider. These are intriguing speculations that
are being actively pursued.

17.4.1 Lessons from Maxwell’s equations

In this book we have repeatedly discussed the importance of Maxwell’s equa-
tions. We will conclude our presentation by recalling the important lessons that
we have learnt from the structure of these equations:
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• The idea of the photon and quantum theory, brought forth through a deep
statistical thermodynamic study of electromagnetic radiation.

• Einstein’s principle of relativity, that taught us that the arena of physics
is 4D spacetime; this paved the way for a geometric understanding of
gravitation.

• The idea of local symmetry in the charge space, leading eventually to the
viewpoint that all fundamental interactions have a connection with gauge
symmetry.

• Finally, the possibility that spacetime has extra dimensions. This may be
the origin of the charge space.

17.4.2 Einstein and mathematics

“Mathematics is the language of physics.” Such a statement implies a rather
passive role for mathematics. In fact this language has often led the way in
opening up new understanding in physics. This is one of the powerful les-
sons that one gathers from the history of theoretical physics; this account of
Einstein’s physics, we believe, confirms this opinion too. Clearly Einstein’s
discovery that Riemannian geometry offers a truer description of nature is a
brilliant example of such a role. One aspect of Einstein’s scientific biography
can be viewed as the story of his growing appreciation of the role of math-
ematics: starting from his skepticism of higher mathematics, doubting the
usefulness of Minkowski’s geometric formulation of special relativity to the
role that Riemannian geometry played in the implementation of the general
principle of relativity—first learning the new mathematics with the help of
Marcel Grossmann and the eventual discovery of the GR field equation after
much struggle on his own. In the process, Einstein became greatly appreciative
of the role of mathematics as fundamental in setting up new physical theory.
Finding the correct mathematical structure to describe the physical concepts,
and postulating the simplest equation compatible with that structure, are all key
elements in the invention of new theories.

That Einstein had not made more advances in his unified field theory
program may also imply that this great physicist was after all not a com-
parably great mathematician (like the case of Newton). One probably needs
to invent new mathematics in order to forge progress in such a pursuit.13 13In this connection see the comments made

by Roger Penrose in the new Forward he
wrote in the 2005 re-issue of Pais (1982).

It is also interesting to observe the important contributions that mathem-
aticians have made in furthering Einstein’s vision: Hermann Weyl’s gauge
symmetry program and Theodor Kaluza’s 5D GR leading to the ‘Kaluza–Klein
miracle’.

17.5 SuppMat: Calculating the 5D tensors

Here we provide the details of calculating the 5D tensors in terms of the grav-
itational potential gμν and electromagnetic potential Aμ—all based on the KK
metric prescription given by (17.11).
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17.5.1 The 5D Christoffel symbols

The 5D Christoffel symbols �̂M
NL are first-order derivatives of the 5D metric

(17.16). They have six distinctive types of terms:

�̂
μ
νλ, �̂5

νλ, �̂
μ

5λ, �̂5
5λ, �̂

μ

55, �̂5
55.

We shall calculate them in terms of the 4D metric gμν , the electromagnetic
potential Aμ, and the field tensor Fμν = ∂μAν − ∂νAμ.

The components 	̂
μ
νλ

According to (17.16), with M = μ, N = ν, L = λ, we have

�̂
μ
νλ =

1

2
ĝμK (∂ν ĝλK + ∂λĝνK − ∂Kĝνλ)

= 1

2
ĝμρ
(
∂ν ĝλρ + ∂λĝνρ − ∂ρ ĝνλ

)
+ 1

2
ĝμ5 (∂ν ĝλ5 + ∂λĝν5 − ∂5ĝνλ) . (17.34)

Plugging in the Kaluza metric components of (17.11) and (17.14), we find the
first term on the RHS is just the 4D Christoffel symbols �μ

νλ with an extra
term coming from that fact that ĝμν − gμν = AμAν , while in the second term
we have ∂5ĝνλ = 0 because the Kaluza metric elements are independent of the
extra coordinate x5.

�̂
μ
νλ = �

μ
νλ +

1

2
gμρ
[
∂ν
(
AλAρ

)+ ∂λ
(
AνAρ

)− ∂ρ
(
AνAλ

)]
− 1

2
Aμ
(
∂νAλ + ∂λAν

)
. (17.35)

The first two terms in the square bracket on the RHS can be written out as

1

2
gμρ
[
∂ν
(
AλAρ

)+ ∂λ
(
AνAρ

)]
= 1

2
gμρ
[(
∂νAλ

)
Aρ + Aλ

(
∂νAρ

)+ (∂λAν

)
Aρ + Aν

(
∂λAρ

)]
= 1

2

[(
∂νAλ

)
Aμ + gμρAλ

(
∂νAρ

)+ (∂λAν

)
Aμ + gμρAν

(
∂λAρ

)]
. (17.36)

The first and third terms in this last square bracket just cancel the last term on
the RHS of (17.35). On the other hand the last term in the square bracket on
the RHS of (17.35), when expanded,

−1

2
gμρ∂ρ

(
AνAλ

) = −1

2
gμρ
[(
∂ρAν

)
Aλ + Aν

(
∂ρAλ

)]
(17.37)

can be combined with the second and fourth terms on the RHS of (17.36) to
yield

1

2
gμρ
[(
∂νAρ − ∂ρAν

)
Aλ +

(
∂λAρ − ∂ρAλ

)
Aν

] = −1

2
gμρ
(
FρνAλ + FρλAν

)
.
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All this leads to

�̂
μ
νλ = �

μ
νλ −

1

2
gμρ
(
FρνAλ + FρλAν

)
. (17.38)

Later on we shall also need the Christoffel symbols �̂μ
νλ with a pair of indices

summed over:

�̂μ
νμ = �μ

νμ −
1

2
gμρ
(
FρνAμ + FμρAν

)
.

The very last factor vanishes because of the opposite symmetry properties of
the two tensors: gμρFμρ = 0. Expanding out �μ

νμ, we then have

�̂μ
νμ =

1

2
gμρ
(
∂νgμρ + ∂μgνρ − ∂ρgνμ − FρνAμ

)
.

The two middle terms cancel, gμρ
(
∂μgνρ − ∂ρgνμ

) = 0, and this leads to

�̂μ
νμ =

1

2
gμρ∂νgμρ − 1

2
AμFμ

ν . (17.39)

The components 	̂5
νλ

According to (17.16), with M = 5, N = ν, L = λ,

�̂5
νλ =

1

2
ĝ5K
(
∂ν ĝλK + ∂λĝνK − ∂Kĝνλ

)
= 1

2
ĝ5ρ
(
∂ν ĝλρ + ∂λĝνρ − ∂ρ ĝνλ

)
+ 1

2
ĝ55
(
∂ν ĝλ5 + ∂λĝν5 − ∂5ĝνλ

)
. (17.40)

Plugging in the Kaluza metric components of (17.11) and (17.14), and noting
∂5ĝνλ = 0, we have

�̂5
νλ = −Aρ�ρνλ − 1

2
Aρ
[
∂ν
(
AλAρ

)+ ∂λ
(
AνAρ

)− ∂ρ
(
AλAν

)]
+ 1

2

(
1+ AσAσ

)(
∂νAλ + ∂λAν

)
. (17.41)

The first two terms in the square bracket can be written out as

−1

2
Aρ
[
∂ν
(
AλAρ

)+ ∂λ
(
AνAρ

)]
= 1

2

[−AρAρ

(
∂νAλ

)− Aρ
(
∂νAρ

)
Aλ − AρAρ

(
∂λAν

)− Aρ
(
∂λAρ

)
Aν

]
.

We note that the first and third terms on the RHS just cancel the last two terms
on the RHS of (17.41). The remaining second and fourth terms combine with
the last term in the square bracket of (17.41)
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−1

2
Aρ
[(
∂νAρ

)
Aλ +

(
∂λAρ

)
Aν − ∂ρ

(
AλAν

)]
−1

2
Aρ
[(
∂νAρ

)
Aλ −

(
∂ρAν

)
Aλ +

(
∂λAρ

)
Aν −

(
∂ρAλ

)
Aν

]
= −1

2
Aρ
[
FνρAλ + FλρAν

]
. (17.42)

Equation (17.41) then becomes

�̂5
νλ = −Aρ�ρνλ − 1

2
Aρ
[
FνρAλ + FλρAν

]+ 1

2
Bνλ (17.43)

where

Bνλ = ∂νAλ + ∂λAν . (17.44)

The components 	̂
μ

5λ

According to (17.16), with M = μ, N = 5, L = λ,

�̂
μ

5λ =
1

2
ĝμK
(
∂5ĝλK + ∂λĝ5K − ∂Kĝ5λ

)
. (17.45)

With ∂5ĝλK = 0 and separating the K-index summation into a K = ρ sum and
a K = 5 sum:

�̂
μ

5λ =
1

2
ĝμρ
(
∂λĝ5ρ − ∂ρ ĝ5λ

)+ 1

2
ĝμ5
(
∂λĝ55 − ∂5ĝ5λ

)
. (17.46)

Again we have ∂5ĝ5λ = 0 and as ĝ55 = 1 so that ∂λĝ55 = 0;

�̂
μ

5λ =
1

2
gμρ
(
∂λAρ − ∂ρAλ

) = 1

2
gμρFλρ = −1

2
Fμ
λ . (17.47)

Recall from Section 17.3.1 that it is this simple relation that has motivated
the original ansatz for the KK metric. Furthermore we note that the sum over
the indices μ and λ in �̂

μ

5λ vanishes because gμρ is symmetric and Fμρ is
antisymmetric:

�̂
μ

5μ =
1

2
gμρFμρ = 0. (17.48)

The components 	̂5
5λ

Following the same steps leading to (17.47), we now calculate the M = 5,
L = λ, and μ = 5 element:

�̂5
5λ =

1

2
g5ρ
(
∂λAρ − ∂ρAλ

) = −1

2
FλρAρ . (17.49)

The components 	̂
μ

55 and 	̂5
55

According to (17.46), with λ = 5, we have

�̂
μ

55 =
1

2
ĝμρ
(
∂5ĝ5ρ − ∂ρ ĝ55

) = 0 (17.50)

for the same reason that the last factor in (17.46) vanishes.
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Similarly, with λ = 5, Eq. (17.49) becomes

�̂5
55 =

1

2
g5ρ
(
∂5Aρ − ∂ρ ĝ55

) = 0. (17.51)

Collecting all the �̂M
NL components in one place, we have from (17.38),

(17.43), (17.47), (17.49), (17.50), and (17.51):

�̂
μ
νλ = �

μ
νλ −

1

2

(
Fμ
ν Aλ + Fμ

λ Aν

)
�̂5
νλ = −Aρ�

ρ
νλ −

1

2
Aρ
(
FνρAλ + FλρAν

)+ 1

2
Bνλ

�̂
μ

5λ = −
1

2
Fμ
λ (17.52)

�̂5
5λ = −

1

2
FλρAρ

�̂
μ

55 = �̂5
55 = 0.

17.5.2 The 5D Ricci tensor components

Knowing the Christoffel symbols, we are ready to calculate the Ricci tensor
R̂MN according to Eq (17.18).

The 5D Ricci tensor components R̂μν

There are two pairs of repeated indices, L and T in (17.18). We will now con-
sider the separate cases when they take on 4D values of L = λ and T = τ , or
the extra dimensional value of 5.

1. L = λ and T = τ :(
R̂μν

)
1 = ∂λ�̂

λ
μν︸ ︷︷ ︸

(1)

−∂ν�̂λ
μλ︸ ︷︷ ︸

(2)

+ �̂λ
λτ �̂

τ
μν︸ ︷︷ ︸

(3)

−�̂λ
ντ �̂

τ
μλ︸ ︷︷ ︸

(4)

. (17.53)

2. L = 5 and T = τ :(
R̂μν

)
2
= ∂5�̂

5
μν−∂ν�̂5

μ5︸ ︷︷ ︸
(5)

+ �̂5
5τ �̂

τ
μν︸ ︷︷ ︸

(6)

−�̂5
ντ �̂

τ
μ5︸ ︷︷ ︸

(7)

. (17.54)

3. L = λ and T = 5: (
R̂μν

)
3 = �̂λ

λ5�̂
5
μν−�̂λ

ν5�̂
5
μλ︸ ︷︷ ︸

(7)

. (17.55)

4. L = T = 5: (
R̂μν

)
4 = �̂5

55�̂
5
μν−�̂5

ν5�̂
5
μ5︸ ︷︷ ︸

(8)

. (17.56)

Out of the 12 terms on the RHS, three terms vanish: besides the absence of
the x5 dependence ∂5�̂

5
μν = �̂5

55�̂
5
μν = 0, we also have �̂λ

λ5�̂
5
μν = 0 because,
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according to (17.52), �̂λ
λ5 = − 1

2 Fλ
λ = 0. Furthermore, the last term in (17.55)

may be written as

−�̂λ
ν5�̂

5
μλ = −�̂5

μλ�̂
λ
ν5 = −�̂5

μτ �̂
τ
ν5

where we reach the last expression by changing the labels of the dummy
indices from λ to τ . This makes it clear that this term is really the same as
the last term in (17.54); they are symmetrized with respect to the indices (μ, ν)
which is justified because the Ricci tensor R̂μν must be symmetric. As a res-
ult, altogether we have eight distinctive terms—four from (17.53), three from
(17.54), and one from (17.56).

In the following we shall substitute into these eight terms the expression
of �̂ as given in (17.52). Keep in mind that, in the first four terms, term 1 to
term 4, the 4D �s in the 5D �̂ just combine to form the 4D Ricci tensor Rμν .
For the remaining terms, we have

(1) The ∂λ	̂
λ
μν term:

∂λ�̂
λ
μν = −

1

2
∂λ
(
Fλ
μAν + Fλ

νAμ

)
= −1

2

(
Aν∂λFλ

μ + Aμ∂λFλ
ν + Fλ

μ∂λAν + Fλ
ν ∂λAμ

)
. (17.57)

(2) The −∂ν	̂
λ
μλ term:

−∂ν�̂λ
μλ =

1

2
∂ν
(
Fλ
μAλ + Fλ

λAμ

) = 1

2

(
Aλ∂νFλ

μ + Fλ
μ∂νAλ

)
. (17.58)

(3) The 	̂λ
λτ 	̂

τ
μν term:

�̂λ
λτ �̂

τ
μν = −

1

2

(
Fλ
λAτ + Fλ

τAλ

)
�τ
μν −

1

2
�λ
λτ

(
Fτ
μAν + Fτ

νAμ

)
+ 1

4

(
Fλ
λAτ + Fλ

τAλ

)(
Fτ
μAν + Fτ

νAμ

)
= −1

2
Aλ�

τ
μνFλ

τ −
1

2
Aν�

λ
λτFτ

μ −
1

2
Aμ�

λ
λτFτ

ν

+ 1

4
Fλ
τFτ

μAλAν + 1

4
Fλ
τFτ

νAλAμ. (17.59)

(4) The −	̂λ
ντ 	̂

τ
μλ term:

−�̂λ
ντ �̂

τ
μλ =

1

2

(
Fλ
νAτ + Fλ

τAν

)
�τ
μλ +

1

2
�λ
ντ

(
Fτ
μAλ + Fτ

λAμ

)
− 1

4

(
Fλ
νAτ + Fλ

τAν

)(
Fτ
μAλ + Fτ

λAμ

)
= 1

2

(
Aτ�

τ
μλFλ

ν + Aν�
τ
μλFλ

τ + Aλ�
λ
ντFτ

μ + Aμ�
λ
ντFτ

λ

)
−1

4

(
Fλ
νFτ

μAτAλ + Fλ
τFτ

μAνAλ + Fλ
τFτ

λAνAμ + Fλ
νFτ

λAτAμ

)
.

(17.60)
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(5) The −∂ν	̂
5
μ5 term:

−∂ν�̂5
μ5 =

1

2
∂ν
(
FμτAτ

) = 1

2
Aτ ∂νFμτ + 1

2
Fμτ ∂νAτ . (17.61)

(6) The 	̂5
5τ 	̂

τ
μν term:

�̂5
5τ �̂

τ
μν = −

1

2
FτρAρ�τ

μν +
1

4
FτρAρ

(
Fτ
μAν + Fτ

νAμ

)
= −1

2
Aλ�τ

μνFτλ − 1

4
FλτFτ

μAλAν − 1

4
FλτFτ

νAλAμ. (17.62)

(7) The −2	̂5
ντ 	̂

τ
μ5 term:

−2�̂5
ντ �̂

τ
μ5 = −Aρ�

ρ
ντFτ

μ −
1

2
Aρ
(
FνρAτ + FτρAν

)
Fτ
μ +

1

2
BντFτ

μ

= −Aρ�
ρ
ντFτ

μ −
1

2
FνρFτ

μAρAτ

−1

2
FτρFτ

μAρAν + 1

2
Fτ
μBντ . (17.63)

(8) The −	̂5
ν5	̂

5
μ5 term:

−�̂5
ν5�̂

5
μ5 = −

1

4
FνρFμλAρAλ. (17.64)

Collecting all terms of the type F∂A: the last two terms in (17.57), one from
(17.58), one from (17.61), and one from (17.63), we have

−1

2
Fλ
μ∂λAν − 1

2
Fλ
ν ∂λAμ + 1

2
Fλ
μ∂νAλ + 1

2
Fμτ ∂νAτ + 1

2
Fτ
μBντ . (17.65)

The fourth term may be rewritten as follows

1

2
Fμτ ∂νAτ = −1

2
Fτμ∂νAτ = −1

2
Fλ
μ∂νAλ

which just cancels the third term in (17.65). For the remaining terms, after
using (17.44), we have

−1

2
Fλ
μ∂λAν − 1

2
Fλ
ν ∂λAμ + 1

2
Fλ
μ∂νAλ + 1

2
Fλ
μ∂λAν

= −1

2
Fλ
ν ∂λAμ + 1

2
Fλ
μ∂νAλ

= −1

2
Fλ
ν ∂λAμ + 1

2
Fλ
ν ∂μAλ − 1

2
Fλ
ν ∂μAλ + 1

2
Fλ
μ∂νAλ

= −1

2
Fλ
νFλμ (17.66)

where the final result comes from the combination of the first two terms; we
drop the last two terms because they are antisymmetric with respect to (μ, ν)
as the Ricci tensor must be symmetric.
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Collecting all terms of the type FFAA: the last two terms in (17.59), the last
four from (17.60), the last two from (17.62), two from (17.63), and one from
(17.64), we have (not displaying the common 1/4 coefficients)

Fλ
τFτ

μAλAν + Fλ
τ Fτ

νAλAμ − Fλ
νFτ

μAτAλ − Fλ
τ Fτ

μAνAλ

−Fλ
τFτ

λAνAμ − Fλ
νFτ

λAτAμ − FλτFτ
μAλAν − FλτFτ

νAλAμ

−2FνρFτ
μAρAτ − 2FτρFτ

μAρAν − FνρFμλAρAλ. (17.67)

Grouping similar terms

Fλ
τFτ

μAλAν − Fλ
τFτ

μAνAλ − FλτFτ
μAλAν − 2FτρFτ

μAρAν

= −FλτFτ
μAλAν + 2FλτFτ

μAλAν = FλτFτ
μAλAν , (17.68)

and

Fλ
τFτ

νAλAμ − Fλ
νFτ

λAτAμ − FλτFτ
νAλAμ = −FλτFτ

νAλAμ, (17.69)

again we note that the results from (17.68) and (17.69) form an antisymmetric
combination in (μ, ν), hence can be dropped. After eliminating seven out of the
11 terms in (17.67) we have four left, with three of them mutually canceling:

−Fλ
νFτ

μAτAλ − 2FνρFτ
μAρAτ − FνρFμλAρAλ

= −Fλ
νFτ

μAτAλ + 2Fτ
νFλ

μAτAλ − Fτ
νFλ

μAτAλ = 0.

The only nonvanishing term from (17.67) is (and putting back the 1/4 factor)

−1

4
Fλ
τFτ

λAνAμ = 1

4
FλτFλτAνAμ. (17.70)

Collecting the remaining terms from (17.57)–(17.64), we have (not display-
ing the common −1/2 coefficients)

Aν∂λFλ
μ + Aμ∂λFλ

ν−Aλ∂νFλ
μ←−−−−→
+Aλ�

τ
μνFλ

τ︸ ︷︷ ︸+Aν�
λ
λτFτ

μ

+Aμ�
λ
λτFτ

ν−Aτ�
τ
μλFλ

ν − Aν�
τ
μλFλ

τ−Aλ�
λ
ντFτ

μ

−Aμ�
λ
ντFτ

λ−Aτ ∂νFμτ←−−−−−→+Aλ�τ
μνFτλ︸ ︷︷ ︸+ 2Aρ�

ρ
ντFτ

μ. (17.71)

The terms with the same underlines in (17.71) mutually cancel; we are left with
six terms that can be grouped into two combinations (putting back the −1/2
coefficients):

−1

2

(
Aν∂λFλ

μ − Aν�
τ
μλFλ

τ + Aν�
λ
λτFτ

μ

) = −1

2
AνDλFλ

μ (17.72)

and

−1

2

(
Aμ∂λFλ

ν − Aμ�
λ
ντFτ

λ + Aμ�
λ
λτFτ

ν

) = −1

2
AμDλFλ

ν (17.73)

where Dλ is the covariant derivative.14

14Recall from Eq. (13.43) that the covariant
derivative of a tensor with multiple indices
(i.e. tensor of higher rank) has a Christoffel
factor for each index.
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Collecting the results from (17.66), (17.70), (17.72), and (17.73) we have,
after putting back the Rμν discussed just before our calculation of the factors
(1)–(8),

R̂μν = Rμν − 1

2
Fλ
νFλμ + 1

4
FλτFλτAνAμ − 1

2

(
AνDλFλ

μ + AμDλFλ
ν

)
. (17.74)

The 5D Ricci tensor components R̂5ν and R̂55

Equation (17.18) with M = 5 and N = ν can now be written as

R̂5ν = ∂L�̂
L
5ν − ∂ν�̂

L
5L + �̂L

LT �̂
T
5ν − �̂L

νT �̂
T
5L. (17.75)

There are two pairs of repeated indices, L and T . We will now consider the
separate cases when they take on 4D values of L = λ and T = τ , or the extra
dimensional index value of 5.

1. L = λ and T = τ:(
R̂5ν
)

1 = ∂λ�̂
λ
5ν − ∂ν�̂

λ
5λ + �̂λ

λτ �̂
τ
5ν − �̂λ

ντ �̂
τ
5λ. (17.76)

2. L = 5 and T = τ:(
R̂5ν
)

2 = ∂5�̂
5
5ν − ∂ν�̂

5
55 + �̂5

5τ �̂
τ
5ν︸ ︷︷ ︸− �̂5

ντ �̂
τ
55. (17.77)

3. L = λ and T = 5: (
R̂5ν
)

3 = �̂λ
λ5�̂

5
5ν − �̂λ

ν5�̂
5
5λ︸ ︷︷ ︸ . (17.78)

4. L = T = 5: (
R̂5ν
)

4 = �̂5
55�̂

5
5ν − �̂5

ν5�̂
5
55. (17.79)

Those with straight underlines will individually vanish by themselves,
while the two with braces under them cancel each other. We are left with

R̂5ν = ∂λ�̂
λ
5ν + �̂λ

λτ �̂
τ
5ν − �̂λ

ντ �̂
τ
5λ. (17.80)

According to (17.52), �̂λ
5ν = − 1

2 Fλ
ν and �̂λ

ντ = �λ
ντ − 1

2

(
Fλ
νAτ + Fλ

τ Aν

)
so that �̂λ

νλ = �λ
νλ − 1

2

(
Fλ
νAλ + Fλ

λAν

) = �λ
νλ − 1

2 Fλ
νAλ, and we have,

when adding up all the nonvanishing terms from (17.76) to (17.79),

R̂5ν = −1

2

(
∂λFλ

ν + �λ
λτFτ

ν − �λ
ντFτ

λ

)
+ 1

4
AλFλ

τFτ
ν −

1

4

(
Fλ
νAτ + Fλ

τAν

)
Fτ
λ

= −1

2
DλFλ

ν −
1

4
AνFλ

τFτ
λ (17.81)

because two middle terms cancel each other.
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Finally, we need to calculate R̂55. Just setting ν = 5 in (17.80) we have

R̂55 = ∂λ�̂
λ
55 + �̂λ

λτ �̂
τ
55 − �̂λ

5τ �̂
τ
5λ. (17.82)

Since �̂λ
55 = 0, we obtain the simple expression

R̂55 = −1

4
Fλ
τ Fτ

λ = +
1

4
FμνFμν . (17.83)

17.5.3 From 5D Ricci tensor to 5D Ricci scalar

Separating out the 5D spacetime index M = (μ, 5) into the 4D plus the extra
dimensional indices, the Ricci scalar of (17.19) is seen to be composed of three
terms:

R̂ = ĝMNR̂MN = ĝμνR̂μν + 2ĝ5νR̂5ν + ĝ55R̂55. (17.84)

Collecting all the R̂MN components in one place, we have from (17.74), (17.81),
and (17.83):

R̂μν = Rμν − 1

2
Fλ
νFλμ + 1

4
FλτFλτAνAμ − 1

2

(
AνDλFλ

μ + AμDλFλ
ν

)
R̂5ν = −1

2
DλFλ

ν −
1

4
AνFλ

τFτ
λ (17.85)

R̂55 = +1

4
FμνFμν .

From Eqs. (17.84) and (17.85) and the inverse metric elements of (17.14), we
have for the 5D Ricci scalar

R̂ = ĝμνR̂μν + 2ĝ5νR̂5ν + ĝ55R̂55

= gμν
[

Rμν − 1

2
Fλ
νFλμ + 1

4
FλτFλτAνAμ − 1

2

(
AνDλFλ

μ + AμDλFλ
ν

)]

+AνDλFλ
ν +

1

2
AνAνFλ

τFτ
λ +

1

4

(
1+ AλAλ

)
FμνFμν . (17.86)

The F2A2 terms cancel
1

4
FλτFλτAνAν + 1

2
AνAνFλτFτλ + 1

4
AλAλFμνFμν = 0. (17.87)

The ADF terms cancel because

−1

2
gμν
(
AνDλFλ

μ + AμDλFλ
ν

)+ AνDλFλ
ν

= −1

2
AμDλFλ

μ −
1

2
AνDλFλ

ν + AνDλFλ
ν = 0. (17.88)

Remarkably, with the Kaluza postulate for the 5D metric ĝMN of (17.11), the
resultant 5D Ricci scalar (17.86) reduces to the simple expression of (17.20):

R̂ = R− 1

4
FμνFμν . (17.89)

Some people call this the Kaluza–Klein miracle.
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A.1 Vector calculus

A vector is a quantity with a magnitude and direction. In three-dimensional
Euclidean space a vector A can be expanded in terms of the Cartesian basis
unit vectors (i, j, k)

A = A1i+ A2j+ A3k (A.1)

with {Ai} , i = 1, 2, 3, being the coefficients of expansion. The vector mag-
nitude is related to these components as

A =
√

A2
1 + A2

2 + A2
3. (A.2)

Thus a vector can be represented by its components as

A .=
⎛
⎝A1

A2

A3

⎞
⎠ . (A.3)

A vector field A(r, t) is simply a spacetime-dependent vector. Namely, at every
spacetime point it has a definite magnitude and direction. Or, in terms of com-
ponents, a vector field may be represented as Ai(r, t). Our discussion of the
differential and integral calculus of vector fields in this appendix will be par-
ticularly relevant as the electric and magnetic fields, E(r, t) and B(r, t), are
vector fields.

A.1.1 The Kronecker delta and Levi-Civita symbols

The dot product and the Kronecker delta
The product of two vectors can be a scalar or a vector:1 1We do not discuss the possibility of the

product being a tensor with components Tij,
which, in term of vector components, are:

Tij = AiBj.

The scalar product is
also called the dot product

A · B = A1B1 + A2B2 + A3B3 = AiBi. (A.4)

In the last expression we have used the Einstein summation convention,which
states that when there is a pair of repeated indices (in this case the indices i) a
summation is understood:
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AiBi ≡
∑

i

AiBi. (A.5)

The summation can also be written in terms of the invariant tensor called the
Kronecker delta δij which has the properties that δij = 0 whenever i �= j and
δij = 1 when the two indices are equal, such as δ11 = δ22 = 1.

A · B = AiBi = δijAiBj. (A.6)

Again, following the Einstein summation convention, we have omitted the
summation signs for the index i as well for the index j.

The cross-product and Levi-Civita symbols
When the product of two vectors results in a vector, it is called a cross-product.
Its components are related to the vector components by the Levi-Civita
symbols:

(A× B)i = εijkAjBk. (A.7)

Levi-Civita symbols are antisymmetric with respect to the interchange of any
pair indices. Hence they vanish if any two indices have the same value (for
example ε113 = ε111 = 0) while ε123 = 1 and remain as unity after any even
exchanges of the indices such as ε231 = ε312 = 1; they involve a sign change
after any odd exchanges such as ε213 = ε132 = −1. Thus from (A.7) we have
the familiar component expression of the cross-product

(A× B)1 = ε1jkAjBk = A2B3 − A3B2

(A× B)2 = ε2jkAjBk = A3B1 − A1B3

(A× B)3 = ε3jkAjBk = A1B2 − A2B1. (A.8)

We also have quantities involving both scalar and vector products, such as

C · (A× B) = Ci(A× B)i = εijkCiAjBk. (A.9)

From this we can easily prove identities such as

C · (A× B) = (C× A) · B = −A · (C× B). (A.10)

A useful identity of Levi-Civita symbols
Since the only invariant constant tensors are the Levi-Civita symbols and the
Kronecker delta, the product of two Levi-Civita symbols with a pair indices
summed over must be in the form of the Kronecker deltas, constructed with
the correct (anti)symmetry properties; the overall constant coefficient, in this
case a simple unity, can easily be deduced by an examination of some particular
values of the free indices:

εijkεlmk = δilδjm − δimδjl, (A.11)

leading to vector identities such as

(A× B) · (C× D) = (εijkAiBj)(εlmkClDm)

= (A · C)(B · D)− (A · D)(B · C) (A.12)
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and

[C×(A× B)]i = εijkCj(A× B)k = εijkεlmkCjAlBm

= (B · C)Ai − (A · C)Bi. (A.13)

A.1.2 Differential calculus of a vector field

The del operator and the gradient of a scalar field
The position operator

r = xi+ yj+ zk = x1i+ x2j+ x3k (A.14)

has components xi. It can be shown that

∂

∂x1
i+ ∂

∂x2
j+ ∂

∂x3
k ≡ ∇ (A.15)

is a vector operator, called the del operator.2 2It transforms under rotations as a vector. In
our presentation we shall use a variety of
notations for the del operator components:
∂/∂xi = ∂i = ∇i, etc.

An operator must act on some
field. It can be shown that if the field �(r) is a scalar field (e.g. the temperature
field) the resultant operation by the del operator is a vector field, called the
gradient of �(r):

grad� ≡ ∇� = ∂�

∂x1
i+ ∂�

∂x2
j+ ∂�

∂x3
k. (A.16)

What is the significance of the gradient? It represents the spatial rate of change
of the field �. The x component of grad� shows how fast � changes in the x
direction, etc. Thus, the direction of the vector field grad� gives the direction
in which � changes fastest.

The divergence and curl of a vector field
What about the del operator acting on a vector field? Just as two vectors can
have a product being a scalar (the dot product) or a vector (the cross product),
there are two types of differentiations when the del operator acts on a vector
field. The scalar version is the divergence of a vector field A:

div A ≡ ∇ · A = ∂A1

∂x1
+ ∂A2

∂x2
+ ∂A3

∂x3
. (A.17)

The curl of a vector field A is a vector field:

curl A ≡ ∇ × A (A.18)

with components that can be read off from (A.8):

(∇ × A)1 = ∂A3

∂x2
− ∂A2

∂x3

(∇ × A)2 = ∂A1

∂x3
− ∂A3

∂x1

(∇ × A)3 = ∂A2

∂x1
− ∂A1

∂x2
. (A.19)

The significance of the divergence and curl of a vector field will be discussed
when we study the vector integral calculus in the next subsection.
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One way that shows the advantage of denoting the divergence and curl as
dot and cross-products involving the del operator is that one can immediately
understand identities such as curl grad� = 0 and div curl A = 0:

[curl grad�]i = [∇ ×∇�]i = εijk∇j∇k� = −εijk∇j∇k� = 0 (A.20)

and

div curl A = ∇ · (∇ × A) = εijk∇i∇jAk=− εijk∇i∇jAk = 0. (A.21)

In both cases, the differential equals the negative of itself after a relabeling of
dummy indices j ↔ k because ∇j∇k = +∇k∇j while εijk = −εikj.

A.1.3 Vector integral calculus

The physical meaning of the del operator acting on scalar and vector fields can
be clarified by consideration of the following integral theorems.

The line integral of a gradient
Consider the projection of the gradient of a scalar field (A.16) along the
direction of �r:

∇� ·�r = ∂�

∂x1
�x1 + ∂�

∂x2
�x2 + ∂�

∂x3
�x3. (A.22)

It is clear that if �r = dl is a segment of a path, then ∇� · dl is a perfect
differential d� along the path. This leads to the following integral theorem for
a line integral along any path from some initial point i to some final point f :∫ f

i
∇� · dl = �(f )−�(i). (A.23)

Being path-independent, such a line integral over any closed path C must
vanish: ∮

C
∇� · dl = 0. (A.24)

The divergence theorem (Gauss’ theorem)
The theorem states that the volume integral of the divergence of a vector field
J(r) is equal to the surface integral of the flux passing through the surface S
enclosing the volume V—the “outward flow” of the vector field across S:∫

V
div JdV =

∮
S

J · dS. (A.25)

One can prove this by dividing the volume V into infinitesimally small cubic
volumes. Taking one such volume dV = dxdydz and concentrating on the x
component, we can evaluate the dot product J · dS on the RHS to find it to
be [−Jx + Jx + (∂Jx/∂x)dx]dydz = (∂Jx/∂x)dV . The minus sign results from
the negative x direction of the left-most cubic face (perpendicular to the
y-z plane, pointing away from the volume), and the following two terms are
the leading expansion of Jx(x+ dx) at the right-most face. See Fig. A.1(a).
Clearly the result matches that on the LHS in (A.25). It is then straightforward
to see that the same result holds for a finite volume built from such cubes. In
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this way we can understand div J = ∇ · J as the measure of the outward flow
of the vector field (per unit volume) at every spatial point.

Conservation law in a field system and the divergence theorem
The divergence theorem is closely related to the statement of conservation in a
field system, which is expressed by the equation of continuity. For definiteness,
let us consider the case of charge (q) conservation:3 3See the related discussion in Section 1.4.1.

∂ρ

∂t
+∇ · j = 0 (A.26)

where ρ is the charge density
∫
ρdV = q and j = ρv is the current density. This

is a conservation statement as can be seen by performing a volume integration
of the equation

0 = d

dt

∫
ρdV +

∫
∇ · jdV = dq

dt
+
∮

S
j · dS. (A.27)

To reach the RHS we have used Gauss’ theorem (A.25). Charge is conserved
as the equation shows that the increase of the charge in the volume equals the
inward flow (−j · dS) of the charge into the volume.

Circulation around a closed path: Stokes’ theorem
While the divergence ∇ · J expresses the local outward flow of the vector field
J(r), the vector differentiation curl ∇ × J is the local “circulation” (per unit
area) of the field. This is the physical content of Stokes’ theorem:∫

S
curl J · dS =

∮
C

J · dl (A.28)

where S is an open surface bounded by a closed curve C. We can prove this
theorem by dividing the surface into infinitesimal squares For the circulation
around such a square on the RHS (see Fig. A.1b),

[J · dl]� = Jx(1) dx+ Jy(2) dy− Jx(3) dx− Jy(4)dy.

Fig. A.1 (a) A cube with sides (dx, dy, dz).
Through its surfaces a field flows. The sur-
face vectors dS are normal to their respective
surfaces and pointing outward. (b) A square
closed path with sides (dx, dy). The circula-
tion is the (integral) sum of the projections of
the field along each segment of the path.

We have minus signs at segments 3 and 4, because the circulating vector field is
in the opposite direction the coordinate increments. For the dx terms, we have

[Jx(1)− Jx(3)] dx =
[

Jx(1)− Jx(1)− dJx

dy
dy

]
dx = −dJx

dy
dxdy;

similarly, for the dy terms,[
Jy(2)− Jy(4)

]
dy =

[
Jy(4)+ dJy

dx
dx− Jy(4)

]
dy = dJy

dx
dxdy.

In this way we find

[J · dl]� =
(

dJy

dx
− dJx

dy

)
dxdy = (curl J)z(dS)z

where we have used the expression of the z component of curl ∇ × J as given
in (A.19) and the fact that the normal to the square surface dxdy is in the z
direction.
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A.1.4 Differential equations of Maxwell electrodynamics

The integral equations
Most students first learn Maxwell’s theory in the form of integral equations of
the electric and magnetic fields (E, B):

Gauss’ law for E
∮

S
E · dS = qin

Gauss’ law for B
∮

S
B · dS = 0

Faraday’s law
∮

C
E · dl+ 1

c

d

dt
�B = 0

Ampere’s law with
displacement current

∮
C

B · dl− 1

c

d

dt
�E = 1

c
I.

(A.29)

We comment on this set of equations:

• These equations in (A.29) are written in the Heaviside–Lorentz unit sys-
tem. In this system the measured parameter is the velocity of light c
instead of the (measured) permittivity and the (defined) permeability of
free space, with the relation c = 1/

√
ε0μ0. To go from the more familiar

SI unit system, one has to scale the fields by
√
ε0Ei → Ei,

√
1/μ0Bi → Bi,

and the charge and current densities by
√

1/ε0(ρ, ji) → (ρ, ji).
• Gauss’s law is valid for any closed surface S with any charge distribu-

tion. The total charge enclosed inside the surface S is qin. We recall that
Gauss’s law is equivalent to Coulomb’s law, with its basic form written
in terms of a point charge. Thus for a general source charge distribution,
one has to divide up the source into point charges and then integrate over
the resultant field due to each point in the source.

• Gauss’s law for a magnetic field states that there is no magnetic monopole
(magnetic charge).

• Faraday’s law states that a change in magnetic flux �B =
∫

S B · dS
induces an electromotive force

E =− d�B

dt
. (A.30)

The minus sign (the Lenz law) indicates that the induced field would
always oppose the original change. The electromotive force is given by
the line integral of the induced electric field over a closed path:

E =
∮

C
E · dl. (A.31)

• Ampere’s law ∮
C

B · dl = 1

c
I (A.32)
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states that the source of a magnetic field is a current distribution. James
Maxwell showed that in order to have charge conservation in this the-
ory, besides the usual conduction current I given by the surface integral
through which the current density j passes

I =
∫

j · dS, (A.33)

there must also be a “displacement current”

Id = 1

c

d�E

dt
= 1

c

d

dt

∫
E · dS. (A.34)

This completes the set of field equations for electromagnetism. With
the presence of the displacement current term, it becomes clear that a
changing electric field would induce a magnetic field, which in turn
induces an electric field (Faraday’s law). In this way, a self-sustaining
electromagnetic wave can be generated.

The differential equations
Many detailed features of the theory (the existence of electromagnetic waves
and the validity of charge conservation, etc.) can be best understood when the
theory is written in the form of differential equations. In this section, we shall
convert the integral equations (A.29) into differential equations:

Gauss’ law for E ∇ · E = ρ

Gauss’ law for B ∇ · B = 0

Faraday’s law ∇ × E+ 1

c

∂B
∂t
= 0

Ampere’s law with
displacement current

∇ × B− 1

c

∂E
∂t
= 1

c
j.

(A.35)

Their derivation from Eqs. (A.29) is discussed below:

• For Gauss’ law for E, we convert both sides to volume integrals∫
V

∇ · EdV =
∫

V
ρdV . (A.36)

To obtain the LHS we have used the divergence theorem of (A.25). Since
the volume is arbitrary, the equality must hold for the integrands as well.
In this way we obtain the differential equation for Gauss’ law.

∇ · E = ρ. (A.37)

• For Faraday’s law, we write each term as a surface integral by applying
Stokes’ theorem to the line integral of the field∫

S
∇ × E · dS+ 1

c

d

dt

∫
S

B · dS = 0. (A.38)
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Again the surface being arbitrary the integrands must obey the same rela-
tion, and we have the differential equation for Faraday’s law as shown
above in (A.35).

• In a similar manner and with the relation (A.33), Ampere’s law with the
displacement current can be written out as a differential equation

∇ × B− 1

c

∂E
∂t
= 1

c
j. (A.39)

It is easy to show from these differential equations that the presence of the
displacement current leads to charge conservation in the theory. Taking the
time derivative of Gauss’s law (A.37), we have

∂ρ

∂t
= ∇ · ∂E

∂t
.

Since the RHS is related to the displacement current, we can use Ampere’s law
of (A.39) to replace it by the current density j. Since the divergence of a curl
vanishes ∇ · (∇ × B) = 0 as shown in (A.21), we have

∂ρ

∂t
+∇ · j = 0,

which is the equation of continuity (A.26) expressing the conservation of
electric charge. That Maxwell’s equations predict electromagnetic waves is
demonstrated in Section 9.2.1.

A.2 The Gaussian integral

Throughout the text, we need the result of various Gaussian integrals.
We start with the basic result for a Gaussian integral:

I1 ≡
∫ ∞

−∞
e−x2

dx = √π . (A.40)

Proof I1 can first be converted into a two-dimensional integral by writing it
as the product of two square root factors

√
I1
√

I1 :

I1 =
√(∫ ∞

−∞
e−x2 dx

)(∫ ∞

−∞
e−y2 dy

)

=
√∫ ∞

−∞
e−(x2+y2)dxdy.

This 2D integral can then be evaluated when we change the coordinate system
from a Cartesian to a polar system dxdy = rdθdr and a change of integration
variable r → z

( = r2
)
:

I1 =
√∫ 2π

0
dθ
∫ ∞

0
e−r2 rdr =

√
π

∫ ∞

0
e−zdz

=
√
π
[− e−z

]∞
0 = √π .

�
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• By a straightforward change of integration variable, the above result can
be written as

I2 ≡
∫ ∞

−∞
e−ax2

dx =
√
π

a
. (A.41)

• By completing the exponent as a perfect square, we have

I3 ≡
∫ ∞

−∞
e−(ax2+bx)dx =

√
π

a
eb2/4a. (A.42)

• By reflection symmetry x ↔ −x, we have

I4 ≡
∫ ∞

−∞
xe−ax2

dx = 0. (A.43)

• By differentiation of
∫∞
−∞ e−ax2

dx = √π
a with respect to a, we obtain

I5 ≡
∫ ∞

−∞
x2e−ax2

dx = 1

2a

√
π

a
. (A.44)

A.3 Stirling’s approximation

In our discussion we shall repeatedly use Stirling’s approximation

ln n! � n ln n− n for large n. (A.45)

We shall derive this formula through the integral representation of n!

A.3.1 The integral representation for n!
A very useful mathematical relation is the integral representation of a factorial:

n! =
∫ ∞

0
xne−xdx, (A.46)

which can be proven by induction. We first check this equation for the simplest
case when n = 0: ∫ ∞

0
x0e−xdx = − [e−x

]∞
0
= 1 = 0!

and for n = 1 we have, through an integration-by-parts,∫ ∞

0
xe−xdx = [−xe−x

]∞
0 +

∫ ∞

0
e−xdx = [−e−x

]∞
0 = 1!

Assuming that this relation holds for n = k:

k! =
∫ ∞

0
xke−xdx (A.47)

we need to prove that the validity of the n = k + 1 case then follows; namely,

(k + 1)! =
∫ ∞

0
xk+1e−xdx.
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This can be demonstrated through an integration-by-parts:∫ ∞

0
xk+1e−xdx =

∫ ∞

0
xk+1d

[−e−x
]

= [−xk+1e−x
]∞

0 +
∫ ∞

0
e−x(k + 1)xkdx

= 0+ (k + 1)
∫ ∞

0
xke−xdx = (k + 1)!.

To reach the final expression we have used Eq. (A.47). This completes our
proof of (A.46). �

A.3.2 Derivation of Stirling’s formula

An inspection of the integrand in (A.46) shows that, as x increases, the factor
xn would enhance while the factor e−x would suppress the integrand. Thus
we expect the integrand to have a maximum (a bulge) and the integral would
receive most of its contribution from this maximal region.

Since we will eventually be interested in ln n!, let us take the logarithm of
the integrand now:

f (x) ≡ ln xne−x = n ln x− x. (A.48)

Its maximum can be found by taking the derivative

df

dx
= n

x
− 1 = 0 namely, x = n,

which is a maximum as the second derivative is negative at this point:

d2f

dx2
= − n

x2
. (A.49)

We now Taylor expand the function f (x) around this maximum x = n:

f (x) = f (n)+ 1

2! (x− n)2 d2f

dx2

∣∣∣∣
n

+ · · · = (n ln n− n)− (x− n)2

2n
+ · · ·

Using this approximate expression for the integrand in (A.46), we have

n! =
∫ ∞

0
xne−xdx =

∫ ∞

0
e f dx = en ln n−n

∫ ∞

0
e−

(x−n)2

2n dx.

Since the main contribution to the last integral comes from the positive x region
around x ≈ n, the tail end of the integrand in the x < 0 region would be neg-
ligible, especially for large n. This allows us to approximate the last term by a
standard Gaussian integral as discussed in Section A.2:∫ ∞

0
e−

(x−n)2

2n dx �
∫ ∞

−∞
e−

(x−n)2

2n dx = √2πn (A.50)

where we have used Eq. (A.41). In this way we find

n! � en ln n−n
√

2πn (A.51)
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or

ln n! � n ln n− n+ 1

2
ln 2πn � n ln n− n. (A.52)

This is the claimed result of (A.45).

A.4 Lagrangian multipliers

The method of Lagrangian multipliers is a strategy to find the local maximum
or minium of a function subject to some constraint conditions.

The extremum of a function f (x, y, z) corresponds to df = 0. Namely,

df = ∂f

∂x
dx+ ∂f

∂y
dy+ ∂f

∂z
dz = 0. (A.53)

As we have arbitrary variation (dx, dy, dz), their respective coefficients must
vanish.

∂f

∂x
= ∂f

∂y
= ∂f

∂z
= 0.

Thus we have the familiar extremization condition of

∇f = 0. (A.54)

However, if there is a constraint condition,

g(x, y, z) = c, (A.55)

the variables (x, y, z) are not independent and one does not have arbitrary vari-
ations of all (dx, dy, dz). In principle, one can express one variable in terms of
the others, say, z = z(x, y), and with this smaller set of variables, work with only
arbitrary (dx, dy). But this conventional approach is often difficult to imple-
ment; the method of Lagrangian multipliers is an alternative approach that is
much simpler to work out.

A.4.1 The method

The constraint condition (A.55) reduces the number of independent variables.
From this condition we have also

dg = ∂g

∂x
dx+ ∂g

∂y
dy+ ∂g

∂z
dz = 0. (A.56)

Multiplying this equation by an arbitrary parameter λ, the Lagrangian multi-
plier, we can combine it with (A.53) to have the condition

d(f + λg) = 0. (A.57)

Writing this out, we have(
∂f

∂x
+ λ

∂g

∂x

)
dx+

(
∂f

∂y
+ λ

∂g

∂y

)
dy+

(
∂f

∂z
+ λ

∂g

∂z

)
dz = 0.
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Let λ be chosen so that

∂f

∂z
+ λ

∂g

∂z
= 0. (A.58)

Since (dx, dy) are still arbitrary, we in fact have(
∂f

∂x
+ λ

∂g

∂x

)
=
(
∂f

∂y
+ λ

∂g

∂y

)
=
(
∂f

∂z
+ λ

∂g

∂z

)
= 0

or, written compactly,

∇(f + λg) = 0. (A.59)

In summary, in the presence of a constraint (A.55), the extremization condition,
instead of (A.54), is given by (A.59). One can view this set of equations as
three conditions; together with Eq. (A.55), they determine the four variables
(x, y, z, λ).

A.4.2 Some examples

Let us look at two simple examples as illustrative applications of the method
of Lagrangian multipliers.

Example 1 What rectangular parallelepiped with sides (x, y, z) has maximal
surface area for a given volume V? Here we need to extremize the surface area
S = 2xy+ 2yz+ 2zx, with the constraint of xyz = V . According to the method
of Lagrangian multiplier (A.59), we have three extremization conditions ∂i(S+
λV) = 0:

2(y+ z)+ λyz = 0

2(z+ x)+ λzx = 0

2(x+ y)+ λxy = 0

which can be solved immediately to yield x = y = z. The parallelepiped of a
given volume with the maximal surface area is a cube.

Example 2 For a cylinder with radius r and height h, what should be the ratio
h/r so as to maximize the surface area for a given volume V? Here we need
to extremize the surface area S = 2πr2 + 2πrh, with the constraint hπr2 = V .
According to the method of Lagrangian multipliers we have two nontrivial
extremization conditions that come from the differentiation of (S+ λV) with
respect to r and h:

4πr + 2πh+ λ2πrh = 0

2πr + λπr2 = 0,

which can be solved to yield h = 2r.
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A.5 The Euler–Lagrange equation

In the above we studied the extremization of a function with respect to the
variation of one or several variables. In this section we discuss the case of
extremization of an integral (a functional) with respect to the variation of a
whole function. The prototypical example is the variation of a curve between
two fixed end-points so as to minimize its length. Such a curve is a geodesic
(cf. Section 12.4.2). The geodesic curves of Euclidean space are straight lines,
and of a spherical surface are great circles, etc. The differential equation for the
function that satisfies such an extremization condition is the Euler–Lagrange
equation.

A.5.1 Mechanics of a single particle

In physics one often encounters such a calculus of variations problem when
one tries to understand the equation of motion as the Euler–Lagrange equation
resulting from the minimization of the action integral:

S =
∫ τf

τi

L(xk, ẋk)dτ . (A.60)

xj(τ ) is the trajectory of a particle with τ being the curve parameter, for
example, the time variable τ = t. We have also used the notation ẋk ≡ dxk/dτ .
The integrand, called the Lagrangian, is the difference between the kinetic and
the potential energy of the system:

L(xk, ẋk) = T(ẋk)− V(xk). (A.61)

The principle of minimal action states that the action is a minimum with
respect to the variation of the trajectory xk(τ ) with its end-points fixed at initial
and final positions: xk

(
τi
)

and xk
(
τf
)
. This minimization requirement can be

translated into a partial differential equation as follows. The variation of the
Lagrangian being

δL(xk, ẋj) = ∂L

∂xk
δxk + ∂L

∂ ẋj
δẋj, (A.62)

the minimization of the action integral becomes

0 = δS = δ

∫ τf

τi

L(xi, ẋj)dτ =
∫ τf

τi

(
∂L

∂xk
δxk + ∂L

∂ ẋj

d

dτ
δxj

)
dτ

=
∫ τf

τi

(
∂L

∂xj
− d

dτ

∂L

∂ ẋj

)
δxjdτ . (A.63)

To reach the last expression we have performed an integration-by-parts on the
second term ∫ τf

τi

∂L

∂ ẋj
d(δxj) =

[
∂L

∂ ẋj
δxj(τ )

]τf

τi

−
∫ τf

τi

(δxj)d

(
∂L

∂ ẋj

)
.

The first term on the RHS can be discarded because the end-point positions
are fixed, δxk(τi) = δxk(τf ) = 0. Since δI must vanish for arbitrary variations
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δxk(τ ), the expression in parentheses on the RHS of (A.63) must also vanish.
The result is the Euler–Lagrange equation:

d

dτ

∂L

∂ ẋk
− ∂L

∂xk
= 0. (A.64)

For the simplest case of L = 1
2 mẋ2 − V(x), the Euler–Lagrange equation is just

the familiar F = ma equation as (A.64) yields mẍ+∇V = 0.

A.5.2 Lagrangian density of a field system

In the above section, we discussed the understanding of the equation of motion
for a particle as the Euler–Lagrange equation required by the minimization
of the action S = ∫ dtL(q, q̇), with q being the (generalized) coordinate. Thus a
knowledge of the Lagrangian L = L(q, q̇) is equivalent to knowing the equation
of motion. Similarly a field can be viewed as a system having infinite degrees
of freedom with its generalized coordinate qi being the field itself, qi = φ(x),
where φ(x) is some generic field. (Namely, one can view the label x as a “con-
tinuous index” qi → φx.) For such a continuum system, the field equation is the
Euler–Lagrange equation (A.64) written in terms of the Lagrangian density L
with L = ∫ d3xL and an action S = ∫ d4xL(x). The density is a function of the
field and its spacetime derivatives L = L(φ, ∂μφ). We expect the generalization
of (A.64) to be

∂μ
∂L

∂
(
∂μφ

) − ∂L
∂φ

= 0. (A.65)

A knowledge of the (Lorentz invariant) Lagrangian density L is equivalent to
knowing the (Lorentz covariant) field equation.

It should be stressed that the physical content of the variational principle
involving the Lagrangian density is no different from the case involving the
Lagrangian. The former case is merely for systems with infinite degrees of
freedom. We illustrate this point with a concrete example44See, for example, Sakurai (1967, Section

1–2).
of a 1D system of an

infinite number of particles, coupled to their neighboring particles by a spring
with identical spring constant k. We start with a collection of N particles and
call their displacement from their respective equilibrium positions φi so that
the Lagrangian (A.61) of the system is

L =
N∑
i

[
1

2
mφ̇2 − 1

2
k
(
φi+1 − φi

)2]

=
N∑
i

a
1

2

[
m

a
φ̇2 − ka

(
φi+1 − φi

a

)2
]
=

N∑
i

aLi, (A.66)

where a is the distance separating the neighboring equilibrium positions. We
can thus interpret Li as the Lagrangian density (linear Lagrangian per unit
length). We now go from this discrete system to a continuum system by letting
N →∞ and a → dx with m/a = μ and ka = Y fixed. Clearly in this way we
also have [(φi+1 − φi)/a] → dφ/dx and
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L =
∫

L(φ, ∂xφ, ∂tφ) with L = 1

2

[
μ

(
∂φ

∂t

)2

− Y

(
∂φ

∂x

)2
]

. (A.67)

The variation of the action proceeds just as before, with the displacement field
φ(x, t) being treated as a generalized coordinate:

0 = δS = δ

∫ τf

τi

Ldxdt =
∫ τf

τi

(
∂L
∂φ

δφ + ∂L
∂(∂xφ)

d

dx
δφ + ∂L

∂(∂tφ)

d

dt
δφ

)
dτ

=
∫ τf

τi

(
∂L
∂φ

− ∂

∂x

∂L
∂∂xφ

− ∂

∂t

∂L
∂∂tφ

)
δφdτ . (A.68)

Just as in (A.63) we have performed two integrations-by-parts to obtain the last
expression. This condition then leads to the Euler–Lagrange equation in terms
of the Lagrangian density

∂L
∂φ

− ∂

∂x

∂L
∂∂xφ

− ∂

∂t

∂L
∂∂tφ

= 0. (A.69)

When we plug in the expression (A.67) of the Lagrangian density into (A.69),
we obtain the field equation

Y
∂2φ

∂x2
− μ

∂2φ

∂t2
= 0. (A.70)

We note that Eq. (A.69) may be written as (A.65) if we understand that the
dummy index is summed over 0, 1 with ∂0 = 1

c ∂t.
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B.2 Further reading 323
B.1 Einstein’s journal articles cited in the text

CPAE: One can find Einstein’s writings in the Collected Papers of Albert
Einstein (CPAE 1968–2012). So far 13 volumes have come out in print. His
journal articles in German, up till 1922, are contained in Volumes 2, 3, 4, 6, and
7. Published separately are the English translations (by A. Beck for Volumes
2, 3 and 4, by A. Engel for Volume 6 and 7) that we have referred to below as
CPAEe. Volumes 1, 5, 8, 9, 10, 12, and 13 are mostly Einstein’s correspondence
and other writings dealing with scientific matters. The reader may also wish to
consult the original volumes of CPAE which contain many useful comments
(in English) on the source text.

The following is a list of journal article publications by Albert Einstein that
are explicitly cited in the book. The translated English title is given in square
brackets. We offer brief comments indicating the contents of each individual
paper.

• (1902). Annalen der Physik 9, 417. [Kinetic theory of thermal equilib-
rium and of the second law of thermodynamics. CPAEe 2, 68.] Study of
the equipartition theorem and the definitions of temperature and entropy.
(Cited in Section 1.1.)

• (1903). Annalen der Physik 11, 170. [A theory of the foundations of
thermodynamics. CPAEe 2, 48.] The problem of irreversibility in ther-
modynamics. Unaware of the work done by other researchers in the
field, especially that by Willard Gibbs (1839–1903), Einstein in this and
the previous paper rediscovered much fundamental content of statistical
mechanics. (Cited in Section 1.1.)

• (1904). Annalen der Physik 14, 354. [On the general molecular theory of
heat. CPAEe 2, 68.] Theory of fluctuations and a new determination of
Boltzmann’s constant. (Cited in Section 1.1 and Section 6.1.1.)

• (1905a). Annalen der Physik 17, 132. [On a heuristic point of view
concerning the production and transformation of light. CPAEe 2, 86.]
The “photoelectric paper” in which the idea of photons was proposed.
(Chapters 3 and 4.)

• (1905b). University of Zurich Dissertation. [A new determination
of molecular dimensions. CPAEe 2, 104.] Einstein’s doctoral thesis,
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published in Annalen der Physik 19, 289 (1906). Corrections, ibid., 34,
591 (1911). (Chapter 1.)

• (1905c). Annalen der Physik 17, 549. [On the movement of small
particles suspended in stationary liquids required by the molecular-
kinetic theory of heat. CPAEe 2, 123.] The Brownian motion paper.
(Chapter 2.)

• (1905d). Annalen der Physik 17, 891. [On the electrodynamics of mov-
ing bodies. CPAEe 2, 140; see also Einstein et al. (1952).] The special
relativity paper. (Section 9.4.1 and Chapter 10.)

• (1905e). Annalen der Physik 18, 891. [Does the inertia of a body depend
upon its energy content? CPAEe 2, 172; see also Einstein et al. (1952).]
The E = mc2 paper. (Section 10.5.)

• (1906). Annalen der Physik 20, 199. [On the theory of light production
and light absorption. CPAEe 2, 192.] Einstein’s first comment on Planck’s
E = hν relation. (Cited in the introduction section of Chapter 5.)

• (1907a). Annalen der Physik 22, 180. [Planck’s theory of radiation and
the theory of specific heat. CPAEe 2, 214.] Einstein’s derivation of
Planck’s distribution and also his proposed quantum theory of specific
heat. (Chapter 5.)

• (1907b). Jahrbuch der Radioaktivität und Elektronik, 4, 411. [On the
relativity principle and the conclusions drawn from it. CPAEe 2, 252.]
In the last section (titled “Principle of relativity and gravitation”) of this
review paper on special relativity, the EP was proposed. Its implications
for electromagnetic phenomena were outlined. (Cited in Sections 12.2
and 12.3.)

• (1909a). Physikalische Zeitschrift 10, 185. [On the present status of the
radiation problem. CPAEe 2, 357.] Fluctuations of radiation calculated.
(Cited in Section 6.1.)

• (1909b). Physikalische Zeitschrift 10, 817. [On the development of our
views concerning the nature and constitution of radiation. CPAEe 2, 379.]
A photon carries momentum. (Cited in Sections 4.2 and 6.1.)

• (1911). Annalen der Physik 35, 898. [On the influence of gravitation on
the propagation of light. CPAEe 3, 379; see also Einstein et al. (1952).]
Einstein returned to the EP, first proposed in 1907, and carried out the
detailed calculations of gravitational redshift, gravitational time dilation,
and bending of light ray by the sun. (Section 12.3.)

• (1912a). Annalen der Physik 38, 355. [The speed of light and the statics
of the gravitational field. CPAEe 4, 95.] First of the two papers in the
continuing development of general relativity. These two papers are the
last in which Einstein allows time to be warped while keeping space flat.
He realizes that the Lorentz transformations of special relativity must
be generalized and that the new theory of gravitation must be nonlinear.
(Chapters 13 and 14.)

• (1912b). Annalen der Physik 38, 443. [On the theory of the static grav-
itational field. CPAEe 4, 107.] Second of the two GR papers in 1912.
(Chapters 13 and 14.)

• (1913) with Marcel Grossmann. Zeitschrift für Mathematik und Physik
62, 225 and 245. [Outline of a generalized theory of relativity and of a
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theory of gravitation. I. Physical Part by A. Einstein; II. Mathematical
Part by M. Grossmann. CPAEe 4, 151 and 172.] In this pioneering
paper the single Newtonian scalar gravitational field is replaced by 10
fields, which are the components of the metric tensor. However, the
field equation is still not correctly identified. (Section 12.4, Chapters 13
and 14.)

• (1914) Preussische Akademie der Wissenschaften, Sitzungsberichte
p. 1030. [The formal foundations of the general theory of relativity.
CPAEe 6, 30.] In this paper Einstein derives the geodesic motion of
point particles, and re-derives his 1911 results of the bending of light
and gravitational redshift using the new metric tensor theory. (Chapter
13.)

• (1915a). Preussische Akademie der Wissenschaften, Sitzungsberichte,
p. 778 and p. 799 (4 and 11 November 1915). [On the general theory of
relativity. CPAEe 6, 98 and 108.] Corrected a fundamental misconception
in his GR theory. (Cited in Section 14.3.4.)

• (1915b). Preussische Akademie der Wissenschaften, Sitzungsberichte,
p. 831 (18 November 1915). [Explanation of the perihelion motion of
Mercury from the general theory of relativity. CPAEe 6, 112.] Einstein
presents his Mercury precession calculation and shows that the bending
of starlight is twice as large as the EP result. (Section 14.5.1.)

• (1915c). Preussische Akademie der Wissenschaften, Sitzungsberichte,
p. 844 (25 November 1915). [The field equations of gravitation, CPAEe
6, 117.] Einstein presents his GR field equation. (Section 14.4.)

• (1916a). Annalen der Physik 49, 769. [The foundation of the general
theory of relativity. CPAEe 6, 146; see also Einstein et al. (1952).] The
formal publication of the general theory of relativity. (Section 12.1 and
Chapters 13 and 14.)

• (1916b). Verhandlungen der Deutschen Physikalischen Gesellschaft, 18,
318. [Emission and absorption of radiation in quantum theory. CPAEe 6,
212.] (Section 6.3.)

• (1916c). Mitteilungen der Physikalischen Gesellschaft, Zürich, 16, 47.
[On the quantum theory of radiation. CPAEe 6, 220.] (Section 6.3.)

• (1916d). Preussische Akademie der Wissenschaften, Sitzungsberichte,
p. 1111 (26 October 1916). [Hamilton’s principle and the general the-
ory of relativity, CPAEe 6, 240; see also Einstein et al. (1952).] (Section
17.1.4.)

• (1917). Preussische Akademie der Wissenschaften, Sitzungsberichte,
p. 142. [Cosmological considerations in the general theory of relativity.
CPAEe 6, 421; see also (Einstein et al. 1952).] (Chapter 15.)

• (1918). Preussische Akademie der Wissenschaften, Sitzungsberichte,
p. 154. [On gravitational waves. CPAEe 7, 3.] (Section 14.4.2.)

• (1924). Zeitschrift für Physik 27, 392. [The note appended to a paper by
Bose entitled “Wärmegleichgewicht im Strahlungsfeld bei Anwesenheit
von Materie” (Thermal equilibrium in the radiation field in the pres-
ence of matter)] Bose–Einstein statistics and condensation. (Section 7.2
and 7.4.)
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• (1925) Sitzungsberichte der Preussischen Akademie der Wissenschaften
(Berlin), p. 3 and p. 18. [Quantum theory of the monatomic ideal gas] BE
condensation, photons, and statistical mechanics. (Chapter 7.)

• (1935) with B. Podolsky and N. Rosen. Can a quantum-mechanical
description of physical reality be considered complete? Physical Review
47, 777. EPR paradox posited. Nonlocal feature of quantum mechanics
was brought to the fore. (Chapter 8.)

Listing of Einstein’s publications

Albert Einstein: Philosopher-Scientist. (ed. P.A. Schilpp, Harper and Brothers.
Co. New York, 1949, 1951). The book, in two volumes, contains a complete
listing of Einstein’s publications.

List of Scientific Publications by Albert Einstein—Wikipedia. At this online
site, one has an easy access to the list (last checked May 22, 2012).

B.2 Further reading

I consulted many books in the preparation of this book, but some are
particularly helpful and are listed below.

• Pais, Abraham (1982). This is a physicist’s biography written by a phys-
icist. A proper reading requires a solid physics background. It is hoped
that, after working through the present book, the reader will have a deeper
understanding of this Einstein biography. The 2005 re-issue of the book
also includes a new Forward by Roger Penrose that is, in my opinion, a
particularly insightful appraisal of Einstein’s contribution to physics.

• Schilpp, P.A., ed. (1949, 1951). This has a collection of essays by
N. Bohr, M. Born, K. Godel, W. Pauli, and others on the occasion of
Einstein’s 70th birthday. They relate to Einstein’s scientific and philo-
sophical ideas. This book also includes his Autobiographical Notes. This
brief essay is the closest Einstein ever came to writing an autobiography.
Although a very personal account, it says little about his private life,
and concerns entirely the development of his physics ideas. The account
was also published in 1979 as a separate booklet by Open Court Pub. La
Salle, IL.

• Stachel, John (1998). Here is another place where one can find easy
access to Einstein’s 1905 papers in English translation. Stachel also
provides the historical context and insightful comments on these import-
ant papers.

• Stachel, John (2002). A collection of this Einstein scholar’s many essays
on all aspects of Einstein’s life and physics.

• Landau, L.D. and E.M. Lifshitz (1959). The two chapters II and VI are
particularly relevant for the discussion of viscous fluids and Brownian
motion as given in our Chapters 1 and 2.

• Tomonaga, Sin-itiro (1962). The book is a clear and accessible presenta-
tion of the ‘old quantum theory’.
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• ter Haar, D (1967). This also contains a collection of the classics of the
old quantum theory (by Planck, Einstein, Bohr, and others) in English
translation.

• Huang, Kerson (2009). This concise introduction of the key concepts
in statistical mechanics should be a helpful reference for the discussion
contained in our Chapters 2, 3, and 7.

• Blundell, Stephen J. and Katherine M. Blundell (2009). A comprehensive
introduction to thermal physics with many useful mathematical details.

• Cheng, Ta-Pei (2010). In this recent publication, one can find some of the
calculational details of special and general relativity, discussed in Parts
III and IV.

• Longair, Malcolm S. (2003). The physics is offered in its historical con-
text. A valuable book for readers to consult on most of the topics covered
in our presentation.

• Kennedy, Robert E. (2012). Differing from our presentation of Einstein’s
physics, Kennedy’s book follows closely, equation by equation, the
selected Einstein papers.

• Isaacson, Walter (2008). This is a popular and masterful biography of
Einstein that covers many aspects of his life.



Answers to the 21
Einstein questions C
Here are brief answers to the Einstein questions raised in the Preface. More
details and pertinent context are given in the text with the relevant chapter and
section numbers as shown.

1. In Einstein’s doctoral thesis (Chapter 1), he derived two ways of
relating NA, Avogadro’s number, to the viscosity and diffusion coef-
ficient of a liquid with suspended particles. The second relation,
the Einstein–Smoluchowski relation, also allowed NA to be deduced
from measurement in the Brownian motion (Chapter 2). Finally, from
the blackbody radiation spectrum (Section 4.1.1) one could deduce,
besides Planck’s constant, also the Boltzmann constant kB = 1.380×
10−23 J K−1, which led directly to NA = R/kB = 6.02× 1023/mol,
because the gas constant R = 8.314 J K−1/mol was already known.

2. Even though Einstein conjectured that the motion he predicted in his
1905c paper, as discussed in Chapter 2, was the same as Brownian
motion, he was prevented from being more definitive because he had
no access then to any literature on Brownian motion. He was outside the
mainstream academic environment and did not have the research tools
typically associated with a university.

3. It is a common misreading of history that had Einstein’s derivation of
energy quantization in his 1905 study of blackbody radiation as a dir-
ect extension of Planck’s work on the same problem in 1900. In fact
Einstein’s derivation of energy quantization was different from that of
Planck’s, and was by an approach that was, from the viewpoint of the then
accepted physics, less problematic. But the important difference between
Einstein and Planck was that Einstein, through his derivation by way of
the equipartition theorem of the Rayleigh–Jeans law, was the first one to
understand clearly the challenge that blackbody radiation posed for clas-
sical physics (cf. Section 4.1). Thus Einstein from the very beginning
appreciated the fundamental nature of the break with classical physics
this new proposal represented. Planck on the other hand had resisted the
new photon idea for more than 10 years after its proposal in 1905 (cf.
Chapter 3 and Section 5.1).

4. This can be understood most readily using Einstein’s derivation of
Planck’s distribution law, as given in Section 5.1. Energy quantization
implies that the step between energy levels becomes ever greater as the
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radiation frequency increases. The Boltzmann factor of exp(−E/kBT)
would then suppress the ultraviolet contribution.

5. Before Einstein proposed his quantum theory, the success of the equipar-
tition theorem in explaining the pattern of specific heat was very much
confused. For instance, why the vibrational degrees of freedom must be
ignored in the case of gases while they are the dominant components in
solids. This led many to question the whole idea of the molecular com-
position of matter, as the counting of their degrees of freedom did not
seem to match the observed result. See Section 5.2.

6. A field obeys a wave equation and its solution can be viewed as a col-
lection of oscillators (Section 3.1). A quantum field is a collection of
quantum oscillators. In the quantum mechanical treatment, the dynamical
variables of oscillators are taken to be noncommuting operators, leading
to the particle features of the system. The raising and lowering operators
in the quantum formalism provide the natural language for the descrip-
tion of emission and absorption of radiation, and more generally, for the
description of particle creation and annihilation. The surprising result of
wave–particle duality discovered by Einstein in his study of fluctuations
of radiation energy found its natural resolution in quantum field the-
ory, when the fluctuation was calculated for these quantized waves with
noncommuting field operators. More details are provided in Section 6.4.

7. Einstein advocated the local realist viewpoint that an object had def-
inite attributes whether they had been measured or not. The orthodox
interpretation of quantum mechanics (that measurement actually pro-
duces an object’s properties) would imply that the measurement of one
part of an entangled quantum state can instantaneously produce the
value of another part, no matter how far these two parts have been
separated. Einstein’s criticism shone a light on this ‘spooky action-at-a-
distance’ feature; its discussion and debate have illuminated the meaning
of quantum mechanics. It led later to Bell’s theorem showing that these
seemingly philosophical questions could lead to observable results. The
experimental vindication of the orthodox theory has sharpened our appre-
ciation of the nonlocal features of quantum mechanics. Nevertheless, the
counter-intuitive QM picture of objective reality still troubles many, leav-
ing one to wonder whether quantum mechanics is ultimately a complete
theory (Chapter 8).

8. The key idea of Einstein’s special relativity is the new conception of time.
Time, just like space, becomes a coordinate-dependent quantity. This,
when augmented by the postulate of the constancy of light velocity, leads
directly to the Lorentz transformation as the coordinate transformation
among inertial frames of reference. This is in contrast to Lorentz’s deriv-
ation based on a model of the aether–light interaction. While Einstein’s
derivation in this new kinematics implied its applicability to all of phys-
ics, Lorentz’s specific dynamical theory, even if it were correct, was
restricted to electrodynamics only (Section 10.3.1 and the final three
sections of Chapter 9).

9. Stellar aberration, Fizeau’s experiment, and Fresnel’s formula can be
viewed as lending important experimental support to what Einstein
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needed in proposing a coordinate-dependent time—the key element of
special relativity. See our discussion, in Sections 9.3 and 9.4, of their
relations to Lorentz’s ‘local time’. Their straightforward derivation from
special relativity is given in Section 10.6.

10. To obtain the length of an object one must find the positions of the front
and the back of the object. The relativity of time comes into play in these
two measurements. See Section 10.1.3.

11. Special relativity is ‘special’ because it restricts the invariance of phys-
ics laws to a special set of coordinate systems: the inertial frames of
reference (Section 9.1), while general relativity allows all coordinate
frames. Special relativity is not applicable to gravity because the concept
of ‘inertial frames’ becomes meaningless in the presence of gravity
(Section 12.2). The general theory of relativity is automatically a theory
of gravitation because, according to the equivalence principle, any accel-
erated frame can be regarded as an inertial frame with gravity. General
relativity in an ‘interaction-free situation’ is a theory of pure gravity; the
GR version of any other interaction, say, electrodynamics, is the the-
ory of that interaction in the presence of a gravitational field. See the
introduction and final remarks in Section 13.4.

12. Although Minkowski’s geometric formulation is a mathematical lan-
guage that did not immediately lead to any new physical results in special
relativity, it nevertheless supplies the framework in which the symmetry
between space and time can be implemented in an elegant way. Einstein
finally became appreciative of such a language when he realized that it
provided him with just the avenue to extend special to general relativ-
ity. Einstein’s greatest ability lay in his extraordinary physical instinct.
It took him some time to truly value the connection between mathem-
atics and new physics theory: some theoretical physics insights came
about only when the necessary mathematical languages were available
to facilitate such advances. The formulation of general relativity in the
framework of Riemannian geometry is of course a glorious example. In
this case Einstein was fortunate to have the assistance of his mathem-
atician friend Marcel Grossmann. Still, Einstein had to struggle a great
deal and, very much to his credit, he was finally able to find the correct
GR field equation. We may speculate on the reason why Einstein was less
successful in his unified field theory program. Besides his failure to take
note of the new discoveries of the weak and strong forces as new funda-
mental interactions, he could possibly have made more progress had he
been as great a mathematician as he was a great physicist. In this connec-
tion we have in mind the case of Newton who formulated his new theory
of mechanics and gravitation that was greatly facilitated by his concur-
rent invention of calculus. See the discussion in Sections 11.1, 14.3.4,
and 17.4.2.

13. The realization that gravity can be transformed away in a coordinate
frame in free fall was called by Einstein ‘my happiest thought’. It became
the basis of the principle of equivalence between inertia and gravitation,
which was used by Einstein as the handle to extend special to general
relativity (Section 12.2.2). The moment of elation when Einstein found
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out, in mid-November 1915, that he could correctly explain, from first
principles in his new gravitational theory, the observed precession of
the planet Mercury’s orbit (Section 14.5.1) was, according to Pais, ‘the
strongest emotional experience in Einstein’s scientific life’.

14. By a geometric theory, or a geometric description, of any physical phe-
nomenon, we mean that the results of physical measurements can be
attributed directly to the underlying geometry of space and time. Einstein
started by studying the generalization of the equivalence between inertia
and gravitation (first observed as the equality between inertial and grav-
itational masses) to electromagnetism. He showed that such a ‘strong
equivalence principle’ implied a gravitational frequency shift, grav-
itational time dilation, and gravitational bending of a light ray (see
Section 12.3). Such considerations led Einstein to the idea that the grav-
itational effect on a body can be attributed directly to some underlying
spacetime feature. Thus, gravitational time dilation could be interpreted
as the warping of spacetime in the time direction; a disk in a rotation-
ally symmetric gravitational field has a non-Euclidean relation between
its circumference and its radius, etc. (cf. Sections 13.1 and 13.2). In
this way these partial GR results suggested to Einstein that ‘a gravita-
tional field is simply spacetime with curvature’. Such a description is
clearly compatible with the EP result that any gravitational field can be
transformed away locally, just as any curved space is locally flat. To
what physical realm does Einstein’s theory extend Newtonian gravity?
It can be demonstrated that the GR equations, whether its equation of
motion (the geodesic equation) or its field equation (the Einstein equa-
tion), reduce to their corresponding parts in the Newtonian theory when
one takes the ‘Newtonian limit’: when particles move with nonrelativistic
speed in a weak and static gravitational field. See Sections 13.2.2 and
14.4.1. This means that GR extends Newtonian gravity to the realm of a
time-dependent gravitation field which is strong and allows for particles
moving close to the speed of light.

15. The GR field equation, the Einstein equation, can be written as an equal-
ity between the spacetime curvature (the Einstein tensor) on the geometry
side and the energy–momentum–stress tensor on the energy–matter side.
The curvature being the nonlinear second derivatives of the metric, which
is interpreted as the relativistic gravitational potential, is the relativistic
version of the familiar tidal forces (Sections 14.3 and 14.4).

16. The observed changing rotation rate of the Hulse–Taylor binary pulsar
system was found to be in agreement with the GR prediction over a time
period of more than two decades (see Fig. 14.2 in Section 14.4.2).

17. The structure of the Schwarzschild spacetime is such that its metric
elements

g00 = − 1

grr
= −

(
1− r∗

r

)
,

change sign when the radial distance r moves across the Schwarzschild
radius r∗. In this way the various spacetime intervals ds2 change from
being space-like to time-like, and vice versa (cf. Section 11.3). This
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means a time-like or light-like worldline (as traced out by a material
particle or a light ray), which always moves in the direction of ever
increasing time when outside the black hole (r > r∗), once it crosses the
event horizon (to the r < r∗ region), will be forced to move in the dir-
ection of r = 0. Pictorially we can represent this as ‘lightcones tipping
over across the r = r∗ horizon’. We say such features demonstrate the
full power and glory of general relativity: Relativity requires space and
time to be treated on an equal footing—as is best done by taking space-
time as the physics arena. In special relativity the spacetime geometry is
still flat, while general relativity involves a warped spacetime. In the case
of a black hole when the radial size r is comparable to r∗ the warpage of
spacetime is so severe that the roles of space and time can be switched
(Sections 11.3 and 14.5).

18. Each of these fundamental constants can be viewed as the ‘conversion
factor’ that connects disparate realms of physics: Planck’s constant h con-
nects waves to particles; the light velocity c, between space and time; and
Newton’s constant GN, between geometry and matter/energy. Einstein
made pivotal contributions to all these connections through his discover-
ies in quantum theory, and special and general relativity (Sections 3.4.2,
6.1, 11.4, 14.4, and also 17.1.1).

19. As recounted in George Gamow’s brief autography, My Worldline,
Einstein apparently told Gamow that his introduction of the cosmolo-
gical constant was ‘the biggest blunder of my life’. But we now regard
Einstein’s discovery of this gravitational repulsion term � as a great con-
tribution to modern cosmology: � is the crucial ingredient of inflationary
cosmology, describing the explosive beginning of the universe, and in the
present cosmic epoch, it is the ‘dark energy’ that constitutes 75% of the
cosmic energy content and causes the universe’s expansion to accelerate
(Section 15.3).

20. The claim that Einstein’s idea was of paramount importance in the suc-
cessful creation of the Standard Model of particle physics is based on
the fact that his teaching on the importance of symmetry principles
in physics gave us the framework to understand particle interactions.
Especially, the whole idea of gauge symmetry grew from the idea of
spacetime-dependent transformations in the general theory of relativ-
ity. The Standard Model shows that all the principal fundamental
interactions: electrodynamics, weak and strong interactions, are gauge
interactions (Chapter 16, especially Sections 16.1 and 16.5.5).

21. The driving force behind Einstein’s 20-year effort in the unified field the-
ory program was his hope that such a unification would shed light on the
quantum mystery. His motivation for new physics was often prompted by
the promise of wider comprehension that a new synthesis would bring.
While Einstein was not ultimately successful in this effort, his pursuit has
inspired the research of others in this direction. In Chapter 17 we present
the Kaluza–Klein (KK) theory as a shining example of Einstein’s unific-
ation program. It not only unifies gravitation with electrodynamics in a
GR theory with a 5D spacetime, but also suggests a possible interpret-
ation of the internal charge space and gauge symmetry as reflecting the
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existence of a compactified extra spatial dimension. On the other hand,
the KK theory did not shed light on the origin of quantum mechanics; in
fact it incorporates quantum field theory in order to have a self-consistent
description. Nevertheless, the effort to incorporate quantum mechanics,
in the form of the Standard Model, with gravity, in the form of general
relativity, is a major forefront of modern theoretical physics research.



Glossary of symbols
and acronyms

1 Latin symbols

a Bohr radius, compact radius of extra dimension
a (t) scale factor in Robertson–Walker metric
â± raising and lowering operators creation and annihilation operators
Aμ, A EM 4-potential, 3-potential
B magnetic vector field
C heat capacity (specific heat)
c light speed
c (x) light speed with respect to coordinate time
cs sound speed
D diffusion coefficient, distance
Dμ covariant derivative

diag(a1, a2) diagonal matrix

(
a1 0
0 a2

)
E electric vector field
E energy
EPl Planck energy
e electric charge, eccentricity, electron field
eμ basis vectors in a manifold
E total nonrelativistic energy
F force
f energy flux (luminosity per unit area)
fτ (�) probability density at distance � at step τ
Fμν electromagnetic field tensor Yang–Mills field tensor
F̃μν electromagnetic field dual tensor
g determinant of metric matrix gμν
g number of states with same energy
g,g gravitational acceleration, field
gs QCD strong coupling
gμν spacetime metric tensor
GN Newton’s constant
Gμ Yang–Mills field or gluon field
Gμν Einstein curvature tensor
h Planck’s constant, h̄ = h/2π
H Hubble’s constant ȧ (t) /a (t)
H Hamiltonian
I electric current
jμ, j EM current 4-vector, 3-vector
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K kinetic energy
K Gaussian curvature
k,kμ wave 3-vector, 4-vector
k wave number k = |k| = 2π/λ
k spring constant
k curvature signature (0,±1)
kB Boltzmann’s constant
Kμ covariant force 4-vector
[L]λμ Lorentz transformation
lP Planck length
L length (side of a volume)
L Lagrangian
L radiation energy
L Lagrangian density
m mass
mG gravitational mass
mI inertial mass
M molecular weight, mass (source)
mP Planck mass
n number density, number of moles
n integer number, index of refraction
ni component of a unit radial vector
N number (e.g. in a frequency interval)
n̂ number operator = â†

−â†
+/(h̄ω)

NA Avogadro’s number
O(x) of the order of x[
Ôg
]

(derivative) operator acting on the metric
P molecular radius, number of quanta
P pressure
p pressure, probability, momentum magnitude
p momentum 3-vector
pμ components of momentum 4-vector
Q heat function
q charge, generalized position, quark field
r radial coordinate
r∗ Schwarzschild radius
R gas constant (R = NAkB)

R Rydberg constant
R radius of curvature, Ricci curvature scalar
R0 radius in Robertson–Walker geometry
[R]ij element of a rotational matrix
Rμ

λαβ Riemann curvature tensor
Rμν Ricci curvature tensor
S surface area, entropy
S action (time integral of Lagrange)
SU(3) special unitary group in 3D
Sx,y,z spin components
s invariant spacetime interval
t0 cosmic time of the present epoch age of the universe
tH Hubble time (= 1/H0)
T temperature (on absolute scale)
TE Einstein temperature
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TD Debye temperature
Tμν energy–momentum–stress 4-tensor (also tμν)
Tij momentum stress 3-tensor
U energy
U internal space transformation matrix
u energy density
Uμ velocity 4-vector
U(1) unitary group in 1D
V volume, velocity magnitude
ṽ immersed small volume
vi velocity component
W rate of energy transfer (power)
W work function (energy threshold)
W complexion, number of microstates
Wμ weak vector boson field operator
x spatial or spacetime position
Z atomic number (number of protons in the nucleus)
Zμ neutral weak vector boson field
z wavelength shift, redshift

2 Greek symbols

α fine structure constant
α parameter in Wien & Planck distributions
αij velocity coefficient symmetric tensor
β parameter in Wien & Planck distributions
β v/c, velocity in unit of c
γ the Lorentz factor

(
1− β2

)−1/2

γμ Dirac gamma matrices
�ν
λρ Christoffel symbols

δij Kronecker delta
∂i, ∂μ (3D) del operator ∂i = ∂

∂xi
(4D) with ∂0 = 1

c
∂

∂t , etc.

∇ del operator with components
(

∂

∂x1
, ∂

∂x2
, ∂

∂x3

)
εijk Levi-Civita symbols (3D)
εμνλρ Levi-Civita symbols (4D)
ε energy, angular excess
η, η∗ viscosity, effective viscosity
ημν metric of (flat) Minkowski spacetime
θ polar angle coordinate
θ (x) gauge function
κ gravity strength 8πGN/c4

λ wavelength
� cosmological constant
[�]μν coordinate transformation matrix
μ mobility, chemical potential
ν frequency
ν, νe neutrino field, electron neutrino field
ρ radiation energy density per unit frequency
ρ mass density, charge density
ρ particle number density
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ρc cosmic critical density
σ radial distance, area
σi Pauli matrices
σij stress tensor due to viscosity
τ proper time
τij stress tensor of an ideal fluid
ϕ volume fraction
ϕ entropy density per unit frequency
� EM or gravitational potential
φ phase of a wave
φ azimuthal angle coordinate
φ(x) (generic) scalar field
φμ force density
χ (x) gauge function
� (x) wavefunction or ψ (x)
ψ rapidity parameter of relative frames
ω angular frequency
ω (E) density of states having energy E
� d� = sin θdφdθ element of solid angle
� ratio of density to critical density (ρ/ρc)

�B baryonic matter density ratio
�M total mass density ratio
�DM dark matter mass density ratio
�� dark energy density ratio

3 Acronyms

1D, . . . 4D one dimensional, . . . four dimensional
BEC Bose–Einstein condensation
BBR blackbody radiation
CMBR cosmic microwave background radiation
CPAEe Collected Papers of Albert Einstein (English translation)
DM dark matter
DOF degrees of freedom
ETH Eidgenössische Technische Hochschule [(Swiss) Federal Polytechnic

Institute]
EM electromagnetic
EP equivalence principle
EPR Einstein–Podolsky–Rosen
EPT equipartition theorem
FLRW Friedmann–Lemaître–Robertson–Walker
GR general relativity
GUT grand unified theory
KK Kaluza–Klein
�CDM Lambda Cold Dark Matter
LHS left-hand side
NR nonrelativistic
QCD quantum chromodynamics
QED quantum electrodynamics
QM quantum mechanics
RHS right-hand side
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SHO simple harmonic oscillator
SM Standard Model
SNe supernovae
SR special relativity
SSB spontaneous symmetry breaking
SuppMat supplementary material
WIMP weakly interacting massive particle

4 Miscellaneous units and symbols

AU astronomical unit (average distance between earth and sun)
GeV giga electron volt
Gyr giga (billion) years
K degree kelvin
kpc kiloparsec
MeV million electron volt
Mpc megaparsec
μ micron

(
10−6 m

)
nm nanometer

(
10−9 m

)
Å angstrom

(
10−10 m

)
pc parsec
|ψ〉 ket vector, with its dual, the bra vector 〈φ| and inner product 〈φ |ψ〉
� symbol for the sun (e.g. M⊕ = solar mass)
⊕ symbol for the earth (e.g. R⊕ = earth’s radius)
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