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PREFACE TO THE SECOND EDITION

While classical mathematics has hardly changed over the

years, new applications arise regularly. In the second

edition, we attempt to teach applicable mathematics to a

new generation of readers involved in self-study and tradi-

tional university coursework. As in the first edition, we lead

the reader through homework problems, providing answers

while coaxing students to think more deeply about how the

answer was uncovered. New material has been added, espe-

cially homework problems in the biochemical area, includ-

ing diffusion in skin and brain implant drug delivery, and

modern topics such as carbon dioxide storage, chemical

reactions in nanotubes, dissolution of pills and pharmaceu-

tical capsules, honeycomb reactors used in catalytic con-

verters, and new models of important physical phenomenon

such as bubble coalescence.

The presentation of linear algebra using vectors and

matrices has been moved from an Appendix and inter-

spersed between Chapters 1 and 2, and used in a number of

places in the book, notably Chapters 11 and 12, where

MATLAB referenced solutions are provided.

The model building stage in Chapter 1 has thus been

augmented to include models with many variables using

vectors and matrices. Chapter 2 begins teaching applied

mathematics for solving ordinary differential equations,

both linear and nonlinear. The chapter culminates with

teaching how to solve arrays of coupled linear equations

using matrix methods and the analysis of the eigenproblem,

leading to eigenvalues and eigenvectors. Classical methods

for solving second-order linear equations with nonconstant

coefficients are treated using series solutions via the method

of Frobenius in Chapter 3. Special functions are also

inspected, especially Bessel’s functions, which arise fre-

quently in chemical engineering owing to our propensity

toward cylindrical geometry. Integral functions, often

ignored in other textbooks, are given a careful review in

Chapter 4, with special attention to the widely used error

function. In Chapter 5, we study the mathematics of staged

processing, common in chemical engineering unit opera-

tions, and develop the calculus of finite difference equa-

tions, showing how to obtain analytical solutions for both

linear and nonlinear systems. This chapter adds a new

homework problem dealing with economics and finite dif-

ference equations used by central banks to forecast personal

consumption. These five chapters would provide a suitable

undergraduate course for third or fourth year students. To

guide the teacher, we again have used a scheme to indicate

homework problem challenges: subscripts 1 denotes mainly

computational or setup problems, while subscripts 2 and 3

require more synthesis and analysis. Problems with an

asterisk are the most difficult and are more suited for gradu-

ate students.

The approximate technique for solving equations, espe-

cially nonlinear types, is treated in Chapter 6 using pertur-

bation methods. It culminates with teaching the method of

matched asymptotic expansion. Following this, other

approximate methods suitable for computer implementation

are treated in Chapter 7 as numerical solution by finite dif-

ferences, for initial value problems. In Chapter 8, computer-

oriented boundary value problems are addressed using

weighted residuals and the methods of orthogonal colloca-

tion. Complex variables and Laplace transforms are given a

combined treatment in Chapter 9, illustrating the intimate

connection to the Fourier–Mellon complex integral, which

is the basis for the Laplace transform.

Treatment of partial differential equations (PDEs) begins

in Chapter 10, where classical methods are taught, includ-

ing the combination of variables approach, the separation

of variables method and the important orthogonality

xi



conditions arising from the Sturm–Liouville equation, and

finally, solutions using Laplace transforms and the method

of residues. After these classical methods, we introduce

finite transform methods in Chapter 11, and exploit the oth-

ogonality condition to introduce a universal transform

called the Sturm–Liouville transform. This method pro-

duces as subsets the famous Hankel and Fourier transforms.

The concept of Hilbert space is explained and the solution

of coupled partial differential equations is illustrated using

the famous batch adsorber problem. The last chapter (12) of

the book deals with approximate and numerical solution

methods for PDE, treating polynomial approximation, sin-

gular perturbation, and finite difference methods. Orthogo-

nal collocation methods applied to PDEs are given an

extensive treatment. Appendices provide useful information

on numerical methods to solve algebraic equations and a

careful explanation of numerical integration algorithms.

After 17 years in print, we would be remiss by not men-

tioning the many contributions and suggestions by users

and teachers from around the world. We especially wish

to thank Professor Dean O. Harper of the University of

Louisville and his students who forwarded errata that

proved most helpful in revision for the second edition.

Thanks also to Professor Morton M. Denn of CCNY for

suggesting the transfer from the Appendix of vectors and

matrix methods to the first two chapters. Reviewers who

have used the book also gave many good ideas for revision

in the second edition, and we wish to thank colleagues from

Bucknell University, notably Professors James E. Maneval

and William E. King. We continue to be grateful to students

and colleagues who point out errors, typos, and suggestions

for additional material; we particularly appreciate the help

of Professor Benjamin J. McCoy of UC Davis and Ralph E.

White of the University of South Carolina. In the final anal-

ysis, any remaining errors, and the selection of material to

include, are the responsibility of the authors, and we apolo-

gize for not including all the changes and additions sug-

gested by others.

RICHARD G. RICE

Tazewell, TN, USA

DUONG D. DO

University of Queensland, Australia
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PART I

Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveler, long I stood

And looked down one as far as I could

To where it bent in the undergrowth;

Then took the other, as just as fair,

And having perhaps the better claim,

Because it was grassy and wanted wear;

Though as for that the passing there

Had worn them really about the same,

And both that morning equally lay

In leaves no step had trodden black.

Oh, I kept the first for another day!

Yet knowing how way leads on to way,

I doubted if I should ever come back.

I shall be telling this with a sigh

Somewhere ages and ages hence:

Two roads diverged in a wood, and I-

I took the one less traveled by,

And that has made all the difference.

—Robert Frost (“The Road Not Taken”)

Applied Mathematics and Modeling for Chemical Engineers, Second Edition. Richard G. Rice and Duong D. Do.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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1
FORMULATION OF PHYSICOCHEMICAL PROBLEMS

1.1 INTRODUCTION

Modern science and engineering require high levels of qual-

itative logic before the act of precise problem formulation

can occur. Thus, much is known about a physicochemical

problem beforehand, derived from experience or experi-

ment (i.e., empiricism). Most often, a theory evolves only

after detailed observation of an event. This first step usually

involves drawing a picture of the system to be studied.

The second step is the bringing together of all applica-

ble physical and chemical information, conservation laws,

and rate expressions. At this point, the engineer must make

a series of critical decisions about the conversion of mental

images to symbols, and at the same time, how detailed

the model of a system must be. Here, one must classify the

real purposes of the modeling effort. Is the model to be

used only for explaining trends in the operation of an exist-

ing piece of equipment? Is the model to be used for predic-

tive or design purposes? Do we want steady-state or

transient response? The scope and depth of these early

decisions will determine the ultimate complexity of the

final mathematical description.

The third step requires the setting down of finite or dif-

ferential volume elements, followed by writing the conser-

vation laws. In the limit, as the differential elements shrink,

then differential equations arise naturally. Next, the prob-

lem of boundary conditions must be addressed, and this

aspect must be treated with considerable circumspection.

When the problem is fully posed in quantitative terms,

an appropriate mathematical solution method is sought out,

which finally relates dependent (responding) variables to

one or more independent (changing) variables. The final

result may be an elementary mathematical formula or a

numerical solution portrayed as an array of numbers.

1.2 ILLUSTRATION OF THE FORMULATION

PROCESS (COOLING OF FLUIDS)

We illustrate the principles outlined above and the hierar-

chy of model building by way of a concrete example: the

cooling of a fluid flowing in a circular pipe. We start with

the simplest possible model, adding complexity as the

demands for precision increase. Often, the simple model

will suffice for rough, qualitative purposes. However, cer-

tain economic constraints weigh heavily against over-

design, so predictions and designs based on the model may

need be more precise. This section also illustrates the “need

to know” principle, which acts as a catalyst to stimulate the

garnering together of mathematical techniques. The prob-

lem posed in this section will appear repeatedly throughout

the book, as more sophisticated techniques are applied to its

complete solution.

1.2.1 Model I: Plug Flow

As suggested in the beginning, we first formulate a mental

picture and then draw a sketch of the system. We bring

together our thoughts for a simple plug flow model in

Fig. 1.1a. One of the key assumptions here is plug flow,

which means that the fluid velocity profile is plug shaped,

in other words, uniform at all radial positions. This almost

Applied Mathematics and Modeling for Chemical Engineers, Second Edition. Richard G. Rice and Duong D. Do.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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always implies turbulent fluid flow conditions, so that fluid

elements are well mixed in the radial direction, hence the

fluid temperature is fairly uniform in a plane normal to the

flow field (i.e., the radial direction).

If the tube is not too long or the temperature difference is

not too severe, then the physical properties of the fluid will

not change much, so our second step is to express this and

other assumptions as a list:

1. A steady-state solution is desired.

2. The physical properties (r, density; Cp, specific heat;

k, thermal conductivity, etc.) of the fluid remain

constant.

3. The wall temperature is constant and uniform (i.e.,

does not change in the z or r direction) at a value

Tw.

4. The inlet temperature is constant and uniform (does

not vary in r direction) at a value T0, where T0 > Tw.

5. The velocity profile is plug shaped or flat, hence it is

uniform with respect to z or r.

6. The fluid is well mixed (highly turbulent), so the tem-

perature is uniform in the radial direction.

7. Thermal conduction of heat along the axis is small

relative to convection.

The third step is to sketch, and act upon, a differential vol-

ume element of the system (in this case, the flowing fluid)

to be modeled. We illustrate this elemental volume in

Fig. 1.1b, which is sometimes called the “control volume.”

We act upon this elemental volume, which spans the

whole of the tube cross section, by writing the general con-

servation law

Rate in� rate outþ rate of generation

¼ rate of accumulation ð1:1Þ

Since steady state is stipulated, the accumulation of heat is

zero. Moreover, there are no chemical, nuclear, or electrical

sources specified within the volume element, so heat gener-

ation is absent. The only way heat can be exchanged is

FIGURE 1.1 (a) Sketch of plug flow model formulation. (b) Elemental or control volume for plug

flow model. (c) Control volume for Model II.
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through the perimeter of the element by way of the temper-

ature difference between wall and fluid. The incremental

rate of heat removal can be expressed as a positive quantity

using Newton’s law of cooling, that is,

DQ ¼ 2pRD zð Þh TðzÞ � Tw

� � ð1:2Þ

As a convention, we shall express all such rate laws as pos-

itive quantities, invoking positive or negative signs as

required when such expressions are introduced into the

conservation law (Eq. 1.1). The contact area in this simple

model is simply the perimeter of the element times its

length.

The constant heat transfer coefficient is denoted by h.

We have placed a bar over T to represent the average

between T(z) and T(zþD z)

TðzÞ ’ TðzÞ þ Tðzþ D zÞ
2

ð1:3Þ

In the limit, as D z ! 0, we see

lim
Dz!0

TðzÞ ! TðzÞ ð1:4Þ

Now, along the axis, heat can enter and leave the element

only by convection (flow), so we can write the elemental

form of Eq. 1.1 as

v0ArCpTðzÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Rate heat flow in

� v0ArCpTðzþ DzÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rate heat flow out

�ð2pRDzÞhðT � TwÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rate heat loss through wall

¼ 0

ð1:5Þ

The first two terms are simply mass flow rate times local

enthalpy, where the reference temperature for enthalpy is

taken as zero. Had we used Cp(T� Tref) for enthalpy, the

term Tref would be cancelled in the elemental balance.

The last step is to invoke the fundamental lemma of calcu-

lus, which defines the act of differentiation

lim
Dz!0

Tðzþ D zÞ � TðzÞ
D z

! dT

dz
ð1:6Þ

We rearrange the conservation law into the form required

for taking limits, and then divide by D z

�v0ArCp

Tðzþ D zÞ � TðzÞ
D z

� 2pRhð Þ T � Tw

� � ¼ 0 ð1:7Þ

Taking limits, one at a time, then yields the sought-after

differential equation

v0ArCp

dT

dz
þ 2pRh TðzÞ � Tw½ � ¼ 0 ð1:8Þ

where we have cancelled the negative signs.

Before solving this equation, it is good practice to group

parameters into a single term (lumping parameters). For

such elementary problems, it is convenient to lump parame-

ters with the lowest order term as follows:

dTðzÞ
dz

þ l TðzÞ � Tw½ � ¼ 0 ð1:9Þ

where

l ¼ 2pRh=ðv0ArCpÞ

It is clear that l must take units of reciprocal length.

As it stands, the above equation is classified as a linear,

inhomogeneous equation of first order, which in general

must be solved using the so-called integrating factor

method, as we discuss later in Section 2.3.

Nonetheless, a little common sense will allow us to

obtain a final solution without any new techniques. To do

this, we remind ourselves that Tw is everywhere constant

and that differentiation of a constant is always zero, so we

can write

dðTðzÞ � TwÞ
dz

¼ dTðzÞ
dz

ð1:10Þ

This suggests we define a new dependent variable, namely,

u ¼ TðzÞ � Tw ð1:11Þ

hence Eq. 1.9 now reads simply

duðzÞ
dz

þ luðzÞ ¼ 0 ð1:12Þ

This can be integrated directly by separation of variables, so

we rearrange to get

du

u
þ ldz ¼ 0 ð1:13Þ

Integrating term by term yields

ln u þ lz ¼ ln K ð1:14Þ

where ln K is any (arbitrary) constant of integration. Using

logarithm properties, we can solve directly for u

u ¼ K expð�lzÞ ð1:15Þ
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It now becomes clear why we selected the form ln K as the

arbitrary constant in Eq. 1.14.

All that remains is to find a suitable value for K. To

do this, we recall the boundary condition denoted as T0 in

Fig. 1.1a, which in mathematical terms has the meaning

Tð0Þ ¼ T0; or uð0Þ ¼ Tð0Þ � Tw ¼ T0 � Tw ð1:16Þ

Thus, when z¼ 0, u(0) must take a value T0� Tw, so Kmust

also take this value.

Our final result for computational purposes is

TðzÞ � Tw

T0 � Tw

¼ exp
�2pRhz

v0ArCp

� �
ð1:17Þ

We note that all arguments of mathematical functions must

be dimensionless, so the above result yields a dimensionless

temperature

TðzÞ � Tw

T0 � Tw

¼ c ð1:18Þ

and a dimensionless length scale

2pRhz

v0ArCp

¼ z ð1:19Þ

Thus, a problem with six parameters, two external con-

ditions (T0, Tw) and one each dependent and independent

variable has been reduced to only two elementary (dimen-

sionless) variables, connected as follows:

c ¼ expð�zÞ ð1:20Þ

1.2.2 Model II: Parabolic Velocity

In the development of Model I (plug flow), we took careful

note that the assumptions used in this first model building

exercise implied “turbulent flow” conditions, such a state

being defined by the magnitude of the Reynolds number

(v0 d/v), which must always exceed 2100 for this model to

be applicable. For slower flows, the velocity is no longer

plug shaped, and in fact when Re < 2100, the shape is

parabolic

vz ¼ 2v0½1� ðr=RÞ2� ð1:21Þ

where v0 now denotes the average velocity and vz denotes
the locally varying value (Bird et al. 1960). Under such

conditions, our earlier assumptions must be carefully

reassessed; specifically, we will need to modify items 5–7

in the previous list:

5. The z-directed velocity profile is parabolic shaped

and depends on the position r.

6. The fluid is not well mixed in the radial direction, so

account must be taken of radial heat conduction.

7. Because convection is smaller, axial heat conduction

may also be important.

These new physical characteristics cause us to redraw the

elemental volume as shown in Fig. 1.1c. The control vol-

ume now takes the shape of a ring of thickness Dr and

length Dz. Heat now crosses two surfaces, the annular area

normal to fluid flow, and the area along the perimeter of the

ring. We shall need to designate additional (vector) quanti-

ties to represent heat flux (rate per unit normal area) by

molecular conduction:

qrðr; zÞ ¼ molecular heat flux in radial direction ð1:22Þ

qzðr; zÞ ¼ molecular heat flux in axial direction ð1:23Þ

The net rate of heat gain (or loss) by conduction is simply the

flux times the appropriate area normal to the flux direction.

The conservation law (Eq. 1.1) can now be written for the

element shown in Fig. 1.1c.

vzð2prDrÞrCpTðz; rÞ � vzð2prDrÞrCpTðzþ Dz; rÞ
þð2prDrqzÞjz �ð2prDrqzÞjzþDz

þð2prDzqrÞjr �ð2prDzqrÞjrþDr ¼ 0 ð1:24Þ

The new notation is necessary, since we must deal with prod-

ucts of terms, either or both of which may be changing.

We rearrange this to a form appropriate for the funda-

mental lemma of calculus. However, since two position

coordinates are now allowed to change, we must define the

process of partial differentiation, for example,

lim
Dz!0

Tðzþ Dz; rÞ � Tðz; rÞ
Dz

¼ @T

@z

� �
r

ð1:25Þ

which, of course, implies holding r constant as denoted by

subscript (we shall delete this notation henceforth). Thus,

we divide Eq. 1.24 by 2pDzDr and rearrange to get

�vzrCpr
Tðzþ Dz; rÞ � Tðz; rÞ

Dz
� ½rqz�jzþDz � ½rqz�jz

Dz

� ½rqr�jrþDr � ½rqr�jr
Dr

¼ 0 ð1:26Þ
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Taking limits, one at a time, then yields

�vzrCpr
@T

@z
� @ðrqzÞ

@z
� @ðrqrÞ

@r
¼ 0 ð1:27Þ

The derivative with respect to (wrt) z implies holding r con-

stant, so r can be placed outside this term; thus, dividing by

r and rearranging shows

�@qz
@z

� @

r@r
ðrqrÞ ¼ vzrCp

@T

@z
ð1:28Þ

At this point, the equation is insoluble since we have one

equation and three unknowns (T, qz, qr). We need to know

some additional rate law to connect fluxes q to tempera-

ture T. Therefore, it is now necessary to introduce the

famous Fourier’s law of heat conduction, the vector form

of which states that heat flux is proportional to the gradi-

ent in temperature

q ¼ �krT ð1:29Þ

and the two components of interest here are

qr ¼ �k
@T

@r
; qz ¼ �k

@T

@z
ð1:30Þ

Inserting these two new equations into Eq. 1.28, along with

the definition of vz, yields finally a single equation, with

one unknown T(r,z)

k
@2T

@z2
þ k

1

r

@

@r
r
@T

@r

� �
¼ 2v0rCp 1� r

R

� �2
" #

@T

@z
ð1:31Þ

The complexity of Model II has now exceeded our poor

powers of solution, since we have much we need to know

before attempting such second-order partial differential

equations. We shall return to this problem occasionally as

we learn new methods to effect a solution, and as new

approximations become evident.

1.3 COMBINING RATE AND EQUILIBRIUM

CONCEPTS (PACKED BED ADSORBER)

The occurrence of a rate process and a thermodynamic

equilibrium state is common in chemical engineering mod-

els. Thus, certain parts of a whole system may respond so

quickly that, for practical purposes, local equilibrium may

be assumed. Such an assumption is an integral (but often

unstated) part of the qualitative modeling exercise.

To illustrate the combination of rate and equilibrium

principles, we next consider a widely used separation

method, which is inherently unsteady, packed bed

adsorption. We imagine a packed bed of finely granulated

(porous) solid (e.g., charcoal) contacting a binary mixture,

one component of which selectively adsorbs (physis-

orption) onto and within the solid material. The physical

process of adsorption is so fast, relative to other slow steps

(diffusion within the solid particle), that in and near the

solid particles local equilibrium exists

q ¼ KC� ð1:32Þ

where q denotes the average composition of the solid phase,

expressed as moles solute adsorbed per unit volume solid

particle, and C� denotes the solute composition (moles sol-

ute per unit volume fluid), which would exist at equili-

brium. We suppose that a single film mass transport

coefficient controls the transfer rate between flowing and

immobile (solid) phase.

It is also possible to use the same model even when

intraparticle diffusion is important (Rice 1982) by simply

replacing the film coefficient with an “effective”

coefficient. Thus, the model we derive can be made to have

wide generality.

We illustrate a sketch of the physical system in Fig. 1.2.

It is clear in the sketch that we shall again use the plug flow

concept, so the fluid velocity profile is flat. If the stream to

be processed is dilute in the adsorbable species (adsorbate),

then heat effects are usually ignorable, so isothermal condi-

tions will be taken. Finally, if the particles of solid are

small, the axial diffusion effects, which are Fickian-like,

can be ignored and the main mode of transport in the

mobile fluid phase is by convection.

Interphase transport from the flowing fluid to immobile

particles obeys a rate law, which is based on departure from

the thermodynamic equilibrium state. Because the total

interfacial area is not known precisely, it is common prac-

tice to define a volumetric transfer coefficient, which is the

product kca, where a is the total interfacial area per unit

FIGURE 1.2 Packed bed adsorber.
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volume of packed column. The incremental rate expres-

sion (moles/time) is then obtained by multiplying the

volumetric transfer coefficient (kca) by the composition

linear driving force and this times the incremental vol-

ume of the column (ADz)

DR ¼ kcaðC � C�Þ � ADz ð1:33Þ

We apply the conservation law (Eq. 1.1) to the adsorbable

solute contained in both phases as follows:

v0ACðz; tÞ � v0ACðzþ Dz; tÞ ¼ eADz
@C

@t
þ ð1� eÞADz @q

@t

ð1:34Þ

where v0 denotes superficial fluid velocity (velocity that

would exist in an empty tube), e denotes the fraction void

(open) volume, hence (1� e) denotes the fractional

volume taken up by the solid phase. Thus, e is volume

fraction between particles and is often called interstitial

void volume; it is the volume fraction through which fluid

is convected. The rate of accumulation has two possible

sinks: accumulation in the fluid phase (C ) and in the solid

phase (q).

By dividing by ADz, taking limits as before, we deduce

that the overall balance for solute obeys

�v0
@C

@z
¼ e

@C

@t
þ ð1� eÞ @q

@t
ð1:35Þ

Similarly, we may make a solute balance on the immobile

phase alone, using the rate law, Eq. 1.33, noting adsorption

removes material from the flowing phase and adds it to the

solid phase. Now, since the solid phase loses no material

and generates none (assuming chemical reaction is absent),

then the solid phase balance is

Að1� eÞDz @q
@t

¼ kcaðC � C�ÞADz ð1:36Þ

which simply states that rate of accumulation equals rate of

transfer to the solid. Dividing the elementary volume, ADz,
yields

ð1� eÞ @q
@t

¼ kcaðC � C�Þ ð1:37Þ

We note that as equilibrium is approached (as C! C�)

@q

@t
! 0

Such conditions correspond to “saturation,” hence no fur-

ther molar exchange occurs. When this happens to the

whole bed, the bed must be “regenerated,” for example, by

passing a hot, inert fluid through the bed, thereby desorbing

solute.

The model of the system is now composed of Eqs. 1.32,

1.35, and 1.37: There are three equations and three

unknowns (C, C�, q).
To make the system model more compact, we attempt to

eliminate q, since q¼KC�; hence we have

v0
@C

@z
þ e

@C

@t
þ ð1� eÞK @C�

@t
¼ 0 ð1:38Þ

ð1� eÞK @C�

@t
¼ kcaðC � C�Þ ð1:39Þ

The solution to this set of partial differential equations

(PDEs) can be effected by suitable transform methods (e.g.,

the Laplace transform) for certain types of boundary and

initial conditions (BC and IC). For the adsorption step,

these are

qðz; 0Þ ¼ 0 ðinitially clean solidÞ ð1:40Þ

Cð0; tÞ ¼ C0 ðconstant composition at bed entranceÞ
ð1:41Þ

The condition on q implies (cf. Eq. 1.32)

C�ðz; 0Þ ¼ 0 ð1:42Þ

Finally, if the bed was indeed initially clean, as stated

above, then it must also be true

Cðz; 0Þ ¼ 0 ðinitially clean interstitial fluidÞ ð1:43Þ

We thus have three independent conditions (note, we could

use either Eq. 1.40 or Eq. 1.42, since they are linearly

dependent) corresponding to three derivatives:

@C�

@t
;

@C

@t
;

@C

@z

As we demonstrate later, in Chapter 10, linear systems of

equations can be solved exactly only when there exists one

BC or IC for each order of a derivative. The above system is

now properly posed, and will be solved as an example in

Chapter 10 using Laplace transform.

1.4 BOUNDARY CONDITIONS AND

SIGN CONVENTIONS

As we have seen in the previous sections, when time is an

independent variable, the boundary condition is usually an

initial condition, meaning we must specialize the state of
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the dependent variable at some time t0 (usually t0¼ 0). For

the steady state, we have seen that integrations of the appli-

cable equations always produce arbitrary constants of

integration. These integration constants must be evaluated,

using stipulated boundary conditions to complete the

model’s solution.

For the physicochemical problems occurring in chemical

engineering, most boundary or initial conditions are (or can

be made to be) of the homogeneous type; a condition or

equation is taken to be homogeneous if, for example, it

is satisfied by y(x), and is also satisfied by ly(x), where l is

an arbitrary constant. The three classical types for such

homogeneous boundary conditions at a point, say x0, are

the following:

ðiÞ yðxÞ ¼ 0 @ x ¼ x0

ðiiÞ dy

dx
¼ 0 @ x ¼ x0

ðiiiÞ byþ dy

dx
¼ 0 @ x ¼ x0

Most often, the boundary values for a derived model are not

homogeneous, but can be made to be so. For example,

Model II in Section 1.2 portrays cooling of a flowing fluid

in a tube. Something must be said about the fluid tempera-

ture at the solid wall boundary, which was specified to take

a constant value Tw. This means all along the tube length,

we can require

Tðr; zÞ ¼ Tw @ r ¼ R; for all z

As it stands, this does not match the condition for homoge-

neity. However, if we define a new variable u

u ¼ Tðr; zÞ � Tw ð1:44Þ

then it is clear that the wall condition will become homoge-

neous, of type (i)

uðr; zÞ ¼ 0 @ r ¼ R; for all z ð1:45Þ

When redefining variables in this way, one must be sure that

the original defining equation is unchanged. Thus, since the

derivative of a constant (Tw) is always zero, then Eq. 1.31

for the new dependent variable u is easily seen to be

unchanged

k
@2u

@z2
þ k

@2u

@r2
þ 1

r

@u

@r

� �
¼ 2v0rCp 1� ðr=RÞ2

h i @u
@z

ð1:46Þ

It often occurs that the heat (or mass) flux at a boundary is

controlled by a heat (or mass) transfer coefficient, so for a

circular tube the conduction flux is proportional to a

temperature difference

qr ¼ �k
@T

@r
¼ UðT � TcÞ @ r ¼ R; for all z;

Tc ¼ constant

ð1:47Þ

Care must be taken to ensure that sign conventions are

obeyed. In our cooling problem (Model II, Section 1.2), it

is clear that

qr > 0;
@T

@r
� 0

so that U(T� Tc) must be positive, which it is, since the

coolant temperature Tc < T(R, z).

This boundary condition also does not identify exactly

with the type (iii) homogeneous condition given earlier.

However, if we redefine the dependent variable to be

u¼ T� Tc, then we have

U

k

� �
u þ @u

@r
¼ 0 @ r ¼ R; for all z ð1:48Þ

which is identical in form with the type (iii) homogeneous

boundary condition when we note the equivalence: u¼ y,

U=k ¼ b, r¼ x, and R¼ x0. It is also easy to see that the

original convective diffusion Eq. 1.31 is unchanged when

we replace T with u. This is a useful property of linear

equations.

Finally, we consider the type (ii) homogeneous boundary

condition in physical terms. For the pipe flow problem, if

we had stipulated that the tube wall was well insulated,

then the heat flux at the wall is nil, so

qr ¼ �k
@T

@r
¼ 0 @ r ¼ R; for all z ð1:49Þ

This condition is of the homogeneous type (ii) without

further modification.

Thus, we see that models for a fluid flowing in a circular

pipe can sustain any one of the three possible homogeneous

boundary conditions.

Sign conventions can be troublesome to students,

especially when they encounter type (iii) boundary condi-

tions. It is always wise to double-check to ensure that the

sign of the left-hand side is the same as that of the right-

hand side. Otherwise, negative transport coefficients will

be produced, which is thermodynamically impossible. To

guard against such inadvertent errors, it is useful to pro-

duce a sketch showing the qualitative shape of the

expected profiles.
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In Fig. 1.3 we sketch the expected shape of temperature

profile for a fluid being cooled in a pipe. The slope of

temperature profile is such that @T=@r � 0: If we exclude

the centerline (r¼ 0), where exactly @T=@r ¼ 0 (the sym-

metry condition), then always @T=@r < 0: Now, since

fluxes (which are vector quantities) are always positive

when they move in the positive direction of the coordinate

system, then it is clear why the negative sign appears in

Fourier’s law

qr ¼ �k
@T

@r
ð1:50Þ

Thus, since @T=@r < 0; then the product �k@T=@r > 0; so
that flux qr > 0. This convention thus ensures that heat

moves down a temperature gradient, so transfer is always

from hot to cold regions. For a heated tube, flux is always

in the anti-r direction, hence it must be a negative quantity.

Similar arguments hold for mass transfer where Fick’s law

is applicable, so that the radial component of flux in cylin-

drical coordinates would be

Jr ¼ �D
@C

@r
ð1:51Þ

1.5 MODELS WITHMANY VARIABLES:

VECTORS ANDMATRICES

Large-scale industrial processes must deal with multicom-

ponents and several phases in unit operations such as distil-

lation, absorption, and catalytic cracking. The number of

equations and variables needed to describe such processes

are extensive and tedious to handle using traditional scalar

mathematics. It is useful to introduce a body of mathemat-

ics that simplifies the representation of the many equations

and variables in engineering processes; hence, we turn to

vectors and matrices. This will allow the presentation of

linear equations in a compact manner.

We will start with the definition of a matrix, with a vec-

tor being a special case of a matrix. Then we present a num-

ber of operations that may be used on matrices. Finally, we

describe several methods for effecting the solution of linear

equations.

1.6 MATRIX DEFINITION

A set of N linear algebraic equations with N unknowns, x1,

x2, . . . , xN, may always be written in the form

a11x1 þ a12x2 þ a13x3 þ � � � þ a1NxN ¼ b1

a21x1 þ a22x2 þ a23x3 þ � � � þ a2NxN ¼ b2

..

.

aN1x1 þ aN2x2 þ aN3x3 þ � � � þ aNNxN ¼ bN

ð1:52Þ

where xi (i¼ 1, 2, . . . , N) are unknown variables and bi
(i¼ 1, 2, . . . , N) are the constants representing the non-

homogeneous terms. The coefficients aij (i, j¼ 1, 2, . . . ,

N) are constant coefficients, with the index i representing

the ith equation and the index j to correspond to the vari-

able xj.

N is the number of equations, and it can be any integer

number, ranging from 1 to infinity. If N is a large num-

ber, it is time consuming to write those linear equations

in the manner of Eq. 1.52. To facilitate the handling of

large numbers of equations, the notation of matrices and

vectors will become extremely useful. This will allow us

to write sets of linear equations in a very compact form.

Matrix algebra is then introduced that allows manipula-

tion of these matrices, such as addition, subtraction, mul-

tiplication, and taking the inverse (similar to division for

scalar numbers).

1.6.1 The Matrix

A matrix is a rectangular array of elements arranged in

an orderly fashion with rows and columns. Each element

is distinct and separate. The element of a matrix is

denoted as aij, with the index i to represent the ith row

and the index j to represent the jth column. The size of a

matrix is denoted as N�M, where N is the number of

rows and M is the number of columns. We usually repre-

sent a matrix with a boldface capital letter, for example,

A, and the corresponding lowercase letter is used to rep-

resent its elements, for example, aij. The following equa-

tion shows the definition of a matrix A having N rows

and M columns:

FIGURE 1.3 Expected temperature profile for cooling fluids in

a pipe at an arbitrary position z1.
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A ¼ faij ; i ¼ 1; 2; . . . ;N; j ¼ 1; 2; . . . ;Mg

¼

a11 a12 a13 � � � a1M

a21 a22 a23 � � � a2M

� � � �
aN1 aN2 aN3 � � � aNM

2
666664

3
777775 ð1:53Þ

where the bracket expression is the shorthand notation to

describe both the element and the size of the matrix. The

transpose of matrix A is denoted as AT. It arises from the

complete interchange of rows and columns of matrix A.

1.6.2 The Vector

A vector is a special case of a matrix. A vector can be put as

a column vector or it can be put as a row vector. A column

vector is a matrix having a size of N� 1. For example, the

following vector b is a column vector with size N� 1:

b ¼ fbi; i ¼ 1; 2; . . . ;Ng ¼

b1

b2

b3

..

.

bN

2
66666664

3
77777775

ð1:54Þ

where bi is the element associated with the row i.

The row vector is a matrix having a size of 1�N. For

example, a row vector d is represented as

d ¼ fdi; i ¼ 1; 2; . . . ;Ng ¼ d1 d2 d3 . . . dN½ � ð1:55Þ

The transpose of this, dT, is a column vector.

1.7 TYPES OF MATRICES

1.7.1 Square Matrix

A square matrix is a matrix that has the same number of

rows and columns, that is, faij; i; j ¼ 1; 2; . . . ;Ng. The ele-
ments aii, with i¼ 1, 2, . . . , N, are called the major diago-

nal elements of the square matrix. The elements aN1, aN�1,2,

to a1N are called the minor diagonal elements.

1.7.2 Diagonal Matrix

A diagonal matrix is a square matrix having zero elements

everywhere except on the major diagonal line. An identity

matrix, denoted as I, is a diagonal matrix having unity

major diagonal elements.

1.7.3 Triangular Matrix

A triangular matrix is a matrix having all elements on

one side of the major diagonal line to be zero. An upper

tridiagonal matrix U has all zero elements below the

major diagonal line, and a lower tridiagonal matrix L has

all zero elements above the diagonal line. The following

equation shows upper and lower tridiagonal matrices

having a size 3� 3:

U ¼
a11 a12 a13

0 a22 a23

0 0 a33

2
64

3
75; L ¼

a11 0 0

a21 a22 0

a31 a32 a33

2
64

3
75 ð1:56Þ

1.7.4 Tridiagonal Matrix

A tridiagonal matrix is a matrix in which all elements that

are not on the major diagonal line and two diagonals sur-

rounding the major diagonal line are zero. The following

equation shows a typical tridiagonal matrix of size 4� 4

T ¼

a11 a12 0 0

a21 a22 a23 0

0 a32 a33 a34

0 0 a43 a44

2
6664

3
7775 ð1:57Þ

The tridiagonal matrix is encountered quite regularly when

solving differential equations using the finite difference

method (see Chapter 12).

1.7.5 Symmetric Matrix

The transpose of a N�M matrix A is a matrix AT having a

size ofM�N, with the element aTij defined as

aTij ¼ aji ð1:58Þ

that is, the position of a row and a column is interchanged.

A symmetric square matrix has identical elements on

either side of the major diagonal line, that is, aji¼ aij. This

means AT¼A.

1.7.6 Sparse Matrix

A sparse matrix is a matrix in which most elements are

zero. Many matrices encountered in solving engineering

systems are sparse matrices.

1.7.7 Diagonally Dominant Matrix

A diagonally dominant matrix is a matrix such that the

absolute value of the diagonal term is larger than the sum of
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the absolute values of other elements in the same row, with

the diagonal term larger than the corresponding sum for at

least one row; that is,

jaiij �
XN
j¼1
j 6¼i

jaij j for i ¼ 1; 2; . . . ;N ð1:59Þ

with

jaiij >
XN
j¼1
j 6¼i

jaijj ð1:60Þ

for at least one row.

This condition of diagonal dominant matrix is required

in the solution of a set of linear equations using iterative

methods, details of which are given in Section 1.11.

1.8 MATRIX ALGEBRA

Just as in scalar operations, where we have addition, sub-

traction, multiplication, and division, we also have addition,

subtraction, multiplication, and inverse (playing the role of

division) on matrices, but there are a few restrictions in

matrix algebra before these operations can be carried out.

1.8.1 Addition and Subtraction

These two operations can be carried out only when the sizes

of the two matrices are the same. The operations are shown

as follows.

Aþ B ¼ faijg þ fbijg ¼ fcij ¼ aij þ bijg ¼ C ð1:61Þ

A� B ¼ faijg � fbijg ¼ fcij ¼ aij � bijg ¼ C ð1:62Þ

Operations cannot be carried out on unequal size matrices.

Addition of equal size matrices is associative and

commutative; that is,

Aþ ðBþ CÞ ¼ ðAþ BÞ þ C ð1:63Þ

Aþ B ¼ Bþ A ð1:64Þ

1.8.2 Multiplication

This operation involves the multiplication of the row ele-

ments of the first matrix to the column elements of the sec-

ond matrix and the summation of the resulting products.

Because of this procedure of multiplication, the number of

columns of the first matrix, A, must be the same as the

number of rows of the second matrix, B. Two matrices that

satisfy this criterion are called conformable in the order

of A B. If the matrix A has a size N�R and B has a size

R�M, the resulting product C¼A �B will have a size of

N�M, and the elements cij are defined as

cij ¼
XR
r¼1

airbrj; i ¼ 1; 2; . . . ;N; j ¼ 1; 2; . . . ;M ð1:65Þ

Matrices not conformable cannot be multiplied, and it is

obvious that square matrices are conformable in any order.

Conformable matrices are associative on multiplication;

that is,

AðBCÞ ¼ ðABÞC ð1:66Þ
but square matrices are generally not commutative on mul-

tiplication, that is,

AB 6¼ BA ð1:67Þ
Matrices A, B, and C are distributive if B and C have the

same size and if A is conformable to B and C, then we have

AðBþ CÞ ¼ ABþ AC ð1:68Þ

Multiplication of a matrix A with a scalar b is a new

matrix B with the element bij¼ baij.

1.8.3 Inverse

The inverse in matrix algebra plays a similar role to division

in scalar division. The inverse is defined as follows:

AA�1 ¼ I ð1:69Þ
where A�1 is called the inverse of A, and I is the identity

matrix. Matrix inverses commute on multiplication, that is,

AA�1 ¼ I ¼ A�1A ð1:70Þ

If we have the equation,

AB ¼ C ð1:71Þ

where A, B, and C are square matrices, multiply the LHS

and RHS of Eq. 1.71 by A�1 and we will get

A�1ðABÞ ¼ A�1C ð1:72Þ

But since the multiplication is associative, the above equa-

tion will become

ðA�1AÞB ¼ B ¼ A�1C ð1:73Þ

as A�1A¼ I and IB¼B.
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The analytical technique according to the Gauss–Jordan

procedure for obtaining the inverse will be dealt with later.

1.8.4 Matrix Decomposition or Factorization

A given matrix A can be represented as a product of two

conformable matrices B and C. This representation is not

unique, as there are infinite combinations of B and C that

can yield the same matrix A. Of particular usefulness is the

decomposition of a square matrix A into lower and upper

triangular matrices, shown as follows.

A ¼ LU ð1:74Þ

This is usually called the LU decomposition and is useful in

solving a set of linear algebraic equations.

1.9 USEFUL ROWOPERATIONS

A set of linear algebraic equations of the type in Eq. 1.52

can be readily put into vector–matrix format as

Ax ¼ b ð1:75Þ
where

A ¼

a11 a12 a13 � � � a1N

a21 a22 a23 � � � a2N

� � � �
aN1 aN2 aN3 � � � aNN

2
6666664

3
7777775; x ¼

x1

x2

..

.

xN

2
66666664

3
77777775
;

b ¼

b1

b2

..

.

bN

2
66666664

3
77777775

ð1:76Þ

Equation 1.76 can also be written in the component form as

XN
j¼1

aijxj ¼ bi; for i ¼ 1; 2; . . . ;N ð1:77Þ

which is basically the equation of the row i.

There are a number of row operations that can be carried

out and they do not affect the values of the final solutions x.

1.9.1 Scaling

Any row can be multiplied by a scalar, the process of which

is called scaling. For example, the row i of Eq. 1.77 can be

multiplied by a constant a as

XN
j¼1

aaijxj ¼ abi ð1:78Þ

1.9.2 Pivoting

Any row can be interchanged with another row. This pro-

cess is called pivoting. The main purpose of this opera-

tion is to create a new matrix that has dominant diagonal

terms, which is important in solving linear equations.

1.9.3 Elimination

Any row can be replaced by a weighted linear combination

of that row with any other row. This process is carried out

on the row i with the purpose of eliminating one or more

variables from that equation. For example, if we have the

following two linear equations:

x1 þ x2 ¼ 2

3x1 þ 2x2 ¼ 5
ð1:79Þ

Let us now modify the row 2; that is, equation number 2.

We multiply the first row by (3) and then subtract the sec-

ond row from this to create a new second row; hence we

have

x1 þ x2 ¼ 2

0x1 þ x2 ¼ 1
ð1:80Þ

We see that x1 has been eliminated from the new second

row, from which it is seen that x2¼ 1 and hence from the

first row x1¼ 1. This process is called elimination. This

is exactly the process used in the Gauss elimination

scheme to search for the solution of a given set of linear

algebraic equations, which will be dealt with in the next

section.

There are a number of methods available to solve for

the solution of a given set of linear algebraic equations.

One class is the direct method (i.e., requires no iteration)

and the other is the iterative method, which requires iter-

ation as the name indicates. For the second class of

method, an initial guess must be provided. We will first

discuss the direct methods in Section 1.10 and the itera-

tive methods will be dealt with in Section 1.11. The iter-

ative methods are preferable when the number of

equations to be solved is large, the coefficient matrix is

sparse, and the matrix is diagonally dominant (Eqs. 1.59

and 1.60).
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1.10 DIRECT ELIMINATION METHODS

1.10.1 Basic Procedure

The elimination method basically involves the elimina-

tion of variables in such a way that the final equation will

involve only one variable. The procedure for a set of N

equations is as follows. First, from one equation solve for

x1 as a function of other variables, x2, x3, . . . , xN.

Substitute this x1 into the remaining N� 1 equations to

obtain a new set of N� 1 equations with N� 1 unknowns,

x2, x3, . . . , xN. Next, using one of the equations in the

new set, solve for x2 as a function of other variables, x3,

x4, . . . , xN, and then substitute this x2 into the remain-

ing N� 2 equations to obtain a new set of N� 2 equa-

tions in terms of N� 2 unknown variables. Repeat the

procedure until you end up with only one equation with

one unknown, xN, from which we can readily solve for

xN. Knowing xN, we can use it in the last equation in

which xN�1 was written in terms of xN. Repeat the same

procedure to find x1. The process of going backward to

find solutions is called back substitution.

Let us demonstrate this elimination method with the fol-

lowing set of three linear equations:

a11x1 þ a12x2 þ a13x3 ¼ b1 ð1:81Þ

a21x1 þ a22x2 þ a23x3 ¼ b2 ð1:82Þ

a31x1 þ a32x2 þ a33x3 ¼ b3 ð1:83Þ

Assuming a11 is not zero, we solve Eq. 1.81 for x1 in terms

of x2 and x3 and we have

x1 ¼ b1 � a12x2 � a13x3

a11
ð1:84Þ

Substitute this x1 into Eqs. 1.82 and 1.83 to eliminate x1
from the remaining two equations, and we have

a022x2 þ a023x3 ¼ b02 ð1:85Þ

a032x2 þ a033x3 ¼ b03 ð1:86Þ

where

a0ij ¼ aij � ai1

a11
a1j ; b0i ¼ bi � ai1

a11
b1 for i; j ¼ 2; 3

ð1:87Þ

Next, we solve Eq. 1.85 for x2 in terms of x3 provided

a022 6¼ 0; that is,

x2 ¼ b02 � a023x3
a022

ð1:88Þ

then substitute this x2 into the last equation (Eq. 1.86) to

obtain

a0033x3 ¼ b003 ð1:89Þ

where

a0033 ¼ a033 �
a032
a022

a023; b003 ¼ b03 �
a032
a022

b02 ð1:90Þ

We see that the patterns of Eqs. 1.87 and 1.90 are exactly

the same and this pattern is independent of the number of

equations. This serial feature can be exploited in computer

programming.

Thus, the elimination process finally yields one equation

in terms of the variable x3, from which it can be solved as

x3 ¼ b003
a0033

ð1:91Þ

By knowing x3, x2 can be obtained from Eq. 1.88, and

finally x1 from Eq. 1.84. This procedure is called back

substitution.

1.10.2 Augmented Matrix

The elimination procedure described in the last section

involves the manipulation of equations. No matter how we

manipulate the equations, the final solution vector x is still

the same. One way to simplify the elimination process is to

set up an augmented matrix as

½Ajb� ¼
a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3

2
664

3
775

								 ð1:92Þ

and then perform the row operations described in Section

1.9 to effect the elimination process.

EXAMPLE 1.1

Let us demonstrate this concept of an augmented matrix to the

following example:

x1 þ 2x2 þ 3x3 ¼ 14

x1 þ x2 � x3 ¼ 0

2x1 þ x2 � x3 ¼ 1

ð1:93Þ

For this set of three linear equations, we form an augmented

matrix by putting the coefficient matrix first and then the RHS vec-

tor, shown as follows:
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1 2 3 14

1 1 �1 0

2 1 �1 1

2
64

3
75

							 ð1:94Þ

Now, we start carrying out row operations on the augmented

matrix. First, we take the second row and subtract it from the first

row to form a new second row, the result of which is shown as

follows:

1 2 3 14

0 1 4 14

2 1 �1 1

2
664

3
775

								 ð1:95Þ

The purpose of the last step is to eliminate x1 from the second

equation; that is, the new coefficient for x1 in the new second

equation is 0. This is the basic step of elimination. Now, we do

exactly the same to the third row. We multiply the first row by 2

and subtract the third row to form a new third row and get the

result

1 2 3 14

0 1 4 14

0 3 7 27

2
664

3
775

								 ð1:96Þ

Thus, we have eliminated the variable x1 from the second and the

third equations. Now, we move to the next step of the elimination

procedure, that is, to remove the variable x2 from the third equa-

tion. This is done by multiplying the second row by 3 and subtract-

ing the third row to form a new third row; that is,

1 2 3 14

0 1 4 14

0 0 5 15

2
664

3
775

								 ð1:97Þ

The last row will give a solution of x3¼ 3. Put this into the second

equation to give x2¼ 2, and hence finally into the first equation to

give x1¼ 1. This is the back substitution procedure. All the steps

carried out are part of the Gauss elimination scheme. More details

on this method will be presented in Section 1.10.5.

Let us now come back to our present example and continue

with the row operations, but this time we eliminate the variables

above the major diagonal line. To do this, we multiply the third

row by (� 4
5
) and add the result to the second row to form a new

second row, shown as follows:

1 2 3 14

0 1 0 2

0 0 5 15

2
664

3
775

								 ð1:98Þ

The last step is to remove the variable x3 from the second equa-

tion. Finally, multiply the second row by (�2) and the third row

by (� 3
5
) and add the results to the first row to obtain a new first

row as

1 0 0 1

0 1 0 2

0 0 5 15

2
664

3
775

							 ð1:99Þ

from which one can see immediately x1¼ 1, x2¼ 2 and x3¼ 3.

The last few extra steps are part of the Gauss–Jordan elimination

scheme, the main purpose of which is to obtain the inverse as we

shall see in Section 1.10.6.

This procedure of augmented matrix can handle more than one

vector b at the same time; for example, if we are to solve the fol-

lowing equations with the same coefficient matrix A: Ax1¼ b1,

Ax2¼ b2, we can set the augmented matrix as

A b1 b2½ �j ð1:100Þ

and carry out the row operations as we did in the last example to

obtain simultaneously the solution vectors x1 and x2.

1.10.3 Pivoting

The elimination procedure we described in Section

1.10.1 requires that a11 is nonzero. Thus, if the diagonal

coefficient a11 is zero, then we shall need to rearrange

the equations, that is, we interchange the rows such that

the new diagonal term a11 is nonzero. We also carry

out this pivoting process in such a way that the element

of largest magnitude is on the major diagonal line. If

rows are interchanged only, the process is called partial

pivoting, while if both rows and columns are inter-

changed it is called full pivoting. Full pivoting is not

normally carried out because it changes the order of

the components of the vector x. Therefore, only partial

pivoting is dealt with here.

EXAMPLE 1.2

Partial pivoting not only eliminates the problem of zero on the

diagonal line, it also reduces the round-off error since the pivot

element (i.e., the diagonal element) is the divisor in the elimina-

tion process. To demonstrate the pivoting procedure, we use an

example of three linear equations.

0x1 þ x2 þ x3 ¼ 5

4x1 þ x2 � x3 ¼ 3

x1 � x2 þ x3 ¼ 2

ð1:101Þ

Putting this set of equations into the augmented matrix form, we

have
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0 1 1 5

4 1 �1 3

1 �1 1 2

2
6664

3
7775

									
ð1:102Þ

We note that the coefficient a11 is zero; therefore, there is a need to

carry out the pivoting procedure. The largest element of the first

column is 4. Therefore, upon interchanging the first and the second

rows, we will get

4 1 �1 3

0 1 1 5

1 �1 1 2

2
6664

3
7775

									
ð1:103Þ

Next, multiplying the third row by 4 and subtracting the first row

to get the new third row will yield

4 1 �1 3

0 1 1 5

0 �5 5 5

2
6664

3
7775

									
ð1:104Þ

Although the pivot element in the second row is 1 ( 6¼ 0), it is not

the largest element in that column (second column). Hence, we

carry out pivoting again, and this process is done with rows under-

neath the pivot element, not with rows above it. This is because the

rows above the pivot element have already gone through the elimi-

nation process. Using them will destroy the elimination completed

so far.

Interchange the second and the third row so that the pivot ele-

ment will have the largest magnitude, we then have

4 1 �1 3

0 �5 5 5

0 1 1 5

2
664

3
775

								 ð1:105Þ

Next, multiply the third row by 5 and add with the second row to

form a new third row, we get

4 1 �1 3

0 �5 5 5

0 0 10 30

2
6664

3
7775

									
ð1:106Þ

Finally, using the back substitution, we find that x3¼ 3, x2¼ 2,

and x1¼ 1.

1.10.4 Scaling

When the magnitude of elements in one or more equa-

tions are greater than the elements of the other equations,

it is essential to carry out scaling. This is done by divid-

ing the elements of each row, including the b vector, by

the largest element of that row (excluding the b element).

After scaling, pivoting is then carried out to yield the

largest pivot element.

1.10.5 Gauss Elimination

The elimination procedure described in the last sections

forms a process, commonly called Gauss elimination. It is

the backbone of the direct methods, and is the most useful

in solving linear equations. Scaling and pivoting are essen-

tial in the Gauss elimination process.

The Gauss elimination algorithm is summarized as

follows:

Step 1: Augment the matrix A(N�N) and the vector b

(N� 1) to form an augmented matrix A of size

N� (Nþ 1).

Step 2: Scale the rows of the augmented matrix.

Step 3: Search for the largest element in magnitude in the

first column and pivot that coefficient into the a11
position.

Step 4: Apply the elimination procedure to rows 2 to N to

create zeros in the first column below the pivot element.

The modified elements in row 2 to row N and column 2

to column Nþ 1 of the augmented matrix must be com-

puted and inserted in place of the original elements using

the following formula:

a0ij ¼ aij � ai1

a11
a1j; for i ¼ 2; 3; . . . ;N and

j ¼ 2; 3; . . . ;N þ 1 ð1:107Þ

Step 5: Repeat steps 3 and 4 for rows 3 to N. After this is

completely done, the resulting augmented matrix will be

an upper triangular matrix.

Step 6: Solve for x using back substitution with the follow-

ing equations:

xN ¼ a0N;Nþ1

a0N;N
ð1:108Þ

xi ¼
a0i;Nþ1 �

PN
j¼iþ1 a

0
ijxj

a0ii
for

i ¼ N � 1;N � 2; . . . ; 1

ð1:109Þ

where a0ij is an element of the augmented matrix obtained at

the end of step 5.
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1.10.6 Gauss–Jordan Elimination:

Solving Linear Equations

Gauss–Jordan elimination is a variation of the Gauss elimi-

nation scheme. Instead of obtaining the triangular matrix at

the end of the elimination, the Gauss–Jordan has one

extra step to reduce the matrix A to an identity matrix. In

this way, the augmented vector b0 is simply the solution

vector x.

The primary use of the Gauss–Jordan method is to

obtain an inverse of a matrix. This is done by augmenting

the matrix A with an identity matrix I. After the elimina-

tion process in converting the matrix A to an identity

matrix, the right-hand side identity matrix will become

the inverse A�1. To show this, we use the following

example:

1 1 1 1 0 0

2 �1 1 0 1 0

1 �2 2 0 0 1

2
664

3
775

								 ð1:110Þ

Interchange the first and the second row to make the pivot

element having the largest magnitude; hence, we have

2 �1 1 0 1 0

1 1 1 1 0 0

1 �2 2 0 0 1

2
664

3
775

								 ð1:111Þ

Now, scale the pivot element to unity (this step is not in the

Gauss elimination scheme) to give

1 � 1
2

1
2

0 1
2

0

1 1 1 1 0 0

1 �2 2 0 0 1

2
6664

3
7775

									
ð1:112Þ

By following the same procedure of Gauss elimination

with the extra step of normalizing the pivot element before

each elimination, we finally obtain

1 � 1
2

1
2

0 1
2

0

0 1 1
3

2
3

� 1
3

0

0 0 1 1
2

� 1
2

1
2

2
6664

3
7775

									
ð1:113Þ

Now, we perform the elimination for rows above the pivot

elements, and after this step the original A matrix becomes

an identity matrix, and the original identity matrix I in

the RHS of the augmented matrix becomes the matrix

inverse A�1; that is,

1 0 0 0 2
3

� 1
3

0 1 0 1
2

� 1
6

� 1
6

0 0 1 1
2

� 1
2

1
2

2
6664

3
7775

									
ð1:114Þ

Obtaining the matrix inverse using the Gauss–Jordan

method provides a compact way of solving linear equa-

tions. For a given problem,

Ax ¼ b ð1:115Þ

we multiply the equation by A�1, and obtain

A�1ðAxÞ ¼ A�1b ð1:116Þ

Noting that the multiplication is associative; hence, we

have

ðA�1AÞx ¼ A�1b; i:e:; x ¼ A�1b ð1:117Þ

Thus, this inverse method provides a compact way of pre-

senting the solution of the set of linear equations.

1.10.7 LU Decomposition

In the LU decomposition method, the idea is to decompose

a given matrix A to a product LU. If we specify the diago-

nal elements of either the upper or the lower triangular

matrix, the decomposition will be unique. If the elements

of the major diagonal of the L matrix are unity, the decom-

position method is called the Doolittle method. It is called

the Crout method if the elements of the major diagonal of

the U matrix are unity.

In the Doolittle method, the upper triangular matrix U is

determined by the Gauss elimination process, while the

matrix L is the lower triangular matrix containing the multi-

pliers employed in the Gauss process as the elements below

the unity diagonal line. More details on the Doolittle and

Crout methods can be found in Hoffman (1992).

The use of the LU decomposition method is to find solu-

tion to the linear equation Ax¼ b. Let the coefficient matrix

A be decomposed to LU, that is, A¼LU. Hence, the linear
equation will become

LUx ¼ b ð1:118Þ

Multiplying the above equation by L�1, we have

L�1ðLUÞx ¼ L�1b ð1:119Þ
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Since the multiplication is associative and L�1L ¼ I, the

previous equation will become

Ux ¼ b0 ð1:120Þ

where the vector b0 is obtained from the equation

Lb0 ¼ b ð1:121Þ

Equations 1.120 and 1.121 will form basic set of equa-

tions for solving for x. This is done as follows. For a

given b vector, the vector b0 is obtained from Eq. 1.121

by forward substitution since L is the lower triangular

matrix. Once b0 is found, the desired vector x is found

from Eq. 1.120 by backward substitution because U is the

upper triangular matrix.

1.11 ITERATIVE METHODS

When dealing with large sets of equations, especially if

the coefficient matrix is sparse, the iterative methods pro-

vide an attractive option in getting the solution. In the

iterative methods, an initial solution vector x(0) is

assumed, and the process is iterated to reduce the error

between the iterated solution x(k) and the exact solution x,
where k is the iteration number. Since the exact solution

is not known, the iteration process is stopped by using the

difference Dxi ¼ x
ðkþ1Þ
i � x

ðkÞ
i as the measure. The itera-

tion is stopped when one of the following criteria has

been achieved.

ðDxiÞmax

xi

				
				 < e;

XN
i¼1

Dxi
xi

				
				 < e;

XN
i¼1

Dxi

xi

 !2
2
4

3
51=2

< e

ð1:122Þ

The disadvantage of the iterative methods is that they

may not provide a convergent solution. Diagonal domi-

nance (Eqs. 1.59 and 1.60) is the sufficient condition for

convergence. The stronger the diagonal dominance the

fewer number of iterations required for the convergence.

There are three commonly used iterative methods that

we will briefly present here. They are Jacobi, Gauss–Seidel,

and the successive overrelaxation methods.

1.11.1 Jacobi Method

The set of linear equations written in the component form is

bi �
XN
j¼1

aijxj ¼ 0 for i ¼ 1; 2; . . . ;N ð1:123Þ

Divide the equation by aii and add xi to the LHS and RHS to

yield the equation

xi ¼ xi þ 1

aii
bi �

XN
j¼1

aijxj ¼ 0

 !
for i ¼ 1; 2; . . . ;N

ð1:124Þ

The iteration process starts with an initial guessing

vector x(0), and the iteration equation used to generate the

next iterated vector is

x
ðkþ1Þ
i ¼ x

ðkÞ
i þ 1

aii
bi �

XN
j¼1

aijx
ðkÞ
j ¼ 0

 !
for

i ¼ 1; 2; . . . ;N

ð1:125Þ

The iteration process will proceed until one of the criteria in

Eq. 1.122 has been achieved.

The second term in the RHS of Eq. 1.125 is called the

residual, and the iteration process will converge when the

residual is approaching zero for all values of i.

1.11.2 Gauss–Seidel Iteration Method

In the Jacobi method, the iterated vector of the (kþ l)th

iteration is obtained based entirely on the vector of the

previous iteration, that is, x(k). The Gauss–Seidel

iteration method is similar to the Jacobi method, except

that the component x
ðkþ1Þ
j for j ¼ 1; 2; . . . ; i � 1 are

used immediately in the calculation of the component

x
ðkþ1Þ
i . The iteration equation for the Gauss–Seidel

method is

x
ðkþ1Þ
i ¼ x

ðkÞ
i þ 1

aii

� bi �
Xi�1

j¼1

aijx
ðkþ1Þ
j �

XN
j¼i

aijx
ðkÞ
j ¼ 0

 !

for i ¼ 1; 2; . . . ;N

ð1:126Þ

Like the Jacobi method, the Gauss–Seidel method

requires diagonal dominance for the convergence of iter-

ated solutions.

1.11.3 Successive Overrelaxation Method

In many problems, the iterated solutions approach the

exact solutions in a monotonic fashion. Therefore, it is

useful in this case to speed up the convergence process

by overrelaxing the iterated solutions. The equation
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for the overrelaxation scheme is modified from the

Gauss–Seidel equation

x
ðkþ1Þ
i ¼ x

ðkÞ
i þ w

aii

� bi �
Xi�1

j¼1

aijx
ðkþ1Þ
j �

XN
j¼i

aijx
ðkÞ
j ¼ 0

 !

for i ¼ 1; 2; . . . ;N ð1:127Þ

where w is the overrelaxation factor. When w¼ 1, we

recover the Gauss–Seidel method. When 1 < w < 2, we

have an overrelaxation situation. When w < 1, the system

is underrelaxed. The latter is applicable when the iteration

provides oscillatory behavior. When w > 2, the method

diverges.

There is no fast rule on how to choose the optimum w for

a given problem. It must be found from numerical

experiments.

1.12 SUMMARY OF THE MODEL BUILDING

PROCESS

These introductory examples are meant to illustrate the

essential qualitative nature of the early part of the model

building stage, which is followed by more precise quantita-

tive detail as the final image of the desired model is made

clearer. It is a property of the human condition that minds

change as new information becomes available. Experience

is an important factor in model formulation, and there have

been recent attempts to simulate the thinking of experi-

enced engineers through a format called Expert Systems.

The following step-by-step procedure may be useful for

beginners:

1. Draw a sketch of the system to be modeled and

label/define the various geometric, physical, and

chemical quantities.

2. Carefully select the important dependent (response)

variables.

3. Select the possible independent variables (e.g., z,t),

changes in which must necessarily affect the depen-

dent variables.

4. List the parameters (physical constants, physical

size, and shape) that are expected to be important;

also note the possibility of nonconstant parame-

ters (e.g., viscosity changing with temperature,

m(T)).

5. Draw a sketch of the expected behavior of the

dependent variable(s), such as the “expected” tem-

perature profile we used for illustrative purposes in

Fig. 1.3.

6. Establish a “control volume” for a differential or

finite element (e.g., CSTR) of the system to be

modeled; sketch the element and indicate all

inflow–outflow paths.

7. Write the “conservation law” for the volume ele-

ment: Write flux and reaction rate terms using gen-

eral symbols, which are taken as positive quantities,

so that signs are introduced only as terms are

inserted according to the rules of the conservation

law, Eq. 1.1.

8. After rearrangement into the proper differential for-

mat, invoke the fundamental lemma of calculus to

produce a differential equation.

9. Introduce specific forms of flux (e.g., Jr ¼ �D@C=
@r) and rate (RA¼ kCA); note the opposite of genera-

tion is depletion, so when a species is depleted, its

loss rate must be entered with the appropriate sign

in the conservation law (i.e., replace “þ generation”

with “� depletion” in Eq. 1.1).

10. Write down all possibilities for boundary values of

the dependent variables; the choice among these

will be made in conjunction with the solution

method selected for the defining (differential)

equation.

11. Search out solution methods, and consider possible

approximations for (i) the defining equation, (ii) the

boundary conditions, and (iii) an acceptable final

solution.

12. Introduce a vector–matrix format for coupled linear

equations.

It is clear that the modeling and solution effort should go

hand in hand, tempered of course by available experimental

and operational evidence.

1.13 MODEL HIERARCHY AND ITS

IMPORTANCE IN ANALYSIS

As pointed out in Section 1.1 regarding the real purposes

of the modeling effort, the scope and depth of these deci-

sions will determine the complexity of the mathematical

description of a process. If we take the scope and depth as

the barometer for generating models, we will obtain a

hierarchy of models where the lowest level may be

regarded as a black box and the highest is where all possi-

ble transport processes known to man in addition to all

other concepts (such as thermodynamics) are taken into

account. Models, therefore, do not appear in isolation, but

rather they belong to a family where the hierarchy is dic-

tated by the number of rules (transport principles, thermo-

dynamics). It is this family that provides engineers with

capabilities to predict and understand the phenomena
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around us. The example of cooling of a fluid flowing in a

tube (Models I and II) in Section 1.2 illustrated two mem-

bers of this family. As the level of sophistication

increased, the mathematical complexity increased. If one

is interested in exactly how heat is conducted through the

metal casing and is disposed of to the atmosphere, then

the complexity of the problem must be increased by writ-

ing down a heat balance relation for the metal casing

(taking it to be constant at a value Tw is, of course, a

model, albeit the simplest one). Furthermore, if one is

interested in how the heat is transported near the entrance

section, one must write down heat balance equations

before the start of the tube, in addition to Eq. 1.31 for the

active, cooling part of the tube. In addition, the nature of

the boundary conditions must be carefully scrutinized

before and after the entrance zone in order to properly

describe the boundary conditions.

To further demonstrate the concept of model hierarchy

and its importance in analysis, let us consider a problem of

heat removal from a bath of hot solvent by immersing

steel rods into the bath and allowing the heat to dissipate

from the hot solvent bath through the rod and thence to the

atmosphere (Fig. 1.4).

For this elementary problem, it is wise to start with the

simplest model first to get some feel about the system

response.

Level 1

In this level, let us assume that

(a) the rod temperature is uniform, that is, from the bath

to the atmosphere;

(b) ignore heat transfer at the two flat ends of the rod;

(c) overall heat transfer coefficients are known and

constant;

(d) no solvent evaporates from the solvent air interface.

The many assumptions listed above are necessary to

simplify the analysis (i.e., to make the model tractable).

Let T0 and T1 be the atmosphere and solvent tempera-

tures, respectively. The steady-state heat balance (i.e., no

accumulation of heat by the rod) shows a balance between

heat collected in the bath and that dissipated by the upper

part of the rod to atmosphere

hL 2pRL1ð Þ T1 � Tð Þ ¼ hG 2pRL2ð Þ T � T0ð Þ ð1:128Þ

where T is the temperature of the rod, and L1 and L2 are

lengths of rod exposed to solvent and to atmosphere, re-

spectively. Obviously, the volume elements are finite (not

differential), being composed of the volume above the liq-

uid of length L2 and the volume below of length L1.

Solving for T from Eq. 1.126 yields

T ¼ ðT0 þ aT1Þ
ð1þ aÞ ð1:129Þ

where

a ¼ hLL1

hGL2
ð1:130Þ

Equation 1.129 gives us a very quick estimate of the rod

temperature and how it varies with exposure length. For

example, if a is much greater than unity (i.e., long L1 sec-

tion and high liquid heat transfer coefficient compared to

gas coefficient), the rod temperature is then very near T1.

Taking the rod temperature to be represented by Eq. 1.129,

the rate of heat transfer is readily calculated from Eq. 1.128

by replacing T:

Q ¼ hL2pRL1

ð1þ aÞ ðT1 � T0Þ

¼ hLL1

1þ ðhLL1=hGL2Þð Þ 2pRðT1 � T0Þ ð1:131aÞ

Q ¼ 1

ð1=hLL1Þ þ ð1=hGL2Þð Þ 2pRðT1 � T0Þ ð1:131bÞ

When a ¼ hLL1=hGL2 is very large, the rate of heat transfer
becomes simply

Q ffi 2pRhGL2ðT1 � T0Þ ð1:131cÞ

Thus, the heat transfer is controlled by the segment of the

rod exposed to the atmosphere. It is interesting to note that

FIGURE 1.4 Schematic diagram of heat removal from a solvent

bath.
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when the heat transfer coefficient contacting the solvent is

very high (i.e., a 
 1), it does not really matter how much

of the rod is immersed in the solvent.

Thus for a given temperature difference and a constant

rod diameter, the rate of heat transfer can be enhanced by

either increasing the exposure length L2 or by increasing

the heat transfer rate by stirring the solvent. However, these

conclusions are tied to the assumption of constant rod tem-

perature, which becomes tenuous as atmospheric exposure

is increased.

To account for effects of temperature gradients in the

rod, we must move to the next level in the model hierar-

chy, which is to say that a differential volume must be

considered.

Level 2

Let us relax part of the assumption (a) of the first model by

assuming only that the rod temperament below the solvent

liquid surface is uniform at a value T1. This is a reasonable

proposition, since the liquid has a much higher thermal con-

ductivity than air. The remaining three assumptions of the

level 1 model are retained.

Next, choose an upward pointing coordinate x with the

origin at the solvent–air surface. Figure 1.5 shows the coor-

dinate system and the elementary control volume.

Applying a heat balance around a thin shell segment

with thickness Dx gives

pR2qðxÞ � pR2qðxþ DxÞ � 2pRDxhGðT � T0Þ ¼ 0

ð1:132Þ

where the first and the second terms represent heat con-

ducted into and out of the element and the last term repre-

sents heat loss to atmosphere. We have concluded, by

writing this, that temperature gradients are likely to exist in

the part of the rod exposed to air, but are unlikely to exist in

the submerged part.

Dividing Eq. 1.132 by pR2Dx and taking the limit as

Dx ! 0 yields the following first-order differential equa-

tion for the heat flux, q:

dq

dx
þ 2

R
hGðT � T0Þ ¼ 0 ð1:133Þ

Assuming the rod is homogeneous, that is, the thermal con-

ductivity is uniform, the heat flux along the axis is related to

the temperature according to Fourier’s law of heat con-

duction (Eq. 1.29). Substitution of Eq. 1.29 into Eq. 1.133

yields

k
d2T

dx2
¼ 2hG

R
ðT � T0Þa ð1:134Þ

Equation 1.134 is a second-order ordinary differential equa-

tion, and to solve this, two conditions must be imposed.

One condition was stipulated earlier:

x ¼ 0; T ¼ T1 ð1:135aÞ

The second condition (heat flux) can also be specified at

x¼ 0 or at the other end of the rod, that is, x¼ L2. Heat flux

is the sought-after quantity, so it cannot be specified a pri-

ori. One must then provide a condition at x¼ L2. At the end

of the rod, one can assume Newton’s law of cooling pre-

vails, but since the rod length is usually longer than the

diameter, most of the heat loss occurs at the rod’s lateral

surface, and the flux from the top surface is small, so write

approximately:

x ¼ L2;
dT

dx
’ 0 ð1:135bÞ

Equation 1.134 is subjected to the two boundary conditions

(Eq. 1.135) to yield the solution

T ¼ T0 þ ðT1 � T0Þ cosh mðL2 � xÞ½ �
cosh ðmL2Þ ð1:136Þ

where

m ¼
ffiffiffiffiffiffiffiffi
2hG

Rk

r
ð1:137Þ

We will discuss the method of solution of such second-

order equations in Chapter 2.

Once we know the temperature distribution of the rod

above the solvent–air interface, then the rate of heat loss

can be calculated either of two ways. In the first, we knowFIGURE 1.5 Shell element and the system coordinate.
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that the heat flow through area pR2 at x¼ 0 must be equal

to the heat released into the atmosphere, that is,

Q ¼ �pR2k
@T

@x

				
x¼0

ð1:138Þ

Applying Eq. 1.136 to Eq. 1.138 gives

Q ¼ 2pRhGL2hðT1 � T0Þ ð1:139aÞ

where

h ¼ tanhðmL2Þ
mL2

This dimensionless group (called effectiveness factor) rep-

resents the ratio of actual heat loss to the (maximum) loss

rate when gradients are absent.

Figure 1.6 shows the log–log plot of h versus the dimen-

sionless group mL2. We note that the effectiveness factor

approaches unity when mL2 is much less than unity and it

behaves like 1=mL2 as mL2 is very large.

In the limit for small mL2, we can write

h ¼ tanhðmL2Þ
mL2

� 1 ð1:139bÞ

which is the most effective heat transfer condition. This is

physically achieved when

(a) Rod thermal conductivity is large.

(b) Segment exposed to atmosphere (L2) is short.

For such a case, we can write the elementary result

Q ¼ 2pRhGL2 ðT1 � T0Þ ð1:140Þ

which is identical to the first model (Eq. 1.131c). Thus, we

have learned that the first model is valid only when

mL2 � 1. Another way of calculating the heat transfer rate

is carrying out the integration of local heat transfer

rate along the rod

Q ¼
Z L2

0

dq ¼
Z L2

0

hG ðT � T0Þ ð2pRdxÞ ð1:141Þ

where T is given in Eq. 1.136 and the differential transfer

area is 2pRdx. Substituting T of Eq. 1.136 into Eq. 1.141

yields the same solution for Q as given in Eq 1.139a.

Levels 1 and 2 solutions have one assumption in com-

mon: The rod temperature below the solvent surface was

taken to be uniform. The validity of this modeling assump-

tion will not be known until we move up one more level in

the model hierarchy.

Level 3

In this level of modeling, we relax the assumption (a) of the

first level by allowing for temperature gradients in the rod

for segments above and below the solvent–air interface.

Let the temperature below the solvent–air interface be TI

and that above the interface be T II. Carrying out the one-

dimensional heat balances for the two segments of the rod,

we obtain

d2T I

dx2
¼ 2hL

Rk
ðT I � T1Þ ð1:142Þ

and

d2T II

dx2
¼ 2hG

Rk
ðT II � T0Þ ð1:143Þ

We shall still maintain the condition of zero flux at the flat

ends of the rod. This means of course that

x ¼ �L1;
dT I

dx
¼ 0 ð1:144Þ

x ¼ L2;
dT II

dx
¼ 0 ð1:145Þ

Equations 1.144 and 1.145 provide two of the four neces-

sary boundary conditions. The other two arise from the con-

tinuity of temperature and flux at the x¼ 0 position, that is,

x ¼ 0; T I ¼ T II ð1:146aÞ

x ¼ 0;
dT I

dx
¼ dT II

dx
ð1:146bÞ

FIGURE 1.6 A plot of the effectiveness factor versusmL2.
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Solutions of Eqs. 1.142 and 1.143 subject to conditions

1.144 and 1.145 are easily obtained by methods illustrated

in the next chapter (Example 2.25)

T I ¼ T1 þ A cosh nðxþ L1Þ½ � ð1:147Þ

and

T II ¼ T0 þ B cosh½mðL2 � xÞ� ð1:148Þ

where m is defined in Eq. 1.137 and a new ratio is

n ¼
ffiffiffiffiffiffiffi
2hL

Rk

r
ð1:149Þ

The constants of integration, A and B, can be found by

substituting Eqs. 1.147 and 1.148 into the continuity condi-

tions (1.146a, b) to finally get

B¼ ðT1�T0Þ
cosh ðmL2Þþ ðm=nÞ ðsinh ðmL2Þ=sinh ðnL1ÞÞ cosh ðnL1Þ½ �

ð1:150Þ

A¼� ðT1�T0Þ
coshðnL1Þþðn=mÞðsinhðnL1Þ=sinhðmL2ÞÞcoshðmL2Þ½ �

ð1:151Þ

The rate of heat transfer can be obtained by using either of

the two ways mentioned earlier, that is, using flux at x¼ 0,

or by integrating around the lateral surface. In either case,

we obtain

Q ¼ �pR2k
dT Ið0Þ
dx

ð1:152Þ

Q ¼ 2pRhGL2h
ðT1 � T0Þ

1� ðm tanhðmL2Þ=n tanhðnL1ÞÞ½ � ð1:153Þ

where the effectiveness factor h is defined in Eq. 1.139.

You may note the difference between the solution

obtained by the level 2 model and that obtained in the third

level. Because of the allowance for temperature gradients

(which represents the rod’s resistance to heat flow) in the

segment underneath the solvent surface, the rate of heat

transfer calculated at this new level is less than that calcu-

lated by the level 2 model where the rod temperature was

taken to be uniform at T1 below the liquid surface.

This implies from Eq. 1.153 that the heat resistance in

the submerged region is negligible compared to that above

the surface only when

m tanhðmL2Þ
n tanhðnL1Þ � 1 ð1:154Þ

When the criterion (1.154) is satisfied, the rate of heat

transfer given by Model II is valid. This is controlled

mainly by the ratio m=n ¼ ðhG=hLÞ1=2, which is always

less than unity.

What we have seen in this exercise is simply that

higher levels of modeling yield more information about

the system and hence provide needed criteria to validate

the model one level lower. In our example, the level 3

model provides the criterion (1.154) to indicate when

the resistance to heat flow underneath the solvent bath

can be ignored compared to that above the surface, and

the level 2 model provides the criterion (1.139b) to indi-

cate when there is negligible conduction resistance in the

steel rod.

The next level of modeling is by now obvious: At what

point and under what conditions do radial gradients become

significant? This moves the modeling exercise into the

domain of partial differential equations.

Level 4

Let us investigate the fourth level of model where we

include radial heat conduction. This is important if the rod

diameter is large relative to length. Let us assume in this

model that there is no resistance to heat flow underneath the

solvent interface, so as before, take temperature T¼ T1
when x � 0. This then leaves only the portion above the

solvent surface to study.

Setting up the annular shell shown in Fig. 1.7 and carry-

ing a heat balance in the radial and axial directions, we

obtain the following heat conduction equation:

ð2prDxqrÞjr �ð2prDxqrÞjrþDr

þð2prDrqxÞjx �ð2prDrqxÞjxþDx ¼ 0

FIGURE 1.7 Schematic diagram of shell for heat balance.
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Dividing this equation by 2pDrDx and taking limits, we

obtain

� @

@r
ðrqrÞ � r

@qx
@x

¼ 0

Next, insert the two forms of Fourier’s laws

qr ¼ �k
@T

@r
; qx ¼ �k

@T

@x

and get finally,

k
1

r

@

@r
r
@T

@r

� �
þ @2T

@x2

� �
¼ 0 ð1:155Þ

Here, we have assumed that the conductivity of the steel rod

is isotropic and constant, that is, the thermal conductivity k

is uniform in both x and r directions, and does not change

with temperature.

Equation 1.155 is an elliptic partial differential equation.

The physical boundary conditions to give a suitable solution

are the following:

r ¼ 0;
@T

@r
¼ 0 ð1:156aÞ

r ¼ R; � k
@T

@r
¼ hGðT � T0Þ ð1:156bÞ

x ¼ 0; T ¼ T1 ð1:156cÞ

x ¼ L2;
@T

@x
¼ 0 ð1:156dÞ

Equation 1.156a implies symmetry at the center of the

rod, whereas at the curved outer surface of the rod

the usual Newton cooling condition is applicable

(Eq. 1.156b). Equation 1.156d states that there is no heat

flow across the flat end of the rod. This is tantamount to

saying that either the flat end is insulated or the flat end

area is so small compared to the curved surface of the

rod that heat loss there is negligible. Solutions for vari-

ous boundary conditions can be found in Carslaw and

Jaeger (1959).

When dealing with simple equations (as in the previ-

ous three models), the dimensional equations are solved

without recourse to the process of nondimensionalization.

Now, we must deal with partial differential equations,

and both to simplify the notation during the analysis and

to deduce the proper dimensionless parameters, it is nec-

essary to reduce the equations to nondimensional form.

To achieve this, we introduce the following nondimen-

sional variables and parameters:

u ¼ T � T0

T1 � T0

; j ¼ r

R
; z ¼ x

L2
ð1:157aÞ

D ¼ R

L2

� �
; Bi ¼ hGR

k
ðBiot numberÞ ð1:157bÞ

where it is clear that only two dimensionless parameters

arise: D and Bi. The dimensionless heat transfer coefficient

(hGR=k), called the Biot number, represents the ratio of

convective film transfer to conduction in the metal rod.

The nondimensional relations now become

1

j

@

@j
j
@u

@j

� �
þ D2 @

2u

@z2
¼ 0 ð1:158Þ

j ¼ 0;
@u

@j
¼ 0 ð1:159aÞ

j ¼ 1;
@u

@j
¼ �Bi u ð1:159bÞ

z ¼ 0; u ¼ 1 ð1:159cÞ

z ¼ 1;
@u

@z
¼ 0 ð1:159dÞ

It is clear that these independent variables (j and z) are
defined relative to the maximum possible lengths for the

r and x variables, R and L2, respectively. However, the way

u (nondimensional temperature) is defined is certainly not

unique. One could easily define u as follows

or

u ¼ T

T0

or u ¼ T

T1

u ¼ T � T0

T0

or u ¼ T � T0

T1

ð1:160Þ

and so on. There are good reasons for the selection made

here, as we discuss in Chapters 10 and 11. The solution of

Eq. 1.158 subject to boundary conditions (1.159) is given

in Chapter 11 and its expression is given here only to help

illustrate model hierarchy. The solution u is

u ¼ T � T0

T1 � T0

¼
X1
n¼1

h1;Kni
hKn;KniKnðjÞ cosh ðbn=DÞð1� zÞ½ �

cosh bn=D½ �
ð1:161Þ

where the functions are defined as

KnðjÞ ¼ J0ðbnjÞ ð1:162aÞ
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and the many characteristic values (eigenvalues) are

obtained by trial and error from

bnJ1ðbnÞ ¼ Bi J0ðbnÞ ð1:162bÞ

The other functional groups are defined as

h1;Kni ¼ J1ðbnÞ
bn

ð1:162cÞ

hKn;Kni ¼ J21ðbnÞ
2

1þ bn

Bi

� �2
" #

ð1:162dÞ

where J0(b) and J1(b) are tabulated relations called Bessel

functions, which are discussed at length in Chapter 3. The

rate of heat transfer can be calculated using the heat flux

entering at position x¼ 0, but we must also account for

radial variation of temperature so that the elemental area is

2prdr; thus, integrating over the whole base gives

Q ¼
Z R

0

�k
@T

@x

� �
x¼0

2prdr ð1:163Þ

Putting this in nondimensional form, we have

Q ¼ 2pR2k

L2
ðT1 � T0Þ

Z 1

0

� @uð0Þ
@j

� �
j dj ð1:164Þ

By inserting dimensionless temperature from Eq. 1.161, we

obtain the following somewhat complicated result for heat

transfer rate:

Q ¼ 2pR2kðT1 � T0Þ
L2D

X1
n¼1

bnh1;Kni2
hKn;Kni tanh

bn

D

� �
ð1:165Þ

This illustrates how complexity grows quickly as simplifi-

cations are relaxed.

For small Bi � 1, it is not difficult to show from the

transcendental equation (1.162b) that the smallest eigen-

value is

b1 ffi ð2BiÞ1=2 ð1:166Þ

By substituting this into Eq. 1.165, we will obtain

Eq. 1.139a. Thus, the fourth model shows that the radial

heat conduction inside the rod is unimportant when

Bi � 1 ð1:167Þ

In summary, we have illustrated how proper model hierar-

chy sets limits on the lower levels. In particular, one can

derive criteria (like Eq. 1.167) to show when the simpler

models are valid. Some solutions for the simpler models

can be found in Walas (1991).

The obvious question arises: When is a model of a process

good enough? This is not a trivial question, and it can be

answered fully only when the detailed economics of design

and practicality are taken into account. Here, we have simply

illustrated the hierarchy of one simple process, and how to

find the limits of validity of each more complicated model in

the hierarchy. In the final analysis, the user must decide when

tractability is more important than precision.

PROBLEMS

1.11. Length Required for Cooling Coil

A cooling coil made of copper tube is immersed in a

regulated constant temperature bath held at a temper-

ature of 20C. The liquid flowing through the tube

enters at 22C, and the coil must be sufficiently long

to ensure the exit liquid sustains a temperature of

20.5C. The bath is so well stirred that heat transfer

resistance at the tube–bath interface is minimal,

and the copper wall resistance can also be ignored.

Thus, the tube wall temperature can be taken equal to

the bath temperature. Use Eq. 1.17 to estimate the

required tube length (L) under the following condi-

tions for the flowing liquid:

Cp¼ 1 kcal/kg �C
R¼ 0.01m

v0¼ 1m/s

r¼ 103 kg/m3

m¼ 0.001 kg/m � s
k¼ 1.43� 10�4 kcal/(s � m � K)

Since the Reynolds number is in the turbulent range,

use the correlation of Sieder and Tate (Bird et al.

1960) to calculate h

Nu ¼ 0:026 Re0:8Pr1=3

where

Nu ¼ hD

k
ðD ¼ 2RÞ ðNusselt numberÞ

Pr ¼ Cpm

k
ðPrandtl numberÞ

Re ¼ Dv0r

m
ðReynolds numberÞ

Answer: L=Dð Þ ¼ 353:5
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1.22. Cooling of Fluids in Tube Flow: Locally Varying h
Apply the conditions of Model I (plug flow) and

rederive the expression for temperature change when

the heat transfer coefficient is not constant but varies

according to the law

h ¼ g=
ffiffiffi
z

p

Answer: c ¼ expð�2b
ffiffiffi
z

p Þ; b ¼ ð2pRgÞ=ðv0ArCpÞ
1.32. Dissolution of Benzoic Acid

Initially, pure water is passed through a tube con-

structed of solid benzoic acid. Since benzoic acid is

slightly soluble in water (denote solubility as C�

moles acid/cm3 solution), the inner walls of the tube

will dissolve very slowly. By weighing the dried

tube before and after exposure, it is possible to calcu-

late the rate of mass transfer.

(a) Take a quasi-steady-state material balance for

plug velocity profiles and show that the ODE

obtained is

�v0
dC

dx
þ kC

4

D

� �
ðC� � CÞ ¼ 0

where D denotes the inner tube diameter (taken as

approximately invariant), v0 is liquid velocity, and

kC is the (constant) mass transfer coefficient.

(b) Define u¼ (C�C�) and show that the solution to

part (a) is

u ¼ K exp � 4

D

kC

v0
x

� �

(c) If pure water enters the tube, evaluate K and

obtain the final result

CðxÞ
C� ¼ 1� exp � 4

D

kC

v0
x

� �

(d) If the tube is allowed to dissolve for a fixed time

Dt, show that the weight change can be calculated

from

DW ¼ MBC
�Dtv0

p

4
D2

 �
1� exp � 4

D

kC

v0
L

� �� �

where L is tube length andMB is molecular weight

acid.

(e) Rearrange the result in part (d) to solve directly

for kC, under condition when 4kCL=Dv0 < 1, and

show

kC � DW

½MBC
�DtpDL�

(f) Discuss the assumptions implied in the above

analysis and deduce a method of estimating the

maximum possible experimental error in calculat-

ing kC; note experimental quantities subject to

significant errors are DW, Dt, and D.

1.41. Lumped Thermal Model for Thermocouple

We wish to estimate the dynamics of a cold thermo-

couple probe suddenly placed in a hot flowing fluid

stream for the purpose of temperature measurement.

The probe consists of two dissimilar metal wires

joined by soldering at the tip, and the wires are then

encased in a metal sheath and the tip is finally coated

with a bead of plastic to protect it from corrosion.

Take the mass of the soldered tip plus plastic bead to

be m, with specific heat Cp. Denote the transfer

coefficient as h.

(a) If the effects of thermal conductivity can be

ignored, show that the temperature response of

the probe is described by

mCp

dT

dt
¼ hAðTf � TÞ

where A denotes the exposed area of probe tip,

and T(t) is its temperature.

(b) Lump the explicit parameters to form the system

time constant, and for constant Tf, define a new

variable u ¼ ðTf � TÞ and show that the compact

form results

t
du

dt
¼ �u

where the system time constant is defined as

t ¼ mCp

hA
ðsÞ

(c) Integrate the expression in (b), using the initial

condition T(0)¼ T0 and show that

T � Tf

T0 � Tf

¼ exp � t

t

 �
(d) Rearrange the expression in (c) to obtain

T0 � T

T0 � Tf

¼ 1� exp � t

t

 �

and thus show the temperature excess is 63% of

the final steady-state value after a time equivalent
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to one time constant has elapsed. This also repre-

sents a quick and easy way to deduce system time

constants based on an elementary experiment.

l.53. Distributed Thermal Model for Thermocouple

If the plastic bead covering the tip of the thermo-

couple described in Problem 1.4 is quite large, and

since plastic usually sustains a very low value of

thermal conductivity, then the simple lumped model

solution becomes quite inaccurate. To improve the

model, we need to account for thermal conductivity

in the (assumed) spherical shape of the plastic

bead.

(a) Assuming the bead is a perfect sphere, contacted

everywhere by external fluid of temperature Tf,

perform a shell balance on an element of volume

4pr2Dr and show that

rCp

@T

@t
¼ k

1

r2
@

@r
r2
@T

@r

� �

(b) Perform an elemental heat balance at the surface

of the sphere and deduce

�k
@T

@r
¼ hðT � Tf Þ at r ¼ R

where R is the radius of the plastic sphere.

1.62. Modeling of Piston with Retaining Spring

The schematic figure shows a piston fitted snugly into

a cylinder. The piston is caused to move by increasing

or decreasing pressure P. As air is admitted by way of

valve V1, the increased pressure drives the piston to

the left, while the attached spring exerts a force to

restrain the piston. At the same time, a highly viscous

lubricant sealant at the juncture of piston and cylinder

exerts a resisting force to damp the piston movement;

the forces can be represented by

Fm ¼ am
dx

dt
; m ¼ lubricant viscosity

Fx ¼ Kx; K ¼ spring constant

(a) Perform a force balance on the piston and show

that

m
d2x

dt2
þ am

dx

dt
þ Kx ¼ APðtÞ

(b) Arrange this equation to obtain the standard form

of the damped inertial equation:

t2
d2x

dt2
þ 2zt

dx

dt
þ x ¼ f ðtÞ

and hence, deduce an expression for damping

coefficient z and time constant t. Such equations

are used to model pneumatic valves, shock

absorbers, manometers, and so on.

Answer: t ¼ ffiffiffiffiffiffiffiffiffiffi
m=K

p
; z ¼ am=2

ffiffiffiffiffiffiffiffi
Km

p

1.73. Mass Transfer in Bubble Column

Bubble columns are used for liquid aeration and

gas–liquid reactions. Thus, finely suspended

bubbles produce large interfacial areas for effective

mass transfer, where the contact area per unit vol-

ume of emulsion is calculated from the expression

a ¼ 6e=dB, where e is the volume fraction of

injected gas. While simple to design and construct,

bubble columns sustain rather large eddy dispersion

coefficients, and this must be accounted for in the

modeling process. For concurrent operation, liquid

of superficial velocity u0L is injected in parallel

with gas superficial velocity u0G. The liquid veloc-

ity profile can be taken as plug shaped, and the gas

voidage can be treated as uniform throughout the

column. We wish to model a column used to aerate

water, such that liquid enters with a composition

C0. Axial dispersion can be modeled using a

Fickian-like relationship

J ¼ �De

dC

dx

moles

liquid area� time

� �

while the solubility of dissolved oxygen is denoted

as C�. We shall denote distance from the bottom of

the column as x.

(a) Derive the steady-state oxygen mole balance for

an incremental volume of ADx (A being the col-

umn cross-sectional area) and show that the liquid

phase balance is

ð1� eÞDe

d2C

dx2
� u0L

dC

dx
þ kcaðC� � CÞ ¼ 0
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(b) Lump parameters by defining a new dimension-

less length as

z ¼ kcax

u0L

and define the excess concentration as y¼ (C�
C�), and so obtain the elementary, second-order,

ordinary differential equation

a
d2y

dz2
� dy

dz
� y ¼ 0

where

a ¼ ð1� eÞDekca

u20L
ðdimensionlessÞ

Note the usual conditions in practice are such that

a � 1.

(c) Perform a material balance at the entrance to the

column as follows. Far upstream, the transport of

solute is mainly by convection: Au0LC0. At the

column entrance (x¼ 0), two modes of transport

are present; hence, show that one of the boundary

conditions should be

u0LC0 ¼ �ð1� eÞDe

dC

dx

				
x¼0

þ u0LCð0Þ

The second necessary boundary condition is usu-

ally taken to be

dC

dx
¼ 0 at x ¼ L

where L denotes the position of the liquid exit.

What is the physical meaning of this condition?

The two boundary conditions are often referred

as the Danckwerts type, in honor of P. V.

Danckwerts.

1.83. Dissolution and Reaction of Gas in Liquids

Oxygen dissolves into and reacts irreversibly with

aqueous sodium sulfite solutions. If the gas solubil-

ity is denoted as CA
�
at the liquid–gas interface,

derive the elementary differential equation to

describe the steady-state composition profiles of

oxygen in the liquid phase when the rate of oxygen

reaction is represented by RA ¼ kCn
A and the local

oxygen diffusion flux is described by

JA ¼ �DA dCA=dz, where DA is diffusivity and z is

distance from the interface into the liquid.

Answer: DA

d2CA

dz2
� kCn

A ¼ 0

1.93. Modeling of a Catalytic Chemical Reactor

Your task as a design engineer in a chemical company

is to model a fixed bed reactor packed with the

company proprietary catalyst of spherical shape. The

catalyst is specific for the removal of a toxic gas at

very low concentration in air, and the information

provided from the catalytic division is that the

reaction is first order with respect to the toxic gas con-

centration. The reaction rate has units of moles of

toxic gas removed per mass of catalyst per time.

The reaction is new and the rate constant is non-

standard, that is, its value does not fall into the range

of values known to your group of design engineers.

Your first attempt, therefore, is to model the reactor in

the simplest possible way so that you can develop

some intuition about the system before any further

modeling attempts are made to describe it exactly.

(a) For simplicity, assume that there is no appreciable

diffusion inside the catalyst and that diffusion

along the axial direction is negligible. An isother-

mal condition is also assumed (this assumption is

known to be invalid when the reaction is very fast

and the heat of reaction is high). The coordinate z

is measured from entrance of the packed bed.

Perform the mass balance around a thin shell at the

position z with the shell thickness of Dz and show

that in the limit of the shell thickness approaching

zero the following relation is obtained:

u0
dC

dz
¼ �ð1� eÞrpðkCÞ

where u0 is the superficial velocity, C is the toxic

gas concentration, e is the bed porosity, rp is the

catalyst density, and (kC) is the chemical reaction

rate per unit catalyst mass.

(b) Show that this lumped parameter model has the

solution

ln
C

C0

� �
¼ �ð1� eÞrpk

u0
z

where C0 denotes the entrance condition.

(c) The solution given in part (b) yields the distribu-

tion of the toxic gas concentration along the

length of the reactor. Note the exponential decline

of the concentration. Show that the toxic concen-

tration at the exit, which is required to calculate

the conversion, is

CL ¼ C0 exp �ð1� eÞrpkL
u0

� �
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(d) In reactor design, the information normally pro-

vided is throughput and mass of catalyst. So

if you multiply the denominator and numerator

of the bracketed term in the last part by the

cross-sectional area, A, show that the exit con-

centration is

CL ¼ C0 exp �Wk

F

� �

where W is the mass of catalyst and F is the volu-

metric gas flow rate.

(e) The dimensionless argumentWk/F is a key design

parameter. To achieve a 95% conversion, where

the conversion is defined as

X ¼ C0 � CL

C0

show that the nondimensional group Wk/F must

be equal to 3. This means that if the throughput is

provided and the rate constant is known the mass

of catalyst required is simply calculated as

W ¼ 3
F

k

(f) The elementary Model 1 is of the lumped parame-

ter type, and its validity is questionable because of

a number of assumptions posed. To check its

validity, you wish to relax one of the assumptions

and move one level up the hierarchy ladder.

Suppose, you relax the axial diffusion assumption,

and hence show that the mass balance, when dif-

fusion is important, becomes

De
d2C

dz2
� u0

dC

dz
� ð1� eÞrpkC ¼ 0

Since this is a second-order ordinary differential

equation, two boundary conditions must be required.

The two possible conditions after Danckwerts are

z ¼ 0; u0C0 ¼ u0Cjz¼0 � De
dC

dz

				
z¼0

z ¼ L;
dC

dz
¼ 0

(g) Define the following nondimensional variables

and parameters

y ¼ C

C0

; x ¼ z

L
; Pe ¼ u0L

De
; N ¼ Wk

F

and show that the resulting modeling equations are

1

Pe

d2y

dx2
� dy

dx
� Ny ¼ 0

x ¼ 0; 1 ¼ yjx¼0 �
1

Pe

dy

dx

				
x¼0

x ¼ 1;
dy

dx
¼ 0

Compare this model (hereafter called Model 2) with

Model 1 and show that the axial diffusion may be

ignored when Pe 
 1 (this can be accomplished

several ways: by decreasing porosity e or by reduc-

ing D, or by increasing velocity or length).

(h) To study the effect of the mass transfer inside

the catalyst particle, we need to remove the

assumption of no diffusion resistance inside the

particle. This means that the mass balance within

the particle must be linked with the external

composition. To investigate this effect, we shall

ignore the axial diffusion (which is usually small

for packing made up of finely granulated solid)

and the external film resistance surrounding the

particle.

Set up a thin spherical shell (control volume)

inside the particle, and show that the mass balance

equation is

De

1

r2
@

@r
r2
@Cp

@r

� �
� rpkCp ¼ 0

where Cp is the toxic gas concentration within the

particle, and De is the effective diffusivity and is

defined as Fickian-like

Jp ¼ �De

@Cp

@r

moles transported by diffusion

cross-sectional area-time

� �

and suitable boundary conditions for negligible

film resistance and particle symmetry are

CpðRÞ ¼ C; @Cp=@r ¼ 0 at r ¼ 0

where R denotes particle radius.

(i) Next, set up the mass balance around the thin ele-

ment spanning the whole column cross section (as

in Model 1), but this time the control volume will

exclude the catalyst volume. This means that

material is lost to the various sinks made up by

the particles. Show that the mass balance equation

on this new control volume is

�u0
dC

dz
¼ ð1� eÞ 3

R
De

@Cp

@r

				
r¼R
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1.102 Dimensional Analysis of a Correlation

As a follow up to Problem 1.7 on modeling bubble

columns, we wish to find an expression to represent

axial dispersion, sometimes called turbulent eddy

mixing. Baird and Rice (1975) proposed an expres-

sion to account for the input power per unit mass,

Pm, and the turbulent length scale or eddy size, d,

for the dispersion coefficient as follows:

De ¼ cPx
mðdÞy

The arbitrary constant c is seen to be dimensionless.

We wish to find the dimensionally consistent values

for the unknown exponents x and y. We will use the

science of dimensional analysis to accomplish this

task. First, write the units of length L and time t each

term as follows:

L2

t
� L2

t3

 !x

Ly

We require the exponents for length on both sides of

the equation to be the same, hence

L : 2 ¼ 2xþ y

Similarly for the exponents of time,

t : 1 ¼ 3x:

(a) Solve the algebraic equations and show that

x ¼ 1=3 and y ¼ 4=3:

Baird and Rice took the pressure drop in the

power calculation to be the hydrostatic head and

the eddy size to be the column diameter (d), with

the value of c fitted to a large array of experimen-

tal data. This widely cited expression for disper-

sion coefficient in terms of superficial gas velocity

(Uog) and column diameter (d) is given as

De ¼ 0:35ðgUogÞ1=3ðdÞ4=3

(b) The relations for the exponents x (call this x1) and

y (call this x2) could have been represented using

a vector–matrix format as follows:

b ¼ Ax; x ¼ x1
x2

� �
; b ¼ 2

1

� �
; A ¼ 2 1

3 0

� �
:

If we premultiply b by A�1, we obtain the expression

for x:

A�1b ¼ x

Find the elements of A�1 and solve for the elements

of x.

Answer:
0 1=3

1 �2=3

� �
¼ A�1

1.112 Transformations

Write the matrix form for the following linear

equations:

y1 ¼
1ffiffiffi
2

p x1 þ 1ffiffiffi
2

p x3

y2 ¼ x2

y3 ¼ � 1ffiffiffi
2

p x1 þ 1ffiffiffi
2

p x3

And show that

y ¼ Ax; whereA ¼

1ffiffiffi
2

p 0
1ffiffiffi
2

p

0 1 0

�1ffiffiffi
2

p 0
1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA

(a) Compute the transpose of A�1 and compare it

with the original matrix A.

(b) What is the geometric relation of x to y ?
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2
SOLUTION TECHNIQUES FORMODELS YIELDING
ORDINARY DIFFERENTIAL EQUATIONS

2.1 GEOMETRIC BASIS AND FUNCTIONALITY

In Chapter 1, we took the point of view that elementary

differential balances gave rise to certain differential equa-

tions, and for first order systems, we could represent these

in general by

dy

dx
¼ f ðx; yÞ ð2:1Þ

where f(x,y) is some arbitrary, but known, function

((x2þ y2)1=2, xy2, etc). Our strategy was to find suitable sol-

utions to the ordinary differential equation (ODE) so that

we could compute y for any given x, such as

y ¼ gðx; cÞ ð2:2Þ

where g(x,c) is some elementary function (cx1=2, c sinx,

sinh(cþ x)1=2, etc.), and c is some arbitrary constant of

integration, to be found from a boundary or initial condi-

tion. The most elementary first step in this strategy is to

separate variables, so that direct integration can take place;

that is,
R
gðxÞdx ¼ R f ðyÞdy. All of the techniques to fol-

low aim for this final goal.

However, the early mathematicians were also con-

cerned with the inverse problem: Given the geometric

curve y¼ g(x), what is the underlying differential equation

defining the curve? Thus, many of the classical mathemat-

ical methods take a purely geometric point of view, with

obvious relevance to observations in astronomy.

Suppose, we have a family of curves represented by the

function

f ðx; y; lÞ ¼ 0 ð2:3Þ
where l is an arbitrary parameter. Note each distinct value

of l will generate a separate curve in the y–x-coordinate

system, so we then speak of a family of curves.

To determine the defining ODE, we write the total differ-

ential of the family using the chain rule:

df ¼ 0 ¼ @f

@x
dxþ @f

@y
dy ð2:4Þ

If we eliminate l from this using Eq. 2.3, then the sought

after ODE results.

EXAMPLE 2.1

Suppose a family of curves can be represented by

x2 þ y2 � lx ¼ 0 ð2:5Þ
Deduce the defining differential equation. Write the total differen-

tial, taking

f ðx; yÞ ¼ x2 þ y2 � lx ¼ 0 ð2:6Þ
hence,

df

dx
¼ @f

@x
þ @f

@y

dy

dx
¼ 2x� lþ 2y

dy

dx
¼ 0 ð2:7Þ

Applied Mathematics and Modeling for Chemical Engineers, Second Edition. Richard G. Rice and Duong D. Do.
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Eliminate l using Eq. 2.6 to obtain finally,

2yx
dy

dx
þ x2 � y2 ¼ 0 ð2:8Þ

Quite often, taking a geometric point of view will assist in obtain-

ing a solution. Observation of the total differential may also lead to

solutions. Thus, consider the relation

dy

dx
� y

x

� �
¼ 0 ð2:9Þ

which is, in fact, the exact differential

d
y

x

� �
¼ 0 ð2:10Þ

Hence, direct integration yields

y ¼ cx ð2:11Þ

In the following section, we shall exploit this property of exact-

ness in a formal way to effect solutions to certain classes of

problems.

2.2 CLASSIFICATION OF ODE

The broad classification of equations with which engineers

must contend is as follows:

(a) Linear equations

(b) Nonlinear equations

Much is known about linear equations, and in principle all

such equations can be solved by well-known methods. On

the other hand, there exists no general solution method for

nonlinear equations. However, a few special types are ame-

nable to solution, as we show presently.

We begin this chapter by studying first order ODE,

classifying techniques based on certain properties. We next

extend these techniques to second and higher order

equations. Finally, we present detailed treatment and very

general methods for classes of linear equations, about

which much is known.

2.3 FIRST-ORDER EQUATIONS

The most commonly occurring first-order equation in

engineering analysis is the linear first-order equation (the

I-factor equation)

dy

dx
þ aðxÞy ¼ f ðxÞ ð2:12Þ

which is sometimes called the first-order equation with

forcing function, f (x) being the forcing function. We saw

an example of this equation in Chapter 1, Eq. 1.9.

dT

dz
þ lTðzÞ ¼ lTwðzÞ ð2:13Þ

where we have denoted locally varying wall temperature

Tw(z), rather than the special case Tw¼ constant. If the wall

temperature was fixed and constant, we showed earlier that

a common sense change of variables allowed direct integra-

tion after separation of variables. However, such is not the

case if the wall temperature varies with position z.

For the general case, given in functional form as

Eq. 2.12, we shall allow the coefficient a and the forcing

function f to vary with respect to the independent variable

x. It is clear that separation of variables is not possible in

the present state.

To start the solution of Eq. 2.12, we put forth the propo-

sition that there exists an elementary, separable solution

d

dx
IðxÞy½ � ¼ IðxÞf ðxÞ ð2:14Þ

If such a form existed, then variables are separated and the

solution is straightforward by direct integration

y ¼ 1

IðxÞ
Z
IðxÞf ðxÞdxþ c

IðxÞ ð2:15Þ

where c is an arbitrary constant of integration.

To prove such a solution exists, we must specify the

function I(x). To do this, we rearrange Eq. 2.14 into exactly

the same form as Eq. 2.12

dy

dx
þ 1

IðxÞ
dIðxÞ
dx

y ¼ f ðxÞ ð2:16Þ

In order for these two equations to be identical, we must

require

1

IðxÞ
dIðxÞ
dx

¼ aðxÞ ð2:17Þ

or within a constant of integration

IðxÞ ¼ exp

Z
aðxÞ dx

� �
ð2:18Þ

where I(x) is called the integrating factor. This is the

necessary and sufficient condition for the general solution,

Eq. 2.15, to exist.
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EXAMPLE 2.2

To solve the differential equation

dy

dx
� 2

x
y ¼ x ð2:19Þ

we first determine the I-factor

I ¼ exp

Z
� 2

x

� �
dx

� �
¼ expð�2 ln xÞ ¼ 1

x2
ð2:20Þ

Hence,

y ¼ x2
Z

1

x2
x dxþ cx2 ð2:21Þ

so finally,

y ¼ x2 ln xþ cx2 ð2:22Þ

Two other types of equations occur so frequently they

deserve special treatment, namely,

(a) Equations possessing exact solutions.

(b) Equations composed of homogeneous functions.

2.3.1 Exact Solutions

As mentioned in Section 2.1, occasionally a solution exists

that is an exact differential

dwðx; yÞ ¼ 0 ð2:23Þ

but the functional relation w is not obvious to the untrained

eye. If such a function exists, then it must also be true,

according to the chain rule, that

dw ¼ @w

@x
dxþ @w

@y
dy ¼ 0 ð2:24Þ

But how do we use this information to find y as a function

x? Actually, the key to uncovering the existence of an exact

solution resides in the well-known property of continuous

functions, which stipulates

@

@x

@w

@y

� �
¼ @

@y

@w

@x

� �
ð2:25Þ

Thus, suppose there exists an equation of the form

Mðx; yÞdxþ Nðx; yÞdy ¼ 0 ð2:26Þ

By comparing this with Eq. 2.24, we conclude it must

be true

Mðx; yÞ ¼ @w

@x
; Nðx; yÞ ¼ @w

@y
ð2:27Þ

if w is to exist as a possible solution. By invoking the con-

tinuity condition, Eq. 2.25, the necessary and sufficient

condition for w to exist is

@N

@x
¼ @M

@y
ð2:28Þ

EXAMPLE 2.3

Solve the equation

ð2xy2 þ 2Þdxþ ð2x2yþ 4yÞdy ¼ 0 ð2:29Þ

This equation is exact since

@M

@y
¼ 4xy;

@N

@x
¼ 4xy ð2:30Þ

The unknown function w(x,y) must, therefore, be described by the

relations

@w

@x
¼ 2xy2 þ 2 ð2:31Þ

@w

@y
¼ 2x2yþ 4y ð2:32Þ

Note that the partial of w with respect to (wrt) x implies holding y

constant, while the partial wrt y implies holding x constant. We

shall use this important information to help find the connection

between y and x.

First, we integrate Eq. 2.31 with respect to x (holding y

constant)

w ¼ x2y2 þ 2xþ f ðyÞ ð2:33Þ

Note since y was held constant, we must add an arbitrary function,

f (y), rather than an arbitrary constant to be perfectly general in the

analysis. Next, we insert Eq. 2.33 into Eq. 2.32

2x2yþ df

dy
¼ 2x2yþ 4y ð2:34Þ

so we see that integration yields

f ðyÞ ¼ 2y2 þ C2 ð2:35Þ

2.3 FIRST-ORDER EQUATIONS 33



and finally, adding this to Eq. 2.33 yields

w ¼ x2y2 þ 2xþ 2y2 þ C2 ð2:36Þ
This is not the most useful form for our result. Now, since Eq. 2.23

integrates to yield w¼C1, then w also equals to some arbitrary

constant. Combining C1 and C2 into another arbitrary constant

yields the sought-after connection

x2y2 þ 2xþ 2y2 ¼ K ¼ C1 � C2 ð2:37Þ
We could write this as y¼ f (x) as follows:

y2 ¼ ðK � 2xÞ
ðx2 þ 2Þ ð2:38Þ

Note further that two possible branches exist

y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK � 2xÞ
ðx2 þ 2Þ

s
ð2:39Þ

We see the arbitrary constant is implicit, the expected case for

nonlinear equations.

2.3.2 Equations Composed of Homogeneous Functions

A function f(x,y) is said to be homogeneous of degree n if

there exists a constant n such that for every parameter l

f ðlx; lyÞ ¼ lnf ðx; yÞ ð2:40Þ

Thus, the functions x2þ xy and tan(x=y) are both homo-

geneous, the first of degree 2 and the second of degree 0.

However, the function (y2þ x) is not homogeneous.

The first-order equation

Pðx; yÞdxþ Qðx; yÞdy ¼ 0 ð2:41Þ

is said to be homogeneous if P and Q are both homogeneous

of the same degree n, for some constant n (including zero).

This implies that first-order equations composed of

homogeneous functions can always be arranged in the form

dy

dx
¼ f

y

x

� �
ð2:42Þ

This form is easy to remember since the dimensional ratio

y=x appears throughout. The occurrence of this ratio sug-

gests the substitution y=x¼ v (x).

EXAMPLE 2.4

The nonlinear equation

y2 þ x2
dy

dx
¼ xy

dy

dx
ð2:43Þ

can be rearranged to the form

dy

dx
¼ y=xð Þ2

ðy=xÞ � 1ð Þ ð2:44Þ

which is clearly homogeneous. Replacing y=x¼ v (x) shows

dy

dx
¼ x

dv

dx
þ v ð2:45Þ

so the equation for v (x) is

x
dv

dx
þ v ¼ v2

v � 1
ð2:46Þ

or

x
dv

dx
¼ v

v � 1
ð2:47Þ

Separation of variables yields

ðv � 1Þ
v

dv ¼ dx

x
ð2:48Þ

Integrating term by term produces

v � ln v ¼ ln xþ ln K ð2:49Þ
where ln K is an arbitrary constant of integration. Using the prop-

erties of logarithms shows

Kx ¼ expðvÞ
v

¼ exp y=xð Þ
y=xð Þ ð2:50Þ

This is an implicit relation between y and x, which is typical of

nonlinear solutions.

We have reviewed standard methods of solutions, includ-

ing equations that are exact, those that contain homo-

geneous functions (of the same degree), and the frequently

occurring I-factor equation. All of these methods include,

in the final analysis, making the dependent and independent

variables separable, so that direct integration completes the

solution process.

However, some equations are not amenable to standard

methods and require considerable ingenuity to effect a sol-

ution. Often, an elementary change of variables reduces a

nonlinear equation to a linear form. We illustrate some of

these uncommon types with examples in the next sections.

2.3.3 Bernoulli’s Equation

The Bernoulli equation

dy

dx
þ PðxÞy ¼ QðxÞyn; n 6¼ 1 ð2:51Þ

is similar to the first-order forced equation (I-factor)

discussed earlier, except for the nonlinear term on the right-

hand side, yn.
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If we divide yn throughout, a substitution may become

evident

y�n dy

dx
þ PðxÞy�nþ1 ¼ QðxÞ ð2:52Þ

Inspecting the first term suggests incorporating the coeffi-

cient into the differential, so that

y�n dy

dx
¼ 1

1� n

dðy1�nÞ
dx

ð2:53Þ

This immediately reveals the substitution

v ¼ y1�n ð2:54Þ

hence, the original equation is now linear in v

1

1� n

� �
dv

dx
þ PðxÞv ¼ QðxÞ ð2:55Þ

which is easily solved using the I-factor method.

2.3.4 Riccati’s Equation

A nonlinear equation, which arises in both continuous

and staged (i.e., finite difference) processes, is Riccati’s

equation

dy

dx
¼ PðxÞy2 þ QðxÞyþ RðxÞ ð2:56Þ

A frequently occurring special form is the case when

P(x)¼� 1

dy

dx
þ y2 ¼ QðxÞyþ RðxÞ ð2:57Þ

A change of variables given by

y ¼ 1

u

du

dx
ð2:58Þ

yields the derivative

dy

dx
¼ 1

u
� d

2u

dx2
� 1

u2
� du

dx

� �2

ð2:59Þ

Inserting this into Eq. 2.57 eliminates the nonlinear term

d2u

dx2
� QðxÞ du

dx
� RðxÞu ¼ 0 ð2:60Þ

which is a linear second-order equation with nonconstant

coefficients. This may be solved in general by the Frobenius

series method, as will be shown in Chapter 3.

EXAMPLE 2.5

A constant-volume batch reactor undergoes the series reaction

sequence

A�!k1 B�!k2 C

The initial concentration of A is denoted by CA0, whereas B and C

are initially nil. The reaction rates per unit reactor volume are

described by

RA ¼ k1C
n
A; RB ¼ k1C

n
A � k2C

m
B

Find the solutions of the differential equations describing CB(t) for

the following cases:

(a) n ¼ 1; m ¼ 2

(b) n ¼ 2; m ¼ 1

(c) n ¼ 1; m ¼ 1

CASE (a) n= 1, m= 2

The material balances are written as

dCA

dt
¼ �k1CA

dCB

dt
¼ k1CA � k2C

2
B

The solution for CA is straightforward

CA ¼ CA0 expð�k1tÞ ð2:61Þ

Hence, the expression for CB is nonlinear with exponential forcing

dCB

dt
¼ k1CA0 expð�k1tÞ � k2C

2
B ð2:62Þ

If we scale time by replacing u¼ k2t, the above expression

becomes identical to the special form of the Riccati equation.

Thus, on comparing with Eq. 2.57, we take

QðuÞ ¼ 0; RðuÞ ¼ k1

k2
CA0 exp � k1

k2
u

� �

to see that

dCB

du
þ C2

B ¼ RðuÞ ð2:63Þ
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If we make the Riccati transformation

CB ¼ 1

u

du

du

we finally obtain

d2uðuÞ
du2

� k1

k2
CA0 exp � k1

k2
u

� �
uðuÞ ¼ 0 ð2:64Þ

We have thus transformed a nonlinear first-order equation to a

solvable, linear second-order equation.

CASE (b) n= 2, m= 1

The simultaneous equations for this case are

dCA

dt
¼ �k1C

2
A ; CA ¼ CA0

1þ k1CA0t

� �
dCB

dt
¼ k1C

2
A � k2CB

Inserting CA(t) yields the classic inhomogeneous (I-factor) equa-

tion discussed in Section 2.3:

dCB

dt
þ k2CB ¼ k1

CA0

1þ k1CA0t

� �2
ð2:65Þ

The integrating factor is I¼ exp(k2t); hence, the solution is

CBðtÞ ¼ k1expð�k2tÞ
Z

expðk2tÞ CA0

1þ k1CA0t

� �2
dtþ C expð�k2tÞ

ð2:66Þ

where C is the constant of integration. The integral is tabulated in

the form Z
expðaxÞ

x2
dx

so we next substitute

t ¼ 1þ k1CA0t; dt ¼ dt

ðk1CA0Þ ; a ¼ k2

k1CA0

hence, we obtain

CB ¼ CA0 expð�k2tÞexp � k2

k1CA0

� �Z
expðatÞ

t2
dt þ C expð�k2tÞ

ð2:67Þ

Performing the integration yields, finally,

CB ¼ C expð�k2tÞ þ CA0 exp � k2tþ k2

k1CA0

� �� �

� expðatÞ
t

þ a ln t þ at

ð1Þð1!Þ þ
ðatÞ2
ð2Þð2!Þ þ

ðatÞ3
ð3Þð3!Þ þ � � �

 !" #

ð2:68Þ

Now, since t¼ 1 when t¼ 0, the arbitrary constant C becomes,

since CB(0)¼ 0,

C ¼ CA0
exp � k2

k1CA0

� �

expðaÞ � a
a

ð1Þð1!Þ þ
a2

ð2Þð2!Þ þ
a3

ð3Þð3!Þ þ � � �
� �� �

ð2:69Þ

CASE (c) n¼ 1, m¼ 1

The linear case is described by

dCA

dt
¼ �k1CA ;CA ¼ CA0 expð�k1tÞ ð2:70Þ

dCB

dt
¼ k1CA � k2CB ð2:71Þ

This also yields the I-factor equation, if the time variation is desired.

Often, the relationship between CA and CB is desired, so we can use

a different approach by dividing the two equations to find

dCB

dCA

¼ �1þ k2

k1

CB

CA

� �
ð2:72Þ

This takes the homogeneous form, so according to Sec-

tion 2.3.2, let

CB

CA

¼ V;
dCB

dCA

¼ CA

dV

dCA

þ V ð2:73Þ

hence,

CA

dV

dCA

¼ �1þ k2

k1
ðVÞ � V ð2:74Þ

so we obtain

dV

�1þ ðk2=k1Þ � 1ð ÞV½ � ¼
dCA

CA

ð2:75Þ

Integrating, noting V¼ 0 when CA¼CA0, yields finally

CB

CA

¼ k1

k2 � k1
1� CA

CA0

� �ðk2=k1Þ�1
" #

ð2:76Þ

2.3.5 Linear Coefficients

Equations of first order with linear coefficients,

ðaxþ byþ cÞdx� ðaxþ byþ gÞdy ¼ 0

can be reduced to the classic homogeneous functional form

by suitable change of variables. Putting the above into the

usual form to test for homogeneous functions

dy

dx
¼ axþ byþ c

axþ byþ g
¼ aþ b y=xð Þ þ c=x

aþ b y=xð Þ þ g=x
ð2:77Þ
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we see that the last terms in the numerator and denominator

prevent the right-hand side from becoming the proper form,

that is, f(y=x). This suggests a dual change of variables

with two adjustable parameters, e and d

y ¼ uþ e; dy ¼ du ð2:78Þ

x ¼ v þ d; dx ¼ dv ð2:79Þ

hence,

du

dv
¼ aðv þ dÞ þ bðuþ eÞ þ c

aðv þ dÞ þ bðuþ eÞ þ g
ð2:80Þ

We have two degrees of freedom to eliminate two constants,

so we eliminate c and g by selecting

adþ beþ c ¼ 0 ð2:81Þ

adþ beþ g ¼ 0 ð2:82Þ

Solving these for e, d yields

e ¼ ac� ga

ba� ab
ð2:83Þ

d ¼ � c

a
� b

a
� ac� ga

ba� ab
ð2:84Þ

An inconsistency arises if ba¼ab, which is obvious. It is

clear that the final result is now of the homogeneous type

du

dv
¼ aþ b u=vð Þ

aþ b u=vð Þ ð2:85Þ

and this can be solved directly by substituting z¼ u/v.

2.3.6 First-Order Equations of Second Degree

The order of a differential equation corresponds to the high-

est derivative, whereas the degree is associated with the

power to which the highest derivative is raised.

A nonlinear equation, which is first order and second

degree, is

dy

dx

� �2

� 2
dy

dx
þ y ¼ x� 1 ð2:86Þ

This requires a different approach, as nonlinear systems

often do. The first step is to replace p¼ dy=dx and solve the

remaining quadratic equation for p

p ¼ dy

dx
¼ 1� ffiffiffiffiffiffiffiffiffiffiffi

x� y
p ð2:87Þ

We observe two branches are possible, depending on selec-

tion of sign. The appearance of the linear difference (x – y)

suggests replacing u¼ x – y, so that we have

du

dx
¼ 1� dy

dx
ð2:88Þ

We now have the separable equation

du

dx
¼ � ffiffiffi

u
p ð2:89Þ

Integration yields the general solution

2
ffiffiffi
u

p ¼ �xþ c ð2:90Þ

Replacing u¼ x – y shows finally

4y ¼ 4x� ðc� xÞ2 ð2:91Þ

Again, we observe that the arbitrary constant of integration

is implicit, which is quite usual for nonlinear systems.

We reinspect the original equation

dy

dx
¼ 1� ffiffiffiffiffiffiffiffiffiffiffi

x� y
p ð2:92Þ

and observe that a solution y¼ x also satisfies this equation.

This solution cannot be obtained by specializing the

arbitrary constant c and is thus called a singular solution

(Hildebrand 1965). This unusual circumstance can occur

only in the solution of nonlinear equations. The singular

solution sometimes describes an “envelope” of the family

of solutions, but is not in general a curve belonging to the

family of curves (since it cannot be obtained by specializing

the arbitrary constant c).

2.4 SOLUTIONMETHODS FOR SECOND-ORDER

NONLINEAR EQUATIONS

As stated earlier, much is known about linear equations of

higher order, but no general technique is available to solve

the nonlinear equations that arise frequently in natural and

man-made systems. When analysis fails to uncover the ana-

lytical solution, the last recourse is to undertake numerical

solution methods, as introduced in Chapters 7 and 8.

We begin this section by illustrating the types of non-

linear problems that can be resolved using standard

methods. Some important nonlinear second-order equations

are as follows:

d2y

dx2
þ 2

x

dy

dx
þ ya ¼ 0 ðLane�Emden equationÞ ð2:93Þ
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d2c

dt2
þ v2 sinc ¼ 0 ðnonlinear Pendulum equationÞ

ð2:94Þ

d2y

dx2
þ ayþ by3 ¼ 0 ðDuffing equationÞ ð2:95Þ

d2y

dx2
þ aðy2 � 1Þ dy

dx
þ y ¼ 0 ðVan der Pol equationÞ

ð2:96Þ

The general strategy for attacking nonlinear equations is to

reduce them to linear form. Often, inspection of the equa-

tion suggests the proper approach.

The two most widely used strategies are as follows:

1. Derivative substitution method: replace p¼ dy=dx if

either y is not explicit or x is not explicit.

2. Homogeneous function method: replace v¼ y=x if

the equation can be put into the homogeneous format

x
d2y

dx2
¼ f

dy

dx
;
y

x

� �

Note, as before, the dimensional ratio y=x appears through-

out, which is a good indicator that the technique may work.

2.4.1 Derivative Substitution Method

Two classes of problems arise, which can be categorized by

inspection: either y or x does not appear alone (is not

explicit). In both cases, we start with the substitution

p¼ dy=dx.

EXAMPLE 2.6

The nonlinear pendulum problem is a case where x is not explicit

d2y

dx2
þ v2 sin ðyÞ ¼ 0 ð2:97Þ

Make the substitution

p ¼ dy

dx
ð2:98Þ

therefore,

dp

dx
þ v2 sinðyÞ ¼ 0 ð2:99Þ

Since x is not explicit, assume p(y), so that

dpðyÞ
dx

¼ dp

dy

dy

dx
¼ dp

dy
p ð2:100Þ

Substituting above yields the separable form

p
dp

dy
þ v2sinðyÞ ¼ 0 ð2:101Þ

Integrating yields

p2 ¼ 2v2cosðyÞ þ C1 ð2:102Þ

Two branches are possible on taking square roots

p ¼ dy

dx
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v2 cos ðyÞ þ C1

p
ð2:103Þ

So finally, the integral equation results

Z
dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2v2 cos ðyÞ þ C1

p ¼ �xþ C2 ð2:104Þ

As we show in Chapter 4, the above result can be re-expressed as

an elliptic integral of the first kind for certain realizable boundary

conditions.

EXAMPLE 2.7

Soluble gas (A) reactant dissolves into the flat interface of a deep

body of liquid reagent with which it reacts through the nonlinear

(irreversible) rate law,

RA ¼ knC
n
A ðmole=volume � timeÞ ð2:105Þ

Taking the coordinate system z pointing down from the interface

at z¼ 0, we can write the steady-state material balance for flux

through an elemental slice Dz thick with area normal to flux desig-

nated as An

AnJzðzÞ � AnJzðzþ DzÞ � knC
n
AðAnDzÞ ¼ 0 ð2:106Þ

Taking limits, canceling An yields

� dJz

dz
� knC

n
A ¼ 0 ð2:107Þ

Introducing Fick’s law of diffusion

Jz ¼ �D
@CA

@z
ð2:108Þ

yields finally,

D
d2CA

dz2
� knC

n
A ¼ 0 ð2:109Þ
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We note that z (independent variable) is not explicit, so we again

write

p ¼ dCA

dz
ð2:110Þ

and taking p(CA), then

d2CA

dz2
¼ dpðCAÞ

dz
¼ dp

dCA

dCA

dz
¼ dp

dCA

p ð2:111Þ

Inserting the second derivative yields the separable form

p
dp

dCA

� kn

D

� �
Cn
A ¼ 0 ð2:112Þ

Integrating yields

p2 ¼ 2
kn

D

� �
Cnþ1

A

nþ 1

� �
þ C1 ð2:113Þ

Two branches again appear

p ¼ dCA

dz
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kn

Dðnþ 1ÞC
nþ1
A þ C1

s
ð2:114Þ

At this point, we sketch a curve indicating the expected behavior

of CA(z), as shown in Fig. 2.1.

This shows we expect CA to diminish rapidly (by reaction

depletion) as we penetrate deeper into the liquid. Moreover, the

slope of the curve shown is everywhere negative! Thus, we must

select the negative root; hence,

dCA

dz
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kn

Dðnþ 1ÞC
nþ1
A þ C1

s
ð2:115Þ

Since the reaction rate is irreversible, eventually all of the species

A will be consumed, so that CA ! 0 as z ! 1. Now, as CA ! 0,

we expect the flux also to diminish to zero, so that Jz ! 0, as

CA ! 0. This suggests that we should take C1¼ 0, for an

unbounded liquid depth; hence,

dCAffiffiffiffiffiffiffiffiffiffi
Cnþ1

A

q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kn

Dðnþ 1Þ

s
dz ð2:116Þ

and this integral is

C
ð1�nÞ=2
A ¼ � 1� n

2

� �
2kn

Dðnþ 1Þ
� �1=2

zþ C2 ð2:117Þ

At the interface (z¼ 0), we denote the gas solubility (Henry’s law)

as C�
A, so C2 is evaluated as

C2 ¼ ðC�
AÞð1�nÞ=2 ð2:118Þ

The final form for computational purposes is explicit in z, implicit

in CA

C
�ð1�nÞ=2
A � C

ð1�nÞ=2
A ¼ 2kn

Dðnþ 1Þ
� �1=2

z ð2:119Þ

However, engineers usually want to know the mass transfer rate at

the interface (where CA ¼ C�
A), so that

WA ¼ An �D
dCA

dz

� �
z¼ 0

¼ An

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2knD

nþ 1
C
�ðnþ 1Þ
A

r
ð2:120Þ

For linear reaction rates (n¼ 1), we get the familiar result

WA ¼ AnC
�
A

ffiffiffiffiffiffiffiffiffi
k1D

p
ð2:121Þ

This expression is found useful for determining interfacial area in

bubble column reactors (sulfite oxidation). Thus, by measuring

transfer rate WA (mol/s) for known values of C�
A, k1, and D, then

area An can be calculated. The method is not restricted to linear

kinetics, in light of Eq. 2.120.

EXAMPLE 2.8

Find the solution using the initial condition y¼ 1, x¼ 0

d2y

dx2
¼ 1:25

y

dy

dx

� �2

� A1yþ A2

y
� A3

y3
ð2:122Þ

This dimensionless equation has recently appeared in the literature

(Prince and Blanch 1990) to describe the physics of bubble coales-

cence. Here, y represents dimensionless film thickness (joining

two touching bubbles) and x represents dimensionless time. The

solution (credited to R. G. Rice (1982)) is a classic example on

applications of the p-substitution method, so replace p¼ dy=dx,FIGURE 2.1 Expected behavior of CA(z).
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and for the second derivative, assume p(y) since x is not explicit

d2y

dx2
¼ dp

dx
¼ dpðyÞ

dy

dy

dx
¼ dp

dy
p ¼ 1

2

d

dy
ðp2Þ ð2:123Þ

Inserting this and multiplying by 2 produces the I-factor first-order

equation

dðp2Þ
dy

� 2:5

y
p2 ¼ 2 �A1yþ A2

y
� A3

y3

� �
ð2:124Þ

The integrating factor is

IðyÞ ¼ exp

Z
� 2:5

y

� �
dy ¼ 1

y2:5
ð2:125Þ

so the solution is

p2 ¼ y2:5
Z

2

y2:5
�A1yþ A2

y
� A3

y3

� �
dyþ K0y

2:5 ð2:126Þ

This integral then yields the dimensionless rate of film thinning

between two contacting bubbles, which is p

p ¼ dy

dx
¼ � 4 A1y

2 � 2

2:5
A2 þ 2

4:5

A3

y2
þ K0y

2:5

� �1=2
ð2:127Þ

Since film thinning occurs, dy=dx < 0, hence we select the

negative branch. The final integral is straightforward, if we

take K0¼ 0,

2cy2 þ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ac� b2

p ¼ sinh
ffiffiffi
c

p ðb� 2xÞ	 
 ð2:128Þ

where

a ¼ 2

4:5
A3; b ¼ � 2

2:5
A2; c ¼ 4A1 ð2:129Þ

and the arbitrary second constant of integration is obtained

from y¼ 1, x¼ 0,

b ¼ 1ffiffiffi
c

p sinh�1 2cþ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ac� b2

p
" #

ð2:130Þ

A transition in behavior occurs when 4ac¼ b2, which was used by

these authors to deduce conditions conducive to coalescence. This

transition point was independent of the arbitrary constant K0, so

setting this to zero had no effect on the final conclusion. This is

often the case with dynamic systems, wherein the character of the

solution form is most important. The reader can find another sol-

ution by insisting that K0 6¼ 0 and p(0) < 0, a negative constant.

See, for example, Problem 10.16.

EXAMPLE 2.9

Find the solution to the linear equation

d2y

dx2
þ 2x

dy

dx
¼ x ð2:131Þ

The p-substitution method can also be used to good effect on lin-

ear equations with nonconstant coefficients, such as the above.

First, replace p¼ dy=dx to get

dp

dx
þ 2xp ¼ x ð2:132Þ

This is the familiar I-factor linear equation, so let

I ¼ exp

Z
2x dx ¼ expðx2Þ ð2:133Þ

hence, the solution for p is

p ¼ expð�x2Þ
Z

x expðþx2Þ dxþ A expð�x2Þ ð2:134Þ

Noting that xdx¼ 1
2
dx2 yields

p ¼ 1
2
þ A expð�x2Þ ð2:135Þ

Integrating again produces

y ¼ 1
2
xþ A

Z
expð�x2Þ dxþ B ð2:136Þ

We could replace the indefinite integral with a definite one since

this would only change the already arbitrary constant

y ¼ 1
2
xþ A

Z x

0

expð�a2Þ daþ B ð2:137Þ

This integral is similar to a tabulated function called the error

function, which will be discussed in Chapter 4

erfðxÞ ¼ 2ffiffiffi
p

p
Z x

0

expð�a2Þda ð2:138Þ

Using this, we can now write our final solution in terms of known

functions and two arbitrary constants

y ¼ 1
2
xþ C erfðxÞ þ B ð2:139Þ

EXAMPLE 2.10

Solve the nonlinear second-order equation

d2y

dx2
þ dy

dx

� �2

� x ¼ 0 ð2:140Þ
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This nonlinear equation can be put into a familiar form, again by

replacing p¼ dy=dx

dp

dx
þ p2 � x ¼ 0 ð2:141Þ

This is exactly like the special form of Ricatti’s equation with

Q¼ 0, R¼ x, so let

p ¼ 1

z

dz

dx
ð2:142Þ

giving the linear equation

d2z

dx2
� xz ¼ 0 ð2:143Þ

This is the well-known Airy equation, which will be discussed in

Chapter 3. Its solution is composed of Airy functions, which are

also tabulated.

2.4.2 Homogeneous Function Method

In a manner similar to the first-order case, we attempt to

rearrange certain equations into the homogeneous format,

which carries the dimensional ratio y=x,

x
d2y

dx2
¼ f

dy

dx
;
y

x

� �
ð2:144Þ

If this can be done, then a possible solution may evolve by

replacing v¼ y=x.
Often, a certain class of linear equations also obeys the

homogeneous property, for example, the Euler equation (or

equidimensional equation),

x2
d2y

dx2
þ Ax

dy

dx
þ By ¼ 0; A;B constant ð2:145Þ

Note that units of x cancel in the first two terms. This linear

equation with nonconstant coefficients can be reduced to a

constant coefficient linear equation by the simple change of

variables

x ¼ et or t ¼ lnðxÞ ð2:146Þ

Changing variables starting with the first derivative

dyðxÞ
dx

¼ dyðtÞ
dt

dt

dx
¼ dyðtÞ

dt

1

x
ð2:147Þ

d2y

dx2
¼ d

dx

dyðtÞ
dt

1

x

� �
¼ d

dt

dy

dt
e�t

� �
dt

dx
ð2:148Þ

d2y

dx2
¼ d

dt

dy

dt
e�t

� �
1

x
ð2:149Þ

d2y

dx2
¼ d2y

dt2
e�t � dy

dt
e�t

� �
1

x
ð2:150Þ

d2y

dx2
¼ d2y

dt2
� dy

dt

� �
1

x2
ð2:151Þ

Inserting these into the defining equation causes cancella-

tion of x

d2y

dt2
þ ðA� 1Þ dy

dt
þ By ¼ 0 ð2:152Þ

The method of solving such linear constant coefficient

equations will be treated in the next section.

EXAMPLE 2.11

Consider the nonlinear homogeneous equation

x
d2y

dx2
þ dy

dx

� �2

� y

x

� �2
¼ 0 ð2:153Þ

Under conditions when the boundary conditions are dy=dx¼ 1,

y¼ 0 at x¼ 1, find a suitable solution. Replace y=x¼ v (x) so that

x x
d2v

dx2
þ 2

dv

dx

� �
þ x

dv

dx
þ v

� �2
� v2 ¼ 0 ð2:154Þ

hence,

x2
d2v

dx2
þ 2x

dv

dx
þ x2

dv

dx

� �2

þ 2xv
dv

dx
¼ 0 ð2:155Þ

This has the Euler equidimensional form, so let x¼ et

d2v

dt2
� dv

dt

� �
þ 2

dv

dt
þ dv

dt

� �2

þ 2v
dv

dt

� �
¼ 0 ð2:156Þ

Now, since the independent variable (t) is missing, write p¼ dv /dt

d2v

dt2
¼ dp

dt
¼ dp

dv

dv

dt
¼ p

dp

dv
ð2:157Þ

so that

p
dp

dv
þ pþ p2 þ 2vp ¼ 0 ð2:158Þ

which can be factored to yield two possible solutions

p
dp

dv
þ pþ 1þ 2vð Þ

� �
¼ 0 ð2:159Þ
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This can be satisfied by p¼ 0 or

dp

dv
þ p ¼ � 1þ 2vð Þ ð2:160Þ

This latter result is the I-factor equation, which yields for

I¼ exp(v)

p ¼ 1� 2v þ c expð�vÞ ð2:161Þ

We pause to evaluate c noting

p ¼ dv

dt
¼ x

dv

dx
¼ dy

dx
� y

x
ð2:162Þ

hence, at x¼ 1, then p¼ 1 and v¼ y=x¼ 0, so c¼ 0.

Integrating again

dv

1� 2v
¼ dt ð2:163Þ

yields

Kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2v

p ¼ et ð2:164Þ

Replacing v¼ y=x and x¼ et, and since y¼ 0 at x¼ 1, then K¼ 1

so that squaring yields

y ¼ ðx2 � 1Þ
2x

¼ x

2
� 1

2x
ð2:165Þ

The singular solution, p¼ 0, which is dv=dt¼ 0, so that y=x¼
constant is a solution. This solution cannot satisfy the two boun-

dary conditions.

2.5 LINEAR EQUATIONS OF HIGHER ORDER

The most general linear differential equation of nth order

can be written in the standard form

dny

dxn
þ an�1ðxÞ d

n�1y

dxn�1
þ � � � þ a1ðxÞ dy

dx
þ a0ðxÞy ¼ f ðxÞ

ð2:166Þ

where engineers denote f (x) as the forcing function. We

recall in Section 1.4 the definition of homogeneous-type

equations: “a condition (e.g., boundary condition) or equa-

tion is taken to be homogeneous if it is satisfied by y(x) and

is also satisfied by cy(x), where c is an arbitrary constant.”

Thus, the above equation is not homogeneous. In fact,

mathematicians call it the nth-order inhomogeneous

equation because of the appearance of f (x). If f (x)¼ 0,

then the above equation is homogeneous. The first part of

this section deals with the unforced or homogeneous nth-

order equation

dny

dxn
þ an�1ðxÞ d

n�1y

dxn�1
þ � � � þ a1ðxÞ dy

dx
þ a0ðxÞy ¼ 0

ð2:167Þ

If we denote P as the linear differential operator

P ¼ dn

dxn
þ an�1ðxÞ dn�1

dxn�1
þ � � � þ a1ðxÞ d

dx
þ a0ðxÞ

ð2:168Þ

then we can abbreviate the lengthy representation of the

nth-order equation as

P y½ � ¼ 0 ð2:169Þ

It is clear that

P y½ � ¼ P cy½ � ¼ cP y½ � ¼ 0 ð2:170Þ

so that the equation is indeed homogeneous.

The most general solution to Eq. 2.167 is called the

homogeneous or complementary solution. The notation

complementary comes about when f (x) is different from

zero. Thus, when the forcing function f(x) is present, it

produces an additional solution, which is particular to the

specific form taken by f(x). Hence, solutions arising

because of the presence of finite f(x) are called particular

solutions. These solutions are complemented by solutions

obtained when f(x)¼ 0.

We first focus our efforts in solving the unforced or

homogeneous equation, and then concentrate on dealing

with solutions arising when forcing is applied through f(x)

(i.e., the particular solution).

It is clear in the homogeneous Eq. 2.167 that if all co-

efficients a0; . . . an�1ðxÞ were zero, then we could solve the

final equation by n successive integrations of

dny

dxn
¼ 0 ð2:171Þ

which produces the expression

y ¼ C1 þ C2xþ C3x
2 þ � � � þ Cnx

n�1 ð2:172Þ

containing n arbitrary constants of integration.

As a matter of fact, within any defined interval (say,

0� x� L) wherein the coefficients a0ðxÞ; . . . an�1ðxÞ are

continuous, then there exists a continuous solution to the

homogeneous equation containing exactly n independent,

arbitrary constants.
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Moreover, because the homogeneous equation is linear,

it is easily seen that any linear combination of individual

solutions is also a solution, provided that each individual

solution is linearly independent of the others. We define

linearly independent to mean an individual solution can-

not be obtained from another solution by multiplying it

by any arbitrary constant. For example, the solution y1 ¼
c1 expðxÞ is linearly independent of y2 ¼ C2 expð�xÞ,
since we cannot multiply the latter by any constant to

obtain the former. However, the solution y3¼ 4x2 is not

linearly independent of y4¼ 2x2, since it is obvious that

y3 can be obtained by multiplying y4 by 2.

Thus, if n linearly independent solutions ðy1; y2; . . . ynÞ
to the associated homogeneous equation

P y xð Þ½ � ¼ 0 ð2:173Þ

can be found, then the sum (theorem of superposition)

y ¼ c1y1ðxÞ þ c2y2ðxÞ þ � � � þ cnynðxÞ ¼
Xn
k¼1

ckykðxÞ

ð2:174Þ

is the general solution to the linear, homogeneous,

unforced, nth-order equation. When we must also deal with

the case f(x) 6¼ 0, we shall call the above solution the

general, complementary solution and denote it as yc(x).

Thus, it is now clear that if we could find the integral of

P yp
	 
 ¼ f ðxÞ ð2:175Þ

where yp is the particular solution, then the complete solu-

tion, by superposition, is

y ¼ ypðxÞ þ ycðxÞ ¼ ypðxÞ þ
Xn
k¼1

ckykðxÞ ð2:176Þ

It should now be clear that we have satisfied the original

forced equation, since

Py ¼ Pðyp þ ycÞ ¼ Pyp þ Pyc ¼ f ðxÞ ð2:177Þ

since by definition

Pyc ¼ 0 ð2:178Þ

Pyp ¼ f ðxÞ ð2:179Þ

Thus, it is now clear that the process of solving an ordi-

nary linear differential equation is composed of two parts.

The first part is to find the n linearly independent solutions

to the unforced (homogeneous) equation, denoting this as

the complementary solution, yc(x). The second part is to

find the particular solution arising from the forcing func-

tion f (x). Finally, we must insure that the particular solu-

tion is linearly independent of each of the solutions

comprising the complementary solution; if this were not

true, then a particular integral could reproduce one of the

complementary solutions, and no new information is

added to the final result. We also note in passing that the

arbitrary constants of integration are found (via boundary

conditions) using the complete solution (ycþ yp), not just

the complementary part.

2.5.1 Second-Order Unforced Equations:

Complementary Solutions

The second-order linear equation is of great importance and

arises frequently in engineering. We shall reserve treatment

of the case of nonconstant coefficients, that is,

d2y

dx2
þ a1ðxÞ dy

dx
þ a0ðxÞy ¼ 0 ð2:180Þ

to Chapter 3, where the general Frobenius series method is

introduced. In this section, we shall treat the case of con-

stant coefficients, so that a0, a1¼ constants. The method

described below is directly applicable to nth-order systems

provided all coefficients are again constant.

Thus, for constant coefficients, we shall assume there

exists complementary solutions of the form

yc ¼ A expðrxÞ; A; r ¼ constant ð2:181Þ

where r represents a characteristic root (or eigenvalue) of

the equation and A is the integration constant (arbitrary). It

is, of course, necessary that such a proposed solution satis-

fies the defining equation, so it must be true that

d2

dx2
A expðrxÞ½ � þ a1

d

dx
A expðrxÞ½ � þ a0 A expðrxÞ½ � ¼ 0

ð2:182Þ

Performing the indicated operations yields

A½r2 þ a1rþ a0� expðrxÞ ¼ 0 ð2:183Þ

There are three ways to satisfy this equation, two of them

are trivial (remember zero is always a solution to homo-

geneous equations, a trivial result). We thereby deduce that

the root(s) must be satisfied by

r2 þ a1rþ a0 ¼ 0 ð2:184Þ
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if our proposed solution is to have any nontrivial existence.

This quadratic equation sustains two roots, given by

r1;2 ¼ �a1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a0

p
2

ð2:185Þ

which we denote for convenience as r1 and r2. Since two

possible roots exist, the theorem of superposition suggests

that two linearly independent solutions exist for the com-

plementary solution

yc ¼ A expðr1xÞ þ B expðr2xÞ ð2:186Þ

It is easy to see that each of these, taken one at a time, sat-

isfies the original equation, so that the general solution is

the sum of the two. But are the solutions linearly independ-

ent? To answer this, we need to know the nature of the two

roots. Are they real or complex? Are they unequal or equal?

We consider these possibilities by considering a series of

examples.

EXAMPLE 2.12

Find the complementary solutions for the second-order equation

d2y

dx2
þ 5

dy

dx
þ 4y ¼ 0 ð2:187Þ

Inspection shows that the characteristic equation can be obtained

by replacing dy=dx with r and d2y=dx2 with r2, so that

r2 þ 5rþ 4 ¼ 0 ð2:188Þ

r1;2 ¼ �5�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52 � 4 � 4

p

2
¼ �5� 3

2
¼ �1;�4 ð2:189Þ

Thus, the solution is

yc ¼ A expð�xÞ þ B expð�4xÞ ð2:190Þ

It is clear that the roots are real and distinct, so the two solutions

are linearly independent.

EXAMPLE 2.13

Solve the second-order equation with boundary conditions

d2y

dx2
þ 4

dy

dx
þ 4y ¼ 0 ð2:191Þ

where y(0)¼ 0 and dy(0)=dx¼ 1.

The characteristic equation is

r2 þ 4rþ 4 ¼ 0 ð2:192Þ

so that

r ¼
�4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4Þ2 � 4 � 4

q
2

¼ �2 ð2:193Þ

which shows that only one root results (i.e., a double root); hence,

we might conclude that the general solution is

y1 ¼ A0 expð�2xÞ ð2:194Þ

Clearly, a single arbitrary constant cannot satisfy the two stated

boundary conditions, so it should be obvious that one solution,

along with its arbitrary constant, is missing. As stipulated earlier,

an nth-order equation must yield n arbitrary constants and n line-

arly independent solutions. For the present case, n¼ 2, so that we

need to find an additional linearly independent solution.

To find the second solution, we use the definition of linear inde-

pendence to propose a new solution, so that we write

y2 ¼ v ðxÞ expð�2xÞ ð2:195Þ

Now, if v (x) is not a simple constant, then the second solution will

be linearly independent of y1 ¼ A0 expð�2xÞ. Thus, we have used
the first solution (and the definition of linear independence) to

construct the second one. Inserting y2 into the defining equation

shows after some algebra

d2v

dx2
¼ 0 ð2:196Þ

so that

v ¼ Bxþ C ð2:197Þ
hence,

y2 ¼ ðBxþ CÞ expð�2xÞ ð2:198Þ
The arbitrary constant C can be combined with A0 and call it A,

hence our two linearly independent solutions yield the comple-

mentary solution

yc ¼ A expð�2xÞ þ Bx expð�2xÞ ð2:199Þ

This analysis is, in fact, a general result for any second-order equa-

tion when equal roots occur; that is,

yc ¼ A expðrxÞ þ Bx expðrxÞ ð2:200Þ

since the second solution was generated from y ¼ vðxÞ expðrxÞ,
and it is easy to show in general this always leads to

d2v=dx2¼ 0.

Applying the boundary conditions to Eq. 2.200 shows

ycð0Þ ¼ 0 ¼ Að1Þ þ Bð0Þð1Þ
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hence A¼ 0. To find B, differentiate

dycð0Þ
dx

¼ 1 ¼ Bð1Þ þ Bð0Þ

therefore, B¼ 1; hence, the complementary solution satisfying the

stipulated boundary conditions is

yc ¼ x expð�2xÞ ð2:201Þ

EXAMPLE 2.14

Solve the second-order equation

d2y

dx2
þ y ¼ 0 ð2:202Þ

We immediately see difficulties, since the characteristic

equation is

r2 þ 1 ¼ 0 ð2:203Þ

so complex roots occur

r1;2 ¼ �
ffiffiffiffiffiffiffi
�1

p
¼ �i ð2:204Þ

This defines the complex variable i (a subject dealt with in

Chapter 9), but we could still proceed and write the solution

yc ¼ A expðþixÞ þ B expð�ixÞ ð2:205Þ

This form is not particularly valuable for computation pur-

poses, but it can be put into more useful form by introducing

the Euler formula

eix ¼ cosðxÞ þ i sinðxÞ ð2:206Þ

which allows representation in terms of well-known, tran-

scendental functions. Thus, the complex function eix can be

represented as the linear sum of a real part plus a complex

part. This allows us to write

yc ¼ A cosðxÞ þ i sinðxÞ½ � þ B cosðxÞ � i sinðxÞ½ � ð2:207Þ

or

yc ¼ ðAþ BÞcosðxÞ þ ðA� BÞi sinðxÞ ð2:208Þ

Now, since A and B are certainly arbitrary, hence in general

(AþB) is different from (A – B) i, then we can define these

groups of constants as new constants, so

yc ¼ D cosðxÞ þ E sinðxÞ ð2:209Þ

which is the computationally acceptable general result. The

Euler formula will be discussed in Chapter 9. Suffice to say,

it arises naturally from the power series expansion of the

exponential function.

EXAMPLE 2.15

The differential equation

d2y

dx2
� 2

dy

dx
þ 2y ¼ 0 ð2:210Þ

has properties similar to the last example. The characteristic equa-

tion is

r2 � 2rþ 2 ¼ 0 ð2:211Þ
hence,

r ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22 � 4 � 2

p

2
¼ 1� i ð2:212Þ

so the solutions are

yc ¼ expðxÞ½A expðþixÞ þ B expð�ixÞ� ð2:213Þ

Introducing the Euler formula as before shows

yc ¼ expðxÞ½C cosðxÞ þ D sinðxÞ� ð2:214Þ

EXAMPLE 2.16

Find the relation to predict the composition profile in a packed

tube reactor undergoing isothermal linear kinetics with axial diffu-

sion. The packed tube, heterogeneous catalytic reactor is used to

convert species B by way of the reaction

B ! products; RB ¼ kCB

moles

time-volume bed

� �

into products under (assumed) isothermal conditions. Diffusion

along the axis is controlled by Fickian-like expression so that,

in parallel with transport by convection due to superficial

velocity v0, there is also a diffusion-like flux represented by a

Fickian relation

JE ¼ �DE

@CB

@z

mole

area-time

� �
ð2:215Þ
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acting along the longitudinal axis (z-coordinate). For linear

kinetics, the conservation law of species B for an element Dz
long of the tube with cross-sectional area A is

v0 ACBjz � v0 ACBjzþDz þ AJEjz � AJEjzþDz � RBðADzÞ ¼ 0

ð2:216Þ

Dividing by the element volume ADz and taking limits produ-

ces the transport equation

�v0
dCB

dz
� dJE

dz
� RB ¼ 0 ð2:217Þ

Introducing the flux vector, Eq. 2.215, and the rate expression

RB then produces a constant coefficient, second-order linear

differential equation

DE

d2CB

dz2
� v0

dCB

dz
� kCB ¼ 0 ð2:218Þ

If we divide through by DE, this has a form identical with

Eq. 2.180, where a1 ¼ �v0=DE and a0 ¼ �k=DE. The charac-

teristic equation for a solution of the form CB¼A exp(rz) is

r2 � v0
DE

� �
r� k

DE

� �
¼ 0 ð2:219Þ

so the roots are

r1;2 ¼ 1

2

v0
DE

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

v0
DE

� �2

þ k

DE

� �s
ð2:220Þ

hence, the general complementary solution is

CB ¼ A expðr1zÞ þ B expðr2zÞ ð2:221Þ

where we denote r1 as possessing the positive argument and r2
as the negative. It is often found convenient (e.g., in applying

boundary conditions) to express this solution using hyperbolic

functions; thus, we note

coshðxÞ ¼ expðxÞ þ expð�xÞ
2

ð2:222Þ

and

sinhðxÞ ¼ expðxÞ � expð�xÞ
2

ð2:223Þ

Now, we could write our solution in symbolic form

CB ¼ expðazÞ½A expðbzÞ þ B expð�bzÞ� ð2:224Þ

where

a ¼ v0
2DE

; b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

v0
DE

� �2

þ k

DE

� �s
ð2:225Þ

Now, add and subtract terms within the brackets and rearrange

to see

CB ¼ expðazÞ½ðA� BÞsinhðbzÞ þ ðAþ BÞcoshðbzÞ� ð2:226Þ

Moreover, since the new arbitrary constant groups are not gen-

erally equal, we redefine constants

CB ¼ expðazÞ½F sinhðbzÞ þ E coshðbzÞ� ð2:227Þ

This is a convenient form for computation and also for evalu-

ating constants by way of boundary conditions, since

d sinhðxÞ
dx

¼ coshðxÞ ð2:228Þ

d coshðxÞ
dx

¼ sinhðxÞ ð2:229Þ

For packed beds of finite length L, the most widely used boun-

dary values are the famous Danckwerts conditions:

v0C0 ¼ �DE

dCAðzÞ
dz

þ v0CAðzÞ; z ¼ 0 ð2:230Þ

dCAðzÞ
dz

¼ 0; z ¼ L ð2:231Þ

The first simply states that the convective flux of fresh solution

far upstream of known composition C0 exactly equals the com-

bined convective and diffusion flux at the bed entrance. This

accounts for the so-called backmixing at the bed entrance. The

second condition states that diffusion flux at the exit tends to

zero. Both these boundary conditions require differentiation of

the general solution; hence, we justify the use of the hyperbolic

function form (i.e., it is impossible to make a sign error on dif-

ferentiating hyperbolic functions!).

Applying the above boundary conditions to the general solution

in Eq. 2.227 leads to the algebraic equations needed to find inte-

gration constants F and E in terms of known parameters; the first

condition yields

C0v0 ¼ �DEb½F coshð0Þ þ E sinhð0Þ�expð0Þ
�DEa½F sinhð0Þ þ E coshð0Þ�expð0Þ
þ v0½F sinhð0Þ þ E coshð0Þ�expð0Þ

ð2:232Þ

Noting that sinh(0)¼ 0 and cosh(0)¼ 1, we find

C0v0 ¼ Eðv0 � DEaÞ þ Fð�DEbÞ ð2:233Þ
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The second condition gives

0 ¼ ðaF þ bEÞsinhðbLÞ þ ðaE þ bFÞcoshðbLÞ ð2:234Þ

Solving for F and E yields

E ¼ C0½a tanhðbLÞ þ b�
k=v0ð ÞtanhðbLÞ þ a tanhðbLÞ þ b

ð2:235Þ

F ¼ �C0½aþ b tanhðbLÞ�
k=v0ð ÞtanhðbLÞ þ a tanhðbLÞ þ b

ð2:236Þ

where we have used b2 � a2 ¼ k=DE. Recognizing that both a

and b have units of reciprocal length, we can write the final

solution in dimensionless form in terms of two dimensionless

numbers. Thus, by defining dimensionless composition to be c ¼
CB=C0 and dimensionless length to be j ¼ z=L, we have

c ¼ expðaLjÞ½eða;bÞcoshðbLjÞ � f ða;bÞsinhðbLjÞ�
gða; bÞ ð2:237Þ

where

eða;bÞ ¼ aL tanhðbLÞ þ bL ð2:238Þ

f ða;bÞ ¼ bL tanhðbLÞ þ aL ð2:239Þ

gða;bÞ ¼ kL

v0
þ aL

� �
tanhðbLÞ þ bL ð2:240Þ

There are actually only two dimensionless groups hidden in the

above maze; these are

aL ¼ 1

2

Lv0
DE

� �
;

Lv0
DE

¼ Pe ðPeclet numberÞ

ð2:241Þ

bL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

Lv0
DE

� �2

þ L2k

DE

s
;

L2k

DE

¼ Ha ðHatta numberÞ

ð2:242Þ

From these two (Pe and Ha), we can relate the remaining group

kL

v0
¼ Ha

Pe
ð2:243Þ

From Eq. 2.237, we see at the entrance

cð0Þ ¼ eða; bÞ
gða; bÞ ð2:244Þ

This example illustrates the complexity of even elementary

second-order equations when practical boundary conditions are

applied. Figure 2.2 illustrates the reactor composition profiles

predicted for plug and dispersive flow models. Under quite real-

izable operating conditions, the effect of backmixing (diffusion)

is readily seen. Diffusion tends to reduce the effective number of

stages for a packed column. Its effect can be reduced by using

smaller particle sizes, since Klinkenberg and Sjenitzer (1956)

have shown that the effective diffusion coefficient (DE) varies as

v0dp, where dp is particle size. This also implies that Peclet num-

ber is practically independent of velocity (Pe � L/dp).

Under conditions where effective diffusion is small, so that

DE � 0, we would have solved the plug flow model

v0
dCB

dz
þ kCB ¼ 0 ð2:245Þ

Using the entrance condition CB(0)¼C0, so that separating

variables yields finally

c ¼ CB

C0

¼ exp � kL

v0
j

� �
ð2:246Þ

To compare the two solutions illustrated in Fig. 2.2, we

recall that kL=v0¼Ha=Pe.

2.5.2 Particular Solution Methods for

Forced Equations

We have seen at the beginning of the chapter that forced

equations give rise to solutions, which are particular to the

form taken by the forcing function f (x). We consider the

case of constant coefficients as follows:

d2y

dx2
þ a1

dy

dx
þ a0y ¼ f ðxÞ ð2:247Þ

FIGURE 2.2 Composition profiles in catalytic reactor.
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where again we note the general solution is comprised of

two parts, namely,

y ¼ ycðxÞ þ ypðxÞ ð2:248Þ

We discussed methods of finding yc(x) in the previous sec-

tion, and now we discuss general methods of finding the

particular integral, yp(x).

There are three widely used methods to find yp(x); the

first two are applicable only to the case of constant

coefficients

1. Method of Undetermined Coefficients This is a

rather evolutionary technique, which builds on the

functional form taken by f(x).

2. Method of Inverse Operators This method builds

on the property that integration as an operation is the

inverse of differentiation.

3. Method of Variation Parameters This method is

the most general approach and can be applied even

when coefficients are nonconstant; it is based on the

principles of linear independence and superposition,

and exploits these necessary properties to construct a

particular integral.

1. Method of Undetermined Coefficients

This widely used technique is somewhat intuitive, and is

also easily implemented. It has certain disadvantages, since

it is not completely fail-safe in the hands of a novice. The

first step in finding yp is to produce a collection of functions

obtained by differentiating f(x). Each of these generated

functions are multiplied by an undetermined coefficient and

the sum of these plus the original function are then used as a

“trial expression” for yp. The unknown coefficients are

determined by inserting the trial solution into the defining

equation. Thus, for a second-order equation, two differen-

tiations are needed. However, for an nth-order equation, n

differentiations are necessary (a serious disadvantage).

EXAMPLE 2.17

Find the complementary and particular solutions for the linear

equation

d2y

dx2
� y ¼ x2 ð2:249Þ

and evaluate arbitrary constants using y(0)¼ 1, dy(0)/dx¼ 0.

The first step is to find the complementary solutions. We

shall need to know these to insure that our particular solution is,

in fact, linearly independent of each complementary solution.

The characteristic equation for the unforced equation is

r2 � 1 ¼ 0; r1;2 ¼ �1 ð2:250Þ

so the roots are real and distinct; hence,

yc ¼ A expðxÞ þ B expð�xÞ ð2:251Þ

To construct the particular solution, we note that repeated differ-

entiation of f (x)¼ x2 yields x and 1, so that we propose the linear

combinations

yp ¼ ax2 þ bxþ c ð2:252Þ

The undetermined coefficients (a, b, c) are to be determined by

inserting our proposed solution into the left-hand side of the defin-

ing equation; thus,

2a� ðax2 þ bxþ cÞ ¼ x2 þ ð0ÞðxÞ þ ð0Þð1Þ ð2:253Þ

Note that we have written f (x) as a descending series with the last

two coefficients of magnitude zero. This will help in deducing the

values for a, b, c. We next equate all multipliers of x2 on left- and

right-hand sides, all multipliers of x, and all multipliers of unity.

These deductive operations produce

x2 : �a ¼ 1 ; a ¼ �1

x : �b ¼ 0 ; b ¼ 0

1 : 2a� c ¼ 0 ; c ¼ 2a ¼ �2

We solve for the coefficients in sequence and see that

yp ¼ �x2 � 2 ð2:254Þ

The complete solution is then

y ¼ A expðxÞ þ B expð�xÞ � ðx2 þ 2Þ ð2:255Þ

It is clear that all solutions are linearly independent. Finally, we

apply boundary conditions y(0)¼ 1 and dy(0)=dx¼ 0 to see

1 ¼ Aþ B� 2

0 ¼ A� B

This shows

A ¼ B ¼ 3
2

EXAMPLE 2.18

Find the linearly independent particular solutions for

d2y

dx2
� y ¼ expðxÞ ð2:256Þ
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The complementary solution is the same as the last problem.

Repeated differentiation of the exponential function reproduces

the exponential function. We are keenly aware that a trial solu-

tion yp ¼ a expðxÞ is not linearly independent of one of the com-

plementary solutions. We respond to this difficulty by invoking

the definition of linear independence

yp ¼ vðxÞexpðxÞ ð2:257Þ

Clearly, if vðxÞ is not a constant, then this particular solution will

be linearly independent of the complementary function exp(x).

Inserting the proposed yp(x) in the left-hand side of the defining

equation yields

d2v

dx2
þ 2

dv

dx
¼ 1 ð2:258Þ

To find v (x), we replace dv=dx¼ p

dp

dx
þ 2p ¼ 1 ð2:259Þ

This is the I-factor equation with solution

p ¼ dv

dx
¼ 1

2
þ ce�2x ð2:260Þ

Integrating again shows

v ¼ 1

2
x� c

2
e�2x þ D ð2:261Þ

This suggests a particular solution

yp ¼ 1
2
x

� �
expðxÞ ð2:262Þ

since the other two terms yield contributions that are not linearly

independent (they could be combined with the complementary

parts).

The complete solution is

y ¼ A expðxÞ þ B expð�xÞ þ 1
2
x expðxÞ ð2:263Þ

and all three solutions are linearly independent.

Another way to construct the particular integrals under circum-

stances when the forcing function duplicates one of the comple-

mentary solutions is to write

yp ¼ ax expðxÞ ð2:264Þ

Inserting this into the defining equation shows a¼ 1
2
as before. In

fact, if an identity is not produced (i.e., a is indeterminate), then

the next higher power is used, ax2 exp(x), and so on, until the co-

efficient is found. We demonstrate this in Example 2.19.

EXAMPLE 2.19

Find the complementary and particular solution for

d2y

dx2
� 8

dy

dx
þ 16y ¼ 6xe4x ð2:265Þ

The characteristic equation is

r2 � 8rþ 16 ¼ ðr� 4Þ2 ð2:266Þ

Thus, we have repeated roots

r1;2 ¼ 4 ð2:267Þ

As we learned earlier in Example 2.13, the second complementary

solution is obtained by multiplying the first by x, so that

yc ¼ Ae4x þ Bxe4x ð2:268Þ

However, the forcing function has the same form as xe4x, so our

first trial for the yp function is

yp ¼ ax2e4x ð2:269Þ

which is linearly independent of both parts of the complementary

solution. Differentiating twice yields

y0p ¼ 2axe4x þ 4ax2e4x

y00p ¼ 2ae4x þ 8axe4x þ 8axe4x þ 16ax2e4x
ð2:270Þ

inserting these relations into the defining equation yields

½2aþ 16axþ 16ax2�e4x � ½16axþ 32ax2�e4x

þ 16½ax2�e4x¼ 6xe4x ð2:271Þ

Canceling terms shows the null result

2ae4x ¼ 6xe4x ð2:272Þ

hence, a is indeterminate. Next, try the higher power

yp ¼ ax3e4x ð2:273Þ

y0p ¼ 3ax2e4x þ 4ax3e4x ð2:274Þ

y00p ¼ 6axe4x þ 12ax2e4x þ 12ax2e4x þ 16ax3e4x ð2:275Þ

Inserting these yields

½6axþ 24ax2 þ 16ax3�e4x � ½24ax2 þ 32ax3�e4x
þ ½16ax3�e4x¼ 6xe4x ð2:276Þ
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By canceling terms, what remains identifies the undetermined

coefficient

6axe4x ¼ 6xe4x ð2:277Þ
hence, a¼ 1.

The complete solution can now be written

y ¼ ðAþ Bxþ x3Þe4x ð2:278Þ

We see some serious disadvantages with this technique,

especially the large amount of algebraic manipulation

(which produces human errors) required for only moder-

ately complex problems. The above particular solution

could have been worked out in two lines of calculation,

without trial and error, using the inverse operator techni-

que, as we show next.

2. Method of Inverse Operators

This method builds on the Heaviside differential operator,

defined as

Dy ¼ dy

dx
ð2:279Þ

where D is the elementary operation d/dx. It follows certain

algebraic laws, and must always precede a function to be

operated upon; thus, it is clear that repeated differentiation

can be represented by

DðDyÞ ¼ D2y ¼ d2y

dx2
ð2:280Þ

DðD2yÞ ¼ D3y ¼ d3y

dx3
ð2:281Þ

Dny ¼ dny

dxa
ð2:282Þ

Because the operator D is a linear operator, it can be

summed and factored

d2y

dx2
� 8

dy

dx
þ 16y ¼ D2y� 8Dyþ 16y ¼ 0 ð2:283Þ

The operators can be collected together as a larger operator

ðD2 � 8Dþ 16Þy ¼ 0 ð2:284Þ

This also can be factored, again maintaining order of oper-

ations

ðD� 4Þ2y ¼ 0 ð2:285Þ

In manipulating the Heaviside operator D, the laws of alge-

braic operation must be followed. These basic laws are as

follows.

(a) The Distributive Law. For algebraic quantities A,

B, C, this law requires

AðBþ CÞ ¼ ABþ AC ð2:286Þ

We used this above law when we wrote

ðD2 � 8Dþ 16Þy ¼ D2y� 8Dyþ 16y ð2:287Þ

The operator D is in general distributive.

(b) The Commutative Law. This law sets rules for the

order of operation

AB ¼ BA ð2:288Þ
which does not generally apply to the Heaviside

operator, since obviously

Dy 6¼ yD ð2:289Þ
However, operators do commute with themselves,

since

ðDþ 4ÞðDþ 2Þ ¼ ðDþ 2ÞðDþ 4Þ ð2:290Þ

(c) The Associative Law. This law sets rules for

sequence of operation

AðBCÞ ¼ ðABÞC ð2:291Þ

and does not in general apply to D, since sequence

for differentiation must be preserved. However, it is

true that

DðDyÞ ¼ ðDDÞy ð2:292Þ
but that

DðxyÞ 6¼ ðDxÞy ð2:293Þ

since we know that DðxyÞ ¼ ðDxÞyþ xDy:
To use the operators (in an inverse fashion) we

have only two rules that must be remembered. We

will lead up to these rules gradually by considering,

first, the operation on the most prevalent function,

the exponential exp(rx). We have seen in the pre-

vious section that all complementary solutions have

origin in the exponential function.

Operation on exponential. It is clear that differentiation
of exp(rx) yields

DðerxÞ ¼ rerx ð2:294Þ
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and repeated differentiation gives

D2ðerxÞ ¼ r2erx ð2:295Þ

DnðerxÞ ¼ rnerx ð2:296Þ

and a sum of operators, forming a polynomial such as

P(D)

PðDÞðerxÞ ¼ PðrÞerx ð2:297Þ

This forms the basis for Rule 1. We have alluded to this

earlier in Section 2.5.1 in discussing the characteristic

equation for Example 2.12

ðD2 þ 5Dþ 4Þerx ¼ ðr2 þ 5rþ 4Þerx ð2:298Þ

Operation on products with exponentials. The second

building block to make operators useful for finding

particular integrals is the operation on a general

function f(x)

D f ðxÞerxð Þ ¼ erxDf þ fDðerxÞ ¼ erxðDþ rÞf ðxÞ
ð2:299Þ

Repeated differentiation can be shown to yield

D2ð f erxÞ ¼ erxðDþ rÞ2f ðxÞ ð2:300Þ

Dnð f erxÞ ¼ erxðDþ rÞn f ðxÞ ð2:301Þ

and for any polynomial of D, say P(D)

PðDÞð f ðxÞerxÞ ¼ erxPðDþ rÞ f ðxÞ ð2:302Þ

We learn in this sequence of examples that operation

on the product f(x)erx with D simply requires shifting

the exponential to the front and operating on f(x) with

(Dþ r). This forms the basis for Rule 2.

The inverse operator. Modern calculus often teaches

that integration as an operation is the inverse of differ-

entiation. To see this, write

d

dx

Z
f ðxÞdx ¼ D

Z
f ðxÞdx ¼ f ðxÞ ð2:303Þ

which implies Z
f ðxÞdx ¼ D�1f ðxÞ ð2:304Þ

Thus, the operation D�1f ðxÞ implies integration with

respect to x, whereas Df(x) denotes differentiation

with respect to x. This “integrator,” D�1, can be treated

like any other algebraic quantity, provided the rules of

algebra, mentioned earlier, are obeyed.

We have already seen that polynomials of operator D

obey two important rules:

Rule 1: PðDÞerx ¼ PðrÞerx
Rule 2: PðDÞðf ðxÞerxÞ ¼ erxPðDþ rÞf ðxÞ

We show next that these rules are also obeyed by inverse

operators.

EXAMPLE 2.20

Find the particular solution for

dy

dx
� 2y ¼ ex ð2:305Þ

Write this in operator notation, noting that if f(x) appears on the

right-hand side, we are obviously seeking a particular solution

ðD� 2Þyp ¼ ex ð2:306Þ

hence keeping the order of operation in mind

yp ¼
1

D� 2
ex ð2:307Þ

Clearly, any polynomial in the denominator can be expanded into

an ascending series by synthetic division; in the present case, we

can use the binomial theorem written generally as

ð1þ f Þp ¼ 1þ pf þ pðp� 1Þ
ð1Þð2Þ f 2 þ pðp� 1Þðp� 2Þ

ð1Þð2Þð3Þ f 3 þ � � � þ

ð2:308Þ

To put our polynomial operator in this form, write

1

D� 2
¼ 1

�2 1� ðD=2Þð Þ ð2:309Þ

so that we see the equivalence f ¼ �D=2; p ¼ �1; hence,

1

�2 1� ðD=2Þð Þ ¼ � 1

2
1þ 1

2
D

� �
þ 1

2
D

� �2

þ 1

2
D

� �3

þ � � � þ
" #

ð2:310Þ

hence operating on exp (x) using Rule 1

yp ¼
1

D� 2
ex ¼ � 1

2
1þ 1

2
D

� �
þ 1

2
D

� �2

þ � � � þ
" #

ex

ð2:311Þ
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yields

yp ¼ ex 1þ 1

2

� �
þ 1

2

� �2

þ 1

2

� �3

þ � � �
" #

� 1

2

� �
ð2:312Þ

But the series of terms is a geometrical progression and the sum to

infinity is equal to 2, so we have finally

yP ¼ �ex ð2:313Þ
and the general solution is, since yc¼A exp(2x),

yðxÞ ¼ A expð2xÞ � expðxÞ ð2:314Þ

This example simply illustrates that an inverse operator can always

be expanded in series as a polynomial and so our previous Rule 1

is also applicable to inverse operators.

RULE 1: INVERSE OPERATORS We see in general that

polynomials in the denominator can be operated upon by

Rule 1

1

PðDÞ e
rx ¼ 1

PðrÞ e
rx ð2:315Þ

Thus, we could have applied this rule directly to the previous

example without series expansion; since r¼ 1, we have

yp ¼ ðD� 2Þ�1ex ¼ �ex ð2:316Þ

which is quite easy and efficient to use.

Occasionally, when applying Rule 1 to find a particu-

lar integral yp, we encounter the circumstance P(r)¼ 0.

This is an important fail-safe feature of the inverse oper-

ator method, since it tells the analyst that the require-

ments of linear independence have failed. The case

when P(r)¼ 0 arises when the forcing function f (x) is of

the exact form as one of the complementary solutions.

RULE 2: INVERSE OPERATORS The difficulty above can

always be overcome by a clever use of Rule 2. If P(r)¼ 0,

then obviously P(D) contains a root equal to r; that is, if we

could factor P(D) then

1

PðDÞ ¼
1

ðD� rÞ � 1

gðDÞ ð2:317Þ

For n repeated roots, this would be written

1

PðDÞ ¼
1

ðD� rÞn � 1

gðDÞ ð2:318Þ

Now, since g(D) contains no roots r, then Rule 1 can be

used. However, we must modify operation of 1=ðD� rÞn
when it operates on exp(rx). Thus, we plan to operate on

exp(rx) in precise sequence. Consider Rule 2 for

polynomials in the denominator

1

PðDÞ f ðxÞerx½ � ¼ erx
1

PðDþ rÞ f ðxÞ ð2:319Þ

and suppose f(x)¼ 1, then if PðDÞ ¼ ðD� rÞn, we have

1

ðD� rÞn ð1Þerx½ � ¼ erx
1

Dn 1 ð2:320Þ

This suggests n repeated integrations of unity

1

Dn 1 ¼
ZZZ

n

� � �
Z
1dx ¼ xn

n!
ð2:321Þ

Now, reconsider the general problem for a forcing function

exp(rx)

1

PðDÞ expðrxÞ ¼
1

ðD� rÞngðDÞ expðrxÞ ð2:322Þ

First, operate on exp(rx) using Rule 1 as g(D)�1 exp(rx),

then shift exp(rx) to get

1

ðD� rÞn expðrxÞ
1

gðrÞ

Next, operate on exp(rx) using Rule 2, taking f(x)¼ 1; hence

(since g(r) is finite),

expðrxÞ 1

Dn

1

gðrÞ ¼
expðrxÞ
gðrÞ

ZZZ
n

� � �
Z
dx ¼ erx

gðrÞ
xn

n!
ð2:323Þ

We finally conclude, when roots of the complementary solutions

appear as the argument in an exponential forcing function, we will

arrive at P(r)¼ 0, implying loss of linear independence. By factor-

ing out such roots, and applying Rule 2, a particular solution can

always be obtained.

EXAMPLE 2.21

Find the particular solution for

d2y

dx2
� 4

dy

dx
þ 4y ¼ xe2x ð2:324Þ

Applying the operator D and factoring

ðD2 � 4Dþ 4Þyp ¼ ðD� 2Þ2yp ¼ xe2x ð2:325Þ

and solve for yp

yp ¼
1

ðD� 2Þ2 xe
2x ð2:326Þ
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If we apply Rule 1, we see P(2 � 2)¼ 0. So, apply Rule 2,

noting that f(x)¼ x, hence replacing (D � 2) with (Dþ 2 �2)

yp ¼ e2x
1

ðDþ 2� 2Þ2 x ð2:327Þ

yp ¼ e2x
1

D2
x ¼ x3e2x

6
ð2:328Þ

As we saw earlier, for repeated roots, the general complemen-

tary solution is (AþBx) exp(2x), so that the complete

solution is

y ¼ ðAþ BxÞe2x þ 1
6
x3e2x ð2:329Þ

The reader can clearly see the speed and efficiency of this method

compared to the tedious treatment required by the method of

undetermined coefficients, as done in Example 2.19.

Inverse operators on trigonometric functions. We have

treated periodic functions such as sin(x), cos(x) in the study

of complementary solution (Eq. 2.206), and found the Euler

formula useful

eix ¼ cosðxÞ þ i sinðxÞ ð2:330Þ

Thus, we say the real part of eix is cos(x) and the Imaginary

part is sin(x)

Re eix
� � ¼ cos xð Þ ð2:331Þ

ImðeixÞ ¼ sinðxÞ ð2:332Þ

Thus, if cos(x) appears as a forcing function f (x), then to

use the inverse operators acting on exponential functions,

we would write, for example,

d2y

dx2
� y ¼ cosðxÞ ¼ ReðeixÞ ð2:333Þ

Now, in solving for the particular integral, it is also implied

that we must extract only the Real Part of the final solution;

thus, using Rule 1 with r¼ i, we get

yp ¼ Real
1

ðD2 � 1Þ e
ix

� �
¼ Real � 1

2
eix

� �
ð2:334Þ

since i2¼�1. Thus, we have finally,

yp ¼ � 1
2
cosðxÞ ð2:335Þ

We can verify this using the method of undetermined

coefficients. Repeated differentiation yields only two func-

tions, so that

yp ¼ a cosðxÞ þ b sinðxÞ

Inserting this into the defining equation

�a cosðxÞ � b sinðxÞ½ � � a cosðxÞ þ b sinðxÞ½ � ¼ cosðxÞ
ð2:336Þ

Therefore, we conclude �2a¼ 1, b¼ 0 so that

yp ¼ � 1
2
cosðxÞ ð2:337Þ

as required, but this method requires much more algebra.

Had the forcing function been sin(x), then we would have

extracted the Imaginary Part of the answer. We illustrate

this next.

EXAMPLE 2.22

Find the particular solution for

d2y

dx2
þ y ¼ sinðxÞ ð2:338Þ

Inserting operators and solving for y gives

yp ¼ Im
1

D2 þ 1
eix

� �
¼ Im

1

ðD� iÞðDþ iÞ e
ix

� �
ð2:339Þ

We use Rule 1 first on the nonzero factor (Dþ i) and then operate

on exp(ix) with (D – i) using Rule 2; so the first step is

yp ¼ Im
1

D� i
eix

1

2i

� �
ð2:340Þ

Now, apply Rule 2, noting that f (x)¼ 1

yp ¼ Im
eix

2i

� �
1

D
� 1

� �
ð2:341Þ

Here, we see that D�1 1¼ x, and thus, the imaginary part is

Im
eix

2i

� �
¼ Im

ieix

�2

� �
¼ � 1

2
cosðxÞ ð2:342Þ

Hence, we finally obtain

yp ¼ � 1
2
x cosðxÞ ð2:343Þ
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Had we used the method of undetermined coefficients, it would

have been necessary to make the first guess (to insure linear

independence from the complementary solutions which are sin(x)

and cos(x)

yp ¼ ax sinðxÞ þ bx cosðxÞ ð2:344Þ

which would lead to a lengthy and tedious analysis, as the reader

can verify.

In general, the inverse operator method is not recommended

for product functions such as x sin(x) because of difficulty

in expanding operators in series to operate on polynomial

functions (i.e., aþ bxþ cx2, etc.). In such cases, the

method of variation of parameters, which follows, may be

used to good effect.

3. Method of Variation of Parameters

As mentioned at the beginning of this section, this method

can be applied even when coefficients are nonconstant, so

that we treat the general case

d2y

dx2
þ a1ðxÞ dy

dx
þ a0ðxÞy ¼ f ðxÞ ð2:345Þ

At the outset, it is assumed that the two linearly independ-

ent complementary solutions are known

ycðxÞ ¼ AuðxÞ þ BvðxÞ ð2:346Þ

The variation of parameters method is based on the premise

that the particular solutions are linearly independent of u(x)

and v (x). We start by proposing

ypðxÞ ¼ FuðxÞuðxÞ þ FvðxÞvðxÞ ð2:347Þ

where obviously Fu and Fv are not constant. It is clear that

if we insert this proposed solution into the defining equa-

tion, we shall obtain one equation, but we have two

unknowns: Fu and Fv. Thus, we must propose one addi-

tional equation, as we show next, to have a solvable system.

Performing the required differentiation shows using prime

to denote differentiation

dyp

dx
¼ ðuF0

u þ vF0
vÞ þ ðu0Fu þ v0FvÞ ð2:348Þ

It is clear that a second differentiation will introduce second

derivatives of the unknown functions Fu, Fv. To avoid this

complication, we take as our second proposed equation

uF0
u þ vF0

v ¼ 0 ð2:349Þ

This is the most convenient choice, as the reader can verify.

We next find ynp

d2yp

dx2
¼ ðFuu

00 þ Fvv
00Þ þ ðF0

uu
0 þ F0

vv
0Þ ð2:350Þ

By inserting dyp=dx and d2yp=dx
2 into the defining equa-

tion, we obtain, after rearrangement,

Fu u
00 þ a1ðxÞu0 þ a0ðxÞu½ � þ Fv v

00 þ a1ðxÞv0 þ a0ðxÞv½ �
þ F0

uu
0 þ F0

vv
0 ¼ f ðxÞ ð2:351Þ

It is obvious that the bracketed terms vanish because they

satisfy the homogeneous equation (when f (x)¼ 0) since

they are complementary solutions. The remaining equation

has two unknowns,

u0F0
u þ v0F0

v ¼ f ðxÞ ð2:352Þ

This coupled with our second proposition

uF0
u þ vF0

v ¼ 0 ð2:353Þ

forms a system of two equations with two unknowns.

Solving these by defining p ¼ F0
u and q ¼ F0

v shows, first,

from Eq. 2.353

p ¼ � v

u
q ð2:354Þ

Inserting this into Eq. 2.352 gives

u0 � v

u
q

� �
þ v0q ¼ f ðxÞ ð2:355Þ

hence

q ¼ dFv

dx
¼ �uf ðxÞ

u0v � v0u
ð2:356Þ

and this allows p to be obtained as

p ¼ dFu

dx
¼ vf ðxÞ

u0v � v0u
ð2:357Þ

These are now separable, so that within an arbitrary

constant

FuðxÞ ¼
Z

vf ðxÞ
u0v � v0u

dx ð2:358Þ

FvðxÞ ¼
Z �uf ðxÞ
u0v � v0u

dx ð2:359Þ
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These integrations, then, produce the particular solu-

tions, worth repeating as

yp ¼ uðxÞFuðxÞ þ vðxÞFvðxÞ ð2:360Þ

The denominators in Eqs. 2.358 and 2.359 represent

the negative of the so-called Wronskian determinant

Wðu; vÞ ¼ u v
u0 v0


 ¼ uv0 � u0v

which is nonzero if u and v are indeed linearly inde-

pendent. For the second-order systems considered here,

linear independence can be deduced by inspection. For

higher order systems, the application of the Wronskian

is the most direct way to inspect linear independence

(Hildebrand 1962).

EXAMPLE 2.23

The second-order equation with nonconstant coefficients

4x
d2y

dx2
þ 6

dy

dx
þ y ¼ f ðxÞ ð2:361Þ

has complementary solutions (when f(x)¼ 0) obtainable by the

Frobenius series method (Chapter 3)

ycðxÞ ¼ A
sin

ffiffiffi
x

pð Þffiffiffi
x

p þ B
cos

ffiffiffi
x

pð Þffiffiffi
x

p ð2:362Þ

Find the particular solution when f ðxÞ ¼ 1=x3=2. Here, we take the
complementary functions to be

u ¼ sin
ffiffiffi
x

pð Þffiffiffi
x

p ; v ¼ cos
ffiffiffi
x

pð Þffiffiffi
x

p

We first compute the denominator for the integrals in Eqs. 2.358

and 2.359

u0v � v0u ¼ 1

2

1

x3=2
cos2

ffiffiffi
x

p� �þ sin2
ffiffiffi
x

p� �� � ¼ 1

2

1

x3=2
ð2:363Þ

Inserting this into the same integrals yields

Fu ¼
Z

2
cosð ffiffiffi

x
p Þffiffiffi
x

p x3=2
1

x3=2
dx ¼ 4 sinð ffiffiffi

x
p Þ ð2:364Þ

Fv ¼ �
Z

2
sin ð ffiffiffi

x
p Þffiffiffi
x

p x3=2
1

x3=2
dx ¼ 4 cosð ffiffiffi

x
p Þ ð2:365Þ

so that we finally have the particular solution

yp ¼ 4
sin2ð ffiffiffi

x
p Þffiffiffi
x

p þ 4
cos2ð ffiffiffi

x
p Þffiffiffi
x

p ¼ 4ffiffiffi
x

p ð2:366Þ

which is linearly independent of the complementary solutions.

2.5.3 Summary of Particular Solution Methods

We have illustrated three possible methods to find particular

solutions. Each has certain advantages and disadvantages,

which are summarized as follows.

1. Method of Undetermined Coefficients This techni-

que has advantages for elementary polynomial forc-

ing functions (e.g., 2x2þ 1, 5x3þ 3, etc.), and it is

easy to apply and use. However, it becomes quite

tedious to use on trigonometric forcing functions, and

it is not fail-safe in the sense that some experience is

necessary in constructing the trial function. Also, it

does not apply to equations with nonconstant

coefficients.

2. Method of Inverse Operators This method is the

quickest and safest to use with exponential or trigono-

metric forcing functions. Its main disadvantage is the

necessary amount of new material a student must

learn to apply it effectively. Although it can be used

on elementary polynomial forcing functions (by

expanding the inverse operators into ascending poly-

nomial form), it is quite tedious to apply for such con-

ditions. Also, it cannot be used on equations with

nonconstant coefficients.

3. Method of Variation of Parameters This procedure
is the most general method since it can be applied

to equations with variable coefficients. Although it

is fail-safe, it often leads to intractable integrals to

find Fv and Fu. It is the method of choice when

treating forced problems in transport phenomenon

since both cylindrical and spherical coordinate

systems always lead to equations with variable

coefficients.

2.6 COUPLED SIMULTANEOUS ODE

In principle, any set of n linear first-order coupled equations

is equivalent to the nth-order inhomogeneous equation

given earlier as

dny

dtn
þ an�1

dn�1

dtn�1
þ � � � þ a1

dy

dt
þ a0y ¼ f ðtÞ ð2:367Þ

To see this, we redefine variables as follows:

x1 ¼ y; x2 ¼ dx1

dt
; x3 ¼ dx2

dt
; xn ¼ dxn�1

dt

ð2:368Þ
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These definitions turn the nth-order equation into the

coupled set of first-order equations

dx1

dt
¼ 0 � x1 þ 1 � x2 þ 0 � x3 þ 0 � x4 þ � � � þ 0 � xn

dx2

dt
¼ 0 � x1 þ 0 � x2 þ 1 � x3 þ 0 � x4 þ � � � þ 0 � xn

..

.

dxn�1

dt
¼ 0 � x1 þ 0 � x2 þ 0 � x3 þ 0 � x4 þ � � � þ 1 � xn

dxn

dt
¼ �a0x1 � a1x2 � a2x3 � � � � � an�1xn þ f ðtÞ

ð2:369Þ

In vector form, these can be abbreviated as

dx

dt
¼ A � xþ f ð2:370Þ

where the vectors are

dx

dt
¼ dx1

dt
;
dx2

dt
;...;

dxn

dt

� �T
x ¼ ½x1; x2; . . . ; xn�T

f ¼ ½0; 0; 0; . . . ; f ðtÞ�T
ð2:371Þ

and the matrix of coefficients is

A ¼

0 1 0 0 � � � 0

0 0 1 0 � � � 0

� � � � � � �
� � � � � � �

�a0 �a1 �a2 � � � � �an�1

2
66664

3
77775� ð2:372Þ

Matrix methods were introduced in Chapter 1 and will

continue in the following section (2.7). Students inter-

ested in advanced material on the subject should consult

the excellent text by Amundson (1966). Suffice to

say that these specialized techniques must ultimately

solve the same required characteristic equation as taught

here, namely,

rn þ an�1r
n�1 þ � � � þ a1rþ a0 ¼ 0 ð2:373Þ

so that the n eigenvalues r must be found as before.

However, useful methods exist that treat simultaneous

equations without resorting to formalized methods of multi-

linear algebra. We shall discuss two of these methods

because of their utility and frequent occurrence in practical

problems:

1. Elimination of Independent Variables.

2. Elimination of Dependent Variables.

These common-sense methods often escape the notice of an

analyst because the structure and complexity of a problem

may be so intimidating. We illustrate the above principles

with a few examples as follows.

EXAMPLE 2.24

Finely dispersed catalyst particles in a bed are used to promote the

irreversible nth-order gas-phase reaction in a batch, adiabatic reac-

tor of constant volume

A ! Products; RA ¼ knðTÞCn
A

where CA denotes concentration of A and kn(T) is the temperature-

dependent rate constant, which obeys the Arrhenius expression

kn ¼ a exp � E

RT

� �
ð2:374Þ

The product of gas volume and exothermic heat is given by l, and

the heat capacity of the gas is much smaller than the solid catalyst.

Find the maximum temperature sustained by the insulated bed if

there is no volume change in reacting A to products for a mass m

of solid particles.

The simultaneous heat and mole balances can be written as

dCA

dt
¼ �Cn

Aa exp � E

RT

� �
ð2:375Þ

mCp

dT

dt
¼ þlCn

Aa exp � E

RT

� �
ð2:376Þ

This is a rather intimidating set of highly nonlinear equations if a

time–domain solution is sought. However, we need only to find the

relationship between CA and T, so divide the equations (to elimi-

nate time) and see

mCp

dT

dCA

¼ �l ð2:377Þ

which is separable, so that we get

T ¼ � l

mCp

� �
CA þ K ð2:378Þ
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where K is a constant of integration. If we take the initial condi-

tions to be T(0)¼ T0 and CA(0)¼C0, then we have

K ¼ T0 þ l

mCp

C0 ð2:379Þ

and the general result is

ðT � T0Þ ¼ l

mCp

ðC0 � CAÞ ð2:380Þ

Clearly, the maximum temperature occurs after all of the reactant

A is devoured, so setting CA¼ 0 yields

Tmax ¼ T0 þ l

mCp

C0 ð2:381Þ

To find the transient equation T(t) describing temperature between

two extremes ðT0 ! TmaxÞ, we can use Eq. 2.380 to eliminate

CA(t) in Eq. 2.376, so that we need solve only the single nonlinear

equation

mCp

dT

dt
¼ al C0 �mCp

l
ðT � T0Þ

� �n
exp � E

RT

� �
ð2:382Þ

Approximations for this are possible for modest temperature rise

by expanding the exponential function in series and retaining the

low order terms, leading to a linearized expression.

EXAMPLE 2.25

The double pipe, cocurrent heat exchanger is used to cool a

distillate product using cold water circulating through the jacket

as illustrated in Fig. 2.3. The overall heat transfer coefficient is

taken to be U and the mass flow of distillate and water is Wi

and W0, respectively. Under turbulent flow conditions, the fluid

temperatures are taken to be uniform across individual flow cross

sections. Find the relationship to predict how steady-state temper-

ature changes with axial position, and from this, deduce an expres-

sion to compute the average DT between streams. Ignore axial

conduction effects and use constant physical properties. Assume

the inner pipe of diameter d is quite thin.

We first apply the conservation law to each fluid in turn, as

follows:

WiCpiTiðxÞ �WiCpiTiðxþ DxÞ � Uðp dDxÞðTi � T0Þ ¼ 0

ð2:383Þ

W0Cp0T0ðxÞ �W0Cp0T0ðxþ DxÞ þ Uðp dDxÞðTi � T0Þ ¼ 0

ð2:384Þ

where, as noted in Chapter 1, the overbar represents the average

between positions x and xþDx, and in the limit, limDx!0T ! T .

Dividing by Dx and taking limits as before yields the set of

coupled equations:

WiCpi

dTi

dx
þ Up dðTi � T0Þ ¼ 0 ð2:385Þ

W0Cp0

dT0

dx
� Up dðTi � T0Þ ¼ 0 ð2:386Þ

where Ti > T0. By combining parameters as taught in Chapter 1,

we rearrange to get

dTi

dx
þ liðTi � T0Þ ¼ 0 ð2:387Þ

dT0

dx
� l0ðTi � T0Þ ¼ 0 ð2:388Þ

where

li ¼ Up d

WiCpi

; l0 ¼ Up d

W0Cp0

The solutions to these equations are conveniently obtained using

the Heaviside operator D¼ d/dx. Thus, rewrite using operators to

see

ðD þ liÞTi ¼ liT0ðxÞ ð2:389Þ

ðD þ l0ÞT0 ¼ l0TiðxÞ ð2:390Þ

The equations have identical structures, and this suggests the fol-

lowing procedure. Apply the second operator (Dþ l0) to the first

equation and see

ðD þ l0ÞðD þ liÞTi ¼ liðD þ l0ÞT0 ð2:391ÞFIGURE 2.3 Double-pipe heat exchanger.
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But the defining Eq. 2.390 shows that (Dþ l0)T0¼ l0Ti; hence,

we can decouple the equations to get a single equation for Ti

ðD þ l0ÞðD þ liÞTi ¼ lil0Ti ð2:392Þ
This can be simplified further owing to cancellation of terms

D2Ti þ ðl0 þ liÞDTi ¼ 0 ð2:393Þ
This homogeneous equation has characteristic roots

r2 þ ðl0 þ liÞr ¼ 0 ð2:394Þ

hence,

r1 ¼ 0; r2 ¼ �ðl0 þ liÞ
so the complementary solution is

TiðxÞ ¼ Bi þ Ci exp½�ðl0 þ liÞx� ð2:395Þ

Performing the same operation on the equation for T0, that is,

applying the operation (Dþ li) and then using (Dþ li)Ti¼ liT0
yields an identical equation, as might be expected

ðDþ liÞðDþ l0ÞT0 ¼ l0liT0 ð2:396Þ

The solution is the same as for Ti(x), except in general the arbi-

trary constants are different

T0ðxÞ ¼ B0 þ C0 exp½�ðl0 þ liÞx� ð2:397Þ

At first glance, it may appear that we have four arbitrary constants.

However, we can show that Bi, Ci are linearly connected to B0, C0

as follows. Inserting the two solutions into either of the original

heat balances shows, for example, using Eq. 2.387

�Ciðl0 þ liÞexp½�ðl0 þ liÞx�
þ li½Bi � B0 þ ðCi � C0Þexp½�ðl0 þ liÞx� ¼ 0 ð2:398Þ

This can be satisfied only if we stipulate the conditions

Bi ¼ B0 ð2:399Þ

ðl0 þ liÞCi ¼ liðCi � C0Þ ð2:400Þ

which reduces to

Ci ¼ � li

l0
C0 ¼ �W0Cp0

WiCpi

C0 ð2:401Þ

Thus, there exist only two independent constants of integration,

and the two equations for temperature distribution are

TiðxÞ ¼ B0 � li

l0
C0 exp �ðl0 þ liÞx½ � ð2:402Þ

T0ðxÞ ¼ B0 þ C0 exp½�ðl0 þ liÞx� ð2:403Þ

We can find the two constants B0, C0 using boundary

conditions

Tið0Þ ¼ T�
i ; T0ð0Þ ¼ T�

0 ð2:404Þ

where T�
i and T�

0 denote the inlet temperatures of hot distil-

late and cool water, respectively, hence T�
i > T�

0. Solving for

B0, C0 yields

B0 ¼ T�
0 þ DT� li

l0
þ1

� ��1

ð2:405Þ

C0 ¼ �DT� li

l0
þ1

� ��1

ð2:406Þ

where

DT� ¼ T�
i � T�

0

Inserting these and rearranging to a more suitable form gives

finally the dimensionless results, using N¼ li/l0:

ci ¼
TiðxÞ � T�

0

T�
i � T�

0

¼ 1

N þ 1
1þ N exp �ðl0 þ liÞx½ �f g ð2:407Þ

c0 ¼
T0ðxÞ � T�

0

T�
i � T�

0

¼ 1

N þ 1
1� exp �ðl0 þ liÞx½ �f g ð2:408Þ

As x increases, it is easy to see that Ti(x) decreases, as

required, and also T0(x) increases as expected. For conven-

ience, we have denoted dimensionless temperatures as ci and

c0, respectively, and these groups appear naturally in the

course of analysis. The right-hand sides are also dimension-

less, since

N ¼ li

l0
¼ W0Cp0

WiCpi

and of course the argument of the exponential is also dimen-

sionless. This could be used to define a dimensionless axial

coordinate as we did in Chapter 1

z ¼ ðl0 þ liÞx ¼ UðpdÞxðWiCpi þW0Cp0Þ
WiW0CpiCp0

ð2:409Þ

We now write the final solutions in very compact form:

ci zð Þ ¼ 1

N þ 1
1þ N exp �zð Þ½ � ð2:410Þ

c0 zð Þ ¼ 1

N þ 1
1� exp �zð Þ½ � ð2:411Þ

Thus, we see

cið0Þ ¼ 1 and c0ð0Þ ¼ 0
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as required. To find the average DT¼ (Ti� T0)avg, we could

perform the operation

ðTi � T0Þavg ¼
1

L

Z L

0

½TiðxÞ � T0ðxÞ�dx ð2:412Þ

where L denotes the distance to the exit. It is less tedious to

perform this operation in dimensionless form, noting that we

can define the equivalent dimensionless temperature differ-

ence as

DT

DT�

� �
avg

¼ ðci � c0Þavg ¼
1

zL

Z zL

0

½ci zð Þ � c0 zð Þ�dz ð2:413Þ

where

zL ¼ ðli þ l0ÞL ¼ ðN þ 1Þl0L

This is easily integrated, since

ci � c0 ¼ exp �zð Þ ð2:414Þ

By integrating this, we find

DT

DT�

� �
avg

¼ 1

zL
1� expð�zLÞ½ � ð2:415Þ

We could eliminate the exponential term by noting

C iðLÞ � c0ðLÞ ¼ expð�zLÞ ¼
TiðLÞ � T0ðLÞ

DT� ð2:416Þ

so now we have

DT

DT�

� �
avg

¼ 1

zL
1� TiðLÞ � T0ðLÞ

DT�

� �
ð2:417Þ

Moreover, taking logarithms of ½ciðLÞ � c0ðLÞ� yields

ln ciðLÞ � c0ðLÞ½ � ¼ �zL ¼ ln
TiðLÞ � T0ðLÞ

DT�

� �
ð2:418Þ

By inserting this and multiplying by DT
�
, noting the definition

DT� ¼ T�
i � T�

0 ¼ Tið0Þ � T0ð0Þ ð2:419Þ

we thus obtain the expected result, which defines the log mean DT

DTavg ¼ ½TiðLÞ � T0ðLÞ� � ½Tið0Þ � T0ð0Þ�
ln½ðTiðLÞ � T0ðLÞÞ=ðTið0Þ � T0ð0ÞÞ� ð2:420Þ

How would this average DT change if we had included effects

arising from axial conduction?

2.7 EIGENPROBLEMS

In this section, we will consider briefly the eigenproblems,

that is, the study of the eigenvalues and eigenvectors. The

study of coupled linear differential equations presented in

the next section requires the analysis of the eigenproblems.

Let us consider this linear equation written in compact

matrix notation

Ax ¼ b ð2:421Þ

The homogeneous form of the equation is simply Ax¼ 0,

where 0 is the zero vector, that is, a vector with all zero ele-

ments. If all equations in Eq. 2.421 are independent, then

the trivial solution to the homogeneous equation is x¼ 0.

Now, if we modify the matrix A to form (A� lI), then the

homogeneous equation will become

ðA� lIÞx ¼ 0 ð2:422Þ

Beside the obvious trivial solution to the above equation,

there exists some value of l such that the solution is non-

zero. In such a case, the value of l is called the eigenvalue

and the solution vector x corresponding to that eigenvalue

is called the eigenvector. The problem stated by Eq. 2.422

is then called the eigenproblem.

This eigenproblem arises naturally during the analysis of

coupled linear differential equations, as we shall see in the

next section. The eigenvalues can be determined from the

determinant det(A� lI)� ¼ 0, for which the equation is

called the characteristic equation. Obtaining this equation

for a large system is very difficult. Iteration procedures,

such as the power method and its variations, provide a use-

ful means to obtain eigenvalues and corresponding eigen-

vectors. Details of methods for solving for eigenvalues can

be found in Hoffman (1992) and Fadeev and Fadeeva

(1963), referenced in Chapter 1.

2.8 COUPLED LINEAR DIFFERENTIAL
EQUATIONS

The eigenproblem of Section 2.7 is useful in the solution of

coupled linear differential equations. Let these equations be

�
The det A is defined as

detA ¼ Aj j ¼

a11 a12 � � � a1n

a21 � � � a2n

..

.

an1 an2 � � � ann




¼ aij
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represented by the following set written in compact matrix

notation

dy

dt
¼ Ayþ f ð2:423Þ

subject to the condition

t ¼ 0; y ¼ y0 ð2:424Þ

where A is the constant coefficient matrix of size N	N and

f is the vector of forcing functions.

The general solution of linear differential equations is a

linear combination of a homogeneous solution and a partic-

ular solution. For Eq. 2.423, the particular solution is sim-

ply the steady-state solution; that is,

Ayp ¼ �f ð2:425Þ

where yp can be readily obtained by the techniques men-

tioned in Sections 1.10 and 1.11, if the vector f is an array

of constants.

The homogeneous solution must satisfy the equation

dy

dt
¼ Ay ð2:426Þ

which is the original equation with the forcing term

removed. To solve the homogeneous equation, we assume

the trial solution x exp(lt), where x and l are yet to be

determined vector and scalar quantities. If we substitute

this trial solution into the homogeneous equation

(Eq. 2.426), we obtain the following algebraic equation:

Ax ¼ lx ð2:380Þ

which is the eigenproblem considered in Section 2.7.

Assuming that there exist N eigenvalues and N corre-

sponding eigenvectors, the homogeneous solution will be

the linear combination of all equations; that is, the homo-

geneous solution is

yH ¼
XN
i¼1

cixi expðlitÞ ð2:381Þ

where xi is the eigenvector corresponding to the

eigenvalue li.

The general solution is the sum of the homogeneous

solution and the particular solution, that is,

y ¼ yp þ yH ð2:382Þ

The constants ci can be found by applying initial

conditions.

2.9 SUMMARY OF SOLUTIONMETHODS

FOR ODE

We started this chapter by delineating the two fundamen-

tal types of equations, either nonlinear or linear. We then

introduced the few techniques suitable for nonlinear

equations, noting the possibility of the so-called singular

solutions when they arose. We also pointed out that non-

linear equations describing model systems usually lead to

the appearance of “implicit” arbitrary constants of inte-

gration, which means they appear within the mathemati-

cal arguments, rather than as simple multipliers as in

linear equations. The effect of this implicit constant often

shows up in startup of dynamic systems. Thus, if the final

steady state depends on the way a system is started up,

one must be suspicious that the system sustains nonlinear

dynamics. No such problem arises in linear models, as

we showed in several extensive examples. We empha-

sized that no general technique exists for nonlinear

systems of equations.

The last and major parts of this chapter dealt with

linear equations, mainly because such equations are

always solvable by general methods. We noted that

forced equations contain two sets of solutions: the par-

ticular solutions, related directly to the type of forcing

function f (x), and the complementary solution, the solu-

tion obtainable when f (x)¼ 0, so that in all cases y(x)¼
yc (x)þ yp(x). We emphasize again that the arbitrary

constants are found (in conjunction with boundary and

initial conditions) using the complete solution y(x).

We illustrated three methods to find the particular inte-

gral: undetermined coefficients, inverse operators, and

variation of parameters.

Linear homogeneous equations containing nonconstant

coefficients were not treated, except for the elementary

Euler equidimensional equation, which was reduced to a

constant coefficient situation by letting x¼ exp(t). In the

next chapter, we deal extensively with the nonconstant

coefficient case, starting with the premise that all continu-

ous solutions are, in fact, representable by an infinite

series of terms, for example, expðxÞ ¼ 1þ xþ x2=2 !þ
x3=3!þ � � �. This leads to a formalized procedure, called

the method of Frobenius, to find all the linearly independent

solutions of homogeneous equations, even if coefficients

are nonconstant.

PROBLEMS

2.12. A tall, cylindrical tank is being filled, from an initially

empty state, by a constant inflow of q L/s of liquid.

The flat tank bottom has corroded and sustains a leak

through a small hole of area A0. If the cross-sectional
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area of the tank is denoted by A, and time-varying

height of liquid is h(t), then

(a) Find the dynamic relationship describing tank

height, if the volumetric leak rate obeys

Torricelli’s law, q0 ¼ A0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ghðtÞp

(g is gravita-

tional acceleration).

(b) Determine the relationship to predict the final

steady-state liquid height in the tank.

(c) Define x ¼ ffiffiffi
h

p
, separate variables and deduce the

implicit solution for h:

t ¼ qA

A2
0g

� �
ln

q

q� A0

ffiffiffiffiffiffiffiffi
2gh

p
� �

� 2
A

A0

� � ffiffiffiffiffi
h

2g

s

(d) Sketch the curve for h versus t, and compare with

the case for a nonleaking tank.

2.22. Two vertical, cylindrical tanks, each 10m high, are

installed side-by-side in a tank farm, their bottoms at

the same level. The tanks are connected at their

bottoms by a horizontal pipe 2m long, with inside

diameter 0.03m. The first tank (1) is full of oil and

the second tank (2) is empty. Moreover, tank 1 has a

cross-sectional area twice that of tank 2. The first tank

also has another outlet (to atmosphere) at the bottom,

composed of a short horizontal pipe 2m long, 0.03m

diameter. Both of the valves of the horizontal pipes

are opened simultaneously. What is the maximum oil

level in tank 2? Assume laminar flow in the horizontal

pipes, and neglect kinetic, entrance–exit losses.

Answer: 4.07m

2.32. The consecutive, second-order, irreversible reactions

are carried out in a batch reactor

Aþ S�!k1 X

X þ S�!k2 Y

One mole of A and two moles of S are initially added.

Find the mole fraction X remaining in solution after

half the A is consumed; take k2/k1¼ 2.

Answer: yx¼ 1/9

2.42. Solve the following first-order equations:

(a) r
dT

dr
� 4

r

dr

dT
¼ 0; T ¼ T0 when r ¼ r0

(b) ðx2yþ xÞdyþ ðxy2 � yÞdx ¼ 0

(c)
dy

dx
þ y

x
¼ sinðaxÞ

(d)
dy

dx
� 2

x
y ¼ y3

2.53. Solve the following second order equations:

(a) x
d2y

dx2
þ dy

dx

� �2

� y

x

� �2
¼ 0; yð1Þ ¼ 2; y0ð1Þ ¼ �1

(b) x2
d2y

dx2
þ x

dy

dx
¼ lnðxÞ; yð1Þ ¼ 1; y0ð1Þ ¼ 0

(c) y
d2y

dx2
þ dy

dx

� �2

¼ dy

dx
; yð0Þ ¼ 1; y0ð0Þ ¼ 2

2.6�. The reversible set of reactions represented by

A@
k1

k2
B@

k3

k4
C

is carried out in a batch reactor under conditions of

constant volume and temperature. Only one mole

of A is present initially, and any time t the moles

are NA, NB, NC. The net rate of disappearance of A

is given by

dNA

dt
¼ �k1NA þ k2NB

and for B, it is

dNB

dt
¼ �ðk2 þ k3ÞNB þ k1NA þ k4NC

and for all times, the stoichiometry must be obeyed

NA þ NB þ NC ¼ 1

(a) Show that the behavior of NA(t) is described by

the second-order ODE

d2NA

dt2
þ ðk1 þ k2 þ k3 þ k4Þ dNA

dt

þ ðk1k3 þ k2k4 þ k1k4ÞNA ¼ k2k4

(b) One initial condition for the second-order equa-

tion in part (a) is NA(0)¼ 1; what is the second

necessary initial condition?

(c) Find the complete solution for NA(t), using the

conditions in part (b) to evaluate the arbitrary con-

stants of integration.

2.73. Solid, stubby, cylindrical metal rods (length-

to-diameter ratio¼ 3) are used as heat promoters on

the exterior of a hot surface with surface temperature

of 700
 C. The ambient air flowing around the rod

promoters has a temperature of 30
C. The metal con-

ductivity (k) takes a value of 0.247 cal/(s � cm � K).
The heat transfer coefficient (h) around the surface of

the promoter is constant at 3.6 Kcal/(m2 � h �
C).
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(a) Analyze a single rod of 4mm diameter and show

that the steady-state differential balance yields the

following differential equation:

d2T

dx2
� 2h

Rk

� �
ðT � TAÞ ¼ 0; 2R ¼ diameter

for the case when metal temperature changes

mainly in the x-direction (x is directed outward

from the hot surface, and rod radius is R).

(b) Find the characteristic roots for the ODE in part

(a). What are the physical units of these roots?

(c) Find the solution of part (a) using the conditions

T ¼ TH; x ¼ 0 ðhot surfaceÞ

�k
dT

dx
¼ hðT � TAÞ; x ¼ L ðexposed flat tipÞ

and show the temperature profile is represented by

T � TA

TH � TA

¼ cosh 2
x

L

� � L

D

� � ffiffiffiffiffi
Bi

p� �

� 2 tanh 2ðL=DÞ ffiffiffiffiffi
Bi

p� �þ ffiffiffiffiffi
Bi

p

2þ ffiffiffiffiffi
Bi

p
tanh 2ðL=DÞ ffiffiffiffiffi

Bi
p� � sinh 2

x

L

L

D

ffiffiffiffiffi
Bi

p� �

where Bi¼ hD=k (Biot number, dimensionless;

the ratio of film to metal transfer rates).

(d) Use the definitions of total heat flow and find the

effectiveness factor for the present promoter

h ¼ Q

Qmax

and show that the general expression for h is

h ¼ 1

2

1ffiffiffiffiffi
Bi

p
L=Dþ 1=4ð Þ

	
tanh 2

L

D

� � ffiffiffiffiffi
Bi

p� �
þ 1

2

ffiffiffiffiffi
Bi

p

1þ 1

2

ffiffiffiffiffi
Bi

p
tanh 2

L

D

� � ffiffiffiffiffi
Bi

p� �
2
664

3
775

(e) For small arguments, 2ðL=DÞ ffiffiffiffiffi
Bi

p � 1, show that

the effectiveness factor becomes approximately

h � 1

1þ ðL=DÞ � Bið Þ
Hint: look at the series expansion for tanh(u).

(f) Compute h for the present promoter.

2.82. Find the complementary and particular solutions and

thereby write the general solutions for the following:

(a)
d2y

dx2
þ y ¼ x sin ðxÞ

(b)
d2y

dx2
� 2

dy

dx
þ y ¼ xex

(c) x2
d2y

dx2
þ x

dy

dx
� y ¼ x

2.9�. When gas is injected into a column of water, a

liquid circulation pattern develops. Thus, upflow at a

rate Qu (m
3/s) rises in the central core and downflow

occurs at a rate Qd in the annulus. If liquid of compo-

sition C0 is also injected at the column base at a rate

Q0, with outflow at the same rate, then Qu¼QdþQ0

(if density is constant),

(a) The injected gas contains a soluble component

(with solubility C� mol/m3) so that mass transfer

occurs by way of a constant volumetric mass

transfer coefficient denoted as kca. There is also

an exchange of solute between upflowing and

downflowing liquid at a rate per unit height equal

to KE(Cu�Cd). If the flow areas for upflow and

downflow areas are equal (A), perform a material

balance and show that

Qu

dCu

dz
¼ kcaAðC� � CuÞ � KEðCu � CdÞ

� Qd

dCd

dz
¼ kcaAðC� � CdÞ þ KEðCu � CdÞ

where z is distance from column base.

(b) Define new variables to simplify matters as

uu ¼ Cu � C�

ud ¼ Cd � C�

z ¼ zðkcaAþ KEÞ=Q0 ðdimensionless distanceÞ
qu ¼ Qu=Q0 ðdimensionless upflowÞ
qd ¼ Qd=Q0 ðdimensionless downflowÞ

and show that the coupled relations are

qu
duu

dz
þ uu ¼ aud

� qd
dud

dz
þ ud ¼ auu

where a ¼ KE=ðKE þ kcaAÞ
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(c) Use the operator method to find solutions for

uuðzÞ and udðzÞ.
(d) Show that the resulting four arbitrary constants are

not independent and then write the solutions in

terms of only two unknown integration constants.

(e) Apply the saturation condition

ud ; uu ! 0 as z ! 1
and a material balance at the entrance

QdCdð0Þ þ Q0C0 ¼ QuCuð0Þ
to evaluate the remaining arbitrary constants of

integration and thereby obtain relations to predict

composition profiles along the axis.

(f) Deduce asymptotic solutions for the case when

Qd ! 0 and when KE ! 1(a ! 1.0); this corre-

sponds to the plug-flow, nonrecirculating result.

2.10�. When an insoluble bubble rises in a deep pool of

liquid, its volume increases according to the ideal

gas law. However, when a soluble bubble rises from

deep submersion, there is a competing action of dis-

solution that tends to reduce size. Under practical

conditions, it has been proved (Rice 1982) that the

mass transfer coefficient (kc) for spherical particles

(or bubbles) in free-fall (or free-rise) is substantially

constant. Thus, for sparingly soluble bubbles

released from rest, the following material balance is

applicable:

d C � ð4=3Þ pR3
� �

dt
¼ �kc � C� � 4pR2ðtÞ

where C ¼ P/RgT is the (ideal) molar density of gas,

C� is molar solubility of gas in liquid, and R(t) is the

changing bubble radius. The pressure at a distance

z from the top liquid surface is P ¼ PA þ rLgz and

the rise velocity is assumed to be quasi-steady

and follows the intermediate law according to Rice

and Littlefield (1987) to give a linear relation

between speed and size

dz

dt
¼ U ¼ 2g

15v1=2

� �2=3

� 2RðtÞ ¼ b � RðtÞ

where g is gravitational acceleration and v is liquid

kinematic viscosity.

(a) Show that a change of variables allows the mate-

rial balance to be written as

R
dR

dP
þ 1

3

R2

P
¼ � l

P

where

l ¼ kcRgTC
�

rLgb

(b) Solve the equation in part (a) subject to the initial

condition R(0) ¼ R0, P(0) ¼ P0 ¼ PA þ rgz0 and

prove that

P

P0

¼ R2
0 þ 3l

R2 þ 3l

� �3=2

then find the expression for the time required

to cause a soluble bubble to completely disappear

(R! 0).

2.112. Considerable care must be exercised in applying the

inverse operator method to forcing functions com-

posed of products. Consider the equation

d2y

dx2
� dy

dx
¼ xex

for which we wish to find the particular solution.

(a) Apply the inverse operator and show

yp ¼
1

DðD� 1Þ xe
x

then apply Rule 2 to the bracketed expression:

yp ¼
1

D

1

ðD� 1Þ xe
x

� �

(b) Complete the indicated operations to show

yp ¼
x2

2
� xþ 1

� �
ex

(c) Write the general solution in terms of only linearly

independent solutions and two arbitrary constants.

2.122. Trace and Determinant of a Matrix

Define the matrix A ¼ a11 a12

a21 a22

� �
¼ aij

	 

: We

wish to find the eigenvalues of A. To do this, we

need the determinant ½A� lI� ¼ ða11 � lÞða22 � lÞ
�a21 a12 ¼ 0:

(a) Expand the expression to get the polynomial:

l2 � ða11 þ a22Þlþ ða11a22 � a21a12Þ ¼ 0

The second term is called the trace of A¼ tr[A]. It

is the sum of the diagonal terms of A. The third
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term is the determinant of A ¼ det[A]. Now, we

have in compact form

l2 � trAðlÞ þ det½A� ¼ 0

(b) The polynomial obtained in part (a) is of the same

form as we obtained using traditional methods,

illustrated by Eq. 2.373. What are the equivalent

values of an, an�1, and so on relative to aij in part

(a) of the present problem?

(c) Show that the two eigenvalues obtainable in part

(a) can be expressed as follows:

l� ¼ tr A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrAÞ2 � 4detA

q� �

From these considerations, we can make some

important generalizations:

lþ þ l� ¼ trA ¼
X

lj

ðlþÞðl�Þ ¼ detA ¼
Y

lj

Note well, if det A ¼ 0, then l ¼ 0 is an eigen-

value of A. There is excellent and extensive treat-

ment of matrices and linear algebra in Varma and

Morbidelli (1997).

2.132. Consider Example 2.13 in the text and set up this

second-order, homogeneous equation as a vector–

matrix problem:

dy=dx ¼ A � y

where

A ¼ 0 1

ð�4Þ ð�4Þ
� �

:

(a) Use the method described in Section 2.7 to find

the eigenvalues.

(b) Use the technique given in Section 2.8 to find the

eigenvectors.

2.143. Rework Example 2.17 using the matrix representa-

tion, so that we have

dy=dx ¼ A � yþ fðxÞ

where

f ¼
0

x2

" #
; A ¼

0 1

1 0

" #
; yð0Þ ¼

1

0

" #
:

(a) Set up the eigenvalue problem and find the homo-

geneous solution.

(b) Develop a method to find the particular solutions

for this case, where f is a vector that depends on

the independent variable x.

2.152. Axial Diffusion Capsule

A pharmaceutical company introduces a new medi-

cal capsule with a controlled release rate when

taken orally. The capsule is cylindrical (of radius

R) and is filled with porous materials. It is closed

at one end (see the figure below). The capsule on

the side of the closed end is filled with an active

compound. The compound undergoes a zero-order

chemical reaction to produce an active chemical

(<¼ k, moles produced per unit volume and unit

time), which then diffuses through the porous

medium to the open end and into the surroundings.

The cylindrical surface of the capsule is impervious

to diffusion (mass transfer direction is shown as

arrow in the figure).

1. Given the flux J¼�DedC=dz as moles transported

per unit cross-sectional area and per unit time,

show that the mass balance equations for the con-

centration distribution of the active chemical

inside the capsule are (you may assume De to be

constant):

De

d2C

dz2
þ k ¼ 0 for 0 < z < L1

De

d2C

dz2
¼ 0 for L1 < z < L2

2. What are the boundary conditions for the mass

balance equation in part 1? You may assume that

the surroundings are well stirred and the active

chemical is quickly absorbed by the surrounding

tissues.

3. Show that the concentration distributions inside

the capsule take the form, with three arbitrary con-

stants of integration,

C ¼ B� Dz2 for 0 < z < L1

C ¼ E � Fz for L1 < z < L2

where

D ¼ k=ð2DeÞ:
4. Derive the release rate in terms of moles released

per unit time per unit capsule and show that it is

W ¼ pR2L1
� �

k

Discuss the significance of this result.
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2.162. Radial Diffusion Capsule

A pharmaceutical company introduces a new medical

capsule that is cylindrical and is filled with porous

materials (see the following figure). The capsule is

designed for oral administration and releases the

active substance at a controlled rate. The core of the

cylindrical capsule is filled with an active compound.

The compound undergoes a zero-order chemical

reaction to produce an active chemical, which then

diffuses through the porous medium to the cylindri-

cal surface of the capsule where it is taken up by the

gastric fluids. You may assume that the capsule is

long enough so that you can ignore the mass transfer

in the axial direction. The radius of the core is R1 and

the radius of the cylindrical capsule is R2. The diffu-

sion flux takes the form (the diffusion coefficient is

taken to be constant)

J ¼ �DedC=dr

1. Set up the mass balance equations for the

concentration distribution of the active chemical

inside the capsule and show that they take the form

De

r

d

dr
r
dC

dr

� �
þ k ¼ 0 for 0 < r < R1

De

r

d

dr
r
dC

dr

� �
¼ 0 for R1 < r < R2

2. What are the boundary conditions for the mass

balance equation in part 1? You may assume that

the surroundings are well stirred and the active

chemical is quickly absorbed by the gastric fluids.

3. Show that the concentration distributions inside

the capsule take the form

C ¼ kR2
1

2De

1

2
1� r

R1

� �2
" #

þ ln
R2

R1

� �( )
for 0 < r < R1

C ¼ kR2
1

2De

ln
R2

r

� �
for R1 < r < R2

4. Show that the release rate in terms of moles

released per unit time per unit capsule is

W ¼ pR2
1L

� �
k

Discuss the significance of this result.

2.17�. Carbon Dioxide Immobilization

Carbon dioxide is one of the gases that is responsible

for the greenhouse effect. A scheme is proposed to

immobilize the carbon dioxide into a porous matrix

(you may treat this as a chemical reaction between

carbon dioxide and the active substance inside the

solid matrix to form a solid product), and then dis-

pose of the carbon dioxide-loaded matrix into the

ground once it is saturated. To develop this proposal

further, you are asked to investigate the transport

processes in the matrix. Here is the information that

might be useful to your work:

(a) The solid is porous and is spherical in shape with

a radius R.

(b) The diffusion flux (moles transported per unit

cross-sectional area per time) is J ¼�Dedc/dr.

(c) The reaction between the active substance and

carbon dioxide follows a mass action law kine-

tics; the reaction rate per unit mass is <(C,Cs) ¼
kC(Cs0�Cs), where k is the rate constant, C is

the concentration of carbon dioxide (mol/m3), Cs

is the product concentration (mol/kg of solid).

(d) There is a stagnant film around the matrix, so

film resistance to mass transfer is characterized

by Jfilm ¼ km (CjR � C0), where km is the mass

transfer coefficient, C0 is the concentration of

carbon dioxide in the surrounding atmosphere

(assumed constant) and CjR is the concentration

of carbon dioxide at the boundary between the

solid and the surrounding gas.

1. Derive the mass balance equation to describe the

distribution of carbon dioxide within the porous

matrix and show that it takes the form

De

r2
d

dr
r2
dC

dr

� �
� kCðCs 0 � CsÞ ¼ 0
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2. Assuming that the surface is barely covered with solid

product (i.e. Cs0 � Cs � Cs0), solve the mass balance

equation and show that the concentration distribution

of carbon dioxide is

y ¼ 1

x

sinhðaxÞ
sinh aþ ða cosh a� sinh aÞ=b

Here, we have made the variables nondimensional:

x¼ r=R, y¼C=C0, a2¼ kCs0R
2=De, and

b¼ kmR=De.

2.183. Brain Implant Drug Delivery

You are working as a development engineer with a

biomedical firm and they have just patented a new

polymer implant for treatment of brain tumors. You

are asked by your supervisor to evaluate the release

of drugs from the polymer implant (of radius R) into

brain tissue. After consulting with your medical col-

leagues in the same firm, you learn that the polymer

implant, into which the drug is infused, would be

surrounded by biological tissues, composed of cells

and extracellular fluids. Immediately after the

implant, the drug is released from the implant and

the drug molecules will penetrate the tissue and a

sequence of processes occur during the course of

drug transport: (i) the drug concentration at the sur-

face of the implant is assumed constant, (ii) diffu-

sion through the extracellular space can be

described by J¼�DedC=dr, and (iii) reactions

occur by an enzyme-mediated pathway to form

other compounds according to first-order kinetics in

the extracellular space, <¼ kC (mole of reactant

consumed per unit volume per unit time). To help

you with the analysis work, your medical colleagues

give you a schematic diagram of a polymer implant

residing inside the brain tissue shown below.

(a) Show that the mass balance equation describing the

distribution of the drug takes the following form:

De

r2
d

dr
r2
dC

dr

� �
� kC ¼ 0

(b) For the solid product whose concentration is

defined as mole per unit volume of the extracellu-

lar space, show that the mass balance is

dCs

dt
¼ kC

(c) Let R0 ¼ lR be the size of the brain and assume

that the drug is completely consumed at the

periphery of the brain (i.e., at R0, the drug concen-

tration is zero). Show that the concentration distri-

bution of the drug is

y ¼ 1

x

sinh aðl� xÞ½ �
sinh aðl� 1Þ½ �

where x¼ r/R, y¼C/C0, and a
2¼ kR2/De.

2.193. Diffusion in Human Skin

A new lotion is developed at a well-known cosmetic

company, and the engineers at this company are test-

ing to ensure that this lotion can absorb and diffuse

into the skin within a reasonable time. The principal

task is to develop a scheme to measure the diffusiv-

ity of the lotion as it courses through the skin. Here

is the description of the problem.

(i) The skin is very thin so you can ignore curva-

ture effects and the thickness of the skin is taken

to be L.

(ii) The initial thickness of a very thin film of lotion

above the skin is d0 ¼ d(0).

(iii) The lotion dissolves into the skin with a con-

stant solubility, C0, and the concentration units

can be taken to be moles of lotion per unit vol-

ume of the skin.

(iv) The diffusion of the lotion within the skin

depends on the concentration and the flux equa-

tion takes the form J¼�DdC/dx. Here you can

assume that the diffusivity is a linear function of

concentration, D¼D0 (l þ aC)

(v) You may assume that the lotion concentration

at the bottom of the skin layer is negligible,

and the total layer of skin is initially void of

lotion.

(a) Show that the mass balance equation to

describe the distribution of lotion in the

skin is (you may assume a quasi-steady

state for the transport of lotion in the skin):

� d

dx
D0ð1þ aCÞ dC

dx

� �
¼ 0
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(b) Take the origin of the x-coordinate as the

bottom of the skin and show that the solution

of the mass balance equation is

ð1þ aCÞ2 � 1

ð1þ aC0Þ2 � 1
¼ x

L

(c) Show that the molar flux of lotion into the

skin is

J ¼ D0

2aL
ð1þ aC0Þ2 � 1
h i

(d) To determine how fast the lotion disappears

from the top, you need to set up a transient

mass balance around the lotion film layer.

Derive this equation (it should be a first-order

differential equation with respect to time) and

show that it has the form:

rL 	
dd

dt
¼ � D0

2aL
ð1þ aC0Þ2 � 1
h i

where rL is the molar density of lotion.

(e) Determine the time taken for the lotion to dis-

appear from the top of the skin, that is, the

time required for the lotion to completely

absorb into the skin.

Film of lotion

Skin

2.203. Carbon Dioxide Storage in Dense Membranes

In the quest for processes capable of carbon dioxide

removal from air, one must think about how the sep-

arated gas can be disposed of, either deep into the

ocean or in the ground where it could be trapped for

a very long period of time. The separation of carbon

dioxide from air can be effected with a dense inor-

ganic membrane. Carbon dioxide and air absorb into

the membrane, but the solubility of carbon dioxide is

100 times greater than that of air. Once absorbed

into one side of the membrane, carbon dioxide and

air diffuse to the other side, and the diffusion process

is assumed to follow Fick’s law, J¼� DdC=dx, and
the diffusivities of carbon dioxide and air vary with

concentration according to the following equations:

DCO2
¼ DCO2;0 1þ aCCO2

ð Þ; Dair ¼Dair;0 1þ bCairð Þ

where CCO2
and Cair are the dissolved concentrations

of carbon dioxide and air in the membrane, respec-

tively. Here is the description of the problem.

(i) The solubility of carbon dioxide and air are constant

within the membrane, for given partial pressures on

the supply or entrance side.

(ii) The concentrations of carbon dioxide and air at the

permeate (exit) side are much lower than those at

the supply side.

(a) Show that the mass balance equations to describe

the concentration distributions of carbon dioxide

and air in the membrane are

� d

dx
DCO2;0ð1þ aCCO2

Þ dCCO2

dx

� �
¼ 0

� d

dx
Dair;0ð1þ bCairÞ dCair

dx

� �
¼ 0

(b) Show that the solutions to the mass balance

equations are (with the origin being located at the

permeate side)

ð1þ aCCO2
Þ2 � 1

ð1þ aCCO2;0Þ2 � 1
¼ x

L
;
ð1þ bCairÞ2 � 1

ð1þ bCair;0Þ2 � 1
¼ x

L

(c) Show that the selectivity of carbon dioxide to air

is

SCO2=air ¼
DCO2;0=a
� �
Dair;0=b
� � 1þ aCCO2;0

� �2 � 1

1þ bCair;0

� �2 � 1

Diffusion of carbon
dioxide and air

Supply side

Permeate
side

2.213. Chemical Reaction in Carbon Nanotubes

You are employed in a nanotech company that spe-

cializes in carbon nanotubes. A single carbon nano-

tube is shown in the figure below. One end of the tube

is opened to the surrounding gas, and the other end is

impermeable. You are given the task of characterizing
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the transport of materials into the carbon nanopores

within which a chemical reaction occurs.

You are given the following information by your

senior supervisor:

(i) The carbon nanotube has a radius of R and length L.

(ii) An active metal is deposited uniformly over the inte-

rior of the tube.

(iii) The condition is such that the transport of gases

within the tube follows the Knudsen diffusion mecha-

nism, with the Knudsen flux taking the form:

J¼�DkdC/dx, where Dk is the Knudsen diffusivity.

(iv) The chemical reaction per unit surface area is first

order with respect to the surface concentration,

<¼ kCs.

(v) The partitioning relationship between the solute in the

gas phase and the solute chemisorbed on the tube wall

surface follows Henry’s law, Cs ¼ HC.

(vi) The heat of reaction is rather low (therefore, you may

assume isothermal conditions).

Given the above information, your goal is to deter-

mine the concentration distribution within a carbon

nanotube and then the chemical reaction rate in terms

of the concentration outside the carbon nanotube

(which you can measure with a standard gas chroma-

tography). This reaction rate per unit carbon nanotube

will then be used to evaluate the effectiveness of the

carbon nanotube.

(a) Show that the mass balance equation is

DK

d2C

dx2
� 2

R

� �
kHC ¼ 0

(b) What are the boundary conditions? Show that the

solution for the concentration distribution is

C

C0

¼ coshðax=LÞ
cosh a

where a2 ¼ 2kHL2

RDK

(c) Derive an expression for the chemical reaction

rate per unit pore written in terms of the concen-

tration of the reactant gas outside the carbon

nanotube, C0, and show that it has the form

Reaction rate ¼ pR2DKC0

L

� �
a tanh a

2.223. Dissolution of Spherically Shaped Pills

A pharmaceutical company recently released a

new drug capsule to the market, which is spherical

in shape. An independent testing firm is requested

by the Government to carry out a number of tests

on this new drug. One of these tests is the estima-

tion of the dissolution time. The following infor-

mation is available to you:

(i) The solubility of the drug in the solution is

constant.

(ii) The dissolved active ingredient of the drug has

a constant diffusion coefficient (D) in the

solution, and the diffusion flux equation is

J¼�DdC/dx.

(iii) The dissolved active ingredient is consumed in

the gastric fluid, according to a first-order

kinetics (moles consumed per unit volume of

solution and per unit time). The rate constant

for this consumption is k, and the chemical

reaction rate per unit volume is <¼ kC.

(iv) The fluid in the stomach can be assumed to be

quite large relative to the size of the capsule.

(a) Set up the mass balance equation and show

that the equation is, at quasi-steady state:

D

r2
d

dr
r2
dC

dr

� �
� kC ¼ 0

(b) With the boundary conditions r ¼ R;

C ¼ C0 and r ! 1; C ¼ 0, show that the

solution for the concentration distribution

is (use C¼ f(r)=r)

C

C0

¼ R

r
exp a 1� ðr=RÞ½ �f g where a2 ¼ kR2

D

(c) From the solution in part (b), solve for the

dissolution rate (moles dissolved per unit

area of the drug per unit time) and show

that it is JR¼ (DC0=R)(1 þ a).

(d) Set up the transient mass balance around

the solid drug capsule and take the flux

from part (c) as quasi-steady so that R(t)

and then derive an approximate expression

to estimate the time taken to completely

dissolve the capsule (TCD), and show that
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it has the form

t ¼ rR2
0

DC0Mw

a� lnð1þ aÞ
a2

� �

(e) Given the diffusion coefficient of 3.86	
10�11 m2/s, the reaction rate constant of

0.01 s�1, the solubility of 1500mol/m3, the

capsule density of 1200 kg/m3, the molecu-

lar weight of the active ingredient 152 g/

mol, and the initial capsule radius of

0.25 cm, calculate the TCD for this drug

(see Rice and Do, 2006).

Answer (e): 5.3 h

2.233. Mass Transfer and Chemical Reaction in a

Honeycomb Catalyst

You are employed in a catalyst company, and are part

of a team developing a catalyst for removal of harmful

components from exhaust gases of automobiles. To

maximize the mass transfer, you propose to use a cat-

alyst with large pores such that convective flow occurs

inside the pore. The surface of the pore is coated with

a layer of catalyst materials. Your task is to determine

the chemical reaction rate of this catalyst.

The research section of the R&D team provides the

following information for analysis and design:

(i) The radius of the cylindrical pore is R and the

length is L.

(ii) The catalyst coating on the interior wall of the

pore has a thickness of d. The thickness is so

thin that you can safely ignore the curvature of

the coating.

(iii) The catalyst is porous, and the diffusion of

harmful components within catalyst pores is

by Knudsen diffusion whose flux is given by

J¼�DKdC=dr.

(iv) The chemical reaction rate is first order; that is,

<¼ kC (moles of harmful components/m3 of

catalyst/s).

(v) The flow through the pore is assumed plug flow

and the axial dispersion flux is Jaxial¼�
DadCb=dz, where z is the coordinate along the

flow direction, Da is the axial dispersion coeffi-

cient, and Cb is the concentration in the pore.

Your task to solve this problem involves two parts.

The first part is to derive the mass balance equation

for the distribution of reactant in the core of the pore,

and the second part is the mass balance equation to

describe the reactant distribution inside the catalyst.

(a) Derive the mass balance equation for concentra-

tion distribution in the core of the pore and show

that it takes the form

Da

d2Cb

dz2
� u

dCb

dz
� 2

R

� �
Jd ¼ 0

where Jd is the molar flux into the catalyst coating.

(b) Derive the mass balance equation for the concen-

tration distribution in the catalyst, and show that it

has the form

DK

d2C

dr2
� kC ¼ 0

(c) Take the boundary conditions for the two mass

balance equations in (a) and (b) as

z ¼ 0; Da

dCb

dz
¼ uðCb � C0Þ

z ¼ L;
dCb

dz
¼ 0

r ¼ 0;
dC

dr
¼ 0

r ¼ d; C ¼ Cb

Show that the molar flux into the catalyst

coating is

Jd ¼ Da tanh a

d

� �
Cb

and the solutions for the concentration distribu-

tions are

C

Cb

¼ coshðar=dÞ
cosh a

Cb ¼ Ael1z þ Bel2z

Here a2¼ kd2=DK and l1,2 are characteristic val-

ues, given by

l1;2 ¼ u� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ ð8DaDKa tanh aÞ=ðRdÞp

2Da

2.243. Burning of Charcoal

At the end of the semester, students celebrated their

successful study with a barbeque party. Charcoal is

used in the barbeque. One student argued that to

burn the charcoal effectively, a small fan should be
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used to supply the charcoal with oxygen. The

following information is available to you. The

chemical reaction between carbon and oxygen is

very fast, and the products are carbon oxides and

ash. The charcoal retains its spherical shape

throughout the course of burning and ash remains

with the charcoal throughout the course of burning.

The diffusion flux of oxygen through the ash layer is

given by J¼�DdC/dr.

(a) Derive the mass balance equations for the con-

centration of oxygen and show that it has the

form (you may assume that the transport of oxy-

gen through the ash layer is under quasi-steady

state, despite the slow movement of the interface

between the ash layer and the carbon core):

D

r2
@

@r
r2
@C

@r

� �
� 0 for Rf < r < R

where R is the radius of the charcoal and Rf is the

position of the interface separating the ash layer

and the carbon core.

(b) Assuming one mole of oxygen reacts with one

mole of carbon, carry out the mass balance on

the carbon core to show that the equation des-

cribing the movement of the interface position

as a function of time takes the following form:

rc
dRf

dt
¼ �D

@C

@r


Rf

(c) With the boundary conditions for (a) taken as

r ¼ Rf ; C ¼ 0

r ¼ R; �DdC=dr ¼ km CjR � C0

� �
solve the equations in (a) and (b) for the position

of the interface as a function of time t and derive

an equation for the time taken to complete

the burning of charcoal (t�), and show that they

take the form

t ¼ rcR
2

DC0

1

2
ð1� X2Þ þ 1

3

D

kmR
� 1

� �
ð1� X3Þ

� �

t� ¼ rcR
2

3DC0

1

2
þ D

kmR

� �

where X¼Rf=R.

2.253. Cylindrical Chemical Reactor

A cylindrical chemical reactor shown in the figure

below has a very large ratio of length to diameter.

This suggests the largest gradients occur in the

radial direction, so transfer gradients along the axis

can be ignored. The thickness of the wall of the

chemical reactor is d, and the internal radius of the

reactor is R. The chemical reaction is zero order,

and the heat released by the chemical reaction per

unit volume of the reactor, Q, is therefore constant.

Because heat transfer is governed by heat conduc-

tion in the reactor proper and in the wall, the temper-

ature is expected to be high inside the reactor. The

heat flux takes the form q¼� kdT=dr. To ensure

that the temperature remains well below the melting

temperature of the reactor, your analysis requires a

heat balance equation to determine the maximum

temperature in the reactor and the heat loss to the

surroundings. The surroundings are a well-stirred

coolant fluid and thus ignore any film resistance at

the reactor’s outer wall.

(a) Set up the heat balance equations in the reactor

and in the wall, and show that they take the form

k

r

d

dr
r
dT

dr

� �
þ Q ¼ 0 for the reactor

kw

r

d

dr
r
dTw

dr

� �
¼ 0 for the wall

(b) What are the boundary conditions of the equa-

tions in (a)?

(c) Solve for the temperature distributions in the

reactor and the walls and show that they take

the form

T � T0 ¼ QR2

4k
1� r

R

� �2� �
þ QR2

2kw
ln

Rþ d

R

� �

Tw � T0 ¼ QR2

2kw
ln

Rþ d

r

� �

70 SOLUTION TECHNIQUES FOR MODELS YIELDING ORDINARY DIFFERENTIAL EQUATIONS



(d) Find an expression to calculate the maximum

temperature of the system and show that it is

Tmax ¼ QR2

4k
þ QR2

4kw
ln

Rþ d

R

� �

(e) Obtain an expression to compute the steady rate

of heat flux at the outer surface of the chemical

reactor, and show that it is

qRþd ¼
QR2

2ðRþ dÞ

Does this answer come as a surprise to you?

2.26�. Heat Transfer from an Exothermic Reactor
A chemical company proposed a scheme to handle

heat release from an exothermic reaction by trans-

ferring this heat to an endothermic reaction system.

This scheme is as follows. A reactor is set up with

two concentric cylinders (see the figure below). The

exothermic reaction is in the inner core cylinder

while the endothermic reaction will occur in the

annular part. The heat release per unit time and per

unit volume (S1) for the exothermic reaction is taken

to be constant and so is the heat consumption (S2) of

the endothermic reaction. The system of two con-

centric cylinders is surrounded by a stagnant film,

and the heat transfer through this stagnant film is

described by a heat transfer coefficient, which is

assumed constant. The heat transfer is assumed to

occur only in the radial direction, and the effective

thermal conductivity of the core is k1 and that of the

annulus is k2. You may assume that these thermal

conductivities are constant. The metal walls of the

reactor are so thin that you can safely ignore any

heat transfer resistances of the walls.

(a) Set up the steady heat balance equations for the

core and the annulus of the system, and show

that they take the form

k1

r

d

dr
r
dT1

dr

� �
þ S1 ¼ 0

k2

r

d

dr
r
dT2

dr

� �
� S2 ¼ 0

(b) The temperature of the surrounding air is Tb.

What are the boundary conditions for the two

heat balance equations in (a).

(c) Solve the balance equations in (1) to obtain

the steady temperature distributions in the

core and in the annulus, and show that they

take the form

T1 ¼ A� S1

4k1

� �
r2; T2 ¼ S2

4k2

� �
r2 þ B ln rþ C

where A, B, and C are constants.

(d) Derive an expression to find the hottest spot in

the system.

(e) Obtain the heat flux at the boundary of the

system (i.e., at r ¼ R2). Is this the result you

expected?

2.273. Cooling of a Computer Chip

A computer manufacturer is developing a new gen-

eration of high-speed chip, but since it generates too

much heat, they wish to design a new way of dissi-

pating the energy from the CPU. Their design

involves mounting an array of hair-like (but rigid)

rods on top of the CPU and the fraction of the CPU

surface that is covered with these rods is f. A flow of

air is supplied from a fan to cool the assembly of

CPUs via the hair-like rods, which are heat transfer
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enhancers. You, as a consultant, are asked to test and

analyze this design. You are supplied with the fol-

lowing details:

(i) The thermal conductivities of the CPU and the

hair rods can be taken as constants.

(ii) The heat generated by the CPU is constant, and

the volumetric heat generation rate defined as Q

(J/m3/s).

(iii) The insulator beneath the CPU is perfect.

(iv) The heat transfer coefficient around the pro-

truding hair rods and on top of the bare sections

of the CPU is constant.

(v) The rod is so thin that temperature gradients

normal to the rods can be ignored and conduc-

tion occurs only along the axis leading from the

CPU to the rod tip.

(vi) The rod radius is R and its length is L.

(vii) The thickness of the CPU is D.

The analysis will involve two parts. The modeling of

heat transfer in the block CPU and then the model for

heat transfer from the cylindrical hair-like rods into

the surrounding air.

(a) Derive the steady heat balance equation in the

CPU and show that it takes the form

k1
d2T1

dx2
þ Q ¼ 0

where x is the distance from the insulator (shown

in figure).

(b) Derive the heat balance equation to describe the

temperature distribution in the rod and show that

it has the form

k2
d2T2

dz2
� 2

R

� �
hðT2 � TaÞ ¼ 0

where z can be conveniently taken as the distance

from the tip of the rod (shown in the figure).

(c) Set up the boundary conditions for the heat bal-

ance equations in (a) and (b), and you may assume

that the rod is long compared to the radius so that

the heat loss at the tip of the rod is negligible,

compared to the heat loss through the cylindrical

surface. Prove that they have the form

x ¼ 0;
dT1

dx
¼ 0

x ¼ D; T1 ¼ Ts

x ¼ D; z ¼ L;

�k1
dT1

dx


D

¼ f k2
dT2

dz


L

� �
þ ð1� fÞhðTs � TaÞ

z ¼ 0;
dT2

dz
¼ 0

z ¼ L; T2 ¼ Ts

(d) Solve the two heat balance equations of (a) and

(b), and show that the solutions for the tempera-

ture distributions take the form

T1 ¼ Ts þ QD2

2k1
1� x

D

� �2� �

T2 ¼ Ta þ QDcoshðaz=LÞ
fðak2=LÞsinh aþ ð1� fÞh cosh a

where

Ts ¼ Ta þ QDcoshðaÞ
fðak2=LÞsinh aþ ð1� fÞh cosh a

a2 ¼ 2hL2

Rk2

(e) Determine the hottest location in the CPU, and

show that the maximum temperature is described

by the expression

Tmax ¼ Ts þ QD2

2k1

2.283. Heat Transfer from an Extended Arm
A consultant to a medical institution was asked to

determine the physiological heat released from an

athlete’s forearm. The forearm can be modeled as a

cylinder with a radius of 6 cm and a length of 60 cm

(a very big athlete!). The ambient temperature is

25
C and the temperature at the center of the fore-

arm is 37
C (body temperature). Because of the

cooling effect of the surrounding air, the forearm

must generate heat to maintain the temperature at

the center of the forearm at 37
C. The thermal con-

ductivity of the forearm is 0.7W/m K. There is a

stagnant film of air surrounding the arm, and the

heat transfer through this film is characterized by

the heat transfer coefficient h (heat flux through the
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stagnant film is q ¼ hDT, where DT is the temper-

ature driving force across the film).

(a) Derive the steady-state heat balance equation for

the forearm and show that it has the form

k

r

d

dr
r
dT

dr

� �
þ Q ¼ 0

where Q is the volumetric heat production rate.

Carefully list all assumptions leading to the deri-

vation of the heat balance equation. What are the

boundary conditions?

(b) Show that the temperature distribution takes the

form

T ¼ Ta þ QR2

4k
1� r

R

� �2� �
þ QR

2h

(c) Show that the heat per unit volume that the fore-

arm generates per unit time is given by

Q ¼ Tc � Ta

ðR2=4kÞ þ ðR=2hÞ� �
where Tc is the temperature at the center of the

forearm. Calculate Q, using the value of h given

in (d) below.

Answer: 3652W/m3

(d) This athlete is competing in the winter games

where the air temperature is�10
C. If the forearm
of this athlete generates the same amount of heat

as determined in (c), calculate the skin tempera-

ture and the temperature at the center of the fore-

arm if the heat transfer coefficient is 15W/m2/K.

Answer: 270K and 275K
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3
SERIES SOLUTIONMETHODS AND SPECIAL FUNCTIONS

3.1 INTRODUCTION TO SERIES METHODS

In Chapter 2 you learned that all linear differential equations

with constant coefficients of the type, for example,

d2y

dx2
� 2

dy

dx
þ y ¼ 0 ð3:1Þ

sustained complementary solutions of the form exp(rx),

where the characteristic roots in this case satisfy r2 � 2rþ
1 ¼ 0: It may not be obvious, but these solutions are, in fact,

power series representations, since the exponential function

can be represented by an infinite series

expðrxÞ ¼ 1þ rxþ ðrxÞ2
2!

þ ðrxÞ3
3!

þ � � � ð3:2Þ

This series representation can be written in compact form

expðrxÞ ¼
X1
n¼0

ðrxÞn
n!

ð3:3Þ

where it is clear that 0!¼ 1. As a matter of fact, we could

have attempted a solution of Eq. 3.1 using the representation

y ¼
X1
n¼0

anx
n ð3:4Þ

We know in advance that an¼ rn/n!, but nonetheless such a

procedure may be quite useful for cases when an analytical

solution is not available, such as when nonconstant coeffi-

cients arise (i.e., a1(x), a0(x)).

Let us proceed to solve Eq. 3.1 by the series representa-

tion, Eq. 3.4. Assume that the series coefficients an are

unknown and we must find them. First, differentiate the

series, Eq. 3.4, and insert the several derivatives into the defin-

ing Eq. 3.1 to see if useful generalizations can be made.

y0 ¼
X1
n¼0

anðnÞxn�1 ð3:5Þ

y00 ¼
X1
n¼0

anðnÞðn� 1Þxn�2 ð3:6Þ

Inserting these into Eq. 3.1 yields the necessary conditionX1
n¼0

anðnÞðn� 1Þxn�2 � 2
X1
n¼0

anðnÞxn�1 þ
X1
n¼0

anx
n ¼ 0

ð3:7Þ
We can see that the first two terms of the first series contribute

nothing, so we can increment the indices n upward twice with

no loss of information and replace it withX1
n¼0

anþ2ðnþ 2Þðnþ 1Þxn

The second series has zero for its first term, so we increment

upward once and replace it with

X1
n¼0

anþ1ðnþ 1Þxn
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Now, since all series groups have in common xn, write the

general result

X1
n¼0

anþ2ðnþ 2Þðnþ 1Þ � 2ðnþ 1Þanþ1 þ an½ �xn ¼ 0

ð3:8Þ

The only nontrivial generalization we can make is

anþ2ðnþ 2Þðnþ 1Þ � 2anþ1ðnþ 1Þ þ an ¼ 0 ð3:9Þ

This so-called recurrence relationship is a finite difference

equation, which can be treated by the methods of Chapter 5.

It has a structure similar to the Euler equidimensional ODE

(x2y00 � 2xy0 þ y¼ 0) and it is easy to show the solution is

(a recurrence relation)

an ¼ a0
rn

n!
ð3:10Þ

where r satisfies r2� 2rþ 1¼ 0, which has a double root at

r¼ 1 so that we finally obtain the first solution

yðxÞ ¼ a0
X

xn=n! ¼ a0 expðxÞ ð3:11Þ

as expected at the outset. It is always possible to find such

recurrence relations to relate the series coefficients, but they

are not always straightforward, as we show later by examples.

We learned in Chapter 2 that when only a single root

obtains for a second-order equation, the second linearly

independent solution is obtained by multiplying the first

solution by x, so that the complete complementary solution

to Eq. 3.1 is

y ¼ a0
X1
n¼0

xn

n!
þ b0x

X1
n¼0

xn

n!
ð3:12Þ

or explicitly

y ¼ a0 expðxÞ þ b0x expðxÞ ð3:13Þ

We could have foreshadowed such problems (i.e., repeated

or nondistinct roots) by proposing the more general form

for series representation

y ¼
X

anx
nþc ð3:14Þ

where c is a variable index (it would obviously take values 0

and 1 in the previous example). This is the form used in the

method of Frobenius to be discussed later in the chapter. At

this point, it should be clear that this method will allow the

two linearly independent solutions to be obtained in one

pass, provided the series representation is indeed convergent.

It is the purpose of this chapter to show how linear equa-

tions with variable coefficients can be solved using a series

representation of the type shown by Eq. 3.14. This powerful

technique has great utility in solving transport problems,

since these problems always give rise to variable coeffi-

cients owing to the cylindrical or spherical coordinate sys-

tems used in practical systems of interest.

3.2 PROPERTIES OF INFINITE SERIES

An expansion of the type

a0 þ a1ðx� x0Þ þ � � � þ anðx� x0Þn þ � � �

¼
X1
n¼0

anðx� x0Þn
ð3:15Þ

is called a power series around the point x0. If such a series

is to converge (be convergent), it must approach a finite

value as n tends to infinity. We wish to know those values

of x that insure convergence of the series. At present, we

shall take x, x0, and the coefficients an to be real variables.

Complex power series can be treated by the method taught

in Chapter 9. We assert that only convergent series solutions

are of value for solving differential equations.

To determine the values of x, which lead to convergent

series, we can apply the ratio test (Boas 1983), which states

that if the absolute value of the ratio of the (nþ l)st term to

nth term approaches a limit e as n ! 1, then the series itself

converges when e< 1 and diverges when e> 1. The test fails

if e¼ 1. In the case of the power series, Eq. 3.15, we see

e ¼ lim
n!1

anþ1

an

����
���� x� x0j j ¼ 1

R
x� x0j j ð3:16Þ

where

R ¼ lim
n!1

an

anþ1

����
���� ð3:17Þ

if the limit indeed exists. Thus, it is seen that for convergence,

e< 1; therefore,

x� x0j j < R ð3:18Þ

which is the condition on the values of x to insure conver-

gence. Thus, if we can find a value R, then the range of con-

vergence for the series is given by

ðx0 � RÞ < x < ðx0 þ RÞ ð3:19Þ

The distance R is called the radius of convergence.

Now, within the interval of convergence, the original

power series can be treated like any other continuously
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differentiable function. Such series formed by differentia-

tion or integration are thus guaranteed to be convergent.

Consider a series we have come to know very well

expðxÞ ¼ 1þ xþ x2

2!
þ � � � þ xn

n!
þ xnþ1

ðnþ 1Þ!þ � � �

ð3:20Þ

so that we see the radius of convergence is (note the expan-

sion is around the point x0¼ 0)

R ¼ lim
n!1

an

anþ1

����
���� ¼ lim

n!1
ðnþ 1Þ!

n!

����
���� ¼ lim

n!1ðnþ 1Þ ¼ 1

ð3:21Þ

It is thus clear for any finite x that

e ¼ 1

R
x� x0j j < 1:0 ð3:22Þ

since R!1. Obviously, this well-known series is conver-

gent in the region

�1 < x < 1 ð3:23Þ

Consider the binomial series discussed earlier in

Section 2.5.2

1þ xð Þp ¼ 1þ pxþ pðp� 1Þ
ð1Þð2Þ x2

þ pðp� 1Þðp� 2Þ
ð1Þð2Þð3Þ x3þ � � � ð3:24Þ

The nth term can be seen to be

an ¼ pðp� 1Þðp� 2Þ � � � ðp� nþ 1Þ
n!

ð3:25Þ

so that the radius of convergence is

R ¼ lim
n!1

an

anþ1

����
���� ¼ lim

n!1
nþ 1

p� n

����
���� ð3:26Þ

Dividing numerator and denominator by n shows

R ¼ lim
n!1

1þ 1=n

ðp=nÞ � 1

����
����! 1 ð3:27Þ

Therefore, to insure

e ¼ xj j=R < 1 ð3:28Þ

then |x|< 1, so the binomial series around the point

x0¼ 0 is convergent provided |x|< 1.

3.3 METHOD OF FROBENIUS

In solving transport phenomena problems, cylindrical and

spherical coordinate systems always give rise to equations

of the form

x2
d2y

dx2
þ xPðxÞ dy

dx
þ QðxÞy ¼ 0 ð3:29Þ

which contain variable coefficients. On comparing with the

general second order, variable coefficient case, Eq. 2.167,

we see that a1(x)¼P(x)/x and a0(x)¼Q(x)/x2.

We shall assume that the functions Q(x) and P(x) are

convergent around the point x0¼ 0 with radius of conver-

gence R

PðxÞ ¼ P0 þ P1xþ P2x
2 þ � � � ð3:30Þ

QðxÞ ¼ Q0 þ Q1xþ Q2x
2 þ � � � ð3:31Þ

Under these conditions, the equation can be solved by the

series method of Frobenius. Such series will also be conver-

gent for |x|<R.

Thus, for the general case, we start with the expansion

y ¼
X1
n¼0

anx
nþc ð3:32Þ

where c is a variable index (to be determined) and a0 6¼ 0

(since, as we saw earlier in Eq. 3.11, a0 is, in fact, an arbi-

trary constant of integration).

The first stage of the analysts is to find suitable values for

c through the indicial relation. The second stage is to find

the relations for an from the recurrence relation. This

second stage has many twists and turns and can best be

learned by example. We consider these relations in the next

section.

3.3.1 Indicial Equation and Recurrence Relation

As stated earlier, the first stage is to find the values for c,

through an indicial equation. This is obtained by inspecting

the coefficients of the lowest powers in the respective series

expansions. Consider Eq. 3.29 with P(x), Q(x) given by

Eqs. 3.30 and 3.31; first, perform the differentiations

dy

dx
¼
X1
n¼0

anðnþ cÞxnþc�1 ¼ y0 ð3:33Þ

d2y

dx2
¼
X1
n¼0

anðnþ c� 1Þðnþ cÞxnþc�2 ¼ y00 ð3:34Þ

3.3 METHOD OF FROBENIUS 77



Insert these into the defining Eq. 3.29

X1
n¼0

anðnþ c� 1Þðnþ cÞxnþc þ ðP0 þ P1xþ � � � Þ

X1
n¼0

anðnþ cÞxnþc þ ðQ0 þ Q1xþ � � � Þ
X1
n¼0

anx
nþc ¼ 0

ð3:35Þ

To satisfy this equation, all coefficients of xc, xcþ1 xcþn,

and so on, must be identically zero. Taking the lowest

coefficient, xc, we see

a0 ðc� 1Þcþ P0 � cþ Q0½ �xc ¼ 0 ð3:36Þ

This can be satisfied three possible ways, only one of which

is nontrivial

cðc� 1Þ þ P0cþ Q0 ¼ 0 ð3:37Þ

This quadratic equation is called the indicial relationship.

Rearrangement shows it yields two possible values of c

c2 þ cðP0 � 1Þ þ Q0 ¼ 0 ð3:38Þ

c1;2 ¼
ð1� P0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP0 � 1Þ2 � 4Q0

q
2

ð3:39Þ

The remainder of the solution depends on the character of

the values c1, c2. If they are distinct (not equal) and do not

differ by an integer, the remaining analysis is quite straight-

forward. However, if they are equal or differ by an integer,

special techniques are required.

We shall treat these special cases by way of example.

The special cases can be categorized as follows:

Case I The values of c are distinct and do not differ by an

integer.

Case II The values of c are equal.

Case III The values of c are distinct but differ by an

integer; two situations arise in this category, denoted as

case IIIa or IIIb.

EXAMPLE 3.1

CASE I DISTINCT ROOTS (NOTDIFFERING BY INTEGER)
Consider the second-order equation with variable coefficients

4x
d2y

dx2
þ 6

dy

dx
� y ¼ 0 ð3:40Þ

Comparison with Eq. 3.29 shows that (on multiplying by x and

dividing by 4)

P0 ¼ 6=4;P1 ¼ P2 ¼ Pn ¼ 0;

and

Q0 ¼ 0;Q1 ¼ � 1
4
;Q2 ¼ Q3 ¼ Qn ¼ 0

First, write the differentiations of

y ¼
X1
n¼0

anx
nþc

as

y0 ¼
X1
n¼0

anðnþ cÞxnþc�1 ð3:41Þ

y00 ¼
X1
n¼0

anðnþ cÞðnþ c� 1Þxnþc�2 ð3:42Þ

Insert these into Eq. 3.40 to yield

4
X1
n¼0

anðnþ cÞðnþ c� 1Þx nþc�1ð Þ þ 6
X1
n¼0

anðnþ cÞxnþc�1

�
X1
n¼0

anx
nþc¼ 0 ð3:43Þ

Remove the lowest coefficient (xc�1) and form the indicial

equation

a0 4cðc� 1Þ þ 6c½ �xc�l ¼ 0 ð3:44Þ

Now, since a0 6¼ 0, then we must have

4c2 þ 2c
� � ¼ 0; ; c2 ¼ 0; c1 ¼ � 1

2
ð3:45Þ

Now, since the first two summations have had their first terms

removed, summing should begin with n¼ 1, so that we should

write

4
X1
n¼1

anðnþ cÞðnþ c� 1Þxnþc�1 þ 6
X1
n¼1

anðnþ cÞxnþc�1

�
X1
n¼0

anx
nþc¼ 0

Another way to represent these sums is to increment n upward

(i.e., replace n with nþ 1), and this allows the sums to start

from n¼ 0. It also yields the same power on x (i.e., xnþc) in
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each summation so that they can all be combined under one

summation

X1
n¼0

4anþ1ðnþ 1þ cÞðnþ cÞ þ 6anþ1ðnþ 1þ cÞ � an½ �xnþc ¼ 0

ð3:46Þ

The recurrence relation is obviously the bracketed terms set to

zero. In most practical problems, uncovering the recurrence

relation is not so straightforward, and the coefficients a0¼
f(a1), a1¼ f(a2), and so on, must be found one at a time, as we

show later in Example 3.2. However, in the present case, we

have the general result for any value c

anþ1 ¼ an

ð4nþ 4cþ 6Þðnþ 1þ cÞ ð3:47Þ

We next consider the two cases c¼ 0 and c¼� 1
2
; first, when

c¼ 0, we see

anþ1 ¼ an

ð4nþ 6Þðnþ 1Þ ¼
an

ð2nþ 3Þð2nþ 2Þ ð3:48Þ

We note this yields, when n¼ 0,

a1 ¼ a0

ð3Þð2Þ
To find a general relation for the (nþ 1)th or nth coefficient,

in terms of a0 (which we treat as an arbitrary constant of inte-

gration, so that it is always the lead term), write the series of

products

anþ1

a0
¼ anþ1

an

� �
� an

an�1

� �
� � � � � a1

a0

� �
ð3:49Þ

There are (nþ 1) of these products; inserting the recurrence

relation, Eq. 3.48, shows

anþ1

a0
¼ 1

ð2nþ 3Þð2nþ 2Þ �
1

ð2nþ 1Þð2nÞ � � �
1

ð3Þð2Þ ð3:50Þ

It is clear this defines a factorial

anþ1

a0
¼ 1

ð2nþ 3Þ! ð3:51Þ

To find an, increment downward (replace n with n� 1)

an

a0
¼ 1

ð2nþ 1Þ! ð3:52Þ

which yields the sought-after general coefficient an in terms of

the lead coefficient a0, so that we have the first solution

y1 ¼ a0
X1
n¼0

1

ð2nþ 1Þ! x
n ¼ a0 1þ x

3!
þ x2

5!
þ � � �

� �
ð3:53Þ

This series of terms may be recognizable, if it is written in

terms of
ffiffiffi
x

p

y1 ¼
a0ffiffiffi
x

p ffiffiffi
x

p þ ð ffiffiffi
x

p Þ3
3!

þ ð ffiffiffi
x

p Þ5
5!

þ � � �
 !

ð3:54Þ

This is clearly the hyperbolic sine series, so that

y1 ¼ a0 sinhð
ffiffiffi
x

p Þ= ffiffiffi
x

p ð3:55Þ

For the second linearly independent solution, take c¼� 1
2
, to see

the recurrence relation, from Eq. 3.47

bnþ1 ¼ bn

ð4nþ 4Þðð2nþ 1Þ=2Þ ¼
bn

ð2nþ 2Þð2nþ 1Þ ð3:56Þ

Here, we use bn (instead of an) to distinguish the second from the

first solution.

As before, we first note that b1¼ b0=(2)(1). Next, form the

(nþ 1) products

bnþ1

b0
¼ bnþ1

bn

� �
bn

bn�1

� �
� � � b1

b0

� �
ð3:57Þ

Inserting the recurrence relation, suitably incremented, shows

bnþ1

b0
¼ 1

ð2nþ 2Þð2nþ 1Þ �
1

ð2nÞð2n� 1Þ � � �
1

ð2Þð1Þ ð3:58Þ

This again produces a factorial, so

bnþ1

b0
¼ 1

ð2nþ 2Þ! ð3:59Þ

Incrementing downward then yields the required result

bn

b0
¼ 1

ð2nÞ! ð3:60Þ

so that we have the second solution

y2 ¼
b0ffiffiffi
x

p
X1
n¼0

1

ð2nÞ! x
n ¼ b0ffiffiffi

x
p 1þ x

2!
þ x2

4!
þ � � �

� �
ð3:61Þ

The series terms may be recognized as the hyperbolic cosine oper-

ating on the argument
ffiffiffi
x

p

y2 ¼ b0 coshð
ffiffiffi
x

p Þ= ffiffiffi
x

p ð3:62Þ

which is linearly independent of the first solution. It is unusual,

and unexpected that such series solutions are expressible as ele-

mentary, tabulated functions. Had the coefficient multiplying y in
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Eq. 3.40 been positive, it would have been easy to show by

Frobenius that the two linearly independent solutions would be

sin
ffiffiffi
x

p
=
ffiffiffi
x

p
and cos

ffiffiffi
x

p
=
ffiffiffi
x

p
:

EXAMPLE 3.2

CASE IIIB DISTINCT VALUES OF C
(DIFFERING BY AN INTEGER)

We applied the Ricatti transformation to a nonlinear equation in

Example 2.10 and arrived at the linear Airy equation

d2z

dx2
� xz ¼ 0 ð3:63Þ

This equation arises frequently in physical science, and it also

illustrates some of the pitfalls of undertaking a Frobenius analysis.

Unlike the first example, we shall see that, most often, series co-

efficients must be deduced one at a time. As before, we propose a

solution of the form

z ¼
X1
n¼0

anx
nþc ð3:64Þ

Differentiating this and inserting z00 and z into the defining equa-

tion we find

X1
n¼0

anðnþ cÞðnþ c� 1Þxnþc�2 �
X1
n¼0

anx
nþcþ1 ¼ 0 ð3:65Þ

If we remove the first three terms of the z00 series, and then incre-

ment upward three times (replace n with nþ 3), we get

X1
n¼0

anþ3ðnþ 3þ cÞðnþ 2þ cÞ � an½ �xnþ1þc

þ a0cðc� 1Þxc�2 þ a1ðc� 1Þcxc�1 þ a2ðcþ 2Þðcþ 1Þxc ¼ 0

ð3:66Þ

The underlined term is the lowest power and produces the indicial

equation

cðc� 1Þ ¼ 0; ; c2 ¼ 1; c1 ¼ 0 ð3:67Þ

Now, the remaining terms must also be identically zero, and there

are several ways to accomplish this task. For example, the solution

corresponding to c¼ c1¼ 0 will automatically cause the term

a1(cþ 1)cxc�1¼ 0, so that nothing can be said about the value of

a1, hence it is indeterminate; we then treat a1 as an arbitrary con-

stant of integration, just as we did for a0. Finally, it is clear that

the only way to remove the term a2(cþ 2)(cþ 1)xc, regardless of

the value of c, is to set a2¼ 0. This now leaves us with the general

recurrence relation

anþ3 ¼ an

ðnþ 3þ cÞðnþ 2þ cÞ ð3:68Þ

Consider the solution corresponding to c¼ c1¼ 0 (the smaller root

of c)

anþ3 ¼ an

ðnþ 3Þðnþ 2Þ ð3:69Þ

We repeat that both a0 and a1 are arbitrary constants for this case;

moreover, we also required earlier that for all cases a2¼ 0. Thus,

we can write the coefficients for this solution one at a time using

Eq. 3.69, first in terms of a0

a3 ¼ a0

3 � 2 ; a6 ¼ a3

6 � 5 ¼ a0

6 � 5 � 3 � 2 ; etc: ð3:70Þ

and also in terms of a1

a4 ¼ a1

4 � 3 ; a7 ¼ a4

7 � 6 ¼ a1

7 � 6 � 4 � 3 ; etc: ð3:71Þ

All terms linearly connected to a2 must be zero (i.e., a5 ¼ a2=ð5 � 4Þ;
since a2¼ 0).

We can now write the two linearly independent solutions con-

taining two arbitrary constants a0, a1, as

z ¼ a0 1þ x3

3!
þ 1 � 4

6!
x6 þ � � �

� �

þ a1 xþ 1 � 2
4!

x4 þ 2 � 5
7!

x7 þ � � �
� �

ð3:72Þ

or

z ¼ a0 f ðxÞ þ a1gðxÞ ð3:73Þ

This special circumstance for Case III will be called Case IIIb;

it is distinguished by the fact that one of the coefficients aj
becomes indeterminate when using the smaller index value c, and

j¼ c2� c1. Thus, we see aj¼ a1 in the present case, but this could

have been foreshadowed by inspecting (c2� c1)¼ j. It is easy

to show that the solution for c¼ 1 reproduces one of the above

solutions. Thus, the lower index c produces two linearly indepen-

dent solutions at once.

Forms of the two series solutions generated above are widely

tabulated and are called Airy functions (Abramowitz and Stegun

1965); however, they are represented in slightly different form

z ¼ K1AiðxÞ þ K2BiðxÞ ð3:74Þ

where in terms of our previous functions f(x) and g(x)

AiðxÞ ¼ B1f ðxÞ � B2gðxÞ ð3:75Þ
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and

BiðxÞ ¼
ffiffiffi
3

p
ðB1 f ðxÞ þ B2gðxÞÞ ð3:76Þ

and the constants are defined as

B1 ¼ Aið0Þ ¼ Bið0Þ=
ffiffiffi
3

p
¼ 3�2=3=Gð2=3Þ ð3:77Þ

B2 ¼ Ai0ð0Þ ¼ Bi0ð0Þ=
ffiffiffi
3

p
¼ 3�1=3=Gð1=3Þ ð3:78Þ

The tabulated gamma functions, GðxÞ, will be discussed

in Chapter 4.

EXAMPLE 3.3

CASE II EQUAL VALUES OF C

Porous, cylindrical-shaped pellets are used as catalyst for the

reaction A�!k products, in a packed bed. We wish to model the

steady-state diffusion reaction processes within the particle. When

the pellet length to diameter ratio (L=2R)> 3, flux to the particle

end caps can be ignored. Assume the surface composition is CAs

and that reaction kinetics is controlled by a linear rate expression

RA ¼ kCA (mole/volume�time), and diffusive flux obeys

JA ¼ �DA@CA=@r:
Taking an annular shell of the type depicted in Fig. 1.1c, the

steady-state conservation law is, ignoring axial diffusion,

ð2prLJAÞjr � ð2prLJAÞjrþDr � ð2prDrLÞRA ¼ 0 ð3:79Þ

Dividing by ð2pLDrÞ; and taking limits, yields

� d

dr
ðrJAÞ � rRA ¼ 0 ð3:80Þ

Introducing the flux and rate expressions gives

DA

1

r

d

dr
r
dCA

dr

� �
� kCA ¼ 0 ð3:81Þ

Differentiating, and then rearranging, shows

r2
d2CA

dr2
þ r

dCA

dr
� r2

k

DA

� �
CA ¼ 0 ð3:82Þ

Defining the new variables

y ¼ CA=CAs; x ¼ r

ffiffiffiffiffiffi
k

DA

s
ð3:83Þ

yields the variable coefficient, linear ODE

x2
d2y

dx2
þ x

dy

dx
� x2y ¼ 0 ð3:84Þ

We propose to solve this by the Frobenius method, so let

y ¼
X1
n¼0

anx
nþc; ð3:84Þ

hence insert the derivatives to get

X1
n¼0

anðnþ cÞðnþ c� 1Þxnþc þ
X1
n¼0

anðnþ cÞxnþc

�
X1
n¼0

anx
nþcþ2¼ 0 ð3:85Þ

Removing the coefficients of the lowest power ðxcÞ and setting to

zero gives the indicial equation

a0 cðc� 1Þ þ c½ �xc ¼ 0 ð3:86Þ

hence, we see c2¼ 0, so c1¼ c2¼ 0. Since we have removed a

term from the first two series, we must rezero the summations by

incrementing each upward by 1 (replace n with nþ 1) to get

X1
n¼0

anþ1ðnþ 1þ cÞðnþ cÞxnþcþ1 þ
X1
n¼0

anþ1ðnþ 1þ cÞxnþ1þc

�
X1
n¼0

anx
nþcþ2 ¼ 0 ð3:87Þ

It is not yet possible to get a recurrence relation from this, since

the first two series have lower powers than the last one. This situa-

tion suggests removing a term from each of the first two, and

rezeroing again to get

X1
n¼0

anþ2ðnþ 2þ cÞðnþ 1þ cÞ þ anþ2ðnþ 2þ cÞ � an½ �xnþcþ2

þ a1 ðcþ 1ÞðcÞ þ ðcþ 1Þ½ �xcþ1 ¼ 0 ð3:88Þ

It is clear that the coefficient of xcþ1 does not disappear when

c¼ 0, so that we must set a1¼ 0. As we shall see, this implies that

all odd coefficients become zero. We can now write the recurrence

relation in general to find

anþ2½nþ 2þ c�2 ¼ an ð3:89Þ

or for the case c¼ 0

anþ2 ¼ an

ðnþ 2Þ2 ð3:90Þ

The general case, Eq. 3.89, shows that if a1¼ 0, then a3 ¼ a5 ¼
a7 ¼ � � � ¼ 0; so all odd coefficients are identically zero. Thus,

we know at this point that both linearly independent solutions are
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composed of even functions. This suggests replacing n with 2k, so

that the original form now reads

yðxÞ ¼
X1
k¼0

a2kx
2kþc ð3:91Þ

and the general recurrence relation is

a2kþ2 ¼ a2k= 2k þ 2þ c½ �2 ð3:92Þ

To find the first solution, set c¼ 0; hence,

a2kþ2 ¼ a2k= 2k þ 2½ �2 ¼ a2k

ð22Þðk þ 1Þ2 ð3:93Þ

We also see that a2 ¼ a0=ð22Þ; so that we write the series of prod-

ucts to attempt to relate a2k+2 to a0

a2kþ2

a0
¼ a2kþ2

a2k

a2k

a2k�2

� � � a2
a0

ð3:94Þ

hence

a2kþ2

a0
¼ 1

ð2k þ 2Þ2 �
1

ð2kÞ2 � � � 1

22
ð3:95Þ

To find a2k, replace k with (k� 1), so incrementing downward

gives

a2k

a0
¼ 1

ð2kÞ2 �
1

ð2k � 2Þ2 � � � 1

22
ð3:96Þ

There are exactly k terms in the series of products (one term if

k¼ 1, two terms if k¼ 2, etc). The factor 22 can be removed from

each term, so that the sequence becomes more recognizable

a2k

a0
¼ 1

22ðkÞ2 �
1

22ðk � 1Þ2 � � � 1

22 � 1 ð3:97Þ

Thus, 22 is repeated k times, and the factorial sequence k �
ðk � 1Þ � ðk � 2Þ . . . 1 is also repeated twice, so that we can

write the compact form

a2k

a0
¼ 1

ð22Þk
1

ðk!Þ2 ð3:98Þ

We can now write the first solution, for c¼ 0

y1ðxÞ ¼ a0
X1
k¼0

x

2

� 	2k 1

ðk!Þ2 ¼ a0I0ðxÞ ð3:99Þ

The series of terms denoted as I0ðxÞ is the zero-order, modi-

fied Bessel function of the first kind, to be discussed later in

Section 3.5.1.

To find the second linearly independent solution, we could

form the product as taught in Chapter 2

y2ðxÞ ¼ vðxÞI0ðxÞ ð3:100Þ

which will be linearly independent of I0(x) if v(x) 6¼ constant. The

reader can see this approach will be tedious.

Another approach is to treat the index c like a continuous

variable. We denote a function u(x,c), which satisfies the general

recurrence relation, Eq. 3.89, but not the indicial relation, so that

x2
d2uðx;cÞ
dx2

þ x
duðx;cÞ
dx

� x2uðx;cÞ þ b0c
2xc ¼ 0 ð3:101Þ

where

uðx;cÞ ¼ b0
X1
k¼0

1

ð2k þ cÞ2 � � � 1

ðcþ 4Þ2 �
1

ðcþ 2Þ2 x
2kþc ð3:102Þ

We have replaced an with bn to distinguish between the first and

the second solutions. Note, in passing, that if c! 0, then uðx; 0Þ
satisfies the original equation and is identical to the first solution

y1(x). Now, if we differentiate u(x,c) partially with respect to c,

we obtain

x2
d2

dx2
@u

@c

� �
þ x

d

dx

@u

@c

� �
� x2

@u

@c
þ 2b0cx

c þ b0c
2xc ln x ¼ 0

ð3:103Þ

We see in the limit as c! 0 the two residual terms disappear, and

we conclude that

@u=@cjc¼0

is another solution, which we can write as

y2ðxÞ ¼
@uðx;cÞ

@c

����
c¼0

ð3:104Þ

Now, it remains only to develop a systematic way of differentiat-

ing u(x,c). Inspection of Eq. 3.102 shows that u(x, c) is composed

of a product of functions of c

gðcÞ ¼ f 1ðcÞ � f 2ðcÞ � f 3ðcÞ � � � f kðcÞf kþ1ðcÞ ð3:105Þ

where starting from the lowest

f 1ðcÞ ¼ 1

ðcþ 2Þ2

f 2ðcÞ ¼ 1

ðcþ 4Þ2

f 3ðcÞ ¼ 1

ðcþ 6Þ2

..

.

f kðcÞ ¼
1

ðcþ 2kÞ2

f kþ1ðcÞ ¼ x2kþc ¼ exp ð2k þ cÞ ln x½ �
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We can use the properties of logarithms to conveniently differenti-

ate these product functions, since

ln g ¼ ln f 1 þ ln f 2 þ � � � ln f k þ ð2k þ cÞln x ð3:106Þ

and since

dg

dc
¼ g

dðln gÞ
dc

ð3:107Þ

we can differentiate one at a time to see

dg

dc
¼ f 1 � f 2 � f 3 � � � f k � f kþ1

f 01
f 1

þ f 02
f 2

þ � � � þ f 0k
f k

þ ln x


 �
ð3:108Þ

since

d ln f 1
dc

¼ 1

f 1

df 1
dc

;
d ln f 2
dc

¼ 1

f 2

df 2
dc

; etc:

The tabulation of these derivatives is as follows:

f 01
f 1

¼ �2

ðcþ 2Þ �!c¼0 �2

2

f 02
f 2

¼ �2

ðcþ 4Þ �!c¼0 �2

4

..

.

f 0k
f k

¼ �2

ðcþ 2kÞ �!c¼0 �2

ð2kÞ
f 0kþ1

f kþ1

¼ ln x

ð3:109Þ

Inserting these into

@u

@c

����
c¼0

gives

y2ðxÞ ¼
@u

@c

����
c¼0

¼ b0
X1
k¼0

1

22

� 1
42

� � � x2k

ð2kÞ2
�2

2
þ�2

4
þ � � � þ �2

2k
þ ln x


 �
ð3:110Þ

Combining the k products of 22 with x2k gives

y2ðxÞ ¼ b0
X1
k¼0

1

ðk!Þ2
x

2

� 	2k
lnx

� b0
X1
k¼0

1

ðk!Þ2 1þ 1

2
þ 1

3
þ � � � þ 1

k


 �
x

2

� 	2k ð3:111Þ

The summing function with k terms

wðkÞ ¼ 1þ 1

2
þ 1

3
þ � � � þ 1

k
ð3:112Þ

takes values

wð0Þ ¼ 0;wð1Þ ¼ 1; wð2Þ ¼ 1þ 1
2
;wð3Þ ¼ 1þ 1

2
þ 1

3
; etc:

ð3:113Þ

The solutions to this equation are tabulated and are called zero-

order, modified Bessel functions. We discuss them in the next

section. Thus, the solution to Eq. 3.84 could have been written

directly as

yðxÞ ¼ a0I0ðxÞ þ b0K0ðxÞ ð3:114Þ

where I0(x) and K0(x) denote the modified Bessel functions of the

first and second kind. As with the Airy functions, the tabulated

form of the second function is slightly different (within an arbi-

trary constant) from the series solutions worked out here, as can

be seen by comparison with the terms given in the next section.

It is also clear that the second solution tends to �1 as x tends to

zero because of the appearance of ln(x). Thus, for the present cata-

lyst pellet problem, we would set b0¼ 0 to insure admissibility

(continuity), so our final result is

yðxÞ ¼ CA

CAs

¼ a0I0 r

ffiffiffiffiffiffi
k

DA

s !
ð3:115Þ

Now, it can be seen from our first solution, y1,(x) in Eq. 3.99, that

I0(0)¼ 1, so that the present solution is finite at the centerline.

At the outer edge of the pellet, where r¼R, CA(R)¼CAs, so

evaluating a0 gives a value 1/I0[R(k/DA)], hence our final result for

computational purposes is

CA

CAs

¼
I0 r

ffiffiffiffiffiffiffiffiffiffiffi
k=DA

p� 	
I0 R

ffiffiffiffiffiffiffiffiffiffiffi
k=DA

p� 	 ð3:116Þ

We can use this to compute catalyst effectiveness factor, as

we demonstrate in the next section.

EXAMPLE 3.4

CASE IIIA DISTINCT VALUES OF C
(DIFFERING BY AN INTEGER)

The following equation is satisfied by the confluent hypergeo-

metric function of Kummer

x
d2y

dx2
þ ða� xÞ dy

dx
� by ¼ 0 ð3:117Þ

Use the method of Frobenius to find the two linearly independent

solutions when a¼b¼ 2. Introducing

y ¼
X1
n¼0

anx
nþc
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and its derivatives yields

X1
n¼0

anðnþ cÞðnþ c� 1Þ þ 2anðnþ cÞ½ �xnþc�1

�
X1
n¼0

anðnþ cÞ þ 2an½ �xnþc ¼ 0 ð3:118Þ

Removing the lowest power xc�1 gives the indicial equation

a0 cðc� 1Þ þ 2c½ �xc�1 ¼ 0 ð3:119Þ

so that c¼ 0,�1, which corresponds to Case III, since c2� c1¼ 1;

thus be wary of a1. Since we removed one term from the first

series, rezero this summation by incrementing n upward.

This immediately gives the recurrence relation, since all terms

multiply xnþc

X1
n¼0

anþ1ðnþ 1þ cÞðnþ cþ 2Þ � anðnþ cþ 2Þ½ �xnþc ¼ 0

ð3:120Þ
Thus, the general recurrence relation is

anþ1 ðnþ 1þ cÞðnþ cþ 2Þ½ � ¼ an½nþ cþ 2� ð3:121Þ

In Example 3.2, we foreshadowed a problem would arise in Case

III for the term aj, where c2� c1¼ j. Since we are alert to this

problem, we shall give Eq. 3.121 a closer inspection, by writing

the relation for a1 (since j¼ 1 in the present case)

a1ðcþ 1Þðcþ 2Þ ¼ a0ðcþ 2Þ ð3:122Þ

We see immediately that, when c¼ c1¼�1, then a1!1, which

is inadmissible. However, we can still proceed with the case c¼ 0,

which gives a1¼ a0, and

anþ1 ¼ an

nþ 1
ð3:123Þ

or

an ¼ an�1

n
ð3:124Þ

We can write the products to connect an to a0

an

a0
¼ an

an�1

an�1

an�2

� � � a1
a0

ð3:125Þ

hence,

an

a0
¼ 1

n
� 1

n� 1
� � � 1

1
¼ 1

n!
ð3:126Þ

This allows the first solution to be written

y1ðxÞ ¼ a0
X1
n¼0

xn

n!
¼ a0expðxÞ ð3:127Þ

Now, the case when c¼�1 has a discontinuity or singularity. We

can also relate, in general, the coefficients an to a0 as before, using

Eqs. 3.121 and 3.122

an

a0
¼ 1

ðnþ cÞ �
1

n� 1þ c
� � � � 1

ðcþ 2Þ �
1

ðcþ 1Þ ð3:128Þ

From this, we can write the general solution u(x,c) (which does

not yet satisfy the indicial solution), using bn to distinguish from

the first solution

uðx; cÞ ¼ b0
X1
n¼1

1

ðcþ 1Þ
1

ðcþ 2Þ � � �
1

ðnþ cÞ � x
nþc ð3:129Þ

As it stands, this function satisfies the relation

x
d2uðx; cÞ

dx2
þ ð2� xÞ duðx; cÞ

dx
� 2uðx; cÞ þ b0cðcþ 1Þxc�1 ¼ 0

ð3:130Þ

since we have stipulated that the indicial equation is not yet satis-

fied. The singularity in Eq. 3.129 can be removed by defining the

new function (cþ 1)u(x, c), so that

x
d2ðcþ 1Þu

dx2
þ ð2� xÞ dðcþ 1Þu

dx

� 2ðcþ 1Þu þ b0cðcþ 1Þ2xc�1 ¼ 0 ð3:131Þ

It is now clear that the new function (cþ 1) u (x, c) no longer

blows up when c¼�1, and it also satisfies the original defining

equation. But is it linearly independent of the first solution? To

check this, we use Eq. 3.129 to see

cþ 1Þuðx; cÞð jc¼�1 ¼ b0
X1
n¼1

1

ðn� 1Þ! x
n�1 ð3:132Þ

We increment the index by 1 (i.e., replacing n with nþ 1) to get

cþ 1Þuðx; cÞð jc¼�1 ¼ b0
X1
n¼0

1

n!
xn ð3:133Þ

But this is the same as the first solution (within an arbitrary

constant) and is not therefore linearly independent! Our elemen-

tary requirements for the second solution are simple: It must

satisfy the original ODE and it must be linearly independent of the

first solution.

However, if we used the same procedure as in Example 3.3

(Case II) and partially differentiate Eq. 3.131, we see the appeal-

ing result

x
d2

dx2
@

@c
ðcþ 1Þuþ ð2� xÞ d

dx

@

@c
ðcþ 1Þu

� 2
@

@c
ðcþ 1Þuþ b0ðcþ 1Þ2xc�1

þ 2b0cðcþ 1Þxc�1 þ b0cðcþ 1Þ2xc�1 ln x ¼ 0 ð3:134Þ
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Taking limits as c!�1 thereby removes the residual terms and

we see, indeed, that a new solution is generated

y2 ¼
@

@c
ðcþ 1Þuðx; cÞjc¼�1 ð3:135Þ

so that we must perform the operations

y2 ¼ b0
X1
n¼1

@

@c

1

cþ 2
� 1

cþ 3
� � � 1

cþ n
� xnþc


 �
c¼�1

ð3:136Þ

Since we have removed the (cþ 1) term, there are n functions of c

in the product

gðcÞ ¼ 1

cþ 2
� 1

cþ 3
� � � 1

cþ n
� xnþc ¼ f 1 � f 2 � � � f n ð3:137Þ

The differentiation of this product is done as before

dg

dc
¼ g

f 01
f 1

þ f 02
f 2

þ � � � þ f 0n�1

f n�1

þ ln x


 �
ð3:138Þ

where

f 01
f 1

¼ � 1

cþ 2
;

f 02
f 2

¼ � 1

cþ 3
;

f 0n�1

f n�1

¼ � 1

cþ n
;

f 0n
f n

¼ ln x

Inserting these and taking limits as c!�1

y2ðxÞ ¼ b0
X1
n¼1

xn�1

ðn� 1Þ! �1� 1

2
� 1

3
� � � þ �1

n� 1
þ ln x


 �
ð3:139Þ

Replacing n of the above equation with nþ 1 to get finally,

y2ðxÞ ¼ b0 ln x
X1
n¼0

xn

n!
� b0

X1
n¼0

xn

n!
wðnÞ ð3:140Þ

where

wðnÞ ¼ 1þ 1

2
þ 1

3
þ � � � þ 1

n

and as before

wð0Þ ¼ 0;wð1Þ ¼ 1;wð2Þ ¼ 1þ 1
2
; etc:

Again, the first term is zero, so that we could increment the second

series upward and replace it with

�b0
X1
n¼0

xnþ1

ðnþ 1Þ!wðnþ 1Þ

We note, as in Example 3.3 (Case II), that ln x occurs naturally in

the second solution, and this will always occur for Case IIIa and

Case II. This simply means that at x¼ 0, these second solutions

will tend to infinity, and for conservative physicochemical systems

(the usual case in chemical engineering), such solutions must be

excluded, for example, by stipulating b0¼ 0. If x¼ 0 is not in the

domain of the solution, then the solution must be retained, unless

other boundary conditions justify elimination. In the usual case,

the condition of symmetry at the centerline (or finiteness) will

eliminate the solution containing ln x.

3.4 SUMMARY OF THE FROBENIUS METHOD

The examples selected and the discussion of conver-

gence properties focused on solutions around the point

x0¼ 0. This is the usual case for chemical engineering

transport processes, since cylindrical or spherical geom-

etry usually includes the origin as part of the solution

domain. There are exceptions, of course, for example,

annular flow in a cylindrical pipe. For the exceptional

case, series solutions can always be undertaken for finite

x0 expressed as powers of (x� x0), which simply

implies a shift of the origin.

Thus, we have shown that any second (or higher) order,

variable coefficient equation of the type

x2
d2y

dx2
þ xPðxÞ dy

dx
þ QðxÞy ¼ 0 ð3:141Þ

can be solved by writing

y ¼
X1
n¼0

anx
nþc ða0 6¼ 0Þ ð3:142Þ

provided P(x) and Q(x) can be expanded in a convergent

series of (nonnegative) powers of x for all |x|<R, and

under such conditions the solutions are guaranteed to be

convergent in |x|<R. The following procedure was consis-

tently obeyed:

1. The indicial equation was found by inspecting the

coefficients of the lowest power of x.

2. The recurrence relation was found by progressively

removing terms and rezeroing summations until all

coefficients multiplied a common power on x.

3. Three general cases would arise on inspecting the

character of the roots c¼ c1, c¼ c2, where c2� c1¼ j:

(a) Case I If the roots are distinct (not equal) and do

not differ by an integer, then the two linearly

independent solutions are obtained by adding the

solutions containing c1 and c2, respectively.

(b) Case II If the roots are equal (c1¼ c2), one solu-

tion is obtained directly using c1 in Eq. 3.142 and

the second is obtained from
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y2 ¼
@uðx; cÞ

@c


 �
c¼c1

where

uðx; cÞ ¼
X1
n¼0

bnx
nþc

which does not in general satisfy the indicial

equation.

(c) Case III If the roots c1 and c2 are distinct, but

differ by an integer such that c2� c1¼ j, then the

coefficient aj will sustain one of the two behavior

patterns: aj tends to 1 (a discontinuity) or aj
becomes indeterminate. These subsets are treated

as follows:

Case IIIa When aj!1, the singularity causing

the bad behavior (the smaller root, c1) is

removed, and the second solution is generated

using

y2 ¼
@

@c
ðc� c1Þuðx; cÞjc¼c1

where u(x, c) is defined as in Case II.

Case IIIb When aj is indeterminate, then the

complete solution is obtained using the smaller

root c1, taking a0 and aj as the two arbitrary con-

stants of integration.

3.5 SPECIAL FUNCTIONS

Several variable coefficient ODE arise so frequently that

they are given names and their solutions are widely tabu-

lated in mathematical handbooks. One of these special

functions occupies a prominent place in science and engi-

neering, and it is the solution of Bessel’s equation

x2
d2y

dx2
þ x

dy

dx
þ ðx2 � p2Þy ¼ 0 ð3:143Þ

or equivalently

x
d

dx
x
dy

dx

� �
þ ðx2 � p2Þy ¼ 0

The solutions to this equation are called Bessel functions of

order p; that is, Jp(x), J�p(x). Because of its importance in

chemical engineering, we shall reserve a complete section

to the study of Bessel’s equation.

We mentioned earlier in Example 3.4 the confluent

hypergeometric function of Kummer, which satisfies the

equation

x
d2y

dx2
þ ðc� xÞ dy

dx
� ay ¼ 0 ð3:144Þ

and which has tabulated solutions denoted as M(a,c; x). In

fact, if c¼ 1 and a¼�n (where n is a positive integer or

zero), then one solution is the Laguerre polynomial,

y¼ Ln(x).

An equation of some importance in numerical solution

methods (Chapter 8) is the Jacobi equation

xð1� xÞ d
2y

dx2
þ a� ð1þ bÞx½ � dy

dx
þ nðbþ nÞy ¼ 0

ð3:145Þ

which is satisfied by the nth-order Jacobi polynomial,

y ¼ Jða;bÞn ðxÞ: This solution is called regular, since it is well

behaved at x¼ 0, where Jða;bÞn ð0Þ ¼ 1:
The Legendre polynomial is a special case of the Jacobi

polynomial that satisfies (see Homework Problem 3.7)

ð1� x2Þ d
2y

dx2
� 2x

dy

dx
þ nðnþ 1Þy ¼ 0 ð3:146Þ

The nth Legendre polynomial is denoted as Pn(x).

The Chebyshev polynomial satisfies

ð1� x2Þ d
2y

dx2
� x

dy

dx
þ n2y ¼ 0 ð3:147Þ

The regular form we denote as y¼ Tn(x), and n is a positive

integer or zero.

3.5.1 Bessel’s Equation

The method of Frobenius can be applied to Eq. 3.143

(Bessel’s equation) to yield two linearly independent solu-

tions, which are widely tabulated as

yðxÞ ¼ AJpðxÞ þ BJ�pðxÞ ð3:148Þ

for real values of x. It was clear from Example 3.3 that

different forms arise depending on whether 2p is integer

(or zero) or simply a real (positive) number.

Thus, if 2p is not integer (or zero), then the required

solutions are expressed as

JpðxÞ ¼
X1
n¼0

ð�1Þn ð1=2Þxð Þ2nþp

n!Gðnþ pþ 1Þ ð3:149Þ

where Gðnþ pþ 1Þ is the tabulated gamma function (to be

discussed in Chapter 4). The second solution is obtained by

simply replacing p with �p in Eq. 3.149.
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Now when p is zero, we can express the gamma function

as a factorial, Gðnþ 1Þ ¼ n!; so the zero-order Bessel func-

tion of the first kind is represented by

J0ðxÞ ¼
X1
n¼0

ð�1Þn ð1=2Þxð Þ2n
n! � n!

¼ 1� ð1=2Þxð Þ2
ð1!Þ2 þ ð1=2Þxð Þ4

ð2!Þ2 � � � � ð3:150Þ

The reader can see, had we applied the method of

Frobenius, the second solution would take the form

y2 ¼ b0 J0ðxÞ � ln x�
X1
m¼0

ð�1Þmþ1 ð1=2Þxð Þ2mþ2

ðmþ 1Þ!½ �2
"

� 1þ 1

2
þ � � � þ 1

mþ 1

� �#
ð3:151Þ

The bracketed function is called the Neumann form of the

second solution. However, the most widely used and

tabulated function is the Weber form, obtained by adding

ðg � ln 2ÞJ0ðxÞ to the above, and multiplying the whole

by 2/p. This is the standard form tabulated, and is given

the notation

Y0ðxÞ ¼ 2

p
ln

1

2
x

� �
þ g


 �
J0ðxÞ

� 2

p

X1
m¼0

ð�1Þmþ1 ð1=2Þxð Þ2mþ2

ðmþ 1Þ!½ �2 wðmþ 1Þ ð3:152Þ

where as before

wðmþ 1Þ ¼ 1þ 1

2
þ � � � þ 1

mþ 1

The Euler constant g is defined as

g ¼ lim
m!1 1þ 1

2
þ 1

3
þ � � � þ 1

m
� ln ðmÞ

� �
¼ 0:5772

ð3:153Þ

Thus, the general solution when p¼ 0 is represented using

symbols as

yðxÞ ¼ AJ0ðxÞ þ BY0ðxÞ ð3:154Þ

It is obvious that limx!0Y0ðxÞ ¼ �1; so that for conserva-

tive systems, which include x¼ 0 in the domain of the

physical system, obviously one must require B¼ 0 to attain

finiteness at the centerline (symmetry).

When p is integer we again use the Weber form for the

second solution and write (after replacing p with integer k)

yðxÞ ¼ AJkðxÞ þ BYkðxÞ ð3:155Þ

Thus, Jk(x) has the same representation as given in

Eq. 3.149, except we replace Gðnþ k þ 1Þ ¼ ðnþ kÞ!:

3.5.2 Modified Bessel’s Equation

As we saw in Example 3.3, another form of Bessel’s equa-

tion arises when a negative coefficient occurs in the last

term, that is,

x2
d2y

dx2
þ x

dy

dx
� ðx2 þ p2Þy ¼ 0 ð3:156Þ

This can be obtained directly from Eq. 3.143 by replacing x

with ix (since i2¼�1). The solution when p is not integer

or zero yields

y ¼ AJpðixÞ þ BJ�pðixÞ ð3:157Þ

and if p is integer or zero, write

y ¼ AJkðixÞ þ BYkðixÞ ð3:158Þ

However, because of the complex arguments, we introduce

the modified Bessel function, which contains real argu-

ments, so if p is not integer (or zero), write

y ¼ AIpðxÞ þ BI�pðxÞ ð3:159Þ

or, if p is integer k (or zero), write

y ¼ AIkðxÞ þ BKkðxÞ ð3:160Þ

The modified Bessel functions can be computed from the

general result for any p

IpðxÞ ¼
X1
n¼0

ð1=2Þxð Þ2nþp

n!Gðnþ pþ 1Þ ð3:161Þ

If p is integer k, then replace Gðnþ k þ 1Þ ¼ ðnþ kÞ! The
second solution for integer k is after Weber

KkðxÞ ¼ ð�1Þkþ1
ln

1

2
x

� �
þ g


 �
IkðxÞ

þ 1

2

Xk�1

m¼0

ð�1Þmðk �m� 1Þ!
m!

1

2
x

� �2m�k

þ 1

2

X1
m¼0

ð�1Þk ð1=2Þxð Þ2mþk

m!ðmþ kÞ! wðmþ kÞ þ wðmÞ½ �

ð3:162Þ

Plots of J0(x), J1(x), Y0(x), I0(x), and K0(x) are shown

in Fig. 3.1.
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3.5.3 Generalized Bessel’s Equation

Very often, Bessel’s equation can be obtained by an ele-

mentary change of variables (dependent, independent, or

both variables). For the general case, we can write

x2
d2y

dx2
þ xðaþ 2bxrÞ dy

dx

þ cþ dx2s � bð1� a� rÞxr þ b2x2r
� �

y¼ 0 ð3:163Þ
Representing Z�pðxÞ as one of the Bessel functions, a

general solution can be written

y ¼ x 1�a=2ð Þe� bxr=rð Þ AZp

ffiffiffiffiffiffi
dj jp
s

xs

 !
þ BZ�p

ffiffiffiffiffiffi
dj jp
s

xs

 !" #

ð3:164Þ

where

p ¼ 1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a

2

� �2

� c

s
ð3:165Þ

The types of Bessel functions that arise depend on the char-

acter of (d)1/2=s and the values of p.

1. If
ffiffiffi
d

p
=s is real and p is not integer (or zero), then Zp

denotes Jp and Z�p denotes J�p.

2. If
ffiffiffi
d

p
=s is real and p is zero or integer k, then Zp

denotes Jk and Z�p denotes Yk.

3. If
ffiffiffi
d

p
=s is imaginary and p is not zero or integer, then

Zp denotes Ip and Z�p denotes I�p.

4. If
ffiffiffi
d

p
=s is imaginary and p is zero or integer k, then

Zp denotes Ik and Z�p denotes Kk.

EXAMPLE 3.5

Pin promoters of the type shown in Fig. 3.2a and 3.2b are used in

heat exchangers to enhance heat transfer by promoting local wall

turbulence and by extending heat transfer area. Find an expression

to compute the temperature profile, assuming temperature varies

mainly in the x-direction. The plate temperature Tb, fluid tempera-

ture Ta, and heat transfer coefficient h are constant.

We first denote the coordinate x as starting at the pin tip, for

geometric simplicity (i.e., similar triangles). Heat is conducted

along the pin axis and is lost through the perimeter of incremental

area As ¼ 2pyDs; so that writing the steady-state conservation law

gives, where at any plane through the pin, the cross-sectional area

is A ¼ py2

qxAÞð jx � qxAÞð jxþDx � h2pyDsðT � TaÞ ¼ 0 ð3:166Þ

FIGURE 3.2 (a) Pin promoters attached to heat exchange surface. (b) Geometry of a single pin.

FIGURE 3.1 Plots of J0(x), J1(x), Y0(x), I0(x), and K0(x).

88 SERIES SOLUTION METHODS AND SPECIAL FUNCTIONS



Now, similar triangles show y=x¼ b=H and the incremental length

Ds ¼ Dx=cosb; so that replacing y and dividing by Dx yields

� dðqxAÞ
dx

� 2pxbh

Hcosb
ðT � TaÞ ¼ 0 ð3:167Þ

Replacing

qx ¼ �k
dT

dx
and A ¼ px2

b

H

� �2

gives

d

dx
x2

dT

dx

� �
� x

2h

k b=Hð Þcosb

 �

ðT � TaÞ ¼ 0 ð3:168Þ

The equation can be made homogeneous by replacing (T� Ta)¼
u, and we shall denote the group of terms as

l ¼ 2h

k b=Hð Þcos b½ �

so differentiating yields

x2
d2u

dx2
þ 2x

du

dx
� xlu ¼ 0 ð3:169Þ

We now introduce a dimensionless length scale, z ¼ lx to get

finally

z2
d2u

dz2
þ 2z

du

dz
� zu ¼ 0 ð3:170Þ

Comparing this with the generalized Bessel relation, Eq. 3.163,

indicates we should let

b ¼ 0; a ¼ 2; c ¼ 0; d ¼ �1; s ¼ 1
2

and moreover, Eq. 3.165 suggests

p ¼ 1 and
1

s

ffiffiffi
d

p
¼ 2iðimaginaryÞ ð3:171Þ

Comparing with Eq. 3.164, and item (4) in the list, we arrive at

u ¼ 1ffiffiffi
z

p A0I1ð2
ffiffiffi
z

p Þ þ B0K1ð2
ffiffiffi
z

p Þ� � ð3:172Þ

We first check for finiteness at z¼ 0 (i.e., x¼ 0), using the expan-

sion in Eq. 3.161

lim
z!0

1ffiffiffi
z

p I1ð2
ffiffiffi
z

p Þ ¼ lim
z!0

1ffiffiffi
z

p
ffiffiffi
z

p
1

þ 1ffiffiffi
z

p ð ffiffiffi
z

p Þ3
1!2!

þ � � �
" #

¼ 1 ð3:173Þ

so we see that this solution is admissible at z¼ 0. It is easy to show

for small arguments that KnðxÞ ’ 2n�1ðn� 1Þ!x�n; hence approx-
imately K1ð2

ffiffiffi
z

p Þ ’ 0:5=
ffiffiffi
z

p
; so that in the limit

lim
z!0

z�1=2K1ð2
ffiffiffi
z

p Þ ! 1

Thus, this function is inadmissible in the domain of z¼ 0, so take

B0¼ 0. This same conclusion would have been reached following

a Frobenius analysis, since the series solution would obviously

contain ln (x) as taught in the previous sections.

Whereas boundary conditions were not explicitly stated, it is

clear in Fig. 3.2a that T(H)¼ Tb or u(lH)¼ Tb� Ta; hence, the

arbitrary constant A0 can be evaluated

A0 ¼
ffiffiffiffiffiffiffi
lH

p
ðTb � TaÞ=I1ð2

ffiffiffiffiffiffiffi
lH

p
Þ ð3:174Þ

In terms of x, the final solution is

TðxÞ � Ta

Tb � Ta

¼
ffiffiffiffi
H

x

r
I1ð2

ffiffiffiffiffiffi
lx

p Þ
I1ð2

ffiffiffiffiffiffiffi
lH

p Þ ð3:175Þ

The dimensionless temperature (T(x)� Ta)=(Tb� Ta) arises natu-

rally and can be computed directly either from expansions for I1
or from tables (Abramowitz and Stegun 1965).

We need the differential or integral properties for Bessel

functions to compute the net rate of heat transfer. We dis-

cuss these properties in the next section, and then use them

to complete the above example.

3.5.4 Properties of Bessel Functions

It is easily verified that all power series presented thus far

as definitions of Bessel functions are convergent for finite

values of x. However, because of the appearance of ln(x)

in the second solutions, only Jp(x) and Ip(x) are finite at

x ¼ 0ðp � 0Þ: Thus, near the origin, we have the important

results:

k ¼ 0; J0ð0Þ ¼ I0ð0Þ ¼ 1 ð3:176Þ

k > 0ðintegerÞ; Jkð0Þ ¼ Ikð0Þ ¼ 0 ð3:177Þ

p > 0; J�pð0Þ ¼ �I�pð0Þ ! �1 ð3:178Þ

The sign in the last expression depends on the sign of

Gðmþ pþ 1Þ; as noted in Eqs. 3.149 and 3.161. However,

it is sufficient to know that a discontinuity exists at x¼ 0 in

order to evaluate the constant of integration. We also

observed earlier that ln(x) appeared in the second solutions,

so it is useful to know (e.g., Example 3.5)

�Ykð0Þ ¼ Kkð0Þ ! 1 ð3:179Þ

hence only Jk(x) and Ik(x) are admissible solutions.
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Asymptotic expressions are also useful in taking limits

or in finding approximate solutions; for small values of x,

the approximations are

JpðxÞ ’ 1

2p
xp

Gðpþ 1Þ ; J�pðxÞ ’ 2px�p

Gð1� pÞ ðx � 1Þ

ð3:180Þ

and for integer or zero orders, we have

Yn ’ � 2nðn� 1Þ!
p

x�n ðx � 1; n 6¼ 0Þ ð3:181Þ

Y0ðxÞ ’ 2

p
lnðxÞ ðx � 1Þ ð3:182Þ

The modified functions for small x are

IpðxÞ ’ xp

2pGðpþ 1Þ ; I�pðxÞ ’ 2px�p

Gð1� pÞ ðx � 1Þ

ð3:183Þ

KnðxÞ ’ 2n�1ðn� 1Þ!x�n ðx � 1; n 6¼ 0Þ ð3:184Þ

K0ðxÞ ’ �lnðxÞ ð3:185Þ

For large arguments, the modified functions sustain

exponential-type behavior and become independent of

order (p may be integer or zero):

IpðxÞ ’ expðxÞ=
ffiffiffiffiffiffiffiffi
2px

p
ð3:186Þ

KpðxÞ ’ expð�xÞ �
ffiffiffiffiffiffi
p

2x

r
ð3:187Þ

However, for large arguments, Jp(x) and Yp(x) behave in a

transcendental manner:

JpðxÞ ’
ffiffiffiffiffiffi
2

px

r
cos x� p

4
� p

p

2

� 	
ð3:188Þ

YpðxÞ ’
ffiffiffiffiffiffi
2

px

r
sin x� p

4
� p

p

2

� 	
ð3:189Þ

where p can be any real value including integer or zero. It

is also clear in the limit x!1 that Jp(x) and Yp(x) tend

to zero. The oscillatory behavior causes Jp(x) and Yp(x) to

pass through zero (called zeros of Jp(x)) and these are sepa-

rated by p for large x. Values of several Bessel functions are

listed in Table 3.1 and some zeros of Jp(x) are shown in

Table 3.2. Table 3.3 illustrates the zeros for a type III homo-

geneous boundary condition. The transcendental behavior

of Jp(x) plays an important part in finding eigenvalues for

partial differential equations expressed in cylindrical coor-

dinates, as we show in Chapter 10.

It is easy to show by variables’ transformation that

Bessel functions of 1
2
order are expressible in terms of ele-

mentary functions:

J1=2ðxÞ ¼
ffiffiffiffiffiffi
2

px

r
sinðxÞ ð3:190Þ

J�1=2ðxÞ ¼
ffiffiffiffiffiffi
2

px

r
cosðxÞ ð3:191Þ

I1=2ðxÞ ¼
ffiffiffiffiffiffi
2

px

r
sinhðxÞ ð3:192Þ

I�1=2ðxÞ ¼
ffiffiffiffiffiffi
2

px

r
coshðxÞ ð3:193Þ

TABLE 3.2 Zeros for Jn(x); Values of x to Produce Jn(x)¼ 0y

n¼ 0 n¼ 1 n¼ 2

2.4048 3.8371 5.1356

5.5201 7.0156 8.4172

8.6537 10.1735 11.6198

11.7915 13.3237 14.7960

14.9309 16.4706 17.9598

18.0711 19.6159 21.1170

yTaken from Abramowitz and Stegun (1965).

TABLE 3.3 Values of x to Satisfy x � J1 xð Þ ¼ N � J0 xð Þy

# N/x! x1 x2 x3 x4 x5

0.1 0.4417 3.8577 7.0298 10.1833 13.3312

1.0 1.2558 4.0795 7.1558 10.2710 13.3984

2.0 1.5994 4.2910 7.2884 10.3658 13.4719

10.0 2.1795 5.0332 7.9569 10.9363 13.9580

yTaken from Abramowitz and Stegun (1965).

TABLE 3.1 Selected Values for Bessel Functionsy

x J0(x) J1(x) I0(x) I1(x)

0 1.0000 0.0000 1.0000 0.0000

1 0.7652 0.4401 1.266 0.5652

2 0.2239 0.5767 2.280 1.591

3 �0.2601 0.3391 4.881 3.953

4 �0.3971 �0.0660 11.30 9.759

5 �0.1776 �0.3276 27.24 24.34

6 0.1506 �0.2767 67.23 61.34

7 0.3001 �0.0047 168.6 156.0

8 0.1717 0.2346 427.6 399.9

9 �0.0903 0.2453 1094 1031

yTaken from Abramowitz and Stegun (1965).
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3.5.5 Differential, Integral, and Recurrence Relations

The following differential properties may be proved with

reference to the defining equations and are of great

utility in problem solving (Mickley et al. 1957; Jenson and

Jeffreys 1977):

d

dx
xpZpðlxÞ
� � ¼ lxpZp�1ðlxÞ; Z ¼ J; Y ; I

�lxpZp�1ðlxÞ; Z ¼ K

( )

ð3:194Þ

d

dx
x�pZpðlxÞ
� � ¼ �lx�pZpþ1ðlxÞ; Z ¼ J; Y ;K

lx�pZpþ1ðlxÞ; Z ¼ I

( )

ð3:195Þ

d

dx
ZpðlxÞ
� � ¼ lZp�1ðlxÞ � p

x
ZpðlxÞ; Z ¼ J; Y; I

�lZp�1ðlxÞ � p

x
ZpðlxÞ; Z ¼ K

8><
>:

9>=
>;

ð3:196Þ
By applying the recurrence relations, these can also be writ-

ten in the more useful form

d

dx
ZpðlxÞ
� � ¼ �lZpþ1ðlxÞ þ p

x
ZpðlxÞ; Z ¼ J; Y;K

lZpþ1ðlxÞ þ p

x
ZpðlxÞ; Z ¼ I

8><
>:

9>=
>;

ð3:197Þ

Most tables of Bessel functions present only positive order

values, so the recurrence relations are needed to find nega-

tive order values

ZpðlxÞ ¼ lx

2p
Zpþ1ðlxÞ þ Zp�1ðlxÞ
� �

; Z ¼ J; Y

ð3:198Þ

IpðlxÞ ¼ �lx

2p
Ipþ1ðlxÞ � Ip�1ðlxÞ
� � ð3:199Þ

KpðlxÞ ¼ lx

2p
Kpþ1ðlxÞ � Kp�1ðlxÞ
� � ð3:200Þ

Also, for n integer or zero, the following inversion propert-

ies are helpful:

J�nðlxÞ ¼ ð�1ÞnJnðlxÞ ð3:201Þ

I�nðlxÞ ¼ InðlxÞ ð3:202Þ

K�nðlxÞ ¼ KnðlxÞ ð3:203Þ

Eqs. 3.194 and 3.195 are exact differentials and yield the

key integral properties directly, for example,

Z
lxpJp�1ðlxÞdx ¼ xpJpðlxÞ ð3:204Þ

and Z
lxpIp�1ðlxÞdx ¼ xpIpðlxÞ ð3:205Þ

Later, in Chapter 10, we introduce the orthogonality pro-

perty, which requires the integrals

Z x

0

JkðljÞJkðbjÞj dj ¼ x

l2 � b2
½lJkðbxÞ � Jkþ1ðlxÞ

� bJkðlxÞJkþ1ðbxÞ�
ð3:206Þ

and if l¼ b, this gives the useful result

Z x

0

JkðljÞ½ �2jdj ¼ 1
2
x2 J2kðlxÞ � Jk�1ðlxÞ Jkþ1ðlxÞ
� �

ð3:207Þ

For k integer or zero, we saw in Eq. 3.201J�kðlxÞ ¼
ð�1ÞkJkðlxÞ; so that if k¼ 0, the right-hand side of

Eq. 3.207 may be written as

1
2
x2 J20ðlxÞ þ J21ðlxÞ
� �

EXAMPLE 3.6

We were unable to complete the solution to Example 3.3 in order

to find the effectiveness factor for cylindrical catalyst pellets.

Thus, we found the expression for composition profile to be

CA

CAs

¼
I0 r

ffiffiffiffiffiffiffiffiffiffiffi
k=DA

p� 	
I0 R

ffiffiffiffiffiffiffiffiffiffiffi
k=DA

p� 	 ð3:208Þ

The effectiveness factor hA is defined as the ratio of actual molar

uptake rate to the rate obtainable if all the interior pellet area is

exposed to the reactant, without diffusion taking place. Thus, this

maximum uptake rate for species A is computed from

Wmax ¼ pR2LkCAs ð3:209Þ
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and the actual net positive uptake rate is simply exterior area times

flux

WA ¼ 2pRL þDA

dCA

dr

� �
r¼R

ð3:210Þ

We thus need to differentiate CA in Eq. 3.208, and we can use

Eq. 3.197 to do this; we find

dCA

dr
¼ CAs

I0 R
ffiffiffiffiffiffiffiffiffiffiffi
k=DA

p� 	 dI0 r
ffiffiffiffiffiffiffiffiffiffiffi
k=DA

p� 	
dr

ð3:211Þ

and from Eq. 3.197 we see

d

dr
I0 r

ffiffiffiffiffiffi
k

DA

s !
¼

ffiffiffiffiffiffi
k

DA

s !
I1 r

ffiffiffiffiffiffi
k

DA

s !
ð3:212Þ

so we finally obtainWA as

WA ¼ 2pRLCAs

ffiffiffiffiffiffiffiffiffi
kDA

p I1 R
ffiffiffiffiffiffiffiffiffiffiffi
k=DA

p� 	
I0 R

ffiffiffiffiffiffiffiffiffiffiffi
k=DA

p� 	 ð3:213Þ

Defining the Thiele modulus as

L ¼ R
ffiffiffiffiffiffiffiffiffiffiffi
k=DA

p
the effectiveness factor is

hA ¼ 2

L

I1ðLÞ
I0ðLÞ ¼

WA

WA;max

ð3:214Þ

Curves for hA versus L are presented in Bird et al. (1960).

EXAMPLE 3.7

We were unable to express net heat flux for the Pin promoters in

Example 3.5, in the absence of differential properties of Bessel

functions. Thus, the temperature profile obtained in Eq. 3.175 was

found to be expressible as a first-order, modified Bessel function

TðxÞ ¼ Ta þ ðTb � TaÞ
ffiffiffiffi
H

x

r
I1ð2

ffiffiffiffiffiffi
lx

p Þ
I1ð2

ffiffiffiffiffiffiffi
lH

p Þ ð3:215Þ

where

l ¼ 2h

k b=Hð Þcos b½ �

To find the net rate of transfer to a single pin, we need to compute

the heat leaving the base (which must be the same as heat loss

from the cone surface)

Q ¼ ðpb2Þ þ k
dT

dx

����
x¼H

� �
ð3:216Þ

This will require differentiation of I1ð2
ffiffiffiffiffiffiffiffiffiðlxÞp Þ: To do this, define

uðxÞ ¼ 2
ffiffiffiffiffiffiffiffiffiðlxÞp

; so that from Eq. 3.196

dI1ðuÞ
dx

¼ dI1ðuÞ
du

du

dx
¼

ffiffiffi
l

x

r
I0ðuÞ � 1

u
I1ðuÞ


 �
ð3:217Þ

Thus, the net rate is

Q ¼ kpb2ðTb � TaÞ
H

�1þ
ffiffiffiffiffiffiffi
lH

p I0 2
ffiffiffiffiffiffiffi
lH

p� 
I1 2

ffiffiffiffiffiffiffi
lH

p� 
" #

ð3:218Þ

It is clear from Table 3.1 that xI0ðxÞ > I1ðxÞ; so that the net rate is
positive as required. To find the effectiveness factor for Pin pro-

moters, take the ratio of actual heat rate to the rate obtainable if

the entire pin existed at temperature Tb (base temperature), which

is the maximum possible rate (corresponding to1 conductivity)

Qmax ¼ þh � Acone � ðTb � TaÞ ¼ hpb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ H2

p
� ðTb � TaÞ

ð3:219Þ

hence, we find

h ¼ Q

Qmax

¼ k

hH

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðH=bÞ2
q ffiffiffiffiffiffiffi

lH
p

I0ð2
ffiffiffiffiffiffiffi
lH

p Þ
I1ð2

ffiffiffiffiffiffiffi
lH

p Þ � 1

" #

ð3:220Þ
For large arguments (lH), we can obtain the asymptotic result,

since I0 	 I1 (Eq. 3.186)

h ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

hb

� �
2

1þ H=bð Þ2
� 	

cos b

vuut ð3:221Þ

Thus, the Biot number, defined as hb=k, and the geometric ratio

(H=b) control effectiveness. Thus, for ambient air conditions,

Bi	 2, and if H¼ b, then cos b ¼ 1=
ffiffiffi
2

p
; hence an effectiveness is

estimated to be 0.84 (84% effectiveness). Under these conditions,

lH ¼ 4
ffiffiffi
2

p
; which can be considered large enough (see Table 3.1)

to use the approximation I0 	 I1.

For small values of (lH), we can use the series expansion in

Eq. 3.161 to see that

I0ð2
ffiffiffiffiffiffiffi
lH

p
Þ ’ 1þ lH and I1ð2

ffiffiffiffiffiffiffi
lH

p
Þ ’

ffiffiffiffiffiffiffi
lH

p
þ ð

ffiffiffiffiffiffiffi
lH

p
Þ3=2!

so approximately

h 	 k

hH

ð1=2ÞlH
1þ ð1=2ÞlH

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðH=bÞ2

q ð3:222Þ
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Moreover, since lH � 1; then we have finally that h! 1 for

small lH (to see this, replace l¼ 2hH=(kb cos b) and

cos b ¼ H=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ b2

p
Þ.

This problem illustrates the usefulness of the asymptotic

approximations given in Eqs. 3.186–3.189.

PROBLEMS

3.12. The Taylor series expansion of f (x) around a point

x¼ x0, can be expressed, provided all derivatives of

f(x) exist at x0, by the series

y ¼ f ðxÞ ¼ f ðx0Þ þ @f ðx0Þ
@x

ðx� x0Þ þ 1

2!

@2f ðx0Þ
@x2

ðx� x0Þ2

þ � � � þ 1

n!

@nf ðx0Þ
@xn

ðx� x0Þn

Functions that can be expressed this way are said to

be “regular.”

(a) Expand the function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ xÞp

around the point

x0¼ 0 by means of Taylor’s series.

(b) Use part (a) to deduce the useful approximate

result
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ xÞp 
 1þ x=2: What error results

when x¼ 0.1?

(c) Complete Example 2.24 for the case n¼ 1/2 by

Taylor expansion of exp(�E/RT) around the point

T0, retaining the first two terms.

3.22. Determine the roots of the indicial relationship

for the Frobenius method applied to the following

equation:

(a) x
d2y

dx2
þ 1

2

dy

dx
þ y ¼ 0

(b) x
d2y

dx2
þ 2

dy

dx
þ xy ¼ 0

(c) x2
d2y

dx2
þ x

dy

dx
þ ðx2 � 1Þy ¼ 0

3.32. Thin, metallic circular fins of thickness b can be

attached to cylindrical pipes as heat transfer promot-

ers. The fins are exposed to an ambient temperature

Ta, and the root of each fin contacts the pipe at posi-

tion r¼R1, where the temperature is constant, Tw.

The fin loses heat to ambient air through a transfer

coefficient h. The metallic fin transmits heat by con-

duction in the radial direction.

(a) Show that the steady-state heat balance on an ele-

mentary annular element of fin yields the equation

1

r

d

dr
r
dT

dr

� �
� 2h

bk

� �
ðT � TaÞ ¼ 0

(b) Define a dimensionless radial coordinate as

x ¼ r

ffiffiffiffiffiffi
2h

bk

r

and introduce y¼ T� Ta, and thus show the ele-

mentary equation

x2
d2y

dx2
þ x

dy

dx
� x2y ¼ 0

describes the physical situation.

(c) Apply the method of Frobenius and find the roots

of the indicial equation to show that c1¼ c2¼ 0.

(d) Complete the solution and show that the first few

terms of the solution are

y ¼ a0 1þ x

2

� 	2 þ x

2

� 	4 1

2!

� �2

þ � � �
" #

þ b0 lnðxÞ 1þ x

2

� 	2
þ x

2

� 	4 1

ð2!Þ2 þ � � �
" #(

� x

2

� 	2
þ 3

2

x

2

� 	4 1

ð2!Þ2 þ � � �
" #)

3.43. The Graetz equation arises in the analysis of heat

transfer to fluids in laminar flow

x2
d2y

dx2
þ x

dy

dx
þ l2x2ð1� x2Þy ¼ 0

Apply the method of Frobenius and show that the only

solution that is finite at x¼ 0 has the first few terms as

y ¼ a0 1� l2

4

� �
x2 þ l2

16
1þ l2

4

� �
x4 � � � �


 �

3.53. Use the method of Frobenius to find solutions for the

following equations:

(a) xð1� xÞ d
2y

dx2
� 2

dy

dx
þ 2y ¼ 0

(b) x
d2y

dx2
þ ð1� 2xÞ dy

dx
� y ¼ 0

3.61. Villadsen and Michelsen (1978) define the Jacobi

polynomial as solutions of the equation

xð1� xÞ d
2y

dx2
þ bþ 1� ðbþ aþ 2Þx½ � dy

dx

þ nðnþ aþ bþ 1Þy¼ 0

Show how this can be obtained from the conventional

definition of Jacobi’s ODE, Eq. 3.145.
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3.71. In the method of orthogonal collocation to be

described later, Villadsen and Michelsen (1978)

define Legendre’s equation as

xð1� xÞ d
2y

dx2
þ ð1� 2xÞ dy

dx
þ nðnþ 1Þy ¼ 0

Use the change of variables u(x)¼ 2x� 1 and show

this leads to the usual form of Legendre equation

given in Eq. 3.146.

3.82. (a) Show that the solution of Problem 3.3 can be con-

veniently represented by the modified Bessel

functions

y ¼ AI0ðxÞ þ BK0ðxÞ

(b) Evaluate the arbitrary constants, using the bound-

ary conditions

y ¼ Tw � Ta @ x ¼ R1

ffiffiffiffiffiffi
2h

bk

r
�k

dy

dr
¼ hy @ r ¼ R2 ðouter fin radiusÞ

3.92. Rodriques’ formula is useful to generate Legendre’s

polynomials for positive integers n

PnðxÞ ¼ 1

2nn!

dnðx2 � 1Þn
dxn

Show that the first three Legendre polynomials are

P0ðxÞ ¼ 1;P1ðxÞ ¼ x;P2ðxÞ ¼ 1
2
ð3x2 � 1Þ

and then prove these satisfy Legendre’s equation.

3.103. Awedge-shaped fin is used to cool machine-gun bar-

rels. The fin has a triangular cross section and is L

meters high (from tip to base) and W meters wide at

the base. It loses heat through a constant heat trans-

fer coefficient h to ambient air at temperature TA.

The flat base of the fin sustains a temperature TH.

Show that the temperature variation obeys

x
d2y

dx2
þ dy

dx
� 2hL sec u

kW

� �
y ¼ 0

where

x¼ distance from tip of fin

y¼ T� TA
T¼ local fin temperature

TA¼ ambient temperature

h¼ heat transfer coefficient

k¼ thermal conductivity of fin material

L¼ height of fin

W¼ thickness of fin at base

u¼ half wedge angle of fin

(a) Find the general solution of the above equation

with the provision that temperature is at least

finite at the tip of the fin.

(b) Complete the solution using the condition T¼ TH
at the base of the fin.

(c) If a fin is 5mm wide at the base, 5mm high, and

has a total length 71 cm (28 in.), how much heat is

transferred to ambient (desert) air at 20�C? Take

the heat transfer coefficient to be 10Btu/h ft2�F
(0.24� 10�3 cal/cm2 � s �C) and the barrel temper-

ature (as a design basis) to be 400�C. The conduc-
tivity of steel under these conditions is 0.10 cal/

(cm � s � �C). From this, given the rate of heat

generation, the number of fins can be specified.

Today, circular fins are used in order to reduce

bending stresses caused by longitudinal fins.

3.112. Porous, cylindrical pellets are used in packed beds

for catalytic reactions of the type A�!ks Products.

Intraparticle diffusion controls the reaction rate

owing to the tortuous passage of reactant through

the uniform porous structure of the pellet.

(a) Ignoring transport at the end caps, perform a

steady material balance for the diffusion

reaction of species A to obtain for linear kinetics

DA

1

r

d

dr
r
dCA

dr

� �
� ksasCA ¼ 0

where DA is pore diffusivity of species A, CA is

molar composition, ks is surface rate constant,

and as represents internal area per unit volume

of pellet.

(b) If the bulk gas composition is CA0, and the gas

velocity is so slow that a finite film resistance

exists at the particle boundary (where r¼R),

then introduce the variables transformation

y ¼ CA

CA0

; x ¼ r

ffiffiffiffiffiffiffiffiffi
ksas

DA

r

and show the equation in part (a) becomes

x2
d2y

dx2
þ x

dy

dx
� x2y ¼ 0

(c) Apply the boundary condition

�DA

dCA

dr

����
r¼R

¼ kcðCAjr¼R � CA0Þ

94 SERIES SOLUTION METHODS AND SPECIAL FUNCTIONS



and show

CA

CA0

¼
I0 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksas=DA

p� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DAksas

p
=kc

� 
I1 R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksas=DA

p� 	
þ I0 R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksas=DA

p� 	

Note: As kc!1, the solution is identical to

Example 3.3.

3.123. Thin, circular metal fins are used to augment heat

transfer from circular pipes, for example, in home

heating units. For such thin fins, heat is conducted

mainly in the radial direction by the metal, losing

heat to the atmosphere by way of a constant heat

transfer coefficient h. In Problem 3.3, we introduced

the follow variables:

y ¼ T � TA

x ¼ r

ffiffiffiffiffiffi
2h

bk

r

to obtain for circular fins

x2
d2y

dx2
þ x

dy

dx
� x2y ¼ 0

(a) If the pipe of radius Rp takes a temperature Tp,

and the outer rim of the fin at position R exists at

ambient temperature TA, show that the tempera-

ture profile is

T � TA

Tp � TA

¼ I0ðxÞK0ðxRÞ � K0ðxÞI0ðxRÞ
I0ðxpÞK0ðxRÞ � I0ðxRÞK0ðxpÞ

where

xR ¼ R

ffiffiffiffiffiffi
2h

bk

r

xp ¼ Rp

ffiffiffiffiffiffi
2h

bk

r

(b) For small arguments, such that xp< x< xR< 1,

show that the temperature profile in (a) reduces

to

T � TA

Tp � TA


 ln r=Rð Þ
ln Rp=R
� 

3.13�. Darcy’s law can be used to represent flow pressure

drop through uniform packed beds

V0z ¼ � k

m

dp

dz
ðk is permeabilityÞ

where V0z is the superficial velocity along the axial

(z) direction. The Brinkman correction has been

suggested (Bird et al. 1960), so that pipe wall effects

can be accounted for by the modification

0 ¼ � dp

dz
� m

k
V0z þ m

1

r

d

dr
r
dV0z

dr

� �

(a) For a constant applied pressure gradient such

that �dp=dz ¼ DP=L; show that a modified

Bessel’s equation results if we define

y ¼ V0z � V�
0z;

V�
0z ¼

DP

L

k

m
ðDarcy velocityÞ; x ¼ rffiffiffi

k
p

hence, obtain

x2
d2y

dx2
þ x

dy

dx
� x2y ¼ 0

(b) Use the symmetry condition to show

V0zðrÞ ¼ DP

L

k

m
þ AI0 r=

ffiffiffi
k

p� 
What is the remaining boundary condition to

find the arbitrary constant A?
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4
INTEGRAL FUNCTIONS

4.1 INTRODUCTION

The final step in solving differential equations has been

shown to be integration. This often produced well-known

elementary functions, such as the exponential, logarithmic,

and trigonometric types, which show the relationship

between dependent (y) and independent variable (x). How-

ever, it frequently occurs that the final integral cannot be

obtained in closed form. If this occurs often enough, the

integral is given a name, and its values are tabulated. Such

is the case with integral expressions such as the error func-

tion, the Beta function, and so on. It is important to know

the properties of these functions and their limiting values,

in order to use them to finally close up analytical solutions.

We start with the most common integral relationship: the

error function.

4.2 THE ERROR FUNCTION

This function occurs often in probability theory, and diffu-

sion of heat and mass, and is given the symbolism

erfðxÞ ¼ 2ffiffiffi
p

p
Z x

0

expð�b2Þdb ð4:1Þ

Dummy variables within the integrand are used to forestall

possible errors in differentiating erf(x). Thus, the Leibnitz

formula for differentiating under the integral sign is written

d

da

Z u1ðaÞ

u0ðaÞ
f ðx;aÞdx ¼ f ðu1;aÞ du1

da
� f ðu0;aÞ du0

da

þ
Z u1ðaÞ

u0ðaÞ

@f ðx;aÞ
@a

dx ð4:2Þ

Thus, if we wish to find

d

dx
erfðxÞ

then

d

dx
erfðxÞ ¼ 2ffiffiffi

p
p dx

dx
expð�x2Þ ¼ 2ffiffiffi

p
p expð�x2Þ ð4:3Þ

Fundamentally, erf(x) is simply the area under the curve of

exp(�b2) between values of b¼ 0 and b¼ x; thus, it

depends only on the value of x selected. The normalizing

factor 2=
ffiffiffi
p

p
is introduced to ensure the function takes a

value of unity as x ! 1 (see Problem 4.10)

erfð1Þ ¼ 1 ð4:4Þ

4.2.1 Properties of Error Function

While the erf(x) is itself an integral function, nonetheless it

can also be integrated again, thus, the indefinite integralZ
erfðxÞdx ¼ ? ð4:5Þ
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can be performed by parts, using the differential property

given in Eq. 4.3

Z
erfðxÞdx ¼

Z
uðxÞdv ¼ uv �

Z
v
du

dx
dx ð4:6Þ

where we let u(x)¼ erf(x) and v¼ x, so thatZ
erfðxÞdx ¼ x � erfðxÞ �

Z
2ffiffiffi
p

p expð�x2Þxdxþ K

ð4:7Þ
Now, since 2xdx¼ d(x2), we can write finally,Z

erfðxÞdx ¼ x � erfðxÞ þ 1ffiffiffi
p

p expð�x2Þ þ K ð4:8Þ

where K is a constant of integration.

For continuous computation, the erf(x) can be given an

asymptotic expansion (Abramowitz and Stegun 1965) or it

can be represented in terms of the confluent hypergeometric

function after Kummer (e.g., see Example 3.4). A rational

approximation given by C. Hastings in Abramowitz and

Stegun (1965) is useful for digital computation

erfðxÞ ’ 1� ða1tþ a2t
2 þ a3t

3Þexpð�x2Þ þ e ð4:9Þ

where

t ¼ 1=ð1þ pxÞ ð4:10Þ

p ¼ 0:47047; a1 ¼ 0:34802; a2 ¼ �0:09587

a3 ¼ 0:74785; e � 2:5� 10�5 ð4:11Þ

This approximation ensures erf(1)¼ 1. Occasionally, the

complementary error function is convenient; it is defined as

erfcðxÞ ¼ 1� erfðxÞ ð4:12Þ

Table 4.1 illustrates some selected values for erf(x).

4.3 THE GAMMA AND BETA FUNCTIONS

4.3.1 The Gamma Function

The Gamma function was apparently first defined by the

Swiss mathematician Euler. In terms of real variable x, it

took a product form

GðxÞ ¼ 1

x

Y1
n¼ 1

1þ 1

n

� �x

1þ x

n

� � ð4:13Þ

The notation Gamma function was first used by Legendre

in 1814. From the infinite product, the usual integral form

can be derived

GðxÞ ¼
Z 1

0

tx�1e�tdt; x > 0 ð4:14Þ

It is clear from this that G(1)¼ 1, and moreover, integration

by parts shows

Gðxþ 1Þ ¼ x � GðxÞ ð4:15Þ
If x is integer, then since

GðnÞ ¼ ðn� 1ÞGðn� 1Þ ð4:16Þ
we can repeat this to G(1) to get

GðnÞ ¼ ðn� 1Þðn� 2Þ . . . ð2Þð1ÞGð1Þ ¼ ðn� 1Þ! ð4:17Þ

The defining integral, Eq. 4.14, is not valid for negative x,

and in fact tabulations are usually only given for the range

1< x< 2; see Table 4.2 for selected values. These results

can be extended for all positive values of x by using

TABLE 4.1 Selected Values for

Error Function

erfðxÞ ¼ 2ffiffiffi
p

p
R x

0
expð�b2Þdb

x erf(x)

0 0

0.01 0.01128

0.1 0.11246

0.5 0.52049

1.0 0.84270

1.5 0.96610

2.0 0.99532

1 1.00000

TABLE 4.2 Selected Values for

Gamma Function

GðxÞ ¼ R1
0

tx�1e�tdt

x G(x)

1.00 1.00000

1.01 0.99433

1.05 0.97350

1.10 0.95135

1.15 0.93304

1.20 0.91817

1.30 0.89747

1.40 0.88726

1.50 0.88623

1.60 0.89352

1.70 0.90864

1.80 0.93138

1.90 0.96177

2.00 1.00000
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Eq. 4.15. Moreover, we can extend the definition of Gamma

function to the realm of negative numbers (exclusive of

negative integers) by application of Eq. 4.15. For integer

values, we can also see the requirement (�1)!¼1, since

G(1)¼ 1 and from Eq. 4.16

Gð1Þ ¼ 0 � Gð0Þ ¼ 0 � ð�1Þ! ð4:18Þ

It is clear that all negative integers eventually contain G(0),
since

Gðn� 1Þ ¼ GðnÞ=ðn� 1Þ
¼ Gðnþ 1Þ=½nðn� 1Þ�; and so on ð4:19Þ

hence, G(n) is always infinite for negative integers.
Occasionally, the range of integration in Eq. 4.14 is not

infinite, and this defines the incomplete Gamma function

Gðx; tÞ ¼
Z t

0

tx�1e�tdt; x > 0; t > 0 ð4:20Þ

EXAMPLE 4.1

Prove that G 1
2

� � ¼ ffiffiffi
p

p
.

This can be done analytically as follows, starting with the defi-

nition

G 1
2

� � ¼ Z 1

0

t�1=2e�tdt ð4:21Þ

Let t¼ u2 so dt¼ 2u du and
ffiffi
t

p ¼ u; hence,

G 1
2

� � ¼ Z 1

0

2e�u2du ð4:22Þ

Thus, the right-hand side is a form of the error function, and more-

over, since erf(1)¼ 1, then

2

Z 1

0

e�u2du ¼ ffiffiffi
p

p 2ffiffiffi
p

p
Z 1

0

e�u2du ¼ ffiffiffi
p

p ð4:23Þ

This example allows us to write, for integer n

G nþ 1

2

� �
¼ ð2n� 1Þð2n� 3Þð2n� 5Þ . . . ð3Þð1Þ ffiffiffi

p
p

2n
ð4:24Þ

4.3.2 The Beta Function

The Beta function contains two arguments, but these can be

connected to Gamma functions, so we define

Bðx; yÞ ¼
Z 1

0

tx�1ð1� tÞy�1
dt; x > 0; y > 0 ð4:25Þ

It is an easy homework exercise to show

Bðx; yÞ ¼ GðxÞGðyÞ=Gðxþ yÞ ð4:26Þ

From this, it is clear that B(x, y)¼B(y, x).

4.4 THE ELLIPTIC INTEGRALS

In our earlier studies of the nonlinear pendulum problem

(Example 2.6), we arrived at an integral expression, which

did not appear to be tabulated. The physics of this problem

is illustrated in Fig. 4.1, where R denotes the length of

(weightless) string attached to a mass m, u denotes the

subtended angle, and g is the acceleration due to gravity.

Application of Newton’s law along the path s yields

d2u

dt2
þ v2 sin u ¼ 0 ð4:27Þ

where the natural frequency, v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiðg=RÞp
. Replacing as

before p¼ du=dt yields

p
dp

du
þ v2 sin u ¼ 0 ð4:28Þ

hence

p2 ¼ 2v2 cos u þ c1 ð4:29Þ

If the velocity is zero; that is,

V ¼ R
du

dt
¼ 0

at some initial angle a, then p(a)¼ 0, so

c1 ¼ �2v2 cosðaÞ ð4:30Þ

FIGURE 4.1 Pendulum problem.
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We then have, taking square roots

p ¼ du

dt
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v2ðcos u � cosaÞ

p
ð4:31Þ

hence for positive angles

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v2ðcos u � cosaÞp ¼ dt ð4:32Þ

If we inquire as to the time required to move from angle zero

to a, then this is exactly 1
4
the pendulum period, so that

T

4
¼ 1

v
ffiffiffi
2

p
Z a

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos u � cosa

p ð4:33Þ

Now, if we define k¼ sin (a/2), and using the identities

cos u ¼ 1� 2 sin2ðu=2Þ
cosa ¼ 1� 2 sin2ða=2Þ

ð4:34Þ

gives

T ¼ 2

v

Z a

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � sin2

u

2

� �s ð4:35Þ

Introducing a new variable w

sin
u

2
¼ k sinw ð4:36Þ

then w ranges from 0 to p=2 when u goes from 0 to a. Noting

that,

du ¼ 2k cosw dw

cos
u

2

� � ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � sin2

u

2

� �s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2w

p � dw ð4:37Þ

we finally obtain

T ¼ 4

v

Z p=2

0

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 w

p ð4:38Þ

The integral term is called the complete Elliptical integral of

the first kind and is widely tabulated (Byrd and Friedman

1954). In general, the incomplete elliptic integrals are

defined by

Fðk;wÞ ¼
Z w

0

dbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 b

p ð4:39Þ

which is the first kind, and

Eðk;wÞ ¼
Z w

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2b

q
� db ð4:40Þ

which is the second kind. These are said to be “complete”

if w¼p/2, and they are denoted under such conditions

as simply F(k) and E(k), since they depend only on the

parameter k.

The series expansions of the elliptic integrals are useful

for computation. For the range 0< k< 1, the complete inte-

gral expansions are

FðkÞ ¼ p

2
1þ 1

2

� �
2

k2 þ 1 � 3
2 � 4

� �
2

k4 þ 1 � 3 � 5
2 � 4 � 6

� �
2

k6 þ � � �
	 


ð4:41Þ

and

EðkÞ ¼ p

2
1� 1

2

� �
2

k2 � 1 � 3
2 � 4

� �
2 k4

3
� 1 � 3 � 5

2 � 4 � 6
� �

2 k6

5
þ � � �

	 

ð4:42Þ

Table 4.3 gives selected values for the complete integrals in

terms of angle w (degrees), where k¼ sin w.

It is useful to compare the nonlinear solution of the pen-

dulum problem to an approximate solution; for small

angles, sin u� u, hence Eq. 4.27 becomes

d2u

dt2
þ v2u ¼ 0 ð4:43Þ

This produces the periodic solution

u ¼ A cos ðvtÞ þ B sin ðvtÞ ð4:44Þ

TABLE 4.3 Selected Values for Complete

Elliptic Integrals k¼ sin w

w (Degrees) F(k) E(k)

0 1.5708 1.5708

1 1.5709 1.5707

5 1.5738 1.5678

10 1.5828 1.5589

20 1.6200 1.5238

30 1.6858 1.4675

40 1.7868 1.3931

50 1.9356 1.3055

60 2.1565 1.2111

70 2.5046 1.1184

80 3.1534 1.0401

90 1 1.000
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Now, since it was stated

du

dt
¼ 0

at time zero, such that u(0)¼a, then we must take B¼ 0.

Moreover, we see that A¼a, so we find

u ¼ a cosðvtÞ ð4:45Þ

This can be solved directly for time

vt ¼ cos�1ðu=aÞ ð4:46Þ

The time required for u to move from 0 to a is again T=4
(1
2
the period), so that

T

4
¼ 1

v

p

2

� �
ð4:47Þ

We can compare this with the exact result in Eq. 4.38, using

the first two terms of the expansion in Eq. 4.41, since it is

required k 	 1

T

4
¼ 1

v

p

2
1þ 1

2

� �2

k2 þ � � �
" #

ð4:48Þ

Now, suppose a¼ 10
, so that sin a=2¼ k¼ 0.087, hence

the exact solution gives approximately

T

4
’ 1

v

p

2
1þ 0:001899½ � ð4:49Þ

Thus, the approximate ODE in Eq. 4.43 sustains a very small

error (per period) if the original deflected angle a is small

(less than 10
). Corrections for bearing friction and form

drag on the swinging mass are probably more significant.

4.5 THE EXPONENTIAL AND TRIGONOMETRIC

INTEGRALS

Integrals of exponential and trigonometric functions appear

so frequently that they have become widely tabulated

(Abramowitz and Stegun 1965). These functions also arise

in the inversion process for Laplace transforms. The expo-

nential, sine, and cosine integrals are defined according to

the following relations:

EiðxÞ ¼
Z x

�1

expðtÞ
t

dt ð4:50Þ

SiðxÞ ¼
Z x

0

sinðtÞ
t

dt ð4:51Þ

CiðxÞ ¼
Z x

1

cosðtÞ
t

dt ð4:52Þ

The exponential integral for negative arguments is repre-

sented by

�Eið�xÞ ¼
Z 1

x

expð�tÞ
t

dt ¼ E1ðxÞ ð4:53Þ

The behavior of these integral functions is illustrated in

Fig. 4.2

Only the sine integral remains finite at the origin, and

this information is helpful in evaluating arbitrary constants

of integration. It is also important to note that Ei(x) is infi-

nite at x ! 1, hence Ei(�x) is also unbounded as

FIGURE 4.2 (a) Plot of Ei(x) versus x. (b) Plot of Si(x) and

Ci(x) versus x.
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x ! �1. These boundary values are worth listing

Sið0Þ ¼ 0; Cið0Þ ¼ �1; Eið0Þ ¼ �1; E1ð0Þ ¼ þ1
Eið1Þ ¼ þ1; E1ð1Þ ¼ 0; E1ð�1Þ ¼ 1

Useful recipes for calculating integral functions are availa-

ble in Press et al. (1988).

PROBLEMS

4.13. One complementary solution of the equation

x2
d2y

dx2
þ ðx� 1Þ x

dy

dx
� y

� �
¼ x2e�x

is y1¼ xC1 as seen by inspection.

(a) Show that the second linearly independent, com-

plementary solution can be constructed from the

first as

y2 ¼ C2x

Z
e�x

x
dx

(b) Since the indefinite integral is not tabulated, intro-

duce limits and obtain using a new arbitrary constant

y2 ¼ �C0
2x

Z 1

x

e�t

t
dt

Now we see that tabulated functions can be used

y2 ¼ C0
2xEið�xÞ

so the complete complementary solution is

yc ¼ C1xþ C0
2xEið�xÞ

(c) Use the method of variation of parameters and

prove that a particular solution is

yp ¼ �xe�x

so the complete solution is finally,

yðxÞ ¼ x½C1 þ C0
2Eið�xÞ � e�x�

4.22. We wish to find the value of the sine integral

Sið1Þ ¼
Z 1

0

sinðtÞ
t

dt

A useful, general approach is to redefine the prob-

lem as

IðbÞ ¼
Z 1

0

e�bt sinðtÞ
t

dt

Then produce the differential

dIðbÞ
db

¼ �
Z 1

0

e�btsinðtÞdt

(a) Use integration by parts twice on the integral

expression to show

dI

db
¼ � 1

1þ b2

Hence,

IðbÞ ¼ �tan�1bþ K

where K is an arbitrary constant of integration.

(b) Invoke the condition that I(1)¼ 0; hence, show

that K¼p/2, and so get the sought-after result

Ið0Þ ¼ Sið1Þ ¼ p

2

4.32. The complementary error function can be expressed

as

erfcðxÞ ¼ 2ffiffiffi
p

p
Z 1

x

e�u2du

We wish to develop an asymptotic expression for

erfc(x), valid for large arguments.

(a) Use integration by parts to show

Z 1

x

e�u2du ¼ e�x2

2x
�
Z 1

x

1

2u2
e�u2du

(b) Repeat this process again on the new integral to

get

Z 1

x

1

2u2
e�u2du ¼ e�x2

4x3
� 3

4

Z 1

x

e�u2

u4
du

(c) Show that continuation finally yields

Z 1

x

e�u2du � e�x2

2x
1� 1

2x2
þ 1 � 3
ð2x2Þ2 �

1 � 3 � 5
ð2x2Þ3 þ � � �

" #
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and thus for large arguments

erfcðxÞ � e�x2

x
ffiffiffi
p

p

4.42. The Beta function can be expressed in alternative

form by substituting

t ¼ sin2u; 1� t ¼ cos2u

(a) Show that

Bðx; yÞ ¼ 2

Z p=2

0

sin2x�1u � cos2y�1u du

(b) Now, use the substitution t¼ cos2 u, repeat the

process in (a) and thereby prove

Bðx; yÞ ¼ Bðy; xÞ

4.53. Use the method illustrated in Problem 4.2 to evaluate

IðaÞ ¼
Z 1

0

e�x2 sinð2axÞ
x

dx ðIÞ

and thus obtain the useful result

IðaÞ ¼ 1
2
p erfðaÞ ðIIÞ

(a) Apply two successive differentiations with respect

to a and show that

d2I

da2
þ 2a

dI

da
¼ 0

(b) Replace dI=da with p and obtain

p ¼ A expð�a2Þ

and then deduce that A ¼ ffiffiffi
p

p
.

(c) Integrate again and show that

IðaÞ ¼ 1
2
p erfðaÞ þ B

Since the defining integral shows I(0)¼ 0, then

B¼ 0, hence obtain the elementary result in (II)

given above.

4.62. Evaluate the derivative of the Gamma function and see

G0ðxÞ ¼ dGðxÞ
dx

¼
Z 1

0

tx�1ðln tÞe�tdt

and then show that at x¼ 1

G0ð1Þ ¼ �g

where g� 0.5772 is Euler’s constant

g ¼ lim
n!1 1þ 1

2
þ 1

3
þ 1

4
þ � � � þ 1

n
� lnðnÞ

� �

4.72. An approximation to Gðxþ 1Þ for large x can be

obtained by an elementary change of variables.

(a) Starting with

Gðxþ 1Þ ¼
Z 1

0

txe�tdt

change variables to

t ¼ t� xffiffiffi
x

p

and show that

Gðxþ 1Þ
e�xxxþ1=2

¼
Z 1

� ffiffi
x

p e�t
ffiffi
x

p
1þ tffiffi

x
p

� �x

dt

(b) Rearrange the integral by noting

1þ tffiffi
x

p
� �x

¼ exp x ln 1þ tffiffiffi
x

p
� �	 


then use the Taylor expansion for lnð1þ t=
ffiffiffi
x

p Þ
around the point t ¼ 0; that is,

lnð1þ xÞ ¼ ln ð1Þ þ @ ln ð1þ xÞ
@x

����
x ¼ 0

� x

þ 1

2!

@2 ln ð1þ xÞ
@x2

����
x ¼ 0

� x2

(this is called the Maclauren expansion) and thus

shows

Gðxþ 1Þ
e�xxxþ1=2

¼
Z ffiffi

x
p

� ffiffi
x

p exp �t
ffiffiffi
x

p þ x
tffiffiffi
x

p � t2

2x
þ � � �

� �	 

dt

þ
Z 1ffiffi

x
p exp �t

ffiffiffi
x

p þ x ln 1þ tffiffiffi
x

p
� �	 


dt
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(c) For large x, the second integral has a narrow range

of integration, so ignore it and hence show

Gðxþ 1Þ
e�xxxþ1=2

�
ffiffiffiffiffiffi
2p

p

When x¼ n (an integer), we have Gðnþ 1Þ ¼ n!, so
the above yields the useful result

n! �
ffiffiffiffiffiffi
2p

p
e�nnnþ1=2

This is known as Stirling’s formula. It is quite accurate

even for relatively small n; for example, for n¼ 3,

n!¼ 6, while Stirling’s formula gives 3!¼ 5.836.

4.81. Evaluate the integral

I ¼
Z p=6

0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 sin2f

p
and show that

I ¼ 1
2
F 1

2

� �
4.92. It is useful to obtain a formula to calculate elliptic

integrals outside the range normally provided in

tables (0 to p/2 radians). Use the relations

Fðk;pÞ ¼ 2FðkÞ
Eðk;pÞ ¼ 2EðkÞ

to show

Fðk;fþmpÞ ¼ 2mFðkÞ þ Fðk;fÞ
Eðk;fþmpÞ ¼ 2mEðkÞ þ Eðk;fÞ

m¼ 0, 1, 2, 3, . . .

4.102. Show that

Z 1

0

xae�bxcdx ¼
G

aþ 1

c

� �
cbðaþ1Þ=c

and then use this result to show that the important

probability integral has the value

Z 1

0

e�x2dx ¼
ffiffiffi
p

p
2
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5
STAGED-PROCESS MODELS:
THE CALCULUS OF FINITE DIFFERENCES

5.1 INTRODUCTION

Chemical processing often requires connecting finite stages

in series fashion. Thus, it is useful to develop a direct

mathematical language to describe interaction between

finite stages. Chemical engineers have demonstrated con-

siderable ingenuity in designing systems to cause intimate

contact between countercurrent flowing phases, within a

battery of stages. Classic examples of their clever contriv-

ances include plate-to-plate distillation, mixer–settler

systems for solvent extraction, leaching batteries, and

stage-wise reactor trains. Thus, very small local driving

forces are considerably amplified by imposition of multiple

stages. In the early days, stage-to-stage calculations were

performed with highly visual graphical methods, using ele-

mentary principles of geometry and algebra. Modern meth-

ods use the speed and capacity of digital computation.

Analytic techniques to exploit finite-difference calculus

were first published by Tiller and Tour (1944) for steady-

state calculations, and this was followed by treatment of

unsteady problems by Marshall and Pigford (1947).

We have seen in Chapter 3 that finite-difference equations

also arise in power series solutions of ODEs by the method

of Frobenius; the recurrence relations obtained there are in

fact finite-difference equations. In Chapters 7 and 8, we

show how finite-difference equations also arise naturally in

the numerical solutions of differential equations.

In this chapter, we develop analytical solution methods,

which have very close analogs with methods used for linear

ODEs. A few nonlinear difference equations can be reduced

to linear form (the Riccati analog) and the analogous Euler-

Equidimensional finite-difference equation also exists. For

linear equations, we again exploit the property of superposi-

tion. Thus, our general solutions will be composed of a lin-

ear combination of complementary and particular solutions.

5.1.1 Modeling Multiple Stages

Certain assumptions arise in stage calculations, especially

when contacting immiscible phases. The key assumptions

relate to the intensity of mixing and the attainment of ther-

modynamic equilibrium. Thus, we often model stages using

the following idealizations:

� Continuous Stirred Tank Reactor (CSTR) Assump-
tion Implies that the composition everywhere within

the highly mixed fluid inside the vessel is exactly the

same as the composition leaving the vessel.

� Ideal Equilibrium Stage Assumption is the common

reference to an “ideal” stage, simply implying that all

departing streams are in a state of thermodynamic

equilibrium.

As we show by example, there are widely accepted methods

to account for practical inefficiencies that arise, by intro-

ducing, for example, Murphree Stage efficiency, and so on.

To illustrate how finite-difference equations arise, con-

sider the countercurrent liquid–liquid extraction battery

shown in Fig. 5.1. We first assume the phases are com-

pletely immiscible (e.g., water and kerosene). The heavy

Applied Mathematics and Modeling for Chemical Engineers, Second Edition. Richard G. Rice and Duong D. Do.
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underflow phase has a continuous mass flow L (water, kg/s),

and the light solvent phase flows at a rate V (kerosene, kg/s).

Under steady-state operation, we wish to extract a solute X0

(e.g., acetic acid) from the heavy phase, and transfer it to

the light phase (kerosene), using a nearly pure solvent with

composition YNþ1. Since the solvent flows are constant, it is

convenient in writing the solute balance to use mass ratios

Y ¼ mass solute=mass extracting solvent ð5:1Þ
X ¼ mass solute=mass carrier solvent ð5:2Þ

The equilibrium relation is taken to be linear, so that

Yn ¼ KXn ð5:3Þ

With a slight change in the meaning of the symbols, we could

also use this model to describe countercurrent distillation;

here V would be the vapor phase, and L would denote the

downflowing liquid. We illustrate distillation through an

example later as a case for nonlinear equations.

A material balance on the nth stage can be written, since

accumulation is nil (steady state)

LXn�1 þ VYnþ1 � LXn � VYn ¼ 0 ð5:4Þ

We can eliminate either X or Y, using Eq. 5.3. Since we are

most concerned with the concentration of the light product

phase (Y1), we choose to eliminate X; hence,

L

K

� �
Yn�1 þ VYnþ1 � L

K

� �
Yn � VYn ¼ 0 ð5:5Þ

Dividing through by V yields a single parameter, so we have

finally,

Ynþ1 � ðbþ 1ÞYn þ bYn�1 ¼ 0 ð5:6Þ

where

b ¼ L

VK

This equation could be incremented upward (replace n with

n+ 1) to readily see that a second-order difference equation

is evident

Ynþ2 � ðbþ 1ÞYnþ1 þ bYn ¼ 0 ð5:7Þ

Thus, the order of a difference equation is simply the differ-

ence between the highest and lowest subscripts appearing

on the dependent variable (Y in the present case). Thus, we

treat n as an independent variable, which takes on only inte-

ger values.

5.2 SOLUTIONMETHODS FOR LINEAR FINITE

DIFFERENCE EQUATIONS

It was stated at the outset that analytical methods for linear

difference equations are quite similar to those applied to

linear ODE. Thus, we first find the complementary solution

to the homogeneous (unforced) equation, and then add

the particular solution to this. We shall use the methods

of undetermined coefficients and inverse operators to find

particular solutions.

The general linear finite difference equation of kth order

can be written just as we did in Section 2.5 for ODE

Ynþk þ ak�1ðnÞ � Ynþk�1 þ � � � þ a0ðnÞYn ¼ f ðnÞ ð5:8Þ

It frequently occurs that the coefficient ak is independent of

n and take constant values. Moreover, as we have seen, the

second-order equation arises most frequently, so we illus-

trate the complementary solution for this case

Ynþ2 þ a1Ynþ1 þ a0Yn ¼ 0 ð5:9Þ

Staged processes usually yield a negative value for a1, and

by comparing with the extraction battery, Eq. 5.7, we

require a1=� (b+ 1) and a0 =b.

5.2.1 Complementary Solutions

In solving ODE, we assumed the existence of solutions of

the form y¼A exp(rx) where r is the characteristic root,

obtainable from the characteristic equation. In a similar

manner, we assume that linear, homogeneous finite-differ-

ence equations have solutions of the form, for example, in

the previous extraction problem

Yn ¼ AðrÞn ð5:10Þ

where A is an arbitrary constant obtainable from end condi-

tions (i.e., where n¼ 0, n¼Nþ 1, etc.). Thus, inserting this

into this second-order Eq. 5.9, with a1¼� (bþ 1) and

a0¼ b yields the characteristic equation for the extraction

battery problem

r2 � ðbþ 1Þrþ b ¼ 0 ð5:11Þ

FIGURE 5.1 Continuous countercurrent extraction cascade.
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This implies two characteristic values obtainable as

r1;2 ¼
ðbþ 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ 1Þ2 � 4b

q
2

¼ ðbþ 1Þ � ðb� 1Þ
2

ð5:12Þ

which gives two distinct roots

r1 ¼ b; r2 ¼ 1

Linear superposition then requires the sum of the two solu-

tions of the form in Eq. 5.10, so that

Yn ¼ Aðr1Þn þ Bðr2Þn ¼ AðbÞn þ Bð1Þn ð5:13Þ

We can now complete the solution for the extraction bat-

tery. Thus, taking the number of stages N to be known, it is

usual to prescribe the feed composition, X0, and the solvent

composition YNþ 1. From these, it is possible to find the

constants A and B by defining the fictitious quantity Y0¼
KX0; hence,

KX0 ¼ AðbÞ0 þ Bð1Þ0 ¼ Aþ B ð5:14Þ

YNþ1 ¼ AðbÞNþ1 þ B ð5:15Þ

so we can solve for A and B

A ¼ KX0 � YNþ1

1� bNþ1
ð5:16Þ

and

B ¼ YNþ1 � KX0b
Nþ1

1� bNþ1
ð5:17Þ

The general solution then becomes

Yn ¼ KX0 � YNþ1

1� bNþ1

� �
bn þ YNþ1 � KX0b

Nþ1

1� bNþ1

� �
ð5:18Þ

and the exit composition is obtained by taking n¼ 1; hence,

Y1 ¼
KX0bð1� bNÞ þ YNþ1ð1� bÞ� �

1� bNþ1
� � ð5:19Þ

It is possible, if Y1, YNþl, and b are specified, to rearrange

Eq. 5.19 to solve for the required number of stages to effect

a specified level of enrichment. Thus, rearranging to solve

for bNþ1 gives

bNþ1 ¼
1� YNþ1

Y1

ð1� bÞ � KX0

Y1

b

� �
1� KX0

Y1

� � ¼ c ð5:20Þ

If we denote the ratio on the right-hand side as c, then tak-

ing logarithms gives

ðN þ 1Þ ¼ log ðcÞ
log ðbÞ ð5:21Þ

In the case just considered, the characteristic roots r1,2 were

distinct. However, it is also possible for the roots to be

equal. For this case, with r1¼ r2¼ r, we proceed exactly as

for continuous ODE, and write the second linearly indepen-

dent solution as nrn; hence,

Yn ¼ ðAþ BnÞrn ð5:22Þ

It is also possible for the roots to take on complex values,

and these will always occur in conjugate pairs

r1 ¼ s þ iv; r2 ¼ s � iv ð5:23Þ

As we illustrate more in Chapter 9, such complex numbers

can always be written in polar form

r1 ¼ s þ iv ¼ jrjexp ðiwÞ ð5:24Þ

r2 ¼ s � iv ¼ jrjexp ð�iwÞ ð5:25Þ

where

jrj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ v2

p
; w ¼ tan�1ðv=sÞ

Here, jrj is called the modulus and w is the phase angle. It is

now clear that the Euler formula can be used to good effect

jrjexp ðiwÞ ¼ jrj½cos ðwÞ þ i sin ðwÞ� ð5:26Þ

so we insert the two complex roots and rearrange to get

Yn ¼ jrjn½A cos ðnwÞ þ B sin ðnwÞ� ð5:27Þ

since

exp ðin wÞ ¼ cos ðnwÞ þ i sin ðnwÞ

EXAMPLE 5.1

It is desired to find the required number of ideal stages in the

extraction cascade illustrated in Fig. 5.1. Take the feed-to-solvent
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ratio (L=V) and equilibrium distribution constant (K) to be unity,

then b¼ L=(KV)¼ 1. Pure solvent is specified, so YNþ1¼ 0 kg

solute/kg solvent, and the feed is X0¼ 1 kg solute/kg carrier. It is

desired to produce a rich extract product such that Y1¼ 0.9 kg

solute/kg solvent.

This problem can be solved by classical methods, using gra-

phical construction as illustrated in Fig. 5.2. The stage-to-stage

calculations require linear connections between equilibrium line

(i.e., departing streams) and operating line. The passing streams

are related by way of a material balance between any stage n and

the first stage, and this relationship is called the operating line;

thus, we write the material balance

VYnþ1 þ LX0 ¼ VY1 þ LXn ð5:28Þ

and rearrange to find Ynþ1 ¼ f ðXnÞ which is the operating line

Ynþ1 ¼ L

V

� �
Xn þ Y1 � X0

L

V

� �
ð5:29Þ

with slope L=V and intercept (Y1�X0L=V). This line is plotted

along with the equilibrium curve (Yn¼KXn) in Fig. 5.2, and stages

are stepped-off as illustrated to yield N¼ 9 stages.

A direct computation could have been performed using

Eq. 5.21. However, since b¼ 1, a difficulty arises, since

log ðcÞ=log ðbÞ ¼ log ð1Þ=log ð1Þ ¼ 0=0

which is indeterminate. To resolve this difficulty, we can perform

the limiting operation

ðN þ 1Þ ¼ lim
b!1

log ðcÞ
log ðbÞ ð5:30Þ

To perform this limit, we can use the series expansion for loga-

rithms

logðxÞ ¼ ðx� 1Þ � 1

2
ðx� 1Þ2 þ � � � ð5:31Þ

so for x � 1, use the first term to get

ðN þ 1Þ ¼ lim
b!1

YNþ1ðb� 1Þ � KX0ðb� 1Þ
ðY1 � KX0Þðb� 1Þ

� �
ð5:32Þ

This gives a finite limit, since (b� 1) cancels and we finally get

ðN þ 1Þ ¼ KX0 � YNþ1

KX0 � Y1

ð5:33Þ

valid for b¼ 1. Inserting the given parameters yields

ðN þ 1Þ ¼ 1

ð1� 0:9Þ ¼ 10 ; N ¼ 9 ð5:34Þ

We could also have resolved this indeterminacy using

L’Hôpital’s rule.

In Section 2.4.2, we illustrated how to reduce a certain class

of variable coefficient ODE to an elementary constant

coefficient form; such equation forms were called equidi-

mensional or Euler equations. The analog of this also exists

for finite-difference equations; for example,

ðnþ 2Þðnþ 1ÞYnþ2 þ Aðnþ 1ÞYnþ1 þ BYn ¼ 0 ð5:35Þ

This can be reduced to constant coefficient status by substi-

tuting

Yn ¼ zn

n!
ð5:36Þ

hence, we have in terms of z

znþ2 þ Aznþ1 þ Bzn ¼ 0 ð5:37Þ

EXAMPLE 5.2

Find the analytical solution for an in the recurrence relation given

in Eq. 3.9, subject only to the condition a0 is different from 0

anþ2ðnþ 2Þðnþ 1Þ � 2anþ1ðnþ 1Þ þ an ¼ 0 ð5:38Þ

As suggested in Eq. 5.36, let

an ¼ an

n!
ð5:39Þ

FIGURE 5.2 Graphical stage-to-stage calculations.
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so we get a relation for an

anþ2 � 2anþ1 þ an ¼ 0 ð5:40Þ

Now, assume a solution for this constant coefficient case to be

an ¼ Arn ð5:41Þ

so the characteristic equation is

r2 � 2rþ 1 ¼ 0 ð5:42Þ

Hence, we have equal roots, r1¼ r2¼ 1. According to Eq. 5.22, the

solution is

an ¼ ðAþ BnÞrn ¼ ðAþ BnÞ ð5:43Þ

and so from Eq. 5.39,

an ¼ ðAþ BnÞ
n!

ð5:44Þ

Now, the only boundary condition we have stipulated is that a0 is

different from 0, so one of the constants A or B must be set to zero.

If we set A¼ 0, then we would have

an ¼ B

ðn� 1Þ! ð5:45Þ

But when n¼ 0, then (�1)!¼1. This says a0¼ 0. Thus, we must

set B¼ 0 and write an¼A/n!. Now, since a0 is different from zero,

set n¼ 0 to see that A¼ a0, since 0!¼ 1. This reproduces the result

given by Eq. 3.10, with r¼ 1

an ¼ a0

n!
ð5:46Þ

5.3 PARTICULAR SOLUTION METHODS

We shall discuss two techniques to find particular solutions

for finite-difference equations, both having analogs with

continuous ODE solution methods:

1. Method of Undetermined Coefficients

2. Method of Inverse Operators

A variation of parameters analog was published by Fort

(1948).

5.3.1 Method of Undetermined Coefficients

Under forced conditions, the constant coefficient,

second-order finite-difference equation can be written,

following Eq. 5.8

Ynþ2 þ a1Ynþ1 þ a0Yn ¼ f ðnÞ ð5:47Þ

where f(n) is usually a polynomial function of n. Thus, if

the forcing function is of the form

f ðnÞ ¼ b0 þ b1nþ b2n
2 þ � � � ð5:48Þ

then the particular solution is also assumed to be of the

same form

Yp
n ¼ a0 þ a1nþ a2n

2 þ � � � ð5:49Þ

where ai are the undetermined coefficients. The particular

solution is inserted into the defining equation, yielding a

series of algebraic relations obtained by equating coeffi-

cients of like powers. Difficulties arise if the forcing func-

tion has the same form as one of the complementary

solutions. Thus, linear independence of the resulting solu-

tions must be guaranteed, as we illustrated earlier, for

example, in Eq. 5.22 (for the occurrence of equal roots).

We illustrate the method by the following examples.

EXAMPLE 5.3

Find the particular solution for the forced finite-difference equa-

tion

ynþ1 � 2yn � 3yn�1 ¼ ðnþ 1Þ ð5:50Þ

Inserting an assumed solution of form

yn ¼ a0 þ a1n ð5:51Þ

into Eq. 5.50 yields

a0 þ a1ðnþ 1Þ � 2ða0 þ a1nÞ � 3½a0 þ a1ðn� 1Þ� ¼ nþ 1

ð5:52Þ

Equating coefficients of unity and n gives, first for coefficient of

unity

a0 þ a1 � 2a0 � 3a0 þ 3a1 ¼ 1 ð5:53Þ

hence,

4a1 � 4a0 ¼ 1 ð5:54Þ

Next, coefficients of n give

a1 � 2a1 � 3a1 ¼ 1 ; a1 ¼ �1

4
ð5:55Þ
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We can now solve Eq. 5.54 for a0

a0 ¼ �1

2
ð5:56Þ

The particular solution can now be written as

ypn ¼ �1

2
� 1

4
n ð5:57Þ

To check linear independence with the complementary parts, first

find the characteristic roots from the homogeneous equation to see

r2 � 2r� 3 ¼ 0 ; r1;2 ¼ 3;�1 ð5:58Þ

ycn ¼ Að3Þn þ Bð�1Þn ð5:59Þ

and these are obviously independent of the particular solutions.

The general solution is written as before: yn ¼ ycn þ ypn. The coeffi-

cients A and B are found for the general solution using end

conditions.

EXAMPLE 5.4

Repeat the previous problem, except the forcing function,

f(n)¼ (3)n.

It is clear that an assumed solution of the form

ypn ¼ að3Þn ð5:60Þ

will not be linearly independent of one of the complementary solu-

tions. Therefore, we assume a solution form, which is clearly inde-

pendent

ypn ¼ bnð3Þn ð5:61Þ

Inserting this gives

bðnþ 1Þ3nþ1 � 2bn3n � 3bðn� 1Þ3n�1 ¼ 3n ð5:62Þ

Dividing through by 3n gives

3bðnþ 1Þ � 2bn� bðn� 1Þ ¼ 1 ð5:63Þ

Equating coefficients of unity allows the undetermined coefficient

b to be found

3bþ b ¼ 1 ; b ¼ 1

4
ð5:64Þ

Coefficients of n are exactly balanced, since

3bn� 2bn� 1bn ¼ 0 ð5:65Þ

as required. Thus, the linearly independent particular solution is

ypn ¼ n
ð3Þn
4

ð5:66Þ

and the general solution is

yn ¼ Að3Þn þ Bð�1Þn þ n
ð3Þn
4

ð5:67Þ

5.3.2 Inverse Operator Method

This method parallels the Heaviside operator method used

in Chapter 2. We first define the incrementing operator as

Ey0 ¼ y1 ð5:68Þ

Eðyn�1Þ ¼ yn ð5:69Þ

EðEyn�2Þ ¼ E2yn�2 ¼ yn ð5:70Þ

In fact, operating n times shows

yn ¼ Eny0 ð5:71Þ

The exponent n can take positive or negative integer values;

if n is negative, we increment downward. The equivalent of

Rule 1 in Chapter 2 for arbitrary c is

Ecn ¼ cnþ1 ¼ ccn ð5:72Þ

Emcn ¼ cmþn ¼ cmcn ð5:73Þ

and as before, for any polynomial of E, Rule 1 is

PðEÞcn ¼ PðcÞcn ð5:74Þ

This has obvious applications to find particular solutions

when f(n)¼ cn. The analogous form for Rule 2 is

PðEÞðcnf nÞ ¼ cnPðcEÞf n ð5:75Þ

Here, we see that cE replaces E. This product rule has little

practical value in problem solving.

Thus, we can rewrite Eq. 5.47 as

ðE2 þ a1E þ a0Þyn ¼ f ðnÞ ð5:76Þ
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Now, if f(n) takes the form Kcn, then we can solve directly

for the particular solution

ypn ¼
1

ðE2 þ a1E þ a0Þ
Kcn ð5:77Þ

With the usual provision that the inverse operator can be

expanded in series, we have, using Rule 1,

ypn ¼
Kcn

c2 þ a1cþ a0½ � ð5:78Þ

provided c2þ a1cþ a0 is different from zero.

EXAMPLE 5.5

Find the particular solution for

ynþ2 � 2ynþ1 � 8yn ¼ en ð5:79Þ

Writing in operator notation, we have in one step

ypn ¼
1

½E2 � 2E � 8� e
n ¼ en

1

½e2 � 2e� 8� ð5:80Þ

This would have required considerably more algebra using the

method of undetermined coefficients. To check for linear indepen-

dence, the roots of the homogeneous equation are

r2 � 2r� 8 ¼ 0 ; r1;2 ¼ 4;�2 ð5:81Þ

so the general solution is

yn ¼ Að4Þn þ Bð�2Þn þ en

½e2 � 2e� 8� ð5:82Þ

5.4 NONLINEAR EQUATIONS

(RICCATI EQUATION)

Very few nonlinear equations yield analytical solutions, so

graphical or trial–error solution methods are often used.

There are a few nonlinear finite-difference equations, which

can be reduced to linear form by elementary variable trans-

formation. Foremost among these is the famous Riccati

equation

ynþ1yn þ Aynþ1 þ Byn þ C ¼ 0 ð5:83Þ

We translate the coordinates by letting

yn ¼ zn þ d ð5:84Þ

Inserting this into Eq. 5.83 yields

znþ1zn þ ðAþ dÞznþ1 þ ðBþ dÞzn þ d2 þ ðAþ BÞdþ C ¼ 0

ð5:85Þ

We use the last group of terms to define d

d2 þ ðAþ BÞ dþ C ¼ 0 ð5:86Þ

The remainder can be made linear by dividing by znþ1 zn
and introducing a new variable

vn ¼ 1

zn
¼ 1

yn � d
ð5:87Þ

ðBþ dÞvnþ1 þ ðAþ dÞvn þ 1 ¼ 0 ð5:88Þ

This is an elementary first-order linear equation with forc-

ing by a constant. The characteristic root is simply

r ¼ �Aþ d

Bþ d
ð5:89Þ

and the particular solution, taking f(n)¼� 1 � 1n, is simply

(using inverse operators)

v p
n ¼ � 1

½Aþ Bþ 2d� ð5:90Þ

so the general solution is, replacing vn ¼ 1=½yn � d�

1

yn � d
¼ K �Aþ d

Bþ d

� �n
� 1

½Aþ Bþ 2d� ð5:91Þ

where K is an arbitrary constant.

EXAMPLE 5.6

The cascade shown in Fig. 5.1 could also represent a plate-to-plate

distillation operation if we denote yn as solute mole fraction in

vapor and xn is the fraction in liquid. For constant molar flow

rates, L and V are then constant. Now, yNþ1 represents hot vapor

feed, and x0 represents desired product recycle, which is rich

in the volatile solute. For the high concentration expected, the
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relative volatility (a) is taken to be constant, so the equilibrium

relation can be taken as

yn ¼
axn

½1þ ða� 1Þxn� ð5:92Þ

This is obtained from the usual definition of relative volatility for

binary systems

a ¼
yn
xn

� �
ð1� ynÞ
ð1� xnÞ

ð5:93Þ

The material balance between the nth and first plate is the same as

in Eq. 5.28, except replace Yn with yn, and so on

ynþ1 ¼ ðL=VÞxn þ ðy1 � x0L=VÞ ð5:94Þ

This equation represents a general plate in the enriching section of

a binary distillation column. In the usual case, a total condenser is

used, so V¼ LþD, and L=D¼R is the recycle ratio, D being the

distillate product removed. In the present case, it is the liquid com-

position that is monitored, so we proceed to eliminate yn using the

equilibrium relation, Eq. 5.92

axnþ1

½1þ ða� 1Þxnþ1� ¼
L

V

� �
xn þ y1 � x0

L

V

� �
ð5:95Þ

Since a total condenser is used, y1 ¼ x0 and L=V¼R=(Rþ 1), so

the intercept term becomes x0=(Rþ 1). Multiplying through by

[1þ (a� l)xnþ1] yields a form of the Riccati equation

R

Rþ 1
ða� 1Þxnxnþ1 þ ða� 1Þx0

Rþ 1
� a

� �
xnþ1

þ R

Rþ 1
xn þ x0

Rþ 1
¼ 0

ð5:96Þ

Rearranging this to the familiar form gives

xnxnþ1 þ Axnþ1 þ Bxn þ C ¼ 0 ð5:97Þ

A ¼ x0ða� 1Þ � aðRþ 1Þ
ða� 1ÞR

B ¼ 1

ða� 1Þ
C ¼ x0

Rða� 1Þ

ð5:98Þ

The solution has already been worked out in Eq. 5.91, so write

1

xn � d
¼ K �Aþ d

Bþ d

� �n
� 1

½Aþ Bþ 2d� ð5:99Þ

The parameter d can be found by solving the quadratic in Eq. 5.86.

However, a geometric basis was presented in Mickley et al. (1957)

by the following expedient. Let the intersection of the operating

and equilibrium curve be denoted by y, x. Thus, ignoring sub-

scripts, we search for the intersection

y ¼ R

Rþ 1
xþ x0

Rþ 1
ð5:100Þ

and

y ¼ ax

½1þ ða� 1Þx� ð5:101Þ

Eliminating y, one can obtain

x2 þ ðAþ BÞxþ C ¼ 0 ð5:102Þ

which is identical to the equation for d. Thus, the parameter d rep-

resents the x-value of the point of intersection for the operating

line and the equilibrium curve. The arbitrary constant K can be

found if the composition x0 is known (corresponding to n¼ 0).

Thus, it is seen that

K ¼ 1

x0 � d
þ 1

Aþ Bþ 2d
ð5:103Þ

To find the number of stages N in the upper (enriching) section, the

composition yNþ1 or xN must be known. Rearrangement, followed

by taking logarithm (as in Eqs. 5.20 and 5.21) allows N to be

computed.

PROBLEMS

5.12. Find the analytical solutions for the following finite-

difference equations

(a) ynþ3 � 3ynþ2 þ 2ynþ1 ¼ 0

(b) ynþ3 � 6ynþ2 þ 11ynþ1 � 6yn ¼ 0

(c) ynþ2yn ¼ y2nþ1

Hint: Use logarithms.

(d) R�xn�1 � R�xn ¼ ns�xn when �x0 ¼ x0=s is initial

state.

5.2�. A continuous cascade of stirred tank reactors consists

of N tanks in series as shown below.
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The feed to the first tank contains C0 moles/cm3 of

component A. Each tank undergoes the irreversible

reaction A ! B so that the reaction rate is Rn¼ kCn

(moles/cm3/s). The volume rate of flow in the cascade

is constant at a value L (cm3/s).

(a) Show that the material balance for the (n + l)th

tank yields, at steady state

Cnþ1 ¼ Cn

kunþ1 þ 1

where un=Vn/L is residence time.

(b) Show that the relationship between first and last

stages is

CN ¼ C0

ðku1 þ 1Þðku2 þ 1Þ � � � ðkuN þ 1Þ

(c) If the rate constant k is invariant, show that the

highest concentration of B, which may be pro-

duced by the cascade, occurs when all volumes

are equal Vl¼V2¼VN, with only the provision

that total volume (VT¼V1þV2þ � � � þVN)

remains constant.

Hint: The maximum in B occurs when A is minimum,

so search for the minimum in CN using

dCN ¼
XN
n¼1

@CN

@un
dun ¼ 0

with the constraint that

XN
n¼1

un ¼ VT

L

5.33. Pigford et al. (1969) developed a simple equilibrium

model to predict separations in a closed packed col-

umn. The process, called parametric pumping, uses

the synchronization of fluid motion and adsorption to

effect a separation. Thus, on upflow the column is

made hot (low adsorption on solid), while on down-

flow the column is made cold (high adsorption on

solid). The bottom and top compositions depend on

cycle number n according to

hyBin ¼ hyBin�1

1� b

1þ b

� �
; b < 1

hyTin ¼ hyTin�1 þ hyBin�3

2b

1þ b

� �
where the dimensionless parameter b reflects the dif-

ference in adsorption between hot and cold condi-

tions. The starting conditions were given as

hyBin¼0 ¼ y0

Show that the separation factor for this process is

hyTin
hyBin

¼ an ¼ 2þ 2b

1þ b

� �
1þ b

1� b

� �n

� 1þ b

1� b

� �2

; n > 0

hyT i2 ¼ y0 1þ 2b

1þ b

� �

Is the separation factor bounded as n!1?

5.4�. A gas–liquid chemical reaction is carried out in a cas-

cade of shallow bubble columns, which are assumed

to be well mixed owing to the mixing caused by gas

bubbles. Each column contains H moles of liquid

composed mainly of inert, nonvolatile solvent with a

small amount of dissolved, nonvolatile catalyst. Liq-

uid does not flow from stage to stage. Pure gas A is

fed to the first column at a rate G (moles/s). The exit

gas from stage one goes to stage two, and so on. On

each stage, some A dissolves and reacts to form a

volatile product B by way of the reversible reaction

AÐkA
kB

B

A linear rate law is assumed to exist for each pathway.

The B formed by reaction is stripped and carried off

by the gas bubbling through the liquid mixture. Over-

all absorption, desorption efficiencies are predictable

using Murphree’s vapor rule

EA ¼ yAn�1 � yAn
yAn�1 � ðyAn Þ�

EB ¼ yBn�1 � yBn
yBn�1 � ðyBn Þ�

where the equilibrium solubilities obey Henry’s law

ðyAn Þ� ¼ mAx
A
n

ðyBn Þ� ¼ mBx
B
n
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Here, yn and xn denote mole fractions, for the nth

stage, and in the vapor phase, only A and B exist, so

that yAn þ yBn ¼ 1.

(a) The moles of A or B lost to the liquid phase can

be represented in terms of stage efficiency; thus,

for component A

GðyAn�1 � yAn Þ ¼ GEA½yAn�1 � ðyAn Þ��
¼ GEAðyAn�1 �mAx

A
n Þ

Write the steady-state material balances for the

liquid phase and show that

xAn ¼ byAn�1 þ a

where

a ¼ 1

F
� kBH

GEA

� �

b ¼
�mB þ kBHD

G
F

D ¼ EB � EA

EAEB

F ¼ mA þ kAH

GEA

� �
�mB þ kBHD

G

� �
� kBH

GEA

mA þ kAHD

G

� �

(b) Find the relationship to predict yAn as a function of

n, where yA0 ¼ 1.

(c) The statement of the problem implies mB	mA

(B is volatile) EB
EA (volatiles have higher effi-

ciencies), and kA> kB. Are these the appropriate

conditions on physical properties to maximize

production of B? Compute the composition yBn ,

leaving the 5th stage for the following conditions:

mB ¼ 10; mA ¼ 1;
G

H
¼ 0:1 s�1;

EA ¼ EB ¼ 0:5; kA ¼ 2 s�1; kB ¼ 1 s

Answer: 0.92

5.53. A hot vapor stream containing 0.4 mole fraction

ammonia and 0.6 mole fraction water is to be

enriched in a distillation column consisting of

enriching section and total condenser. The saturated

vapor at 6.8 atm pressure (100 psia) is injected at a

rate 100moles/h at the bottom of the column. The

liquid distillate product withdrawn from the total

condenser has a composition 0.9 mole fraction

NH3. Part of the distillate is returned as reflux, so

that 85% of the NH3 charged must be recovered as

distillate product.

(a) Complete the material balance and show that

xN¼ 0.096 (mole fraction NH3 in liquid leaving

Nth tray) and that the required reflux ratio is

R¼ 1.65.

(b) The NH3–H2O system is highly nonideal, and

hence, the relative volatility is not constant, so that

the assumption of constant molar overflow is

invalid. Nonetheless, we wish to estimate the num-

ber of ideal stages necessary, using the single

available piece of vapor–liquid equilibria data at

6.8 atm pressure: y(NH3)¼ 0.8 when x(NH3)¼ 0.2.

This suggests a � 16. Use this information and the

results from Example 5.6 to find the required num-

ber of ideal stages (an enthalpy–composition plot

shows that exactly two stages are needed).

5.63. Acetone can be removed from acetone–air mixtures

using simple counter-current cascades, by adsorption

onto charcoal (Foust et al. 1980). We wish to find the

required number of equilibrium stages to reduce a gas

stream carrying 0.222 kg acetone per kg air to a value

0.0202 kg acetone per kg air. Clean charcoal (X0 = 0)

enters the system at 2.5 kg/s, and the air rate is con-

stant at 3.5 kg/s. Equilibrium between the solid and

gas can be taken to obey the Langmuir-type relation-

ship

Yn ¼ KXn

1þ KXn

; K ¼ 0:5

where

Yn¼ kg acetone/kg air

Xn¼ kg acetone/kg charcoal

(a) Write the material balance between the first stage

(where X0 enters) and the nth stage, and use the

equilibrium relationship to derive the finite-differ-

ence equation for Xn.

(b) Rearrange the expression in part (a) to show that

the Riccati equation arises

XnXnþ1 þ AXnþ1 þ BXn þ C ¼ 0

What are the appropriate values for A, B, and C?

(c) Use the condition X0¼ 0 (clean entering charcoal)

to evaluate the arbitrary constant in the general

solution from part (b) and thus obtain a relation-

ship to predict Xn¼ f(n).
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(d) Use an overall material balance to find XN and use

this to calculate the number of equilibrium stages

(N) required.

Answer: (d) 3.5 stages

5.72. Economic Models.

An economic model of people’s consumption is used

by European Central Banks to predict consumer

behavior. Such a model was discussed in the Wall

Street Journal (Whitehouse, 2010) regarding post-

crash economic models. This time-incremented finite-

difference model was written as follows:

Ct ¼ h

hþ 1
Ct�1 þ 1

hþ 1

� �
Ctþ1

� 1� h

1þ h

� �
1

s

� �
Rt � ptþ1½ �

þ 1� h

1þ h

� �
1

s

� �
jt � jtþ1½ �

The variables and parameters represent the following:

Ct¼ consumption by people

h¼ habits, how people react to change

s¼ people’s willingness to change spending patterns

Rt¼ interest rate changing with time, higher values

cause people to save more

pt¼ future inflation expectation

jt¼ extraneous factors, such as public mood.

Solve the finite difference equation for the condition

when h¼ 1 and show that Ct varies linearly with time

for this case. Is this the result you expect? Perhaps

chemical engineers can teach economists a few tricks

in mathematics?
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6
APPROXIMATE SOLUTIONMETHODS FOR ODE:
PERTURBATION METHODS

In Chapters 2 and 3, various analytical techniques were

given for solving ordinary differential equations. In this

chapter, we develop an approximate solution technique

called the perturbation method. This method is particularly

useful for model equations that contain a small parameter,

and the equation is analytically solvable when that small

parameter is set to zero. We begin with a brief introduction

to the technique. Following this, we teach the technique

using a number of examples, from algebraic relations to dif-

ferential equations. It is in the class of nonlinear differential

equations that the perturbation method finds the most fruit-

ful application, since numerical solutions to such equations

are often mathematically intractable.

The perturbation method complements solution of ordi-

nary differential equations by numerical methods, which

are taught in Chapters 7 and 8 for initial and boundary type

of problems, respectively.

6.1 PERTURBATIONMETHODS

6.1.1 Introduction

Modeling problems almost always contain parameters,

which are connected to the physicochemical dynamics of

the system. These parameters may take a range of values.

The solution obtained when the parameter is zero is called

the base case. If one of the parameters is small, the behavior

of the system either deviates slightly from the base case or

it can take a trajectory that is remote from the base case.

The analysis of systems having the former behavior is

called regular perturbation, whereas that of the latter

is referred to as singular perturbation.

Perturbation methods involve series expansions, which

are called asymptotic expansions in terms of a small

parameter. This is sometimes called parameter perturba-

tion. The term asymptotic implies that the solution can be

adequately described by only a few terms of the expansion,

which is different from the power series taught in Chapter

3. Moreover, perturbation schemes can be applied to non-

linear systems, where they find their greatest utility.

The perturbation method can be applied to algebraic

equations as well as differential equations. For example, we

may wish to find an approximate solution for the algebraic

equation containing a small parameter:

ey2 � yþ a ¼ 0 ð6:1Þ

An example of a differential equation containing a small

parameter is

dy

dx
þ ey ¼ 0 ð6:2Þ

In the above two examples, e is the small parameter and the

perturbation method will be carried out in terms of this

small parameter. For a general problem, there are many

parameters, but we assume that at least one of them is small

and the rest are on the order of unity and we denote that

small parameter as e.
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If the equation in question is a differential equation,

there must exist boundary or initial conditions. For exam-

ple, conditions may take the following form:

yð0Þ ¼ 1;
dy

dx

����
x¼0

¼ 0 ð6:3Þ

These conditions may also contain the parameter e in the

general case, such as

yð1Þ þ e
dy 1ð Þ
dx

¼ 1þ 2e ð6:4Þ

Let us further assume that the solution to the problem posed

is not possible by analytical means for a nonzero value of

the parameter e, but an analytical solution is readily availa-

ble when that parameter e is equal to zero. If this is the case,
we will endeavor to find a solution (asymptotic form) in

terms of e using the following series expansion:

y x; eð Þ ¼ y0 xð Þ þ ey1 xð Þ þ e2y2 xð Þ þ � � � þ enyn xð Þ þ � � �
ð6:5Þ

Thus, if all the coefficients yj xð Þ are of the same order of

magnitude, then it is quite clear that the higher order terms

are getting smaller since en becomes increasingly smaller.

This is, however, not always the case in some practical

problems, since it is possible that the higher order coeffi-

cients could become larger than the leading coefficients.

Usually one stops the expansion with a few terms, generally

with two terms, and as we will see the asymptotic expan-

sions with two terms can often describe the solution very

closely, relative to the exact solution.

To start with, we substitute the series expansion (Eq. 6.5)

into the governing equation and the boundary condition (if

the equation is a differential equation), and then apply a

Taylor expansion to the equation and the boundary condi-

tion. Now, since the coefficients of each power of e are

independent of e, a set of identities will be produced. This

leads to a simpler set of equations, which may have analyti-

cal solutions. The solution to this set of simple subproblems

is done sequentially, that is, the zero-order solution y0 xð Þ is
obtained first, then the next solution y1 xð Þ, and so on. If

analytical solutions cannot be obtained easily for the first

few leading coefficients (usually two), there is no value in

using the perturbation methods. In such circumstances, a

numerical solution may be sought.

EXAMPLE 6.1

To demonstrate the elementary concept, let us first study the sim-

ple nonlinear algebraic equation:

y ¼ aþ ey2 ð6:6Þ

where e is a small number. The solution for this problem when e is
zero (hereafter called the base case) is simply

y0 ¼ a ð6:7Þ

Now, we assume that there exists an asymptotic expansion of the

form

y ¼ y0 þ ey1 þ e2y2 þ � � � ð6:8Þ

Substituting this into the original equation (Eq. 6.6) yields

y0 þ ey1 þ e2y2 þ � � � ¼ aþ e y0 þ ey1 þ � � �½ �2 ð6:9Þ

Expanding the squared function gives

y0 þ ey1 þ e2y2 þ � � � ¼ aþ ey20 1þ 2e
y1
y0

þ � � �
� �

ð6:10Þ

Matching the coefficients of unity and each of the powers of e
yields

O 1ð Þ : y0 ¼ a ð6:11Þ

O eð Þ : y1 ¼ y20 ð6:12Þ

O e2
� �

: y2 ¼ 2y1y0 ð6:13Þ

Hence, solutions for the coefficients of the asymptotic expansion

(Eq. 6.8) are obtained sequentially, starting with the zero-order

solution:

y0 ¼ a ð6:14aÞ

y1 ¼ a2 ð6:14bÞ

y2 ¼ 2a3 ð6:14cÞ

Thus, the required asymptotic expansion is

y eð Þ ¼ aþ ea2 þ 2e2a3 þ � � � ð6:15Þ

Inspection of the original solution, which is a quadratic, suggests

that there must exist two solutions to the original problem. The

asymptotic solution presented above assumed that the base solu-

tion is finite. There is, however, another asymptotic expansion of

the form

y eð Þ ¼ 1

e
u0 þ eu1 þ � � �½ � ð6:16Þ

which indicates the second solution is of the order of 1/e. Substi-
tuting this expansion into Eq. 6.6 yields

1

e
u0 þ eu1 þ � � �½ � ¼ aþ e

1

e2
u0 þ eu1 þ � � �½ �2

� �

118 APPROXIMATE SOLUTIONMETHODS FORODE: PERTURBATION METHODS



Next, matching multiples of 1, e, e2, and so on gives

u0 ¼ u20; ; u0 ¼ 1 ð6:17Þ

u1 ¼ aþ 2u0u1 ð6:18Þ

Knowing u0¼ 1, the solution for u1, is

u1 ¼ �a ð6:19Þ

Thus, the second solution has the following asymptotic form:

y eð Þ ¼ 1

e
1� ea� � � �½ � ð6:20Þ

We have two asymptotic solutions, given in Eqs. 6.15 and 6.20.

Now we know that the exact solution to the original quadratic

equation is simply

y ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ea

p

2e
ð6:21Þ

It is not difficult to show that the two asymptotic expansions above

(Eqs. 6.15 and 6.20) are in fact the Taylor series expansions in

terms of e around the point:
e¼ 0; that is, for the two exact solutions,

y ¼ 1

2e
f ðeÞ ¼ 1

2e
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ea

ph i
¼ 1

2e
f 0ð Þ þ f 0 0ð Þeþ f 00ð0Þ e

2

2!
þ f 000 0ð Þ e

3

3!
þ � � �

� �

The asymptotic solution (6.15) differs only slightly from the base

solution, which is the solution when e¼ 0. This is the regular per-

turbation solution. The asymptotic solution (6.20) deviates subs-

tantially from the base solution; it is the singular perturbation

solution.

This algebraic example illustrates the salient features of the

perturbation method. In the next example, we apply the

method to an elementary differential equation.

EXAMPLE 6.2

The basic principles underlying perturbation methods can be

taught using the elementary first-order equation discussed in

Chapter 2:

dy

dx
þ ey ¼ 0; y 0ð Þ ¼ 1; e � 1 ð6:22Þ

The complete analytical solution is known to be

y ¼ exp �exð Þ ¼ 1� exþ e2x2

2
þ � � � ð6:23Þ

Suppose we search for an approximate solution of the form

y ¼ y0 xð Þ þ ey1 xð Þ þ e2y2 xð Þ þ � � � ð6:24Þ

Inserting this into the defining equation (Eq. 6.22) yields

dy0
dx

þ e
dy1
dx

þ e2
dy2
dx

þ � � �
� �

þ e y0 þ ey1 þ e2y2 þ � � �
 � ¼ 0

ð6:25Þ

Next, we stipulate the following identities, by matching like multi-

ples of unity, e, e2, and so on.

dy0
dx

¼ 0; ; y0 ¼ K0 ð6:26aÞ

dy1
dx

¼ �y0; ; y1 ¼ �K0xþ K1 ð6:26bÞ

dy2
dx

¼ �y0; ; y2 ¼
K0x

2

2
� K1xþ K2 ð6:26cÞ

where K0, K1, and K2 are constants of integration.

Obviously, the solution y0(x) corresponds to the base case

(when e¼ 0), so we shall stipulate that

y 0ð Þ ¼ y0 0ð Þ ¼ 1; ; K0 ¼ 1 ð6:27Þ

This is a critical component of regular perturbation methods, since

only the base case carries out the primary boundary conditions;

hence, by implication, we must have for the other solutions,

y1 0ð Þ ¼ y2 0ð Þ ¼ � � � ¼ 0 ð6:28Þ

This allows the determination of K1, K2, K3, and so on in

sequence:

K1 ¼ 0; K2 ¼ 0; and so on ð6:29Þ

We finally see to the order e2:

y xð Þ ¼ 1� exþ e2
x2

2
þ � � � ð6:30Þ

This is identical to the first three terms of the analytical

solution (Eq. 6.23), as one may have expected if the tech-

nique is to be useful. This example illustrates regular per-

turbation. The power of the method is most useful for

nonlinear systems, where an analytical solution is not easily

obtainable. The method is also quite useful in providing

a simplified form of an unwieldy analytical solution. We

take up the issue of singular perturbations for differential

equations in the next section following some preliminary

concepts.
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6.2 THE BASIC CONCEPTS

Over the years, users of perturbation methods have evolved

a shorthand language to express ideas. This reduces repeti-

tion and allows compact illustration. We first present the

gauge functions, which are used to compare the size of

functions, and then we present the order concept, which is

convenient in expressing the order of a function (i.e., the

speed it moves when e tends small). Finally, we discuss

asymptotic expansions and sequences, and the sources of

nonuniformity, which cause the solution for e 6¼ 0 to behave

differently from the base case.

6.2.1 Gauge Functions

Let us consider a function f eð Þ containing a small parameter

e. There are three possible behavior patterns that f eð Þ can
take as e tends to zero. These are

f eð Þ ! 0

f eð Þ ! a

f eð Þ ! 1

where a is finite. The second possibility needs no further

explanation. The other two require careful inspection.

Mainly, we need to analyze how fast the magnitude of f eð Þ
moves as e tends to zero. To help us with this, we use the

so-called gauge functions, that is, we compare f eð Þ with

known functions called gauge functions. Examples of a

class of gauge functions are

. . . ; e�n; e�nþ1; . . . ; e�1; 1; e; e2; . . . ; en; . . .

In some cases, the following gauge functions are useful

(mostly in fluid flow problems):

log e�1
� �

; log log e�1
� �� �

; . . .

Other classes of gauge functions are discussed in Van Dyke

(1975) and Nayfeh (1973).

To compare the behavior of a function f eð Þ relative to a

gauge function, we need to define the order symbolsO and o.

6.2.2 Order Symbols

The notation

f eð Þ ¼ O g eð Þð Þ ð6:31Þ

expresses boundedness, and implies the sense of a limit

lim
e!0

f eð Þ
g eð Þ < 1 ð6:32Þ

For example,

sin eð Þ ¼ O eð Þ
cos eð Þ ¼ O 1ð Þ
coth eð Þ ¼ O e�1ð Þ

The first simply expresses the fact that

lim
e!0

sin e
e

¼ 1 boundedð Þ ð6:33Þ

that is, the function f eð Þ ¼ sin eð Þ behaves like e for small

values of e. The o notation

f eð Þ ¼ o g eð Þð Þ ð634Þ
implies a zero limit:

lim
e!0

f eð Þ
g eð Þ
����

���� ¼ 0 ð6:35Þ

This means that f eð Þ decreases to zero faster than the func-

tion g eð Þ. For example,

sin eð Þ ¼ o 1ð Þ; ; lim
e!0

sin eð Þ
1

¼ 0

In summary, O implies finite boundedness, while o implies

zero in the limit e ! 0:

6.2.3 Asymptotic Expansions and Sequences

In the presentation of an asymptotic expansion, we need not

restrict ourselves to power series (1, e, e2, e3, etc.), such as

the previous examples, but we could also use a general

sequence of functions dnf g such that

dnþ1 eð Þ ¼ o dn eð Þð Þ; ; lim
e!0

dnþ1 eð Þ
dn eð Þ ! 0 ð6:36Þ

as e approaches zero. Such a sequence is called an asymp-

totic sequence. Using this asymptotic sequence, we can

write the asymptotic expansion

y eð Þ ¼ y0d0 eð Þ þ y1d1 eð Þ þ � � � ¼
X1
j¼0

yjdj eð Þ ð6:37Þ

as e approaches zero, where yj are independent of e. We

could truncate the series and form the asymptotic expan-

sion as

y eð Þ ¼
XN
j¼0

yjdj eð Þ þ O dNþ1 eð Þ½ � ð6:38Þ

The second term in the right-hand side of Eq. 6.38

means that the error of the result of the series truncation
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to N terms has the order of magnitude as the sequence

dNþ1; that is,

lim
e!0

y eð Þ �PN
j¼0 yjd eð Þ

dNþ1 eð Þ < 1

A function y can have many asymptotic expansions sim-

ply because there are many sets of asymptotic sequences

dnf g that could be selected. However, for a given

asymptotic sequence, the asymptotic expansion is

unique, and the coefficients yj are determined as follows.

First, divide Eq. 6.37 by d0 to see

y eð Þ
d0 eð Þ ¼ y0 þ

X1
j¼1

yj
dj eð Þ
d0 eð Þ ð6:39Þ

Now take the limit of the above equation when e appro-

aches zero, and make use of the asymptotic sequence

property (Eq. 6.36), so we have

y0 ¼ lim
e!0

y eð Þ
d0 eð Þ ð6:40Þ

since

lim
e!0

dj eð Þ
d0 eð Þ ! 0; for j � 1

Knowing y0, we can rearrange the asymptotic expansion

as follows:

y eð Þ � y0d0 eð Þ
d1 eð Þ ¼ y1 þ

X1
j¼2

yj
dj eð Þ
d1 eð Þ ð6:41Þ

Taking its limit when e approaches zero, we have the

following expression for y1:

y1 ¼ lim
e!0

y eð Þ � y0d0 eð Þ
d1 eð Þ ð6:42Þ

Similarly, we can prove that

yn ¼ lim
e!0

y eð Þ �Pn�1
j¼0 yjdj eð Þ

dn eð Þ ð6:43Þ

In solving practical problems, the function y usually

involves another variable in addition to the small parameter

e. If we denote that variable as t, then the asymptotic

expansion for a given asymptotic sequence dn eð Þf g is

y t; eð Þ ¼
X1
j¼0

yj tð Þdj eð Þ ð6:44Þ

where yj(t) is only a function of t. This asymptotic expan-

sion is said to be uniformly valid over the entire domain of

definition of t if

y t; eð Þ ¼
XN
j¼0

yj tð Þdj eð Þ þ RNþ1 t; eð Þ ð6:45Þ

and

RNþ1 t; eð Þ ¼ O dNþ1 eð Þ½ � or lim
e!0

RNþ1 t; eð Þ
dNþ1 eð Þ < 1 ð6:46Þ

for all t in the domain of interest. Otherwise, the asymp-

totic expansion is said to be nonuniformly valid (sometimes

called a singular perturbation expansion).

For the uniformity condition to be valid, the next term in

the asymptotic expansion must be smaller than the preced-

ing term; hence,

dnþ1 eð Þ ¼ o dn eð Þ½ � or lim
e!0

dnþ1

dn
¼ 0 ð6:47Þ

and we require that the coefficient ynþ1 tð Þ be no more sin-

gular than the preceding coefficient yn tð Þ. In other words,

each term is a small correction to the preceding term irre-

spective of the value of t.

6.2.4 Sources of Nonuniformity

There are several sources of nonuniformity that might give

rise to the singular perturbation expansions. Some of these

are the following:

1. Infinite domain (either time or space).

2. Small parameter multiplying the highest derivative.

3. Type change of a partial differential equation (e.g.,

from parabolic to hyperbolic equation).

4. Nonlinearity (e.g., the algebraic equation of

Example 6.1).

Examples of the nonuniformity source for infinite domain

come from problems involving cos(t) and sin(t) functions,

and the higher order terms involve t sin(t) or t cos(t), which

would make the higher order terms more secular (i.e., more

unbounded) than the preceding term.

The second source of nonuniformity may seem obvious.

For example, when the highest derivative is removed (i.e.,

when the small parameter is set to zero), the differential

equation is one order less, and hence, one boundary condi-

tion becomes redundant. To invoke this boundary condition,

there must exist a boundary layer wherein a boundary con-

dition becomes redundant when the parameter e is set

to zero.
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EXAMPLE 6.3

To demonstrate sources of nonuniformity, let us study the follow-

ing simple second-order differential equation with a small para-

meter multiplying the second-order derivative:

e
d2y

dx2
þ dy

dx
þ y ¼ 0; e � 1 ð6:48Þ

subject to

x ¼ 0; y ¼ a ð6:49aÞ

x ¼ 1; y ¼ b ð6:49bÞ

This problem has been treated by Latta (1964).

Now, if we formally attempt the asymptotic expansion

y x; eð Þ ¼ y0 xð Þ þ ey1 xð Þ þ � � � ð6:50Þ

by placing it into the differential equation (Eq. 6.48) and equate

the coefficients of like powers of e to zero, then we obtain the fol-

lowing two subproblems:

O 1ð Þ: dy0
dx

þ y0 ¼ 0 ð6:51Þ

O eð Þ: dy1
dx

þ y1 ¼ � d2y0
dx2

ð6:52Þ

The first subproblem is a first-order differential equation, which is

one order less than the original differential equations (Eq. 6.48),

and therefore, it cannot satisfy two boundary conditions. So one

condition must be dropped. It will be argued later that the bound-

ary condition at x¼ 0 must be dropped. The solution for y0 that

satisfies y(1)¼b is

y0 xð Þ ¼ be1�x ð6:53Þ

Substitute this into the equation for y1 and solve for y1 where, as

before, we require all cases beyond zero order to have null bound-

aries; that is, y1(1)¼ 0, y2(1)¼ 0, and so on.

y1 xð Þ ¼ b 1� xð Þe1�x ð6:54Þ

Therefore, the asymptotic expansion is

y x; eð Þ ¼ be1�x þ eb 1� xð Þe1�x þ O e2
� � ð6:55Þ

At x¼ 0, the above asymptotic expansion gives

y 0; eð Þ ¼ b 1þ eð Þe1 6¼ a ð6:56Þ

which is, in general, different from a. Thus, the asymptotic

expansion is not uniformly valid over the whole domain of interest

[0,1]. Figure 6.1 shows computations for the asymptotic and the

exact solutions for e¼ 0.05. The exact solution takes the following

form:

yexact ¼
aes1 � bð Þes1x þ b� aes2ð Þes2x

es2 � es1
ð6:57Þ

where

s1;2 ¼ �1� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4e

p

2e
ð6:58Þ

The zero-order asymptotic solution (Eq. 6.53) agrees reasonably

well with the exact solution over most of the domain [0,1] except

that close to the origin. The first-order asymptotic expansion

(Eq. 6.55), even though it agrees with the exact solution better,

also breaks down near the origin. This suggests that a boundary

layer solution must be constructed near the origin to take care of

this nonuniformity. We will come back to this point later.

6.3 THE METHOD OFMATCHED

ASYMPTOTIC EXPANSION

There are a number of variations for the perturbation tech-

nique. Among them, the method of matched asymptotic

expansion is the easiest to apply. The method is useful for

obtaining expansions from separate domains of validity.

Using the straightforward expansion, such as the last

example, we have obtained what is called the outer solu-

tion; that is, the solution that is valid over most of the

domain of interest. This solution, however, fails in a small

region, which we call the boundary layer. In this thin

boundary layer, there is a sharp change from a boundary

point to the outer solution. To study this sharp change in the

FIGURE 6.1 Plots of the exact solution and the zero-order outer

solution (Eq. 6.53) and the first-order outer solution (Eq. 6.55);

a ¼ 0; b ¼ 2:
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boundary layer, we need to magnify the scale; the choice of

this magnified variable changes from problem to problem.

This procedure has been demonstrated in the example of

Eqs. 6.48 and 6.49.

6.3.1 Outer Solutions

Let us consider the problem in the last section (Eq. 6.48).

The straightforward expansion we obtained is the outer

solution (Eq. 6.55); that is, it is valid over most of the

domain, except close to the origin (see Fig. 6.1). The outer

solution is

y oð Þ x; eð Þ ¼ y
oð Þ
0 xð Þ þ ey oð Þ

1 xð Þ þ � � � ð6:59Þ

where the superscript (o) denotes outer solution and we

have already found

y
oð Þ
0 xð Þ ¼ be1�x ð6:60Þ

y
oð Þ
1 ¼ b 1� xð Þe1�x ð6:61Þ

6.3.2 Inner Solutions

The previous section clearly indicated that this outer solution

is not valid near the origin. So there is a sharp change in the

solution behavior as the trajectory moves away from the

outer region. To describe this sharp change, we need to mag-

nify the variable as follows:

x� ¼ x

en
ð6:62Þ

where en represents the thickness of the boundary layer. In

terms of this new magnified variable, the differential equa-

tion (Eq. 6.48) becomes

d2y

dx�2
þ en�1 dy

dx� þ e2n�1y ¼ 0 ð6:63Þ

Note that n is unknown at this stage, since we have no pre-

conceived notion of the thickness of the boundary. Next, we

assume that y(x�;e) has the following asymptotic expansion

(called inner solution):

y ið Þ x�; eð Þ ¼ y
ið Þ
0 x�ð Þ þ ey ið Þ

1 x�ð Þ þ � � � ð6:64Þ

where the superscript (i) denotes inner solution.

Since the second-order derivative did not appear in the

zero-order equation of the outer expansion (Eq. 6.51), we

must ensure that it appears in the leading order equation of

the inner solution (i.e., the zero-order inner solution must

be second-order). Observing the differential equation, we

have two possibilities. One is that the second-order

derivative term balances with the first-order term, and the

second possibility is that the second-order derivative term

balances with the remaining third term.

First, let us balance the second-order derivative term

with the third term. To do this, we insert Eq. 6.64 into 6.63

and by inspection select

2n� 1 ¼ 0; that is; n ¼ 1
2

ð6:65Þ
With this value of n, the original differential equation

becomes

d2y

d x�ð Þ2 þ e�1=2 dy

dx�
þ y ¼ 0 ð6:66Þ

So, when we substitute the inner expansion into the above

equation, the zero-order equation is

dy
ið Þ
0

dx�
¼ 0 ð6:67Þ

which means that y
ið Þ
0 x�ð Þ is a constant. This is not accept-

able because the boundary layer solution must sustain sharp

behavior from the boundary point to the outer solution. Also,

it is clear that our aim of getting a second-order ODE for y
ið Þ
0

was not accomplished. This then leads us to the second pos-

sibility, that is, we balance the second-order derivative term

with the first-order derivative term. This implies setting

n� 1 ¼ 0; that is; n ¼ 1 ð6:68Þ

Thus, the region of nonuniformity near the origin has thick-

ness on the order of e. With n¼ 1, the differential equation

becomes

d2y

d x�ð Þ2 þ
dy

dx�
þ ey ¼ 0 ð6:69Þ

Substituting the inner expansion (Eq. 6.64) into the above

equation, we have the following two leading subproblems:

d2y
ið Þ
0

d x�ð Þ2 þ
dy

ið Þ
0

dx�
¼ 0 ð6:70Þ

and

d2y
ið Þ
1

d x�ð Þ2 þ
dy

ið Þ
1

dx�
þ y

ið Þ
0 ¼ 0 ð6:71Þ

Let us have a look at the zero-order subproblem. Because

this solution is valid in the boundary layer around x¼ 0, it

must satisfy the condition at x¼ 0; that is,

x ¼ 0; y
ið Þ
0 0ð Þ ¼ a ð6:72Þ

The solution of this leading order subproblem is

y
ið Þ
0 ¼ C þ a� Cð Þe�x� ð6:73Þ
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where C is the only constant of integration since we have

used the condition (6.72).

6.3.3 Matching

The inner solution obtained in Eq. 6.73 still contains a con-

stant of integration. To find a value for this constant, we

need to match the inner solution (Eq. 6.73) with the outer

solution (Eq. 6.60). The following is the matching principle

(Van Dyke 1975):

The inner limit of the outer solution must match with the

outer limit of the inner solution.

The matching principle is mathematically equivalent to

lim
x!0

y oð Þ x; eð Þ ¼ lim
x�!1 y ið Þ x�; eð Þ ð6:74Þ

Therefore, for the zero-order solution, we have

y
oð Þ
0 0ð Þ ¼ y

ið Þ
0 1ð Þ ð6:75Þ

From Eq. 6.73, this gives

y
ið Þ
0 1ð Þ ¼ C ð6:76Þ

and from Eq. 6.60,

y
oð Þ
0 0ð Þ ¼ be1 ð6:77Þ

Therefore, substitution of Eqs. 6.76 and 6.77 into Eq. 6.75

gives

C ¼ be1 ð6:78Þ
Hence, the leading order inner solution is

y
ið Þ
0 x�ð Þ ¼ be1 þ a� be1

� �
e�x� ð6:79Þ

6.3.4 Composite Solutions

What we have done so far is to obtain an inner expansion

and an outer expansion. Each is valid in their respective

regions. We now wish to find a solution that is valid over

the whole domain. This solution is called the composite

solution. It is found by simply adding the inner solution and

the outer solution and subtracting the common parts of the

two solutions (because we do not want to count the com-

mon parts of the two solutions twice). The common parts

are simply the terms that arise in the matching process. For

the zero-order solution, this common part is Eq. 6.77:

ycom ¼ be1 ð6:80Þ

Thus, the composite solution is

y ¼ be1�x þ a� be1
� �

e�x=e þ O eð Þ ð6:81Þ

Figure 6.2 shows computations of the zero-order composite

solution for a value of e¼ 0.05. The exact solution is also

shown, and it is seen that the agreement is fairly good. Note

that this composite solution is the zero-order composite

solution, that is, it has an error on the order of e. We next

inspect the first-order composite solution, which has an

error of order e2. But before we can achieve this goal, we

have to develop a matching principle in general, beyond the

principle we have in Eq. 6.75, which is applicable for only

zero-order solutions.

6.3.5 General Matching Principle

The success of matching is due to the existence of the over-

lapping region. In this overlapping region, one could define

an intermediate variable as

xd ¼ x

d eð Þ ð6:82Þ

where

lim
e!0

d eð Þ ¼ 0 ð6:83Þ

and d eð Þ is such that

lim
e!0

d eð Þ
e

¼ 1 ð6:84Þ

This means that the overlapping region lies between the

boundary layer (which has a thickness on the order of e)
and the outer region (which has a thickness on the order of

unity). In this overlapping region, the intermediate variable

is on the order of unity. Now, we write the outer variable x

FIGURE 6.2 Plots of the exact solution and the zero-order com-

posite solution (Eq. 6.81).
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and the inner variable x� in terms of this intermediate

variable:

x ¼ d eð Þxd ð6:85Þ
and

x� ¼ d eð Þ
e

xd ð6:86Þ

Thus, in the overlapping region (intermediate region), xd is

on the order of unity, and when e approaches zero, we will
have

x ! 0; x� ! 1 ð6:87Þ
Equation 6.87 simply states that for a very large distance

from the origin (outer solution), the intermediate region

appears to have zero thickness, whereas the intermediate

region would appear to be extremely far away when viewed

from the origin. This proves Eq. 6.74.

Note, we previously obtained both the inner and the

outer solutions for the zero-order solutions. Hence, the

composite solution obtained has an error on the order of e.
To find a composite solution, which has an error on the

order of e2, we need to find the first-order inner solution, as

we did for the outer solution (Eq. 6.61), and then we make

use of the matching principle using the intermediate varia-

ble of Eq. 6.82 to achieve our goal of composite solution

having an error of e2.

6.3.6 Composite Solution of Higher Order

Solving Eq. 6.71 for the first-order inner solution, we obtain

y
ið Þ
1 x�ð Þ ¼ C1 1� e�x�� �� a� a� be1

� �
1þ e�x�� �
 �

x�

ð6:88Þ
where we have used the boundary condition at x¼ 0,

y
ið Þ
1 0ð Þ ¼ 0. Thus, the inner solution order having error of

O e2ð Þ is
y ið Þ x�; eð Þ ¼ y

ið Þ
0 x�ð Þ þ ey ið Þ

1 x�ð Þ þ O e2
� � ð6:89Þ

To solve for the constant C1, we resort to the matching prin-

ciple and utilize the intermediate variable xd. The inner and

outer variables are related to this intermediate variable, as

shown in Eqs. 6.85 and 6.86. Thus, in the intermediate

region, the inner solution (Eq. 6.89) and the outer solution

(Eq. 6.59) behave like

y ið Þ xdð Þ ¼ be1 � be1dxd þ eC1 þ o eð Þ þ o dð Þ ð6:90Þ
y oð Þ xdð Þ ¼ be1 � be1dxd þ ebe1 þ o eð Þ þ o dð Þ ð6:91Þ

In the intermediate region, these two solutions match.

Hence, the constant C1 must take the value

C1 ¼ be1 ð6:92Þ

Hence, the inner solution that has an error on the order

of e2 is
y ið Þ x�ð Þ ¼ be1 þ a� be1ð Þe�x�

þe be1 1� e�x�
� �� be1 � a� be1ð Þe�x�


 �
x�� þ O e2ð Þ

ð6:93Þ
The composite solution having an error on the order of e2

is the summation of the inner and outer solutions minus the

common parts, which are the matching terms given in

Eq. 6.91; that is, the composite solution is

ycomp ¼ b 1þ e 1� xð Þ½ �e1�x

þ a� be1
� �

1þ xð Þ � ebe1

 �

e�x=e þ O e2
� �
ð6:94Þ

Equation 6.94 is the composite solution including the

first-order correction terms, in contrast to the composite

solution (Eq. 6.81), which only includes the zero-order

terms. The zero-order composite solution (Eq. 6.81) has

an error on the order of e, whereas the first-order com-

posite solution (Eq. 6.94) has an error on the order of

e2. Figure 6.3 shows plots of the composite solution

(Eq. 6.94) and the exact solution for e¼ 0.05. It is

remarkable that these two solutions practically overlap

each other. Even when the parameter e is increased to

0.2, these two solutions agree very well.

6.4 MATCHED ASYMPTOTIC EXPANSIONS FOR

COUPLED EQUATIONS

We have shown the basic steps for the method of matched

asymptotic expansion. The matching principle is based on

the use of the overlapping region and an intermediate

FIGURE 6.3 Plots of the exact solution and the first-order com-

posite solution (Eq. 6.94).
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variable in that region. In what follows is another simple

method of matching for a class of problems, which takes

the following form:

e
dx

dt
¼ f x; y; eð Þ ð6:95Þ

and

dx

dt
¼ g x; y; eð Þ ð6:96Þ

subject to the initial conditions

t ¼ 0; x 0; eð Þ ¼ a eð Þ; y 0; eð Þ ¼ b eð Þ ð6:97Þ

These types of coupled first-order equations arise fre-

quently in chemical engineering, where there are two

dependent variables and their dynamics are coupled

through the nonlinear functions f and g, but the dynamic

evolution of one variable is faster than the other (in this

case, x is faster).

The outer variable for this problem is t, which is some-

times called slow time in the literature. The appropriate

measure of the change of the dependent variable in the ini-

tial short period is an inner variable (sometimes called fast

time), which is defined as

t� ¼ t

e
ð6:98Þ

In effect, the time variable is broken into two regions, the

outer region and the inner region. In the inner region, the

evolution of the x-variable is observed, whereas the evolu-

tion of the variable y is seen only in the outer region. The

expansions associated with the inner and outer regions are

called the inner and outer expansions, respectively.

6.4.1 Outer Expansion

First, let us construct the outer expansion with the indepen-

dent variable t. The outer asymptotic expansions are

assumed to take the following form:

x oð Þ t; eð Þ ¼ x
oð Þ
0 tð Þ þ ex oð Þ

1 tð Þ þ � � � ð6:99aÞ

y oð Þ t; eð Þ ¼ y
oð Þ
0 tð Þ þ ey oð Þ

1 tð Þ þ � � � ð6:99bÞ

where the superscript (o) denotes the outer solution.

Next, we substitute the above expansions into Eqs. 6.95

and 6.96 and equate coefficients of the like powers of ej . We

then obtain a set of subproblems; the zero-order for these are

f x
oð Þ
0 ; y

oð Þ
0 ; 0

� �
¼ 0 ð6:100aÞ

and

dy
oð Þ
0

dt
¼ g x

oð Þ
0 ; y

oð Þ
0 ; 0

� �
ð6:100bÞ

The curve (expressed as y versus x) defined in Eq. 6.100a

relates the algebraic relationship between the two state vari-

ables, that is, if y takes some value, then x responds instan-

taneously to the value of y according to the algebraic

relationship. Let us now assume that we can solve the sub-

problems for the outer region, that is, y
oð Þ
j are obtained.

There are constants of integration carried out by outer solu-

tions, simply because the outer solutions are not valid in the

inner region, and hence, they do not satisfy the imposed ini-

tial conditions (Eq. 6.97).

6.4.2 Inner Expansion

In terms of the inner variable t� (Eq. 6.98), the governing

equations (Eqs. 6.95 and 6.96) can be seen to be

dx

dt�
¼ f x; y; eð Þ ð6:101aÞ

and

dy

dt�
¼ eg x; y; eð Þ ð6:101bÞ

Now we assume that the inner expansions take the follow-

ing forms:

x ið Þ t�; eð Þ ¼ x
ið Þ
0 t�ð Þ þ ex ið Þ

1 t�ð Þ þ � � � ð6:102aÞ

y ið Þ t�; eð Þ ¼ y
ið Þ
0 t�ð Þ þ ey ið Þ

1 t�ð Þ þ � � � ð6:102bÞ

where the superscript (i) denotes inner solution.

We assume that the initial conditions also have expan-

sions:

t� ¼ 0; x 0; eð Þ ¼ a0 þ ea1 þ � � � ð6:103aÞ

t� ¼ 0; y 0; eð Þ ¼ b0 þ eb1 þ � � � ð6:103bÞ

Now, the corresponding initial conditions for the coeffi-

cients of the inner expansions are

t� ¼ 0; x
ið Þ
j 0ð Þ ¼ aj ; y

ið Þ
j 0ð Þ ¼ bj ð6:104Þ

for j¼ 1, 2, . . . .

If we substitute the inner expansions (Eq. 6.102) into

Eqs. 6.101 and then equate the coefficients of like powers

of ej, we obtain a set of subproblems, and we shall assume

that their solutions can be obtained by some analytical

means. The inner expansions are completely known

because their initial conditions are given (Eq. 6.104).
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Unlike the inner expansions, the outer expansions still con-

tain unknown constants of integration. These must be found

from the matching between the inner expansions and the

outer expansions.

6.4.3 Matching

To carry out the matching procedure between the inner and

outer expansions, the outer solutions are first written in

terms of the inner variable t� and then are expanded using a

Taylor series with respect to t� around the point t�¼ 0. The

final stage is to equate the Taylor-expanded outer solution to

the inner expansions in the limit when t� tends to infinity.

The terms that are matched between the inner and outer

expansions are called the common parts.

The matching of the derivatives in the Taylor expansions

is straightforward and yields the following common parts

(Vasil’eva 1963):

Xn
j¼0

t�ð Þj
jð Þ!

djx
oð Þ
n�j 0ð Þ

d t�ð Þj ¼ x ið Þ
n t�ð Þ ð6:105aÞ

Xn
j¼0

t�ð Þj
jð Þ!

djy
oð Þ
n�j 0ð Þ

d t�ð Þj ¼ y ið Þ
n t�ð Þ ð6:105bÞ

as t� ! 1:
The terms given in the above equations are the common

parts and will be used in the construction of the composite

solution.

The initial conditions for the outer solution in terms of

the completely determined inner solutions are

y oð Þ
n 0ð Þ ¼ lim

t�!1 y ið Þ
n t�ð Þ þ

Xn
k¼1

�t�ð Þk
k!

dky
ið Þ
n t�ð Þ

d t�ð Þk
" #

ð6:106aÞ

x oð Þ
n 0ð Þ ¼ lim

t�!1 x ið Þ
n t�ð Þ þ

Xn
k¼1

�t�ð Þk
k!

dkx
ið Þ
n t�ð Þ

d t�ð Þk
" #

ð6:106bÞ

EXAMPLE 6.4

To illustrate the procedure for coupled equations, we apply the

above technique to a CSTR problem experiencing a slow catalyst

decay, so that the deactivation rate is proportional to the reactant

concentration (parallel deactivation). Let x be the reactant concen-

tration and y be the catalyst activity. The reaction rate is represented

by the product xy and the rate of catalyst decay is given by exy
(e � 1), which is taken to be slower than the main reaction rate.

The mass balance equations are

dx

dt�
¼ 1� x� xy ð6:107aÞ

and

dy

dt�
¼ �exy ð6:107bÞ

subject to

t� ¼ 0 : x ¼ 0; y ¼ 1 ð6:108Þ

We can take the inner solutions to have the following expansions:

x ið Þ t�; eð Þ ¼ x
ið Þ
0 t�ð Þ þ ex ið Þ

1 t�ð Þ þ � � � ð6:109aÞ

y ið Þ t�; eð Þ ¼ y
ið Þ
0 t�ð Þ þ ey ið Þ

1 t�ð Þ þ � � � ð6:109bÞ

When we substitute these expansions into Eqs. 6.107 and follow

the usual procedure, we obtain a set of subproblems. Solving the

first two, we have

x
ið Þ
0 t�ð Þ ¼ 1� e�2t�

� �
2

ð6:110aÞ

y
ið Þ
0 t�ð Þ ¼ 1 ð6:110bÞ

x
ið Þ
1 t�ð Þ ¼ t�

8
þ t�

4

� �
e�2t� � t�ð Þ2

8

 !
e�2t�

� 1

8

� �
1� e�2t�
� �� e�2t� 1� e�2t�

� �
16 ð6:111aÞ

y
ið Þ
1 t�ð Þ ¼ � t�

2
þ 1� e�2t�
� �

4
ð6:111bÞ

We see that the inner solutions are completely defined.

Now we turn to the outer solutions. The time variable for the

outer region is taken as

t ¼ et� ð6:112Þ

the mass balance equations (Eq. 6.107) become, in terms of t,

e
dx

dt
¼ 1� x� xy ð6:113aÞ

dy

dt
¼ �xy ð6:113bÞ

We can write the outer expansions in the following form

x oð Þ t; eð Þ ¼ x
oð Þ
0 tð Þ þ ex oð Þ

1 tð Þ þ � � � ð6:114aÞ

y oð Þ t; eð Þ ¼ y
oð Þ
0 tð Þ þ ey oð Þ

1 tð Þ þ � � � ð6:114bÞ
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The substitution of these expansions into Eqs. 6.113 will yield a

set of subproblems. To find the initial conditions for y
oð Þ
j 0ð Þ, we

apply Eq. 6.106 and get

y
oð Þ
0 0ð Þ ¼ lim

t�!1 y
ið Þ
0 t�ð Þ ¼ 1 ð6:115aÞ

y
oð Þ
1 0ð Þ ¼ lim

t�!1 y
ið Þ
1 t�ð Þ � t�

dy
ið Þ
1 t�ð Þ
dt�

" #
¼ 1

4
ð6:115bÞ

Knowing the initial conditions, the outer solutions can be com-

pletely obtained:

x
oð Þ
0 ¼ 1

1þ y
oð Þ
0

� � ð6:116aÞ

1� y
oð Þ
0

� �
þ ln

1

y
oð Þ
0

 !
¼ t ð6:116bÞ

x
oð Þ
1 ¼ � y

oð Þ
0

1þ y
oð Þ
0

� �4 � y
oð Þ
0

1þ y
oð Þ
0

� �4 ð6:117aÞ

y
oð Þ
0 ¼ y

oð Þ
0

1þ y
oð Þ
0

� �2 ð6:117bÞ

Now that the inner and outer solutions are known, the compos-

ite solutions can be obtained by adding the inner and outer

solutions and subtracting the common parts, which are given in

Eq. 6.105. The first-order composite solutions are

yc ¼ y
oð Þ
0 þ e

y
oð Þ
0

1þ y
oð Þ
0

� �2 � 1

4

� �
e�2t�

2
64

3
75þ O e2

� � ð6:118aÞ

xc ¼ 1

1þ y
oð Þ
0

� 1

2

� �
e�2t�

" #

þe

2
64 t�

4

� �
e�2t� � t�2

8

� �
e�2t� þ 1

8

� �
e�2t� � e2t

�

16
1� e�2t�� �

� 2y oð Þ

1þ y
oð Þ
0

� �4
3
75þ O e2

� �
ð6:118bÞ

Figure 6.4 shows the comparison between the composite

asymptotic solution and the numerically exact solution for

e¼ 0.5. It is useful to note that the asymptotic solution

agrees quite well with the exact solution even when e¼ 0.5.

We have shown, using the method of matched asymp-

totic expansions, that in the outer domain there is an adjust-

able variable, and in the inner region there is another such

variable. The composite solution is, therefore, a function of

these two variables. Exploitation of this function is the

essential idea behind the multiple time scale method. Inter-

ested readers should refer to Nayfeh (1973) for exposition

of this technique.

PROBLEMS

6.12. To solve the heat conduction problem for a slab

geometry in Example 11.4 by the method of finite

integral transform (or alternatively by the Laplace

transform or the separation of variables method), it

was necessary to find eigenvalues for the transcen-

dental equation given by Eq. 11.88b, rewritten here

for completeness:

j tan jð Þ ¼ Bi

where Bi is the Biot number for heat transfer, and j
is the eigenvalue.

(a) For the small Biot number (Bi� 1), assume that

j has the asymptotic expansion,

j ¼ j0 þ Bij1 þ Bi2j2 þ Bi3j3 þ � � �

Then substitute this expansion into the transcen-

dental equation and make use of the following

Taylor series for the trigonometric tan function:

tan xð Þ ¼ xþ x3

3
þ 2

15
x5 þ 17

315
x7 þ � � � ; for x � 1

FIGURE 6.4 Plots of the numerically exact solution (continu-

ous line) and the first-order composite solutions (Eqs. 6.118) for

e¼ 0.5.
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to show that the zero-order solution is

tan j0ð Þ ¼ 0

hence, j ¼ np

(b) Solve for the higher order subproblems to show

that j has the asymptotic solution:

j ¼ j0 þ Bi
1

j0

� �
þ Bi2 � 1

j30

 !
þ Bi3

2

j50
� 1

3j30

 !
þ O Bi4

� �

This asymptotic expansion works for all eigen-

values npð Þ, except the first one, that is, j0 ¼ 0:
For this eigenvalue, the second and subsequent

terms are more singular than the first one. This

problem of growing in singularity is a common

problem in perturbation methods and will be

dealt with in the next homework problem.

6.23. The solution to the last homework problem works

well for all eigenvalues except the first one. This

homework will consider the solution to this first

eigenvalue. For small values of Bi, it is expected

that the first eigenvalue is a small number as indi-

cated by Problem 6.1.

(a) To solve for the first eigenvalue when the Biot

number is small, set

j ¼ Bivj0

where j0 has an order of unity and Bi
v represents

the magnitude of the smallness of the first eigen-

value. Substitute this into the transcendental

equation j tan jð Þ ¼ Bi to show that v¼ 1
2
and

j0 ¼ 1. This means that the leading order solu-

tion for the first eigenvalue is

j ¼ Bi1=2

(b) To obtain the asymptotic solution for the first

eigenvalue beyond the leading order solution

given in part (a), assume that it has the asymptotic

expansion in terms of the small parameter Bi:

j ¼ Bi1=2 1þ Bij1 þ Bi2j2 þ Bi3j3 þ � � �
 �
Again substitute this asymptotic expansion into

the transcendental equation, and equate the like

powers of Bi, and then show that

j1 ¼
1

6
; j2 ¼

11

360
; j3 ¼ � 17

5040

Compute the approximate first eigenvalue for

Bi¼ 0.01, 0.1, and 1.

(c) To compare the approximate solution with the

“exact” solution, we wish to solve the transcen-

dental equation numerically using Newton–

Raphson to obtain the exact solution. Rewrite the

transcendental equation in terms of sin and cos as

f ¼ j sin jð Þ � Bi cos jð Þ ¼ 0

We do this because the sin(e) and cos(e) functions
do not tend to infinity, as does the tan(e) function.
Use the Newton–Raphson formula given in

Appendix A to show that the iteration equation to

obtain the “numerically exact” solution for the

eigenvalue is

j kþ1ð Þ ¼ j kð Þ � f kð Þ

f 0 kð Þ

where j kð Þ and j kþ1ð Þ are the kth and (kþ 1)th

iterated eigenvalues, respectively, and

f 0 kð Þ ¼ j kð Þ cos j kð Þ
� �

þ 1þ Bið Þ sin j kð Þ
� �

Write a program and perform the computations for

the “numerically exact” solutions to give values of

the first eigenvalue for Bi¼ 0.01, 0.1, and 1 equal

to 0.099833639, 0.3110528, and 0.86033, respec-

tively, using relative percentage error of less than

1.d-06, that is, the Nth iterated solution will be

accepted as the “numerically exact” solution when

j Nð Þ � j N�1ð Þ

j Nð Þ

�����
�����	 100 � 0:000001

(d) Compare the “numerically exact” solution

obtained for Bi¼ 1 and the approximate solution

obtained in part (b) to show that the relative per-

centage error is 0.02%. This demonstrates that

the asymptotic solution, derived for small Bi, can

be useful even when Bi is on the order of unity.

(e) Calculate the approximate solution when Bi¼ 5.

Use the approximate solution obtained in part

(b) as the initial guess in the Newton–Raphson

scheme to show that the “numerically exact”

solution can be achieved within two iterations!

6.33. The last two problems solve the asymptotic solution

for the transcendental equation j tan jð Þ ¼ Bi when

Bi is a small number.

(a) To deal with the same transcendental equa-

tion when Bi is a large number, use the usual
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perturbation approach with the asymptotic

expansion

j ¼ j0 þ
1

Bi
j1 þ

1

Bi2
j2 þ

1

Bi3
j3 þ � � �

and substitute this expansion into the govern-

ing equation to show that the coefficients are

j0 ¼ nþ 1

2

� �
p; j1 ¼ �j0; j2 ¼ j0;

j3 ¼
j0ðj20 � 3Þ

3
; j4 ¼ � j0ð4j20 � 3Þ

3

(b) Use the Newton–Raphson program of Problem

6.2 to compute the first eigenvalue when

Bi¼ 100, 10, and 1, and compare the asymptotic

solutions obtained in part (a) with the corre-

sponding exact solutions.

6.43. Repeat Problems 6.1–6.3 with the transcendental

equation

j cot jð Þ � 1 ¼ �Bi

obtained when solving the heat conduction problem

in a spherical object by the method of separation of

variables.

Show that for small Bi number, the first eigen-

value is

j2 ¼ Bi 3� Bi
3

5
þ � � �

� �

Hint: The following Taylor series expansion for cot

is useful:

cot jð Þ ¼ 1

j
� j

3
� j3

45
þ � � �

6.52. Use the perturbation method to find the root of the

cubic equation

ez3 ¼ a� z

where a is a constant on the order of unity and e is a
small number (e� 1).

(a) Use the asymptotic expansion for z

z ¼ z0 þ ez1 þ e2z2 þ � � �

and substitute it into the cubic equation to show

that the coefficients are

z0 ¼ a; z1 ¼ �a3; z2 ¼ 3a5

The regular perturbation yields only one real

root to the cubic equation. The other two roots

are not found because of the simple fact that the

cubic term was not retained in the solution for

the zero-order coefficient z0, explaining why the

regular perturbation method fails to locate the

other two roots.

(b) To find the other two roots, it is essential to

retain the cubic term in the zero-order sub-

problem. To do this, start with the expansion

z ¼ 1

en
y0 þ emy1 þ � � �½ �

where 1=en represents the magnitude of the two

missing roots. At this stage, the exponents n and

m are unknown. Substitute this expansion into

the cubic equation and show that in order to

keep the cubic term in the zero-order solution,

which is essential to find the two missing roots,

the exponents n and m must be

n ¼ m ¼ 1
2

(c) Solve the zero- and first-order subproblems to

show that the coefficients y0 and y1 are to take

the form

y0 ¼ �i; y1 ¼ � a

2

where i is the imaginary number, i ¼ ffiffiffiffiffiffiffi�1
p

:
Thus, the missing two roots are complex con-

jugates.

(d) Compare the asymptotic solutions with the exact

solutions1 for a¼ 2 and e¼ 0.01 and 0.1.

Discuss your results.

1 For the cubic equation of the form (Abramowitz and Stegun 1964)

z3 þ a2z
2 þ a1zþ a0 ¼ 0

let

q ¼ a1

3
� a22

9
; r ¼ a1a2 � 3a0ð Þ

6
� a32
27

; D ¼ q3 þ r2

If D > 0; we have one real root and a pair of complex conjugate roots.

If D ¼ 0, all roots are real and at least two are equal.

If D < 0, all roots are real.

The three roots are as follows:

z1 ¼ s1 þ s2ð Þ � a2

3

z2 ¼ � s1 þ s2ð Þ
2

� a2

3
þ i

ffiffiffi
3

p

2
s1 � s2ð Þ

z2 ¼ � s1 þ s2ð Þ
2

� a2

3
� i

ffiffiffi
3

p

2
s1 � s2ð Þ

where

s1 ¼ rþ
ffiffiffiffi
D

ph i1=3
; s2 ¼ r�

ffiffiffiffi
D

ph i1=3
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6.62. Repeat Problem 6.5 with the cubic equation

ez3 ¼ z� a; e � 1

and show that the three roots to this cubic equation

have the following asymptotic expansions:

z1 ¼ aþ e a3ð Þ þ e2 3a5
� �þ � � �

z2 ¼ 1ffiffi
e

p 1þ ffiffi
e

p � a

2

� �
þ � � �

h i
z3 ¼ 1ffiffi

e
p �1þ ffiffi

e
p � a

2

� �
þ � � �

h i
6.72. Modeling of diffusion coupled with a reaction of order

p inside a catalyst particle poses difficulties owing to

the nonlinear reaction term (see Example 2.7).

(a) If the particle has a slab geometry, set up the

coordinate frame with the origin being at the

center of the particle. Show that the differential

mass balance equation for the reactant is

De

d2C

dr2
� kCp ¼ 0

where C represents the reactant concentration

C�!k Products

If the external film resistance surrounding the

particle is negligible compared to the internal

diffusion, show that the boundary conditions for

the above mass balance equation are

r ¼ 0;
dC

dr
¼ 0

r ¼ R; C ¼ C0

where R is the half thickness of the slab catalyst

and C0 is the external bulk concentration, which

can be assumed constant.

(b) Convert the mass balance equation and its

boundary conditions to the following nondimen-

sional form:

d2y

dx2
� f2yp ¼ 0

x ¼ 0;
dy

dx
¼ 0

x ¼ 1; y ¼ 1

What are the required definitions of the nondi-

mensional variables x, y, and f?

(c) The quantity of interest in analyzing the relative

importance between diffusional resistance and

chemical reaction is called the effectiveness

factor h, which is given by

h ¼ 1

f2

dy

dx

����
x¼1

The effectiveness factor is the ratio between the

actual reaction rate per unit catalyst particle and

the ideal reaction rate when there is no diffusional

resistance. Derive the above expression for the

effectiveness factor.

(d) For a first-order (linear) reaction, show that the

following solutions for y and h are obtained:

y xð Þ ¼ cosh fxð Þ
cosh fð Þ ; h ¼ tanh fð Þ

f

(e) For a general reaction order, the explicit analyti-

cal solution for the effectiveness factor is not

possible, but perturbation methods can be

applied here to derive asymptotic solutions

when f is either small or large. When f is small,

the problem can be handled by the regular per-

turbation method. Assume that the solution for y

possesses the asymptotic expansion:

y x;fð Þ ¼ y0 xð Þ þ fy1 xð Þ þ f2y2 xð Þ þ � � �

Show that the effectiveness factor for a reaction

of order p is

h ¼ 1� p

3
f2 þ 2p2 þ p p� 1ð Þ

15
f4 þ O f6

� �
(f) When the parameter f is large, a singular pertur-

bation problem arises. This is caused by the

small parameter multiplying the second deriva-

tive term in the mass balance equation, which is

a source of nonuniformity, as discussed in Sec-

tion 6.2.4. Let

e ¼ 1

f

so the mass balance equation will become

e2
d2y

dx2
� yp ¼ 0

Show that the straightforward application of the

expansion

y x; eð Þ ¼ y0 þ ey1 þ � � �

will yield the solution

y0 ¼ y1 ¼ 0
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This solution clearly does not satisfy the bound-

ary condition at the particle surface. However,

the above solution is valid for most of the inte-

rior region of the catalyst, except for a thin zone

very close to the particle surface. This solution,

therefore, is called the outer solution.

(g) To find the solution that is valid close to the par-

ticle surface, the coordinate must be stretched

(magnified) near the surface as

j ¼ 1� x

en

where en is the boundary layer thickness, and n

is unknown at this stage and must be deduced

based on further analysis. In terms of the new

stretched variable, show that the new mass bal-

ance equation is

e2

e2n
d2y

dj2
¼ yp

Since the inner solution is valid near the particle

surface, it is essential to retain the second-order

derivative term in the zero-order solution; this

means we must select n¼ 1. The new equation

now becomes

d2y

dj2
¼ yp

Show that the proper boundary conditions for

this new equation valid in the boundary layer are

j ¼ 0; y ¼ 1

j ! 1; y ¼ dy

dx
¼ 0

Hint: The second boundary condition is a result of

matching between the inner and the outer solution.

(h) If the solution valid in the boundary layer is to

have the expansion

y ið Þ j; eð Þ ¼ y
ið Þ
0 jð Þ þ ey ið Þ

1 jð Þ þ � � �

then show that the equation for the leading order

solution is

d2y
ið Þ
0

dj2
¼ y

ið Þ
0

h ip
and its associated boundary conditions are

j ¼ 0; y
ið Þ
0 ¼ 1

j ! 1; y
ið Þ
0 ¼ dy

ið Þ
0

dj
¼ 0

(i) Integrate the relation in part (h) (use the method

in Example 2.7) and show that the solution for

the effectiveness factor for large f is

h ¼ 1

f

ffiffiffiffiffiffiffiffiffiffiffi
2

pþ 1

s

6.83. If the catalyst particle in Problem 6.7 is cylindrical

and if the transfer to end caps is ignored, show the

following:

(a) When the reaction is first order, the solutions

for the concentration distribution and the

effectiveness factor are (refer to Examples 3.3

and 3.6)

y xð Þ ¼ I0 fxð Þ
I0 fð Þ

h ¼ 2I1 fð Þ
fI0 fð Þ

(b) When the reaction is of order p, the solutions for

effectiveness factor for small f and large f,

respectively, are

h ¼ 1� p

8
f2 þ 2p2 þ p p� 1ð Þ

96
f4 þ � � �

and

h ¼ 2

f

ffiffiffiffiffiffiffiffiffiffiffi
2

pþ 1

s

6.93. If we redo Problem 6.7 for spherical particles, show

that the solutions for the effectiveness factor for

small f and large f, respectively, are

h ¼ 1� p

15
f2 þ 2p2 þ p p� 1ð Þ

315
f4 þ � � �

and

h ¼ 3

f

ffiffiffiffiffiffiffiffiffiffiffi
2

pþ 1

s

6.103. Apply the regular perturbation method to solve the

following first-order ordinary differential equation:

1þ eyð Þ dy
dx

þ y ¼ 0
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subject to

x ¼ 1; y ¼ 1

(a) Show that the asymptotic solution has the form

y ¼ e1�x þ e e1�x � e2 1�xð Þ
h i

þ � � �

(b) Compare the approximate solution with the

exact solution for e¼ 0.01 and 0.1:

ln yð Þ þ ey ¼ �xþ 1þ eð Þ
6.113. Modeling of mass transport through a membrane

with variable diffusivity usually gives rise to the

nondimensional form:

d

dx
f yð Þ dy

dx

� �
¼ 0

subject to the following boundary conditions:

x ¼ 0; y ¼ 0

x ¼ 1; y ¼ 1

(a) For f yð Þ ¼ 1þ e y� 1ð Þ, show by the method of

regular perturbation that the asymptotic solution is

y ¼ xþ e
x

2
� x2

2

� �
þ � � �

(b) Compare this asymptotic solution with the fol-

lowing exact solution for e¼ 0.01 and 0.1:

y 1� eð Þ þ ðe=2Þy2
1� ðe=2Þ ¼ x

6.123. Use the regular perturbation method to solve the

nonlinear ordinary differential equation:

xþ eyð Þ dy
dx

þ y ¼ 0

subject to

x ¼ 1; y ¼ 1

(a) Show that the asymptotic solution is

y ¼ 1

x
þ e

x2 � 1

2x3

� �
þ e2 � x2 � 1

2x5

� �
þ � � �

(b) The exact solution is given by

xy ¼ 1þ e
2

1� y2
� �

Compare the asymptotic solution obtained in part

(a) with the exact solution for e¼ 0.1. Discuss the

diverging behavior of the asymptotic solution near

x¼ 0. Does the asymptotic solution behave better

near x¼ 0 as more terms are retained? Observing

the asymptotic solution, it shows that the second

term is more singular (secular) than the first term,

and the third term is more singular than the sec-

ond term. Thus, it is seen that just like the cubic

equations dealt with in Problems 6.5 and 6.6,

where the cubic term is multiplied by a small

parameter, this differential equation also suffers

the same growth in singular behavior.

(c) If the equation is now rearranged such that x is

treated as the dependent variable and y as the

independent variable, that is, their roles are

reversed, show that the governing equation is

y
dx

dy
¼ � xþ eyð Þ

Applying the regular perturbation to this new

equation, show that the asymptotic solution will

have the form

x ¼ 1

y
þ e

1� y2ð Þ
2y

which is in fact the exact solution, a pure

coincidence.

6.133. The differential equation having the type dealt with

in Problem 6.12 can be solved by a variation of the

regular perturbation method, called the strained

coordinates method. The idea was initially due to

Lighthill (1949). Basically, this idea is to expand the

dependent as well as the independent variables in

terms of a new variable. The coefficients of the

expansion of the independent variable are called the

straining functions. Regular perturbation is then

applied by substituting the two expansions of the

independent and dependent variables into the equa-

tion, and the crucial requirement in finding the

straining function is that the higher order terms are

no more singular than the preceding term. This is

called Lighthill’s rule, after Lighthill (1949). Let us

now reinvestigate the equation dealt with in Problem

6.12 and expand the independent variable as

x ¼ x0 þ ex1 þ � � �
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Here, we allow the first coefficient x0 to behave as

the new independent variable, and the subsequent

coefficients will be a function of x0; that is, the inde-

pendent variable x is strained very slightly:

x ¼ x0 þ ex1 x0ð Þ þ � � �
If x1 is set to zero, the strained coordinates method

will become the traditional regular perturbation

method.

Assume that the dependent variable y has the follow-

ing asymptotic expansion with coefficients being the

function of the new independent variable x0; that is,

y ¼ y0 x0ð Þ þ ey1 x0ð Þ þ � � �

(a) Show by the chain rule of differentiation that the

derivative will have the asymptotic expansion

dy

dx
¼ dy

dx0
� dx0
dx

¼ dy0
dx0

þ e
dy1
dx0

� dy0
dx0

dx1

dx1

� �
þ � � �

(b) Substitute the expansions for x, y, and dy=dx
into the governing equation and equate like

powers of e to show that the zero- and first-order

subproblems are

e0 : x0
dy0
dx0

þ y0 ¼ 0

and

e1: x0
dy1
d0

þ y1

¼ � x1 þ y0ð Þ dy0
dx0

þ x0
dy0
dx0

dx1

dx0

(c) In principle, we can solve for y0 and y1, from the

above two subproblems with x, chosen such that

the coefficient y1 is not more singular than the

preceding coefficient y0. To completely solve

for y0 and y1, we need to find their conditions.

Use the given initial condition x¼ 1, y¼ 1 to

the expansion for x to show that

1 ¼ x�0 þ ex1ðx�0Þ

The value x�0 is the value of x0 at x¼ 1. Since x�0
is very close to unity, assume x�0 to have the

asymptotic expansion

x�0 ¼ 1þ ea

and substitute this into the initial condition to

show that

a ¼ �x1 1ð Þ

Hence,

x�0 ¼ 1� ex1 1ð Þ

(d) To find the condition for y0 and y1, use the initial

condition and then substitute it into the expan-

sion for y to show that

y0 1ð Þ ¼ 1 and y1 1ð Þ ¼ x1 1ð Þ dy0 1ð Þ
dx0

Note that the initial condition for y1 depends on

the straining function x1, which is still unknown

at this stage. This will be determined during the

course of analysis, and the Lighthill’s require-

ment is that the subsequent term not be more

singular than the preceding term.

(e) Show that the solution for y0 is

y0 ¼
1

x0

(f) Use this solution for y0 into the first-order sub-

problem to show that the equation for y1 takes

the form

d
x0y1ð Þ
dx0

¼ � d

dx0

x1

x0
þ 1

2x20

� �

and then show that the solution for y1 is

y1 ¼
K

x0
� 1

x20
x1 þ 1

2x0

� �

where K is the constant of integration.

(g) Show that the simplest form of x1, taken to

ensure that the function y1 is not more singular

than the function y0, is

x1 ¼ � 1

2x0

then show that the initial condition for y1 is

y1 1ð Þ ¼ 1
2

and then prove that the complete solution for

y1 is

y1 ¼
1

2x0

Thus, the complete solutions are

y ¼ 1

x0
þ e

1

2x0
; x ¼ x0 � e

1

2x0

which are implicit because of the presence of x0.

134 APPROXIMATE SOLUTIONMETHODS FORODE: PERTURBATION METHODS



(h) Eliminate x0 between the two solutions in part

(g) to show that the final implicit asymptotic

solution is

2ey2

2þ e
þ 2xy� 2þ eð Þ ¼ 0

Compute this solution for e¼ 0.1 and 1 and

compare the results with the exact solution. Dis-

cuss your observations especially in the neigh-

borhood of x¼ 0.

Further exposition of this method of strained

coordinates can be found in Nayfeh (1973) and

Aziz and Na (1984).

6.14�. A well-stirred reactor containing solid catalysts can

be modeled as a perfect stirred tank reactor, that is,

concentration is the same everywhere inside the

reactor. When such catalysts are very small, the dif-

fusional resistance inside the catalyst can be ignored.

The catalyst is slowly deactivated by the presence

of the reactant (this is called parallel deactivation).

The rate of the reaction per unit volume of the

reactor is taken to follow a second-order kinetics

with respect to the reactant concentration as

R ¼ kC2a

where C is the reactant concentration, k is the

reaction rate constant, and a is the catalyst activity,

which is unity (i.e., fresh catalyst) at t¼ 0.

(a) Show that the mass balance equation for the

reactant is

V
dC

dt
¼ F C0 � Cð Þ � VkC2a

where F is the volumetric flow rate, V is the

reactor volume, and C0 is the inlet reactant

concentration.

The catalyst activity declines with time, and

the equation describing such change is assumed

to take the form

da

dt
¼ �kdCa

where kd is the rate constant for deactivation.

(b) Show that the mass balance equations in non-

dimensional form can be cast to the following

form:

dy

dt
¼ a 1� yð Þ � y2a

and

da

dt
¼ �eya

where y is the nondimensional concentration

and t is the nondimensional time given as

y ¼ C

C0

; t ¼ kC0ð Þt

and e (small parameter) and a are

e ¼ kd

k
� 1; a ¼ F

kVC0

(c) With respect to the timescale t, use the perturba-

tion method to obtain the solutions for y and a

given below:

a ið Þ tð Þ ¼ 1

y
ið Þ
0 tð Þ ¼ m1 1� exp �t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4a

p� �
 �
2 1þ m1=m2ð Þ exp �t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4a

p� �
 �
where m1 and m2 are given by

m1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4a

p
� a; m2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4a

p
þ a

This represents the start-up problem (inner solu-

tion), that is, the catalyst is still fresh (a¼ 1).

(d) To obtain the solution behavior beyond the start-

up period, define a slower timescale, which is

slower than the timescale t, as

�t ¼ et

and show that the mass balance equations in

terms of this new timescale are

e
dy

d�t
¼ a 1� yð Þ � y2a

and

da

d�t
¼ �ya

(e) Apply the perturbation method on this new set

of equations to show that the solutions for the

slow timescale are

a
oð Þ
0 ¼

a 1� y
oð Þ
0

h i
y

oð Þ
0

h i2
and

ln
y

oð Þ
0

�tð Þ 1� y
oð Þ
0 0ð Þ

h i
y

oð Þ
0 0ð Þ 1� y

oð Þ
0

�tð Þ
h i

8<
:

9=
;þ 2

1

y
oð Þ
0 0ð Þ

� 1

y
oð Þ
0

�tð Þ

" #
¼ �t

where y
oð Þ
0 0ð Þ is the initial condition of the zero-

order outer solution. This initial condition is
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found by matching the inner solutions obtained

in part (b) and shows that

y
oð Þ
0 0ð Þ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4a

p
� a

h i
(f) Knowing the inner solutions in part (b) and the

outer solutions in part (d), obtain the composite

solutions that are valid over the whole time

domain.
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PART II

Good-by, proud world, I’m going home,

Thou’rt not my friend, and I’m not thine;

Long through thy weary crowds I roam;

A River-ark on the ocean brine,

Long I’ve been tossed like the driven foam,

But now, proud world, I’m going home.

Good-by to Flattery’s fawning face,

To Grandeur, with his wise grimace,

To upstart Wealth’s averted eye,

To supple Office low and high,

To crowded halls, to court, and street,

To frozen hearts, and hasting feet,

To those who go, and those who come,

Good-by, proud world, I’m going home.

I’m going to my own hearth-stone

Bosomed in yon green hills, alone,

A secret nook in a pleasant land,

Whose groves the frolic fairies planned;

Where arches green the livelong day

Echo the blackbird’s roundelay,

And vulgar feet have never trod

A spot that is sacred to thought and God.

Oh, when I am safe in my sylvan home,

I tread on the pride of Greece and Rome;

And when I am stretched beneath the pines

Where the evening star so holy shines,

I laugh at the lore and the pride of man,

At the sophist schools, and the learned clan;

For what are they all in their high conceit,

When man in the bush with God may meet.

—by Ralph Waldo Emerson (“Good-by”)

Applied Mathematics and Modeling for Chemical Engineers, Second Edition. Richard G. Rice and Duong D. Do.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

137





7
NUMERICAL SOLUTIONMETHODS
(INITIAL VALUE PROBLEMS)

In the previous chapters, we discussed analytical and

approximate methods to obtain solutions to ordinary differ-

ential equations. When these approaches fail, the only

remaining course of action is a numerical solution. This

chapter and the next consider numerical methods for solv-

ing ODEs, which may not be obtainable by techniques

presented in Chapters 2, 3 and 6. ODEs of initial value type

(i.e., conditions are specified at one boundary in time or

space) will be considered in this chapter, whereas ODEs of

boundary value type (conditions are specified at two bound-

ary points) will be considered in Chapter 8.

7.1 INTRODUCTION

Modeling of process equipment often requires a careful

inspection of start-up problems that lead to differential equa-

tions of initial value type, for example, modeling of chemi-

cal kinetics in a batch reactor and modeling of a plug flow

reactor. For the first example with two reactions in series

A�!k1 B�!k2 C

the model equations for constant volume are

dCA

dt
¼ �k1C

n
A

dCB

dt
¼ þk1C

n
A � k2C

m
B

and

dCc

dt
¼ þk2C

m
B

The batch reactor is initially filled with A, B, and C of con-

centrations CA0, CB0, and CC0. Mathematically, one can write

t ¼ 0; CA ¼ CA0; CB ¼ CB0; CC ¼ CC0

The last equation is the condition that we impose on the dif-

ferential condition at t¼ 0, that is, before the reactions are

allowed to start. These are called the initial conditions, and

the mathematical problem attendant to such conditions is

called the initial value problem (IVP).

The plug flow reactor also gives rise to an IVP. If we

write down a mass balance equation for the thin element at

position z with a thickness of Dz (see the control volume of

Fig. 1.1b) and then allow the element thickness to approach

zero, we obtain the following equations for the two

reactions in series:

u
dCA

dz
¼ �k1C

n
A

u
dCB

dz
¼ þk1C

n
A � k2C

m
B

u
dCC

dz
¼ þk2C

m
B

where u is the superficial velocity. The conditions imposed

on these equations are the inlet concentrations of these three
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species at the entrance of the reactor; that is,

z ¼ 0; CA ¼ CA0; CB ¼ CB0; CC ¼ CC0

Again, in the second example the conditions are specified at

one point (the entrance), and hence the problem is the initial

value problem. The similarity of the two systems can be

seen more readily if we introduce the local residence time

to the plug flow problem, t¼ z/u, we thus see the above

equations are identical to the batch start-up problem, except

t is replaced by t.

Noting the form of the model equations of the last two

examples, we can write the standard form for first order

ODE as follows:

dyi
dt

¼ f iðy1; y2; . . . ; yNÞ ð7:1Þ

for i¼ 1, 2, . . . , N, and where N is the number of equations.

The independent variable t does not appear explicitly in

Eq. 7.1; such a system is called autonomous. Otherwise,

the system is called nonautonomous (see Eq. (7.3a)).

The initial conditions for the above equations are values

of yi (i¼ 1, 2, . . . , N) for an initial instant of time (usually,

t¼ 0)

t ¼ 0; yi ð0Þ ¼ ai ðknownÞ ð7:2Þ

Equation 7.1 includes all first-order nonlinear ODEs, pro-

vided the independent variable t does not appear explicitly

in the RHS. Equations of the last two examples fall into the

general format of Eq. 7.1.

If the argument in the RHS of the coupled ordinary dif-

ferential equations contains t, such as

dyi
dt

¼ f i ðy1; y2; . . . ; yN ; tÞ for i ¼ 1; 2; . . . ;N ð7:3aÞ

t ¼ 0; yið0Þ ¼ ai ðknownÞ ð7:3bÞ

we can nonetheless redefine the problem such that the rela-

tion of the form of Eq. 7.1 is recovered.

For such a case, we simply introduce one more depen-

dent variable by replacing t with yNþ1, a new dependent

variable, for which the differential equation is defined as

dyNþ1

dt
¼ 1 ð7:4aÞ

and

t ¼ 0; yNþ1ð0Þ ¼ 0 ð7:4bÞ

or in the general case,

t ¼ t0; yNþ1ðt0Þ ¼ t0 ð7:4cÞ

Thus, we see that the new “dependent variable” is exactly

equal to t.

With the introduction of the new dependent variable

yNþ1, Eq. 7.3a can now be cast into the form

dyi
dt

¼ f i ðy1; y2; . . . ; yN ; yNþ1Þ ð7:5Þ

for i¼ 1, 2, . . . , N.

The new set now has Nþ 1 coupled ordinary differential

equations (Eqs. 7.5 and 7.4). Thus, the standard form of

Eq. 7.1 is recovered, and we are not constrained by the time

appearing explicitly or implicitly. In this way, numerical

algorithms are developed only to deal with autonomous

systems.

EXAMPLE 7.1

We illustrate this with an example of heating of an oil bath with a

time-dependent heat source. Let T and Q(t) represent the bath tem-

perature and heat rate, respectively. We shall take the bath to be

well mixed so the temperature is uniform throughout. A heat bal-

ance on the bath gives

VrCp

dT

dt
¼ VQðtÞ � Ah ðT � TaÞ

where V is the bath volume and A is the heat transfer area for heat

loss to ambient air at temperature Ta.

The initial temperature of the bath is T0, before the heater is

turned on; that is,

t ¼ 0; T ¼ T0

The balance equation has a time variable in the RHS, so to convert

it to the format of Eq. 7.1 we simply define

y1 ¼ T

y2 ¼ t

As suggested by Eq. 7.4a, the differential equation for y2 is

dy2
dt

¼ 1 ; y2 ¼ t

and the equation for y1 is simply the heat balance equation with t

being replaced by y2

VrCp

dy1
dt

¼ VQ ðy2Þ � hA ðy1 � TaÞ

The initial conditions for y1 and y2 are

t ¼ 0; y1 ¼ T0; y2 ¼ 0

Thus, the standard form of Eq. 7.1 is recovered.
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Occasionally, we encounter problems involving higher order

derivatives. To render the governing equations for these problems

to the standard form of Eq. 7.1, we can proceed as follows. For

illustrative purposes, we shall consider a second-order differential

equation, but the procedure is general and can be applied to higher

order systems. If the governing equation contains second deriva-

tives of the general form

y00 þ F ðy0; yÞ ¼ 0 ð7:6Þ

we can recover the form of Eq. 7.1 by simply defining, as dis-

cussed in Chapter 2

y1 ¼ y ð7:7aÞ

y2 ¼
dy

dt
ð7:7bÞ

With the definition (7.7), Eq. 7.6 becomes

dy2
dt

¼ �F ðy2; y1Þ ð7:8Þ

Thus, the new set of equations written in the format of Eq. 7.1 is

dy1
dt

¼ y2 ¼ f 1ðy1; y2Þ

dy2
dt

¼ �Fðy2; y1Þ ¼ f 2ðy1; y2Þ
ð7:9Þ

Thus, any order equation can be expressed in the format of Eq. 7.1.

We next address the issue of initial conditions. If the initial condi-

tions of Eq. 7.6 are

Hi ðy0ð0Þ; yð0ÞÞ ¼ 0; i ¼ 1; 2 ð7:10Þ

then we can use the definition of Eq. 7.7 to convert this initial condi-

tion (7.10) in terms of the new dependent variables

Hi ðy2ð0Þ; y1ð0ÞÞ ¼ 0; i ¼ 1; 2 ð7:11Þ

Equation 7.11 represents a set of two possibly nonlinear algebraic

equations in terms of y1(0) and y2(0). This algebraic problem can be

solved by trial and error, using, for example, the Newton–Raphson

technique (Appendix A). This will yield y1(0) and y2(0), which will

form the initial conditions for Eq. 7.9. At this point, we need to

assume that the numerical (approximate) solution of Eq. 7.11 will

give rise to an initial condition, which will produce a trajectory that

is arbitrarily close to the one with the exact initial condition.

EXAMPLE 7.2

Convert the following second-order differential equation:

a ðy; tÞ d
2y

dt2
þ b ðy; tÞ dy

dt
þ c ðy; tÞy ¼ f ðtÞ

to the standard format of Eq. 7.1.

This is a challenging example, since the equation is second

order and nonlinear. We first take care of the independent variable

time by introducing y1 as the time variable; that is,

dy1
dt

¼ 1

with the initial condition

t ¼ 0; y1 ¼ 0

To account for the second-order derivative, we define

y2 ¼ y and y3 ¼
dy2
dt

With these definitions, the original differential equation becomes

a ðy2; y1Þ
dy3
dt

þ b ðy2; y1Þy3 þ c ðy2; y1Þy2 ¼ f ðy1Þ

Next, we rearrange the differential equations for y1, y2, and y3 as

follows:

dy1
dt

¼ 1

dy2
dt

¼ y3

dy3
dt

¼ � b ðy2; y1Þ
a ðy2; y1Þ

y3 �
c ðy2; y1Þ
a ðy2; y1Þ

y2 þ
f ðy1Þ

a ðy2; y1Þ

provided that a (y2, y1) is not equal to zero. Now, we see that the

standard form of Eq. 7.1 is recovered.

The same procedure presented above for second-order differen-

tial equations can be extended to an nth-order differential equation

and to coupled nth-order differential equations, as the reader will

see in the homework problems.

Thus, no matter whether the independent variable, t, is on

the RHS of the differential equation or the governing equation

involves higher order derivatives, we can perform elementary

transformations, as illustrated in the last two examples, to con-

vert these equations to the standard form of Eq. 7.1. The com-

pact language of vector representation could also be used to

express Eq. 7.1

dy

dt
¼ fðyÞ ð7:12aÞ

and

t ¼ 0; y ¼ a ðknown vectorÞ ð7:12bÞ

where the vectors are

y ¼ y1 y2; . . . ; yN½ �T

f ¼ f 1 f 2; . . . ; f N½ �T

a ¼ a1 a2; . . . ;aN½ �T
ð7:13Þ
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7.2 TYPE OF METHOD

Arranging equations in a systematic format is time well

spent, before the act of computation takes place. The com-

putation methods are generally of two types: explicit and

implicit. By explicit methods, we mean that if we know

the value of y at the instant of time tn, the calculation of

the vector y at the next time tnþ1 requires only the known

values of the vector y and its derivatives dy=dt ¼ f ðyÞ at
the time tn and previous times. The implicit methods, how-

ever, involve solving equations for the unknown value of

the vector y at the time tnþ1.

The simplest example of the explicit type is the Euler

method (unfortunately, it is unstable and the most

inaccurate method), in which the recursive formula to cal-

culate the vector y at time tnþ1 is

y ðtnþ1Þ ¼ y ðtnÞ þ hf ðyðtnÞÞ ð7:14Þ

Here, we have represented the differential with

dy

dt
� y ðtnþ1Þ � y ðtnÞ

Dt
ð7:15aÞ

where

Dt ¼ h ð7:15bÞ

and the value for f is taken as f (y(tn)).

Thus, we see that the evaluation of the vector y at tnþ1

requires only the known vector y at tn and its derivatives at

tn, that is, f (y(tn)). It is the simplest method and

unfortunately it is unstable if the step size h is not properly

chosen. This problem justifies more sophisticated methods to

ensure numerical stability, a topic that will be discussed later.

Note that Eq. 7.14 is basically the Taylor series of y

(tnþ1), where ynþ1¼ y (tnþ1)

yðtnþ1Þ ¼ yðtnÞ þ h
dyðtnÞ
dt

þ Oðh2Þ

¼ yðtnÞ þ h fðyðtnÞÞ þ Oðh2Þ

where the order symbol O is defined in Section 6.2.2, and

simply means that “left-out” terms have a size magnitude

of order h2 (the smaller h, the better). Comparing the above

Taylor series and Eq. 7.14, the explicit Euler equation has a

local truncation error of O (h2), with the local truncation

error being the error incurred by the approximation over a

single step. As time increases, the overall error increases.

Since the number of calculations is inversely proportional

to the step size, the actual accuracy of the explicit Euler

method is O (h).

To simplify the notation of the recursive formula,

we denote the numerical value of y at the times tn and tnþ1

as y (tn)¼ yn and y (tnþ1)¼ ynþ1; and the explicit Euler

formula (7.14) is rewritten

ynþ1 ¼ yn þ hf ðynÞ ð7:16Þ
The implicit method, to be introduced next, alleviates the

stability problem inherent in the explicit method. An exam-

ple of the implicit formalism is the trapezoidal method.

Here, the derivative dy/dt at the time tn is calculated using

the trapezoidal rule; that is,

dy

dt

� �
t¼tn

¼ 1

2
f ðynÞ þ fð ynþ1Þ
� � ð7:17Þ

where the RHS is simply the average f at two successive

times.

The recursive formula for y (tnþ1) for the Trapezoidal

rule is obtained by replacing as before

dy

dt
� ynþ1 � yn

h

so that

ynþ1 ¼ yn þ
h

2
f ðynÞ þ f ðynþ1Þ
� � ð7:18Þ

Equation (7.18) represents a set of N nonlinear algebraic

equations, which must be solved by a trial and error method

such as Newton–Raphson or successive substitution for

ynþ1 (Appendix A). This is the characteristic difference

between the implicit and the explicit types of solution; the

easier explicit method allows sequential solution one at a

time, while the implicit method requires simultaneous solu-

tions of sets of equations; hence, an iterative solution at a

given time tnþ1 is required.

The backward Euler method yields a simpler implicit for-

mula, and its recursive relation to calculate ynþ1 is given as

ynþ1 ¼ yn þ hf ðynþ1Þ ð7:19Þ

where the average f over the interval h is taken to be f (ynþ1).

Again, the recursive formula is a set of nonlinear algebraic

equations.

In terms of stability, the explicit Euler method is unstable

if the step size is not properly chosen. The implicit meth-

ods, such as the backward Euler and the trapezoidal meth-

ods, are stable, but the solution may oscillate if the step size

is not chosen small enough. The illustrative example in the

next section reveals the source of the stability problem.

7.3 STABILITY

Numerical integration of a problem usually gives rise to

results that are unusual in the sense that often the computed

values “blow up.” The best example of this so-called
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stability problem is illustrated in the numerical integration

of dy/dt¼�y using the Euler method with a very large

step size.

Let us investigate the phenomena using the following

decay equation:

dy

dt
¼ �ly ð7:20aÞ

with

t ¼ 0; y ¼ 1 ð7:20bÞ
If we denote ye as the exact solution, then the numerically

calculated solution y can be expressed as a deviation from

this exact value

y ¼ ye þ e ð7:21Þ
where e represents the error, which is a function of time.

Substitution of Eq. 7.21 into Eq. 7.20a gives

de
dt

¼ �le ð7:22Þ

The method is considered to be stable if the error decays

with time.

If the explicit Euler method is applied to Eq. 7.22 from tn
to tnþ1, we obtain

enþ1 ¼ en þ h ð�lenÞ ¼ enð1� hlÞ ð7:23Þ

If stability is enforced, we need to have the error at tnþ1 to

be smaller than that at tn; that is,

enþ1

en

����
���� � 1 ð7:24Þ

Substituting Eq. 7.23 into Eq. 7.24, we have

j1� hlj � 1 ð7:25Þ
This implies

0 � hl � 2 ð7:26Þ

The step size for the explicit Euler method must be smaller

than 2/l to ensure stability.

If we apply the trapezoidal rule (Eq. 7.18) to Eq. 7.22,

we find

enþ1 ¼ en þ h

2
ð�len � lenþ1Þ ð7:27Þ

from which

enþ1

en
¼ 1� hl=2

1þ hl=2
ð7:28Þ

Now, to ensure stability for this case, we conclude the crite-

rion jenþ1=enj < 1 is satisfied for any step size h (h> 0).

Thus, the trapezoidal rule is always stable. Nonetheless, the

error oscillates around zero if hl> 2.

If we next apply the backward Euler method (Eq. 7.19)

to Eq. 7.22, we have

enþ1 ¼ en þ h ð�lenþ1Þ ð7:29Þ

which yields

enþ1

en
¼ 1

1þ hl
ð7:30Þ

It is clear from Eq. 7.30 that the method is always stable,

and moreover, the problem of oscillation around the exact

solution disappears.

Table 7.1 highlights behavior of the three techniques.

The explicit Euler method is stable only when the abso-

lute value of hl is less than 2, and is not stable when it is

greater than or equal to 2. The backward Euler is always

stable and does not oscillate, but it is not particularly accu-

rate (because it is a first-order method). The trapezoid

method is of second order, but it oscillates for large jhlj.
Analysis of the order of errors in the various numerical

schemes will be discussed in Section 7.6.

EXAMPLE 7.3

To illustrate the Euler and trapezoidal methods, we apply them to

the following problem of chemical decomposition of nitrogen

dioxide in a plug flow reactor. The chemical reaction rate is second

order with respect to the nitrogen dioxide concentration; that is,

Rrxn ¼ kC2 ð7:31Þ

The rate constant at 383 �C is 5� 10�3m3/mol/sec.

Here, we assume that there is no axial diffusion along the

reactor, and the velocity profile is taken to be plug shaped. We

wish to study the steady-state behavior at constant temperature.

With these assumptions, we can set up a mass balance around a

thin element having a thickness of Dz (Fig. 7.1).

TABLE 7.1 Comparison of Stability Behavior

Method

Stable and

No Oscillation

Stable and

Oscillation Unstable

Euler 0< hl< 1 1< hl< 2 hl> 2

Trapezoid 0< hl< 2 2< hl<1 None

Backward

Euler

0< hl<1 None None
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The mass balance equation is

SuCjz � SuCjzþDz � ðSDzÞRrxn ¼ 0 ð7:32Þ

where u is the velocity, and S is the cross-sectional area of the

reactor.

Dividing Eq. 7.32 by SDz and allowing the element to shrink to

zero, we obtain the following ordinary differential equation

describing the nitrogen dioxide concentration variation along the

reactor

u
dC

dz
¼ �Rrxn ¼ �kC2 ð7:33Þ

This equation is a first-order ordinary differential equation;

hence, one boundary condition is needed for the complete for-

mulation of the problem. This is known since the concentration

of nitrogen dioxide at the entrance is given as C0. Mathemati-

cally, we write

z ¼ 0; C ¼ C0 ð7:34Þ

This set of problems can be solved analytically using the meth-

ods of Chapter 2. The analytical solution is

C

C0

¼ 1

1þ kC0L=uð Þ½ � ð7:35Þ

which we shall use as a basis for comparison among the several

numerical integration schemes. If we denote the bracketed term

in the denominator of Eq. 7.35 as

B ¼ kC0L

u
¼ kC0LS

uS
¼ kC0V

F
ð7:36Þ

where V is the reactor volume and F is the volumetric flow rate,

Eq. 7.35 then becomes

C

C0

¼ 1

1þ B
ð7:37Þ

Hence, the conversion is

X ¼ 1� C

C0

¼ B

1þ B
ð7:38Þ

Thus, the reactor performance is governed by a simple equation

(Eq. 7.37), or in terms of design, it is governed by a simple

parameter group B. If we wish to design a reactor with a given

conversion, the parameter group B is then calculated from

Eq. 7.38. For example, to achieve a 50% conversion, we need

to have the design parameter group B to be 1. So, if the rate

constant is known (k¼ 5�10�3 m3/mol/sec at 383 �C), the

group C0V/F can be calculated

C0V

F
¼ B

k
¼ 1

k
¼ 1

5� 10�3 m3=mol=sec
¼ 200

mol sec

m3

Therefore, if the inlet concentration, C0, and the volumetric

flow rate are known (which is usually the case in design), the

reactor volume then can be calculated. So, for example, if

C0 ¼ 2� 10�2 mol

m3
; F ¼ 2� 10�5 m

3

s

the reactor volume is

V ¼ 0:2 m3ð200 litersÞ

Now let us return to the original equation and attempt to solve

it numerically. First, we multiply the numerator and denomina-

tor of the LHS of Eq. 7.33 by the cross-sectional area, S, to

obtain

F
dC

dV
¼ �kC2 ð7:39Þ

We can define the following nondimensional variables to sim-

plify the form for numerical integration

y ¼ C

C0

; t ¼ kC0V

F

� �
ð7:40Þ

Equation 7.39 then becomes

dy

dt
¼ �y2 ð7:41Þ

with the initial condition

t ¼ 0; y ¼ 1 ð7:42Þ

If we use the explicit Euler formula (Eq. 7.14), the recurrence

formula for this problem (Eq. 7.41) is

ynþ1 ¼ yn þ hð�y2nÞ ð7:43Þ

where h is the step size (to be chosen) in the numerical integra-

tion; also we note y0¼ 1.

FIGURE 7.1 Schematic diagram of the plug flow reactor.
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Using the implicit formulas (the backward Euler and the trape-

zoidal), we find the following recursive equations; first, the back-

ward Euler

ynþ1 ¼ yn þ hð�y2nþ1Þ ð7:44Þ

and the trapezoidal is

ynþ1 ¼ yn þ h
ð�y2nÞ þ ð�y2nþ1Þ

2

� �
ð7:45Þ

We note again that the recurrence formulas for the implicit meth-

ods are nonlinear algebraic equations. This means that at every

time step, tnþ1, these nonlinear algebraic equations (Eqs. 7.44 or

7.45) must be solved iteratively for y at that time. Appendix A

reviews a number of methods for solving nonlinear algebraic equa-

tions, and here we use the Newton–Raphson to solve the nonlinear

algebraic equations. Let us begin the demonstration using the

backward Euler formula (Eq. 7.44).

We rearrange the recurrence formula for the backward Euler

formula (Eq. 7.44) to the following standard format, suitable for

the application of the Newton–Raphson trial–error technique

F ¼ hy2nþ1 þ ynþ1 � yn ¼ 0 ð7:46Þ

Although this equation is a solvable quadratic (owing to the sec-

ond-order reaction), we will solve it nonetheless by numerical

means to demonstrate the general procedure of the implicit inte-

gration method. The iteration scheme for the Newton–Raphson

procedure is (Appendix A)

y
ðkþ1Þ
nþ1 ¼ y

ðkÞ
nþ1 �

FðkÞ

@FðkÞ=@ynþ1

ð7:47Þ

hence, performing the indicated differentiation

y
ðkþ1Þ
nþ1 ¼ y

ðkÞ
nþ1 �

hy
ðkÞ2
nþ1 þ y

ðkÞ
nþ1 � yn

1þ 2hy
ðkÞ
nþ1

ð7:48Þ

where the superscript k denotes the iteration number.

With this iteration equation, at any time tnþ1 the unknown ynþ1

must be solved iteratively using Eq. 7.48 until some, as yet

unspecified, convergence criterion is satisfied. The following rela-

tive error is commonly used to stop the iteration process

y
ðkþ1Þ
nþ1 � y

ðkÞ
nþ1

y
ðkþ1Þ
nþ1

�����
����� < e ð7:49Þ

The initial guess for ynþ1 is taken as

y
ð0Þ
nþ1 ¼ yn ð7:50Þ

For small step sizes, this is a prudent initial guess. Alternatively,

one can use the explicit Euler formula to provide a better initial

guess for the iteration process for ynþ1 in the implicit scheme;

that is,

y
ð0Þ
nþ1 ¼ yn þ hð�y2nÞ ð7:51Þ

Now, we consider the trapezoidal rule. We rearrange the recur-

rence formula for the trapezoidal rule (Eq. 7.45) as

F ¼ h

2
y2nþ1 þ ynþ1 þ

h

2
y2n � yn ð7:52Þ

Again, we use the Newton–Raphson formula for this implicit pro-

cedure

y
ðkþ1Þ
nþ1 ¼ y

ðkÞ
nþ1 �

ðh=2ÞyðkÞ2nþ1 þ y
ðkÞ
nþ1 þ ðh=2Þy2n � yn

1þ hy
ðkÞ
nþ1

ð7:53Þ

As in the case of the backward Euler method, the initial guess for

ynþ1 is chosen either as in Eq. 7.50 or as in Eq. 7.51.

We have now laid the foundation for a numerical computation

using three schemes. First, let us study the worst case, which is the

explicit Euler formula (Eq. 7.43). The calculation for ynþ1 at time

tnþ1¼ nh is explicit in Eq. 7.43. For example, if we use h¼ 0.2,

the value of y1 at time t1¼ 0.2 is

y1 ¼ y0 þ hð�y20Þ ¼ 1� ð0:2Þð1Þ2 ¼ 0:8 ð7:54Þ

and similarly, the value of y2 at t2¼ 0.4 can be obtained as

y2 ¼ y1 þ ð0:2Þð�y21Þ ¼ 0:8� ð0:2Þð0:8Þ2 ¼ 0:672 ð7:55Þ

The same procedure can be carried out sequentially for t¼ 0.6, 0.8,

and so on. This can be done quite easily with a hand calculator,

which makes it attractive. Figure 7.2 illustrates computation of y

versus t for several step sizes, 0.1, 0.2, 0.5, 1, and 2. The exact

FIGURE 7.2 Plots of numerical solutions using the explicit

Euler method.
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solution (Eq. 7.37) is also shown in the figure. We see that the

explicit Euler integration scheme starts to fail (i.e., the integration

becomes divergent) when h¼ 1. To apply the stability theorem

from the earlier decay equation (Eq. 7.20a), it was necessary to

linearize the nonlinear equation (Eq. 7.41) around the point y¼ 1

(i.e., at zero time). The linearized version of Eq. 7.41 is obtained

by applying the Taylor series around y0; so if f (y)¼ y2

f ðyÞ ¼ f ðy0Þ þ
@f

@y

����
y¼1

ðy� y0Þ þ � � � � y20 þ ð2y0Þðy� y0Þ

so the linearized equivalent to the decay equation is given by

dy

dt
¼ �y20 � ð2y0Þðy� y0Þ ¼ �1� ð2Þð1Þðy� 1Þ ¼ �2yþ 1

ð7:56Þ

This means that the decay constant l is equal to 2 at zero time.

For nonlinear systems, the decay constant changes with time. So

with the decay constant of 2 at zero time, the step size that will

make the explicit Euler integration unstable is

h ¼ 2

l
¼ 2

2
¼ 1

and so we observe such instability in Fig. 7.2, where the

numerical solutions became unstable when we used h¼ 1

and 2.

Thus, we see problems arise when we apply a step size crite-

rion based on linear analysis to a nonlinear problem, leading to a

time-variable decay constant. Let us choose the step size as 0.2

(less than 1, so that the solution integration from time zero is sta-

ble), so the numerical solution for y at t¼ 0.2 is 0.8 (Eq. 7.54).

Now we linearize the nonlinear function (Eq. 7.41) around this

point t¼ 0.2, y¼ 0.8), and the governing equation becomes

dy

dt
¼ �y21 � ð2y1Þðy� y1Þ ¼ �1:6yþ 0:64 ð7:57Þ

The decay constant at time t¼ 0.2 is now 1.6 instead of 2

calculated earlier (at time zero). This simply implies that the maxi-

mum step size for the explicit Euler formula to be stable at time

t¼ 0.2 is

h ¼ 2

l
¼ 2

1:6
¼ 1:25

instead of the value h¼ 1 computed at zero time. This is a typical

pattern for systems exhibiting decay behavior; that is, the maxi-

mum allowable step size increases as time progresses. This is,

indeed, a salient feature utilized by good integration packages on

the market, that is, to vary the step size in order to reduce the total

number of steps to reach a certain time. This increases computa-

tion speed.

Up to now, we have placed great emphasis on the maximum

allowable step size to ensure integration stability. Good stability

does not necessarily mean good accuracy, as we observed in

Fig. 7.2, where we saw that a step size of 0.5 gave a stable integra-

tion, but the accuracy was not very good. To this end, we need to

use smaller step sizes as we illustrated using h¼ 0.2 or h¼ 0.1.

But the inevitable question arises, how small is small? In practice,

we usually do not possess analytical solutions with which to

compare.

We next consider an implicit formula, the backward Euler for-

mula (Eq. 7.44). The value ynþ1 at time tnþ1 is obtained iteratively

using the Newton–Raphson equation (Eq. 7.48). This can also be

done with a personal computer or a programmable calculator. To

demonstrate this iteration process, we choose a step size of 0.2, so

that the next calculated value for y1 is at t1¼ 0.2. The Newton–

Raphson iteration equation for y1 is

y
ðkþ1Þ
1 ¼ y

ðkÞ
1 � hðyðkÞ1 Þ2 þ y

ðkÞ
1 � y0

1þ 2hy
ðkÞ
1

¼ y
ðkÞ
1 � ð0:2ÞðyðkÞ1 Þ2 þ y

ðkÞ
1 � 1

1þ 2ð0:2ÞyðkÞ1

ð7:58Þ

If we now choose the initial guess for y1 as y0¼ 1, the first iterated

solution for y1 is

y
ð1Þ
1 ¼ y

ð0Þ
1 � ð0:2Þðyð0Þ1 Þ2 þ y

ð0Þ
1 � y0

1þ 2ð0:2Þyð0Þ1

¼ 1� ð0:2Þ12 þ 1� 1

1þ 2ð0:2Þ1
¼ 0:857142857

Using this first iterated solution for y1, we then calculate its second

iterated solution as

y
ð2Þ
1 ¼ y

ð1Þ
1 � ð0:2Þðyð1Þ1 Þ2 þ y

ð1Þ
1 � y0

1þ 2ð0:2Þyð1Þ1

¼ 0:857 � � � � ð0:2Þð0:857 � � �Þ2 þ ð0:857 � � �Þ � 1

1þ 2ð0:2Þð0:857 � � �Þ ¼ 0:854103343

We can see that the solution converges very quickly. The third iter-

ated solution is calculated in a similar way, and we have

y
ð3Þ
1 ¼ 0:854101966

Thus, the relative error calculated using Eq. 7.49 is

Rel:error ¼ ð0:854101966Þ � ð0:854103343Þ
0:854101966

����
���� ¼ 0:000001612

This error is indeed small enough for us to accept the solution for

y1, which is 0.8541. The few iterations needed show the fast con-

vergence of the Newton–Raphson method.

Knowing the solution for y1 at t1¼ 0.2, we can proceed in a

similar fashion to obtain y2, y3, and so on. Figure 7.3 illustrates

computations for a number of step sizes. No instability is observed

for the case of backward Euler method. Notice also that the solu-

tion does not oscillate, as one might expect in light of the stability

analysis in the previous section.
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Again, we use Newton–Raphson in Eq. 7.53 to obtain the

numerical solution for the trapezoidal rule, and Fig. 7.4 illustrates

these computations for various step sizes. We note that oscillation

of the numerical solution occurs around the exact solution for

h¼ 1.5 and 2. This arises because the decay constant (l) at time

zero is 2 and for the two step sizes (h¼ 1.5 and 2) producing oscil-

lation, we see that hl> 2. Under such circumstances, oscillations

will always occur for the trapezoidal rule.

To summarize the comparison of methods, we illustrate in

Fig. 7.5 the percentage relative error between the numerical solu-

tions and the exact solution for a fixed step size of 0.5. With this

step size all three methods, explicit Euler, backward Euler, and

trapezoid, produced integration stability, but the relative error is

certainly unacceptable.

7.4 STIFFNESS

A characteristic of initial value type ordinary differential

equations is the so-called stiffness. It is easiest to illustrate

stiffness by considering again the simple decay equation (or

first-order kinetics equation)

dy

dt
¼ �ly ð7:59aÞ

t ¼ 0; y ¼ y0 ð7:59bÞ
The exact solution for this equation is

y ¼ y0e
�lt ð7:60Þ

Let us assume that we would like to solve Eqs. 7.59 by an

explicit method from t¼ 0 to a time, say t1. The step size

that we could use to maintain numerical stability is

lDt � p ð7:61Þ

If the explicit Euler method is used, the value of p is 2 (see

Section 7.3 on stability for more details), and hence the

maximum step size to maintain numerical stability is

ðDtÞmax ¼
2

l
ð7:62ÞFIGURE 7.4 Computations of the numerical solutions for the

trapezoidal method.

FIGURE 7.5 Relative errors between the numerical solutions

and the exact solution versus t.FIGURE 7.3 Plots of the numerical solutions for the backward

Euler method.
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Thus, to integrate the problem up to time t1, the number of

steps needed is

Number of steps ¼ lt1

2
ð7:63Þ

It is clear from Eq. 7.63 that the number of steps required

for numerical stability increases with the constant l (which

is sometimes called the characteristic value).

Next, we consider the following coupled ordinary differ-

ential equations, represented in vector form (see Chapters

1 and 2 for a review of this subject)

dy

dt
¼

�500:5 499:5

499:5 �500:5

" #
y ¼ Ay ð7:64aÞ

with

yð0Þ ¼ ½2; 1�T ð7:64bÞ
The solutions of Eqs. 7.64 are

y1 ¼ 1:5e�t þ 0:5e�1000t ð7:65aÞ

y2 ¼ 1:5e�t � 0:5e�1000t ð7:65bÞ

The characteristic values (roots) or eigenvalues for this sys-

tem of equations are l1¼�1 and l2¼�1000. The corre-

sponding time constants are simply the inverse of these

eigenvalues. To ensure the stability of an explicit method

(such as the explicit Euler), one needs to ensure that the

step size should be less than

Dt � 2

jlmaxj ð7:66Þ

where lmax is the maximum eigenvalue for the matrix A.

Thus, the step size has to be less than 0.002 to achieve inte-

gration stability.

Inspection of the exact solution (Eq. 7.65) shows that the

problem is controlled by the smallest eigenvalue, in this

case l¼�1. The curves of y1 and y2 versus time are shown

in Fig. 7.6.

A logarithmic timescale is used to illustrate the impor-

tance of the two distinctly separate eigenvalues, l1¼�1

and l2¼�1000. The fast change of y1 and y2 occurs over a

very short timescale. We, therefore, have a situation where

the step size is controlled by the maximum eigenvalue (i.e.,

very small step size), whereas the full evolution is con-

trolled by the smallest eigenvalue. This type of problem is

called a stiff problem. This occurs when small and large

time constants occur in the same system. The small time

constant controls earlier response, whereas the large one

controls tailing.

To measure the degree of stiffness, one can introduce the

following stiffness ratio:

SR ¼ maxjlj
minjlj ð7:67Þ

When SR< 20 the problem is not stiff, when SR¼ 1000 the

problem is classified stiff, and when SR¼>1,000,000 the

problem is very stiff (Finlayson 1980).

The example we used to demonstrate stiffness is a linear

problem. For a nonlinear problem of the following type

dy

dt
¼ fðyÞ ð7:68Þ

we linearize the above equation around time tn using a

Taylor expansion, retaining only the first two terms

dy

dt
� fðynÞ þ JðtnÞ � ðy� ynÞ ð7:69Þ

where

JðtnÞ ¼ aij ¼ @f iðyÞ
@yj

" #
tn

8<
:

9=
; ð7:70Þ

which is the Jacobian matrix for the problem at t¼ tn. The

definition of stiffness in Eq. 7.67 utilizes the eigenvalues

obtained from the Jacobian, and since this Jacobian matrix

changes with time, the stiffness of the problem also changes

with time.

EXAMPLE 7.4

In this example, we illustrate computations using the Jacobian

with a system of two coupled differential equations

FIGURE 7.6 Plots of y1y2 (Eq. 7.65) versus time.
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dy1
dt

¼ ð1� y1Þ � 10y21y2

dy2
dt

¼ �0:05y21y2

The initial conditions are

t ¼ 0; y1 ¼ 0:2; y2 ¼ 1

For a pair of coupled differential equations, the Jacobian will be a

2� 2 matrix. For the above problem, the four elements of the

Jacobian are computed to be

@f 1
@y1

¼ �1� 20 y1y2;
@f 1
@y2

¼ �10y21

@f 2
@y1

¼ �0:1 y1y2;
@f 2
@y2

¼ �0:05y21

To find the Jacobian at time t¼ 0, we simply replace y1 and y2 by

their values at t¼ 0, that is, the four elements will be

@f 1
@y1

¼ �1� 20ð0:2Þð1Þ ¼ �5

@f 1
@y2

¼ �10ð0:2Þ2 ¼ �0:4

@f 2
@y1

¼ �0:1ð0:2Þð1Þ ¼ �0:02

@f 2
@y2

¼ �0:05ð0:2Þ2 ¼ �0:002

The eigenvalues of this Jacobian are seen to be �5.0016 and

� 3.9987� 10�4. The absolute ratio of these eigenvalues is

12,508, which indicates that the present problem is quite stiff at

time t¼ 0.

In the next two sections, we discuss the basic theories under-

lying the essential differences between explicit and implicit

methods. To help with this, we need to recall a few elementary

steps such as the Newton interpolation formula. Details on the

various interpolation theories can be found elsewhere (Burden

and Faires 1981).

7.5 INTERPOLATION AND QUADRATURE

To facilitate the development of explicit and implicit meth-

ods, it is necessary to briefly consider the origins of interpo-

lation and quadrature formulas (i.e., numerical

approximation to integration). There are essentially two

methods for performing the differencing operation (as a

means to approximate differentiation); one is the forward

difference and the other is the backward difference. Only

the backward difference is of use in the development of

explicit and implicit methods.

Let us assume that we have a set of data points at equally

spaced times, . . . , tn�1; tn; tnþ1; . . . ; and let yðtnÞ ¼ yn
(i.e., yn are values of y at those equally spaced times). The

forward difference in finite difference terms is

Dyn ¼ ynþ1 � yn ð7:71Þ

which can be related to the first-order differentiation

dy

dt
� Dyn

Dt
¼ ynþ1 � yn

h
ð7:72Þ

For second-order differentiation, we shall need

D2yn ¼ Dynþ1 � Dyn ¼ ðynþ2 � ynþ1Þ � ðynþ1 � ynÞ

that is,

D2yn ¼ ynþ2 � 2ynþ1 þ yn ð7:73Þ

To see this, write

d2y

dt2
� D2y

Dt2
¼ Dðynþ1 � ynÞ

h2
¼ 1

h2
ðynþ2 � 2ynþ1 þ ynÞ

ð7:74Þ

The same procedure can be applied for higher order

differences.

The backward difference is defined as

ryn ¼ yn � yn�1 ð7:75Þ

From this definition, the second- and third-order differences

are

r2yn ¼ ryn �ryn�1

¼ ðyn � yn�1Þ � ðyn�1 � yn�2Þ
r2yn ¼ yn � 2yn�1 þ yn�2

ð7:76Þ

and

r3yn ¼ yn � 3yn�1 þ 3yn�2 � yn�3 ð7:77Þ

Having defined the necessary backward difference

relations, we present the Newton backward interpolation

formula, written generally as

yðaÞ ¼ yn þ aryn þ
aðaþ 1Þ

2!
r2yn þ � � �

þ aðaþ 1Þ � � � ðaþ j � 1Þ
j!

rjyn ð7:78Þ
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where

a ¼ ðt� tnÞ
h

; h ¼ Dt ð7:79Þ

Since n in Eq. 7.78 is arbitrary, one can write another equa-

tion similar to Eq. 7.78 by replacing n by nþ 1.

yðaÞ ¼ ynþ1 þ arynþ1 þ
aðaþ 1Þ

2!
r2ynþ1

þ � � � þ aðaþ 1Þðaþ 2Þ � � � ðaþ j � 1Þ
j!

rjynþ1

ð7:80Þ

where

a ¼ ðt� tnþ1Þ
h

; h ¼ Dt ð7:81Þ

The polynomials (7.78) or (7.80) are continuous and can be

differentiated and integrated.

If we keep two terms on the RHS of Eq. 7.78, the result-

ing formula is equivalent to a linear equation passing

through two points ðtn; ynÞ and ðtn�1; yn�1Þ. Similarly, if

three terms are retained, the resulting formula corresponds

to a parabolic curve passing through three data points

ðtn; ynÞ, ðtn�1; yn�1Þ, and tn�2; yn�2Þ. Note that these latter

points are prior to ðtn; ynÞ.
The polynomial (7.78) is a continuous function in terms

of t (through the variable a defined in Eq. 7.79) hence, it

can be differentiated and integrated. Taking the derivative

of Eq. 7.78 and evaluating at t¼ tn (i.e., a¼ 0), we obtain

h
dy

dt

����
t¼tn

¼ ðyn � yn�1Þ þ
1

2
ðyn � 2yn�1 þ yn�2Þ þ � � �

ð7:82Þ

Equation 7.82 simply states that knowing the values of

yn; yn�1; yn�2; . . . ; we can calculate the derivative at t¼ tn
using just these values.

Similarly, we can use Eq. 7.78 to evaluate higher order

derivatives at t¼ tn, and also perform integration.

Also, if the data points are composed of derivatives of

y at equally spaced times (i.e., y0n; y
0
n�1; y

0
n�2; . . .), we

can write the backward interpolation formula in terms of

derivatives

y0 ðaÞ ¼ y0n þ ary0n þ
a ðaþ 1Þ

2!
r2y0n þ

a ðaþ 1Þðaþ 2Þ
3!

r3y0n

þ � � � þ a ðaþ 1Þ � � � ðaþ j � 1Þ
j!

rjy0n

ð7:83Þ

where

a ¼ ðt� tnÞ
h

; h ¼ Dt ð7:84Þ

Since n in Eq. 7.83 is arbitrary, one can write a relation sim-

ilar to Eq. 7.83 by replacing n by nþ 1

y0 ðaÞ ¼ y0nþ1 þ ary0nþ1 þ
a ðaþ 1Þ

2!
r2y0nþ1

þ � � � þ a ðaþ 1Þðaþ 2Þ � � � ðaþ j � 1Þ
j!

rjy0nþ1

ð7:85Þ

where

a ¼ ðt� tnþ1Þ
h

; h ¼ Dt ð7:86Þ

The above expansions now allow representation for func-

tions and derivatives to a higher order than previously used.

7.6 EXPLICIT INTEGRATION METHODS

The interpolation formula (Eqs. 7.83 and 7.85) presented in

the previous section can be utilized to derive a method for

integration. Let us consider a single scalar ODE:

dy

dt
¼ f ðyÞ ð7:87Þ

subject to some known initial condition, say y(0)¼ y0.

A straightforward integration of Eq. 7.87 with respect to

t from tn to tnþ1 would yield

ynþ1 � yn ¼
Z tnþ1

tn

f ðyÞdt ð7:88Þ

or

ynþ1 ¼ yn þ
Z tnþ1

tn

y0 dt ð7:89Þ

By defining a ¼ ðt� tnÞ=h, where h ¼ ðtnþ1 � tnÞ, Eq. 7.89
becomes

ynþ1 ¼ yn þ h

Z 1

0

y0ðaÞ da ð7:90Þ

Now, we will show how integration schemes can be gener-

ated. Numerical integration (quadrature) formulas can be

developed by approximating the integrand y0(a) of Eq. 7.90
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with any interpolation polynomials. This is done by substi-

tuting any of several interpolation formulas into Eq. 7.90.

For example, if we use the backward interpolation formula

taking values from tn going backward (Eq. 7.83) into the

RHS of Eq. 7.90, we have

ynþ1 ¼ yn þ h

Z 1

0

y0n þ ary0n½

þa ðaþ 1Þ
2!

r2y0n þ � � �� da ð7:91Þ

Note that y0n;ry0n; . . . are numbers; hence, they can be

moved outside the integration sign, and have

ynþ1 ¼ yn þ h y0n

Z 1

0

daþry0n

Z 1

0

a da

�

þ r2y0n

Z 1

0

a ðaþ 1Þ
2!

daþ � � �
�

ð7:92Þ

In simplifying, the integration becomes a sum

ynþ1 ¼ yn þ h
XM
i¼0

diriy0n ð7:93Þ

where M is an arbitrary integer, and di is defined by the fol-

lowing relation:

di ¼
Z 1

0

aðaþ 1Þ � � � ðaþ i � 1Þ
i!

da ð7:94Þ

Explicit evaluation of di from Eq. 7.94 and substitution of

the result into Eq. 7.93 gives

ynþ1 ¼ yn þ h 1þ 1
2
rþ 5

12
r2 þ � � �	 


y0n ð7:95Þ

Keeping only the first term in the bracket, we have

ynþ1 ¼ yn þ hy0n þ O ðh2Þ ð7:96Þ

but y0n ¼ f ðynÞ, so we get

ynþ1 ¼ yn þ hf ðynÞ þ Oðh2Þ ð7:97Þ

This formula is simply the explicit Euler method. The local

truncation error is on the order of O (h2), that is, the error is

proportional to h2 if all the previous values, yn; yn�1; . . . are
exact. However, in the integration from time t¼ 0, the error

of the method at time tnþ1 is accurate up to O (h) because

the number of integration steps is inversely proportional to h.

The explicit Euler integration method is simply the lin-

ear extrapolation from the point at t¼ tn to tnþ1 using the

slope of the curve at tn. Figure 7.7 shows this Euler method

with the local and global errors.

If we now keep two terms in the bracket of Eq. 7.95, we

have

ynþ1 ¼ yn þ h y0n þ 1
2
ry0n

	 
 ð7:98Þ

and since the backward difference is defined as

ry0n ¼ y0n � y0n�1, we have

ynþ1 ¼ yn þ h y0n þ 1
2
ðy0n � y0n�1Þ

� � ð7:99Þ

or

ynþ1 ¼ yn þ h 3
2
y0n � 1

2
y0n�1

	 
 ð7:100Þ

Using y0 ¼ dy=dt ¼ f ðyÞ, Eq. 7.100 becomes

ynþ1 ¼ yn þ h 3
2
f ðynÞ � 1

2
f ðyn�1Þ

	 
 ð7:101Þ

This formula is sometimes called the second-order Adam–

Bashford method, and it requires two values of the function

f at tn and tn�1. The accuracy of the method is O (h2).

If four terms are retained in Eq. 7.95, we obtain the fol-

lowing fourth-order Adams–Bashford method.

ynþ1 ¼ yn þ
h

24
55f ðynÞ � 59f ðyn�1Þ þ 37f ðyn�2Þ½

� 9f ðyn�3Þ� þ Oðh5Þ ð7:102Þ

The accuracy of the method is O(h4). The Adams–Bashford

method is among the most attractive methods used for solv-

ing nonstiff, coupled ordinary differential equations.

FIGURE 7.7 Graphical representation of Euler method, and

local and global truncation error.
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It is noted that using the higher order Adams–Bashford

methods, we must have previous points other than the cur-

rent point, yn, to execute the RHS of Eq. 7.101 or Eq. 7.102.

At the starting point (i.e., t¼ 0), only one point is available

(y0); hence, lower order methods such as the Euler method

or Runge–Kutta methods (which are presented later), which

require only one point, must be used to generate enough

points before higher order methods can be applied.

7.7 IMPLICIT INTEGRATION METHODS

Section 7.6 gave a number of explicit integration formulas,

and in this section we present implicit methods, which are

more stable than the explicit formula because they utilize

the information about the unknown point, tnþ1, in the inte-

gration formula.

To derive implicit integration methods, we start with the

Newton backward difference interpolation formula starting

from the point tnþ1 backward (Eq. 7.85) rather than from

the point tn backward as used in the generation of the

explicit methods. With a single equation of the type shown

by Eq. 7.87, we have

ynþ1 ¼ yn þ
Z tnþ1

tn

y0 dt ð7:103Þ

or

ynþ1 ¼ yn þ h

Z 0

�1

y0ðaÞ da ð7:104Þ

where a ¼ ðt� tnþ1Þ=h with h ¼ tnþ1 � tn. Using the

incremented interpolation formula for the function y0

(Eq. 7.85), we substitute it into Eq. 7.104 and carry out the

integration with respect to a to obtain

ynþ1 ¼ yn þ h 1� 1
2
r� 1

12
r2 � 1

24
r3 � � � �	 


y0nþ1

ð7:105Þ
If we keep the first term in the bracket of Eq. 7.105, we

have

ynþ1 ¼ yn þ hy0nþ1 þ Oðh2Þ ð7:106Þ

Since y0nþ1 ¼ f ðynþ1Þ, Eq. 7.106 becomes

ynþ1 ¼ yn þ hf ðynþ1Þ ð7:107Þ

Equation 7.107 is the implicit Euler method, which is in a

similar form to the explicit Euler method, except that the

evaluation of the function f is done at the unknown point

ynþ1. Hence, Eq. 7.107 is a nonlinear algebraic equation

and must be solved by trial to find ynþ1. Example 7.1

demonstrated this iteration process in solving nonlinear

algebraic equations.

We proceed further with the generation of more implicit

schemes. If the second term in the RHS of Eq. 7.105 is

retained, we have

ynþ1 ¼ yn þ h 1� 1
2
r	 


y0nþ1 ð7:108Þ

Using the definition of the backward difference,

ry0nþ1 ¼ y0nþ1 � y0n, we have

ynþ1 ¼ yn þ h y0nþ1 � 1
2
ðy0nþ1 � y0nÞ

� � ð7:109Þ

that is,

ynþ1 ¼ yn þ
h

2
f ðynÞ þ f ðynþ1Þ
� � ð7:110Þ

in which we have used Eq. 7.87. Like the implicit Euler

method (Eq. 7.107), Eq. 7.110 is a nonlinear algebraic

equation and it must be solved by trial methods to find

ynþ1. This representation in Eq. 7.110 is called the trapezoi-

dal method or Crank–Nicolson method, and is also some-

times called the second-order implicit method. For simple

problems, this method is very attractive, and as we have

shown in Example 7.1, it is more accurate than the implicit

Euler scheme. This is because the trapezoidal technique

has an accuracy of O(h2), whereas for the implicit Euler, it

is O(h).

If we truncate up to the fourth term in the RHS of

Eq. 7.105, we obtain the following fourth-order Adams–

Moulton method.

ynþ1 ¼ yn þ
h

24
9f ðynþ1Þ þ 19f ðynÞ � 5f ðyn�1Þ þ f ðyn�2Þ
� �

ð7:111Þ
The common factor in the implicit Euler, the trapezoidal

(Crank–Nicolson), and the Adams–Moulton methods is

simply their recursive nature, which are nonlinear algebraic

equations with respect to ynþ1 and hence must be solved

numerically; this is done in practice by using some variant

of the Newton–Raphson method or the successive substitu-

tion technique (Appendix A).

7.8 PREDICTOR–CORRECTORMETHODS AND

RUNGE–KUTTAMETHODS

7.8.1 Predictor–Corrector Methods

A compromise between the explicit and the implicit meth-

ods is the predictor–corrector technique, where the explicit

method is used to obtain a first estimate of ynþ1 and this

estimated ynþ1 is then used in the RHS of the implicit
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formula. The result is the corrected ynþ1, which should be a

better estimate to the true ynþ1 than the first estimate. The

corrector formula may be applied several times (i.e., suc-

cessive substitution) until the convergence criterion (7.49)

is achieved. Generally, predictor–corrector pairs are chosen

such that they have truncation errors of approximately the

same degree in h but with a difference in sign, so that the

truncation errors compensate one another.

One of the most popular predictor–corrector methods is

the fourth-order Adams–Bashford and Adams–Moulton

formula.

Adams–Bashford (for prediction)

ynþ1 ¼ yn

þ h

24
55f ðynÞ � 59f ðyn�1Þ þ 37f ðyn�2Þ � 9f ðyn�3Þ½ �

ð7:112aÞ
Adams–Moulton (for correction)

ynþ1 ¼ yn

þ h

24
9f ðynþ1Þ þ 19f ðynÞ � 5f ðyn�1Þ þ f ðyn�2Þ
� �

ð7:112bÞ

7.9 RUNGE–KUTTAMETHODS

Runge–Kutta methods are among the most popular methods

for integrating differential equations. Let us start with the

derivation of a second-order Runge–Kutta method and then

generalize to a pth-order method. The second-order Runge–

Kutta integration formula for integrating equation

dy

dt
¼ f ðt; yÞ ð7:113Þ

takes the form

ynþ1 ¼ yn þ w1k1 þ w2k2 ð7:114aÞ
where k1 and k2 are given by

k1 ¼ hf ðtn; ynÞ ¼ hf n ð7:114bÞ

k2 ¼ hf ðtn þ ch; yn þ ak1Þ ð7:114cÞ
where w1, w2, c, and a are constants.

First, we apply the Taylor series to ynþ1 ¼ yðtn þ hÞ
ynþ1 ¼ yðtnþ1Þ ¼ yðtn þ hÞ

¼ yðtnÞ þ @yðtnÞ
@t

hþ 1

2

@2yðtnÞ
@t2

h2 þ � � � ð7:115Þ

Noting that

@y

@t
¼ f ðt; yÞ ð7:116aÞ

and

@2y

@t2
¼ @f

@t
þ @f

@y
� @y
@t

ð7:116bÞ

then Eq. 7.115 becomes, using the notation @f=@t ¼ f t;
@f=@y ¼ f y, and so on

ynþ1 ¼ yn þ hf n þ
h2

2
ðf t þ f f yÞn þ � � � ð7:117Þ

Next, we take the Taylor series for k1 and k2 and obtain

k1 ¼ hf n

k2 ¼ hf n þ h2½cf t þ af f y�n þ � � � ð7:118Þ

Next, substitute Eq. 7.118 into Eq. 7.114a, and obtain

ynþ1 ¼ yn þ ðw1 þ w2Þhf n þ w2h
2ðcf t þ af f yÞn þ � � �

Comparing this equation with Eq. 7.117 yields the follow-

ing equalities:

w1 þ w2 ¼ 1

cw2 ¼ 0:5

aw2 ¼ 0:5

Here, we have four unknowns but only three equations. So,

we can specify one constant and solve for the other three. If

we take c¼ 0.5, we have

w1 ¼ 0; w2 ¼ 1; a ¼ 0:5

the integration formula then becomes

ynþ1 ¼ yn þ hf tn þ h

2
; yn þ

h

2
f n

� �
ð7:119Þ

This integration is basically the midpoint scheme, where the

midpoint is used to calculate the unknown point at tnþ1.

One can also choose c¼ 1, from which we calculate the

other three unknowns

w1 ¼ w2 ¼ 1
2
; a ¼ 1

With these values, the integration formula is

ynþ1 ¼ yn þ
h

2
f n þ f ðtn þ h; yn þ hf nÞ½ � ð7:120Þ

which is the Euler predictor–trapezoid corrector scheme.
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We have presented the essence of the Runge–Kutta

scheme, and now it is possible to generalize the scheme to a

pth order. The Runge–Kutta methods are explicit methods,

and they involve the evaluation of derivatives at various

points between tn and tnþ1. The Runge–Kutta formula is of

the following general form:

ynþ1 ¼ yn þ
Xp
i¼1

wiki ð7:121aÞ

where p is the order of the Runge–Kutta method and

ki ¼ hf tn þ cih; yn þ
Xi�1

j¼1

aijkj

 !
ð7:121bÞ

and

c1 ¼ 0 ð7:121cÞ

The Runge–Kutta technique is different from the predictor–

corrector method in the sense that instead of using a number

of points from tnþ1 backward, it uses a number of func-

tional evaluations between the current point tn and the

desired point tnþ1.

Next, we apply the Taylor series to ki (Eq. 7.121b) and

obtain

k1 ¼ hf n

k2 ¼ hf n þ h2½c2ðf tÞn þ a21f nðf yÞn� þ � � �

and so on.

Finally, by substituting these equations and Eq. 7.117

into the formula (7.121a) and matching term by term, we

obtain

w1 þ w2 þ � � � þ wp ¼ 1 ð7:122aÞ
w2a21 þ � � � ¼ 0:5 ð7:122bÞ

For the second-order Runge–Kutta method (i.e., p¼ 2), we

recover the formula obtained earlier.

The following Runge–Kutta–Gill method (proposed by

Gill in 1951, to reduce computer storage requirements) is

fourth order and is among the most widely used integration

schemes (written in vector form for coupled ODEs with N

being the number of equations)

ynþ1 ¼ yn þ 1
6
ðk1 þ k4Þ þ 1

3
ðbk2 þ dk3Þ ð7:123Þ

where the vectors for the k terms are

k1 ¼ hfðtn; ynÞ ð7:124aÞ

k2 ¼ hf tn þ h

2
; yn þ

1

2
k1

� �
ð7:124bÞ

k3 ¼ hf tn þ h

2
; yn þ ak1 þ bk2

� �
ð7:124cÞ

k4 ¼ hfðtn þ h; yn þ ck2 þ dk3Þ ð7:124dÞ

with

a ¼
ffiffiffi
2

p � 1

2
; b ¼ 2� ffiffiffi

2
p

2
; c ¼ �

ffiffiffi
2

p

2
; d ¼ 1þ

ffiffiffi
2

p

2

ð7:124eÞ

where

y ¼ ½y1; y2; y3; . . . ; yN �T ; f ¼ ½f 1; f 2; f 3; . . . ; f N �T
ð7:124fÞ

The following algorithm for semi-implicit third-order

Runge–Kutta is suggested by Michelsen (1976) for the fol-

lowing equation:

dy

dt
¼ fðyÞ ð7:125Þ

The integration formula is

ynþ1 ¼ yn þ w1k1 þ w2k2 þ w3k3 ð7:126Þ

k1 ¼ h½I� ha1JðynÞ��1fðynÞ ð7:127aÞ

k2 ¼ h½I� ha1JðynÞ��1ðfðyn þ b2k1ÞÞ ð7:127bÞ

k3 ¼ h½I� ha1JðynÞ��1ðb31k1 þ b32k2Þ ð7:127cÞ

where the various constants are defined as

a1 ¼ 0:43586659 b2 ¼ 0:75

b32 ¼ 2

9a1
ð6a21 � 6a1 þ 1Þ ¼ �0:24233788

b31 ¼ � 1

6a1
ð8a21 � 2a1 þ 1Þ ¼ �0:63020212

w1 ¼ 11

27
� b31 ¼ 1:037609527

w2 ¼ 16

27
� b32 ¼ 0:834930473; w3 ¼ 1

Michelsen’s third-order semi-implicit Runge–Kutta method

is a modified version of the method originally proposed by
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Caillaud and Padmanabhan (1971). This third-order semi-

implicit method is an improvement over the original version

of semi-implicit methods proposed in 1963 by Rosenbrock.

7.10 EXTRAPOLATION

Information from truncation error may be utilized to obtain

a better estimate for ynþ1. If the step size h is used, the cal-

culated ynþ1 is equal to the exact solution ynþ1 plus an error,

which is proportional to the truncation error. So, if the Euler

method is used, denoting exact solutions as hat variable,

we have

ynþ1ðhÞ ¼ ŷnþ1 þ ah ð7:128Þ
If the step size is halved, we have

ynþ1

h

2

� �
¼ ŷnþ1 þ a

h

2
ð7:129Þ

Eliminating the proportional constant a from Eqs. 7.128

and 7.129 we have

ŷnþ1 ¼ 2ynþ1

h

2

� �
� ynþ1ðhÞ ð7:130Þ

Equation 7.130 gives the exact solution for y at t¼ tnþ1 pro-

vided the error formula (7.128) and (7.129) are exact.

Because of the approximate nature of Eqs. 7.128 and 7.129,

Eq. 7.130 will not give the exact solution, but rather it gives

a better estimate to the solution at tnþ1 because the error is

proportional to h2 rather than h.

If a higher order method is used, say the trapezoidal rule

method (Eq. 7.110), we then have

ynþ1ðhÞ ¼ ŷnþ1 þ ah2 ð7:131Þ
and

ynþ1

h

2

� �
¼ ŷnþ1 þ a

h

2

� �2

ð7:132Þ

Eliminating a between the above two equations gives

ŷnþ1 ¼
1

3
4ynþ1

h

2

� �
� ynþ1ðhÞ

� �
ð7:133Þ

Equation 7.133 will give a better estimate to the solution

at t¼ tnþ1.

7.11 STEP SIZE CONTROL

There are various ways of controlling the step size.

One method suggested by Bailey (1969) is as follows.

For y ¼ ðy1; y2; y3; . . . ; yNÞT and yðtnÞ ¼ yn, we calculate

Dy ¼ jyðtnþ1Þ � yðtnÞj ð7:134Þ

If any component Dy is less than 0.001, we ignore that com-

ponent in the following crude but practical tests.

	 If Dyi/yi< 0.01, the step size is doubled

	 If Dyi/yi> 0.1, the step size is halved

	 Otherwise, the old step size is retained

This method is applicable for any integration method.

Michelsen used Eq. 7.125, which is a third-order

method, and performed two calculations at every time step.

One calculation uses a step size of h and the other uses the

step size of h/2. The error at the time tnþ1 is then defined

enþ1 ¼ ynþ1

h

2

� �
� ynþ1ðhÞ ð7:135Þ

Then for a tolerance of e, the step size is accepted when the

following ratio is less than unity.

q ¼ max
i

enþ1

e

��� ���
i

ð7:136Þ

Knowing the error enþ1, the accepted solution at tnþ1 is

ynþ1 ¼ ynþ1

h

2

� �
þ 1

7
enþ1 ð7:137Þ

where enþ1 is calculated from Eq. 7.135. Equation 7.137 is

derived as follows. Because Michelsen used a third-order

method, the truncation error is O(h3); hence,

ynþ1ðhÞ ¼ ŷnþ1 þ aðhÞ3 ð7:138aÞ
and

ynþ1

h

2

� �
¼ ŷnþ1 þ a

h

2

� �3

ð7:138bÞ

Elimination of a between Eqs. 7.138a and 7.138b yields the

improved estimate for ynþ1 as given in Eq. 7.137.

Once the better estimate for ynþ1 is obtained (Eq. 7.137),

the next step size is chosen as

hnþ1 ¼ hn min ð4qÞ�1=4; 3
h i

ð7:139Þ

The exponent �1
4
comes from the fourth-order method,

resulting from the extrapolation.

Note that the step size selection given in Eq. 7.139 is

valid only when q< 1 (defined in Eq. 7.136). When q is

greater than unity, the step size at tn is halved and the
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method is recalculated at the time step of tn until q is less

than unity.

Unlike the strategy of Bailey, the technique after

Michelsen utilizes a user-provided tolerance (e).

7.12 HIGHER ORDER INTEGRATION METHODS

We have shown a number of integration techniques that are

suitable to handle nonstiff coupled ODEs. The semi-

implicit third-order Runge–Kutta method (Michelsen 1976)

so far is the only method presented that can handle the stiff

ODEs. More details on methods for solving stiff problems

can be found in Gear (1971). Weimer and Clough (1979)

performed a comparison between Michelsen’s semi-

implicit third-order Runge–Kutta method and the Gear

method on 18 different problems, and concluded that the

Gear method is more computationally efficient than

Michelsen’s method. Moreover, in Michelsen’s method the

Jacobian must be evaluated exactly, whereas in the Gear

method it can be approximated numerically.

Large-order chemical engineering problems, when

solved numerically, usually give rise to a set of coupled dif-

ferential algebraic equations (DAEs). This type of coupling

is more difficult to deal with compared to coupled algebraic

equations or coupled ODEs. The interested reader should

refer to Brenan et al. (1989) for the exposition of methods

for solving DAE.

PROBLEMS

7.12. Convert the following nth-order differential equation

to the standard format of Eq. 7.1:

yðnÞ þ F yðn�1Þ; yðn�2Þ; . . . ; y00; y0; y
� 

¼ 0

7.22. Convert the following differential equations to the

standard format of Eq. 7.1:

(a) y00 þ y0 ¼ cosðtÞ
(b) y00 þ y0z0 ¼ 3t2

z0 þ z2 þ y ¼ t

7.32. Runge–Kutta is one of the most popular methods for

solving nonstiff ordinary differential equations

because it is a self-starting method, that is, it needs

only a condition at one point to start the integration,

which is in contrast to the Adams family methods

where values of dependent variables at several values

of time are needed before they can be used. For the

following equation

dy

dt
¼ f ðt; yÞ

subject to

t ¼ t0; y ¼ y0

(a) show that the Taylor series of ynþ1 ¼ yðtnþ1Þ ¼
yðtn þ hÞ is

ynþ1 � yn þ f nhþ
@f n
@t

þ @f n
@y

f n

� �
h2

2
þ � � �

where

ynþ1 ¼ yðtnþ1Þ; yn ¼ yðtnÞ;
@f n
@t

¼ @f ðtn; ynÞ
@t

;
@f n
@y

¼ @f ðtn; ynÞ
@y

(b) The Runge–Kutta of order 2 is assumed to take

the form (Eq. 7.121)

ynþ1 ¼ yn þ w1hf n þ w2hf ðtn þ c1h; yn þ a1hf nÞ
Expand the Runge–Kutta formula for h and com-

pare with the Taylor series in (a) to show that one

possible solution for w1, w2, c1, and a1 is

w1 ¼ w2 ¼ 1
2
; c1 ¼ a1 ¼ 1

Show that this second-order Runge–Kutta is the

Euler predictor–corrector method.

(c) Show that another possible solution for w1, w2, c1,

and a1 is w1¼ 0, w2¼ 1 and c1¼ a1¼ 1
2
.

7.43. (a) Starting from the general formula for the third-

order Runge–Kutta

ynþ1 ¼ yn þ
X3
i¼1

wiki

where

ki ¼ hf tn þ cih; yn þ
Xi�1

j¼1

aijkj

 !
; c1 ¼ 0

obtain a number of third-order Runge–Kutta for-

mula to integrate the equation

dy

dt
¼ f ðt; yÞ

(b) Show that one of the possible Runge–Kutta

formulas is

k1 ¼ hf ðtn; ynÞ
k2 ¼ hf tn þ 1

2
h; yn þ 1

2
k1

� 
k3 ¼ hf ðtn þ h; yn þ 2k2 � k1Þ

and w1¼w3¼ 1
6
, w2¼ 2

3
.
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7.52. Use the third-order Runge–Kutta formula obtained in

Problem 7.4 to derive the integration formulas for the

coupled ordinary differential equations.

dy1
dt

¼ f 1ðt; y1; y2Þ
dy2
dt

¼ f 2ðt; y1; y2Þ

subject to

t ¼ 0; y1 ¼ y10; y2 ¼ y20

7.62. For a fourth-order method, use the extrapolation pro-

cedure to show that the better estimate for y(tnþ1) is

ŷnþ1 ¼
1

15
16ynþ1

h

2

� �
� ynþ1ðhÞ

� �

7.7
. The following describes the catalytic cracking of gas

oils to gasoline. The reaction network is as follows:

Gas oil is cracked catalytically to gasoline according

a second-order chemical kinetics, and in a parallel

reaction it is also cracked to give light gases and coke

with second-order chemical kinetics. Gasoline, once

formed from the gas oil, is also cracked to give light

gases and coke with a first-order chemical kinetics.

(a) If we denote A and G for gas oil and gasoline,

respectively, and a single symbol C for either

coke or light gas, show that the kinetic equations

describing the change of these species (expressed

in weight fraction) are

(i)
dyA
dt

¼ �k1y
2
A � k3y

2
A

(ii)
dyG
dt

¼ þk1y
2
A � k2yG

(iii)
dyC
dt

¼ þk3y
2
A þ k2yG

The initial conditions for these species are

t ¼ 0; yA ¼ 1; yG ¼ yC ¼ 0

(b) Before attempting numerical solutions, it is tedi-

ous to show that an analytical solution exists, with

which we can compare the numerical solutions.

To start this, note that the equations are not inde-

pendent, but rather they are related by the overall

mass balance equation. After adding the equa-

tions, show that

dyA
dt

þ dyG
dt

þ dyC
dt

¼ 0

Show that integration of this exact differential

yields

yA þ yG þ yC ¼ 1

(c) Divide the kinetic equation for A by that for G to

show

dyG
dyA

¼ � k1

k0
þ k2

k0

yG
y2A

where

k0 ¼ k1 þ k3

Next, show that the integration of this equation

leads to the analytical result

yG ¼ k1k2

k20

 !
expð�hÞ

�
k0

k2
exp

k2

k0

� �

� 1

h
expðhÞ þ EiðhÞ � Ei

k2

k0

� ��

where

h ¼ k2

k0yA

and Ei is the tabulated exponential integral

defined in Chapter 4 as

EiðxÞ ¼
Z x

�1
es
ds

s

The weight fraction for A is obtained from direct

integration of Eq. (i) to yield

yA ¼ 1

1þ k0t

(d) It is clear that the analytical result is quite tedious

to use, so that it may be easier to use a numerical

solution. Use the explicit and implicit Euler meth-

ods to integrate the full kinetic equations. Use step

size as your variable, and determine the maximum

step size for the explicit Euler to remain stable.

Compare your numerical results obtained by these

techniques with the exact solutions obtained

in (c).

(e) Use the trapezoidal rule and show numerically

that for a given step size the trapezoidal scheme is

more accurate than the Euler methods. Explain

why.

(f) Implement the Runge–Kutta–Gill scheme to

numerically solve this problem. Use the same step

size as in previous parts in order to compare the

results.
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7.8
. Perform the integration in Problem 7.5 using the

semi-implicit formula of Michelsen (Eq. 7.126) with

a constant step size.

7.9
. Repeat Problem 7.6, but instead of a constant step

size, use the step size control described in Section

7.10 for the Michelsen method.

7.10
. (a) Reduce the following Van der Pol equation to the

standard form

d2y

dt2
� mð1� y2Þ dy

dt
þ y ¼ 0

subject to

t ¼ 0; y ¼ 1; y0 ¼ 0

(b) For m¼ 0.1, 1, and 10, solve the Van der Pol equa-

tion using the Runge–Kutta–Gill method and

observe the behavior of the solution as m varies.

For large m, study the solution behavior as step

size is changed in the integration. Explain why

the choice of step size is critical in this case.

(c) Repeat part (b) using the method of Michelsen.

7.113. Solve the differential equation

dy

dt
þ y ¼ t; t ¼ 0; y ¼ 1

by using the following iteration scheme:

(a) First, put the nonderivative terms to the RHS and

show that the solution can be put in the form of an

implicit integral equation

yðtÞ ¼ 1þ
Z t

0

½s� yðsÞ� ds

where s is the dummy integration variable. The

equation is implicit because of the presence of y

in the integrand of the integral.

(b) The solution for y can be facilitated by using the

iteration scheme

yðkþ1ÞðtÞ ¼ 1þ
Z t

0

½s� yðkÞðsÞ� ds

where y(0) is taken as the initial condition, that is,

y(0)¼ 1. Show that the next five iterated solutions

are (where x¼ t)

yð1ÞðtÞ ¼ 1� xþ x2

2

yð2ÞðtÞ ¼ 1� xþ x2 � x3

6

yð3ÞðtÞ ¼ 1� xþ x2 � x3

3
þ x4

24

yð4ÞðtÞ ¼ 1� xþ x2 � x3

3
þ x4

12
� x5

120

yð5ÞðtÞ ¼ 1� xþ x2 � x3

3
þ x4

12
� x5

60
þ x6

720

(c) Obtain the exact solution to the original differential

equation, and compare the iterated solutions

with the Taylor series expansion of the exact

solution.

This iteration method is fundamentally different from

all other methods discussed in Chapter 7. It basically

produces iterated solutions that are valid over the

whole domain of interest. As the iteration increases,

the iterated solution is (hopefully) getting closer to

the exact solution. This method is known as the Pic-

ard method. The fundamental disadvantage of this

technique, which mitigates its usefulness, is that the

iterated solutions must be found analytically, so that

they can be applied to subsequent iteration steps

(which involves the evaluation of an integral).

7.123. (a) Show that the modeling of a second-order chemi-

cal reaction in a fixed bed reactor would give rise

to the following differential equation:

D
d2C

dx2
� u

dC

dx
� kC2 ¼ 0

where D is the axial diffusion coefficient, u is the

superficial velocity, and k is the chemical reaction

rate constant based on unit volume of reactor.

The typical Danckwerts boundary conditions are

x ¼ 0; D
dC

dx
¼ uðC � C0Þ

x ¼ L;
dC

dx
¼ 0

where L is the reactor length and C0 is the inlet

concentration,

(b) Convert the above differential equation to the

standard form, and show that it takes the form

dC

dx
¼ p

dp

dx
¼ u

D
pþ k

D
C2
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(c) To solve the equations in part (b) using any of

the integration techniques described in this

chapter, conditions at one point must be speci-

fied, that is, either C and p (¼dC/dx) are speci-

fied at x¼ 0 or they are specified at x¼ L.

Unfortunately, this problem has conditions spec-

ified at two end points. This means that we shall

need to guess one of them at one point. For

example, we can guess C at x¼ 0 and then p at

the same point can be calculated from the con-

dition at x¼ 0, or we can guess C at x¼ L since

p at x¼ L is already specified. Use the latter

option by specifying

x ¼ L;
dC

dx
¼ 0

and

C ¼ a

where a is the guessing value of C at x¼ L. Use

the third-order Runge–Kutta scheme of Problem

7.4 to develop the integration formula for the

above set of standard equations.

(d) It is obvious that after the integration from x¼ L

back to x¼ 0, the calculated C and p at x¼ 0 will

not satisfy the specified condition at x¼ 0 (unless

by coincidence the choice of a was the correct

value of C at x¼ L), so we expect the inequality

to arise

Dpð0Þ 6¼ u½Cð0Þ � C0�

If the condition at x¼ 0 is not satisfied, a differ-

ent value of a is chosen and the integration pro-

cess is repeated until the above relation is finally

satisfied within some prespecified error. This

method is commonly called the shooting method.

Use the secant method of Appendix A to show

that the next guess of a should satisfy the follow-

ing equation:

aðkþ1Þ ¼ aðkÞ � f ðaðkÞÞ
½ f ðaðkÞÞ � f ðaðk�1ÞÞ�=½aðkÞ � aðk�1Þ�

where

f ðaðkÞÞ ¼ Dp ð0;aðkÞÞ � uC ð0;aðkÞÞ þ uC0
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8
APPROXIMATE METHODS FOR BOUNDARY VALUE
PROBLEMS: WEIGHTED RESIDUALS

In the previous chapter, we presented numerical techniques

to solve differential equations of the initial value type, that

is, the type where conditions are specified at only one posi-

tion or time, such as t¼ 0 in the time domain. In this chap-

ter, we discuss methods to handle ordinary differential

equations of the boundary value type, that is, conditions are

specified at two different points in the domain, such as con-

ditions at the two ends of a fixed bed reactor or conditions

at two sides of a membrane. We start the chapter by discuss-

ing general aspects of the underlying basis for the method:

weighted residuals. As a subset of this, we pay particular

attention to the orthogonal collocation method, which

enjoys wide popularity for current applications in chemical

engineering research problems. It is particularly attractive

for solving nonlinear problems that heretofore have defied

analytical treatment.

8.1 THE METHOD OFWEIGHTED RESIDUALS

The method of weighted residuals has been used in solving

a variety of boundary value problems, ranging from fluid

flow to heat and mass transfer problems. It is popular

because of the interactive nature of the first step, that is, the

user provides a first guess at the solution and this is then

forced to satisfy the governing equations along with the

conditions imposed at the boundaries. The leftover terms,

called residuals, arise because the chosen form of solution

does not exactly satisfy the equation or the boundary condi-

tions. How these residual terms are minimized provides the

basis for parameter or function selection. Of course, the

optimum solution depends on the intelligent selection of a

proposed solution.

To illustrate the salient features of the method, we first

consider the following boundary value problem in an

abstract form, and then later attempt an elementary example

of diffusion and reaction in a slab of catalyst material. We

shall assume that there exists an operator of the type dis-

cussed in Section 2.5 so that in compact form, we can write

LðyÞ ¼ 0 ð8:1Þ

where L is some differential operator. Examples of Eq. 8.1 are

LðyÞ ¼ d2y

dx2
� 100y2 ¼ 0

LðyÞ ¼ d

dx
ð1þ 10yÞ dy

dx

� �
¼ 0

The differential equation (Eq. 8.1) is subject to the boundary

condition

MðyÞ ¼ 0 ð8:2Þ

These boundary values could be initial values, but any bound-

ary placement is allowed, for example, dy(0)=dx¼ 0 or

y(1)¼ 0, where M(y) is simply a general representation of the

operation on y as dy(0)=dx¼ 0 or y(1)¼ 0, respectively.

The essential idea of the method of weighted residuals

is to construct an approximate solution and denote it as ya.
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Because of the approximate nature of the estimated solu-

tion, it may not, in general, satisfy the equation and the

boundary conditions; that is,

LðyaÞ ¼ R 6¼ 0 ð8:3Þ

and

MðyaÞ ¼ Rb 6¼ 0 ð8:4Þ
where the residuals R and Rb are not identically zero. If the

approximate solution is constructed such that the differen-

tial equation is satisfied exactly (i.e., R¼ 0), the method is

called the boundary method. However, if it is constructed

such that the boundary conditions are satisfied exactly (i.e.,

Rb¼ 0), the method is called the interior method. If neither

the differential equation nor the boundary conditions are

satisfied exactly, it is referred to as the mixed method.

The method of weighted residuals will require two types

of known functions. One is called the trial function, and the

other is called the test function. The former is used to con-

struct the trial solution, and the latter is used as a basis

(criterion) to make the residual R small (a small residual

leads to a small error in the approximate solution). To mini-

mize the residual, which is usually a function of x, we need

a means to convert this into a scalar quantity so that a mini-

mization can be performed. This is done by way of some

form of averaging, which we call an inner product. This

can be regarded as a measure of distance between the two

functions; that is, between the residual function and the test

function, as we show later.

The approximate solution to the governing equation

(Eq. 8.1) can be written as a polynomial, for example,

yaðxÞ ¼ y0ðxÞ þ
XN
i¼1

aifiðxÞ ð8:5Þ

where y0 is suitably chosen to satisfy the boundary condi-

tions exactly, and generally it is a function of x. In the fol-

lowing discussion, we shall use the interior method (i.e., the

approximate solution satisfies the boundary conditions

exactly). The trial functions fi chosen by the analyst must

satisfy the boundary conditions, which are usually of the

homogeneous type (Chapter 1). The coefficients ai are

unknown and will be determined by the method of residuals

to force a close matching of ya with the proposed equations.

Thus, the solution of the governing equation (Eq. 8.1) is

reduced to the determination of N coefficients, ai, in the

assumed approximate solution (Eq. 8.5).

Substituting this trial solution ya into the differential

equation (Eq. 8.1), we see

RðxÞ ¼ L y0ðxÞ þ
XN
i¼1

aifiðxÞ
" #

ð8:6Þ

The residual R is in general nonzero over the whole domain

of interest, so that it is dependent on x in the usual case.

Since the residual R is a function of x, we shall need to

minimize it over the whole domain of interest. To do this,

we need to define some form of averaging. For example,

the following integral over the whole domain may be used

as a means of averagingZ
V

RðxÞwkðxÞdx ð8:7Þ

where V is the domain of interest and wk is some selected

set of independent functions (k¼ 1, 2, . . . , N), which are

called the test functions. Such an integral is called an inner

product, and we denote this averaging process as

ðR;wkÞ ð8:8aÞ

This notation is analogous to the dot product used in the

analysis of vectors in Euclidean space. The dot product is

an operation that maps two vectors into a scalar. Here, in

the context of functions, the inner product defined in

Eq. 8.7 or 8.8a will map two functions into a scalar, which

will be used in the process of minimization of the residual

R. This minimization of the residual intuitively implies a

small error in the approximate solution, ya(x).

Since we have N unknown coefficients ai in the trial

solution (Eq. 8.5), we will take the inner product (defined

in Eq. 8.8a) of the residual with the first N test functions

and set them to zero, and as a result we will have the follow-

ing set of N nonlinear algebraic equations:

ðR;wkÞ ¼ 0 for k ¼ 1; 2; 3; . . . ;N ð8:8bÞ

which can be solved by using any of the algebraic

solvers discussed in Appendix A to obtain the coefficients

ai (i¼ 1, 2, . . . , N) for the approximate solution (Eq. 8.5).

This completes a brief overview of the approximation

routine. To apply the technique, specific decisions must be

made regarding the selection of test function and a defini-

tion of an inner product (Eq. 8.7 being only one possible

choice).

8.1.1 Variations on a Theme of Weighted Residuals

There are five widely used variations of the method of

weighted residuals for engineering and science applica-

tions. They are distinguished by the choice of the test func-

tions, used in the minimization of the residuals (Eq. 8.8).

These five methods are as follows:

1. Collocation method

2. Subdomain method

3. Least squares method
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4. Moment method

5. Galerkin method

Each of these methods has attractive features, which we dis-

cuss as follows. Later, we shall concentrate on the colloca-

tion method, because it is easy to apply and it can also give

good accuracy. The Galerkin method gives better accuracy,

but it is somewhat intractable for higher order problems, as

we illustrate in the examples to follow.

1. Collocation Method In this method the test function

is the Dirac delta function at N interior points (called

collocation points) within the domain of interest, say

0< x< L:

wk ¼ dðx� xkÞ ð8:9Þ

where xk is the kth collocation point.

The useful property of the Dirac’s delta function is

Z xþ
k

x�
k

f ðxÞdðx� xkÞ dx ¼ f ðxkÞ ð8:10Þ

If these N interior collocation points are chosen as

roots of an orthogonal Jacobi polynomial of Nth

degree, the method is called the orthogonal colloca-

tion method (Villadsen and Michelsen 1978). It is

possible to use other orthogonal functions, but

Jacobi is popular because it is compact and con-

tains only a few terms. Another attractive feature is

that the solution can be derived in terms of the

dependent variable y at the collocation points.

This will be illustrated in Section 8.4.

2. Subdomain Method In this method the domain V of

the boundary value problem is split into N subdo-

mains Vi; hence, the origin of the name “subdomain

method.” The test function is chosen such that

wk ¼ 1 ð8:11Þ

in the subdomain Vk and is zero elsewhere.

3. Least Squares Method In this method, the test func-

tion is chosen as

wk ¼ @R

@ak
ð8:12Þ

With this definition, Eq. 8.8 becomes

R;
@R

@ak

� �
¼ 1

2

@

@ak
ðR;RÞ ¼ 0 ð8:13Þ

Thus, if the inner product is defined as an integral

such as in Eq. 8.7, Eq. 8.13 can be written explicitly

as Z
V

R
@R

@ak
dx ¼ 1

2

@

@ak

Z
V

R2dx ¼ 0 ð8:14Þ

This means that the coefficients ak are found as the

minimum of (R, R). The least squares result is the

most well-known criterion function for weighted

residuals. The test function for this technique is more

complicated, owing to the requirement of differentia-

tion in Eq. 8.12.

4. Moment Method In this method, the test function is

chosen as

wk ¼ xk�1 for k ¼ 1; 2; . . . ;N ð8:15Þ

5. Galerkin Method In this method, the weighting

function is chosen from the same family as the trial

functions, fk, that is,

wk ¼ fkðxÞ ð8:16Þ

For all five methods just discussed, the only restriction on

the trial functions is that they must belong to a complete set

of linearly independent functions. These functions need not

be orthogonal to each other.1 The trial and test functions

must also be chosen as the first N members of that set of

independent functions. This will improve the efficiency of

the methods of weighted residuals. For the Galerkin method,

if the trial and test functions are chosen based on the knowl-

edge of the form of the exact solution of a closely related

problem, the efficiency of the method is enhanced (Fletcher

1984). It is noted here that an orthogonal set can always be

created from the given set of independent functions.

EXAMPLE 8.1

We illustrate the above five variations of weighted residuals with

the following example of diffusion and first-order chemical

reaction in a slab catalyst (Fig. 8.1). We choose the first-order

reaction here to illustrate the five methods of weighted residual.

In principle, these techniques can apply equally well to nonlinear

problems, however, with the exception of the collocation method,

the integration of the form (8.7) may need to be done numerically.

Carrying out the mass balance over a thin shell at the position r

with a thickness of Dr, we have

SJjr � SJjrþDr � SDrðkCÞ ¼ 0 ð8:17Þ

1 The definition of orthogonality in the sense used here is discussed in Sec-

tion 10.5.
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where S is the cross-sectional area of the catalyst, J is the diffusion

flux, defined as moles per unit total area per time, and kC is the

chemical reaction rate per unit volume of the catalyst.

Dividing the equation by SDr, we have

� JjrþDr � Jjr
Dr

� kC ¼ 0 ð8:18Þ

If we now allow the shell as thin as possible, that is, in the limit of

Dr approaching zero, we have

� lim
Dr!0

JjrþDr � Jjr
Dr

� kC ¼ 0 ð8:19Þ

Using the definition of the derivative, the first two terms in the

left-hand side (LHS) of Eq. 8.19 become the first derivative of J;

that is,

� dJ

dr
� kC ¼ 0 ð8:20Þ

The flux into the catalyst particle is taken to be proportional to the

concentration gradient

J ¼ �De

dC

dr
ð8:21Þ

where De is the effective diffusivity of the reactant within the cat-

alyst particle, and it is a function of the structure of the catalyst.

Substituting the expression for the diffusion flux (Eq. 8.21) into

the mass balance equation (Eq. 8.20) yields

De

d2C

dr2
� kC ¼ 0 ð8:22Þ

This is a second-order differential equation. The boundary condi-

tions for this problem are

r ¼ 0;
dC

dr
¼ 0 ð8:23aÞ

r ¼ R; C ¼ C0 ð8:23bÞ

The first condition indicates that there is no flux at the center of the

catalyst particle. This condition also says that the reactant concen-

tration profile is symmetrical at the center. This situation is com-

monly referred to as the symmetry condition. The second

boundary condition corresponds to high velocity at the boundary

since the reactant concentration at the surface is taken equal to

that of the bulk surrounding the particle, which is taken to be

invariant in the present problem.

It is convenient to cast the mass balance equation and the

boundary conditions into dimensionless form, with the indepen-

dent variable having the domain from 0 to 1. By defining the fol-

lowing nondimensional variables and parameters

y ¼ C

C0

; x ¼ r

R
; f2 ¼ kR2

De

ð8:24Þ

the mass balance equation and the boundary conditions take the

following clean form:

d2y

dx2
� f2y ¼ 0 ð8:25aÞ

x ¼ 0;
dy

dx
¼ 0 ð8:25bÞ

x ¼ 1; y ¼ 1 ð8:25cÞ

The quantity of interest is the overall reaction rate, which is the

observed rate. Starting with the thin shell, the chemical reaction

rate in the shell is

DRrxn ¼ ðSDrÞðkCÞ ð8:26Þ

Thus, the overall reaction rate is obtained by summing all thin ele-

ments, which leads to the integral

Rrxn ¼
Z R

�R

SkC dr ¼ 2

Z R

0

SkC dr ð8:27Þ

Hence, the overall reaction rate per unit volume of the catalyst

slab is

Rrxn

Vp

¼ 1

R

Z R

0

kC dr ð8:28Þ

FIGURE 8.1 Diffusion and reaction in a slab catalyst.
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Written in terms of the nondimensional variables, the overall

reaction rate per unit volume is

Rrxn

Vp

¼ kC0

Z 1

0

y dx ð8:29Þ

If we denote

h ¼
Z 1

0

y dx ð8:30Þ

which is called the effectiveness factor, the overall reaction rate

per unit catalyst volume is given by

Rrxn

Vp

¼ kC0 � h ð8:31Þ

Thus, it is seen now that the overall reaction rate per unit

volume is equal to the intrinsic reaction rate per unit volume

ðkC0Þ modified by a factor, called the effectiveness factor h.

The presence of this factor accounts for the fact that the

chemical reaction in the catalyst particle is affected by a dif-

fusional resistance. If this diffusional resistance is negligible

compared to the reaction rate, the overall reaction rate must

be equal to the intrinsic reaction rate. If this resistance is

strong, we would expect the overall reaction rate to be less

than the intrinsic reaction rate; that is, h < 1.

Let us start the illustration with the situation where

f ¼ 1, that is, the rate of reaction is comparable to the rate

of diffusion. Using the techniques taught in Chapters 2 and

3, the exact solution to Eq. 8.25 (which is needed later as a

basis for comparison with approximate solutions) is

y ¼ coshðfxÞ
coshðfÞ ð8:32Þ

and for f ¼ 1, this yields

y ¼ coshðxÞ
coshð1Þ ð8:32aÞ

Knowing the dimensionless concentration inside the porous

catalyst, the dimensionless reaction rate is given by the inte-

gral (Eq. 8.30), which in general is

h ¼ tanhðfÞ
f

ð8:33aÞ

and when f ¼ 1, it is

h ¼
Z 1

0

y dx ¼ tanh ð1Þ ¼ 0:7616 ð8:33bÞ

Now we undertake to find approximate solutions using the

several variations of weighted residuals. Central to all meth-

ods is the choice of the trial solution, ya. By noting the

boundary conditions at x¼ 0 and x¼ 1, a parabolic function

seems to be a good choice, so we write our first guess as

ya ¼ 1þ a1ð1� x2Þ ð8:34Þ

Here, the function y0ðxÞ ¼ 1, which satisfies the boundary

conditions (Eq. 8.25), and the trial function f1ðxÞ ¼ 1� x2,

which satisfies the homogeneous boundary conditions:

x ¼ 0;
df1

dx
¼ 0 and x ¼ 1; f1 ¼ 0

Hence, the trial solution yaðxÞ satisfies the boundary condi-

tions (Eq. 8.25) exactly; that is,

x ¼ 0;
dya
dx

¼ 0

and

x ¼ 1; ya ¼ 1 ð8:35Þ

Next, substituting the trial function into the differential equa-

tion (Eq. 8.25a), we obtain the residual, defined here as

Lya ¼
d2ya
dx2

� ya ¼ R ð8:36Þ

or specifically

RðxÞ ¼ �2a1 � 1þ a1ð1� x2Þ� � 6¼ 0 ð8:37Þ

Note that the residual is a function of x. To find the

coefficient a1, we need to “transform” this x-dependent

function into a quantity, which is independent of x. This

is the central idea of the inner product, which we have

discussed earlier. Since we are dealing with functions, the

inner product should be defined in the form of an integral,

to eliminate dependence on x. For the present problem,

the inner product between the residual and a test function

w1 (we only need one, since there is only one coefficient

a1 in the trial solution, Eq. 8.34) is

ðR;w1Þ ¼
Z 1

0

Rw1 dx ¼ 0 ð8:38Þ

Observing the inner product of Eq. 8.38, we note, follow-

ing integration, an algebraic relationship is produced, the

form and complexity of which depend on the selection of

the test function w1. This is the only difference among the

various methods of weighted residuals. Let us demonstrate

this with various methods one by one. We start with the

collocation method.
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1. Collocation Method In this method, the test function

was stipulated earlier to be

w1ðxÞ ¼ dðx� x1Þ ð8:39Þ

where x1 is a (as yet unknown) collocation point cho-

sen in the domain [0,1]. With one collocation point,

the method is called single point collocation, a conve-

nient tool for assessing system behavior.

With this test function, Eq. 8.38 can be integrated

directly and we obtain the following algebraic

equation:

ðR;w1Þ ¼
Z 1

0

�2a1 � 1þ a1ð1� x2Þ� �� 	
dðx� x1Þ dx

¼ �2a1 � ½1þ a1ð1� x21Þ� ¼ 0 ð8:40Þ

where we have used the property of the Dirac delta

function (Eq. 8.10). Equation 8.40 is simply the resid-

ual at x¼ x1, and the collocation method gets its

name from the fact that it forces the residual to be

zero at particular points, called collocation points.

From Eq. 8.40, the unknown coefficient a1 can be

readily determined in terms of the point x1 (which is

the single collocation point):

a1 ¼ � 1

2þ ð1� x21Þ
� � ð8:41Þ

We note that x1 is unspecified, and it must be chosen

in the range of 0 < x1 < 1.

The trial solution, which approximates the exact

solution, is simply

ya ¼ 1� ð1� x2Þ
2þ ð1� x21Þ
� � ð8:42Þ

The quantity of interest is the overall reaction rate,

and it takes the dimensionless form:

h ¼
Z 1

0

y dx �
Z 1

0

ya dx ð8:43Þ

If we substitute the trial solution of Eq. 8.42 into

Eq. 8.43, we have

ha ¼ 1� 2

3 2þ 1� x21

 �� � ð8:44Þ

Thus, if we choose the collocation point as the mid-

point of the domain [0,1] so that x1¼ 1
2
, then the inte-

gral of Eq. 8.44 will take the value

ha ¼ 1� 2

3 2þ 1� ð0:5Þ2
h in o ¼ 1� 8

33
¼ 0:7576

ð8:45Þ

We see that the approximate solution obtained by the

collocation method agrees fairly well with the exact

solution (h¼ 0.7616). Note here that the selection of

x1 was arbitrary and intuitive. Other choices are pos-

sible, as we shall see.

2. Subdomain Method Here, since we have only one

unknown coefficient in the trial solution, only one

subdomain is dealt with, and it is the full domain of

the problem, that is, [0,1]; hence, the test function is

w1ðxÞ ¼ 1 for 0 < x < 1 ð8:46Þ

The inner product is defined as before (Eq. 8.38).

Substituting the residual of Eq. 8.37 and the test func-

tion (Eq. 8.46) into the inner product (Eq. 8.38), we

have

ðR;w1Þ ¼
Z 1

0

Rw1 dx

¼
Z 1

0

�2a1 � 1þ a1ð1� x2Þ� �� 	ð1Þ dx
¼ 0 ð8:47Þ

Integrating the above equation, we finally obtain the

following solution for a1:

a1 ¼ � 3
8

ð8:48Þ

Hence, the trial solution by the subdomain method is

ya ¼ 1� 3
8
ð1� x2Þ ð8:49Þ

and the approximate nondimensional chemical

reaction rate is

ha ¼
Z 1

0

ya dx ¼
Z 1

0

1� 3
8
ð1� x2Þ� �

dx ¼ 3
4
¼ 0:75

ð8:50Þ

which also compares well with the exact solution

hexact¼ 0.7616.

3. Least Squares Method The test function for the

least squares approach is

w1 ¼ @R

@a1
ð8:51Þ
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The inner product (Eq. 8.38) for this method is

ðR;w1Þ ¼
Z 1

0

R
@R

@a1
dx ¼ 1

2

@

@a1

Z 1

0

R2 dx ¼ 0

ð8:52Þ

that is,

ðR;w1Þ ¼ 1

2

@

@a1

Z 1

0

�2a1 � 1þ a1ð1� x2Þ� �� 	2
dx

¼ 0 ð8:53Þ

Integrating with respect to x and then differentiating

with respect to a1 yields

ðR;w1Þ ¼ 1

2

216

15
a1 þ 16

3

� �
¼ 0 ð8:54Þ

Hence, solving for a1, we have

a1 ¼ � 10

27
ð8:55Þ

The trial solution for the least squares method is

ya ¼ 1� 10

27
ð1� x2Þ ð8:56Þ

and the approximate nondimensional chemical

reaction rate is

ha ¼
Z 1

0

ya dx ¼
Z 1

0

1� 10

27
ð1� x2Þ

� �
dx ¼ 61

81

¼ 0:75309 ð8:57Þ

compared to the exact solution of tanh (l)¼ 0.7616.

4. The Moment Method The test function for the

moment method is

w1 ¼ x0 ¼ 1 ð8:58Þ

which is identical to the test function of the subdo-

main method. Thus, the solution of the moment

method is the same as that of the subdomain method.

This is true because only one term is retained in the

trial solution.

5. The Galerkin Method The test function is the same

as the trial solution; that is,

w1 ¼ ð1� x2Þ ð8:59Þ

Thus, the inner product (Eq. 8.38) becomes

ðR;w1Þ ¼
Z 1

0

�2a1 � 1þ a1ð1� x2Þ� �� 	ð1� x2Þ dx

¼ 0 ð8:60Þ

that is,

ðR;w1Þ ¼ � 2

3
ð1þ 2a1Þ � 8

15
a1 ¼ 0 ð8:61Þ

Solving for a1 gives

a1 ¼ � 10

28
ð8:62Þ

Thus, the trial solution obtained by the Galerkin

method is

ya ¼ 1� 10

28
ð1� x2Þ ð8:63Þ

and the approximate nondimensional chemical

reaction rate ha is

ha ¼
Z 1

0

ya dx ¼
Z 1

0

1� 10

28
ð1� x2Þ

� �
dx ¼ 64

84

¼ 0:7619 ð8:64Þ

Table 8.1 provides a summary of the five methods using

only one term.

It is seen from Table 8.1 that Galerkin appears to be the

most accurate method for this specific problem. However,

when more terms are used in the trial solution, the Galerkin

method presents more analytical difficulties than the collo-

cation method. As a matter of fact, all the weighted residual

procedures require an integration of the form of Eq. 8.7 or

Eq. 8.8 and hence, with the exception of the collocation

method, may require numerical evaluation of this integral if

analytical integration is impossible. The ease of performing

integrals with the Dirac delta function is an enormous

advantage for the collocation technique.

TABLE 8.1 Comparison of Accuracy for Approximate

Solution

Method h ¼ R 1

0
ya dx

Relative

Percentage Error

Collocation 25/33 0.53

Subdomain 3/4 1.5

Least squares 61/81 1.1

Moment 3/4 1.5

Galerkin 64/84 0.041
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All the methods tried so far show very low relative

errors, in spite of the fact that only one term was retained in

the trial solution (Eq. 8.34). This arises because the diffu-

sion–reaction problem used for illustration has a slow

reaction rate. This implies the concentration profile inside

the particle is very shallow and can be easily described with

only one term in the series of parabolic trial functions.

EXAMPLE 8.2

If we allow higher reaction rates in Eq. 8.25a, one can see that the

concentration profile becomes rather steep and the trial solution

with only one term will obviously become inadequate, as we shall

show.

Let us take f¼ 10 (i.e., fast reaction relative to diffusion),

hence the exact solution of Eq. 8.25a now becomes

y ¼ cosh ð10xÞ
cosh ð10Þ ð8:65Þ

The nondimensional chemical reaction rate is obtained from the

integral

h ¼
Z 1

0

y dx ¼
Z 1

0

cosh ð10xÞ
cosh ð10Þ dx ¼ tanh ð10Þ

10
¼ 0:1 ð8:66Þ

If we use only one term in Eq. 8.34 and substitute it into Eq. 8.25a

with f¼ 10, we obtain the following residual:

R ¼ �2a1 � 100 1þ a1ð1� x2Þ� � ð8:67Þ

We now apply the five variations of the weighted residuals

and follow the procedure as presented in the last example.

1. Collocation Method Using this method, we obtain

a1 ¼ � 100

2þ 100ð1� x21Þ
� � ð8:68aÞ

ha ¼
Z 1

0

ya dx ¼ 1� 200

3 2þ 100ð1� x21Þ
� � ð8:68bÞ

For x1¼ 0.5, the nondimensional reaction rate is

ha ¼ 1� 200

3 2þ 100ð1� ð0:5Þ2Þ
h i ¼ 0:1342

ð8:68cÞ

Comparing with the exact solution of h¼ 0.1, the

relative error is 34%.

2. Subdomain Method For this method, we have

a1 ¼ � 300

206
and ha ¼ 0:02913 ð8:69Þ

The relative error between the approximate solution

ha and the exact solution is 71%.

3. Least Squares Method We have

a1 ¼ � 41; 200

33; 624
and ha ¼ 0:183123 ð8:70Þ

The relative error is 83%.

4. Moment Method Same as the subdomain method.

5. Galerkin Method We have

a1 ¼ � 1000

820
and ha ¼ 0:18699 ð8:71Þ

The relative error is 87%.

We noted that in the case of high reaction rate, the colloca-

tion technique seems to be superior to the others. However,

the relative errors between all approximate solutions and

the exact solution are unacceptably high. The reason for the

high error arises from the sharpness of the concentration

profiles, as illustrated in Fig. 8.2. Moreover, the approxi-

mate solutions yield negative concentration over some parts

of the domain [0,1].

FIGURE 8.2 Comparison of concentration profiles for weighted

residual methods.
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To improve the accuracy in this case, we need to retain

more terms in the trial solutions. In general, the more the

terms retained, the better the accuracy. This can be carried

out in a straightforward way with a computer. To demon-

strate how this is done, we shall now retain two terms in the

general expansion:

ya ¼ 1þ
XN
j¼1

ajx
2ðj�1Þð1� x2Þ

which is simply

ya ¼ 1þ a1ð1� x2Þ þ a2x
2ð1� x2Þ ð8:72Þ

Because of the symmetry property discussed earlier, our

trial functions should be chosen to be even functions. This

saves time, since a selection of odd functions would ulti-

mately lead to a zero value for the multiplicative coefficient.

Inserting ya into the defining equation yields the residual

R ¼ �2a1 � 10a2 � 100

þð12a2 � 100a1Þð1� x2Þ � 100a2x
2ð1� x2Þ

ð8:73Þ

We now apply the collocation method to this residual using

the following two test functions:

w1 ¼ dðx� x1Þ and w2 ¼ dðx� x2Þ ð8:74Þ

where x1 and x2 are two separate collocation points, chosen

in the domain [0,1].

Next, we evaluate the following two inner products,

ðR;w1Þ ¼
Z 1

0

Rw1 dx ¼ 0 and

ðR;w2Þ ¼
Z 1

0

Rw2 dx ¼ 0 ð8:75Þ

to obtain two algebraic equations, solvable for unknowns a1
and a2

a1 ¼ �0:932787 and a2 ¼ �1:652576 ð8:76Þ

for two equally spaced collocation points chosen at

x1 ¼ 1
3
and x2 ¼ 2

3
.

Knowing the coefficients and the trial solution as in

Eq. 8.72, we can now evaluate the integral:

ha ¼
Z 1

0

ya dx ¼ 0:1578 ð8:77Þ

This means that the error relative to the exact solution is

58%, which is even higher than the error when we kept

only one term in the trial solution! This is a somewhat

surprising result; however, we have made no effort to select

the collocation points in any optimum way. Nonetheless, if

we retained more terms in the trial solutions (say 10 terms),

the accuracy becomes better, as we might expect.

Let us return to the trial solution with two terms and

note that we used two collocation points at 1
3
and 2

3
, that is,

we used equal spacing collocation points. Now, let us try

two different collocation points x1 ¼ 0:285231517 and

x2 ¼ 0:765055325, which lead to the coefficients

a1 ¼ �0:925134 and a2 ¼ �2:040737. Knowing these two

coefficients, we can evaluate ha to obtain only 11% relative

error in contrast to 58% using equal spacing. This means

that the choice of the collocation points is critical and can-

not be undertaken in an arbitrary way. The full potential of

the collocation method can only be realized by judicious

selection of the collocation points. Moreover, the choice of

functions is critical. Orthogonal functions, such as Jacobi

polynomials, are particularly attractive, since they are com-

pact and contain only a few terms. One cannot expect good

results with any orthogonal polynomial. The last choices of

the two collocation points were in fact roots of the Jacobi

polynomial. They gave a good result because the weighting

function of the Jacobi polynomial is

xbð1� xÞa

and the effectiveness factor also has a weighting factor of a

similar form.

The essential features of the orthogonal collocation

method has already been highlighted. The word orthogonal

implies the Jacobi polynomials are orthogonal in the sense

of the integral shown in Eq. 8.83. We give more detailed

discussion in Section 8.2. Also, we again emphasize the ori-

gin of orthogonality relates to the Sturm–Liouville equa-

tion, discussed in Section 10.5.

Among the many variations of weighted residuals, the

collocation is the easiest to use because its formulation is

straightforward (owing to the Dirac delta function), the

accuracy is good, and if many collocation points are used,

the accuracy becomes excellent. With high-speed personal

computers, the computation time required for many such

terms is minimal. The subdomain and least squares methods

are more tedious to use. The Galerkin is used by applied

mathematicians in some specific cases, but it is not as popu-

lar as the orthogonal collocation technique.

Because it has become so widely used, we devote the

remainder of the chapter to orthogonal collocation. Before

discussing additional details, we introduce a number of pre-

liminary steps, which are needed for further development.

These steps include a discussion of Jacobi polynomials (its

choice has been explained above) and the Lagrangian inter-

polation polynomials. The Lagrangian interpolation poly-

nomial is chosen as a convenient vehicle for interpolation

between collocation points.
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The Jacobi polynomials are important in providing the

optimum positions of the collocation points. Since these

collocation points are not equally spaced, the Lagrangian

interpolation polynomials are useful to effect an approxi-

mate solution.

8.2 JACOBI POLYNOMIALS

Since all finite domains can be expressed in the range [0,1]

through a linear transformation, we will consider the Jacobi

polynomials defined in this domain. This is critical because

the orthogonality condition for the polynomials depends on

the choice of the domain. The Jacobi polynomial is a solu-

tion to a class of second-order differential equation defined

by Eq. 3.145.

The Jacobi polynomial of degree N has the power series

representation

J
ða;bÞ
N ðxÞ ¼

XN
i¼0

ð�1ÞN�i
gN;ix

i ð8:78Þ

with gN;0 ¼ 1. Note, the series contains a finite number of

terms (N), and is therefore compact (not carried to infinity).

Here, gN;i are constant coefficients, and a and b are

parameters characterizing the polynomials, as shown in

Eq. 8.83. That is, J
ða;bÞ
N ðxÞ is the polynomial orthogonal

with respect to the weighting function xbð1� xÞa. The
term ð�1ÞN�i

is introduced in the series to ensure the coef-

ficients g are always positive. Note that the Jacobi function

J
ða;bÞ
N ðxÞ is a polynomial of degree N, since the summation

in Eq. 8.78 is bounded and not infinite as with other orthog-

onal functions, such as Bessel’s.

8.2.1 Rodrigues Formula

The Jacobi polynomials are given explicitly by the

Rodrigues formula:

J
ða;bÞ
N ðxÞ xbð1� xÞa� � ¼ ð�1ÞNGðbþ 1Þ

GðN þ bþ 1Þ
dN

dxN
xNþbð1� xÞNþa� �

ð8:79Þ
where G is the gamma function and its definition and prop-

erties are detailed in Chapter 4. For many applications,

a ¼ b ¼ 0, and we may conveniently drop the superscripts,

that is, J
ð0;0Þ
N ¼ JN .

EXAMPLE 8.3

For a ¼ b ¼ 0, we have the following three Jacobi polynomials

ðN ¼ 1; 2; 3Þ using Eq. 8.79:
J1ðxÞ ¼ �1þ 2x ð8:80Þ

J2ðxÞ ¼ 6x2 � 6xþ 1 ð8:81Þ

J3ðxÞ ¼ 20x3 � 30x2 þ 12x� 1 ð8:82Þ

The curves for these three Jacobi polynomials are shown in

Fig. 8.3 over the domain [0,1]. It is important to note that J1 has

one zero, J2 has two zeros, and J3 has three zeros within the

domain [0,1]; zeros are the values of x, which cause JNðxÞ ¼ 0.

These zeros will be used later as the interior collocation points for

the orthogonal collocation method.

8.2.2 Orthogonality Conditions

Since the Jacobi polynomials belong to a class of orthogo-

nal polynomials, they satisfy the orthogonality condition

Z 1

0

xbð1� xÞa� �
J
ða;bÞ
j ðxÞJða;bÞN ðxÞ dx ¼ 0 ð8:83Þ

for j ¼ 0; 1; 2; . . . ; ðN � 1Þ, that is, all Jacobi polynomials

are orthogonal to each other except to itself (i.e., when

j¼N). This condition arises by consideration of the Sturm–

Liouville equation, the detailed discussion of which is given

in Section 10.5.1.

The integration is defined in the domain [0,1]. Outside

this domain, orthogonality cannot be guaranteed. Any phys-

ical systems having a finite domain can be easily scaled to

reduce to the domain [0,1].

The weighting function for this particular orthogonality

condition defined with reference to the Sturm–Liouville

equation is

WðxÞ ¼ xbð1� xÞa ð8:84Þ

FIGURE 8.3 Plots of three Jacobi polynomials.
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The exponents a and b are seen to dictate the nature of the

orthogonal Jacobi polynomials.

There are N equations of orthogonality (Eq. 8.83)

because j ¼ 0; 1; 2; . . . ;N � 1, and there are exactly N

unknown coefficients of the Jacobi polynomial of degree N

to be determined

gN;1; gN;2; gN;3; . . . ; gN;N

Note that gN;0 ¼ 1.

Solving these N linear equations for N unknown coeffi-

cients, the following explicit solution is obtained for g (Vil-

ladsen 1970)

gN;i ¼ N

i

� �
GðN þ i þ aþ bþ 1ÞGðbþ 1Þ
GðN þ aþ bþ 1ÞGði þ bþ 1Þ ð8:85aÞ

where the representation for the lead term is

N

i

� �
¼ N!

i!ðN � iÞ! ð8:85bÞ

The above equation provides the explicit formula for the

coefficients. During computation, it is easier to evaluate

coefficients using the following recurrence formula

gN;i

gN;i�1

¼ N � i þ 1

i
� N þ i þ aþ b

i þ b

starting with gN;0 ¼ 1.

Using the formula obtained above for the coefficients,

we can evaluate the first four Jacobi polynomials, with a ¼
b ¼ 0

J0 ¼ 1; J1 ¼ 2x� 1; J2 ¼ 6x2 � 6xþ 1;

J3 ¼ 20x3 � 30x2 þ 12x� 1

On inspection of these, we note that (except the first one,

which is equal to unity) all have zeros within the domain

from 0 to 1 (Fig. 8.3). Here, zeros are used to denote roots

of JNðxÞ ¼ 0, so that JNðxÞ has N values of x causing it to

become zero.

Since the orthogonal collocation method will require

roots of the Jacobi polynomial, we shall need to discuss

methods for the computation of zeros of J
ða;bÞ
N ðxÞ.

It has been proved by Villadsen and Michelsen (1978),

using the orthogonality condition in Eq. 8.83, that J
ða;bÞ
N has

N distinct, real-valued zeros in the domain [0,1].

If the Newton–Raphson method is applied using an ini-

tial guess x ¼ 0, the first root found will be x1. Once this

root is obtained, we can obtain the next root by suppressing

the previously determined zero at x1. In general, if

x1; x2; . . . ; xk are previously determined zeros, we can

suppress these roots by constructing the following function:

GN�k ¼ pNðxÞQk
i¼1ðx� xiÞ

ð8:86aÞ

where pNðxÞ is the rescaled polynomial

pNðxÞ ¼
J
ða;bÞ
N ðxÞ
gN;N

ð8:86bÞ

The Newton–Raphson formula to determine the root xkþ1 at

the ith iteration is

x
ðiÞ
kþ1 ¼ x

ði�1Þ
kþ1 � GN�kðxÞ

G0
N�kðxÞ

� �
x
ði�1Þ
kþ1

ð8:87aÞ

for i ¼ 1; 2; . . . , and the initial guess for xkþ1 is

x
ð0Þ
kþ1 ¼ xk þ e ð8:87bÞ

where e is a small number and a good starting value of

1� 10�4 is recommended.

The function in the bracket of Eq. 8.87a is obtained from

Eq. 8.86a and can be written explicitly as

GN�kðxÞ
G0

N�kðxÞ ¼
ðpNðxÞÞ=ðp0NðxÞÞ
� �

1� ðpNðxÞÞ=ðp0NðxÞÞ½ �Pk
i¼1

1

ðx� xiÞ
ð8:88aÞ

with pNðxÞ and p0NðxÞ determined from the following recur-

sive formula for computation:

pNðxÞ ¼ ðx� gNÞpN�1 � hNpN�2 ð8:88bÞ

p0NðxÞ ¼ pN�1 þ ðx� gNÞp0N�1 � hNp
0
N�2 ð8:88cÞ

where

g1 ¼
bþ 1

aþ bþ 2
;

gN ¼ 1

2
1� a2 � b2

ð2N þ aþ b� 1Þ2 � 1

" #
for N > 1

ð8:88dÞ

h1 ¼ 0; h2 ¼ ðaþ 1Þðbþ 1Þ
ðaþ bþ 2Þ2ðaþ bþ 3Þ ð8:88eÞ

hN ¼ ðN � 1ÞðN þ a� 1ÞðN þ b� 1ÞðN þ aþ b� 1Þ
ð2N þ aþ b� 1Þð2N þ aþ b� 2Þ2ð2N þ aþ b� 3Þ
for N > 2 ð8:88fÞ
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The recursive formula for pNðxÞ and p0NðxÞ are started with

N ¼ 1 and

p0 ¼ 1; p00 ¼ 0; p�1 and p0�1

are arbitrary

The choice of p�1 and p0�1 is immaterial because h1 is

zero in Eqs. 8.88b and 8.88c.

8.3 LAGRANGE INTERPOLATION

POLYNOMIALS

We have discussed a class of orthogonal functions called

Jacobi polynomials, which have been found to be quite use-

ful in the development of the choice of the interior colloca-

tion points for the orthogonal collocation method.

For a given set of data points ðx1; y1Þ; ðx2; y2Þ; . . . ;
ðxN ; yNÞ and ðxNþ1; yNþ1Þ, an interpolation formula passing

through all N þ 1ð Þ points is an Nth degree polynomial. We

shall call this an interpolation polynomial, and it is

expressed as

yNðxÞ ¼
XNþ1

i¼1

yiliðxÞ ð8:89Þ

where yN is the Nth degree polynomial, yi is the value of y at

the point xi, and liðxÞ is called the Lagrange interpolation

polynomial. It is defined as

liðxjÞ ¼ 0 i 6¼ j

1 i ¼ j

�
ð8:90aÞ

The Lagrange interpolation polynomial is a useful building

block. There are ðN þ 1Þ building blocks, which are Nth

degree polynomials. The building blocks are given as

liðxÞ ¼
YNþ1

j¼1
j 6¼i

ðx� xjÞ
ðxi � xjÞ ¼

pNþ1ðxÞ
ðx� xiÞ dpNþ1ðxiÞ

dx

� � ð8:90bÞ

where pNþ1ðxÞ is called the node polynomial. It is a N þ 1

degree polynomial and is defined as

pNþ1ðxÞ ¼ ðx� x1Þðx� x2Þ � � � ðx� xNÞðx� xNþ1Þ
ð8:91Þ

where xiði ¼ 1; 2; . . . ;N;N þ 1Þ are locations of the data

set. The pNþ1ðxÞ is called the node polynomial because it

passes through all the nodes xiði ¼ 1; 2; . . . ;N þ 1Þ.
Figure 8.4 shows typical plots of the Lagrangian interpo-

lation polynomials for x1 ¼ 0:044; x2 ¼ 0:35; x3 ¼ 0:76.
Note that they satisfy Eq. 8.90, for example, l1ðxÞ is unity
at x ¼ x1 and zero at x ¼ x2 and x ¼ x3.

The construction of the Lagrange interpolation polyno-

mial proceeds as follows. First, the N þ 1 interpolation

points are chosen, and then the N þ 1 building blocks liðxÞ
can be constructed (Eq. 8.90). If the functional values of y

at those N þ 1 points are known, the interpolation polyno-

mial is given in Eq. 8.89. Hence, the value of y at any point

including the interpolation points, say x�, is given by

yNðx�Þ ¼
XNþ1

i¼1

yiliðx�Þ ð8:92Þ

8.4 ORTHOGONAL COLLOCATIONMETHOD

The previous development on Jacobi and Lagrangian poly-

nomials allows us to proceed directly to computations for

the orthogonal collocation method.

8.4.1 Differentiation of a Lagrange Interpolation

Polynomial

The interpolation polynomial defined in Eq. 8.89 is a con-

tinuous function and therefore can be differentiated as well

as integrated.

Taking the first and second derivatives of the interpola-

tion polynomial (Eq. 8.89), we obtain

dyNðxÞ
dx

¼
XNþ1

i¼1

yi
dliðxÞ
dx

ð8:93Þ

d2yNðxÞ
dx2

¼
XNþ1

i¼1

yi
d2liðxÞ
dx2

ð8:94Þ

FIGURE 8.4 Typical plots of the Lagrangian interpolation

polynomials.
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In most practical problems, only the first two derivatives are

required, so these are presented here. However, if higher

derivatives are needed, the Lagrange interpolation polyno-

mial can be differentiated further.

In particular, if we are interested in obtaining the deriva-

tive at the interpolation points, we have

dyNðxiÞ
dx

¼
XNþ1

j¼1

dljðxiÞ
dx

yj ð8:95Þ

for i ¼ 1; 2; . . . ;N;N þ 1.

Similarly, the second derivative is obtained as

d2yNðxiÞ
dx2

¼
XNþ1

j¼1

d2ljðxiÞ
dx2

yj ð8:96Þ

for i ¼ 1; 2; 3; . . . ;N;N þ 1.

The summation format in the right-hand side (RHS) of

Eqs. 8.95 and 8.96 suggests the use of a vector representa-

tion for compactness, as we will show next.

We define the first derivative vector, composed of ðN þ 1Þ
first derivatives at the N þ 1 interpolation points, as

y0N ¼ dyNðx1Þ
dx

;
dyNðx2Þ

dx
; . . . ;

dyNðxNÞ
dx

;
dyNðxNþ1Þ

dx

� �T
ð8:97Þ

Similarly, the second derivative vector is defined as

y00N ¼ d2yNðx1Þ
dx2

;
d2yNðx2Þ

dx2
; . . . ;

d2yNðxNÞ
dx2

;
d2yNðxNþ1Þ

dx2

� �T
ð8:98Þ

The function vector is defined as values of y at N þ 1 collo-

cation points as

y ¼ y1; y2; y3; . . . ; yN ; yNþ1

� �T ð8:99Þ
With these definitions of vectors y and derivative vectors, the

first and second derivative vectors can be written in terms of

the function vector y using matrix notation:

y0 ¼ A � y ð8:100Þ

y00 ¼ B � y ð8:101Þ
where the matrices A and B are defined as

A ¼ aij ¼ dljðxiÞ
dx

; i; j ¼ 1; 2; . . . ;N;N þ 1

� 
ð8:102aÞ

and

B ¼ bij ¼ d2ljðxiÞ
dx2

; i; j ¼ 1; 2; . . . ;N;N þ 1

� 
ð8:102bÞ

The matrices A and B (see Do 1998, for MATLAB pro-

grams) are (Nþ 1, Nþ 1) square matrices. Once the Nþ 1

interpolation points are chosen, all the Lagrangian building

blocks ljðxÞ are completely known (Eq. 8.90), and thus the

matrices A and B are also known.

For computation purposes, aij and bij are calculated from

aij ¼ dljðxiÞ
dx

¼

1

2

p
ð2Þ
Nþ1ðxiÞ

p
ð1Þ
Nþ1ðxiÞ

j ¼ i

1

ðxi � xjÞ
p
ð1Þ
Nþ1ðxiÞ

p
ð1Þ
Nþ1ðxjÞ

i 6¼ j

8>>>>><
>>>>>:

ð8:103aÞ

and

bij ¼ d2ljðxiÞ
dx2

¼
1

3

p
ð3Þ
Nþ1ðxiÞ

p
ð1Þ
Nþ1ðxiÞ

j ¼ i

2aij aii � 1

ðxi � xjÞ
� �

j 6¼ i

8>>>><
>>>>:

ð8:103bÞ

where p
ð1Þ
Nþ1, p

ð2Þ
Nþ1, and p

ð3Þ
Nþ1 are calculated from the follow-

ing recurrence formula:

p0ðxÞ ¼ 1

pjðxÞ ¼ ðx� xjÞpj�1ðxÞ; j ¼ 1; 2; . . . ;N þ 1

p
ð1Þ
j ðxÞ ¼ ðx� xjÞpð1Þj�1ðxÞ þ pj�1ðxÞ

p
ð2Þ
j ðxÞ ¼ ðx� xjÞpð2Þj�1ðxÞ þ 2p

ð1Þ
j�1ðxÞ

p
ð3Þ
j ðxÞ ¼ ðx� xjÞpð3Þj�1ðxÞ þ 3p

ð2Þ
j�1ðxÞ

with

p
ð1Þ
0 ðxÞ ¼ p

ð2Þ
0 ðxÞ ¼ p

ð3Þ
0 ðxÞ ¼ 0

8.4.2 Gauss–Jacobi Quadrature

We have discussed the differentiation of the interpolation

polynomial. Now, we turn to the process of quadrature.2

This is often needed in solutions, such as chemical reaction

rates obtained as an integration of a concentration profile.

2Quadrature defines the process of expressing the continuous integralZ b

a

WðxÞf ðxÞ dx

as an approximate sum of termsZ b

a

WðxÞf ðxÞ dx �
XN
k¼1

wkf ðxkÞ

where xk are suitably chosen.
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Let yN�1 be the interpolation polynomial of degree

ðN � 1Þ, passing through N points ðx1; y1Þ; ðx2; y2Þ; . . .
ðxN; yNÞ presented as

yN�1ðxÞ ¼
XN
j¼1

yjljðxÞ ð8:104Þ

where ljðxÞ is the ðN � 1Þth degree Lagrange building

block polynomial, and it is given by

ljðxÞ ¼
YN
i¼1
i 6¼1

ðx� xiÞ
ðxj � xiÞ ¼

pNðxÞ
ðx� xjÞ dpNðxjÞ

dx

� � ;

pNðxÞ ¼
YN
i¼1

ðx� xiÞ

The interpolation polynomial, yN�1ðxÞ of Eq. 8.104, is con-
tinuous, and therefore we can integrate it with respect to x,

using a weighting functionW(x) as

Z 1

0

WðxÞyN�1ðxÞ dx ¼
Z 1

0

WðxÞ
XN
j¼1

yjljðxÞ
" #

dx

ð8:105Þ

When we interchange the summation sign and the integral

sign, the so-called quadrature relation arises:

Z 1

0

WðxÞyN�1ðxÞ dx ¼
XN
j¼1

yj

Z 1

0

WðxÞljðxÞ dx
� �

ð8:106Þ

Next, if we define

wj ¼
Z 1

0

WðxÞljðxÞ dx ð8:107Þ

which is called the quadrature weights, the above quadra-

ture (Eq. 8.106) becomes

Z 1

0

WðxÞyN�1ðxÞ dx ¼
XN
j¼1

wjyj ð8:108Þ

For a specific choice of weighting function, say the Jacobi

weight,

WðxÞ ¼ xbð1� xÞa ð8:109Þ

the quadrature weight then becomes

wj ¼
Z 1

0

xbð1� xÞaljðxÞ dx

If the N interpolation points are chosen as N zeros of the

Jacobian polynomial of degree N, the quadrature is called

the Gauss–Jacobi quadrature and wj are called the Gauss–

Jacobi quadrature weights.

For computational purposes, the following formula for

the Gauss–Jacobi quadrature weights can be obtained using

the properties of the Lagrangian interpolation polynomials

ljðxÞ:

wi ¼ ð2N þ aþ bþ 1Þcða;bÞN

xið1� xiÞ dpNðxiÞ
dx

� �2 ð8:110aÞ

where dpNðxiÞ=dx is calculated from the recurrence

formula

p
ð1Þ
j ¼ ðx� xjÞ pð1Þj�1ðxÞ þ pj�1ðxÞ

pjðxÞ ¼ ðx� xjÞpj�1ðxÞ

where p0ðxÞ ¼ 1 and p
ð1Þ
0 ðxÞ ¼ 0. Here, c

ða;bÞ
N is given

by Villadsen (1970):

c
ða;bÞ
N ¼ 1

g2N;N

G2ðbþ 1Þ N! GðN þ aþ 1Þ
GðN þ bþ 1Þ GðN þ aþ bþ 1Þ ð2N þ aþ bþ 1Þ

ð8:110bÞ

where gN;N is given in Eq. 8.85.

Of practical interest, in problem solving, the following

situation often arises. Suppose x1; x2; . . . ; xN are N roots of

an Nth degree Jacobi polynomial J
ða;bÞ
N . Now we choose the

ðN þ 1Þth point to be the end point of the domain (i.e.,

xNþ1 ¼ 1). The interpolation polynomial passing through

these N þ 1 points is the Nth degree polynomial, defined as

yN ¼
XNþ1

j¼1

yjljðxÞ ð8:111Þ

Now if we need to evaluate the quadrature integral

Z 1

0

xbð1� xÞayNðxÞ dx ¼
XNþ1

j¼1

wjyj ð8:112Þ

it is found that the first N quadrature weights are identical to

the quadrature weights obtained earlier (Eq. 8.110a) and

moreover wNþ1 ¼ 0. This means that adding one more point
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to the interpolation process will not increase the accuracy of

the quadrature, if the N interior interpolation points are cho-

sen as zeros of the Nth degree Jacobian polynomial

J
ða;bÞ
N ðxÞ. For improving the accuracy in the evaluation of

the integral (Eq. 8.112) when one or two boundary points

are used as extra interpolation points (in addition to the

interior collocation points), we need to use different quadra-

ture formula and this will be addressed in the next section.

8.4.3 Radau and Lobatto Quadrature

To improve the accuracy of the quadrature,

Z 1

0

xbð1� xÞayNðxÞ dx ð8:113Þ

when one extra interpolation point is added (say, xNþ1 ¼ 1),

the first N interior interpolation points must be chosen as

roots of the Jacobi polynomial

J
ðaþ1;bÞ
N ðxÞ ð8:114Þ

rather than as roots of J
ða;bÞ
N .

For practical computations, the following Radau weight-

ing formula was derived by Villadsen and Michelsen

(1978):

wi ¼ ð2N þ aþ bþ 2Þcðaþ1;bÞ
N

xi
dpNþ1ðxiÞ

dx

� �2 � K; pNþ1 ¼
YNþ1

j¼1

ðx� xjÞ

ð8:115aÞ

where K ¼ 1 for i¼ 1, 2, . . . ,N, and K ¼ 1=ðaþ 1Þ for

i ¼ N þ 1. The coefficient c
ðaþ1;bÞ
N is evaluated using

Eq. 8.110b with a being replaced by aþ 1.

Similarly, when the boundary point at x ¼ 0 is added to

the N interior interpolation points, the interior points must

be chosen as roots of the following Nth degree polynomial:

J
ða;bþ1Þ
N ðxÞ

For computations, the formula for Radau weight wi is

wi ¼ ð2N þ aþ bþ 2Þcða;bþ1Þ
N

ð1� xiÞ ðdpNþ1ðxiÞÞ=dx
� �2 � K;

pNþ1 ¼ x
YN
j¼1

ðx� xjÞ ð8:115bÞ

where K ¼ 1=ðbþ 1Þ for i ¼ 0, and K ¼ 1 for

i ¼ 1; 2; . . . ;N. The coefficient c
ða;bþ1Þ
N is evaluated using

Eq. 8.110b with b being replaced by bþ 1.

Finally, if both the end points (i.e., x ¼ 0 and x ¼ 1) are

included in the evaluation of the quadrature (Eq. 8.113), the

N interior interpolation points must be chosen as roots of

the following Nth degree polynomial:

J
ðaþ1;bþ1Þ
N ðxÞ

The computational formula for the Lobatto weight is

wi ¼ ð2N þ aþ bþ 3Þcðaþ1;bþ1Þ
N

dpNþ2ðxiÞ
dx

� �2 � K;

pNþ2 ¼ xðx� 1Þ
YN
j¼1

ðx� xjÞ ð8:116Þ

where K ¼ 1=ðbþ 1Þ for i ¼ 0, K ¼ 1 for i ¼ 1; 2; . . . ;N,
and K ¼ 1=ðaþ 1Þ for i ¼ N þ 1. The coefficient

c
ðaþ1;bþ1Þ
N is evaluated using Eq. 8.110b with a and b being

replaced by aþ 1 and bþ 1, respectively. See Do (1998)

for MATLAB programs to compute all quadratures weights.

8.5 LINEAR BOUNDARY VALUE PROBLEM:

DIRICHLET BOUNDARY CONDITION

The diffusion–reaction problem for slab catalyst particles is

a classical problem used to illustrate the orthogonal colloca-

tion method. We consider this problem next.

EXAMPLE 8.4

The problem of a slab catalyst particle, sustaining linear reaction

kinetics, was posed earlier and the dimensionless material balance

equations were given in Eq. 8.25.

Note, we must ensure the independent variable x has a domain

from 0 to 1. Here, we note that the problem is symmetrical at

x ¼ 0, so the following transformation is convenient:

u ¼ x2 ð8:117Þ

With this transformation, we have

dy

dx
¼ dy

du
� du
dx

¼ 2
ffiffiffi
u

p dy

du
ð8:118Þ

d2y

dx2
¼ d

dx
2

ffiffiffi
u

p dy

du

� �
¼ d

du
2

ffiffiffi
u

p dy

du

� �
� du
dx

¼ 2
dy

du
þ 4u

d2y

du2

ð8:119Þ
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Using these relations, the mass balance equation (Eq. 8.25a) and

the boundary condition at the catalyst surface (Eq. 8.25c) become

4u
d2y

du2
þ 2

dy

du
� f2y ¼ 0 ð8:120Þ

u ¼ 1; y ¼ 1 ð8:121Þ

At first glance, it may appear that we have made the problem more

difficult. However, the boundary condition at x ¼ 0 is no longer

needed owing to the transformation ðu ¼ x2Þ, which makes y

always an even function.

Since it is our ultimate objective to evaluate the effectiveness

factor (Eq. 8.30), we transform the integral in terms of the u vari-

able, that is,

h ¼
Z 1

0

y dx ¼ 1

2

Z 1

0

u�1=2y du ð8:122Þ

The weighting function for the above integral, by comparison with

Eq. 8.109, is simply

WðuÞ ¼ u�1=2ð1� uÞ0 ð8:123aÞ

so we conclude

a ¼ 0; b ¼ � 1
2

ð8:123bÞ

Now, if we choose ðN þ 1Þ interpolation points as N interior collo-

cation points in the domain [0,1] and the boundary point at u ¼ 1

to evaluate the integral of the form of Eq. 8.122, the N interior

collocation points ðu1; u2; u3; . . . ; uNÞ must be chosen as roots of

the Jacobi polynomial J
ðaþ1;bÞ
N ¼ J

ð1;�1=2Þ
N (see Eq. 8.114). The

ðN þ 1Þth interpolation point uNþ1 is 1.

The interpolation polynomial for this problem is

yNðuÞ ¼
XNþ1

j¼1

yj ljðuÞ ¼ lNþ1ðuÞ þ
XN
j¼1

yj ljðuÞ ð8:124Þ

where the building blocks lj are defined in Eq. 8.90. Comparing

Eq. 8.124 with the trial solution formula (8.5), we see the corre-

sponding

lNþ1 ¼ y0 and lj ¼ fj

Since the mass balance equation (Eq. 8.120) is valid at any point

inside the domain [0,1], we evaluate it at the ith interior colloca-

tion point as follows (note, as a reminder, the residual is zero at the

collocation points):

RðuiÞ ¼ 4u
d2y

du2

� �
i

þ 2
dy

du

� �
i

� f2y
� �

i
¼ 0 ð8:125Þ

for i ¼ 1; 2; . . . ;N.

But the derivatives at the point i are given by (Eqs. 8.95

and 8.96)

dy

du

� �
i

¼
XNþ1

j¼1

Aijyj ð8:126Þ

and

d2y

du2

� �
i

¼
XNþ1

j¼1

Bijyj ð8:127Þ

where yj is the unknown value of y at the interpolation point uj .

Now that the ðN þ 1Þ interpolation points are chosen, the matrices

A and B are completely known.

Substituting these derivatives (Eqs. 8.126 and 8.127) into

Eq. 8.125 yields

4ui
XNþ1

j¼1

Bijyj þ 2
XNþ1

j¼1

Aijyj � f2yi ¼ 0 ð8:128Þ

for i ¼ 1; 2; . . . ;N.
Because we know the value for y at the interpolation point

uNþ1 ¼ 1, we can remove the last term from each of the two series as

4ui
XN
j¼1

Bijyj þ Bi;Nþ1yNþ1

" #
þ 2

XN
j¼1

Aijyj þ Ai;Nþ1yNþ1

" #
� f2yi ¼ 0

ð8:129Þ

for i ¼ 1; 2; . . . ;N.
But the value of y at the boundary u ¼ 1 is yNþ1 ¼ 1, so the

above equation becomes

4ui
XN
j¼1

Bijyj þ 2
XN
j¼1

Aijyj � f2yi ¼ �4uiBi;Nþ1 � 2Ai;Nþ1

ð8:130Þ

for i ¼ 1; 2; . . . ;N.
Equation 8.130 represents N-coupled algebraic equations, with

N unknowns y1; y2; . . . ; yNð Þ, which are functional values of y at N

interior collocation points. Techniques for solving large systems of

algebraic equations are given in Appendix A. However, in the

present problem, the algebraic equations are linear and hence they

are amenable to solution by matrix methods. By defining the fol-

lowing known matrix C and vector b as

C ¼ Cij ¼ 4uiBij þ 2Aij � f2dij; i; j ¼ 1; 2; . . . ;N
� 	 ð8:131aÞ

b ¼ bi ¼ �4uiBi;Nþ1 � 2Ai;Nþ1; i ¼ 1; 2; . . . ;N
� 	 ð8:131bÞ

where

dij ¼
1 i ¼ j

0 i 6¼ j

(
ð8:132Þ
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and the unknown y as

y ¼ ½y1; y2; y3; . . . ; yN �T ð8:133Þ

Eq. 8.130 can be put into the following compact vector form:

C � y ¼ b ð8:134Þ

from which the solution is simply

y ¼ C�1 � b ð8:135Þ

where C�1 is the inverse of the matrix C.

Since the solution for y is known, the effectiveness factor h can

be obtained from Eq. 8.122. Substituting Eq. 8.124 into Eq. 8.122,

the quadrature for the integral representing effectiveness factor is

h ¼ 1

2

XNþ1

j¼1

wjyj ð8:136Þ

Since the point uNþ1 ¼ 1 is included in the collocation analysis, a

Radau weight is used (Eq. 8.115a).

Figure 8.5 illustrates the evolution of concentration profiles for

f ¼ 10 with the number of collocation points as parameter. It is

seen that when the reaction rate is high, the concentration profile

inside the particle is very sharp, so that about five interior colloca-

tion points are needed to get a satisfactory result. Figure 8.6 treats

the case for even faster rates, such that f ¼ 100. The extreme

sharpness of the profile requires about 10 or more interior colloca-

tion points to yield reasonable accuracy.

Table 8.2 summarizes computation of the effectiveness factor

using the orthogonal collocation method. Also shown in the table

is the relative error between the calculated effectiveness factors

with the exact solution, given by

h ¼ tanh ðfÞ
f

8.6 LINEAR BOUNDARY VALUE PROBLEM:

ROBIN BOUNDARY CONDITION

EXAMPLE 8.5

In this example, we reconsider the catalyst problem in the previous

example, but the bulk fluid moves slowly, so that finite film

FIGURE 8.5 Concentration profiles for f ¼ 10, illustrating

advantages of additional collocation points.

TABLE 8.2 Computations Using Orthogonal Collocation:

Diffusion in Catalyst Particle

Number of Interior

Collocation Point N f I

Percentage

Relative Error

1 10 0.186992 87

2 10 0.111146 11

3 10 0.100917 1

5 10 0.100001 0.001

1 100 0.166875 1569

2 100 0.067179 572

5 100 0.017304 73

7 100 0.012006 20

10 100 0.010203 2

15 100 0.010001 0.01

FIGURE 8.6 Concentration profiles for f ¼ 100, with number

of collocation points as parameter.
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resistance exists. The boundary condition at the catalyst surface

(Eq. 8.23b) is replaced by

r ¼ R; � De

dC

dr

� �
R

¼ kc CjR � C0


 � ð8:137Þ

which is simply a balance of flux to the solid phase and through

the film surrounding the exterior surface.

In nondimensional form, this boundary condition becomes

x ¼ 1;
dy

dx

� �
1

¼ Bið1� yj1Þ ð8:138Þ

where Bi ¼ kcR=De.

Thus, the mass balance equation (Eqs. 8.25a and 8.138) written

in terms of the variable uðu ¼ x2Þ as before,

4u
d2y

du2
þ 2

dy

du
� f2y ¼ 0 ð8:139Þ

u ¼ 1;
dy

du

� �
1

¼ Bi

2
ð1� yj1Þ ð8:140Þ

Again, our objective here is to calculate the overall reaction

rate per unit volume, and from this to obtain the effective-

ness factor. Therefore, the Nþ 1 interpolation points are

chosen with the first N points being interior collocation

points in the catalyst particle and the ðN þ 1Þth interpola-

tion point being the boundary point ðuNþ1 ¼ 1Þ. The N inte-

rior points are chosen as roots of the Jacobian polynomial

J
ð1;�1=2Þ
N . The optimal choice of N interior points in this

example as well as the last one was studied by Michelsen

and Villadsen (1980). This is done by using the quadrature

approach to the calculation of the integral (Eq. 8.7) in the

Galerkin method. A summary of this approach is presented

in Section 8.9.

The mass balance equation is discretized at the ith inte-

rior collocation point as before, and we have

4ui
XN
j¼1

Bijyj þ Bj;Nþ1yNþ1

" #
þ 2

XN
j¼1

Aijyi þ Ai;Nþ1yNþ1

" #

� f2yi ¼ 0 ð8:141Þ

for i¼ 1, 2, . . . , N.

In this case, unlike the last example where yNþ1 ¼ 1, the

value of y at the boundary point is not equal to unity, but is

governed by the boundary condition (Eq. 8.140). At the

boundary (i.e., at the point uNþ1), we have

dy

du

� �
u¼uNþ1

¼ Bi

2
ð1� yNþ1Þ ð8:142Þ

The first derivative at the point uNþ1 is given by (Eq. 8.95)

or (Eq. 8.100):

dy

du

� �
u¼uNþ1

¼
XNþ1

j¼1

ANþ1;jyj ð8:143Þ

When this is substituted into the boundary equation

(Eq. 8.142), we obtain

XN
j¼1

ANþ1;jyj þ ANþ1;Nþ1yNþ1 ¼
Bi

2
ð1� yNþ1Þ ð8:144Þ

where we removed the last term from the series in the LHS

of this equation.

Solving for yNþ1, we have

yNþ1 ¼
1

1þ ðð2ANþ1;Nþ1Þ=BiÞÞ 1� 2

Bi

XN
j¼1

ANþ1; j yj

" #

ð8:145Þ

Thus, we see that when Bi is extremely large (minuscule

film resistance), the above equation reduces to yNþ1 ¼ 1 as

required.

Next, substitute the equation for yNþ1 (Eq. 8.145 into

Eq. 8.141) and thus obtain the following linear equation in

terms of y:

D � y ¼ b ð8:146Þ

where

D ¼
(
Dij ¼ Cij � ð2=BiÞCi;Nþ1ANþ1;j

1þ ð2=BiÞANþ1;Nþ1

� f2dij;

i ; j ¼ 1 ; 2 ; . . . ;N

)
ð8:147Þ

C ¼ Cij ¼ 4uiBij þ 2Aij; i; j ¼ 1; 2; . . . ;N
� 	 ð8:148Þ

b ¼ bi ¼ � Ci;Nþ1

1þ ð2=BiÞANþ1;Nþ1

; i ¼ 1; 2; . . . ;N

� 
ð8:149Þ

Here, we have used a vector–matrix format to achieve com-

pactness. The inverse of Eq. 8.146 will yield the vector y,

that is, the concentrations yj at all interior collocation

points. Knowing the concentrations at all the interior collo-

cation points, the surface concentration yNþ1 is calculated

from Eq. 8.145. Figure 8.7 presents the concentration pro-

files for f ¼ 10, with the number of interior collocation

point and the Biot number being parameters. The effective-

ness factor is calculated using Eq. 8.136 using Radau
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weighting (Eq. 8.115a) since uNþ1 ¼ 1 was already

accounted for in the analysis. The results are given in the

fourth column in Table 8.3.

The exact solutions to this problem are

y ¼ cosh ðfxÞ
cosh ðfÞ þ ðf=BiÞsinh ðfÞ½ �

h ¼ tanh ðfÞ
f 1þ ðf=BiÞtanh ðfÞ½ �

Table 8.3 compares the numerical solution with the exact

solution. Even for sharp profiles, the collocation solutions

are comparable to the exact solution using only five collo-

cation points.

8.7 NONLINEAR BOUNDARY VALUE PROBLEM:

DIRICHLET BOUNDARY CONDITION

EXAMPLE 8.6

We wish to consider the catalyst particle for nonlinear conditions,

so the local reaction rate is given by

Rlocal ¼ gðCÞ ð8:150Þ
where g(C) is some nonlinear function of concentration.

Setting the shell balance at the position r, we obtain the follow-

ing mass balance equation:

De

d2C

dr2
� gðCÞ ¼ 0 ð8:151aÞ

subject to the boundary conditions

r ¼ 0;
dC

dr
¼ 0 ð8:151bÞ

r ¼ R; C ¼ C0 ð8:151cÞ

The effectiveness factor for a general nonlinear reaction rate is

defined as

h ¼
R
gðCÞ dVR
gðC0Þ dV ð8:152aÞ

For the slab geometry, dV ¼ Adr, where A is the cross-sectional

area of the catalyst. Hence, Eq. 8.152a becomes for a slab catalyst

h ¼ 1

RgðC0Þ
Z R

0

gðCÞ dr ð8:152bÞ

Thus, when we know the distribution of C, we replace gðCÞ in the

integrand of Eq. 8.152b and evaluate the integral numerically.

FIGURE 8.7 Plots of concentration profiles for f ¼ 10.

TABLE 8.3 Computations Using Orthogonal Collocation:

Effect of Boundary Resistance

N f Bi h Relative Error %

1 10 10 0.150327 200

2 10 10 0.069764 40

3 10 10 0.054334 9

5 10 10 0.050143 0.3

10 10 10 0.050000 0

1 10 20 0.166667 150

2 10 20 0.085722 29

3 10 20 0.070637 6

5 10 20 0.066794 0.2

10 10 20 0.066667 0
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Alternatively, we can calculate the effectiveness factor in the

following way.

Multiplying Eq. 8.151a by dr and integrating the result from

0 to R gives

Z R

0

gðCÞ dr ¼ De

dC

dr

����
R

When we substitute this result into Eq. 8.152b, we obtain

h ¼ De

RgðC0Þ
dC

dr

����
R

ð8:152cÞ

This means that the effectiveness factor can be calculated using

the derivative of concentration distribution at the exterior surface

of the particle.

By defining the following dimensionless variables and

parameters,

y ¼ C

C0

; x ¼ r

R
; f2 ¼ gðC0ÞR2

DeC0

; GðyÞ ¼ gðC0yÞ
gðC0Þ ð8:153Þ

the mass balance equation (Eq. 8.151) becomes

d2y

dx2
� f2GðyÞ ¼ 0 ð8:154aÞ

x ¼ 0;
dy

dx
¼ 0 ð8:154bÞ

x ¼ 1; y ¼ 1 ð8:154cÞ

In terms of dimensionless variables and parameters (Eq. 8.153),

the effectiveness factor given in Eq. 8.152c becomes

h ¼ C0De

R2gðC0Þ
dy

dx

����
1

¼ 1

f2

dy

dx

����
1

ð8:154dÞ

Thus, when y(x) is numerically determined from Eqs. 8.154a

to 8.154c, the effectiveness factor is readily evaluated from

Eq. 8.154d.

We introduce the u transformation as before ðu ¼ x2Þ, and the

mass balance equation now becomes

4u
d2y

du2
þ 2

dy

du
� f2GðyÞ ¼ 0 ð8:155aÞ

subject to

u ¼ 1; y ¼ 1 ð8:155bÞ

The reader is reminded again that when the symmetry trans-

formation ðu ¼ x2Þ is introduced, the boundary condition at
x ¼ 0 (Eq. 8.154b) is automatically satisfied.

If we now discretize the mass balance equation

(Eq. 8.155a) at the interior point i, we have

4ui
XN
j¼1

Bijyj þ Bi;Nþ1yNþ1

" #

þ 2
XN
j¼1

Aijyj þ Ai;Nþ1yNþ1

" #
� f2GðyiÞ ¼ 0 ð8:156Þ

for i¼ 1, 2, . . . , N.

Since yNþ1 ¼ 1 (Eq. 8.155b), the above equation

becomes

4ui
XN
j¼1

Bijyj þ Bi;Nþ1

" #
þ 2

XN
j¼1

Aijyj þ Ai;Nþ1

" #
� f2GðyiÞ ¼ 0

ð8:157Þ

for i¼ 1, 2, . . . , N. This equation represents a set of N

nonlinear coupled algebraic equations in terms of

y1; y2; . . . ; yN . They can be solved by one of several non-

linear algebraic solvers, such as the Newton–Raphson

method (see Appendix A).

To solve Eq. 8.157 by the Newton–Raphson procedure,

we define

FiðyÞ ¼ 4ui
XN
j¼1

Bijyj þ Bi;Nþ1

þ 2
XN
j¼1

Aijyj þ Ai;Nþ1

" #
� f2GðyiÞ ¼ 0 ð8:158Þ

for i¼ 1, 2, . . . , N, and where

y ¼ y1; y2; . . . ; yN½ �T ð8:159Þ
The iteration scheme for the Newton–Raphson is

yðkþ1Þ ¼ yðkÞ � dðkÞ ð8:160aÞ

where

JðyðkÞÞdðkÞ ¼ FðyðkÞÞ ð8:160bÞ

F ¼ F1 yð Þ;F2 yð Þ; . . . ;FNðyÞ½ �T ð8:160cÞ

J ¼ @Fi

@yj
¼ 4uiBij þ 2Aij � dijf

2 @GðyiÞ
@y

; i; j ¼ 1; 2; . . . ;N

( )

ð8:160dÞ
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where dij represents the Kronecker delta function,

defined as

dij ¼
1 i ¼ j

0 i 6¼ j

�
ð8:161Þ

To solve for the concentration vector y by the Newton–

Raphson technique, we need to select an initial set for yð0Þ.
With this initial guess, the function vector F and the Jaco-

bian J can be evaluated (Eqs. 8.160c and 8.160d). Using

any standard linear equation solver, the vector d can be cal-

culated from Eq. 8.160b and hence the first iterated solu-

tion yð1Þ is given in Eq. 8.160a. The process is repeated

until a convergence criterion is satisfied. One can choose

either of the following criteria for stopping the iteration:

XN
j¼1

y
ðkþ1Þ
j � y

ðkÞ
j

��� ���
y
ðkÞ
j

��� ��� < e

or

max
j

y
ðkþ1Þ
j � y

ðkÞ
j

��� ���
y
ðkÞ
j

��� ��� < e

If y is small, the following stopping criterion is recom-

mended: X
j

y
ðkþ1Þ
j � y

ðkÞ
j

��� ��� < e

A MATLAB program to solve the nonlinear Eq. 8.158 is

available (Do 1998).

Figure 8.8 presents computations of concentration

profiles for the case of second-order chemical kinetics.

The first stopping criterion was used to generate these plots,

and e was 0.001. Again, just as in previous examples, the

collocation solutions generated with five or more interior

collocation points agree fairly well with the exact solution,

which in the present case is taken as the solution generated

by using 19 interior collocation points. For this problem of

slab geometry, the analytical solution is given asZ 1

y

ds

2
R s

y0
GðmÞ dm

h i1=2 ¼ fð1� xÞ

where y0 is the value of y at x ¼ 0 and is given byZ 1

y0

ds

2
R s

y0
GðmÞ dm

h i1=2 ¼ f

Table 8.4 shows the numerically calculated effectiveness

factor and the relative error as function of the number of

interior collocation point.

8.8 ONE-POINT COLLOCATION

The orthogonal collocation method, as we have attempted

to illustrate in previous examples, sustains an accuracy,

which will increase with the number of points used. Occa-

sionally, one is interested in the approximate behavior of

the system instead of the computer intensive exact behavior.

To this end, we simply use only one collocation point, and

the result is a simplified equation, which allows us to

quickly investigate the behavior of solutions, for example,

to see how the solution would change when a particular

parameter is changed or to determine whether the solution

exhibits multiplicity. Once this is done, detailed analysis

can be carried out with more collocation points.

EXAMPLE 8.7

We illuminate these attractive features by considering the difficult

problems of diffusion and reaction in a slab catalyst sustaining
FIGURE 8.8 Approximate concentration profiles for second-

order chemical kinetics.

TABLE 8.4 Computations Using Orthogonal Collocation:

Nonlinear Reaction Kinetics

N f h Relative Error %

1 20 0.230000 109

2 20 0.130439 18

3 20 0.117599 7

5 20 0.111027 0.61

10 20 0.110356 0

19 20 0.110355 –
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highly nonlinear Hinshelwood kinetics. The mass balance equa-

tions written in nondimensional form are taken to be

d2y

dx2
� f2y

1þ dyþ gy2
¼ 0 ð8:162aÞ

x ¼ 0;
dy

dx
¼ 0 ð8:162bÞ

x ¼ 1; y ¼ 1 ð8:162cÞ

Noting the symmetry of this problem, we make the usual substitu-

tion u ¼ x2, and the mass balance equations become

4u
d2y

du2
þ 2

dy

du
� f2y

1þ dyþ gy2
¼ 0 ð8:163Þ

u ¼ 1; y ¼ 1 ð8:164Þ

Now we choose one collocation point u1 in the domain [0,1], and

since we know the value of y at the surface of the catalyst, we will

use it as the second interpolation point, that is, u2 ¼ 1. For these

two interpolation points, we have two Lagrangian interpolation

polynomials l1ðuÞ and l2ðuÞ, given as

l1ðuÞ ¼ u� u2

u1 � u2
; l2ðuÞ ¼ u� u1

u2 � u1
ð8:165Þ

where u1 is the collocation point chosen in the domain [0,1] and

u2 ¼ 1.

Using the Lagrangian interpolation polynomials l1ðuÞ and

l2ðuÞ, the approximate solution for yðuÞ can be written as

y ¼ l1ðuÞy1 þ l2ðuÞy2 ¼ l1ðuÞy1 þ l2ðuÞ ð8:166Þ

because y2 ¼ yðu2Þ ¼ yð1Þ ¼ 1.

Next, we substitute the approximate solution (8.166) into the

differential equation (8.163) and obtain the following residual:

R ¼ 4u
d2y

du2
þ 2

dy

du
� f2y

1þ dyþ gy2
ð8:167Þ

We now have only one unknown, which is the value of y at the

collocation point u1 and the test function for the collocation

method is

w1 ¼ dðu� u1Þ ð8:168Þ

Averaging the residual with the test function w1 is carried out

using the integral

Z 1

0

RðuÞw1ðuÞ du ¼
Z 1

0

4u
d2y

du2
þ 2

dy

du
� f2y

1þ dyþ gy2

� �
dðu� u1Þ du ¼ 0

that is,

4u1
d2y

du2

����
u1

þ 2
dy

du

����
u1

� f2y1
1þ dy1 þ gy21

¼ 0 ð8:169Þ

But

dy

du

����
u1

¼ dl1ðu1Þ
du

y1 þ
dl2ðu1Þ
du

¼ A11y1 þ A12 ð8:170aÞ

and

d2y

du2

����
u1

¼ d2l1ðu1Þ
du2

y1 þ
d2l2ðu1Þ
du2

¼ B11y1 þ B12 ð8:170bÞ

When we substitute Eq. 8.170 into Eq. 8.169, we get

C11y1 þ C12 � f2y1
1þ dy1 þ gy21

¼ 0 ð8:171Þ

where

C11 ¼ 4u1B11 þ 2A11 and C12 ¼ 4u1B12 þ 2A12

Equation 8.171 is a cubic equation in terms of y1; hence,

depending on the values of f, d, and g, there may exist three

solutions (multiple steady states) for this problem. Knowl-

edge of this will then help the comprehensive computation

using more collocation points.

This example serves as a means to allow workers to

quickly study the topology of a system before more time is

spent on the detailed computation of the governing

equations.

8.9 SUMMARY OF COLLOCATIONMETHODS

We have presented a family of approximate methods, called

weighted residuals, which are quite effective in dealing

with boundary value problems. The name suggests that we

need to generate residuals obtained when the approximate

solution is substituted into the governing equation. Then,

we try to minimize the residuals or force it to be asymptoti-

cally close to zero at certain points. A number of methods

have appeared, depending on how we minimize this

residual.

Among the five methods studied in this chapter, the

orthogonal collocation and the Galerkin methods seem to

provide the best approximate routes. The Galerkin method

provides solution with good accuracy, while the collocation

method is easy to apply and to program, owing to its

mechanical structure. The accuracy of collocation is com-

parable to Galerkin if the collocation points are properly
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chosen. Because of this attribute, the collocation method

has found wide applications in chemical engineering and

other branches of engineering.

We now summarize the steps taken in the application of

the orthogonal collocation procedure:

Step 1: For the given problem, normalize the range of the

independent variable to (0, 1). Any domain (a, b) can be

transformed to a (0, 1) by the transformation

x ¼ z� a

b� a

where x is the new independent variable lying in the

domain (0, 1).

Step 2: Next, observe the boundary conditions and if there

is symmetry at x ¼ 0, make use of the transformation

u ¼ x2. Similarly, if the problem is symmetrical at

x ¼ 1, use the transformation u ¼ ð1� xÞ2.
Step 3: Assume an approximate solution of the form in

Eq. 8.5, where y0ðxÞ satisfies the boundary conditions

exactly and the trial functions fiðxÞ satisfy the homoge-

neous boundary conditions. The problem at this point is

then reduced to the problem of solving for N unknown

coefficients. If the trial functions are chosen as the

Lagrange interpolation polynomials, liðxÞ (Section 8.3),

the coefficients ai then become the values of y at the

interpolation points xi. Interpolation points are those

used to generate the Lagrange interpolation polynomials.

It is to be noted that the Lagrange interpolation polyno-

mial is used here as a convenient vehicle to obtain a

solution. Any linearly independent set of trial functions

can be used in the collocation method.

Step 4: Substitute the approximate solution prescribed in

Step 3 into the governing equation to form a residual R

(Eq. 8.6), which is a function of x as well as N coeffi-

cients ai.

Step 5: This step is the most crucial step of the orthogonal

collocation method. If the Galerkin method is used for

minimizing the residual (remember that the Galerkin is

the best method among the many weighted residual

methods to provide solution of good accuracy), the fol-

lowing function of N coefficients ai is created:

Z 1

0

Rða1; a2; . . . ; aN ; xÞfjðxÞ dx ¼ 0 for j ¼ 1; 2; . . . ;N

These N integrals, in general, cannot be integrated ana-

lytically; hence, it must be done numerically by a quad-

rature method, such as the Gaussian quadrature

described in Appendix E. Before doing this, extract a

common factor of the form WðxÞ ¼ xbð1� xÞa from

the integrand of the above integral. This factor must be

the same for all values of j. The integral can then be

written as

Z 1

0

Rða1; a2; . . . ; aN ; xÞfjðxÞ dx

¼
Z 1

0

xbð1� xÞa� �
QjðxÞ dx for j ¼ 1; 2; . . . ;N

where

QjðxÞ ¼
Rða1; a2; . . . ; aN ; xÞfjðxÞ

xbð1� xÞa

If the Gaussian quadrature of N quadrature points is

applied to evaluate the above integral approximately, the

optimal quadrature formula would be

Z 1

0

xbð1� xÞa� �
QjðxÞ dx ¼

XN
k¼1

wkQjðxkÞ for j ¼ 1; 2; . . . ;N

where wk are the quadrature weights and xk are the

quadrature points, which are zeros of the Jacobi polyno-

mial J
ða;bÞ
N ðxÞ. Note that the number of quadrature points

used is the same as the number of unknown coefficients

ai. It should also be pointed out that the above quadra-

ture approximation will be exact if the polynomial Qj is

of degree less than or equal to 2N � 1 (see Appendix E).

Step 6: It is then clear from Step 5 that the optimal approx-

imation to the Galerkin method is simply to choose

Rða1; a2; . . . ; aN ; xkÞ ¼ 0 for k ¼ 1; 2; . . . ;N

Thus, if the collocation method is used, with the colloca-

tion points being zeros of the Jacobi polynomial

J
ða;bÞ
N ðxÞ, then the collocation method will closely

approximate the Galerkin method.

These outline the pedagogical steps for undertaking the

orthogonal collocation method. They are chosen so that the

collocation method closely approximates the Galerkin

method. Problem 8.9 illustrates in a practical way how to

apply these steps to an engineering problem.

8.10 CONCLUDING REMARKS

Boundary value problems are encountered so frequently in

modeling of engineering problems that they deserve special

treatment because of their importance. To handle such prob-

lems, we have devoted this chapter exclusively to the meth-

ods of weighted residual, with special emphasis on

orthogonal collocation. The one-point collocation method

is often used as the first step to quickly assess the behavior
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of the system. Other methods can also be used to treat

boundary value problems, such as the finite-difference

method. This technique is considered in Chapter 12, where

we use this method to solve boundary value problems and

partial differential equations.

PROBLEMS

8.11. The Lagrangian polynomials ljðxÞ defined for N þ 1

interpolation points are given as

ljðxÞ ¼
YNþ1

k¼1
k 6¼1

x� xk

xj � xk
for j ¼ 1; 2 � � � ;N þ 1

(a) Show that ljðxjÞ ¼ 1 and ljðxkÞ ¼ 0 for all k 6¼ j.

(b) Prove that the definition of the Lagrangian poly-

nomial is equivalent to the expression

ljðxÞ ¼ pNþ1ðxÞ
ðx� xjÞp0Nþ1ðxjÞ

where pNþ1ðxÞ is called the node polynomial (it is

called node because it becomes zero at the inter-

polation points) and is defined as

pNþ1ðxÞ ¼ ðx� x1Þðx� x2Þðx� x3Þ � � � ðx� xNÞðx� xNþ1Þ

and p0Nþ1 ¼ dpNþ1=dx.

8.22. For any set of Lagrangian polynomial ljðxÞ of degree
N, defined as in Problem 8.1, show that the sum of

these Nþ 1 Lagrangian polynomials is unity; that is,

XNþ1

j¼1

ljðxÞ ¼ 1

Hint: Start with the following function yNðxÞ repre-
senting the polynomial passing through N þ 1 points

ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxN ; yNÞ; ðxNþ1; yNþ1Þ:

yNðxÞ ¼
XNþ1

j¼1

ljðxÞyj

8.33. With the Lagrangian polynomials defined in part (b)

of Problem 8.1, show that they are orthogonal to each

other with respect to the weighting function WðxÞ ¼
xbð1� xÞa if the N þ 1 interpolation points

x1; x2; x3; . . . ; xN ; xNþ1 are chosen as roots of the

Jacobi polynomial J
ða;bÞ
Nþ1 ðxÞ ¼ 0; that is,

Z 1

0

xbð1� xÞa� �
lkðxÞljðxÞ dx ¼ 0 for k 6¼ j

Hint: Use the following orthogonality property of the

Jacobi polynomial:Z 1

0

xbð1� xÞa� �
xjJ

ða;bÞ
Nþ1 ðxÞ dx ¼ 0 for j ¼ 0; 1; 2; . . . ;N

8.43. Let x1; x2; x3; . . . ; xN be N interpolation points

chosen as roots of the Jacobi polynomial J
ða;bÞ
N ðxÞ ¼ 0

(i.e., 0 < xj < 1 for j ¼ 1; 2; . . . ;N). The ordinates

corresponding to these points are denoted as

y1; y2; y3; . . . ; yN ; and the polynomial of degree

N � 1; yN�1ðxÞ, passing through these N points

ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxN ; yNÞ, is given by the follow-

ing Lagrangian formula:

yN�1ðxÞ ¼
XN
j¼1

ljðxÞyj

where

ljðxÞ ¼ pNðxÞ
ðx� xjÞp0NðxjÞ

where pNðxÞ is the scaled Jacobi polynomial defined

as

pNðxÞ ¼ ðx� x1Þðx� x2Þðx� x3Þ � � � ðx� xNÞ ¼ J
ða;bÞ
N ðxÞ
gN;N

(a) Show that the integral of the function yN�1ðxÞ
with respect to the weighting function WðxÞ ¼
xbð1� xÞa from 0 to 1 is given by the following

quadrature:Z 1

0

xbð1� xÞa� �
yN�1ðxÞ dx ¼

XN
j¼1

wjyj

where

wj ¼
Z 1

0

xbð1� xÞa� �
ljðxÞ dx

(b) Use the results of Problems 8.2 and 8.3 to show

that the quadrature weights of part (a) can be writ-

ten as

wj ¼
Z 1

0

xbð1� xÞa� �
ljðxÞ
� �2

dx

(c) Starting from the equation in part (b) and the

definition of the Lagrangian polynomial lj(x),

show that

wj ¼ ð2N þ aþ bþ 1Þcða;bÞN

xjð1� xjÞ ðdpNðxjÞÞ=dx
� �2
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where

c
ða;bÞ
N ¼

Z 1

0

xbð1� xÞa� �
p2NðxÞ dx > 0

8.53. Let x1; x2; x3; . . . ; xN be N interpolation points chosen

as roots of the Jacobi polynomial J
ða;bÞ
N ðxÞ ¼ 0

(i.e., 0 < xj < 1 for j ¼ 1; 2; . . . ;N) and the

ðN þ 1Þth interpolation point is xNþ1 ¼ 1. The ordi-

nates corresponding to these ðN þ 1Þ points are

denoted as y1; y2; y3; . . . ; yN , and yNþ1, and the polyno-

mial of degree N, yNðxÞ, passing through these N þ 1

points ðx1;y1Þ; ðx2; y2Þ; . . . ; ðxN ; yNÞ; ðxNþ1; yNþ1Þ, is
given by the Lagrangian formula

yNðxÞ ¼
XNþ1

j¼1

ljðxÞyj

where

ljðxÞ ¼ pNþ1ðxÞ
ðx� xjÞp0Nþ1ðxjÞ

with pNþ1ðxÞ being the node polynomial defined as

pNþ1ðxÞ ¼ ðx� x1Þðx� x2Þðx� x3Þ � � � ðx� xNÞðx� xNþ1Þ
¼ p

ða;bÞ
N ðxÞ � ðx� 1Þ

where p
ða;bÞ
N ðxÞ is the scaled Jacobi polynomial:

p
ða;bÞ
N ðxÞ ¼ J

ða;bÞ
N ðxÞ
gN;N

(a) Show that the integral of the function yNðxÞ with
respect to the weighting function WðxÞ ¼
xbð1� xÞa from 0 to 1 is given by the quadrature

Z 1

0

xbð1� xÞa� �
yNðxÞ dx ¼

XNþ1

j¼1

wjyj

where

wj ¼
Z 1

0

xbð1� xÞa� �
ljðxÞ dx

(b) Show that wj (for j ¼ 1; 2; . . . ;N) are identical to

the quadrature weights obtained in Problem 8.4,

where N interpolation points are used.

(c) Prove that wNþ1 ¼ 0, which implies that the extra

interpolation point at xNþ1 is not taken into

account in the evaluation of the numerical

quadrature.

8.63. Similar to Problem 8.5, let x1; x2; x3; . . . ; xN be N

interpolation points chosen as roots of the Jacobi

polynomial J
ða;bÞ
N ðxÞ ¼ 0 (i.e., 0 < xj < 1 for

j ¼ 1; 2; . . . ;N) and x0 ¼ 0 is the additional interpo-

lation point. The ordinates corresponding to these

ðN þ 1Þ points are y0; y1; y2; y3; . . . ; yN and the

polynomial of degree N, yNðxÞ, passing through these

N þ 1 points ðx0; y0Þ; ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxN ; yNÞ
is given by the Lagrangian formula:

yNðxÞ ¼
XN
j¼0

ljðxÞyj

where

ljðxÞ ¼ pNþ1ðxÞ
ðx� xjÞp0Nþ1ðxjÞ

with pNþ1ðxÞ being the node polynomial defined as

pNþ1ðxÞ ¼ ðx� x0Þðx� x1Þðx� x2Þ � � � ðx� xNÞ
¼ x � pða;bÞN ðxÞ

where p
ða;bÞ
N ðxÞ is the scaled Jacobi polynomial

p
ða;bÞ
N ðxÞ ¼ J

ða;bÞ
N ðxÞ
gN;N

(a) Show that the integral of the function yNðxÞ with
respect to the weighting function WðxÞ ¼
xbð1� xÞa from 0 to 1 is given by the quadratureZ 1

0

xbð1� xÞa� �
yNðxÞ dx ¼

XN
j¼0

wjyj

where

wj ¼
Z 1

0

xbð1� xÞa� �
ljðxÞ dx

(b) Show that wj (for j ¼ 1; 2; . . . ;N) are identical to

the quadrature weights obtained in Problem 8.4,

where N interpolation points are used and w0 ¼ 0.

This, like Problem 8.5, means that adding an extra

interpolation point either at x ¼ 1 or x ¼ 0 does

not help to improve the accuracy of the quadra-

ture. Even when N extra interpolation points are

added in addition to the N collocation points as

roots of J
ða;bÞ
N x ¼ 0, there is no net effect of this

addition. This is because the N ordinates yj at the

zeros of J
ða;bÞ
N ðxÞ ¼ 0 are sufficient to exactly

integrate a polynomial of degree 2N � 1.

8.7�. It is shown in Problems 8.5 and 8.6 that adding an

extra interpolation point or even N interpolation

points to the N interpolation points, which are zeros
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of J
ða;bÞ
N ðxÞ ¼ 0, does not help to improve the evalua-

tion of the integral by quadratureZ 1

0

xbð1� xÞa� �
yðxÞ dx

Now reconsider Problem 8.5 where ðN þ 1Þ interpo-
lation points are used. The Nth degree polynomial

passing through N þ 1 points ðx1; y1Þ; ðx2; y2Þ; . . . ;
ðxN ; yNÞ; ðxNþ1; yNþ1Þ is given by

yNðxÞ ¼
XNþ1

j¼1

ljðxÞyj

where ljðxÞ is given as in Problem 8.5.

(a) Construct a 2Nth degree polynomial as follows:

y2NðxÞ ¼ yNðxÞ þ GN�1 � ð1� xÞ � pðaþ1;bÞ
N ðxÞ

where GN�1 is any ðN � 1Þth degree polynomial

and p
ðaþ1;bÞ
N ðxÞ is the scaled Jacobi polynomial:

p
ðaþ1;bÞ
N ðxÞ ¼ J

ðaþ1;bÞ
N ðxÞ
gN;N

Evaluate the following integralZ 1

0

xbð1� xÞa� �
y2NðxÞ dx

by the quadrature method and show that it is equal

to Z 1

0

xbð1� xÞa� �
y2NðxÞ dx ¼

XNþ1

j¼1

wjyj

where

wj ¼
Z 1

0

xbð1� xÞa� �
ljðxÞ dx

if the N þ 1 interpolation points are chosen such

that the first N interpolation points are roots of

the Jacobi polynomial J
ðaþ1;bÞ
N ðxÞ ¼ 0 and the

ðN þ 1Þth point is xNþ1 ¼ 1. This quadrature

formula is called the Radau quadrature. It can

exactly integrate any polynomial of degree 2N.

8.83. There are a number of ways to assume the form of the

approximate solution. One way, which is used often in

the text, is the power law expression:

yN ¼
XN
j¼0

ajx
j

where the subscript N means that the approximate

polynomial has the degree N. Another way, also

equally useful, is the use of the Jacobi polynomials as

the expansion terms, given as

yN ¼
XN
j¼0

bjJ
ða;bÞ
j ðxÞ

where J
ða;bÞ
j ðxÞ is the Jacobi polynomial of degree j.

(a) Make use of the following orthogonality propert-

ies of the Jacobi polynomial:

Z 1

0

xbð1� xÞa� �
J
ða;bÞ
j ðxÞJða;bÞk ðxÞdx ¼ 0 for k 6¼ j

to show how the coefficients bj are determined in

terms of the coefficients aj .

8.9�. Modeling of a cylindrical catalyst with an nth order

chemical reaction under the isothermal conditions

gives rise to the following equation:

De

1

r

d

dr
r
dC

dr

� �
� rpkC

n ¼ 0

where kCn is the chemical reaction rate per unit mass

of the catalyst and De is the effective diffusivity.

Assuming that the fluid surrounding the catalyst is

vigorously stirred, the following boundary conditions

can be taken:

r ¼ 0;
dC

dr
¼ 0 and r ¼ R; C ¼ C0

where C0 is the constant bulk concentration and R is

the particle radius.

(a) Show that the above dimensional equation can be

cast into the following nondimensional form:

1

x

d

dx
x
dy

dx

� �
� f2yn ¼ 0

subject to

x ¼ 0;
dy

dx
¼ 0 and x ¼ 1; y ¼ 1

What are the definitions of y, x, and f that yield

the above form of nondimensional equations?
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(b) Because of the symmetry of the problem around

the point x ¼ 0, it is convenient to use the follow-

ing symmetry transformation u ¼ x2. Show that

the new equations written in terms of the new

variable u are

4u
d2y

du2
þ 4

dy

du
� f2yn ¼ 0; u ¼ 1; y ¼ 1

Note that the center boundary condition is not

needed because of the symmetry transformation.

(c) To solve the equations in part (b) using the

method of weighted residual, assume that the

approximation solution has the form

ya ¼ 1þ a1ð1� uÞ

where a1 is the unknown coefficient to be found.

Note that this assumed form is made to satisfy the

boundary condition at u ¼ 1. Use this approxi-

mate solution in the governing equation of part

(b) to show that the residual is

Rða1; uÞ ¼ �4a1 � f2½1þ a1ð1� uÞ�n

The residual is a function of both the independent

variable u and the unknown coefficient a1.

(d) Apply the method of collocation with a test

function dðu� u1Þ to show that the equation

for a1 is

Z 1

0

Rða1; uÞdðu� u1Þ du ¼

�4a1 � f2 1þ a1ð1� u1Þ½ �n ¼ 0

where u1 is some arbitrary collocation point in

the domain (0, 1). The above equation is a non-

linear algebraic equation, which can be solved for

a1 once the collocation point u1 is chosen.

(e) Apply the Galerkin method with the test function

ð1� uÞ to show that the equation for a1 is

expressed in the following form of the integral:

R 1

0
Rða1; uÞð1� uÞ du

¼ R 1

0
�4a1 � f2 1þ a1 1� uð Þ½ �n� 	ð1� uÞ du ¼ 0

For integer n, the above integral can be analyti-

cally integrated; while for noninteger n, it must be

evaluated numerically or using some form of

numerical quadrature.

(f) Now try the numerical quadrature3 approach to

approximate the integral of part (e) and show that

the approximation isZ 1

0

Rða1; uÞð1� uÞ du �
XM
j¼1

wjRða1; ujÞ

where uj are quadrature points, wj are the quadra-

ture weights, and M is the number of such points.

Show that the optimal choice of these M quadra-

ture points are roots of J
ð1;0Þ
M ðuÞ.

Now take only one quadrature point, and this

point will be the root of the following Jacobi poly-

nomial of degree 1; J
ð1;0Þ
1 ðxÞ, which is found in

Problem 8.14 as

J
ð1;0Þ
1 ðxÞ ¼ 3u� 1 ¼ 0; i:e:; u1 ¼ 1

3

Show that the resulting equation for a1 for the

Galerkin method is identical to the equation for a1
obtained by the collocation method. This means

that collocation and Galerkin methods yield the

same answer for a1, if the collocation point is cho-

sen as a root of the proper Jacobi polynomial, and

the quadrature approximation of the integral is

exact.4

(g) If the chemical reaction is of first order ðn ¼ 1Þ,
show that the quadrature approximation of the

integral obtained for the Galerkin method

Z 1

0

Rða1; uÞð1� uÞ du ¼ w1Rða1; u1Þ

is exact. This means that the Galerkin and the

collocation methods will yield identical approx-

imate solutions if the collocation point is

chosen as root of the Jacobi polynomial

J
ð1;0Þ
1 ¼ 0 ði:e:; u1 ¼ 1=3Þ. For such a situation,

3 The approximation of the integralZ 1

0

WðxÞf ðxÞ dx with WðxÞ ¼ xbð1� xÞa

by the quadrature method isZ 1

0

WðxÞf ðxÞ dx �
XM
k¼1

wkf ðxkÞ

where there exists an optimal choice of quadrature points, and these points

are roots of theMth degree Jacobi polynomial J
ða;bÞ
M ðxÞ ¼ 0.

4 Using M quadrature points (which are roots of the proper Jacobi polyno-

mial) in the numerical quadrature, the quadrature approximation will be

exact if the function R(u) is a polynomial of degree less than or equal to

2M � 1.
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the collocation method is called the orthogonal

collocation method because the Jacobi polyno-

mial belongs to a class of orthogonal functions.

(h) Now considering the second-order chemical

reaction ðn ¼ 2Þ, show that the number of quadra-

ture points required to yield exact evaluation of

the integral Z 1

0

Rða1; uÞð1� uÞ du

by the method of quadrature is 2, with the two

quadrature points being roots of J
ð1;0Þ
2 ðxÞ ¼ 0.

Obtain the expression for this Jacobi polynomial

of degree 2 and hence derive the solutions for

these two quadrature points.

(i) The previous parts (a–h) consider only the one-

term approximate solution. Now consider the fol-

lowing N-terms trial solution:

ya ¼ 1þ
XN
j¼1

ajð1� uÞu j�1

where ajð j ¼ 1; 2; . . . ;NÞ are N unknown coeffi-

cients to be found.

Show that the residual generated by this choice

of approximate solution is

RNða1; a2; . . . ; aN ; uÞ

¼ 4
XN
j¼1

aj ðj � 1Þ2uj�2 � j2uj�1
h i

�f2 1þ ð1� uÞ
XN
j¼1

aju
j�1

" #n

(j) Now apply the collocation method with the N

test functions dðu� ukÞ (for k ¼ 1; 2; . . . ;N),
where uk are collocation points to show that the

N nonlinear algebraic equations to be solved for

aj’s are

RNða1; a2; . . . ; aN ; ukÞ

¼ 4
XN
j¼1

aj ðj � 1Þ2uj�2
k � j2u

j�1
k

h i

�f2 1þ ð1� ukÞ
XN
j¼1

aju
j�1
k

" #n

¼ 0

for k ¼ 1; 2; 3; . . . ;N.

(k) Now apply the Galerkin method with the N test

functions ð1� uÞuk�1 (for k ¼ 1; 2; . . . ;N) to

show that the N equations for aj’s written in the

form of integral areZ 1

0

RNða1; a2; . . . ; aN ; uÞ ð1� uÞuk�1
� �

du

¼ 0 for k ¼ 1; 2; . . . ;N

where RN is as given in part (i). These integrals

must be evaluated numerically or approximated

by the following quadrature using M quadrature

points:

R 1

0
RNða1; a2; . . . ; aN ; uÞuk�1
� �ð1� uÞ du

�
XM
j¼1

wj RNða1; a2; . . . ; aN ; ujÞuk�1
j

h i
¼ 0

for k ¼ 1; 2; . . . ;N

The M quadrature points are roots of the Jacobi

polynomial of degree M, J
ð1;0Þ
M ðxÞ ¼ 0. Show that

the above quadrature approximation is the exact

representation of the integral if

M � Nðnþ 1Þ
2

(l) Show that one trivial way to satisfy the nonlinear

algebraic equations in part (k) is to set

RNða1; a2; . . . ; aN ; ujÞ ¼ 0 for j ¼ 1; 2; . . . ;M

and hence show that aj’s can be determined if the

number of quadrature points are chosen the same

as the number of coefficient N in the trial solution.

When this is the case, the Galerkin is “best”

approximated by the collocation method if the

collocation points are chosen as roots of the Nth

degree Jacobi polynomial J
ð1;0Þ
N ðxÞ ¼ 0.

(m)Prove that if the chemical reaction is of first order,

the collocation method with N collocation points

chosen as roots of J
ð1;0Þ
N ðxÞ ¼ 0 is identical to the

Galerkin method.

This example illustrates how collocation points

should be optimally chosen so that they can closely

match the Galerkin method.

8.103. The Jacobi polynomial can be expressed conve-

niently as

J
ða;bÞ
N ðxÞ ¼

XN
j¼0

ð�1ÞN�j
g jx

j; with g0 ¼ 1
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The N coefficients g jð j ¼ 1; 2; . . . ;NÞ are deter-

mined from the following N orthogonality condition

equations:

Z 1

0

xbð1� xÞa� �
J
ða;bÞ
k ðxÞ � Jða;bÞN ðxÞ dx ¼ 0

for k ¼ 0; 1; 2; . . . ;N � 1

(a) Show that the above orthogonality condition

equations are equivalent toZ 1

0

xbð1� xÞa� �
xkJ

ða;bÞ
N ðxÞ dx ¼ 0;

for k ¼ 0; 1; 2; . . . ;N � 1

(b) Use the equations of part (a) and then show that

the linear equations for solving for g j’s are

Ag ¼ b

where A is a coefficient matrix of size N � N and

b is a constant vector, taking the form

aij ¼ Gðbþ i þ jÞGðaþ 1Þð�1ÞN�j

Gðbþ aþ i þ j þ 1Þ

bi ¼ �ð�1ÞN Gðbþ aþ iÞGðaþ 1Þ
Gðbþ aþ i þ 1Þ

for i; j ¼ 1; 2; . . . ;N.

8.113. Show that

C
ða;bÞ
N ¼

Z 1

0

xbð1� xÞa� �
J
ða;bÞ
N ðxÞ

h i2
dx

¼ Gðb þ 1 Þ½ �2GðN þ aþ 1ÞðN!Þ
GðN þ bþ 1ÞGðN þ aþ bþ 1Þð2N þ aþ bþ 1Þ

Hint: Use the Rodrigues formula and apply integra-

tion by parts N times.

8.122. Start with the definition of the Jacobi polynomial to

prove that

dJ
ða;bÞ
N ðxÞ
dx

¼ NðN þ aþ bþ 1Þ
bþ 1

J
ðaþ1; bþ1Þ
N�1 ðxÞ

8.133. Use the orthogonality condition defining Jacobi

polynomial to prove that all N zeros of the Jacobi

polynomial J
ða;bÞ
N ðxÞ ¼ 0 are real and that they lie

between 0 and 1.

8.141. (a) Use the Newton formula (Eq. 8.87) to determine

roots of the following Jacobi polynomials:

J
ð0;0Þ
N ðxÞ; J

ð1;1Þ
N ðxÞ; J

ð0;1Þ
N ðxÞ; J

ð1;0Þ
N ðxÞ

for N ¼ 1; 2; 3 and 5

Explain the shift of the zeros in the domain [0,1]

as a and b change.

(b) Write the differential equation satisfied by each

polynomial.

8.151. Repeat Problem 8.14 using the Jacobi polynomials

J
ð1;�1=2Þ
N ðxÞ; J

ð1; 0Þ
N ðxÞ and J

ð1; 1=2Þ
N ðxÞ

for N¼ 1, 2, 3, and 5. These roots are used as inter-

polation points in the orthogonal collocation analysis

of a slab, a cylinder, and a spherical particle,

respectively.

8.16. Calculate the matrices A and B for two collocation

points chosen as roots of J
ð0;�1=2Þ
2 using Eq. 8.103

and show that the sum of all rows is identically zero.

Hint: Use the definition of the matrices A and B in

Eq. 8.102.

8.172. Use the five different methods of weighted residual

to obtain approximate solutions for the equation

d

dx
ð1þ yÞ dy

dx

� �
¼ 10y

subject to the following conditions:

x ¼ 0;
dy

dx
¼ 0

and

x ¼ 1; y ¼ 1

(a) First, try the approximate solution

ya ¼ 1þ a1ð1� x2Þ

which satisfies the boundary conditions. Substi-

tute this approximate solution to the equation to

form a residue, and then use the test function

appropriate for each method of weighted residual

to obtain a solution for a1 and hence ya. Compare

the approximate solution with the exact solution

obtained in part (c).
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(b) To improve the accuracy of the approximate solu-

tion, use the following trial solution with two

unknown coefficients:

ya ¼ 1þ a1ð1� x2Þ þ a2x
2ð1� x2Þ

Substitute this approximate solution with yet to be

determined coefficients into the governing equa-

tion to form a residue, which is then forced to

zero in some average sense. For each of the meth-

ods of weighted residual, use two test functions to

determine the two coefficients and then compare

this approximate solution with that in part (a).

(c) To obtain the exact solution of the governing

equation, put

p ¼ dy

dx

and then show that the equation will take the form

p
d

dy
ð1þ yÞp½ � ¼ 10y

Next, set u ¼ ð1þ yÞ to show the new equation is

p
dðupÞ
du

¼ 10ðu� 1Þ

To put this equation in a separable form, multiply

both sides of the equation by u and show that the

separable form is

ðupÞ dðupÞ ¼ 10uðu� 1Þ du
Integrate this new separable form with the condi-

tion at x ¼ 0

x ¼ 0; y ¼ y0; p ¼ dy

dx
¼ 0

to obtain the equation

p ¼ dy

dx
¼

ffiffiffiffiffi
20

p

1þ y

� ð1þ yÞ3 � ð1þ y0Þ3
3

� ð1þ yÞ2 � ð1þ y0Þ2
2

" #1=2

where y0 is the value of y at x¼ 0, which is yet to

be determined at this stage.

Put the new equation in a separable form and

integrate it from x to 1 to show that the solution

for y is simplyZ 1

y

ð1þ sÞ ds
ð1þ sÞ3 � ð1þ y0ÞÞ3

3
�
ð1þ sÞ2 � ð1þ y0Þ2

2

" #1=2

¼
ffiffiffiffiffi
20

p
ð1� xÞ

To find y0, simply put x ¼ 0 into the above equa-

tion and show an implicit equation for y0 is

Z 1

y0

ð1þ sÞ ds
ð1þ sÞ3 � ð1þ y0Þ3

3
�
ð1þ sÞ2 � ð1þ y0ÞÞ2

2

" #1=2

¼
ffiffiffiffiffi
20

p

where s is the dummy integration variable. Note

the integrand! 1, as s ! y0.

8.183. Transport of solute through membrane is often lim-

ited by the ability of the solute to move (diffuse)

through the membrane. If diffusion through the

membrane is the rate-controlling step, the usual rela-

tion to describe such transport is Fick’s law (see

Problem 6.11). Usually the diffusion coefficient

increases with concentration. Set up a material bal-

ance of a solute within a thin shell in the membrane

to show that the governing equation will take the

form at steady state

d

dr
DðCÞ dC

dr

� �
¼ 0

where r is the coordinate, taking the origin at the

feed side of the membrane. If on the collection side,

the solute is swept away quickly with a carrier fluid,

then the solute concentrations at both sides of the

membrane are C0 and 0, respectively.

(a) By setting y ¼ C=C0, x ¼ r=L, and f ðyÞ ¼
DðCÞ=DðC0Þ, where L is the membrane thickness,

show that the mass balance equation will take the

following dimensionless form:

d

dx
f ðyÞ dy

dx

� �
¼ 0

The boundary conditions at two sides of the mem-

brane in a nondimensional form are

x ¼ 0; y ¼ 1

x ¼ 1; y ¼ 0

For the purpose of computation in this problem,

take the following two forms for f(y):

f ðyÞ ¼
1þ sðy� 1Þ
exp sðy� 1Þ½ �

(
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(b) Taking note of the asymmetric boundary

conditions, use the following equation as a trial

solution:

ya ¼ 1� xþ a1ðx� x2Þ

Apply the methods of collocation and Galerkin to

obtain the approximate solutions.

(c) Repeat part (b) with the following trial solution

having two coefficients:

ya ¼ 1� xþ a1ðx� x2Þ þ a2ðx� x3Þ

For s ¼ 0:8, compare the solutions with those

obtained in part (b) and suggest an objective basis

for assessing improvement between the two.

Use the following exact solution with which to

compare the two approximate solutions:

R 1

y
f ðsÞ dsR 1

0
f ðsÞ ds

¼ 1� x

8.191. Problems 8.17 and 8.18 deal with simple diffusion

problems with symmetry and asymmetry boundary

conditions. The methods of weighted residual can

also be applied to cases where a source term appears

in the equation and such a source term can be a dis-

continuous function within the spatial domain, such

as the following problem of diffusion of material in a

slab with a mass production source. The governing

equations are

d2y

dx2
þ f ðxÞ ¼ 0

where

f ðxÞ ¼
1; 0 < x < 1

2

0; 1
2
< x < 1

(

The boundary conditions at two sides of the slab are

taken to be

x ¼ 0; y ¼ 0

x ¼ 1; y ¼ 0

This set of equations can also describe the heat con-

duction in a slab solid object with a heat source

within the slab.

(a) Polynomial trial solutions have been used in Prob-

lems 8.17 and 8.18. This time try the following

trial solution of trigonometric form:

ya ¼ a1 sin ðpxÞ

and use the collocation method to find the

coefficient a1. Choose x1 ¼ 1
2
(take f ð1

2
Þ ¼ 1

2
).

(b) Improve the trial solution by having two terms in

the solution; that is,

ya ¼ a1 sinðpxÞ þ a2 sinð2pxÞ

This problem shows that the trial solutions need

not be in the polynomial form used in the text as

well as in Problems 8.17 and 8.18, and it also

shows that as the number of terms used in the trial

solution increases, the analysis involving the poly-

nomial is somewhat simpler than that using func-

tions such as trigonometric functions.

8.20�. The mass and heat balance equations in a catalyst for

a first-order reaction are

d2y

dx2
� f2 exp

gu

1þ u

� �
y ¼ 0

d2u

dx2
þ bf2 exp

gu

1þ u

� �
y ¼ 0

where f is the Thiele modulus, b is the dimension-

less heat of reaction, and g is the dimensionless acti-

vation energy.

Assuming the fluid medium surrounding the cata-

lyst particle is very well stirred, the boundary condi-

tions are

x ¼ 0;
dy

dx
¼ du

dx
¼ 0

x ¼ 1; y ¼ 1; u ¼ 0

The quantity of interest is the effectiveness factor,

which indicates how well a catalyst is utilized by the

reactant. It is defined as

h ¼ 1

f2

dyð1Þ
dx

(a) Apply the one-point orthogonal collocation

method to solve the above coupled equations.

Multiple solutions are possible in this case. Deter-

mine the range of f such that more than one

steady state is possible.
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(b) Another way of solving this problem is to elimi-

nate one variable by first relating it to the other

variable. Multiply the equation for g by b and add

this to the u equation to show that

b
d2y

dx2
þ d2u

dx2
¼ 0

(c) Integrate the above equation once to show that

b
dy

dx
þ du

dx
¼ 0

(d) Integrate again and obtain

byþ u ¼ b

This shows temperature and composition are lin-

early related.

(e) Use the result in part (d) to eliminate the tempera-

ture from the differential equation for y and show

that the final equation is

d2y

dx2
� f2 exp

gbð1� yÞ
1þ bð1� yÞ

� �
y ¼ 0

Now there is only one equation and one

unknown y.

(f) Apply the one-point orthogonal collocation to

solve the equation in part (e) and compare with

the result in part (a).

8.21�. Consider the problem of diffusion and reaction in a

spherical catalyst particle. The chemical reaction

is assumed to follow the Langmuir–Hinshelwood

kinetics:

Rrxn ¼ kC

1þ KC þ K1C
2

The film mass transfer resistance is taken as negligi-

ble compared to the internal diffusion resistance.

(a) Derive the mass balance equation for the reactant

in the catalyst particle and put it in the nondimen-

sional format to give the result

1

x2
d

dx
x2

dy

dx

� �
� f2 y

1þ byþ gy2
¼ 0

(b) Use the one-point collocation to investigate the

behavior of the system.

(c) Choose the parameters such that only one steady

state is possible, and obtain a better approximate

solution to the problem using the orthogonal col-

location method.

(d) Choose the parameters where multiple steady

states occur and solve for all steady-state concen-

tration distributions inside the particle.

REFERENCES

Do, D. D. Adsorption Analysis: Equilibria and Kinetics. Imperial

College Press, New Jersey (1998).

Fletcher, C. A. J. Computational Galerkin Methods. Springer,

New York (1984).

Michelsen, M. L. and J. Villadsen. “Polynomial Solution of Differ-

ential Equations.” Proceedings of the First Conference on

Computer Aided Process Design, Henniker, New Hampshire,

July 6–11, 1980.

Villadsen, J. Selected Approximation Methods for Chemical Engi-

neering Problems. Reproset, Copenhagen (1970).

Villadsen, J. and M. L. Michelsen. Solution of Differential Equa-

tion Models by Polynomial Approximation. Prentice Hall,

Engelwood Cliffs, NJ (1978).

192 APPROXIMATE METHODS FOR BOUNDARY VALUE PROBLEMS: WEIGHTED RESIDUALS



9
INTRODUCTION TO COMPLEX VARIABLES
AND LAPLACE TRANSFORMS

9.1 INTRODUCTION

A principal engineering application of the theory of func-

tions of complex variables is to effect the inversion of the

so-called Laplace transform. Because the subjects are inex-

tricably linked, we treat them together. The Laplace trans-

form is an integral operator defined as

FðsÞ ¼
Z 1

0

f ðtÞe�stdt ð9:1Þ

where, in general, s is a complex variable defined here as

s ¼ s þ iv ð9:2Þ
The inverse process (i.e., given F(s), find f(t)) is obtained

through the Fourier–Mellin complex integral

f ðtÞ ¼ 1

2pi
lim
v!1

Z s0þiv

s0�iv

estFðsÞ ds ð9:3Þ

henceforth called the inversion theorem. Such complex inte-

grals can be viewed as contour integrals, since they follow

the two-dimensional path traced out by the curve of sðs;vÞ.
As we show, it is possible to invert Laplace transformed

problems without recourse to complex integration, by laying

out a few common-sense building blocks, which are widely

tabulated. However, for unusual problems the analyst must

refer back to the fundamental inversion theorem, Eq. 9.3.

The derivation of Eq. 9.3 is based on the Fourier series

representation of any f(t), as detailed in Appendix B.

9.2 ELEMENTS OF COMPLEX VARIABLES

The complex number b ¼ aþ ib is made up of two parts:

the real part is a

ReðbÞ ¼ a ð9:4Þ

and the imaginary part is b

ImðbÞ ¼ b ð9:5Þ

In the same way, we may define a complex variable, s

s ¼ s þ iv ð9:6Þ

where it is clear that s and v are variables; hence, they

may take many changing values. It is convenient to rep-

resent a complex variable on a rectangular coordinate

system such that the abscissa represents real parts ðsÞ
while the ordinate reflects values of the imaginary varia-

ble ðvÞ, as shown in Fig. 9.1. Thus, any complex number

or variable can be thought of as a vector quantity as illus-

trated in Fig. 9.1. We define the magnitude of s (line

length) as the modulus

sj j ¼ s þ ivj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ v2

p
ð9:7Þ

Henceforth, bars around a variable shall denote mag-

nitude. The angle that s makes with the real axis is called

Applied Mathematics and Modeling for Chemical Engineers, Second Edition. Richard G. Rice and Duong D. Do.
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the argument or simply the angle ffs (the angle correspond-
ing to the complex variable s)

u ¼ ffs ¼ tan�1ðv=sÞ ð9:8Þ
When v ¼ 0, s becomes identical to s and can be treated as

a real variable. When this happens, the processes of integra-

tion, differentiation, and so on then follow the usual rules of

calculus. However, for the case of the complete complex

variable, s ¼ s þ iv, we must reexamine the usual rules of

functions, especially the property of continuity (i.e., contin-

uous functions, with continuous derivatives). We shall

uncover these rules of continuity, called analyticity, in the

form of the famous Cauchy–Riemann conditions. First, we

shall need to know the elementary rules for multiplication,

division, and so on of complex variables.

The complex conjugate of s is simply

�s ¼ s � iv ð9:9Þ

and it is clear that since i2 ¼ �1

s � �s ¼ s2 þ v2 ¼ sj j2 ð9:10Þ
The product of two complex variables can always be

reduced to a new complex variable, containing a real plus

imaginary part

s1 � s2 ¼ ðs1 þ iv1Þðs2 þ iv2Þ
¼ ðs1s2 � v1v2Þ þ iðs1v2 þ s2v1Þ ð9:11Þ

Division by complex numbers calls upon using the complex

conjugate definition as

s1

s2
¼ ðs1 þ iv1Þ

ðs2 þ iv2Þ ¼
ðs1 þ iv1Þ
ðs2 þ iv2Þ �

s2 � iv2

s2 � iv2

¼ ðs1 þ iv1Þðs2 � iv2Þ
s2
2 þ v2

2

ð9:12Þ

Carrying out the multiplication then yields a new complex

variable

s1

s2
¼ s1s2 þ v1v2

s2
2 þ v2

2

� �
þ i

s2v1 � s1v2

s2
2 þ v2

2

� �
ð9:13Þ

Thus, any array of multiplication and division will always

yield finally a single real plus imaginary part.

Both of these operations (s1 � s2 or s1=s2) can be per-

formed more easily (shown in Section 9.3) using a polar

form for s. Now, since s has both magnitude jsj and angle u,

we can write by inspection of Fig. 9.1

s ¼ jsjcos u; v ¼ jsjsin u ð9:14Þ

hence, we see the polar representation of s is simply

s ¼ jsjðcos u þ i sin uÞ ð9:15Þ

Note that for a given complex number, the angle u can take

an infinity of values by simply adding multiples of 2p to

the smallest possible angle. Thus, if the smallest angle is

u0 ¼ tan�1v=s, then u can take values: u0 þ 2p, u0 þ 4p,

and so on. So, in general, u ¼ u0 þ k2p; k ¼ 0,� 1,� 2,

� 3 . . . , and u0 is called the principal value of u with

0 � u0 � 2p.

9.3 ELEMENTARY FUNCTIONS OF
COMPLEX VARIABLES

In the course of analysis, elementary functions of the com-

plex variable s arise, such as expð�sÞ, sin ffiffi
s

p
, logðsÞ, and so

on. We must carefully define these operations so that in the

limit v ! 0, these operations reduce to conventional opera-

tions on real variables. We begin our study on the most ele-

mentary function, the power law relationship

f ðsÞ ¼ sn ð9:16Þ
where n is taken to be a positive integer or zero. Replacing

s ¼ s þ iv

f ðsÞ ¼ ðs þ ivÞn ð9:17Þ
we can insert the polar form to see

f ðsÞ ¼ sj jnðcos u þ i sin uÞn ð9:18Þ
We next combine this result with properties of the

exp(s), which can be proved to have the usual power series

representation

expðsÞ ¼ 1þ sþ s2

2!
þ s3

3!
þ � � � ð9:19Þ

which is convergent for all values of the complex variable s.

FIGURE 9.1 Representation of s in the complex plane.
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It is also true that expðs1Þ � expðs2Þ ¼ expðs1 þ s2Þ.
Moreover, for the integer n

ðesÞn ¼ ensðn ¼ 1; 2; 3 . . .Þ ð9:20Þ

The trigonometric functions can be defined in terms of the

exponential as

sinðsÞ ¼ 1
2i
ðexpðisÞ � expð�isÞÞ ð9:21Þ

and

cosðsÞ ¼ 1
2
ðexpðisÞ þ expð�isÞÞ ð9:22Þ

This can be seen by inserting the power series (9.19) to get

sinðsÞ ¼ s� s3

3!
þ s5

5!
þ � � � ð9:23Þ

cosðsÞ ¼ 1� s2

2!
þ s4

4!
þ � � � ð9:24Þ

which of course reduces to the usual series expansion when

s is real. The useful Euler formula arises by combining the

trigonometric functions

cosðsÞ þ i sin ðsÞ ¼ expðisÞ ð9:25Þ

which can also be applied when s is real, say s ¼ u

expðiuÞ ¼ cosðuÞ þ i sin ðuÞ ð9:26Þ

If we compare Eq. 9.18 with Eq. 9.26, we deduce De

Moivre’s theorem

sn ¼ sj jnðcos u þ i sin uÞn ¼ sj jn � expðin uÞ ð9:27Þ

from which we see

ðcos u þ i sin uÞn ¼ cosðnuÞ þ i sinðnuÞ ð9:28Þ

hence,

sn ¼ sj jnðcosðnuÞ þ i sinðnuÞÞ ð9:29Þ

Thus, it is convenient on multiplication or division to

use Euler’s formula, since we have shown in Eq. 9.15

that s ¼ sj jðcos u þ i sin uÞ, hence from Eq. 9.26 s ¼
sj jexpðiuÞ, so

s1

s2
¼ s1j j

s2j j exp iðu1 � u2Þ½ � ð9:30Þ

We see it is much easier to add and subtract angles than

direct multiplication of complex numbers. These can be

reduced to real and imaginary parts by reversing the process

using Eq. 9.26

s1 � s2 ¼ s1j j s2j jðcosðu1 þ u2Þ þ i sinðu1 þ u2ÞÞ ð9:31Þ

and

s1

s2
¼ s1j j

s2j j ðcosðu1 � u2Þ þ i sinðu1 � u2ÞÞ ð9:32Þ

9.4 MULTIVALUED FUNCTIONS

A peculiar behavior pattern that arises in complex variables

must be recognized very early, and that is the multivalued

behavior exhibited by certain functions. We next consider

the most elementary such case, the square root function

f ðsÞ ¼ ffiffi
s

p ð9:33Þ

In analysis of real variables, no particular problems arise

when taking square roots. However, considerable circum-

spection must be given when s is complex.

To see this, let

s ¼ sj jexpðiuÞ ¼ sj jðcos u þ i sin uÞ ð9:34Þ

where

u ¼ u0 þ 2p � k; k ¼ 0; � 1; � 2; � 3; etc: ð9:35Þ

Inserting into 9.33 gives

f ¼
ffiffiffiffiffi
sj j

p
exp i

u0

2
þ pk

� �� �
ð9:36Þ

where as before u0 ¼ tan�1v=s. If we write the function f

as its real plus imaginary part, two distinct functions arise

f 0 ¼
ffiffiffiffiffi
sj j

p
cos

u0

2
þ i sin

u0

2

� �
ð9:37Þ

and

f 1 ¼
ffiffiffiffiffi
sj j

p
cos

u0

2
þ p

� �
þ i sin

u0

2
þ p

� �� �
ð9:38Þ

All other values of k reproduce one or the other of these

two.
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Thus, any selected value of s and v will yield a value of

the complex variable s ¼ s þ iv, and this will produce two

functions, namely,

f 0 ¼ ðs2 þ v2Þ1=4 cos
tan�1ðv=sÞ

2

� �
þ i sin

tan�1ðv=sÞ
2

� �� �
ð9:39Þ

f 1 ¼ ðs2 þ v2Þ1=4 cos
tan�1ðv=sÞ

2
þ p

� ��

þ i sin
tan�1ðv=sÞ

2
þ p

� ��
ð9:40Þ

For example, suppose s ¼ 0, v ¼ 1, so that

u0 ¼ tan�1ð1=0Þ ¼ p

2
radð90�Þ

Hence,

f 0 ¼ 1 �
ffiffiffi
2

p

2
þ i

ffiffiffi
2

p

2

� �
ð9:41Þ

f 1 ¼ 1 � � ffiffiffi
2

p

2
� i

ffiffiffi
2

p

2

� �
ð9:42Þ

Thus, two branches of the function f are formed, differing

by an angle of p radians. Thus, one value of the complex

variable s leads to two possible complex values for the

function f. To make any progress on the applied level,

we shall need a mechanism to restrict such functions to

single-valued behavior. We shall illustrate methods for

doing this later.

We see that we cannot take the usual properties of

uniqueness and continuity for granted in dealing with com-

plex variables. To make progress, then, we shall need to

formalize the properties of continuity and single valued-

ness. In analysis of complex variables, these properties are

called analytic. We discuss them next.

9.5 CONTINUITY PROPERTIES FOR COMPLEX
VARIABLES: ANALYTICITY

As last illustrated, some peculiar behavior patterns arise

with complex variables, so care must be taken to insure

that functions are well behaved in some rational sense.

This property is called analyticity, so any function w¼ f (s)

is called analytic within some two-dimensional region R if

at all arbitrary points, say s0, in the region it satisfies the

conditions:

1. It is single-valued in region R

2. It has a unique, finite value in R

3. It has a unique, finite derivative at s0, which satisfies

the Cauchy–Riemann conditions.

The Cauchy–Riemann conditions are the essential proper-

ties for continuity of derivatives, quite apart from those

encountered in real variables. To see these, write the general

complex function

w ¼ f ðsÞ ð9:43Þ

to be a continuous function with s ¼ s þ iv, and suppose

the real and imaginary parts are such that

w ¼ uþ iv ð9:44Þ

The partial derivatives can be obtained in two ways

@w

@s
¼ @u

@s
þ i

@v

@s
ð9:45Þ

and

@w

@s
¼ df

ds

@s

ds
¼ df

ds
ð9:46Þ

Equating the two yields

d f

ds
¼ @u

@s
þ i

@v

@s
ð9:47Þ

In a similar way, partials with respect to v give

@w

@v
¼ @u

@v
þ i

@v

@v
ð9:48Þ

@w

@v
¼ df

ds

@s

@v
¼ i

df

ds
ð9:49Þ

hence,

i
df

ds
¼ @u

@v
þ i

@v

@v
ð9:50Þ

Obviously, the total derivative of df=ds must be the same for

the two cases, so multiplying Eq. 9.50 by (�i) gives

df

ds
¼ �i

@u

@v
þ @v

@v
ð9:51Þ

Now, equating real and imaginary parts of Eqs. 9.47 and

9.51 gives the sought-after continuity conditions

@u

@s
¼ @v

@v

@v

@s
¼ � @u

@v
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These are the Cauchy–Riemann conditions, and when they

are satisfied, the derivative dw=ds becomes a unique single-

valued function, which can be used in the solution of

applied mathematical problems. Thus, the continuity prop-

erty of a complex variable derivative has two parts, rather

than the one customary in real variables. Analytic behavior

at a point is called “regular,” to distinguish from non-

analytic behavior, which is called “singular.” Thus, points

wherein analyticity breaks down are referred to as singular-

ities. Singularities are not necessarily bad, and in fact their

occurrence will be exploited in order to effect a positive

outcome (e.g., the inversion of the Laplace transform!).

Many of the important lessons regarding analytic behav-

ior can best be understood by way of a series of examples,

to follow.

EXAMPLE 9.1

If w(s)¼ s2, prove that the function satisfies the Cauchy–Riemann

conditions and find the region where the function is always ana-

lytic (i.e., regular behavior).

There are several ways to represent the function, either in terms

of s, v or in polar form ( sj j and u). We introduce s ¼ s þ iv

and see

w ¼ s2 ¼ ðs þ ivÞ2 ¼ ðs2 � v2Þ þ 2isv

It is clear if this must equal w ¼ uþ iv, then

u ¼ s2 � v2

v ¼ 2sv

We operate on these using Cauchy–Riemann rules

@u

@s
¼ 2s;

@u

@v
¼ �2v

@v

@s
¼ 2v;

@v

@v
¼ 2s

hence, we see it is true that

@u

@s
¼ @v

@v
and

@v

@s
¼ � @u

@v

Also, we see for all finite values of s that w(s) is also finite, and that w

is single valued in any region R, which is finite in size.

EXAMPLE 9.2

Consider wðsÞ ¼ 1=s and determine if the function satisfies the

Cauchy–Riemann conditions and find the region for analytic

behavior.

It is clear at the outset that behavior in the region s ! 0

is singular, and we are alerted to possible irregular behavior

there. First, we form the real and imaginary parts as

before

wðsÞ ¼ 1

s þ iv
¼ 1

s þ iv

s � iv

s � iv
¼ s � iv

s2 þ v2

so that

u ¼ s

s2 þ v2
and v ¼ � v

s2 þ v2

We see that

@u

@s
¼ @v

@v
¼ v2 � s2

ðs2 þ v2Þ2

@v

@s
¼ � @u

@v
¼ �2sv

ðs2 þ v2Þ2

so that at a general point in space, the Cauchy–Riemann

conditions appear to be satisfied. However, consider the

behavior near the origin, along a line where v ¼ 0 so that

u ¼ 1

s
;

@u

@s
¼ � 1

s2

This partial derivative tends to �1 as s ! 0. In a similar

way, we can inspect v along a line where s ¼ 0 to see

v ¼ � 1

v
;

@v

@v
¼ þ 1

v2

which shows that this partial derivative tends to þ1 as v ! 0.

Thus, we obtain different derivatives depending on how we

approach the origin, and the Cauchy–Riemann equality breaks

down at the origin! Thus, the function is everywhere analytic,

except at the origin, where a singularity exists (we shall call

this a pole-type singularity, since the function takes on very

steep, pole-like behavior as we approach s¼ 0). If the function

took the form

wðsÞ ¼ 1

ðs� aÞ

then misbehavior would have occurred at the point s¼ a, so we

would declare a pole existed at s¼ a.

We have thus encountered two important types of singularities

raising nonanalytic behavior:

1. Multivalued function singularity: wðsÞ ¼ ffiffi
s

p

2. Pole singularities: wðsÞ ¼ 1=s

A third type, called essential singularity, arises infrequently,

but should be recognized. A classic case of this type is the
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function

wðsÞ ¼ exp
1

s

� �

It can be studied by reference to a pole-type singularity.

One method of testing implicit functions for pole behavior

is to try to “remove” the pole. Thus, suppose the function

w¼ f (s) becomes infinite at the point s¼ a, and we are sus-

picious that a pole exists at that point. If we can define a

new function

gðsÞ ¼ ðs� aÞ � f ðsÞ ð9:52Þ

that becomes analytic at s¼ a, then the pole has been

removed (canceled out). If not, then we would try higher

powers, up to say n,

gðsÞ ¼ ðs� aÞnf ðsÞ ð9:53Þ

and if analytic behavior for g(s) finally occurs, then we

have removed an nth-order pole. This simply means that

f(s) must have contained a term

1

ðs� aÞn

The order of the pole is thus determined by the minimum

value of n necessary to remove it (cancel it).

For an “essential” singularity, it is not possible to remove the

infinite discontinuity. To see this for the classic example

mentioned, expand exp(l/s) in series.

wðsÞ ¼ exp
1

s

� �
¼ 1þ 1

s
þ 1

2!s2
þ 1

3!s3
þ � � � þ 1

n!

1

sn
þ � � �

ð9:54Þ

If we tried to remove the singularity at the origin, by multiplying

first by s, then s2, then s3, and so on, we would still obtain an infin-

ite spike at s¼ 0. Since the singularity cannot be removed, it is

called an essential singularity.

9.5.1 Exploiting Singularities

At the outset, we have aimed our study toward the

implementation of the inversion theorem given in

Eq. 9.3. It is clear that this requires integration into the

complex domain. In fact, we can show this integration

becomes exceedingly simple if the region of interest con-

tains elementary pole singularities, leading to an elemen-

tary summation of the remnants of such poles (called

residues). Thus, the occurrence of singular behavior

allows easy exploitation to effect a positive mathematical

result.

To implement this, we shall need to know something

about integration in the complex domain.

9.6 INTEGRATION: CAUCHY’S THEOREM

Integration in the complex domain is necessarily two-

dimensional, since variations in real and imaginary varia-

bles occur together. Thus, if we wish to find the integral of

some arbitrary complex function f(s), then we must stipu-

late the values of s such as those traced out by the curve C

in Fig. 9.2.

To represent the integral corresponding to the path C, we

may write, by noting f ¼ uþ iv and s ¼ s þ ivZ
C

f ðsÞds ¼
Z
C

ðuds � vdvÞ þ i

Z
C

ðvds þ udvÞ ð9:55Þ

Each integral on the right-hand side is now a real integral

and the limits are from s1 to s2 and from v1 to v2, corre-

sponding to the points terminating the curve C at points A

and B (positions s1 and s2). We note that if both f(s) and s

were real (i.e., v ¼ v ¼ 0), then the line integral would be

simply Z
C

u ds

The values of s represented by the path in Fig. 9.2 could be

integrated in two parts, if we wished, and we would denote

this as Z
AXB

f ðsÞ ds ¼
Z
AX

f ðsÞ dsþ
Z
XB

f ðsÞ ds ð9:56Þ

and there should be no confusion on the meaning of the

paths AX and XB.

Under certain conditions, the line integral in Eq. 9.55 is

independent of path. Suppose both integrals on the right-

hand side are exact, so, for example, we could write

uds � vdv ¼ dFðs;vÞ ð9:57Þ

FIGURE 9.2 Curve in complex plane.
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This implies also

dF ¼ @F

@s
ds þ @F

@v
dv ð9:58Þ

Comparing the last two equations gives the requirement

u ¼ @F

@s
and � v ¼ @F

@v
ð9:59Þ

Now, since the order of differentiation is immaterial

@2F

@v @s
¼ @2F

@s @v
ð9:60Þ

then it is easy to see that

@u

@v
¼ � @v

@s
ð9:61Þ

which of course is one of the Cauchy–Riemann conditions.

Exactness for the second integral on the RHS of Eq. 9.55

similarly implies

vds þ udv ¼ dGðs;vÞ ð9:62Þ

and following the same procedure, this finally yields the

second Cauchy–Riemann condition

@u

@s
¼ @v

@v
ð9:63Þ

We have now seen that the requirement that the two inte-

grals be exact differentials is exactly the requirement that

the Cauchy–Riemann conditions be satisfied. This means,

of course, that the line integralZ
C

f ðsÞ ds

is independent of the path C joining the end points at s1 and

s2, provided of course that the curve C lies within a region R

wherein f (s) is analytic. In such cases, the curve C need not

be prescribed and we may indicate the integral by denoting

it with its limit only Z s2

s1

f ðsÞ ds

and since it is exact, we could write

f ðsÞ ds ¼ dgðsÞ ð9:64Þ

and the integral can be evaluated in the usual way

Z s2

s1

f ðsÞ ds ¼ gðs2Þ � gðs1Þ ð9:65Þ

where of course g(s) is a function whose derivative is f (s).

Many such paths between A and B can be drawn, and the

same integral results as long as analyticity is maintained for

the region where the curves are drawn.

Furthermore, if we allow the end points to coincide by

drawing a closed curve as shown in Fig. 9.3, and the

region enclosed by the curve contains no singularities

(i.e., is analytic), then the important first integral

theorem of Cauchy arisesI
f ðsÞds ¼ 0 ð9:66Þ

The new symbol
H

denotes integration around a simply

connected (nonintersecting) curve C as shown in Fig. 9.3.

For this curve, Eq. 9.65 shows gðs2Þ ¼ gðs1Þ, since

s1 ! s2.

It is important to stress that this curve encloses no singu-

larities. In fact, it is the act of enclosing a singularity (or

many singularities) that leads to a very simple, classical

result for solving the Laplace inversion theorem.

Now, in other cases (e.g., curves that enclose singular-

ities) the integral f (s) around a closed contour of s values

may or may not vanish. We shall define a positive curve

direction such that a moving observer would keep the

enclosed area to the left.

The exploitation of Cauchy’s first theorem requires us to

test the theorem for exceptional behavior. This allows, as

we shall see, direct applications to the Laplace inversion

theorem.

We inspect the simplest single-valued function given by

f ðsÞ ¼ 1

s
ð9:67Þ

The derivative df =ds ¼ �1=s2 exists at all points except

s¼ 0. This means that f (s) is analytic in any region R

that does not include the origin. Thus, any closed curve

FIGURE 9.3 Closed contour, s1 ! s2.
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(of s values) not enclosing the origin will satisfy Cauchy’s

first theorem; hence, for any such curveI
C

ds

s
¼ 0 ð9:68Þ

However, if the closed curve C encloses the origin, the inte-

gral need not vanish. It is convenient to inspect this curve

using polar coordinates; to simplify the notation, we shall

denote the magnitude of s as sj j ¼ r. Moreover, if we stipu-

late that the curve C is a unit circle around the origin, then

r ¼ 1 and we may write

s ¼ eiu; ds ¼ ieiudu ð9:69Þ
Using these, we can write the closed curve using definite

limits I
C

ds

s
¼
Z 2p

0

e�iuðieiu duÞ ¼
Z 2p

0

idu ¼ 2pi

This is one of the fundamental results of contour integration

and will find widespread applications; the point here being

that the enclosure of a simple pole at the origin always

yields 2pi.
Suppose we perform the same test for a higher order

pole, say 1=s2, again with r¼ 1

I
C

ds

s2
¼
Z 2p

0

e�2iuðieiuduÞ ¼
Z 2p

0

ie�iudu ¼ i
e�iu

�i

� �
0

2p

¼ 0

ð9:70Þ

In fact, if we perform the same test with the power relation-

ship f ðsÞ ¼ sn, where n is integer

I
snds ¼

Z 2p

0

eniuðieiuduÞ ¼ i

Z 2p

0

eðnþ1Þiudu ¼ 0;

provided n 6¼ �1 ð9:71Þ

Now, if n is a positive integer, or zero, the above is obvi-

ously in accordance with Cauchy’s first theorem, since then

f ðsÞ ¼ sn is analytic for all finite values of s. However, if n

becomes a negative integer, the sn is clearly not analytic at

the point s¼ 0. Nonetheless, the previous result indicates the

closed integral vanishes even in this case, provided only that

n 6¼ �1. Thus, only the simple pole at the origin produces a

finite result, when the origin is enclosed by a closed contour.

The same result occurs for a point displaced from the

origin I
C

ðs� aÞn ds ¼ 0 ðn 6¼ �1Þ ð9:72Þ
I
C

1

ðs� aÞ ds ¼ 2pi ð9:73Þ

provided the point at position a is enclosed by the closed

curve C. We shall use this as a basis for constructing a

method of inverting Laplace transforms when simple or

multiple poles exist.

9.7 CAUCHY’S THEORY OF RESIDUES

The final elementary component of complex analysis neces-

sary to effect closure of the inversion theorem (Eq. 9.3) is

residue theory.

We have seen in Section 9.5 that simple poles or nth-

order poles at the origin are removable type singularities, so

that if f (s) contains a singularity at the origin, say a pole

of order N, then it can be removed and the new function so

generated will be analytic, even at the origin

gðsÞ ¼ sNf ðsÞ ð9:74Þ

so that a closed contour C (of s values), encircling the

origin, will cause g(s) to be analytic inside and on the boun-

daries of C. If such is the case, the function g(s) can be

expanded in an ascending power series in s. The power ser-

ies for f (s) must include s�N , so it could be expressed as

f ðsÞ ¼ BN

sN
þ BN�1

sN�1
þ � � � þ B1

s
þ
X1
n¼ 0

Cns
n ð9:75Þ

This series is often called the Laurent expansion. If this

were multiplied by sN, it is clear that g(s) would, in fact, be

an ascending series in s. The actual series for f (s) need not

be known, but the above clearly represents its behavior if

it is known that an Nth-order pole exists.

Now, from the previous lesson, the term-by-term integra-

tion of the series f (s) for a contour C enclosing the origin

will yield zero for each term, except the term B1=s. Thus,
we can write without further formalities:

Z
C

f ðsÞ ds ¼ 2piB1 ð9:76Þ

Hence, the value of the contour integral of f (s) is simply

2pi times the coefficient of s�1 in the Laurent expan-

sion. The coefficient B1 is called the “residue” of the

function.

It does not matter if the singularity is not at the origin,

since the same expansion is valid if it is taken around a sin-

gularity at the point s¼ a; in this case, the series of powers

are expressed as (s� a), and one must find the coefficient of

the term ðs� aÞ�1
in the Laurent expansion. On a practical

level, it is easy to transfer the origin from zero to another

point, as we illustrate in the next example.
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EXAMPLE 9.3

Evaluate I
C

estds

ðs� aÞ2

around a circle centered at the origin. It is clear if the radius of the

circle is such that r < a, then the function is analytic within the

center and we can write immediately

I
estds

ðs� aÞ2 ¼ 0

by Cauchy’s theorem.

However, if we stipulate that the singularity is enclosed by the

circle, so that r > a, then there is a pole of order 2 at s¼ a within

the contour. If we transfer the origin to s¼ a by putting p¼ s – a,

then

I
C

estds

ðs� aÞ2 ¼
I
C

e pþað Þtdp
p2

¼ eat
I
C

eptdp

p2

Next, we can expand ept ¼ 1þ ptþ ðptÞ2=2!þ � � �

eat
I
C

eptdp

p2
¼ eat

I
C

1

p2
þ t

p
þ t2

2!
þ t3

3!
pþ � � �

� �
dp

All circular integrals are zero, according to the previous lesson, except

the term containing t/p, which gives the residue teat

I
C

eðpþ aÞt

p2
dp ¼

I
estds

ðs� aÞ2 ¼ 2piðteatÞ

9.7.1 Practical Evaluation of Residues

The Laurent expansion is often not obvious in many practi-

cal applications, so additional procedures are needed. Often,

the complex function appears as a ratio of polynomials

f ðsÞ ¼ FðsÞ
gðsÞ ð9:77Þ

Now, if a simple pole exists at s¼ a, then obviously (s� a)

must be a factor in g(s), so we could express the denominator

as g(s)¼ (s� a)G(s), provided G(s) contains no other singu-

larities at s¼ a. Clearly, the Laurent expansion must exist,

even though it may not be immediately apparent, and so we

can always write a hypothetical representation of the type

given in Eq. 9.75:

f ðsÞ ¼ B1

s� a
þ C0 þ C1ðs� aÞ þ C2ðs� aÞ2

þ � � � þ Cnðs� aÞn þ � � �

since it is known that only a simple pole exists. Multiplying

both sides by (s� a), and then setting s¼ a gives, when we

replace f (s) with

FðsÞ
ðs� aÞGðsÞ

B1 ¼ ðs� aÞf ðsÞjs¼ a ¼
FðaÞ
GðaÞ ð9:78Þ

which is a handy way to find the residue for a simple pole.

Moreover, if g(s) contained a number of distinct poles,

such as

f ðsÞ ¼ FðsÞ
ðs� aÞðs� bÞðs� cÞ � � � ð9:79Þ

then f (s) will have a residue at each pole, and these can

be evaluated independently, one at a time, by the method

illustrated. For a contour enclosing all such poles, the

contour integral around f (s) will be simply the sum of all

residues, multiplied by 2pi as before.

The procedure just outlined can be followed even if the

pole cannot be factored out of g(s); in such a case, Eq. 9.78

would become

B1 ¼ ðs� aÞf ðsÞjs¼ a¼
ðs� aÞFðsÞ

gðsÞ
����
s¼ a

¼ 0

0
ð9:80Þ

which is indeterminate. However, if we apply L’Hopital’s

rule, then we see

B1 ¼ lim
s!a

d

ds

� �
ðs� aÞFðsÞ½ �
dgðsÞ
ds

ð9:81Þ

which gives

B1 ¼ lim
s!a

FðsÞ þ ðs� aÞF0ðsÞ
g0ðsÞ

� �
¼ FðaÞ

g0ðaÞ ð9:82Þ

EXAMPLE 9.4

Find the integral I
C

estcoshðsÞ ds
sinh s� að Þ

around a circle with center at the origin, such that r > jaj. The
residue for the pole at s¼ a is obtained from Eq. 9.82

B1 ¼ eatcoshðaÞ
coshð0Þ ¼ eatcoshðaÞ
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Hence the integral is

I
C

estcoshðsÞ ds
sinhðs� aÞ ¼ 2pieatcoshðaÞ

9.7.2 Residues at Multiple Poles

If f (s) contains a pole of order m at s¼ a (and no other

singularities), then it can be expressed as

f ðsÞ ¼ FðsÞ
ðs� aÞm ð9:83Þ

where m is integer, and F(s) is analytic at s¼ a. We can

always expand an analytic function in a Taylor series, so

that F(s) can be expanded around the point s¼ a

FðsÞ ¼ FðaÞ þ ðs� aÞF0ðaÞ þ ðs� aÞ2
2!

F00ðaÞ þ � � �

þ ðs� aÞm�1

ðm� 1Þ! Fm�1ðaÞ þ ðs� aÞm
m!

FmðaÞ þ � � �

ð9:84Þ

On division by (s� a)m, the coefficient of 1=ðs� aÞ
becomes apparent and is the residue of f (s)

f ðsÞ ¼ FðaÞ
ðs� aÞm þ F0ðaÞ

ðs� aÞm�1
þ � � � þ Fm�1ðaÞ

ðm� 1Þ!ðs� aÞ þ � � �

ð9:85Þ

hence,

B1 ¼ 1

ðm� 1Þ!
dm�1

dsm�1
FðsÞjs¼ a

¼ 1

ðm� 1Þ!
dm�1

dsm�1
ðs� aÞmf ðsÞjs¼ a ð9:86Þ

EXAMPLE 9.5

Redo Example 9.3 using the results from Eq. 9.86.The required

integral is I
C

estds

ðs� aÞ2

which contains a second-order pole at s¼ a. The residue is com-

puted directly from Eq. 9.86.

B1 ¼ 1

1!

d

ds
estjs¼ a ¼ teat ;

I
f ðsÞ ds ¼ 2piteat

9.8 INVERSION OF LAPLACE TRANSFORMS BY

CONTOUR INTEGRATION

At the beginning of this chapter, we quoted the Mellin–

Fourier inversion theorem for Laplace transforms, worth

repeating here

FðsÞ ¼
Z 1

0

e�stf ðtÞ dt ð9:87Þ

f ðtÞ ¼ 1

2pi
lim
v!1

Z s0 þ iv

s0 � iv

estFðtÞ ds ð9:88Þ

It may now be clear why the factor 1=2pi appears in the

denominator of the inversion theorem. It should also be

clear that

Z sþ iv

s� iv

estFðsÞ ds

is a line integral of the complex function estFðsÞ, t being
treated as an elementary parameter, and s denoting the

complex variable, s ¼ s þ iv. We will have closed the loop

on this journey when we can show that the line integral is

formally equivalent to the contour integral, enclosing some

specialized region C; that is, we wish to show

Z s0 þ i1

s0 � i1
estFðsÞ ds ¼

I
C

estFðsÞ ds ð9:89Þ

When this is done, the reader can see that Laplace inversion

is formally equivalent to contour integration in the complex

plane. We shall see that exceptional behavior arises occa-

sionally (singularities owing to multivaluedness, for exam-

ple) and these special cases will be treated in the sections to

follow. Our primary efforts will be directed toward the

usual case, that is, pole and multiple pole singularities

occurring in the Laplace transform function F(s).

We shall first consider the inversion theorem for pole

singularities only. The complex function of interest will

be f ðsÞ ¼ estFðsÞ. The contour curve, denoting selected

values of s, is called the first Bromwich path and is shown

in Fig. 9.4.

The real constant s0 is selected (symbolically) to be

greater than the real part of any pole existing in the denom-

inator of F(s). Thus, all poles of F(s) are to the left of the

line labeled AB (Fig. 9.4). It is clear that the semicircle

BCDEA can become arbitrarily large in the limit as

R ! 1, thereby enclosing all possible poles within the

region to the left of line AB.

In order to prove the line integral (in the limit as

v ! 1, which corresponds to the limit R ! 1) becomes

identical to the contour integral, we shall need to break the
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contour into parts as we did earlier in Eq. 9.56Z
ABDA

estFðsÞ ds ¼
Z s0 þ iv

s0 � iv

estFðsÞ dsþ
Z
BDA

estFðsÞ ds

ð9:90Þ
It is clear by comparison with Eq. 9.89, whereI

C

estFðsÞds ¼
Z
ABDA

estFðsÞ ds

that we must ensure that contour around the semicircleZ
BDA

estFðsÞ ds

becomes identically zero, as the region becomes arbitrarily

large, that is, as R ! 1.

Along the arc BCDEA (which we denote as curve C), we

can set the magnitude sj j ¼ R so that s ¼ Reiu and more-

over, it will be assumed that FðsÞj j < eR�k, where e and k

are positive constants. This is true, since all Laplace trans-

forms of physically realizable processes are such that the

denominator is of higher order in s than the numerator.

With these stipulations in mind, we will now see the inte-

gral around the curve C tends to zero as R ! 1.

To show this, first consider the semicircle CDE, to the

left of the imaginary axis. On this part, the complex

variable is s ¼ Reiu and the angle varies between

p=2 < u < 3p=2.
Hence, on this curve, we can write in polar form

estFðsÞ dsj j ¼ eRtðcos uþi sin uÞFðReiuÞReiuidu�� �� ð9:91Þ

It was stipulated that the order of denominator is greater

than numerator for F(s), so F(s) behaves as a negative

power of R on the semicircle, and since cos u < 0, then

as R ! 1 the magnitude in Eq. 9.91 tends to zero, since

it includes a negative exponential in R multiplied by a

decreasing power of R.

Next, consider the arc BC in the first quadrant. The

contribution to the total integral by this arc is bounded

according to

Z
BC

estFðsÞ ds
����

���� <
Z
BC

estFðsÞ dsj j <
Z p=2

u0

eRt cos u
e
Rk

Rdu

ð9:92Þ

where cos u0 ¼ s0=R as shown in Fig. 9.4. Now, since

u0 � u � p=2, it follows that cos u � cosu0 ¼ s0=R, so we

can write

Z p=2

s0

eRt cos u
e
Rk

Rdu <
e

Rk�1

Z p=2

u0

eRts0=Rdu ¼ e
Rk�1

es0t
p

2
� u0

� 	
ð9:93Þ

The quantity p=2� u0 equals p=2� cos�1ðs0=RÞ. For

small arguments, the inverse cosine has expansion

cos�1ðs0=RÞ ’ p=2� ðs0=RÞ since for large R, then

s0=R is small.

So finally, for large R, the upper bound behaves as

e
Rk�1

es0t
p

2
� u0

� 	
	 ees0t

Rk�1

s0

R
¼ es0

Rk
es0t ð9:94Þ

This final upper bound tends to zero as R ! 1, since

k > 0. Similarly, it is easy to show by the same arguments

that the integral along the lower arc EA also tends to zero as

R ! 1.

Now we see the Cauchy residue theorem gives the com-

pact resultI
C

estFðsÞ ds ¼
Z
BC

estFðsÞ dsþ
Z
EA

estFðsÞ ds

þ
Z
CDE

estFðsÞ dsþ
Z
AB

estFðsÞ ds

¼ 2pi
P ½residues of estFðsÞ inside C�

ð9:95Þ

Since the first three of these (BC, EA, and CDE) are proved

nil, we can now formally write

f ðtÞ ¼ 1

2pi

Z s0þi1

s0�i1
estFðsÞ ds ¼

X
Br1

residues of estFðsÞ½ �

ð9:96Þ
where of course the line integralZ

AB

estFðsÞ ds

FIGURE 9.4 First Bromwich path for pole singularities.
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is identical with

Z
AB

estFðsÞ ds ¼ lim
v!1

Z s0þiv

s0�iv

estFðsÞ ds ð9:97Þ

and the notation for curve C in the present case (for pole

singularities) is called the first Bromwich path ðBr1Þ. We

shall need a slightly different integration path when multi-

valued functions arise (such as
ffiffi
s

p
).

9.8.1 Summary of Inversion Theorem for

Pole Singularities

The final simplified result for the inversion theorem when

pole singularities exist in F(s) is recapitulated as

FðsÞ ¼
Z 1

0

f ðtÞe�st dt ð9:98Þ

f ðtÞ ¼
X
Br1

ðresidues of FðsÞestÞ ð9:99Þ

where Br1 is a contour C, which embraces all possible pole

(including higher order poles) singularities arising in the

denominator of F(s).

EXAMPLE 9.6

Use the inversion theorem to find f (t) corresponding to the

Laplace transform

FðsÞ ¼ 1

sþ 1ð Þ sþ 2ð Þ

Two poles exist along the negative real axis: s ¼ �1 and s ¼ �2.

We need to find the sum of the residues of FðsÞest, arising from

these two distinct poles. Since each pole can be easily factored

out, computation of each residue can be accomplished using the

procedure given in Eq. 9.78.

res s ¼ �1ð Þ ¼ sþ 1ð ÞFðsÞest s¼�1 ¼ e�tj
res s ¼ �2ð Þ ¼ sþ 2ð ÞFðsÞest s¼�2 ¼ �e�2t

��
f ðtÞ ¼ P residues of FðsÞest ¼ e�t � e�2t

EXAMPLE 9.7

Find the corresponding f(t) for the Laplace transform

FðsÞ ¼ 1

s2 sþ 1ð Þ2

This is a case where two second-order poles exist: one at s¼ 0 and

one at s¼�1. The residues of estFðsÞ can be found using the for-

mula in Eq. 9.86, where m¼ 2 denotes the pole order

resðs ¼ 0Þ ¼ 1

1!

d

ds

est

ðsþ 1Þ2
" #

s¼0

resðs ¼ 0Þ ¼ test

ðsþ 1Þ2
�����
s¼0

� 2

ðsþ 1Þ3 e
st

�����
s¼0

¼ t� 2

resðs ¼ �1Þ ¼ 1

1!

d

ds

est

s2

� �
s¼�1

¼ test

s2

����
s¼�1

� 2
est

s3

����
s¼�1

resðs ¼ �1Þ ¼ te�t þ 2e�t ¼ ð2þ tÞe�t

hence, f (t) is the sum of the residues

f ðtÞ ¼ t� 2þ ð2þ tÞe�t

N:B:: at t ¼ 0; f ð0Þ ¼ 0:

9.9 LAPLACE TRANSFORMATIONS:

BUILDING BLOCKS

The Laplace transform can be used to effect solutions for

ordinary and partial differential equations. It is suited for

initial-value problems, and is particularly useful for solving

simultaneous equations. It has found great use in dealing

with simulations using forcing functions, such as step and

impulse type, which are cumbersome to handle using tradi-

tional methods. We set out in this section to lay a founda-

tion composed of certain elementary building blocks,

which have wide utility in solving practical problems. As

we show, it is often possible to write the inverse of the

Laplace transform by inspection, when certain elementary

building blocks are recognized.

9.9.1 Taking the Transform

The first step in applying Laplace transform is to learn how

to perform the elementary integration

Lf ðtÞ ¼
Z 1

0

e�stf ðtÞ dt ð9:100Þ

Essentially, this integrates time out of the relationship and

replaces it with a variable s (which we have already seen is,

in fact, a complex variable). For ordinary differential equa-

tions, the operation will be seen to reduce the problem to

algebraic manipulation.
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The most elementary function is a simple constant K

L K½ � ¼
Z 1

0

Ke�stdt ¼ K
e�st

�s

� �����1
0

¼ K

s
ð9:101Þ

Thus, it is clear when a transform a=s appears, then the

inversion, denoted asL�1a=s, is simply a.

The next highest level is a linear function of time, say t

L t½ � ¼
Z 1

0

te�st dt ¼ e�st

s2
�st� 1ð Þj10 ¼ 1

s2
ð9:102Þ

Again, it is clear when one sees a=s2, then the inversion

L�1a=s2 ¼ at.

At a higher level, we can consider the power function tn

L½tn� ¼
Z 1

0

tne�st dt ð9:103Þ

To complete this integral, it is convenient to define a new

variable

b ¼ st; db ¼ sdt

hence,

L½tn� ¼ s�1�n

Z 1

0

bnexpð�bÞ db

Comparing this with Eq. 4.14 in Chapter 4

L tn½ � ¼ Gðnþ 1Þ
snþ1

Moreover, if n is a positive integer, Gðnþ 1Þ ¼ n!, so

L tn½ � ¼ n!

snþ1

The final building block is the frequently occurring expo-

nential function

L eat½ � ¼
Z 1

0

eate�st dt ¼ e�ðs�aÞt dt ¼ e�ðs�aÞt

�ðs� aÞ
����1
0

ð9:104Þ

If we insure that the real part of s is always greater than a

(as we have seen in the previous section regarding the first

Bromwich path), then the upper limit is zero and

L eat½ � ¼ 1

s� a

Similarly,

L e�bt

 � ¼ 1

sþ b

Thus, it is clear when we see 1=ðsþ aÞ the inversion is

immediately

L�1 1

sþ a

� �
¼ exp �atð Þ

This is also verified by residue theory, which states for pole

singularities that

f ðtÞ ¼ L�1FðsÞ ¼
X

residues of estFðsÞ ð9:105Þ

and the residue of est=ðsþ aÞ is simply expð�atÞ.
Many of the typical functions encountered have been

integrated and their transforms are tabulated in Appendix

C. For example,

L sin vt½ � ¼ v

s2 þ v2

This transform can be accomplished by using the Euler

formula

eivt ¼ cos vtþ i sin vt

to perform the complex integration of eivt.

L½sin vt� ¼ Im

Z 1

0

eivte�stdt ¼ Im
e�ðs�ivÞt

�ðs� ivÞ
� �1

0

¼ Im
1

s� iv

� �
¼ Im

sþ iv

s2 þ v2

� �
¼ v

s2 þ v2

Similarly, we could extract the real part and obtain

L½cos vt�, which by inspection is

L cos vt½ � ¼ s

s2 þ v2

The question of uniqueness in the inversion process has

been answered (Hildebrand 1965) and is given expression

in the understated Lerch’s theorem: “If one function f(t)

corresponding to the known transform F(s) can be found, it

is the correct one.” Not all functions of s are transforms,

since continuity and other considerations must be taken

into account. But, if FðsÞ ! 0 as s ! 1 and sF(s) is

bounded as s ! 1, then F(s) is the transform of some

function f (t), which is at least piecewise continuous in

some interval 0 � t � t and such function is of exponential

order. When the initial value of f (t) is desired and F(s) is

known, the following limit is useful

lim
s!1 sFðsÞ ¼ f ð0Þ

provided that f (t) and f 0ðtÞ are at least piecewise continuous
and of exponential order. By exponential order, we mean

the product expð�s0tÞjf ðtÞj is bounded for large values of t.
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9.9.2 Transforms of Derivatives and Integrals

To apply Laplace transforms to practical problems of

integro-differential equations, we must develop a formal

procedure for operating on such functions. We consider

the ordinary first derivative, leading to the general case of

nth-order derivatives. As we shall see, this procedure will

require initial conditions on the function and its successive

derivatives. This means, of course, that only initial value

problems can be treated by Laplace transforms, a serious

shortcoming of the method. It is also implicit that the deriv-

ative functions considered are valid only for continuous

functions. If the function sustains a perturbation, such as a

step change, within the range of independent variable

considered, then the transform of the derivatives must be

modified to account for this, as we will show later.

The Laplace transform of the ordinary first derivative is

defined as

L
df

dt

� �
¼
Z 1

0

df

dt
e�stdt ¼

Z 1

0

e�st dt ð9:106Þ

Using integration by parts, we see

L
df

dt

� �
¼ f ðtÞe�st½ �j10 þ s

Z 1

0

f ðtÞe�st dt

But the new integral defines the Laplace transform of f (t),

which we denote as F(s). Thus, since s can always be

selected to insure that e�st is damped faster than f (t) can

increase,

L
df

dt

� �
¼ sFðsÞ � f ð0Þ

where, as usual,Lf ðtÞ ¼ FðsÞ.
Similarly, we can use integration by parts again to find

the Laplace transform of the second derivative

L
d2f

dt2

� �
¼ s2FðsÞ � sf ð0Þ � f 0ð0Þ ð9:107Þ

where we see that the initial condition f(0) and the initial

velocity df(0)=dt must be known. This is what was meant

when we stated earlier that the method was suitable only

for initial value problems.

The procedure can be extended to nth-order derivatives,

requiring ðn� 1Þ initial conditions.

L
dnf

dtn

� �
¼ snFðsÞ

� sn�1f ð0Þ þ sn�2f 0ð0Þ þ � � � þ sf n�2ð0Þ þ f n�1ð0Þ
 �
ð9:108Þ

where initial derivatives up to (n� 1) are necessary.

There is some similarity to the Heaviside operator, in the

sense that first, second, and so on derivatives yield s, s2

operators in a manner similar to D, D2 in Heaviside opera-

tors; however, Laplace transforms also require additional

knowledge of initial conditions. The transform of integrals

is also similar in form to the Heaviside operator, as we see

next.

Denoting as before thatLf ðtÞ ¼ FðsÞ, the transform of a

continuous integral function is defined:

L

Z t

0

f ðtÞ dt
� �

¼
Z 1

0

Z t

0

f ðtÞ dt
� �

e�st dt ð9:109Þ

where we have used dummy variables for the interior inte-

gral. This can be integrated by parts if we let

u ¼ R t
0
f ðtÞ dt

du

dt
dt ¼ f ðtÞ dt

dv ¼ e�st dt ; v ¼ � e�st

s

Substituting these yields

L

Z t

0

f ðtÞ dt
� �

¼ � e�st

s
�
Z t

0

f ðtÞ dt
� �1

0

þ 1

s

Z 1

0

f ðtÞe�st dt

ð9:110Þ

However, the last term defines F(s); hence, if we ensure that

e�st damps faster than
R t
0
f ðtÞ dt,

L

Z t

0

f ðtÞdt
� �

¼ 1

s
FðsÞ ð9:111Þ

We see that s appears in the denominator, just as in the

Heaviside operation.

Occasionally, it is useful to differentiate Laplace trans-

forms with respect to the continuous variable s; this proce-

dure becomes useful in the method of moments, as a

parameter estimation tool. Thus, if we define the Laplace

transform in the usual way

FðsÞ ¼
Z 1

0

f ðtÞe�st dt ð9:112Þ

then, if s is continuous, we can differentiate this

dFðsÞ
ds

¼
Z 1

0

� tf ðtÞe�st dt ð9:113Þ

Thus, the derivative of F(s) is, in fact, the (negative) inte-

gral of the moment of f(t); that is, the product of t � f ðtÞ.
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Thus, for the usual (unweighted moment)

� dFðsÞ
ds

����
s¼0

¼
Z 1

0

tf ðtÞ dt ð9:114Þ

Thus, if F(s) is the transform of a model of a process (con-

taining unknown parameters), and f(t) is known experimen-

tally, then a numerical integration of the RHS yields one

equation to find one unknown. Suppose the experimental

integral yields a number, m1, and the process has a transform

FðsÞ ¼ 1

tsþ 1
ð9:115Þ

hence,

� dF

ds

����
s¼0

¼ m1 ¼ � �t

st þ 1ð Þ2
 !

s¼0

¼ t

Thus, the first moment, m1, is exactly equal to the para-

meter t.

Second and higher order moments can be defined by

repeated differentiation.

d2FðsÞ
ds2

����
s¼0

¼ m2 ¼
Z 1

0

t2f ðtÞ dt

ð�1Þnd
nFðsÞ
dsn

����
s¼0

¼ mn ¼
Z 1

0

tnf ðtÞ dt

The process of differentiating with respect to s suggests a

technique for treating certain nonconstant coefficient ODE.

Thus, we have previously seen that

L tnf ðtÞ½ � ¼
Z 1

0

tnf ðtÞe�stdt ¼ ð�1Þn dn

dsn
FðsÞ ð9:116Þ

Thus, we can write

L t
df

dt

� �
¼
Z 1

0

t
df

dt
e�stdt ¼ � d

ds
L

df

dt

� �� 

¼ � d

ds
sFðsÞ � f ð0Þ½ � ¼ �s

dFðsÞ
ds

� FðsÞ
ð9:117Þ

This process can be carried forward for

t2
df

dt
; t

d2f

dt2
; t2

d2f

dt2
; etc:

and the final forms for these nonconstant coefficients oper-

ating on differentials are tabulated in Table 9.1. This will

allow certain classes of nonconstant coefficient ODE to be

treated by Laplace transforms.

9.9.3 The Shifting Theorem

Often, one of the elementary building blocks is recognized,

except for an additive constant. Thus, suppose that s always

appears added to a constant factor a, that is, Fðsþ aÞ. Then,
it is easy to show that the original time function was multi-

plied by the exponential expð�atÞ and
L e�atf ðtÞ½ � ¼ Fðsþ aÞ

To prove this, write the transform integral explicitly

L e�atf ðtÞ½ � ¼
Z 1

0

e�ate�stf ðtÞ dt ð9:118Þ

If we replace p¼ sþ a, the integral is

L e�atf ðtÞ½ � ¼ FðpÞ ¼ Fðsþ aÞ ð9:119Þ

Similarly, for the product ebtf ðtÞ, we obtain
L ebtf ðtÞ
 � ¼ Fðs� bÞ ð9:120Þ

Thus, suppose we wish to invert the transform

GðsÞ ¼ v

ðs� bÞ2 þ v2
ð9:121Þ

and we recognize that L½sin vt� ¼ v=ðs2 þ v2Þ, so it is

clear that

L�1GðsÞ ¼ ebt sin vt ð9:122Þ

9.9.4 Transform of Distribution Functions

Certain operations in chemical engineering are modeled by

elementary distribution functions. Such operations as the

instantaneous closing of a valve can be modeled by the

TABLE 9.1 Transforms of Differentials

and Products

f(t) Lf ðtÞ ¼ FðsÞ
df

dt
sFðsÞ � f ð0Þ

d2f

dt2
s2FðsÞ � sf ð0Þ � f 0ð0Þ

t
df

dt
�s

dFðsÞ
ds

� FðsÞ

t2
df

dt
s
d2FðsÞ
ds2

þ 2
dFðsÞ
ds

t
d2f

dt2
�s2

dFðsÞ
ds

� 2sFðsÞ þ f ð0Þ

t2
d2f

dt2
s2
d2FðsÞ
ds2

þ 4s
dFðsÞ
ds

þ 2FðsÞ
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so-called step function. The quick injection of solute into a

flowing stream, such as that done in gas chromatography,

can be modeled by the so-called impulse function. More-

over, these distribution-type functions can be shifted in time.

Consider first the unit step function, illustrated schemati-

cally in Fig. 9.5. It is, of course, impossible to cause real

physical systems to follow exactly this square-wave behav-

ior, but it is a useful simulation of reality when the process

is much slower than the action of closing a valve, for

instance. The Laplace transform of u(t) is identical to the

transform of a constant

L uðtÞ½ � ¼
Z 1

0

1e�st dt ¼ 1

s
ð9:123Þ

since u(t) takes a value of unity when time is slightly

greater than zero. If the step function is delayed as shown

in Fig. 9.6, then the integral can be performed in two parts

L uðt� tÞ½ � ¼
Z t

0

0e�stdtþ
Z 1

t

1e�stdt ¼ e�ts

s
ð9:124Þ

In fact, it can be proved that all delayed functions are multi-

plied by expð�tsÞ, if t represents the delay time. For instance,

suppose a ramp function, rðtÞ ¼ t is delayed, as shown in

Fig. 9.7. As before, we split the integral into two parts

L rðt� tÞ½ � ¼
Z t

0

0e�st dtþ
Z 1

t

ðt� tÞe�st dt ð9:125Þ

Recalling Eq. 9.102, which depictsL½t�, we see

L rðt� tÞ½ � ¼ e�ts

s2
ð9:126Þ

We note that as the time delay is reduced, so t ! 0, then

the original step and ramp functions at time zero are

recovered.

The unit impulse function, dðtÞ, is often called the Dirac

delta function. It behaves in the manner shown in Fig. 9.8.

The area under the curve is always unity, and as u becomes

small, the height of the pulse tends to infinity. We can

define this distribution in terms of unit step functions

dðtÞ ¼ lim
u!0

uðtÞ � uðt� uÞ
u

� �
ð9:127Þ

Taking Laplace transforms of both sides gives

L dðtÞ½ � ¼ lim
u!0

1� expð�usÞ
us

� �
¼ 0

0
ð9:128Þ

To resolve the indeterminacy, we note for small arguments,

the expansion for

e�us ’ 1� usþ � � �

so in the limit

L dðtÞ½ � ¼ lim
u!0

1� 1þ us

us

� �
¼ 1 ð9:129Þ

Alternatively, we could have used L’Hopital’s rule to

resolve the indeterminacy. The delayed impulse function

can be easily shown to be

L dðt� tÞ½ � ¼ 1 � e�ts ð9:130Þ

FIGURE 9.8 Simulation of dðtÞ.

FIGURE 9.7 Delayed ramp function.

FIGURE 9.6 Delayed unit step function.

FIGURE 9.5 Unit step function at t ¼ 0.
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It is useful to note that the impulse function arises from

the rate of change of a step function since, integration by

parts gives:

L
duðtÞ
dt

� �
¼
Z 1

0

e�st du

dt
dt ¼ uðtÞe�st

����1
0

þ s

Z 1

0

uðtÞe�stdt

¼ sLuðtÞ ¼ s � 1
s
¼ 1 ð9:131Þ

where it is clear we have defined uð0Þ ¼ 0. This implies at

times infinitesimally larger than zero that u becomes unity;

this is often denoted as uð0þÞ ¼ 1.

Thus, the derivative of the step function also defines the

impulse function. This is seen to be also true for any

response function; the time derivative of the step response

produces the impulse response.

9.10 PRACTICAL INVERSIONMETHODS

We have derived the general inversion theorem for pole sin-

gularities using Cauchy’s residue theory. This provides the

fundamental basis (with a few exceptions, such as
ffiffi
s

p
) for

inverting Laplace transforms. However, the useful building

blocks, along with a few practical observations, allow many

functions to be inverted without undertaking the formality

of the residue theory. We shall discuss these practical,

intuitive methods in the sections to follow. Two widely

used practical approaches are (1) partial fractions and

(2) convolution.

9.10.1 Partial Fractions

Often, the Laplace transform to be inverted appears in fac-

tored form. In such cases, the factors are of the form

1=ðs� aÞ, 1=ðs� aÞ2, or generally 1=ðs� aÞn.
For such factors, the building blocks already enunciated

would yield

L�1 1

s� a
¼ eat ð9:132aÞ

L�1 1

ðs� aÞ2 ¼ teat ð9:132bÞ

L�1 1

ðs� aÞn ¼
1

ðn� 1Þ! t
n�1eat ð9:133Þ

where the last two are obtainable directly from the multiple

pole residue theory discussed in Section 9.7.2. The partial

fraction expansion is best illustrated by a series of

examples.

EXAMPLE 9.8

Find the corresponding f(t) for the transform

FðsÞ ¼ 1

ðsþ aÞðsþ bÞ

This could be easily done using the Residue theory, but we could

also expand the function into partial fractions as

FðsÞ ¼ A

sþ a
þ B

sþ b
¼ 1

ðsþ aÞðsþ bÞ

Multiplying both sides by (sþ a), then setting s ¼ �a allows A to

be found

A ¼ 1

b� a

Similarly, multiplying by ðsþ bÞ, then setting s ¼ �b gives the

value for B

B ¼ 1

a� b

Now, we can invert term by term

L�1FðsÞ ¼ L�1 1

ðb� aÞ �
1

sþ a
þL�1 1

ða� bÞ �
1

sþ b

so finally,

f ðtÞ ¼ 1

ðb� aÞ e
�at þ 1

ða� bÞ e
�bt

EXAMPLE 9.9

Find the inversion for

FðsÞ ¼ 1

s2ðsþ 1Þ2

using partial fraction expansion.

This has already been accomplished using residue theory in

Example 9.7. We write the partial fraction expansion as

1

s2ðsþ 1Þ2 ¼
A

s
þ B

s2
þ C

ðsþ 1Þ þ
D

ðsþ 1Þ2

It is clear by multiplying by s2ðsþ 1Þ2 that

sðsþ 1Þ2Aþ Bðsþ 1Þ2 þ Cs2ðsþ 1Þ þ Ds2 ¼ 1
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Evaluate D by multiplying by ðsþ 1Þ2 then set s ¼ �1

D ¼ 1

Evaluate B by multiplying by s2 then set s¼ 0

B ¼ 1

Next, equating coefficients of s3 in the polynomial expansion

requires

A ¼ �C

and matching coefficients of s2 requires that

C ¼ 2

hence,

A ¼ �2

So, inverting term by term yields

L�1 1

s2ðsþ 1Þ2 ¼ L�1 � 2

s

� �
þL�1 1

s2

� �
þL�1 2

sþ 1

� �

þL�1 1

ðsþ 1Þ2
 !

f ðtÞ ¼ �2þ tþ 2e�t þ te�t

As before, we see f ð0Þ ¼ 0.

EXAMPLE 9.10

Find the inverse of the function

FðsÞ ¼ 2s2 þ 3s� 4

ðs� 2Þðs2 þ 2sþ 2Þ

using partial fractions.

First, write the partial expansion

FðsÞ ¼ A

s� 2
þ Bsþ C

ðsþ 1Þ2 þ 1

Find A by multiplying by ðs� 2Þ, then set s¼ 2

A ¼ 1

Next, require B and C to be such that the original numerator is

recovered

s2 þ 2sþ 2þ ðBsþ CÞðs� 2Þ ¼ 2s2 þ 3s� 4

This shows that B¼ 1 and C¼ 3; hence,

FðsÞ ¼ 1

s� 2
þ sþ 3

ðsþ 1Þ2 þ 1
¼ 1

s� 2
þ ðsþ 1Þ
ðsþ 1Þ2 þ 1

þ 2

ðsþ 1Þ2 þ 1

Since we recognize that L cos t ¼ s=ðs2 þ 1Þ and

L sin t ¼ 1=ðs2 þ 1Þ, we can then invoke the shifting theorem

and invert term by term to get

f ðtÞ ¼ e2t þ e�tcos tþ 2e�tsin t

9.10.2 Convolution Theorem

Occasionally, products of factors occur wherein each factor

has a known inversion, and it is desired to find the product

of the two. The mechanics for doing this is accomplished by

the method of “convolution,” the derivation of which is

given in standard operational mathematics textbooks

(Churchill 1958). Thus, if the product occurs

FðsÞ ¼ GðsÞHðsÞ ð9:134Þ

and the inverse of each is known, that is, g(t) and h(t) are

recognizable, then the inversion of the product is given by

the convolution integral

f ðtÞ ¼ L�1 GðsÞHðsÞ½ � ¼
Z t

0

gðtÞhðt� tÞdt

¼
Z t

0

gðt� tÞhðtÞ dt ð9:135Þ

The two forms shown suggest that the convolution integral

is symmetrical.

We illustrate the application of convolution in the next

series of examples.

EXAMPLE 9.11

Find the inversion of the product

bðsÞ ¼ 1

s

1

sþ a

This could be performed directly, since it is recognized that 1=s
implies integration. Thus, recalling Eq. 9.111, which stated

L

Z t

0

f ðtÞ dt
� �

¼ 1

s
FðsÞ

we can see, since FðsÞ ¼ 1=ðsþ aÞ and f ðtÞ ¼ e�at in the present

case, that

bðtÞ ¼
Z t

0

e�atdt ¼ e�at

�a

����t
0

¼ 1

a
ð1� e�atÞ
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Of course, we could also apply the convolution integral, taking

GðsÞ ¼ 1=s and HðsÞ ¼ 1=ðsþ aÞ, where gðtÞ ¼ uðtÞ and

hðtÞ ¼ e�at, hence,

bðtÞ ¼
Z t

0

uðtÞe�aðt�tÞdt ¼ e�ateat

a

���� t
0

bðtÞ ¼ 1

a
ð1� e�atÞ

EXAMPLE 9.12

Use the convolution integral to find the inversion of

FðsÞ ¼ 1

s2
1

ðsþ 1Þ2

This has been already worked out in Example 9.7 by the residue

theory, and in Example 9.9 by partial fractions. We shall take

GðsÞ ¼ 1=ðs2Þ, HðsÞ ¼ 1=ðsþ 1Þ2 so that gðtÞ ¼ t and according

to Eq. 9.132, hðtÞ ¼ te�t, hence, the convolution integral should

be

f ðtÞ ¼
Z t

0

tðt� tÞexpð�ðt� tÞÞ dt

which should yield the same result as the second form of convolu-

tion:

f ðtÞ ¼
Z t

0

ðt� tÞt expð�tÞ dt

Taking the first form of convolution

f ðtÞ ¼ t expð�tÞ
Z t

0

t expðtÞdt � expð�tÞ
Z t

0

t2 expðtÞ dt

f ðtÞ ¼ t expð�tÞ expðtÞðt � 1Þ½ �t0
� expð�tÞ t2 expðtÞ��t

0
� 2 expðtÞðt � 1Þjt0

h i
Canceling terms yields, finally,

f ðtÞ ¼ ðt� 2Þ þ ðtþ 2Þexpð�tÞ

as before. The reader should show that the second form of the con-

volution integral gives an identical result.

9.11 APPLICATIONS OF LAPLACE
TRANSFORMS FOR SOLUTIONS OF ODE

The nature of the Laplace transform has now been suffi-

ciently studied so that direct applications to solution to

physicochemical problems are possible. Because the Lap-

lace transform is a linear operator, it is not suitable for non-

linear problems. Moreover, it is a suitable technique only

for initial-value problems. We have seen (Table 9.1) that

certain classes of variable coefficient ODE can also be

treated by Laplace transforms, so we are not constrained by

the constant coefficient restriction required using Heaviside

operators.

EXAMPLE 9.13

It is desired to find the transient response for an operating CSTR

undergoing forcing by time variation in the inlet composition.

Assume isothermal behavior and linear rate of consumption of

species A according to

A�!k products

Constant volume and flow rate can be assumed. Find the response

when the inlet takes (1) a step change and (2) impulse disturbance.

The dynamic material balance for constant volumetric flow is

V
dcAðtÞ
dt

¼ qcA0
ðtÞ � qcAðtÞ � kVcAðtÞ ð9:136Þ

Before the disturbance enters the system, the reactor is operating

at steady state, so initially

0 ¼ q�cA0
� q�cA � kV�cA ð9:137Þ

where the overbar denotes the initially steady-state condition; this

of course implies

cAð0Þ ¼ �cA

cA0
ð0Þ ¼ �cA0

It is convenient to rearrange the equations to a standard form,

which makes the system time constant explicit. Thus, we wish to

rearrange so that the appearance is like

t
dy

dt
þ y ¼ f ðtÞ

This can be done by rewriting the equations

V
dcA

dt
þ ðkV þ qÞcA ¼ qcA0

Next, divide by kV þ q and define the system time constant as

t ¼ V

kV þ q

hence, we find

t
dcA

dt
þ cA ¼ ecA0

ð9:138Þ

where the dimensionless fraction e ¼ q=ðqþ kVÞ appears.
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If we apply the Laplace transform at this point, we shall need to

include the initial condition, owing to the appearance of the deriv-

ative dcA=dt; thus,

L
dcA

dt

� �
¼ sCAðsÞ � cAð0Þ

It is possible to eliminate such excess baggage by writing the stim-

ulus ðcA0Þ and response ðcAÞ variables in terms of deviation from

initial steady state, so write

cAðtÞ ¼ ĉAðtÞ þ �cA

cA0
ðtÞ ¼ ĉA0

ðtÞ þ �cA0

ð9:139Þ

Thus, the hat variable represents excursions away from the ini-

tially steady condition. It is also clear that

cAð0Þ ¼ �cA ; ĉAð0Þ ¼ 0

So in terms of ĉAðtÞ, the dynamic initial condition is zero. Insert-

ing Eq. 9.139 into Eq. 9.138, and recalling the steady state,

Eq. 9.137, we obtain

t
dĉA

dt
þ ĉA ¼ eĉA0

ð9:140Þ

since the steady state requires �cA ¼ e�cA0
, hence these terms cancel.

Now, we must stipulate something about the magnitude of the

disturbance entering the system. Suppose the inlet composition is

suddenly doubled in size and operates like a step function. This

means the inlet deviation ĉA0
behaves as

ĉA0
ðtÞ ¼ uðtÞ�cA0

ð9:141Þ

as shown in Fig. 9.9.

In general, any positive or negative fraction of �cA0
could be

used for the magnitude of the inlet step function. It is clear that the

complete inlet composition is

cA0
ðtÞ ¼ uðtÞ�cA0

þ �cA0
; ĉA0

¼ uðtÞ�cA0

Taking the Laplace transform of Eq. 9.140, and noting ĉAð0Þ ¼ 0,

we obtain sinceLuðtÞ ¼ 1=s

tsĈAðsÞ þ ĈAðsÞ ¼ e
�cA0

s
ð9:142Þ

hence,

ĈAðsÞ ¼ e�cA0

s tsþ 1ð Þ ð9:143Þ

It is convenient, with reference to our previous work, to write this

as

ĈAðsÞ ¼ e�cA0

t

� �
1

s sþ 1=tð Þ
� �

ð9:144Þ

Except for the multiplicative constant, this is identical to Example

9.11, so the inverse, noting the equivalence a ¼ 1=t, is simply

ĉAðtÞ ¼ e�cA0
1� expð�t=tÞ½ � ð9:145Þ

The absolute response is obtained by adding this to �cA to get

cAðtÞ ¼ �cA þ e�cA0
1� expð�t=tÞ½ � ð9:146Þ

but since the steady state required

�cA ¼ e�cA0

we can then write the results in dimensionless terms

ĉAðtÞ
�cA

¼ 1� expð�t=tÞ ð9:147Þ

This shows the final value of ĉAð1Þ ¼ �cA and of course

cAð1Þ ¼ 2�cA.
Another useful observation arises by inspecting the response as

it passes through the point t ¼ t; under these conditions we have

ĉAðtÞ
�cA

¼ 1� e�1 ¼ e� 1

e
’ 0:632 ð9:148Þ

This means that the time constant t can be deduced when the

response for ĉAðtÞ is around 63% of the distance to the final steady

state. Figure 9.10 illustrates the step response.

The impulse response can be found in similar manner, by tak-

ing ĉA0
ðtÞ to be

ĉA0
ðtÞ ¼ c0dðtÞ ð9:149Þ

The weighting factor c0 accounts for how much solute A was

injected, relative to the molar inflow of q�cA0
.

Thus, suppose the CSTR flow rate is q ¼ 0:1 L=s and

�cA0
¼ 1 mol=L. Now, suppose we inject 100 cc of solute A of com-

position 1mol=L ð¼ ĉA0
Þ into the flowing inlet stream. We shallFIGURE 9.9 Inlet composition disturbance for Example 9.13.
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model this injection as an “impulse” since it was done quickly, rel-

ative to the system time constant t. The net molar inflow is then

qcA0
ðtÞ ¼ q�cA0

þ 0:1 L
 �cA0

 dðtÞ

where it is clear that dðtÞ has units of reciprocal time, s�1. We now

see

cA0
ðtÞ ¼ �cA0

þ 0:1dðtÞ
q

�cA0

hence,

ĉA0
¼ 0:1

q

� �
dðtÞ�cA0

by comparing this with Eq. 9.149 we see that the weighting factor

c0 ¼ 0:1
�cA0

q

with units moles A=(L=s). Referring to Eq. 9.140, we have for an

impulse stimulus

t
dĉA

dt
þ ĉA ¼ ec0dðtÞ ð9:150Þ

Taking Laplace transforms, noting ĉAð0Þ ¼ 0 as before, we find

ĈAðsÞ ¼ ec0
tsþ 1

¼ ec0
t

1

sþ 1=t
ð9:151Þ

This is the simple exponential building block; hence,

ĉAðtÞ ¼ ec0
t

� expð�t=tÞ ð9:152Þ

Except for the weighting factor c0, this could have been obtained

directly by differentiating the step response. The response (not to

scale) is illustrated in Fig. 9.11.

It is seen that ĉAð1Þ ! 0, and the system returns to the origi-

nal steady state. This is a clear advantage for “impulse”

experiments, since the reactor is disturbed for only brief periods of

time. Note, since c0 and e are known, the intercept at t¼ 0 allows

the estimate of system time constant t. Again, it is also clear that

the impulse response is simply the time derivative of the step

response, since

s
1

s

1

ðtsþ 1Þ
� �

¼ 1

tsþ 1

Considerable simplifications arise using deviation variables

(sometimes referred to as perturbation variables, implying small

magnitudes), not only because of the elimination of finite initial

conditions. In fact, the structure evolving from such variables

substitution allows nonlinear systems to be easily “linearized,”

provided deviations are not too large. We consider such circum-

stances in the next example, wherein the “stimulus” arises from a

disturbance in the volumetric flow rate, so that q is a function of

time, q(t).

EXAMPLE 9.14

The CSTR in the previous example is subjected to a step change in

the system flow rate, while maintaining a constant volume for the

reactor. Find the exit composition response, cAðtÞ, to such

disturbances.

The deviation variables in the present case will be

qðtÞ ¼ �qþ q̂ðtÞ ð9:153aÞ

cAðtÞ ¼ �cA þ ĉAðtÞ ð9:153bÞ

and cA0
ðtÞ ¼ �cA0

is maintained at a constant value. Inserting these

into the material balance for component A yields

V
dĉA

dt
¼ �q�cA0

� �q�cA � kV�cA½ � þ q̂ðtÞĉAðtÞ½ �

þ q̂ðtÞ�cA0
� q̂ðtÞ�cA � �qĉAðtÞ � kVĉAðtÞ

ð9:154Þ

The first bracketed group of terms are identically zero, since this

group defines the original steady-state condition, which in

FIGURE 9.11 Impulse response of CSTR.
FIGURE 9.10 Response of cAðtÞ to a step change in cA0

ðtÞ.
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simplified form is the same as the last example,

�cA ¼ e�cA0

The second bracketed term represents the nonlinearity, which is

quite small if the deviations are small, hence take

q̂ðtÞ � ĉAðtÞ½ � ffi 0

The remaining items can be arranged into the usual format

V
dĉA

dt
þ �qþ kV½ �ĉA ¼ q̂ðtÞ�cA0

� q̂ðtÞ�cA ð9:155Þ

Now, since the steady state requires �cA ¼ e�cA0
, we see the RHS

becomes simply q̂ðtÞð1� eÞ�cA0
. If we define the time constant as

before, t ¼ V=ð�qþ kVÞ, we finally get

t
dĉA

dt
þ ĉA ¼ ð1� eÞ�cA0

�qþ kV
� q̂ðtÞ ð9:156Þ

Suppose the flow rate takes a step change with magnitude

equal to 50% of the original flow; this would be expressed as

q̂ðtÞ ¼ 0:5�q � uðtÞ

Any fraction could be used, but we must be alert to the con-

straint that q̂ðtÞĉAðtÞ ’ 0, which depends strongly on the reac-

tion rate constant k. Taking Laplace transforms as before,

noting

ĉAð0Þ ¼ 0

yields

ĈAðsÞ ¼ ð1� eÞ�cA0

�q þ kV

� �
ð0:5�qÞ 1

sðst þ 1Þ ð9:157Þ

We recall that e ¼ �q=ð�qþ kVÞ for the present case, so that the

simplified transform is now

ĈAðsÞ ¼ eð1� eÞ0:5�cA0

1

sðst þ 1Þ ð9:158Þ

The transform is the same as the last example, except for

multiplicative constants; hence, replacing �cA ¼ e�cA0

ĉAðtÞ
�cA

¼ ð1� eÞ0:5 1� expð�t=tÞ½ �

The fraction of steady flow, which is the magnitude of the

step change in q̂ðtÞ, appears as a direct multiplier of the final

result. The largest value of ĉAðtÞ occurs at t ¼ 1, so we can

check to see if the nonlinear term, ĉAq̂, was indeed small rel-

ative to the steady-state case

ĉAð1Þq̂
�cA�q

¼ ð1� eÞ0:5�cA � 0:5�q
�cA�q

¼ 1

4
ð1� eÞ

Now, since e < 1, and ð1� eÞ < 1, then ð1� eÞ=4 is relatively

small. We would have even better assurance had we selected

a magnitude of 10% step change, since then we would have

had 0.01 ð1� eÞ, and this is very close to zero.

Nonlinearities can always be “linearized” in some sense, and

the structure of deviation variables makes this quite easy. Thus,

suppose we wish to linearize a function f ðcAÞ around the steady

value �cA; expanding the function in Taylor series yields

f ðcAÞ ¼ f ð�cAÞ þ @ f

@cA

����
�cA

ðcA � �cAÞ þ � � � ð9:159Þ

Now, since cA � �cA ¼ ĉA, which defines a small deviation, higher

order terms can be ignored and the linearized function becomes

simply

f ðcAÞ ’ f ð�cAÞ þ @f

@cA

����
�cA

ĉA ð9:160Þ

Suppose in the CSTR examples that the reaction was of order n

(where n 6¼ 1). The material balance would then be nonlinear

V
dcA

dt
¼ qcA0 � qcA � kVcnA ð9:161Þ

If we introduce deviation variables, say for the case whereby time

variations such as cA0
ðtÞ and cAðtÞ exist, then we must remove the

nonlinearity arising from the kinetics term. To do this, define

f ðcAÞ ¼ cnA and use the above Taylor expansion to see

cnA ’ �cnA þ n�cn�1
A ĉAðtÞ ð9:162Þ

Now, �cnA and n�cn�1
A are constants, independent of time variation.

Inserting the above and noting the steady state must satisfy

0 ¼ q�cA0
� q�cA � kV�cnA ð9:163Þ

hence the equation for deviation from steady state becomes

V
dĉA

dt
¼ qĉA0

� qĉA � kV n�cn�1
A

� �
ĉA ð9:164Þ

which is now linear in ĉAðtÞ. This can be handled exactly as in the

previous examples, except the rate constant is modified by the
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factor n�cn�1
A . (Caution: the steady state must be solved first, since

�cA appears in the above dynamic equation.)

EXAMPLE 9.15

We studied reaction and diffusion within cylindrically shaped

catalyst pellets in Example 3.3, where it was shown

r
d2CA

dr2
þ dCA

dr
� r

k

DA

� �
CA ¼ 0 ð9:165Þ

subject to CA ¼ CAs at r ¼ R, and dCA=dr ¼ 0 at r ¼ 0. Find the

solution CAðrÞ using Laplace transforms.

First, arrange variables to dimensionless form

y ¼ CA

CAs

and x ¼ r

ffiffiffiffiffiffi
k

DA

s

giving

x
d2y

dx2
þ dy

dx
� xy ¼ 0 ð9:166Þ

Take Laplace transforms one at a time, noting from Table 9.1

L x
d2y

dx2

� �
¼ �s2

dY

ds
� 2sYðsÞ þ yð0Þ

L
dy

dx

� �
¼ sYðsÞ � yð0Þ

and finally, the transform L½xy� is simply the first moment given by

Eq. 9.113

L xy½ � ¼ � dYðsÞ
ds

Inserting these gives finally,

ðs2 � 1Þ dYðsÞ
ds

þ sYðsÞ ¼ 0 ð9:167Þ

We have thus reduced the second-order ODE to a separable first-

order problem

dY

Y
¼ � s

s2 � 1
ds ¼ � 1

2

ds2

s2 � 1
¼ � 1

2

dðs2 � 1Þ
ðs2 � 1Þ

This can be integrated directly to yield

YðsÞ ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p

We have not discussed inversion of singularities of the multivalued

type, but we shall proceed anyway, calling on Appendix C for the

tabulation of f (t) versus F (s) to effect the final solution. To evaluate

the arbitrary constant A, we recall the condition

y R
ffiffiffiffiffiffiffiffiffiffiffi
k=DA

p� 	
¼ 1

We shall first invert

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p

and then evaluate A. Thus, Appendix C shows for

L�1 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p ¼ L�1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ 1ð Þ s� 1ð Þp ¼ I0 xð Þ

where we note x ¼ r
ffiffiffiffiffiffiffiffiffiffiffi
k=DA

p
, so we now have

y xð Þ ¼ CA rð Þ
CAs

¼ AI0 r

ffiffiffiffiffiffi
k

DA

s !

The boundary condition at r¼R yields A, which is

A ¼ 1

I0 R
ffiffiffiffiffiffiffiffiffiffiffi
k=DA

p� 	
hence,

CA rð Þ
CAs

¼
I0 r

ffiffiffiffiffiffiffiffiffiffiffi
k=DA

p� 	
I0 R

ffiffiffiffiffiffiffiffiffiffiffi
k=DA

p� 	
which is identical to the result in Example 3.3. We shall discuss

inversion of singularities of the multivalued type (1=
ffiffi
s

p
, etc.) in the

next section. Contour integration in the complex plane is required

around a special contour C called the second Bromwich path.

9.12 INVERSION THEORY FORMULTIVALUED

FUNCTIONS: THE SECOND BROMWICH PATH

In Section 9.4, we discussed the peculiar behavior arising

from functions such as
ffiffi
s

p
. We noted, for example, that

f sð Þ ¼ ffiffi
s

p
yielded two possible values for f, which we

denoted in Eqs. 9.37 and 9.38 as f0 and f1. However, such

behavior is not analytic, since it was stipulated in Section

9.5 that functions must be single valued (in some defined

region of analyticity, which we called R). In order to mani-

pulate such functions so that uniqueness is assured, we must

stipulate conditions that cause single-valued behavior. The

easiest way to do this, considering the specific case of

f sð Þ ¼ ffiffi
s

p
, is to restrict the angle u so that 0 � u � 2p.

Now, since we defined u in terms of the smallest angle u0 as

u¼ u0þ 2pk in Eq. 9.35, where u0 is called the principal
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value of u, then the only allowable value of f is f0, and so

multivalued behavior is thus eliminated by taking k¼ 0,

which ensures u ¼ u0 and 0 < u � 2p. We illustrate the

consequences of this restriction in Fig. 9.12 by comparing

allowed values of u in the s-plane for the case when

sj j ¼ r ¼ constant, with the corresponding values of f (s) in

the f-plane.

We could also have restricted the angle to the region

�p < u < p, to yield the same result. The fundamental rea-

son causing the misbehavior in the first instance was the

encirclement of s¼ 0, which is the zero value of f ðsÞ ¼ ffiffi
s

p
.

Had the origin not been encircled in this case, then multi-

valued behavior would never have arisen. For example,

consider the selections of s giving rise to the contour shown

in Fig. 9.13.

Thus, by constructing the barrier along the negative real

axis, so that �p � u � p, and by requiring that this barrier

never be crossed, we have thus assured that the angle s

corresponding to these selections of s will always be such

that �p � u � p. This is so because positive angles are

taken as anticlockwise, while negative angles are clock-

wise. Except for the line DG, circle e and line HF, the con-

tour is identical to Fig. 9.4, which we called the first

Bromwich path. This ensures that s is no longer infinitely

circular (i.e., u does not encircle the origin). The barrier

could have been drawn anywhere in the plane, as illustrated

in Fig. 9.14, and its sole purpose is to prevent encirclement

of the point s¼ 0.

The “branch point” is the particular value of s where the

function (in this example, f sð Þ ¼ ffiffi
s

p
) becomes zero or

infinite. So the branch point for f sð Þ ¼ ffiffi
s

p
is s¼ 0 and the

branch point for f sð Þ ¼ 1=
ffiffi
s

p
is also s¼ 0.

Thus, if any contour is drawn so that the branch point is

encircled, then multivalued behavior arises. The principle to

ensure analyticity is simple: branch points cannot be

encircled. There is considerable range and scope for choos-

ing branch cuts to ensure analytic behavior. Now, if no other

singularities exist in the contour selected, then Cauchy’s

FIGURE 9.14 Alternative Br2 path.

FIGURE 9.12 Eliminating multivalued behavior by restricting u to 0 � u � 2p.

FIGURE 9.13 Contour C2 (second Bromwich path), which does

not enclose branch point at s¼ 0.
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first integral theorem is valid, and we denote the new con-

tour C2 as the second Bromwich path, Br2; hence,I
Br2

f ðsÞ ds ¼ 0 ð9:168Þ

We next consider how to cope with the inversion of trans-

forms containing multivalued functions. To illustrate this,

we consider inverting

F sð Þ ¼ 1ffiffi
s

p ð9:169Þ

We shall use the second Bromwich path drawn in Fig. 9.13,

where the branch point is located at s¼ 0 and the branch cut

extends to infinity. We write first that, since no other singu-

larities exist, I
Br2

estffiffi
s

p ds ¼ 0 ð9:170Þ

At the outset, we note the inversion can be easily accom-

plished using elementary building blocks using the substitu-

tion b ¼ ffiffi
t

p
and noting that erf 1ð Þ ¼ 1; hence,

L
1ffiffi
t

p ¼
Z 1

0

1ffiffi
t

p e�stdt ¼
Z 1

0

1

b
e�sb22bdb

¼ 2

Z 1

0

e�sb2db ¼
ffiffiffi
p

s

r
ð9:171Þ

Hence, we conclude L�1 1=
ffiffi
s

pð Þ ¼ 1=
ffiffiffiffiffi
pt

p
. However, we

wish to develop a general approach, applicable to any (or

many) multivalued functions. To do this, we decompose the

integral in Eq. 9.170 into its component parts (see Fig. 9.13)

I
Br2

estffiffi
s

p ds ¼
Z
BCD

estffiffi
s

p dsþ
Z
DG

estffiffi
s

p dsþ
I
e

estffiffi
s

p ds

þ
Z
HF

estffiffi
s

p dsþ
Z
FEA

estffiffi
s

p dsþ
Z s0þiv

s0�iv

estffiffi
s

p ds ¼ 0

ð9:172Þ

We take careful note that the last term in the summation

defines the Laplace inversion, according to the Fourier–

Mellin theorem in Eq. 9.3, since in the limit as v !
1 or R ! 1ð Þ

f tð Þ ¼ 1

2pi

Z s0þi1

s0�i1
estF sð Þds ð9:173Þ

Thus, we wish to solve for

Z s0þiv

s0�iv

estffiffi
s

p ds

in terms of the remaining integrals, in the limit as v ! 1,

which is the same as taking R ! 1:

The arguments put forth earlier regarding integrals

around the first Bromwich path are still applicable to parts

of the Br2 curve (e.g., Eqs. 9.92–9.94), so when R ! 1, we

can write immediatelyZ
BCD

estffiffi
s

p ds ¼
Z
FEA

estffiffi
s

p ds ¼ 0 ð9:174Þ

The remaining three terms can be treated as follows: first,

consider the small circular path in the limit as e ! 0, using

polar coordinates s¼ e exp (iu)

I
e

estffiffi
s

p ds ¼
Z �p

p

exp et cos u þ i sin u½ �ð Þie exp iuð Þduffiffi
e

p
exp i

u

2

� �

¼ lim
e!0

i
ffiffi
e

p Z �p

p

exp et cos u þ i sin uð Þ þ 1

2
iu

� �
du ¼ 0

ð9:175Þ

This leaves only the line integrals DG and HF. Consider

DG first where we define s ¼ reip ¼ �r, hence
ffiffi
s

p ¼ffiffi
r

p
eip=2 ¼ i

ffiffi
r

p
Z
DG

estffiffi
s

p ds ¼
Z 0

�1

estffiffi
s

p ds ¼
Z 0

1

e�rt

i
ffiffi
r

p �drð Þ

¼ þi

Z 0

1

e�rtffiffi
r

p dr ¼ �i

Z 1

0

e�rtffiffi
r

p dr ð9:176Þ

Now, let us perform the same type of integral along HF; let

s ¼ re�ip ¼ �r, so that
ffiffi
s

p ¼ ffiffi
r

p
e�ip=2 ¼ �i

ffiffi
r

p
; hence,Z

HF

estffiffi
s

p ds ¼
Z �1

0

sstffiffi
s

p ds ¼
Z 1

0

e�rt

�i
ffiffi
r

p �drð Þ

¼ �i

Z 1

0

e�rtffiffi
r

p dr ð9:177Þ

Thus, solving Eq. 9.172 for

Z s0þiv

s0�iv

estffiffi
s

p ds

in the limit

lim
v!1

Z s0þiv

s0�iv

estffiffi
s

p ds ¼ þ2i

Z 1

0

e�rtffiffi
r

p dr ð9:178Þ

This is simply the integral along the lines FHGD, which is

the negative of DGHF.

Dividing this by 2pi yields the Fourier–Mellin inversion

theorem, which defines the inverse transform of
ffiffi
s

p

f tð Þ ¼ 1

p

Z 1

0

e�rtffiffi
r

p dr ¼ L�1 1ffiffi
s

p ð9:179Þ
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Taking rt¼ b2, we find

f tð Þ ¼ 1

p

Z 1

0

e�b22b

ðb= ffiffi
t

p Þt db ¼ 2

p
ffiffi
t

p
Z 1

0

e�b2db ð9:180Þ

But, the error function is (see Eq. 4.1):

erf xð Þ ¼ 2ffiffiffi
p

p
Z x

0

exp �b2
� �

db and erf 1ð Þ ¼ 1

hence,

f tð Þ ¼ 1ffiffiffiffiffi
pt

p ð9:181Þ

9.12.1 Inversion When Poles and Branch Points Exist

When pole singularities exist, along with branch points, the

Cauchy theorem is modified to account for the (possibly

infinite) finite poles that exist within the Bromwich contour;

hence, S resðFðsÞestÞ must be added to the line integrals

taken along the branch cut, so

f tð Þ ¼ 1

2pi

I
Br2

estF sð Þds

¼ 1

2pi

Z
FHGD

estF sð Þdsþ
X

residues of estF sð Þ½ �
ð9:182Þ

If no branch points exist, this reduces to the formula

given in Eq. 9.99. Often, elementary building blocks can

be used to invert awkward transforms. For example, we

have seen that L�1 1=
ffiffi
s

pð Þ ¼ 1=
ffiffiffiffiffi
pt

p
and moreover, since

1=s denotes integration, then it is straightforward to find

the inversion of

F sð Þ ¼ 1

s

1ffiffi
s

p ð9:183Þ

as simply

L�1F sð Þ ¼
Z t

0

1ffiffiffiffiffiffi
pb

p db ¼ 2ffiffiffi
p

p ffiffiffi
b

p
jt0 ¼ 2

ffiffiffi
t

p

r
ð9:184Þ

Thus, any transform can, in theory, be inverted provided

the behavior in the complex plane is such that

F sð Þj j ! 0 as sj j ! 1. All physical processes must satisfy

this condition, so in principle an inversion always exists,

although the mathematics to find it can often be intractable.

For this reason, numerical techniques have been developed,

which have wide applicability for practical problems.

We discuss these approximate, numerical techniques in the

next section.

9.13 NUMERICAL INVERSION TECHNIQUES

Previous sections dealt with the analytical development of

Laplace transform and the inversion process. The method

of residues is popular in the inversion of Laplace transforms

for many applications in chemical engineering. However,

there are cases where the Laplace transform functions are

very complicated and for these cases the inversion of

Laplace transforms can be more effectively done via a

numerical procedure. This section will deal with two

numerical methods of inverting Laplace transforms. One

was developed by Zakian (1969), and the other method

uses a Fourier series approximation (Crump 1976). Inter-

ested readers may also wish to perform transforms using a

symbolic algebra language such as Maple (Heck 1993).

9.13.1 The Zakian Method

The Laplace transform of f(t) is denoted as F(s), given in

Eq. 9.1, and is rewritten again here for convenience

F sð Þ ¼
Z 1

0

f tð Þe�stdt ð9:185Þ

Here, we assume that f(t) is integrable (piecewise con-

tinuous) and is of exponential order s0; that is,

f tð Þj j < Mexp s0tð Þ:
Recalling the Dirac’s delta function, defined in Eq. 8.10,

and if we replace xk of Eq. 8.10 by unity, we obtainZ 1þ

1�
d x� 1ð Þdx ¼ 1 ð9:186Þ

If we now make the following substitution

x ¼ y

t
ð9:187Þ

then the Dirac delta function in Eq. 9.186 will becomeZ tþ

t�
d

y

t
� 1

� 	
dy ¼ t ð9:188Þ

Thus, if t lies between 0 and T, we can replace the above

integration range to [0, T] without changing the value of

the integral; that is, Z T

0

d
y

t
� 1

� 	
dy ¼ t ð9:189Þ

Using the property of the Dirac delta function, we can write

f tð Þ ¼ 1

t

Z T

0

f yð Þd y

t
� 1

� 	
dy ð9:190Þ

valid for any values of t between 0 and T.
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Following Zakian (1969), the delta function, d y=t� 1ð Þ,
can be expressed in terms of a series of exponential functions

d
y

t
� 1

� 	
¼
X1
i¼1

Ki exp �ai

y

t

� 	
ð9:191Þ

where the parameters ai and Ki satisfy the following criteria:

(a) a and K are either real or they occur in complex con-

jugate pairs; for example, a1 ¼ a�
2 and K1 ¼ K�

2

(b) ai and Ki depend on N, where N is the number of

terms kept in the partial series (Eq. 9.192)

(c) limN!1Real aið Þ ¼ 1; limN!1 Kij j ¼ 1
(d) Real aið Þ > 0

(e) ai are distinct; that is, ai ¼ aj if and only if i ¼ j

If we denote the sequence dN as the partial series of d as

dN
y

t
� 1

� 	
¼
XN
i¼1

Ki exp �ai

y

t

� 	
ð9:192Þ

and the function sequence fN(t) as

f N tð Þ ¼ 1

t

Z T

0

f yð ÞdN y

t
� 1

� 	
dy ð9:193Þ

then for every continuity point t of f, we have

f tð Þ ¼ lim
N!1

f N tð Þ ð9:194Þ

Substitution of dN of Eq. 9.192 into Eq. 9.193 yields

f N tð Þ ¼ 1

t

Z T

0

f yð Þ
XN
i¼1

Ki exp �ai

y

t

� 	
dy ð9:195Þ

If we interchange the summation and integral signs, we

obtain

f N tð Þ ¼ 1

t

XN
i¼1

Ki

Z T

0

f yð Þexp �ai

y

t

� 	
dy ð9:196Þ

Now, letting T ! 1 and using the definition of Laplace

transform (Eq. 9.1 or 9.185) gives

f N tð Þ ¼ 1

t

XN
i¼1

KiF
ai

t

� 	
ð9:197Þ

for 0 < t < tc, where

tc ¼ min
i¼1;2;...;N

Re
ai

s0

� �� �
ð9:198Þ

Using the property (c) above, N ! 1; Re aið Þ ! 1 and

hence, tc ! 1, we have the following explicit inversion

formula:

f tð Þ ¼ lim
N!1

1

t

XN
i¼1

KiF
ai

t

� 	" #
ð9:199aÞ

Since the constants a and K appear in complex conjugate

(see property (a)), the explicit inversion formula can be

written as follows:

f tð Þ ¼ lim
N!1

2

t

XN=2
i¼1

Real KiF
ai

t

� 	n o" #
ð9:199bÞ

Table 9.2 gives a set of five constants for a and K (N/2¼ 5)

(Zakian 1970). For most applications, the above set of con-

stants yields good numerical inverse as we shall see in the

following example.

EXAMPLE 9.16

To show an example of numerical inversion by the Zakian method,

we take the function treated in Example 9.12

F sð Þ ¼ 1

s2
1

sþ 1ð Þ2

which has the following analytical inverse:

f tð Þ ¼ t� 2ð Þ þ tþ 2ð Þexp �tð Þ

TABLE 9.2 Set of Five Constants for a and K for the Zakian Method

i ai Ki

1 1.283767675eþ 01þ i 1.666063445 �3.69020821eþ 04þ i 1.96990426eþ 05

2 1.222613209eþ 01þ i 5.012718792eþ 00 þ6.12770252eþ 04� i 9.54086255eþ 04

3 1.09343031eþ 01þ i 8.40967312eþ 00 �2.89165629eþ 04þ i 1.81691853eþ 04

4 8.77643472eþ 00þ i 1.19218539eþ 01 þ4.65536114eþ 03� i 1.90152864eþ 00

5 5.22545336eþ 00þ i 1.57295290eþ 01 �1.18741401eþ 02� i 1.41303691eþ 02
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Table 9.3 shows the excellent agreement between the analytical

and the numerical inverse. A maximum percentage relative error

of less than 3% is observed.

EXAMPLE 9.17

To illustrate problems for transcendental functions in the numeri-

cal inversion method of Zakian, we take the function

F sð Þ ¼ 1

s2 þ 1ð Þ
which has the inverse

f tð Þ ¼ sin tð Þ
Table 9.4 shows the comparison between the analytical and the

numerical inverse. The error increases with an increase in time,

suggesting that the Zakian method does not work well with

oscillating functions.

EXAMPLE 9.18

Finally, we test the Zakian technique with the exponentially

increasing function treated in Example 9.10. The Laplace trans-

form is

F sð Þ ¼ 2s2 þ 3s� 4

s� 2ð Þ s2 þ 2sþ 2ð Þ
where the analytical inverse is

f tð Þ ¼ e2t þ e�tcos tð Þ þ 2e�tsin tð Þ
Table 9.5 shows the numerical inverse obtained by the Zakian

method, and the performance of the routine is even worse than

the previous example.

In conclusion, the Zakian numerical technique yields good

results only when the inverse does not exhibit oscillating behavior

or when it increases exponentially with time. The Fourier approx-

imation method presented in the next section will remedy the dis-

advantages encountered by the Zakian method.

9.13.2 The Fourier Series Approximation

Another method of getting the numerical inverse is using

the Fourier series approximation. The Laplace transform

pairs are given as in Eqs. 9.1 and 9.3, written again for

convenience

FðsÞ ¼
Z 1

0

e�stf ðtÞdt ð9:200aÞ

f ðtÞ ¼ 1

2pi

Z sþiv

s�iv

estFðsÞ ds ð9:200bÞ

We assume that f(t) is piecewise continuous and of expo-

nential order s0, that is, f ðtÞj j <M exp s0tð Þ.
The inverse equation (Eq. 9.200b) can be written in

terms of the integral with respect to v as

f ðtÞ ¼ est

p

Z 1

0

Re FðsÞ½ �cosðvtÞ � Im FðsÞ½ �sinðvtÞf g dv
ð9:201Þ

where s can be any number greater than s0.

TABLE 9.5 Comparison Between the Numerical Inverse

Obtained by the Zakian Method and the Analytical Solution

for Example 9.18

t

Zakian Numerical

Inverse

Analytical

Inverse

Percentage

Rel. Error

0.5 0.3829eþ 01 0.3832eþ 01 0.073

1.5 0.2050eþ 02 0.2055eþ 02 0.224

4.5 0.8082eþ 04 0.8103eþ 04 0.261

9.5 0.7401eþ 04 0.1785eþ 09 100

TABLE 9.3 Comparison Between the Numerical Inverse

Obtained by the Zakian Method and the Analytical Solution

for Example 9.16

t

Zakian Numerical

Inverse

Analytical

Inverse

Relative

Error 
 100

0.5 0.01629 0.01633 0.233

1.5 0.2803 0.2810 0.228

2.5 0.8675 0.8694 0.221

3.5 1.662 1.666 0.217

4.5 2.567 2.572 0.216

5.5 3.523 3.531 0.212

6.5 4.503 4.513 0.215

7.5 5.494 5.505 0.211

8.5 6.489 6.502 0.208

9.5 7.501 7.501 0.211

TABLE 9.4 Comparison Between the Numerical Inverse

Obtained by the Zakian Method and the Analytical Solution

for Example 9.17

Time

Zakian Numerical

Inverse

Analytical

Inverse

Relative

Error 
 100

0.5 0.4785 0.4794 0.1894

2.5 0.5982 0.5985 0.04848

4.5 �0.9750 �0.9775 0.2606

6.5 0.2146 0.2151 0.2443

8.5 0.8004 0.7985 0.2377

10.5 �0.8752 �0.8797 0.5090

12.5 0.06947 �0.06632 4.744

14.5 0.9239 0.9349 1.181

16.5 �0.5281 �0.7118 25.81
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Following the procedure of Crump (1976), the approxi-

mation to the inverse is given by

f ðtÞ 	 est

T

1

2
FðsÞ þ

X1
k¼1

Re F s þ kpi

T

� �� �
cos

kpt

T

� �(

� Im F s þ kpi

T

� �� �
sin

kpt

T

� �
ð9:202Þ

where T > t, and s is any number greater than the exponen-

tial order of the function f(t). This equation is simply the

trapezoidal rule of the inverse equation (9.201).

Numerically, the computation is done as follows (Crump

1976). Suppose the numerical value of f(t) is needed for a

range of t up to tmax and the relative error is to be no greater

than E. First, T is chosen such that

2T > tmax ð9:203Þ
and the value of s is chosen as

s ¼ s0 � lnðEÞ
2T

ð9:204Þ

The parameter s0, which is the exponential order of the

function f(t), can be computed from the transform F(s). We

simply take s0 to be a number slightly larger than

max ReðPÞf g

where P denotes a pole of F(s).

Taking the Examples 9.16, 9.17, and 9.18, we compute

the numerical inverse and show the results in the Tables

9.6–9.8, where it is seen that the Fourier series approxima-

tion is a better approximation than the Zakian method.

The Fourier series approximation is a better method

to handle oscillating functions, but it requires more

computation time than the Zakian method. With the advent

of high-speed personal computers, this is not regarded as a

serious disadvantage.

PROBLEMS

9.12. Prove that the function

f ¼ s � iv ¼ �s

is not analytic anywhere.

9.22. Introduce polar coordinates to Cauchy’s integral

theorem
H
f ðsÞ ds ¼ 0 in the form f ðsÞ ¼ uþ iv and

s ¼ reiu and show that the property of exactness,

discussed in Section 9.6, leads to a polar form of the

Cauchy–Riemann conditions

@u

@r
¼ 1

r

@v

@u
;

1

r

@u

@u
¼ � @v

@r

9.33. The properties of the logarithm of complex variables

are related to the exponential function es introduced in

TABLE 9.8 Comparison Between the Numerical Inverse

Obtained by the Fourier Method and the Analytical Solution

for Example 9.18

t

Fourier Numerical

Inverse of Example 9.18

Analytical

Inverse

Percentage

Rel. Error

0.5 0.38319eþ 01 0.38321eþ 01 0.005

1.5 0.20546eþ 02 0.20546eþ 02 0.001

4.5 0.81030eþ 04 0.81031eþ 04 0.000

7.5 0.32700eþ 07 0.32690eþ 07 0.028

9.5 0.17857eþ 09 0.17848eþ 09 0.051

TABLE 9.6 Comparison Between the Numerical Inverse

Obtained by the Fourier Method and the Analytical Solution

for Example 9.16

Time

Fourier Numerical Inverse

of Example 9.16

Analytical

Inverse

Relative

Error 
 100

0.5 0.01633 0.01633 0.045

1.5 0.28094 0.28096 0.006

2.5 0.86938 0.86938 0.000

3.5 1.66607 1.66609 0.001

4.5 2.57227 2.57221 0.002

5.5 3.53071 3.53065 0.002

6.5 4.51285 4.51278 0.002

7.5 5.50534 5.50525 0.001

8.5 6.50223 6.50214 0.001

9.5 7.50097 7.50086 0.001

TABLE 9.7 Comparison Between the Numerical Inverse

Obtained by the Fourier Method and the Analytical Solution

for Example 9.17

Time

Fourier Numerical Inverse

of Example 9.17

Analytical

Inverse

Relative

Error 
 100

0.5 0.47943 0.47943 0.000

2.5 0.59847 0.59847 0.000

4.5 �0.97752 �0.97753 0.001

6.5 0.21518 0.21512 0.028

8.5 0.79856 0.79849 0.010

10.5 �0.87969 �0.87970 0.001

12.5 0.06632 �0.06632 0.003

14.5 0.93489 0.93490 0.000

16.5 �0.71176 �0.71179 0.004
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Eq. 9.19 by writing

s ¼ expðf ðsÞÞ
then

f ðsÞ ¼ LnðsÞ ¼ Ln reiðu0þ2kpÞ
h i

where k is zero or integer. This shows that f (s) is, in

fact, a multivalued function. We shall use capital Ln

to represent logs of complex variables.

(a) If f ðsÞ ¼ uþ iv, show that u ¼ lnðrÞ and

v ¼ u ¼ u0 þ 2kp.

(b) If s ¼ i, show that

LnðiÞ ¼ 4k þ 1

2

� �
pi ðk ¼ 0; � 1; � 2; . . .Þ

The value corresponding to k ¼ 0 is often called

the “principal value of the logarithm.”

(c) If s¼ x (x is a positive, real number), sow that

LnðxÞ ¼ ln xþ 2kpi

This shows that the complex logarithm of a posi-

tive real number may differ from the usual real

logarithm by an arbitrary multiple of 2p. The two

become identical only when k ¼ 0, which corre-

sponds to the principal value; that is, when u ¼ u0.

9.43. Determine all possible values of the function

f ðsÞ ¼ sin�1ðsÞ

when s ¼ 2. Hint: Treat the general case first by

writing

s ¼ sin f ¼ eif � e�if

2i
¼ e2if � 1

2ieif

where we have used Eq. 9.21

Answer: f ¼ p
2
þ 2kp� i ln 2� ffiffiffi

3
p� �

9.52. Prove that
R
c
1=ðs� aÞ ds ¼ 0 for a closed curve

encircling the origin with sj j < a, but for sj j > a;R
1=ðs� aÞ ds ¼ 2pi.

9.6�. Suppose we have a function of the form

gðsÞ ¼ f ðsÞ=ðs� s0Þ

where f(s) is taken to be analytic within a region R and

s0 lies within R. If f ðs0Þ 6¼ 0, then g(s) is not analytic

at s ¼ s0. Prove that

f ðs0Þ ¼ 1

2pi

I
C

f ðsÞ
s� s0

ds

where C is a closed curve that lies in R and includes

the point s0 (this is called Cauchy’s second integral

theorem). Hint: Isolate the point s ¼ s0 by drawing

an additional circle of radius C1 around the point,

then allow s to traverse both curves through a cut

between the closed curves so that analytic behavior is

guaranteed in the region separating C and C1 so thatI
C

f ðsÞ
s� a

ds�
I
C1

f ðsÞ
s� a

ds ¼ 0

9.73. Find the residues of the function f ðsÞ ¼ 1=ð1� esÞ, at
all poles. Hint: The zeros of expðsÞ ¼ 1 can

be obtained using the logarithm discussed in

Problem 9.33 since

Lnð1Þ ¼ s ¼ lnð1Þ þ 2kpi ¼ 2kpi

Answer: –1

9.83. Use the Laplace transform to find the value of the sine

integral Z 1

0

sinðtbÞ
b

db ¼ p

2
sgnðtÞ

where

sgnðtÞ ¼
1; t > 0

0; t ¼ 0

�1; t < 0

8>><
>>:

Hint: Define the Laplace transform of the general

integral as

L

Z 1

0

f t; bð Þdb ¼
Z 1

0

Lf t; bð Þdb

where

f t;bð Þ ¼ sin tbð Þ=b:

9.93. Prove the Laplace transform of the complementary

error function is given by

L erfc a=
ffiffiffiffiffi
4t

p� 	
¼ e�a

ffiffi
s

p
=s

where a > 0 is a real constant.
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9.102. (a) Use the convolutions integral to solve for Y(s) in

the Volterra integral

y tð Þ ¼ f tð Þ þ
Z t

0

y uð Þg t� uð Þ du

and show that

Y sð Þ ¼ F sð Þ
1� G sð Þ

(b) Apply the results from (a) and show that

yðtÞ ¼ sin tþ
Z t

0

sin 2ðt� uÞ½ �yðuÞ du

has the explicit solution

yðtÞ ¼ 3 sin t�
ffiffiffi
2

p
sinð

ffiffiffiffiffi
2t

p
Þ

9.112. Find the function f(t) corresponding to the Laplace

transforms

ðaÞ 1

sðsþ 1Þ3 ðbÞ s

ðs2 þ 1Þðs2 þ 4Þ

Answer: (a) f ðtÞ ¼ 1� e�tðtþ 1Þ � 1
2
t2e�t

ðbÞ f ðtÞ ¼ 1
3
cos t� cos 2t½ �

9.122. (a) Show that a particular solution to Kummer’s

equation (see Example 3.4)

t
d2y

dt2
þ ð1� tÞ dy

dt
þ by ¼ 0

can be obtained by the inversion of the Laplace

transform

yðtÞ ¼ AL�1 ð1� sÞb
s1þb

" #

where A is an arbitrary constant. Hint: Use

Table 9.1.

(b) Show for the case b¼ 1 that

yðtÞ ¼ Aðt� 1Þ

and for the case b¼ 2

yðtÞ ¼ A 1� 2tþ t2

2!

� �

9.133. Use Laplace transforms to solve the equation

t
d2y

dt2
þ ðt� 1Þ dy

dt
� y ¼ 0

for the condition y(0)¼ 0 and show that

yðtÞ ¼ A ðt� 1Þ þ e�t½ �

where A is an arbitrary constant. What is the value

of y0ð0Þ?
9.142. The dynamic equation for a damped, spring-inertia

system was derived in Problem 1.62. If the initial

position and velocity are zero, the Laplace transform

of the second-order equation yields

ðt2s2 þ 2tzsþ 1ÞXðsÞ ¼ FðsÞ

Hence, to find the dynamics for an arbitrary forcing

function F(s), we shall need to invert

XðtÞ ¼ L�1 FðsÞ
t2s2 þ 2ztsþ 1

� �

For the specific case of forcing by a unit step func-

tion (F(s)¼ l/s), we shall consider three possible

behavior patterns

z > 1 (overdamped)

z ¼ 1 (critically damped)

z < 1 (underdamped)

(a) Perform the inversion when z > 1 by first show-

ing the transform can be rearranged as

XðsÞ ¼ 1

t2
� 1
s

1

ðsþ aÞ2 � b2

where

a ¼ z

t
and b ¼ 1

t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
(b) Since 1/s implies integration, use this along with

the shifting theorem to show from Transform 15

(Appendix C)

XðtÞ ¼ 1

t2

Z t

0

e�at 1

b
sinhðbtÞ dt
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hence

XðtÞ ¼ 1� e�at coshðbtÞ þ a

b
sinhðbtÞ

h i
so finally, replacing a and b

XðtÞ ¼ 1� expð�zt=tÞ
"
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
t

t

 !

þ zffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
t

t

 !#

(c) For the case z ¼ 1, show that the integral inver-

sion formula in (b) becomes

XðtÞ ¼ 1

t2

Z t

0

te�at dt

hence,

XðtÞ ¼ 1� ð1þ t=tÞexpð�t=tÞ

(d) Consider the underdamped case ðz < 1Þ and

repeat the procedure in (b), noting since b

becomes purely imaginary, then use cosh

(ix)¼ cos x and sinh (ix)¼ i sin x, so write

immediately

XðtÞ ¼ 1� expð�zt=tÞ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
t

 !
t

"

þ zffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
t

 !
t

#

(e) Use these results to compute response curves for

the three cases. Why is critical damping so

important for the design of systems such as

shown in Problem 1.6?

9.153. A cascade of equivolume CSTRs are connected in

series and under linear kinetics to deplete species A

in A�!k products.

Denoting Cn(t) as the composition of A leaving

the nth reactor, the material balance is

V
dCn

dt
¼ qCn�1 � qCn � kVCn

(a) Introduce perturbation variables of the type

CnðtÞ ¼ �Cn þ ĈnðtÞ

and show that

t
dĈn

dt
þ Ĉn ¼ eĈn�1

where

e ¼ q

kV þ q
; t ¼ V

kV þ q

(b) Take Laplace transform and show that

ĈnðsÞ ¼ eĈn�1ðsÞ
tsþ 1

(c) Solve the linear finite-difference equation by

assuming a solution of the form

ĈnðsÞ ¼ AðrÞn

and show that

ĈnðsÞ ¼ Ĉ0ðsÞ e
tsþ 1

� �n

where Ĉ0ðsÞ denotes the transform of the com-

position perturbation entering the first reactor.

(d) Show that a step change of magnitude a�C0ð0 <
a < 1Þ entering the first reactor causes the fol-

lowing response for the nth reactor:

ĈnðtÞ ¼ ena�C0 1þ 1

tn
1

ðn� 1Þ!
dn�1

dsn�1

est

s

� �����
s¼�1=t

" #

(e) For the case of two reactors, show that the exit

perturbation is

Ĉ2ðtÞ ¼ e2a�C0 1� t

t
expð�t=tÞ � expð�t=tÞ

h i
(f) Using results from (e), deduce the impulse

response, Ĉ0ðtÞ ¼ W0dðtÞ,where the weighting

W0 replaces a�C0, and obtain

Ĉ2ðtÞ ¼ e2W0

t

t2
expð�t=tÞ

and then show the composition maximum occurs

when t ¼ t.

9.16�. Bubble Coalescence

When two bubbles collide, a thin circular film or lens

forms and begins to drain and become progressively

thinner until it collapses to produce a single, larger

bubble. This process is called coalescence. We have

earlier considered this process in Example 2.8. In the

present case, we consider a new model based on

the wake theory of coalescence (Rice 2009) yielding

a tractable analytical solution to forecast the time

of coalescence. The Bernoulli theorem was used to

describe draining dynamics and the following
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nonlinear equation was derived to portray the thin-

ning of the lens of radius R and thickness h between

two contacting bubbles, where the primes denote dif-

ferentiation with respect to time:

h00 ¼ �k
h0

h

� �2

; k ¼ p

16

� 	 rL
m

� 	
R4

In the parameter k, m denotes the virtual mass of a

bubble taken as

m ¼ rL
V

2

� �

Here, V is the bubble volume, which will be taken to

be spherical.

The initial conditions will be taken as h(0)¼ h0 and

h0ð0Þ ¼ �ur, where ur represents the relative velocity

of the bubbles before impact.

We can repose the problem using nondimensional

dependent variables by writing y ¼ h=h0 and see that

we have

y00 ¼ �e
y0

y

� �2

; e ¼ k

h0

The parameter e is now nondimensional. If we assume

the lens radius is the same as the spherical bubble

radius, then

e ¼ 3

32

� �
R

h0

� �

and the initial conditions are now y(0)¼ 1 and

y0ð0Þ ¼ �ur=h0:

(a) Since p¼ y0 ¼ f(y) we can use the methods from

Chapter 2 to show

p
dp

dy

� �
¼ �e

p

y

� �2

What is the singular solution in this case?

(b) Since the singular solution is not viable (why?),

cancel out p from both sides, and integrate to find

p ¼ C exp
e
y

� �

where C is an arbitrary constant.

Use the initial conditions to show

C ¼ � ur

h0

� �
expð�eÞ

(c) Integrate the expression in (b) from y(0)¼ l to

yðtÞ ¼ 0, where t represents the time to coales-

cence, and show

Z 0

1

exp �e
1� y

y

� �� �
dy ¼ �t

ur

h0

� �
¼ �tc

where tC denotes the dimensionless coalescence

time.

(d) Change variables using the dummy variable t¼
(1� y)/y and show the familiar integral arisesZ 1

0

expð�etÞ
ð1þ tÞ2 dt ¼ tc

If we replaced e with s, then the familiar Laplace

transform would be recognized. Use this analogy

and transform #93 (Appendix C) to see:

1þ e expðeÞEið�eÞ ¼ tc

(e) As shown in Section 4.5, it is convenient to use

the alternative form of the exponential integral

E1ðeÞ ¼ �Eið�eÞ, and this finally yields

tc ¼ 1� e expðeÞE1ðeÞ

Use handbooks to show that the approximate form

of the alternate exponential function for small e is

E1ðeÞ 	 e� lnðeÞ � g

Here, g is the Euler constant¼ 0.57721.

REFERENCES

Churchill, R. V. Operational Mathematics. 2nd ed., McGraw Hill,

New York (1958).

Crump, K. S. “Numerical Inversion of Laplace Transforms Using

a Fourier Series Approximation,” J. Assoc. Comput. Machi-

nery, 23, 89–96 (1976).

Heck, A. Introduction to Maple. Springer, New York (1993).

Hildebrand, F. B. Advanced Calculus for Applications. Prentice

Hall, Englewood Cliffs, New Jersey (1962).

Rice, R. G. “A Note Deriving the Analytical Solution for the Wake

Theory of Coalescence,” Chem. Eng. Sci., 64, 3385–3387

(2009).

Zakian, V. “Numerical Inversion of Laplace Transform,” Electron.

Lett., 5, 120–121 (1969).

Zakian, V. “Rational Approximation to Transfer-Function Matrix

of Distributed System,” Electron. Lett., 6, 474–476 (1970).

REFERENCES 225





10
SOLUTION TECHNIQUES FORMODELS
PRODUCING PDES

10.1 INTRODUCTION

In Chapter 1, we showed how conservation laws often lead

to situations wherein more than one independent variable is

needed. This gave rise to so-called partial derivatives,

defined for example in the distance–time domain as

lim
Dx!0

f ðxþ Dx; tÞ � f ðx; tÞ
Dx

¼ @f

@x
ð10:1Þ

lim
Dt!0

f ðx; tþ DtÞ � f ðx; tÞ
Dt

¼ @f

@t
ð10:2Þ

The first implies holding time constant while differentiat-

ing with respect to x, whereas the second implies holding

x constant while differentiating with respect to t. These

implicit properties must be kept in mind when integrating

partial derivatives. Thus, for ordinary derivatives, the

integral of dy=dx¼ 0 yields y(x)¼ constant. However, for

the partial derivatives, we must account for the implied

property:

@f

@x
¼ 0; ; f ¼ gðtÞ ð10:3Þ

Thus, instead of adding an arbitrary constant, we must in

general add an arbitrary function of the independent varia-

ble, which was held constant during integration.

The general function of three variables can be written

u ¼ f ðx; y; zÞ ð10:4Þ

The total differential of u can be written using the chain

rule

du ¼ @f

@x
dxþ @f

@y
dyþ @f

@z
dz ð10:5Þ

For continuously differentiable functions, the order of

differentiation is immaterial:

@

@x

@f

@y

� �
¼ @

@y

@f

@x

� �
¼ @2f

@x@y
¼ @2f

@y@x
ð10:6Þ

For convenience, we often abbreviate partial derivatives as

@2f

@x2
¼ f xx;

@2f

@y2
¼ f yy;

@2f

@x@y
¼ f xy ð10:7Þ

Occasionally, implicit functions arise

gðx; yÞ ¼ 0 ð10:8Þ

and we wish to find

y ¼ f ðxÞ ð10:9Þ
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To do this, we apply the chain rule using Eq. 10.5 on

Eq. 10.8 to yield

dg ¼ @g

@x
dxþ @g

@y
dy ¼ 0 ð10:10Þ

Solving for dy/dx gives

dy

dx
¼ � @g=@xð Þ

@g=@yð Þ ¼
df

dx
ð10:11Þ

Because of the implicit properties of partial derivatives, @g
cannot be canceled as would be the case for ordinary

derivatives.

EXAMPLE 10.1

If

x2 þ y2 ¼ lx; find
dy

dx

We can accomplish this exercise in two ways. The first way simply

requires solution for y (taking the positive root):

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lx� x2

p

Hence,

dy

dx
¼ 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lx� x2

p ðl� 2xÞ ¼ ðl=2Þ � xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lx� x2

p

On the other hand, we could have defined

gðx; yÞ ¼ 0 ¼ x2 þ y2 � lx

The partial derivatives are

@g

@x
¼ 2x� l;

@g

@y
¼ 2y

Hence, using Eq. 10.11,

dy

dx
¼ � @g=@xð Þ

@g=@yð Þ ¼ � ð2x� lÞ
2y

Eliminating y gives

dy

dx
¼ ðl=2Þ � xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lx� x2
p

as before.

This procedure can be easily extended to three variables,

given the implicit form

Fðx; y; zÞ ¼ 0 ð10:12Þ

and we wish to find

z ¼ gðx; yÞ ð10:13Þ

One of the procedures found useful in solving partial differ-

ential equations is the so-called combination of variables

method or similarity transform. The strategy here is to

reduce a partial differential equation to an ordinary one by

judicious combination of independent variables. Considera-

ble care must be given to changing independent variables.

Consider the partial differential equation:

@u

@y
¼ @2u

@x2
ð10:14Þ

Suppose there exists a combined variable such that

uðx; yÞ ¼ f ðhÞ and h ¼ gðx; yÞ ð10:15Þ

We first write the total differential

du ¼ df

dh
dh ð10:16Þ

But h is a function of two variables, so we write

dh ¼ @h

@x
dxþ @h

@y
dy ð10:17Þ

Hence,

du ¼ f 0ðhÞ @h

@x
dxþ @h

@y
dy

� �
ð10:18Þ

But since u (x, y), we can also write

du ¼ @u

@x
dxþ @u

@y
dy ð10:19Þ

Now, on comparing Eqs. 10.18 and 10.19 and equating like

coefficients of dx and dy, we find

@u

@x
¼ f 0ðhÞ @h

@x
ð10:20Þ

@u

@y
¼ f 0ðhÞ @h

@y
ð10:21Þ

To obtain second derivatives, we follow the same proce-

dure. Thus, to find @2u/@x2, we write in general

@u

@x
¼ cðh; x; yÞ ¼ f 0ðhÞ @h

@x
ð10:22Þ
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The total differentials are

d
@u

@x

� �
¼ @2u

@x2
dxþ @2u

@y@x
dy ð10:23Þ

dc ¼ @c

@h
dhþ @c

@x
dxþ @c

@y
dy ð10:24Þ

Replacing dh from Eq. 10.17 yields

dc ¼ @c

@h
� @h
@x

þ @c

@x

� �
dxþ @c

@h
� @h
@y

þ @c

@y

� �
dy ð10:25Þ

Equating like coefficients of dx and dy between Eqs. 10.23

and 10.25 yields

@2u

@x2
¼ @c

@h
� @h
@x

þ @c

@x
ð10:26Þ

@2u

@y@x
¼ @c

@h
� @h
@y

þ @c

@y
ð10:27Þ

Suppose we had selected for h

h ¼ xffiffiffiffiffi
4y

p ð10:28Þ

This would yield from Eqs. 10.20 and 10.21

@u

@x
¼ f 0ðhÞ 1ffiffiffiffiffi

4y
p ð10:29Þ

@u

@y
¼ f 0ðhÞ �ð1=2Þhð Þ

y
ð10:30Þ

From Eq. 10.22, this implies the dependence c(h, y) instead

of c(h, x, y); hence, Eq. 10.26 simply becomes

@2u

@x2
¼ @c

@h
� @h
@x

ð10:31Þ

It is clear that the partial @c/@h is required. There is a per-

sistent mistake in the literature by writing this as an ordi-

nary derivative. Now from Eq. 10.22,

@2u

@x2
¼ @

@h
f 0ðhÞ @h

@x

� �
@h

@x
ð10:32Þ

hence, finally we arrive at the unambiguous result

@2u

@x2
¼ f 00ðhÞ @h

@x

� �2

¼ f 00ðhÞ 1ffiffiffiffiffi
4y

p
� �2

ð10:33Þ

Inserting this and Eq. 10.30 into the original equation

(Eq. 10.14) yields

f 00ðhÞ 1

4y
¼ f 0ðhÞ �ð1=2Þhð Þ

y
ð10:34Þ

Canceling y shows that a single independent variable results

so that Eq. 10.28 was in fact a proper choice to reduce this

particular PDE to an ODE, namely,

d2f

dh2
þ 2h

df

dh
¼ 0 ð10:35Þ

The importance of variables transformation cannot be over-

stated, for certain boundary conditions, since very useful

solutions can be obtained to otherwise intractable problems.

The above particular solution is suitable for the case of

dynamic diffusion into an unbounded domain, subject to a

step change at the origin (taking y to be the time variable

and x to be the unbounded length variable).

10.1.1 Classification and Characteristics of

Linear Equations

The general linear equation of second order can be expressed

P
@2z

@x2
þ Q

@2z

@x@y
þ R

@2z

@y2
¼ S ð10:36Þ

where the coefficients P, Q, R depend only on x, y, whereas

S depends on x, y, z, @z=@x, @z=@y. The terms involving

second derivatives are of special importance, since they pro-

vide the basis for classification of type of PDE. By analogy

with the nomenclature used to describe conic sections

(planes passed through a cone) written as

ax2 þ 2bxyþ cy2 ¼ d ð10:37Þ

we can classify Eq. 10.36 for constant coefficients when P,

Q, R take values a, b, c, respectively. The discriminant for

the case of constant coefficients a, b, c is defined

D ¼ b2 � 4ac ð10:38Þ

so that

D < 0 : Elliptic equation

D ¼ 0 : Parabolic equation

D > 0 : Hyperbolic equation

ð10:39Þ

A typical example occurring in chemical engineering is

Fick’s second law of diffusion or the unsteady diffusion

equation:

@C

@t
¼ D

@2C

@x2
ð10:40Þ

10.1 INTRODUCTION 229



which is parabolic, since a¼D, b¼ 0, and c¼ 0, and New-

ton’s law for wave motion

@2u

@t2
¼ r

@2u

@y2
ð10:41Þ

which is hyperbolic, since a¼ 1, b¼ 0, and c¼�r, and

finally Laplace’s equation for heat conduction is

@2T

@x2
þ @2T

@y2
¼ 0 ð10:42Þ

which is elliptic, since a¼ 1, b¼ 0, and c¼ 1.

The homogeneous linear equation of second order

occurs frequently. It is the special form when S¼ 0. In par-

ticular, when P, Q, R are constants, denoted by a, b, c,

respectively, we write

a
@2z

@x2
þ b

@2z

@x@y
þ c

@2z

@y2
¼ 0 ð10:43Þ

which contains only second derivatives and is called a

homogeneous equation. The discriminant is (b2� 4ac). A

solution to the linear homogeneous equation can be pro-

posed as

z ¼ f ðyþ lxÞ ð10:44Þ

This implies the variable change

h ¼ yþ lx ð10:45Þ

So from the previous lessons, we see

@2z

@x2
¼ l2f 00ðhÞ; @2z

@x@y
¼ lf 00ðhÞ; @2z

@y2
¼ f 00ðhÞ ð10:46Þ

Inserting these into Eq. 10.43 shows

al2 þ blþ c ¼ 0 ð10:47Þ

which yields two characteristic values l1, l2. Now, since

the original equation was linear, the superposition requires

(as in ODEs) the general solution:

z ¼ f ðyþ l1xÞ þ gðyþ l2xÞ ð10:48Þ

In fact, we see the discriminant (b2� 4ac) appears within

the quadratic equation for l:

l ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
2a

ð10:49Þ

Although the functions f and g are unspecified and quite

arbitrary at this point, nonetheless, much can be learned

by observation of the arguments, now established to be

(yþ lx). Now, suppose a¼ 1, b¼�3, and c¼ 2, hence

(b2� 4ac)¼ 1> 0, so the equation is hyperbolic with roots

l1¼ 1, l2¼ 2. Hence, in general, we can write

z ¼ f ðyþ xÞ þ gðyþ 2xÞ ð10:50Þ

Moreover, if a¼ 0 and b 6¼ 0, only one root obtains

z ¼ f y� ðb=cÞxð Þ þ gðxÞ ð10:51Þ

and the second solution g depends only on x, since in

general g(x) also satisfies the original equation. Finally,

if a¼ b¼ 0, then it is clear by successive integrations

of @2z=@y2 that

z ¼ f ðxÞ þ ygðxÞ ð10:52Þ

which is linear with respect to y. To see this, first inte-

grate partially with respect to y:

@z

@y
¼ gðxÞ

Integrate again to find z¼ f(x)þ yg(x).

Another exceptional case occurs when repeated roots

arise. This can be treated in a manner analogous to the

case for repeated roots in the method of Frobenius

(Case II). Thus, the second solution is obtained by tak-

ing the limit

@

@l
f ðyþ lxÞ

����
l¼l1

¼ xf 0ðyþ l1xÞ ¼ xgðxþ l1xÞ ð10:53Þ

so for repeated roots l¼ l1, we have

z ¼ f ðyþ l1xÞ þ xgðxþ l1xÞ ð10:54Þ

and it is clear that the two solutions are linearly

independent.

Now, for elliptic equations such that (b2� 4ac)< 0,

complex conjugate roots occur; so for this case, taking

Laplace’s equation as example,

@2z

@x2
þ @2z

@y2
¼ 0 ð10:55Þ

we have

z ¼ f ðyþ ixÞ þ gðy� ixÞ ð10:56Þ
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And for the hyperbolic equation, such that (b2� 4ac)> 0,

we write the wave equation as an example:

@2u

@t2
� r

@2u

@y2
¼ 0 ð10:57Þ

with general solution

u ¼ f ðyþ ffiffiffi
r

p
tÞ þ gðy� ffiffiffi

r
p

tÞ ð10:58Þ

An example of parabolic equations with (b2� ac)¼ 0 is

@2z

@x2
� 2

@2z

@x@y
þ @2z

@y2
¼ 0 ð10:59Þ

so that a repeated root l¼ 1 occurs. The general solution is

z ¼ f ðxþ yÞ þ xgðxþ yÞ ð10:60Þ

which is made up of linearly independent solutions.

Although we have derived general solutions, nothing has

been said about the specific functional form taken by f and

g, since these are completely arbitrary, other than the

requirement that they must be continuous, with continuous

derivatives. For example, considering the parabolic equa-

tion given in Eq. 10.59, the specific function f (xþ y)¼ c

sinh (xþ y) is seen, by substitution, to satisfy the equation.

The discussion in this section has determined only the argu-

ments, not specific functions.

10.2 PARTICULAR SOLUTIONS FOR PDES

In the previous sections, we learned that certain general,

nonspecific solutions evolved for linear, partial differential

equations (PDEs), but these were of little value on a compu-

tational, applied engineering level. However, we did learn

that a subtle change of variables could often lead to signifi-

cant simplification. In fact, the overall strategy in solving a

PDE is usually to reduce the PDE to an ODE or sets of

ODEs. This strategy can only be accomplished for certain

particular boundary conditions. Thus, the solution methods

discussed next are termed particular solutions or collections

of particular solutions. They are suited only for very spe-

cific particular boundary (or initial) conditions, and lead to

well-known, specific functions in mathematical physics.

This is certainly more satisfying to an engineer than writing

a solution as f (xþ 2y).

Thus, the remainder of this chapter deals with solving

linear, homogeneous equations, using the following three

approaches to reduce PDEs to ODEs.

1. Combination of Variables Sometimes called a simi-

larity transform, this technique seeks to combine all

independent variables into one variable, which may

then produce a single ODE. It is applicable only to

cases where variables are unbounded, for example,

0< t<1, 0< x<1. It is suitable for only one type

of boundary or initial condition and produces a single

particular solution.

2. Separation of Variables This is the most widely used

method in applied mathematics, and its strategy is to

break the dependent variable into component parts,

each depending (usually) on a single independent var-

iable; invariably, it leads to a multiple of particular

solutions.

3. Laplace Transforms The Laplace transform is an

integral technique, which basically integrates time out

of the equation, thereby reducing a PDE to an ODE.

There are other methods to treat single and simultaneous

PDE, most especially the finite transform methods, which

are treated generally in Chapter 11. The Laplace transform

is especially useful in this regard, as we saw in Chapter 9,

since it easily copes with simultaneous equations.

It is clear from these remarks that no general solution is

possible, and the methods that have evolved are closely tied

to specific boundary conditions. We discuss boundary and

initial conditions next.

10.2.1 Boundary and Initial Conditions

On considering boundary conditions, it must be borne in

mind that at least two independent variables exist in

attempting to solve partial differential equations. We reflect

on the derivations for model II in Chapter 1 and note that

principally three types of boundary or initial conditions

arise (homogeneous conditions defined in Section 1.4):

1. Function specified at boundary; for example, for T(r, z)

T ¼ f ðrÞ at z ¼ 0; T ¼ gðzÞ at r ¼ R

2. Derivative of function specified at boundary

@T

@r
¼ 0 at r ¼ 0; � k

@T

@r
¼ Q at r ¼ R

3. Mixed functions at boundary

�k
@T

@r
¼ hðT � TwÞ at r ¼ R; for all z

The first type includes initial conditions, which may be

written for T(t, x):

Tð0; xÞ ¼ f ðxÞ ð10:61Þ
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This means at time zero, temperature T is distributed

according to the function f(x), which does not exclude a

simple constant such as f(x)¼ Ti. At some boundary, time

variation may also occur, so

Tðt; 0Þ ¼ gðtÞ ð10:62Þ

Neither of these type (1) conditions are homogeneous.

However, if the boundary value is a fixed constant, such as

Tðt; 0Þ ¼ T0

then we could define a new variable u ¼ T� T0 and see

uðt; 0Þ ¼ 0 ð10:63Þ

which is indeed homogeneous at the boundary.

For type (2) conditions, the classical symmetry condition

nearly always arises in cylindrical and spherical coordinate

systems, along the centerline

@T

@r
¼ 0 at r ¼ R ð10:64Þ

For such coordinate systems, r is always positive; so

to ensure symmetrical profiles of T, we must invoke

Eq. 10.64. This condition can also arise at a finite position,

for example, at an insulated tube wall (r¼R) where con-

duction flux tends to zero, so that

�k
@T

@r
¼ 0 at r ¼ R ð10:65Þ

For electrically heated tube walls, the heat entering is

uniform and constant, so that we would write at a tube

boundary

�k
@T

@r
¼ Q at r ¼ R ð10:66Þ

Since flux is a vector quantity, it is clear that @T/@r> 0 near

the wall, hence Q is a negative quantity, as it should be since

it moves in the anti-r direction. It is not possible to convert

the electrically heated wall condition to a homogeneous

boundary condition for T. However, the insulated wall

(Eq. 10.65) is homogeneous without further modification.

The mixed type (3) includes both a function and its

derivative (or its integral). For example, we showed in

Chapter 1 the homogeneous type (3) condition:

�k
@T

@r
¼ hðT � TwÞ at r ¼ R ð10:67Þ

which simply says the conduction flux is exactly balanced

by heat transfer at the wall. By replacing u ¼ T� Tw

(provided Tw is constant), we see this condition is also

homogeneous:

�k
@u

@r
¼ hu at r ¼ R ð10:68Þ

This is a powerful boundary condition, since it actually con-

tains both type (1) and type (2) as subsets. Thus, for large

values of h (high velocity), h!1, and Eq. 10.68 reduces to

u(z, R)¼ 0, which is the homogeneous type (1) condition.

On the other hand, if h gets very small, then in the limit

when h approaches 0, we obtain type (2), specifically

Eq. 10.65, which is an insulated boundary.

Occasionally, a mixed condition arises as an integrodif-

ferential balance. Suppose a stirred pot of solvent is used to

extract oil from (assumed) spherically shaped, porous

seeds. The mass rate from the boundary of the many seeds

(m in number) is computed from Fick’s law, where c(r, t)

denotes composition within the seeds:

N ¼ �mð4pR2ÞD @cðR; tÞ
@r

and the accumulation in the solvent is V dC/dt, so that the

oil conservation balance for the solvent phase is

V
dC

dt
¼ �mð4p R2ÞD @cðR; tÞ

@r

where C(t) is the oil composition in the stirred solvent. If

the initial solvent contains no oil, then integration yields

the integro boundary condition:

VCðtÞ ¼ �m

Z t

0

4pR2D
@cðR; tÞ

@r
dt ð10:69Þ

Such boundary conditions can be handled most easily using

a Laplace transform solution method, as we demonstrate

later in this chapter.

The number of boundary or initial conditions required to

solve an ordinary differential equation, as we saw in Chap-

ter 2, corresponded to the number of arbitrary constants of

integration generated in the course of analysis. Thus, we

showed that nth order equations generated n arbitrary con-

stants; this also implies the application of boundary or ini-

tial conditions totaling n conditions. In partial differential

equations, at least two independent variables exist, so, for

example, an equation describing transient temperature dis-

tribution in a long cylindrical rod of metal; that is,

rCr
@T

@t
¼ k

1

r

@

@r
r
@T

@r

� �
¼ k

@2T

@r2
þ 1

r

@T

@r

� �
ð10:70Þ
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will require at least one condition for time (usually an ini-

tial condition) and two for fixed spatial positions (say,

r¼ 0, r¼R). As a rule, then, we usually need one fixed con-

dition for each order of each partial derivative. This is not

always the case; for example, an initial condition is not nec-

essary if the time-periodic solution is sought; for example,

Tðt; rÞ ¼ f ðrÞeiwt ð10:71Þ

For such cases, only conditions at the boundaries (r¼ 0,

r¼R) are needed. Similar arguments apply when dealing

with the angular position in cylindrical or spherical coordi-

nates, namely, that solution must be periodic in angle so

that it repeats itself every 2p radians.

The range of variables can be open (unbounded) or

closed (bounded). If all the independent variables are

closed, we classify such equations as “boundary value prob-

lems.” If only initial values are necessary, with no bounds

specified, then we speak of “initial value problems.” In

the next section, we develop the method of combination of

variables, which is strictly applicable only to initial value

problems.

10.3 COMBINATION OF VARIABLES METHOD

We introduced the idea of change of variables in Section

10.1. The coupling of variables transformation and suitable

initial conditions often lead to useful particular solutions.

Consider the case of an unbounded solid material with

initially constant temperature T0 in the whole domain 0< x

<1. At the face of the solid, the temperature is suddenly

raised to Ts (a constant). This so-called step change at the

position x¼ 0 causes heat to diffuse into the solid in a

wavelike fashion. For an element of this solid of cross-

sectional area A, density r, heat capacity Cp, and conductiv-

ity k, the transient heat balance for an element Dx thick is

qxAÞð jx � qxAÞð jxþDx ¼ ADxrCp

@T

@t
ð10:72Þ

Dividing by ADx, and taking limits, gives

� @qx
@x

¼ rCp

@T

@t
ð10:73Þ

Introducing Fourier’s law as qx¼�k@T/@x then yields

a
@2T

@x2
¼ @T

@t
ð10:74Þ

where a¼ k/rCp is thermal diffusivity (m2/s). It is clear

that both independent variables are unbounded, that is,

0< x<1, 0< t<1. Next, we carefully list the initial

conditions and any other behavioral patterns we expect:

T ¼ T0 at t ¼ 0; all x ð10:75Þ

T ¼ Ts at x ¼ 0; all t ð10:76Þ

For some position within the solid matrix (say x1), we cer-

tainly expect the temperature to rise to Ts eventually, that is,

when t approaches infinity. Moreover, for some finite time

(say t1), we certainly expect, far from the face at x¼ 0,

that temperature is unchanged; that is, we expect at t1 that

T¼ T0 as x approaches infinity. We can write these expect-

ations as follows:

T ! Ts; t ! 1; x > 0 ð10:77Þ

T ! T0; x ! 1; t > 0 ð10:78Þ

There appears to be some symmetry for conditions at zero

and infinity, and this is the first prerequisite for a combina-

tion of variables approach to be applicable. Now, the combi-

nation of variables method is often called a “similarity

transform.” This nomenclature arises from the manner we

use to select a combined variable. Let us next write a rough

approximation to Eq. 10.74, to an order of magnitude

a
DT

x2
� DT

t
ð10:79Þ

This roughly suggests at� x2, which we interpret that the

change in at is similar in size to a change in x2. Or, equiv-

alently, a change in (at)1/2 is similar to a change in x. On

viewing the symmetry of our boundary conditions at zero

and infinity, these qualitative arguments suggest the com-

bined variable:

h0 ¼
xffiffiffiffiffi
at

p ð10:80Þ

which is dimensionless. Comparing this with conditions

listed in Eqs. 10.75–10.78, we see

T ¼ T0; when either t¼ 0 or x!1; so; h0 !1
ð10:81Þ

T ¼ Ts; when either t!1 or x¼ 0; so; h0 ! 0

ð10:82Þ

An alternative way to set the combined variable is to write h

in terms of penetration distance d(t), which represents the

distance from the surface when the first temperature rise

(of arbitrary size) occurs.

h¼ x

dðtÞ ð10:83Þ
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Now, to use this variable change, we write the hypothesis

Tðx; tÞ ¼ f ðhÞ ð10:84Þ

The hypothesis fails if any variable other than h appears in

the final equation. We next transform variables, using the

procedure outlined in Section 10.1. It is worth repeating

here; Eq. 10.84 implies equality of total differentials:

dTðx; tÞ ¼ df ðhÞ ð10:85Þ

We now apply the chain rule to both sides:

@T

@x
dxþ @T

@t
dt ¼ df

dh
dh ð10:86Þ

Now taking the total differentiation of h(x, t), defined in

Eq. 10.83, we get

dh ¼ @h

@x
dxþ @h

@t
dt ð10:87Þ

Inserting this into Eq. 10.86 gives the necessary compara-

tive information:

@T

@x
dxþ @T

@t
dt ¼ f 0ðhÞ @h

@x
dxþ @h

@t
dt

� �
ð10:88Þ

Equating like coefficients from both sides gives

@T

@x
¼ f 0ðhÞ @h

@x
¼ f 0ðhÞ 1

dðtÞ ð10:89Þ

@T

@t
¼ f 0ðhÞ @h

@t
¼ f 0ðhÞ � h

d

dd

dt

� �
ð10:90Þ

We now need to find @2T/@x2. To do this, we represent the

right-hand side (RHS) of Eq. 10.89 as c(h, t) and the left-

hand side (LHS) as F(x, t); thus, we have taken

Fðx; tÞ ¼ @T

@x
ð10:91Þ

cðh; tÞ ¼ f 0ðhÞ 1

dðtÞ ð10:92Þ

Now, equating total differentials of F and c as the next

stage,

dFðx; tÞ ¼ dcðh; tÞ ð10:93Þ

we again apply the chain rule

@F

@x
dxþ @F

@t
dt ¼ @c

@h
dhþ @c

@t
dt ð10:94Þ

Here, we take careful note that the first term on the RHS is

the partial with respect to h! Many serious mistakes are

made by not observing this fact.

The sought-after term can be obtained again by replac-

ing dh from Eq. 10.87 and equaling like coefficients of dx

and dt:

@F

@x
¼ @c

@h

@h

@x
ð10:95Þ

As an aside, we also obtained the (redundant) information:

@F

@t
¼ @c

@h

@h

@t
þ @c

@t
ð10:96Þ

Replacing F and c from Eqs. 10.91 and 10.92 gives

@2T

@x2
¼ f 00ðhÞ 1

dðtÞ
@h

@x
¼ f 00ðhÞ 1

d2ðtÞ ð10:97Þ

Inserting the results from Eqs. 10.97 and 10.90 into the

original equation finally gives the condition

a
f 00

d2
¼ f 0 �h

1

d

dd

dt

� �
ð10:98aÞ

As we show next, it is convenient to set

d

a

dd

dt
¼ 2 ð10:98bÞ

and since d(0)¼ 0, we find

dðtÞ ¼
ffiffiffiffiffiffiffi
4at

p
ð10:98cÞ

which thereby justifies the original hypothesis; that is,

Tðx; tÞ ¼ f ðhÞ and now h ¼ x=ð4atÞ1=2. This expression

can be integrated twice, by first letting p ¼ df=dh and then

p0 þ 2hp ¼ 0 ð10:99Þ

yielding

p ¼ Aexp ð�h2Þ ¼ df

dh
ð10:100Þ

The reason for selecting Eq. 10.98ab is now obvious. A per-

fectly acceptable solution is obtained by integrating again

f ðhÞ ¼ A

Z
exp ð�h2Þdhþ B ð10:101Þ

However, it would be useful to express our result in terms of

known tabulated functions. In Chapter 4, we showed that
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the definite integral, the error function, takes a form similar

to the above.

erf ðhÞ ¼ 2ffiffiffi
p

p
Z h

0

exp ð�b2Þdb ð10:102Þ

Now, since the constants A, B are completely arbitrary, we

can write f ðhÞ as
f ðhÞ ¼ C erf ðhÞ þ B ð10:103Þ

The conditions required to find the arbitrary constants C, B

are simply

f ð0Þ ¼ Ts and f ð1Þ ¼ T0 ð10:104Þ

hence B¼ Ts and C¼ (T0� Ts), since erf (1)¼ 1, by defi-

nition (i.e., the error function has been normalized using the

factor 2=
ffiffiffi
p

p
to ensure erf (1)¼ l). Written in terms of T

and (x, t), we finally have

Tðx; tÞ ¼ ðT0 � TsÞerf xffiffiffiffiffiffiffi
4at

p
� �

þ Ts ð10:105Þ

and the reader can easily verify that the four original condi-

tions (Eqs. 10.75–10.78) are satisfied. A plot of (T� Ts)/

(T0� Ts) versus x=
ffiffiffiffiffiffiffi
4at

p
is shown in Fig. 10.1.

If we change the original boundary conditions, for exam-

ple, by requiring a constant heat flux at the boundary x¼ 0,

the above solution is invalid. However, if we differentiated

Eq. 10.74 with respect to x, multiplied by �k, and then

introduce the vector qx¼� k@T/@x, we see

a
@2

@x2
ðqxÞ ¼

@

@t
ðqxÞ ð10:106Þ

This yields an equation identical to the previous one, but

the unknown dependent variable is qx instead of T. Now,

for the new boundary conditions, we may write

qx ¼ 0 at t ¼ 0; x > 0 ð10:107Þ

qx ¼ qs at x ¼ 0; t > 0 ð10:108Þ

qx ! qs; t ! 1; x > 0 ð10:109Þ

qx ! 0; x ! 1; t > 0 ð10:110Þ

We see these conditions are identical to Eqs. 10.75–10.78

except the symbols for variables are changed, so we can

write immediately

qxðx; tÞ ¼ qs � qserf
xffiffiffiffiffiffiffi
4at

p
� �

ð10:111Þ

This is written more conveniently in terms of the comple-

mentary error function, erfc ðhÞ ¼ 1� erf ðhÞ; hence,

qxðx; tÞ ¼ qserfc
xffiffiffiffiffiffiffi
4at

p
� �

ð10:112Þ

To find temperature profiles for the constant flux case,

simply replace qx¼�k@T/@x and integrate partially with

respect to x. To do this, we need to call upon material in

Chapter 4. If the temperature far from the heated surface is

denoted by T0¼ T(1, t), then partial integration yields

Tðx; tÞ � T0 ¼ � qs
k

� 	Z x

1
erfc

xffiffiffiffiffiffiffi
4at

p
� �

dx ð10:113Þ

Since the partial integration implies holding t constant, we

can rewrite this integral in terms of h:

Tðx; tÞ � T0 ¼ � qs
k

� 	 ffiffiffiffiffiffiffi
4at

p Z x=
ffiffiffiffiffi
4at

p

1
erfc ðhÞdh ð10:114Þ

The integral Z
erf ðhÞdh

is given in Chapter 4, so we have

Tðx; tÞ � T0

¼ � qs
k

� 	 ffiffiffiffiffiffiffi
4at

p
hð1� erf ðhÞÞ � 1ffiffiffi

p
p exp ð�h2Þ

� �x= ffiffiffiffiffi4at
p

1
ð10:115Þ

FIGURE 10.1 Plot of (T� Ts)=(T0� Ts) versus x=
ffiffiffiffiffiffiffi
4at

p
.
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The lower limit on the first term is troublesome, but can be

shown to zero, since for large arguments (Chapter 4)

erf ðxÞ � 1� a1

1þ px
exp ð�x2Þ ð10:116Þ

where a1, p> 0. Thus, in the limit,

lim xð1� erf ðxÞÞ ¼ lim
a1x

1þ px
exp ð�x2Þ ! 0 ð10:117Þ

Hence, the temperature distribution for constant flux at

x¼ 0 becomes

Tðx; tÞ ¼ T0 þ qs
k

ffiffiffiffiffiffiffi
4at

p

r
exp � x2

4at

� �
� qs

k
x 1� erf

xffiffiffiffiffiffiffi
4at

p
� �� �

ð10:118Þ

In particular, the temperature rise at the interface x¼ 0 is

important:

Tð0; tÞ ¼ T0 þ qs
k

ffiffiffiffiffiffiffi
4at

p

r
ð10:119Þ

The particular solution ðC erf ðhÞ þ BÞ derived here has

many applications, and arises in innumerable transport and

physics problems.

EXAMPLE 10.2

LAMINAR FLOW CVD REACTOR

Chemical vapor deposition (CVD) has become an important tech-

nique to grow electronically active layers for all kinds of solid-

state devices. Thus, the active metal organic (MO) vapor is swept

into a two-dimensional slit reactor by a carrier gas, and deposition

occurs at the hot top and bottom plates, as shown in Fig. 10.2.

The reaction at the plate surfaces can be written

MO ! Mþ O

Develop an expression to compute rate of loss of MO for

diffusion-limited, laminar flow conditions.

Under laminar flow conditions, the velocity profile can be

taken to be fully developed:

vz ¼ vmax 1� x

B

� 	2� �
ð10:120Þ

where

vmax ¼ DpB2

2mL
¼ 3

2
v0

and

L is the reactor length

B is the half-width of reactor

m is the gas viscosity

Dp is the pressure drop, and

v0 is the average velocity

Denoting the metal organic as species A, the material balance,

ignoring axial diffusion, can be shown to be

vmax 1� x

B

� 	2� �
@CA

@z
¼ DA

@2CA

@x2
ð10:121Þ

where DA denotes molecular diffusion of species A.

Suitable boundary conditions are

@CA

@x
¼ 0 at x ¼ 0 ðsymmetryÞ ð10:122Þ

�DA

@CA

@x
¼ kCA at x ¼ �B ð10:123Þ

CA ¼ C0
A at z ¼ 0 ð10:124Þ

The second boundary condition indicates diffusive flux is exactly

balanced by rate of decomposition at the wall. Under the stipulated

conditions of “diffusion limited,” the implication is that k!1, so

that for the present analysis

lim
x!1 �DA

k

@CA

@x

� �
¼ 0 ¼ CA at x ¼ �B ð10:125Þ

If such reactors are quite short, so that contact time is small, most

of the depletion of A occurs very near the wall, whereas the core

composition hardly changes. Thus, the principal impact of the

velocity profile occurs near the wall. This suggests we introduce a

coordinate system (y) emanating from the wall and since, for half

the symmetrical reactor, we have

xþ y ¼ B ð10:126Þ

then velocity in terms of y is

vz ¼ vmax 2
y

B

� 	
� y

B

� 	2� �
ð10:127Þ

FIGURE 10.2 Schematic diagram of CVD reactor.
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This can be approximated to a linear form near the wall since in

that vicinity y=B � 1; hence,

vz ’ 2vmax

y

B

� 	
ð10:128Þ

Thus, replacing x with y from Eq. 10.126 into the diffusion term,

we have the approximate expression (after Leveque 1928):

2vmax

y

B

� 	 @CA

@z
¼ DA

@2CA

@y2
ð10:129Þ

subject to the diffusion-limited wall condition

CA ¼ 0 at y ¼ 0; z > 0 ð10:130Þ

and the entrance condition

CA ¼ CA0 at z ¼ 0; y > 0 ð10:131Þ

For very thin layers near the wall, the bulk flow appears far away,

so we write for short penetration

CA ! CA0; y ! 1 ð10:132Þ

On the other hand, if the reactors were very long (z!1),

we would expect all the metal organic components to be depleted,

so that

CA ! 0; z ! 1 ð10:133Þ

The symmetry of the boundary conditions suggests a combination

of variables approach. It is clear that similarity must exist as

before, since

2vmaxy
3 � BDAz

so that our first guess for a combined (dimensionless) variable is

h0 ¼
y

BDAz=2vmaxð Þ1=3
ð10:134Þ

The exact combined variable can be found as before by writing h

¼ y/d(z), which leads to the convenient form:

h ¼ y

9BDAz=2vmaxð Þ1=3
ð10:135Þ

It is easy to see that only two values of h will satisfy the four con-

ditions, Eqs. 10.130–10.133; thus, taking CA¼ f(h),

f ¼ CA0 at h ¼ 1 ðz ¼ 0 or y ¼ 1Þ ð10:136Þ

f ¼ 0 at h ¼ 0 ðz ¼ 1 or y ¼ 0Þ ð10:137Þ

We have thus satisfied the conditions necessary to undertake a

combined variable solution. Following the same procedure as in

the thermal diffusion problem, we find

@CA

@z
¼ @f

@h

@h

@z
¼ f 0ðhÞ � 1

3
h
1

z

� �
ð10:138Þ

@CA

@y
¼ @f

@h

@h

@y
¼ f 0ðhÞ 1

9BDAz=2vmaxð Þ1=3
" #

ð10:139Þ

@2CA

@y2
¼ @

@h
f 0ðhÞ 1

9BDAz=2vmaxð Þ1=3
" #

@h

@y
ð10:140Þ

@2CA

@y2
¼ f 00ðhÞ 1

9BDAz=2vmaxð Þ2=3

Inserting these into the defining equation shows

2ymax

y

B

� 	
�f 0ðhÞ 1

3
h
1

z

� �
¼ DAf

00ðhÞ 1

9BDAz=2vmaxð Þ2=3
ð10:141Þ

Collecting and combining terms, we find

f 00ðhÞ þ 3h2f 0ðhÞ ¼ 0 ð10:142Þ

Integrating once by replacing p ¼ f 0

f 0ðhÞ ¼ Aexp ð�h3Þ ¼ df

dh
ð10:143Þ

Integrating again gives

f ðhÞ ¼ A

Z
exp ð�h3Þdhþ B ð10:144Þ

It is convenient to introduce definite limits:

f ðhÞ ¼ D

Z h

0

exp ð�b3Þdbþ B ð10:145Þ

Evaluating D, B using Eqs. 10.136 and 10.137 shows

B ¼ 0; D ¼ CA0R1
0

exp ð�b3Þdb ð10:146Þ

As we showed in Chapter 4, the integral can be found in terms of

the tabulated Gamma function:

G ðxÞ ¼
Z 1

0

tx�1e�tdt ð10:147Þ

by letting b3¼ t, 3b2db¼ dt; hence,

Z 1

0

expð�b3Þdb ¼ 1
3
G 1

3


 � ¼ G 4
3


 � ð10:148Þ
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This allows our final result to be written:

CA

CA0

¼
R h
0
exp ð�b3Þdb
G 4=3ð Þ ð10:149Þ

This will be valid only for short contact conditions up to h� 1.

The mass flux at the wall is the important quantity, and this

can be computed from

N0ðzÞ ¼ DA

@CA

@y

� �
y¼0

¼ DA

df

dh

� �
h¼0

@h

@y
ð10:150Þ

so the local flux is

N0ðzÞ ¼ DACA0

G 4=3ð Þ
2vmax

9BDAz

� �1=3
ð10:151Þ

The average flux rate can be computed from

N0 ¼
1

L

Z L

0

N0ðzÞdz ð10:152Þ

which, for a single plate, finally yields

N0 ¼
ð3=2ÞDA

G 4=3ð Þ CA0

2vmax

9BDAL

� �1=3
ð10:153Þ

For two active plates, the total surface area for width W is

2(WL), so the net loss rate (mol/s) of metal organic (A) is

R ¼ 2ðWLÞN0

hence,

R ¼ 3

G 4=3ð ÞWCA0

2

9

vmaxL
2D2

A

B

� �1=3
ð10:154Þ

It is usual to express rates in terms of average velocity,

which is v0 ¼ 2vmax=3.
Combining the numerical factors gives in terms of v0,

R ¼ 32=3

G 4=3ð ÞWCA0

v0L
2D2

A

B

� �1=3
ð10:155Þ

where 32/3/G(4/3)¼ 2.33. This type of analysis was used by

Van De Ven et al. (1986) to predict CVD behavior.

10.4 SEPARATION OF VARIABLES METHOD

We have seen in the previous section that the combination

of variables (similarity transform) is applicable only to

initial value problems, with unbounded independent varia-

bles. Nonetheless, we gave an example where such an

approach could be applied under conditions of short contact

time (which is the same as short penetration for the length

variable). Thus, we pretended that a boundary was infinite

in extent, when in fact it was physically finite. For large

contact time (deep penetration), such an approach breaks

down and the solution becomes invalid.

To cope with finite boundaries, we next introduce the

separation of variables method. This method is thus capable

of attacking boundary value problems and leads invariably

to sets of ODE (rather than a single one). Since only linear

equations are amenable to this method, we can obviously

invoke the principle of superposition. This means that solu-

tions of sets of ODE can be summed to produce a complete

solution. These sets of equations will be shown to be count-

ably infinite, so that the problem of finding an infinite set of

arbitrary constants of integration arises. This problem will

finally be resolved, for homogeneous boundary conditions,

by invoking a condition called orthogonality. The propert-

ies of orthogonal functions will allow the arbitrary con-

stants to be computed one at a time, and is the singularly

most important property to finally close up the complete

solution. Thus, we reserve a separate section to study

orthogonality and the famous Sturm–Liouville conditions.

We illustrate the method by a practical chemical engi-

neering example in the next section. We shall proceed as

far along on this problem as possible until new information

is needed to fully resolve a complete solution.

10.4.1 Coated Wall Reactor

Consider a hollow, tubular reactor (Fig. 10.3), the inside

walls of which are coated with a catalyst (or the tube itself

could be constructed of a catalyst metal).

A feedstock composed of species A entering with an

inert fluid passes through the reactor. At the tube wall, the

irreversible catalytic reaction takes place:

A ! Products

FIGURE 10.3 Schematic diagram of a coated wall reactor.
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If the reactor is not too long, the velocity profile is not fully

developed, so that it is taken to be plug shaped and the het-

erogeneous reaction at the wall (r¼R) is just balanced by

diffusion of A from the flowing phase:

�DA

@CA

@r

����
R

¼ kCAðR; zÞ ð10:156Þ

At steady state, the balance between convection and diffu-

sion for an annular element (ignoring axial diffusion) is

v02prDrCAjz � v02prDrCAjzþDz þ Dzð2prJAÞjr
� Dzð2prJAÞjrþDr¼ 0

Dividing by 2pDrDz, and taking limits, yields

�v0r
@CA

@z
� @

@r
ðrJAÞ ¼ 0

Inserting Fick’s law, JA¼�DA@CA/@r finally gives

DA

r

@

@r
r
@CA

@r

� �
¼ v0

@CA

@z
ð10:157Þ

It is convenient to combine parameters to produce dimen-

sionless, independent variables. This eliminates lots of clutter

and reduces algebraic repetition. First, define dimensionless

radius as j¼ r/R. When this is inserted into Eq. 10.157, the

second dimensionless group becomes evident:

DA

R2

1

j

@

@j
j
@CA

@j

� �
¼ v0

@CA

@z

Now, if we combine all remaining parameters with z, the

results must be dimensionless, so let

z ¼ z

v0

DA

R2
ð10:158Þ

This is actually the ratio of local residence time ðz=v0Þ
divided by diffusion time R2/DA, so that it is clearly dimen-

sionless. Now the PDE is free of parameters:

1

j

@

@j
j
@CA

@j

� �
¼ @CA

@z
ð10:159Þ

Moreover, we see the variables range as, taking

CA(r, 0)¼CA0 (the inlet composition):

0 � j < 1; 0 � z � 1; 0 � CA � CA0 ð10:160Þ

Our strategy is to reduce the PDE to ODEs. The method of

separation of variables requires that two functions describe

the solution w (j) and Z (z). The w depends only on radial

position j, and Z (z) depends only on axial location z.

There are several possibilities of combining these to con-

struct CA(j, z). It is usual to start with a product of functions

CAðj; zÞ ¼ wðjÞZðzÞ ð10:161Þ

This must satisfy Eq. 10.159 and any associated boundary/

initial conditions, so insert the above into Eq. 10.159 to find

ZðzÞ 1
j

d

dj
j
dw

dj

� �
¼ wðjÞ dZ

dz
ð10:162Þ

We can see we have already accomplished one of our origi-

nal purposes, that is, we now have only ordinary differential

relations. We next separate variables by dividing throughout

by Z(z)w(j):

ð1=jÞðd=djÞ jðdw=djÞð Þ
wðjÞ ¼ dZ=dz

Z
ð10:163Þ

Henceforth, it is convenient to use primes to denote differen-

tiation, since it is clear that only one independent variable

belongs to each function; thus, let

Z 0 ¼ dZ

dz
; w0 ¼ dw

dj
ð10:164Þ

Although the variables are now separated, we have not yet

decoupled the equations so that they can be solved sepa-

rately. Since one side of Eq. 10.163 cannot vary without the

other’s consent, it is clear that they must both equal the same

(arbitrary) constant, which we denote as �l2. Hence,

w00þð1=jÞw0ð Þ
w

¼ Z 0

Z
¼ �l2 ð10:165Þ

We have selected a negative constant (or zero, since l¼ 0 is

still a possibility) on physical grounds, since it is clear that

the first-order solution

Z ¼ K0exp ð�l2zÞ

obeys physical expectations only when �l2 is proposed as

the separation constant; that is, species A disappears for an

infinitely long reactor, so that CAðr;1Þ ! 0: We now have

two separated equations:

w00 þ 1

j
w0 þ l2w ¼ 0 ð10:166Þ

Z 0þl2Z ¼ 0 ð10:167Þ
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By comparison with Bessel’s equation in Section 3.5, we see

that the solution to Eq. 10.166 is

wðjÞ ¼ AJ0ðljÞ þ BY0ðljÞ ð10:168Þ

and, of course, the Z solution is

ZðzÞ ¼ K0exp ð�l2zÞ ð10:169Þ

We need to place the boundary/initial conditions in terms of

w and Z. Now, along the center line of the tube, we must have

symmetry, so the homogeneous condition there is

@CA

@r
¼ @CA

@j
¼ 0 at j ¼ 0 ð10:170Þ

Inserting the proposed solution

CA ¼ wðjÞZðzÞ
we have

ZðzÞ dw
dj

� �
j¼0

¼ 0; ; w0ð0Þ ¼ 0 ð10:171Þ

since at least Z(z) must be finite. At the tube wall, we have

from Eq. 10.156,

�DA

ZðzÞ
R

dw

dj
¼ kZðzÞw at j ¼ 1 ð10:172Þ

Canceling Z(z) and combining the parameters to form a

Hatta number¼Ha¼ kR/DA, we have the homogeneous

wall condition:

w0ð1Þ þ Ha wð1Þ ¼ 0 ð10:173Þ

Thus, the two boundary conditions for w (j) (Eqs. 10.171

and 10.173) are seen to be homogeneous, which we shall

presently see is of paramount importance in our quest to

find an analytical solution. We also note that the centerline

condition w0ð0Þ ¼ 0 is formally equivalent to the require-

ment that w (0) is at least finite. This latter condition is often

easier to apply in practice than the formal application of the

zero derivative condition.

To cover all possibilities (other thanþ l2, which we have

excluded on physical grounds), we must also inspect the

case when l¼ 0. The solutions to Eqs. 10.166 and 10.167

for this case are obtained by direct integration of the exact

differentials:

d jðdw=djÞð Þ ¼ 0 ð10:174Þ

dZ ¼ 0 ð10:175Þ

yielding the functions

w ¼ A0ln jþ B0; Z ¼ K1 ð10:176Þ

Combining all the solutions obtained thus far gives (where

products of constants are given new symbols)

CA ¼ exp ð�l2zÞ CJ0ðljÞ þ DY0ðljÞ½ � þ E ln jþ F

ð10:177Þ

We learned in Section 3.5 that Y0(0)!�1 and we know

that ln (0)!�1; hence, finiteness at j¼ 0 requires that

we immediately set D¼E¼ 0. Moreover, the physical

state of the system, as argued earlier, is such that we require

CA! 0 as z!1; hence, we must also set F¼ 0. We finally

have the compact form:

CAðj; zÞ ¼ C exp ð�l2zÞJ0ðljÞ ð10:178Þ

where, exclusive of the arbitrary constant C, Z (z)¼ exp

(�l2z) and w (j)¼ J0 (lj). The reader can easily verify that

w0ð0Þ ¼ 0.

We have two conditions remaining that have not been

used:

CA ¼ CA0; z ¼ 0; w0ð1Þ þ Ha wð1Þ ¼ 0 ð10:179Þ

and we have two unknown constants C and l. Using

Eq. 3.197, apply next the wall condition to see

lJ1ðlÞ ¼ Ha J0ðlÞ ð10:180Þ

There are many, countably infinite, positive values of l that

satisfy this transcendental relation, a few of which are tabu-

lated in Table 3.3. This obviously means there are many

functions:

wnðjÞ ¼ J0ðlnjÞ

which satisfy the original Eq. 10.166. The sum of all solu-

tions is the most general result, by superposition, so we

must rewrite Eq. 10.178 to reflect this:

CAðj; zÞ ¼
X1
n¼1

Cnexp ð�l2nzÞJ0ðlnjÞ ð10:181Þ

where l1 denotes the smallest (excluding zero, which has

already been counted) root to the eigenvalue equation

lnJ1ðlnÞ ¼ Ha J0ðlnÞ ð10:182Þ

This relation gives the countably infinite characteristic val-

ues (eigenvalues) for the system of equations.
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It remains only to find the infinite number of values for

Cn, using the final condition:

CAðj; 0Þ ¼ CA0 ¼
X1
n¼1

CnJ0ðlnjÞ ð10:183Þ

This appears to be a formidable task. To accomplish it, we

shall need some new tools. Under certain conditions, it may

be possible to compute Cn without a trial-and-error basis.

To do this, we shall need to study a class of ODE with

homogeneous boundary conditions called the Sturm–

Liouville equation. We shall return to the coated-wall

reactor after we garner knowledge of the properties of

orthogonal functions.

10.5 ORTHOGONAL FUNCTIONS AND

STURM–LIOUVILLE CONDITIONS

The new tool that we needed in the previous coated-wall

reactor problem can be stated very simply asZ b

a

rðxÞwnðxÞwmðxÞdx ¼ 0; if m 6¼ n ð10:184Þ

Thus, two functions

wnðxÞ and wmðxÞ; where n 6¼ m

are said to be orthogonal over the interval a, b if the integral

of the product of the functions with respect to a weighting

function r(x) over the range a, b is identically zero. This is a

powerful result, but it only arises for a certain class of

ODEs, called Sturm–Liouville equations. By comparing a

specific equation with the general Sturm–Liouville form,

the needed weighting function r(x) can be deduced.

10.5.1 The Sturm–Liouville Equation

Any equation that can be put into the general form

d

dx
pðxÞ dy

dx

� �
þ qðxÞ þ brðxÞ½ �yðxÞ ¼ 0 ð10:185Þ

where b is a constant and p, q, r are continuous functions of

x, is said to be of Sturm–Liouville type. For example, if we

compare Eq. 10.166, rewritten as

d

dj
j
dw

dj

� �
þ jl2w ¼ 0 ð10:186Þ

we would conclude that it is of the Sturm–Liouville type if

we take

pðjÞ ¼ j; qðjÞ ¼ 0; rðjÞ ¼ j; and b ¼ l2

Thus, for any discrete set of values bn, the corresponding

solutions y¼ wn will be obtained. Suppose for two distinct

values, say bn and bm, we have solutions wn and wm. Each

of these must satisfy Eq. 10.185, so write

d

dx
pðxÞ dwn

dx

� �
þ qðxÞ þ bnrðxÞ½ �wn ¼ 0 ð10:187Þ

d

dx
pðxÞ dwm

dx

� �
þ qðxÞ þ bmrðxÞ½ �wm ¼ 0 ð10:188Þ

Our aim is to derive the orthogonality condition (Eq.

10.184) and suitable boundary conditions. To do this, multi-

ply the first of the above equations wm and the second by wn,

then subtract the two equations to find q(x) eliminated:

wm

d

dx
pðxÞ dwn

dx

� �
� wn

d

dx
pðxÞ dwm

dx

� �
þ bn � bmð ÞrðxÞwnwm ¼ 0 ð10:189Þ

The range of independent variables is given as a physical

condition, so integrate the above between arbitrary points

a and b:

bn � bmð Þ
Z b

a

rðxÞwnwmdx ¼
Z b

a

wn

d

dx
pðxÞ dwm

dx

� �
dx

�
Z b

a

wm

d

dx
pðxÞ dwn

dx

� �
dx

ð10:190Þ
It is clear that the LHS is almost the same as Eq. 10.184. We

inspect ways to cause the RHS to become zero (when n is

different from m). Each of the integrals on the RHS can

be integrated by parts, for example, the first integral can be

decomposed asZ b

a

wnd pðxÞdwm
dx

� �
¼ wnpðxÞ

dwm

dx

� �b
a

�
Z b

a

pðxÞdwm
dx

dwn
dx

dx

ð10:191Þ
The second integral in Eq. 10.190 yieldsZ b

a

wmd pðxÞdwn

dx

� �
¼ wmpðxÞ

dwn
dx

� �b
a

�
Z b

a

pðxÞdwn
dx

dwm

dx
dx

ð10:192Þ
When these are subtracted, the integrals cancel, so that we

finally have from Eq. 10.190:

ðbn�bmÞ
Z b

a

rðxÞwnwmdx¼ pðxÞ wn

dwm

dx
�wm

dwn

dx

� �b
a

ð10:193Þ
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We see that RHS will vanish if any two of the three homo-

geneous boundary conditions are imposed:

i. x ¼ a or b; y ¼ 0; ; wn ¼ wm ¼ 0

ii. x ¼ a or b;
dy

dx
¼ 0; ; w0

n ¼ w0
m ¼ 0

iii. x ¼ a or b;
dy

dx
¼ Ny; ; w0

n¼ Nwn; w0m ¼ Nwm

We now see the singular importance of homogeneous

boundary conditions, which we have reiterated time and

again. For example, referring back to the coated-wall

reactor problem in the previous section, we had the

conditions

w0
nð0Þ ¼ 0 and w0nð1Þ ¼ �Ha wnð1Þ ð10:194Þ

By comparison, we identify a¼ 0, b¼ 1, x¼ j, and

N¼�Ha. Thus, it is easy to see

wnð1Þw0
mð1Þ � wmð1Þw0nð1Þ ¼ 0 ð10:195Þ

since for n or m,

w0ð1Þ ¼ �Ha wð1Þ ð10:196Þ

then

wnð1Þ½�Ha wmð1Þ� � wmð1Þ½�Ha wnð1Þ� ¼ 0 ð10:197Þ

Also, at the lower limit,

wnð0Þw0
mð0Þ � wmð0Þw0nð0Þ ¼ 0 ð10:198Þ

which must be true for the reactor problem since w0
nð0Þ ¼ 0

for n or m.

We can now finish the reactor problem using the fact that

the cylindrical equation was of Sturm–Liouville type with

homogeneous boundary conditions. When this is the case,

the solutions wn;wm are said to be orthogonal functions

with respect to the weighting function r(x). Since we identi-

fied the weighting function for the reactor as r(j)¼ j, we
can write when n is different from m:

Z 1

0

jwnðjÞwmðjÞdj ¼ 0 ð10:199Þ

where

wnðjÞ ¼ J0ðlnjÞ; wmðjÞ ¼ J0ðlmjÞ

We apply this condition to the final stage of the reactor

problem represented by Eq. 10.183:

CA0 ¼
X1
n¼1

CnJ0ðlnjÞ ð10:200Þ

Multiply both sides by jJ0ðlmjÞ and then integrate between
0 and 1:

CA0

Z 1

0

jJ0ðlmjÞdj ¼
X1
n¼1

Cn

Z 1

0

jJ0ðlnjÞJ0ðlmjÞdj

ð10:201Þ

But all terms within the summation are identically zero

(owing to the orthogonality condition) (Eq. 10.199), except

for the case n¼m. Thus, among the infinite integrations,

only one remains, and we can solve directly for Cn by

requiring n¼m:

Cn ¼
CA0

R 1
0
jJ0ðlnjÞdjR 1

0
jJ20ðlnjÞdj

ð10:202Þ

We call upon Eq. 3.204 for the integral in the numerator,

and Eq. 3.207 for the denominator, respectively:

Z 1

0

jJ0ðlnjÞdj ¼ J1ðlnÞ
ln

ð10:203Þ

and

Z 1

0

jJ20ðlnjÞdj ¼ 1
2
J20ðlnÞ þ J21ðlnÞ
�  ð10:204Þ

The eigenvalue expression, Eq. 10.182, could be used to

eliminate J1ðlnÞ, since (in Section 11.2.2 we prove all such

eigenvalues are real and positive):

J1ðlnÞ ¼ Ha
J0ðlnÞ
ln

ð10:205Þ

Inserting this and solving for Cn finally gives

Cn ¼ CA0

1

J0ðlnÞ
2Ha

ðl2n þ Ha2Þ ð10:206Þ

Inserting this into Eq. 10.181 gives the analytical solution to

compute CA(r, z):

CAðr; zÞ
CA0

¼
X1
n¼1

2Ha

ðl2n þ Ha2Þ
J0ðlnjÞ
J0ðlnÞ expð�l2nzÞ ð10:207Þ

where eigenvalues are determined from Eq. 10.205.
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Table 3.3 shows if Ha¼ 10, the first three eigenvalues

are 2.1795, 5.0332, and 7.9569.

The flux at the wall is simply

N0 ¼ � DA

@CA

@r

� �
r¼R

¼ kCAðR; zÞ ð10:208Þ

Far downstream, such that

z ¼ zDA=ðR2v0Þ > 1

the first term in the series dominates, so that approximately

N0ðzÞ ’ kCA0

2Ha

l21 þ Ha2
�  exp �l21

zDA

R2v0

� �
ð10:209Þ

We can also compute the average composition downstream,

and since v0 is constant, this is written

CA ¼ 2p
R R
0
CAðr; zÞrdr

2p
R R
0
rdr

¼ 2

R2

Z R

0

CAðr; zÞrdr ð10:210Þ

In terms of j, this is

CA ¼ 2

Z 1

0

CAðj; zÞj dj ð10:211Þ

Using the Bessel integral relationship, Eq. 3.204, we find

CA ¼ 4 Ha CA0

X1
n¼1

J1ðlnÞexp ð�l2nzÞ
lnJ0ðlnÞ l2n þ Ha2

�  ð10:212Þ

But since the eigenvalue expression is J1ðlnÞ ¼ Ha J0ðlnÞ=
ln, we can eliminate J1ðlnÞ again to get finally

CA

CA0

¼ 4 Ha2
X1
n¼1

expð�l2nzÞ
l2n l2n þ Ha2
�  ð10:213Þ

The plot of the reduced concentration (Eq. 10.210) versus z

is shown in Fig. 10.4 for various values of Ha number.

Far downstream, where z 	 1, we can truncate the

series to a single term, so that approximately

CA

CA0

’ 4Ha2

l21 l21 þ Ha2
�  exp �l21

zDA

R2v0

� �
ð10:214Þ

Thus, lnðCA=CA0Þ varies linearly with position z. This

suggests studying experimental reactors of different

length (fixed v0) or varying v0 (fixed z). Baron et al.

(1952) used this model to study oxidation of sulfur

dioxide on a vanadium pentoxide catalyst.

EXAMPLE 10.3

COOLING FLUIDS IN LAMINAR PIPE FLOW

In Chapter 1, we considered the problem of heat transfer in

laminar pipe flow. If it is permissible to ignore axial conduction,

the transport equation we derived there was given by Eq. 1.31 with

the term k@2T=@z2 � 0

2v0 1� r

R

� 	2� �
@T

@z
¼ a

1

r

@

@r
r
@T

@r

� �
ð10:215Þ

where a ¼ k=rCp defines thermal diffusivity. The constant

entrance temperature is denoted T0 and the constant wall tempera-

ture is Tw. Apply the method of separation of variables to find

T(r, z).

To solve this linear problem, it is convenient, as before, to

introduce dimensionless independent variables; thus,

j ¼ r

R
; z ¼ za

R2vmax

; vmax ¼ 2v0 ð10:216Þ

so that the uncluttered equation becomes

ð1� j2Þ @T
@z

¼ 1

j

@

@j
j
@T

@j

� �
ð10:217Þ

The boundary/initial conditions are

T ¼ Tw at j ¼ 1 ð10:218Þ

@T

@j
¼ 0 at j ¼ 0 ð10:219Þ

T ¼ T0 at z ¼ 0 ð10:220Þ

It is clear by inspection that conditions must be homogeneous in the

j domain, if we are to effect an analytical solution. To ensure this

condition at the outset, we follow the advice of Chapter 1 and define

u ¼ T � Tw ð10:221Þ

FIGURE 10.4 Plot of Eq. 10.213 versus z.
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The new conditions on u are now

u ¼ 0; j ¼ 1;
@u

@j
¼ 0; j ¼ 0; u ¼ T0 � Tw; z ¼ 0

ð10:222Þ

the first two of which are clearly homogeneous. Next replace T with

u in Eq. 10.217, and propose

uðj; zÞ ¼ wðjÞZðzÞ ð10:223Þ

Inserting this into Eq. 10.217 and rearranging to separate variables

gives

ð1=jÞðd=djÞ jðdw=djÞð Þ
ð1� j2Þw�  ¼ Z 0

Z
¼ �l2 ð10:224Þ

The negative separation constant is implied to ensure that

ðT � TwÞ ¼ u diminishes as z ! 1. The two ODEs resulting are

d

dj
j
dw

dj

� �
þ l2jð1� j2Þw ¼ 0 ð10:225Þ

dZ

dz
þ l2Z ¼ 0 ð10:226Þ

It is clear that Eq. 10.225 is a Sturm–Liouville equation with

pðjÞ ¼ j; qðjÞ ¼ 0; rðjÞ ¼ jð1� j2Þ; and b ¼ l2

It is also clear that the homogeneous boundary conditions in

Eq. 10.222 require that

w0ð0Þ ¼ 0; wð1Þ ¼ 0 ð10:227Þ

which are also of the Sturm–Liouville type. These statements ensure

that the solutions wn and wm are in fact orthogonal with respect to

rðjÞ ¼ jð1� j2Þ. The polynomials generated by the solution to

Eq. 10.225 are called Graetz polynomials. The only Graetz func-

tion, which is finite at the centerline, can be found by applying the

method of Frobenius to get (Problem 3.4):

wðjÞ ¼ Gzðj; lÞ ð10:228Þ

Gzðj; lÞ ¼ 1� l2

4

� �
j2 þ l2

16

� �
1þ l2

4

� �
j4 þ � � � ð10:229Þ

Combining the solutions for Z(z) and w gives for l 6¼ 0:

u ¼ AGzðj; lÞexp ð�l2zÞ ð10:230Þ

As in the previous reactor problem, the solution when l¼ 0 is sim-

ply B ln jþC. But since ln j is not finite at the centerline, set B¼ 0.

The remaining solutions are summed as before:

u ¼ AGzðj; lÞexp ð�l2zÞ þ C ð10:231Þ

It is clear for an infinitely long heat exchanger that T ! Tw as

z ! 1; hence, u ! 0 as z ! 1, so that we set C¼ 0. We now

have the compact result:

u ¼ AGzðj; lÞexp ð�l2zÞ ð10:232Þ

If we apply the wall condition u¼ 0 at j¼ 1, we obtain, since

exp ð�l2zÞ is at least finite,
Gzð1; lÞ ¼ 0; j ¼ 1 ð10:233Þ

There exists countably infinite roots to satisfy Eq. 10.229 when

j¼ 1:

0 ¼ 1� l2

4

� �
þ l2

16

� �
1þ l2

4

� �
� � � � ð10:234Þ

The smallest positive root takes a value of 2.704, and the next larg-

est is 6.679 (Brown, 1960); Jacob (1949) reported this as 6.66.

Since there are many solutions, the general result by superposi-

tion is

uðj; zÞ ¼
X1
n¼1

AnGznðjÞexp �l2nz

 � ð10:235Þ

Henceforth, we shall denote GznðjÞ as the eigenfunction

Gznðj; lnÞ. The condition at the inlet can now be applied

ðT0 � TwÞ ¼
X1
n¼1

AnGznðjÞ ð10:236Þ

Multiplying both sides by the weighting function rðjÞ ¼ jð1� j2Þ
and by GzmðjÞ, where n 6¼ m, and then integrating between 0

and 1, gives

ðT0 � TwÞ
Z 1

0

GzmðjÞjð1� j2Þdj

¼
X1
n¼1

An

Z 1

0

GznðjÞGzmðjÞjð1� j2Þdj
ð10:237Þ

Invoking the orthogonality conditions eliminates all terms save one

(when n¼m) within the summation, so that we can solve for An:

An ¼
ðT0 � TwÞ

R 1
0
GznðjÞjð1� j2ÞdjR 1

0
Gz2nðjÞjð1� j2Þdj

ð10:238Þ

The Graetz eigenfunctions and eigenvalues are not widely tabu-

lated. However, Brown (1960) has computed a large number of

eigenvalues suitable for most problems. The final result can be

written in dimensionless form as

T � Tw

T0 � Tw

¼
X1
n¼1

A0
nGznðjÞexpð�l2nzÞ ð10:239Þ

where A0
n ¼ An=ðT0 � TwÞ and the eigenvalues are found from

Gzð1; lnÞ ¼ 0. The above series converges very slowly (as does

the polynomial represented by Eq. 10.229), hence a large number

of terms must be retained, especially for the entrance region. In
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this regard, Schechter (1967) has worked out an approximate solu-

tion based on variational calculus, which needs only two terms to

find an accurate prediction of mean fluid temperature. The average

(mixing-cup) temperature for the present case can be found by

integration using Eq. 10.239:

TðzÞ ¼
R 1
0
Tðj; zÞð1� j2Þj djR 1

0
ð1� j2Þj dj

ð10:240Þ

10.6 INHOMOGENEOUS EQUATIONS

We have used elementary change of variables as a method

to convert certain inhomogeneous boundary conditions to

homogeneous form. This was a clear imperative in order to

use, in the final steps, the properties of orthogonality. With-

out this property, series coefficients cannot be computed

individually.

In certain cases, the boundary inhomogeneity cannot be

removed by elementary substitution (e.g., constant bound-

ary flux). In other cases, the defining equation itself is not

homogeneous. Both sets of circumstances lead to

inhomogeneous equations.

A fairly general way of coping with inhomogeneous

PDE is to apply methods already introduced in Chapter 9,

specifically, the concept of deviation variables (similar, but

not to be confused with perturbation variables). This tech-

nique is best illustrated by way of examples.

EXAMPLE 10.4

TRANSIENT COOLING OF NUCLEAR FUEL PELLETS

Spherical pellets of uranium undergo self-generated heating at a

rate per unit volume Q, while being cooled at the boundary

through a heat transfer coefficient h; so for a single pellet on start-

up ða ¼ k=rCpÞ,

@T

@t
¼ a

1

r2
@

@r
r2
@T

@r

� �
þ Q

rCp

ð10:241Þ

subject to boundary and initial conditions:

r ¼ R; � k
@T

@r
¼ hðT � Tf Þ ð10:242aÞ

t ¼ 0; Tð0; rÞ ¼ T0 ð10:242bÞ

where Tf is the flowing coolant fluid temperature (constant).

Find the relationship to predict the transient response of the pellet

T(r, t).

It is clear that the heat balance produces an inhomogeneous

equation, owing to the (assumed) constant heat source term Q.

This means, of course, that a separation of variables approach will

not lead to a Sturm–Liouville equation. However, the following

expedient will produce a result that is homogeneous; let

temperature be decomposed into two parts–a steady state (the

future steady state) and a deviation from steady state:

Tðr; tÞ ¼ TðrÞ þ yðr; tÞ ð10:243Þ
Of course, the steady state must be represented by

a
1

r2
d

dr
r2
dT

dr

� �
þ Q

rCp

¼ 0 ð10:244Þ

which can be integrated directly to yield

d r2
dT

dr

� �
¼ �Q

k
r2dr

Hence,

r2
dT

dr
¼ �Q

k

r3

3
þ C1

dT

dr
¼ �Q

k

r

3
þ C1

r2

But symmetry must be maintained at the centerline, hence take

C1¼ 0 and integrate again

TðrÞ ¼ �Q

k

r2

6
þ C2

Now, cooling at the boundary requires Eq. 10.242a to be obeyed at

all times, so that

Q
R

3
¼ h �Q

k

R2

6
þ C2 � Tf

� �

Hence, solve for C2 to get

C2 ¼ QR

3h
þ QR2

6k
þ Tf

Hence, the steady-state temperature profile (as t ! 1) is

TðrÞ ¼ Tf þ QR

3h
þ QR2

6k
1� r

R

� 	2� �
ð10:245Þ

Thus, when the decomposed form of temperature is substi-

tuted into the defining equation and boundary conditions,

we get

@y

@t
¼ a

1

r2
@

@r
r2
@y

@r

� �
ð10:246aÞ

r ¼ 0;
@y

@r
¼ 0 ð10:246bÞ

r ¼ R; �k
@y

@r
¼ hy ð10:246cÞ

t ¼ 0; yðr; 0Þ ¼ T0 � TðrÞ ð10:246dÞ

where the steady part removes Q according to Eq. 10.244.
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It is clear in the limit as t ! 1 that y must vanish. In

terms of dimensionless independent variables, we use

j ¼ r

R
; t ¼ at

R2

Hence, Eq. 10.246a becomes

@y

@t
¼ 1

j2
@

@j
j2

@y

@j

� �
ð10:247aÞ

j ¼ 0;
@y

@j
¼ 0 ð10:247bÞ

j ¼ 1; � @y

@j
¼ Bi y ð10:247cÞ

where

Bi ¼ hR

k

The equation for y and boundary conditions are fully homo-

geneous. Applying separation of variables in the usual way

by proposing

yðj; tÞ ¼ wðjÞuðtÞ ð10:248Þ
we obtain

ð1=j2Þðd=djÞ j2ðdw=djÞ
 �
w

¼ du=dt

u
¼ �l2 ð10:249Þ

So, the required solutions are obtained from

1

j2
d

dj
j2

dw

dj

� �
þ l2w ¼ 0 ð10:250Þ

du

dt
þ l2u ¼ 0 ð10:251Þ

The equation for w is of the Sturm–Liouville type if we

stipulate pðjÞ ¼ j2; qðjÞ ¼ 0, and the weighting function

must be rðjÞ ¼ j2. The equation for w is easier to solve by

defining w ¼ uðjÞ=j; hence, obtain

d2u

dj2
þ l2u ¼ 0 ð10:252Þ

which has solution

uðjÞ ¼ A0 sinðljÞ þ B0 cosðljÞ ð10:253Þ
so that

wðjÞ ¼ A0

sin ðljÞ
j

þ B0

cos ðljÞ
j

ð10:254Þ

The solution for u is

u ¼ K expð�l2tÞ ð10:255Þ

When l ¼ 0, the solution can be seen to be simply

C=jþ D, so that the combined solution is

y¼ A
sinðljÞ

j
þB

cosðljÞ
j

� �
expð�l2tÞþC

j
þD ð10:256Þ

Finiteness at the centerline requires B¼C¼0, and since

y!0 as t!1, then D¼0, so the compact form results

yðj;tÞ¼A
sinðljÞ

j
expð�l2tÞ ð10:257Þ

which vanishes as t!1. If we apply the boundary condi-

tion at j¼1, it results

sinðlÞ�lcosðlÞ¼BisinðlÞ ð10:258Þ

There are countably infinite values of l, which satisfy this;

hence, we use ln to count these (noting l¼ 0 has already

been counted), and write the eigenvalue expression

ln cotðlnÞ�1¼�Bi ð10:259Þ

For large Bi (high-velocity coolant), this reduces to

sinðlnÞ¼0

Hence, when Bi!1;ln¼npðn¼1;2;3; . . .Þ. Even for

finite Bi, the spacing for successive eigenvalues is very

close to p.

The general solution now must be written as a superposi-

tion of all possible solutions:

yðj; tÞ ¼
X1
n¼1

An

sin ðlnjÞ
j

exp ð�l2ntÞ ð10:260Þ

It remains only to find An using the orthogonality condition

together with the initial condition (Eq. 10.246d):

ðT0 � Tf Þ � QR
1

3h
þ R

6k

� �
þ QR2

6k
j2 ¼

X1
n¼1

An

sin ðlnjÞ
j

ð10:261Þ

If we multiply throughout by the eigenfunction sin ðlnjÞ=j
and the weighting function rðjÞ ¼ j2 and then integrate

246 SOLUTION TECHNIQUES FOR MODELS PRODUCING PDEs



over the range of orthogonality, all terms disappear on the

RHS except for the case when ln ¼ lm:

An

Z 1

0

sin2ðlnjÞdj ¼
Z 1

0

j sinðlnjÞ


 ðT0 � Tf Þ � QR

3

1

h
þ R

2k

� �
þ QR2

6k
j2

� �
dj

Performing the integrals, we obtain

An

1

2
� 1

2

sin ðlnÞcos ðlnÞ
ln

� �

¼ ðT0 � Tf Þ �QR

3

1

h
þ R

2k

� �� �
sin ðlnÞ � lncos ðlnÞ

l2n

� �

þQR2

6k

ð3l2n � 6Þsin ðlnÞ � ðl3n � 6lnÞcos ðlnÞ
l4n

� �

Collecting terms, using the eigenvalue expression to sim-

plify, we finally obtain

yðj;tÞ
T0 � Tf

¼ 2Bi
X1
n¼1

ðNk=l
2
nÞ � 1

� 
½Bi� 1þ cos2ln�

cos ln

ln

sin ðlnjÞ
j

exp �l2nt

 �

ð10:262Þ

where

Nk ¼ QR2

kðT0 � Tf Þ ; Bi ¼ hR

k

The parameter Bi is the ratio of film to conduction transfer

and Nk is the ratio of the generation to conduction transfer.

The response at the center is illustrated in Fig. 10.5.

EXAMPLE 10.5

CONDUCTION IN FINITE SLABS

Consider a homogeneous slab, initially at a temperature T0, when

suddenly the face at position x¼ 0 is raised to Ts (> T0), while the

face at x¼ L is held at T¼ T0:

Tð0; tÞ ¼ Ts ð10:263aÞ
TðL; tÞ ¼ T0 ð10:263bÞ
Tðx; 0Þ ¼ T0 ð10:263cÞ

The transient conduction equation in rectangular coordinates is

@T

@t
¼ a

@2T

@x2
ð10:264Þ

Find the temperature response T(x, t).

At the outset, it is clear that the boundary conditions are

inhomogeneous, for if we defined

u ¼ T � T0

then it is true that the boundary condition at x¼ L would become

homogeneous, but the one at x¼ 0 is still inhomogeneous.

Again, we propose a structure made up of steady plus unsteady

parts,

Tðx; tÞ ¼ TðxÞ þ yðx; tÞ ð10:265Þ

The (future) steady-state part obviously satisfies

d2T

dx2
¼ 0; Tð0Þ ¼ Ts; TðLÞ ¼ T0

ð10:266Þ

Hence,

TðxÞ ¼ ðT0 � TsÞ x

L

� 	
þ Ts ð10:267Þ

Inserting Eq. 10.265 into Eq. 10.264 gives

@y

@t
¼ a

@2y

@x2
ð10:268Þ

since

a
d2T

dx2
¼ 0

More importantly, the boundary conditions (10.263) show

yð0; tÞ ¼ yðL; tÞ ¼ 0 ð10:269Þ

which are clearly homogeneous. The price we pay for this simpli-

fication occurs in the initial condition for y:

t ¼ 0; yðx; 0Þ ¼ Tðx; 0Þ � TðxÞ ¼ T0 � Ts � ðT0 � TsÞ x

L

� 	
ð10:270ÞFIGURE 10.5 Temperature deviation at pellet center.
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It is now convenient to use dimensionless independent variables,

so let

j ¼ x

L
; t ¼ at

L2

yielding

@y

@t
¼ @2y

@j2

subject to

yð0; tÞ ¼ yð1; tÞ ¼ 0

yðj; 0Þ ¼ ðT0 � TsÞð1� jÞ
Separation of variables proceeds as before by letting

y ¼ wðjÞuðtÞ
giving

ðd2wÞ=ðdj2Þ
w

¼ du=dt

u
¼ �l2

Hence,

d2w

dj2
þ l2w ¼ 0 ð10:271aÞ

du

dt
þ l2u ¼ 0 ð10:271bÞ

The solutions of the ODEs are by now familiar:

wðjÞ ¼ A sinðljÞ þ B cosðljÞ ð10:272aÞ

u ¼ K exp ð�l2tÞ ð10:272bÞ

The solution for the case when l¼ 0 is easily seen to be CjþD,

so that the superposition of the two cases yields

y ¼ ½A sin ðljÞ þ B cos ðljÞ�exp ð�l2tÞ þ Cjþ D ð10:273Þ

Now, since yð0; tÞ ¼ 0, then D ¼ 0 and B ¼ 0: Moreover, since

yð1; tÞ ¼ 0, we must also have

0 ¼ A sin ðlÞexp ð�l2tÞ þ C

The only nontrivial way this can be satisfied is to set

C ¼ 0; sin ðlÞ ¼ 0

But there exists countably infinite l to satisfy sin (l)¼ 0; hence,

write the eigenvalue result

ln ¼ np ðn ¼ 1; 2; 3; . . .Þ ð10:274Þ
This suggests a superposition of all solutions as

y ¼
X1
n¼1

Ansin ðnpjÞexp ð�n2p2tÞ ð10:275Þ

Inspection of Eq. 10.271 shows this to be of the Sturm–Liouville

type if pðxÞ ¼ 1; q ¼ 0; and rðxÞ ¼ 1:Moreover, if we inspect the

original form y ¼ wðjÞuðtÞ, then clearly

yð0; tÞ ¼ 0 ¼ wð0ÞuðtÞ; ; wð0Þ ¼ 0

and

yð1; tÞ ¼ 0 ¼ wð1ÞuðtÞ; ; wð1Þ ¼ 0

This means that all solutions wnðjÞ are such that

wnð0Þ ¼ wnð1Þ ¼ 0; for n ¼ 1; 2; 3; . . . ð10:276Þ

So since the boundary values for all eigenfunctions are homo-

geneous and of the Sturm–Liouville type, we can write the

orthogonality condition immediately:

Z 1

0

wnðxÞwmðxÞdx ¼ 0; for n 6¼ m ð10:277Þ

We will use this in the final stage to find the coefficients An. The

last remaining unused condition is the initial value

yðj; 0Þ ¼ ðT0 � TsÞð1� jÞ ¼
X1
n¼1

An sin ðn pjÞ ð10:278Þ

Multiplying both sides by

wmðjÞdj ¼ sin ðm pjÞdj

and integrating and invoking the orthogonality condition,

Eq. 10.278 yields for the case n¼m

ðT0 � TsÞ
Z 1

0

ð1� jÞsin ðn pjÞdj ¼ An

Z 1

0

sin2ðn pjÞdj ð10:279Þ

Hence,

An ¼ 2ðT0 � TsÞ
ln

¼ 2ðT0 � TsÞ
np

ð10:280Þ

and the final expression for yðj; tÞ is

yðj; tÞ
ðT0 � TsÞ ¼ 2

X1
n¼1

sin ðn pjÞ
np

exp ð�n2p2tÞ ð10:281Þ

10.7 APPLICATIONS OF LAPLACE

TRANSFORMS FOR SOLUTIONS OF PDES

The Laplace transform is not limited to ordinary deriva-

tives, but it can also be applied to functions of two indepen-

dent variables f(x, t). Usually the transform is taken with

respect to the time variable, but it can also be applied to

spatial variables x, as long as 0 < x < 1: The appropriate
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variable is usually selected based on the suitability of initial

conditions, since only initial value problems can be treated

by Laplace transforms. Henceforth, we shall imply trans-

forms with respect to time, unless otherwise stated.

The first derivative is treated just as before, except the

initial condition must now in general depend on the second

independent variable; thus,

L
@f ðx; tÞ

@t

� �
¼
Z 1

0

e�st @f

@t
dt

¼ ½f ðx; tÞe�st�10 þ s

Z 1

0

f ðx; tÞe�stdt ð10:282Þ

The second term on the RHS defines the Laplace transform,

and the upper bound in the first term can be made to be

dominated by appropriate selection of s; hence,

L
@f

@t

� �
¼ sFðx; sÞ� f ðx;0Þ ð10:283Þ

where it is emphasized that F depends on x.

Similarly, the second time derivative can be obtained as

L
@2f ðx; tÞ

@t2

� �
¼
Z 1

0

e�st @
2f

@t2
dt

¼ s2Fðx; sÞ � sf ðx; 0Þ � @f ðx; tÞ
@t

����
t¼0

ð10:284Þ

Transforms of spatial derivatives are also easily obtained

as

L
@f

@x

� �
¼
Z 1

0

e�st @f

@x
dt ð10:285Þ

The partial implies holding time constant and, moreover,

since time is completely integrated out of the equation,

we can thus take the ordinary derivative with respect to x

and write

Z 1

0

e�st @f

@x
dt¼ d

dx

Z 1

0

e�stf ðx; tÞdt¼ d

dx
Fðx;sÞ ð10:286Þ

So we finally arrive at

L
@f

@x

� �
¼ d

dx
Fðx;sÞ ð10:287Þ

where s is now a parameter. Similarly,

L
@2f

@x2

� �
¼ d2Fðx;sÞ

dx2
ð10:288Þ

and for mixed partials,

L
@2f

@x@t

� �
¼ d

dx

Z 1

0

e�st @f

@t
dt¼ d

dx
sFðx;sÞ� f ðx;0Þ½ �

ð10:289Þ

We now have all the necessary tools to apply the Laplace

transform method to linear partial differential equations of

the initial value type. The power of the Laplace transform in

PDE applications is the ease with which it can cope with

simultaneous equations. Few analytical methods have this

facility.

EXAMPLE 10.6

We saw in Chapter 1 that packed bed adsorbers can be described

by the simultaneous, coupled PDEs:

V0

@C

@z
þ e

@C

@t
þ ð1� eÞK @C�

@t
¼ 0 ð10:290Þ

ð1� eÞK @C�

@t
¼ kcaðC � C�Þ ð10:291Þ

where C(z, t) is the flowing solute composition and C� is the value
that would be in equilibrium with the solid phase, such that q¼
KC�, where K is the linear partition coefficient. In such packed

beds, e denotes voidage, V0 depicts superficial fluid velocity, and

kca is the volumetric mass transfer coefficient. If the initial condi-

tions are such that

Cðz; 0Þ ¼ 0 and C�ðz; 0Þ ¼ 0 ð10:292Þ

and at the bed entrance

Cð0; tÞ ¼ C0 ðconstant inlet compositionÞ ð10:293Þ

find the transient behavior of the exit composition C using Laplace

transforms.

It is possible to apply the Laplace transform directly, but this

leads to some intractable problems later. The equations are easier

to treat if their form is changed at the outset. The thrust of the fol-

lowing variable transformation is to eliminate one of the deriva-

tives, as we shall see.

We shall first need to express velocity as an interstitial value,

which is the actual linear velocity moving through the interstices

of the bed:

V ¼ V0

e
ð10:294Þ

so we rewrite the overall bed balance using V

V
@C

@z
þ @C

@t
þ ð1� eÞK

e
@C�

@t
¼ 0 ð10:295Þ
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Next, since a time response cannot occur until the local residence

time is exceeded, define the relative timescale as

u ¼ t� z=V ð10:296Þ
which is the difference between real time and local fluid residence

time. We effect the change of variables

Cðz; tÞ ¼ Cðz; uÞ
C�ðz; tÞ ¼ C�ðz; uÞ

ð10:297Þ

Considering the transformation of C(z, t) to C(z, u), we first write

the total differential

dCðz; tÞ ¼ dCðz; uÞ
Next, expand this by the chain rule:

@C

@z

����
t

dzþ @C

@t

����
z

dt ¼ @C

@z

����
u

dzþ @C

@u

����
z

du

In order to form an identity, we shall equate multipliers of dz on

left- and right-hand sides, and the same for dt; to do this, we need

to find du, which is from Eq. 10.296:

du ¼ dt� dz

V

Now, equating coefficients of dz and dt shows

@C

@z

����
t

¼ @C

@z

����
u

� 1

V

@C

@u

����
z

@C

@t

����
z

¼ @C

@u

����
z

Similarly, we can easily see

@C�

@t

����
z

¼ @C�

@u

����
z

Inserting these into Eqs. 10.295 and 10.291 gives

V
@C

@z

����
u

¼ � kca

e

� �
ðC � C�Þ ð10:298Þ

ð1� eÞK @C�

@u
¼ kcaðC � C�Þ ð10:299Þ

To make this system of coupled equations even more compact,

combine the remaining constant parameters with the independent

variables:

z ¼ kca

e

� �
� z
V

dimensionless distance

t ¼ kca

Kð1� eÞ
� �

� u dimensionless relative time

ð10:300Þ

When this is done, we have the very clean form of equations:

@C

@z
¼ �ðC � C�Þ ð10:301Þ

@C�

@t
¼ ðC � C�Þ ð10:302Þ

The relative timescale is such that at any position z, the time

required for a slug of fluid to reach this point is exactly t¼ z/V,

which corresponds to u¼ 0 or in dimensionless terms, t¼ 0. Thus,

at this point in time, the portion of the bed in front of the slug is

completely clean and is identical to the initial condition, so

Cðz; 0Þ ¼ 0 ð10:303Þ

C�ðz; 0Þ ¼ 0 ð10:304Þ

Moreover, for all t> 0 at the entrance where z¼ 0, the concentra-

tion is fixed:

Cð0; tÞ ¼ C0 ð10:305Þ

Thus, even with a transformation of variables, the initial and

boundary conditions are unchanged.

Taking Laplace transforms with respect to t, we obtain

dCðz; sÞ
dz

¼ �ðCðz; sÞ � C�ðz; sÞÞ

sC�ðz; sÞ ¼ ðCðz; sÞ � C�ðz; sÞÞ

Solving the second equation for C� yields

C� ¼ C

sþ 1

hence the first ODE becomes

dC

dz
¼ �C þ C

sþ 1
¼ �C

s

sþ 1

The integral of this is simply

Cðz;sÞ¼AðsÞexp � s

sþ1
z

� �
¼Aexp ð�zÞexp z

sþ1

� �
ð10:306Þ

where A(s) is the arbitrary constant of integration. The transform

of the step change at the bed entrance is

LCð0;tÞ¼LC0 ¼C0=s

so the arbitrary constant becomes A¼C0/s and we are left to invert

the function

Cðz;sÞ¼C0

1

s
exp ð�zÞexp z

sþ1

� �
ð10:307Þ

The shifting theorem could be used to good effect except

for the term 1/s. The transforms in Appendix C shows that

L�1ð1=sÞe�k=s equals J0ð2
ffiffiffiffiffi
kt

p Þ, which is directly applica-

ble to the present problem if we can replace s with (sþ 1) in
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the multiplier. To do this, we inspect the process of integra-

tion with respect to z:

Z z

0

expð�bÞexp b

sþ 1

� �
db

¼ sþ 1

s

� �
1� exp ð�zÞexp z

sþ 1

� �� �
ð10:308Þ

This shows that the exponential can be expressed in integral

form, which also allows direct inversion of the transform;

hence,

Cðz; sÞ ¼ C0

1

s
�
Z z

0

exp ð�bÞexp b=ðsþ 1Þð Þ
sþ 1

db

� �

Using the shifting theorem and noting that

J0ð2
ffiffiffiffiffiffiffiffi
�kt

p
Þ ¼ J0ð2i

ffiffiffiffiffi
kt

p
Þ ¼ I0ð2

ffiffiffiffiffi
kt

p
Þ

according to Eqs. 3.158 and 3.159, we finally obtain

Cðt; zÞ ¼ 1�
Z z

0

exp ð�bÞexp ð�tÞI0ð2
ffiffiffiffiffi
bt

p
Þdb

� �
C0uðtÞ

ð10:309Þ

where u(t) is inserted to remind that a response occurs

only when t> 0 and u(0)¼ 0.

Since the impulse response is simply the time derivative

of the step response, we can also obtain

Cðt; zÞI ¼ C0

ffiffiffi
z

t

r
exp ð�z � tÞI1ð2

ffiffiffiffiffi
zt

p Þ ð10:310Þ

where C0 now denotes the weighting factor for the impulse

input, that is, Cðt; 0Þ ¼ C0dðtÞ. In arriving at Eq. 10.310,

we have used the J function, tabulated in Perry and Chilton

(1973), defined here as

Jðz; tÞ ¼ 1�
Z z

0

exp ð�b� tÞI0ð2
ffiffiffiffiffi
bt

p
Þdb

which has the useful property

Jðz; tÞ þ Jðt; zÞ ¼ 1þ exp ð�t � zÞI0ð2
ffiffiffiffiffi
tz

p Þ

The step and impulse responses are illustrated in Fig. 10.6.

As a lead into treating the case of multivalued singulari-

ties, we shall reconsider the thermal diffusion problem dis-

cussed in Section 10.3, where a combination of variables

approach was used. Again, we consider a semi-infinite slab,

initially at a temperature T0 throughout, when suddenly the

face at x¼ 0 is raised to Ts, where Ts> T0. The partial dif-

ferential equation describing the dynamics of heat diffusion

was derived to be

a
@2T

@x2
¼ @T

@t

We can apply Laplace transforms directly, but this of

course will carry with it the initial condition on T. We can

cause this initial condition to be zero by defining the new

variable u¼ T� T0, so we now have

a
@2u

@x2
¼ @u

@t
ð10:311Þ

Taking Laplace transforms yields

a
d2uðx; sÞ

dx2
¼ suðx; sÞ ð10:312Þ

This is a second-order ODE with characteristic roots

� ffiffiffiffiffiffiffiffi
s=a

p
, so the general solution is

uðx;sÞ ¼AðsÞexp �x

ffiffiffi
s

a

r� �
þBðsÞexp x

ffiffiffi
s

a

r� �
ð10:313Þ

For any real or complex value of s, it is clear the second

solution is inadmissible since it is required that u! 0

asx!1; hence, we take B(s)¼ 0. To find A(s), we use the

condition at x¼ 0, the transform of which is

Luð0; tÞ ¼LðTs�T0Þ ¼ ðTs�T0Þ=s ð10:314Þ

so that A(s)¼ (Ts� T0)/s and we now have

uðx;sÞ ¼ ðTs�T0Þ
s

exp �x

ffiffiffi
s

a

r� �
ð10:315Þ

FIGURE 10.6 Response curves at exit of packed bed adsorber,

L¼ 100 cm, e¼ 0.4, K¼ 2, kca¼ 0.1 s�1, V0¼ 4 cm/s.
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The table in Appendix C shows that the inverse Laplace

transform L�1ð1=sÞexp ð�k
ffiffi
s

p Þ¼ erfc ðk=2 ffiffi
t

p Þ, which

we can use to complete the above solution. We note that the

equivalence k¼ x=
ffiffiffi
a

p
; hence,

uðx; tÞ ¼ Tðx; tÞ� T0 ¼ ðTs � T0Þerfc xffiffiffiffiffiffiffi
4at

p
� �

ð10:316Þ

which is identical to the result obtained in Section 10.3.

EXAMPLE 10.7

The Nusselt problem is similar to the Graetz problem studied in

Example 10.3, except the velocity profile is plug shaped. Starting

with the transport equation,

V0

@T

@z
¼ a

1

r

@

@r
r
@T

@r

� �

subject to

T ¼ Tw at r ¼ R

T ¼ T0 at x ¼ 0

@T

@r
¼ 0 at r ¼ 0

apply Laplace transforms with respect to distance z to find the

relation to predict T(z, r).

This model is suitable for the case of heating liquids in laminar

flow, since the wall layer sustains lower viscosity than central core

fluid, hence the overall velocity profile becomes more plug shaped.

The first stage in the solution is to rectify the defining equation

as

t ¼ z

V0

a

R2
; dimensionless local residence time

j ¼ r

R
; dimensionless radial coordinate

u ¼ T � T0

Tw � T0

;
dimensionless temperature;

which ensures zero initial condition

Introducing the new variables reposes the problem without excess

baggage:

@u

@t
¼ 1

j

@

@j
j
@u

@j

� �

subject to

uð0; jÞ ¼ 0

uðt; 1Þ ¼ uw ¼ 1

@u

@j
¼ 0; j ¼ 0

We now take Laplace transforms with respect to t, which is time-

like:

uðs; jÞ ¼
Z 1

0

e�stuðt; jÞdt

to obtain

suðs; jÞ ¼ 1

j

d

dj
j
duðs; jÞ

dj

� �

Performing the differentiation and rearranging yields Bessel’s equa-

tion:

j2
d2uðs; jÞ

dj2
þ j

duðs; jÞ
dj

� j2suðs; jÞ ¼ 0

We can express solutions in terms of I0ð
ffiffi
s

p
jÞ or J0ði

ffiffi
s

p
jÞ; we select

the latter because of its known transcendental properties (i.e., see

Table 3.2 that gives eigenvalues for J0ðlnÞ ¼ 0).

The general solution can now be written as

uðs; jÞ ¼ AðsÞJ0ði
ffiffi
s

p
jÞ þ BðsÞY0ði

ffiffi
s

p
jÞ

However, at the centerline, the symmetry condition requires u(t, j)

(and as corollary, u(s, j)) to be at least finite; hence, the function

Y0ði
ffiffi
s

p
jÞ is inadmissible, so set B(s)¼ 0. This gives the unclut-

tered result:

uðs; jÞ ¼ AðsÞJ0ði
ffiffi
s

p
jÞ

The arbitrary constant A(s) is found by transforming the condition

at j¼ 1, so that

Luðs; 1Þ ¼ Lð1Þ ¼ 1=s

so that A(s) becomes

AðsÞ ¼ 1

s

1

J0ði
ffiffi
s

p Þ

Hence, we finally obtain

uðs; jÞ ¼ 1

s

J0ði
ffiffi
s

p
jÞ

J0ði
ffiffi
s

p Þ

At first glance, this appears quite troublesome, since it appears to

contain simple poles (e.g., at s¼ 0) and also multivalued complex

functions within the arguments of transcendental functions

(i.e., J0ði
ffiffi
s

p Þ). To show that the branch point disappears, expand

the Bessel functions in series according to Eq. 3.150:

J0ði
ffiffi
s

p Þ ¼ 1� ð1=2Þi ffiffi
s

pð Þ2
ð1!Þ2 þ ð1=2Þi ffiffi

s
pð Þ4

ð2!Þ2 � � � �

which is an even series, thereby eliminating
ffiffi
s

p
as a factor, and it

also eliminates i

1

s

J0ði
ffiffi
s

p
jÞ

J0ði
ffiffi
s

p Þ ¼ 1

s

1þ ð1=4Þsjþ ð1=64Þs2j4 þ � � �
1þ ð1=4Þsþ ð1=64Þs2 þ � � �

� �
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From this, it is clear that branch points do not exist, and the

denominator contains only simple poles, which are the countably

infinite roots of the polynomial:

sn 1þ 1

4
sn þ 1

64
s2n þ � � �

� �
¼ 0

The bracketed term obviously contains no poles at sn¼ 0, since at

sn¼ 0 it became unity. It is easy to find the poles (sn) by defining

i
ffiffiffiffi
sn

p ¼ ln

�sn ¼ l2n

Hence, the countably infinite poles are obtained from

J0ðlnÞ ¼ 0

which from Table 3.2 gives, for example, the first two:

s1 ¼ �ð2:4048Þ2 ¼ �l21

s2 ¼ �ð5:5201Þ2 ¼ �l22

There also exists a simple pole at s¼ 0, arising from the term 1/s.

The inversion of u(s, j) can now be written formally as

uðt; jÞ ¼
X1
n¼0

Residues esnt
J0 i

ffiffiffiffi
sn

p
j


 �
sJ0 i

ffiffiffiffi
sn

p
 �( )

We calculate the residue at s¼ 0 using Eq. 9.78:

Res estFðsÞ; s ¼ 0½ � ¼ estJ0 i
ffiffi
s

p
jð Þ

J0 i
ffiffi
s

pð Þ
����
s¼0

¼ 1

The remaining residues can be obtained using the method illus-

trated by Eq. 9.82:

Res estFðsÞ; sn ¼ �l2n
�  ¼ estJ0 i

ffiffi
s

p
jð Þ

ðd=dsÞ sJ0 i
ffiffi
s

pð Þ½ �
����
sn¼�l2n

Now, the derivative is

d

ds
sJ0ði

ffiffi
s

p Þ�  ¼ J0ði
ffiffi
s

p Þ þ s
dJ0ðuÞ
du

di
ffiffi
s

p
ds

where we have defined u ¼ i
ffiffi
s

p
. The derivative dJ0(u)/du can be

obtained from Eq. 3.197:

dJ0ðuÞ
du

¼ �J1ðuÞ

Hence, we have

d

ds
sJ0ði

ffiffi
s

p Þ�  ¼ J0ði
ffiffi
s

p Þ � i

2

ffiffi
s

p
J1ði

ffiffi
s

p Þ

So, remembering i
ffiffiffiffi
sn

p ¼ ln, the residues are

Res estFðsÞ; sn ¼ �l2n
�  ¼X1

n¼1

e�l2nt
J0ðlnjÞ

ð�ln=2ÞJ1ðlnÞ

Summing up all residues finally yields

uðt; jÞ ¼ 1� 2
X1
n¼1

J0ðlnjÞ
lnJ1ðlnÞ exp ð�l2ntÞ

where J0(ln)¼ 0; n¼ 1, 2, 3 . . . . The corresponding values of

J1(ln) can be interpolated using Table 3.1, or it can be calculated

directly using the expansion given in Eq. 3.149 where

G(nþ 2)¼ (nþ 1)!

The average for u can be obtained from

uðtÞ ¼ 2

Z 1

0

uðt; jÞj dj ¼ 1� 4
X1
n¼1

exp ð�l2ntÞ=l2n

since the integral

Z 1

0

J0ðlnjÞj dj ¼ 1

ln
jJ1ðlnjÞ

����1
0

¼ J1ðlnÞ=ln

is obtained from the general formula in Eq. 3.204. For conditions

where t 	 1, the series can be truncated, since only the first expo-

nential time function is significant. Hence, approximately

uðtÞ ’ 1� 4 exp ð�l21tÞ=l2
1

It is also clear in the limit as t ! 0, the summation of terms in

Eq. 9.233 must be such that

2
X1
n¼1

J0ðlnjÞ
lnJ1ðlnÞ ¼ 1

The behavior of u (t, j) is illustrated in Fig. 10.7.

FIGURE 10.7 Dimensionless temperature profiles for plug flow

heat exchanger.
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PROBLEMS

10.12. Avery thin thermistor probe is placed into the center

of a spherically shaped, unknown metal for the pur-

poses of deducing thermal diffusivity. By weighing

the metal ball and measuring its diameter (2R), the

density was calculated (r). The ball is held in an

oven overnight and reaches an initially uniform tem-

perature Ts. It is then placed in the middle of a

stream of very fast flowing, cool liquid of tempera-

ture Tf. The ball begins to cool and the thermistor

records the centerline temperature.

(a) Show that an elemental heat balance on the sphere

yields

@T

@t
¼ a

1

r2
@

@r
r2
@T

@r

� �

where solid thermal diffusivity ða ¼ k=rCpÞ can
be treated as constant for small temperature

excursions.

(b) Introduce dimensionless independent variables by

letting

j ¼ r

R
; t ¼ at

R2

and apply the method of separation of variables of

the form

Tðj; tÞ ¼ wðjÞuðtÞ

and give arguments that one must obtain

1

j2
d

dj
j2
dw

dj

� �
þ l2w ¼ 0

du

dt
þ l2u ¼ 0

(c) Equation for w can be expressed as

j2
d2w

dj2
þ 2j

dw

dj
þ l2j2w ¼ 0

which has a structure that is matched by the

generalized Bessel equation. In particular, if

we take

a ¼ 2; b ¼ 0; c ¼ 0; d ¼ l2; s ¼ 1

then show that

p ¼ 1
2
;

ffiffiffi
d

p

s
¼ l ðrealÞ

wðjÞ ¼ 1ffiffiffi
j

p A0J1=2ðljÞ þ B0J�1=2ðljÞ
� 

Show that this can be written in simpler form as

wðjÞ ¼ A1

sin ðljÞ
j

þ B1

cos ðljÞ
j

This result is more easily obtainable by letting

wðjÞ ¼ ð f ðjÞÞ=j at the outset.

(d) Next, show that the solution for the case when

l¼ 0 yields

T ¼ C

j
þ D

and the complete solution must be

Tðj; tÞ ¼ expð�l2tÞ A
sinðljÞ

j
þ B

cosðljÞ
j

� �

þ C

j
þ D

(e) What values should B and C take to ensure admis-

sibility? Give arguments to support your

assertions.

(f) What value must the constant D take to ensure

physical sense?

(g) Apply the boundary condition at r¼R or j¼ 1

and thereby deduce system eigenvalues.

(h) What is the specific function representing w(j)?

What are the boundary values for the function

w(j)? Are these homogeneous? Is the ODE des-

cribing w(j), along with its boundary conditions,

of the Sturm–Liouville type? If so, what is the

proper weighting function?

(i) Apply the initial condition and any other appropri-

ate conditions to complete the analytical solution.

(j) Suppose the sphere’s radius was R¼ 1 cm, and the

initial temperature was measured to be 30�C.
The flowing coolant temperature was constant at

a temperature of 20�C. After 6.05 s, the centerline
temperature measured 20.86�C. What is the

thermal diffusivity of the solid? Centerline tem-

perature behavior is illustrated in Fig. 10.8 as a

function of at/R2.

Answer: a¼ 1/19 cm2/s
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10.23. We have seen in Example 10.2 (CVD reactor) that

conditions of short contact time (or short penetra-

tion) can lead to considerable simplifications to pro-

duce practical results. Consider the case of heat

transfer for laminar tube flow, under conditions of

short contact time. Ignoring axial conduction, the

steady-state heat balance was shown for parabolic

velocity profile:

2v0 1� r

R

� 	2� �
@T

@z
¼ a

1

r

@

@r
r
@T

@r

� �

where thermal diffusivity is a¼ k/rCr. For short

penetration from a wall of temperature Tw, we intro-

duce the wall coordinate y¼R� r, so that the

conduction term close to the wall is approximately

1

r

@

@r
r
@T

@r

� �
’ @2T

@y2

and the velocity close to the wall is

vz ’ 4v0
y

R

� 	

(a) By analogy with the CVD reactor problem

(Example 10.2), use the combined variable

h ¼ y

ð9RazÞ=4v0½ �1=3

T � Twð Þ ¼ f ðhÞ

and show that for a fluid entering at T0,

T � Tw

T0 � Tw

¼ 1

G 4=3ð Þ
Z h

0

exp �b3

 �

db

(b) By defining the flux at the wall as

q0 ¼ k
@T

@y

� �
y¼0

we can define a local heat transfer coefficient

based on the inlet temperature difference, so let

q0 ¼ h0ðzÞ T0 � Twð Þ

Hence, show that

h0ðzÞ ¼ 4=9ð Þ1=3
G 4=3ð Þ

v0rCpk
2

Rz

� �1=3

(c) Define the average heat transfer coefficient using

h0 ¼ 1

L
�
Z L

0

h0ðzÞdz

and thus show the dimensionless result

Nu ¼ 1:62 Re Pr
D

L

� �1=3
; 1:62 ’ 1:5 8=9ð Þ1=3

G 4=3ð Þ

where

Nu ¼ h0D

k
; Re ¼ Dv0r

m
; Pr ¼ mCp

k
; D ¼ 2R

This result, after Leveque (1928), compares rea-

sonably well with experiments. The multiplicative

constant has been adjusted based on experimental

data to give a value 1.86.

10.33. The Loschmidt diffusion cell is used to experimen-

tally determine binary gas diffusivity. For ideal

gases, the transport equation, for the hollow cylindri-

cal cells, is Fick’s second law of diffusion:

@xA
@t

¼ DAB

@2xA

@z2

where xA denotes mole fraction A, z is distance, and

t is time. Thus, two equivolume cylindrical cells,

each of length L, are joined by a thin, removable

membrane. One cell is loaded with pure component

FIGURE 10.8 Centerline temperature behavior as a function

of at/R2.
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A, while the second is loaded with pure B. The thin

membrane is suddenly removed and interdiffusion

commences, according to the above transport

equation. The initial and boundary conditions can be

written

@xA
@z

¼ 0; at z ¼ �L

xA ¼ 1; � L � z � 0; t ¼ 0

xA ¼ 0; 0 � z � L; t ¼ 0

(a) Apply the method of separation of variables and

show the following:

(i) Expression to compute the system eigenvalues:

ln ¼ 2nþ 1

2

� �
p; n ¼ 0; 1; 2; . . .

(ii) Expression for xA takes the form

xA ¼ 1

2
þ
X1
n¼0

An sin ln
z

L

� 	
exp �l2n

tDAB

L2

� �

(b) Show that An¼� 1/ln, using the initial condition.

(c) The average (well-mixed) composition of each

chamber after an exposure time denoted as t is

represented by the integrals

ðxAÞBOT ¼
R 0
�L

xAdzR 0
�L

dz

ðxAÞTOP ¼
R L
0
xAdzR L
0
dz

Find expressions to compute the average compo-

sitions; truncate the series for large time. Typical

behavior for average compositions are illustrated

in Fig. 10.9 as a function of t¼DABt/L
2.

(d) For long contact time, deduce an approximate

expression to calculate DAB directly from average

composition.

Answer: (c) xA  1

2
� 1

l20
exp �l20

tDAB

L2

� �
;

þ for bottom

� for top

where l0¼p/2.

10.43. Modern blood dialysis modules are made up of

around 1 million microsized, hollow fibers bound to

a tube sheet in a fashion similar to a traditional

countercurrent heat exchanger. Thus, blood contain-

ing unwanted solute (such as uric acid) is forced into

a header, which then distributes blood flow into each

of the 1 million hollow fibers (tubes). A header at the

exit recollects the cleansed blood, which is then

pumped back to the patient. A dialysis solution (free

of solutes, such as uric acid) passes in large volumes

across the outer surface of the many hollow fiber

tubes. The walls of the hollow fibers are semi-

permeable and allow certain substances, such as uric

acid, to diffuse through the polymeric material and

then into the fast flowing dialysis solution.

It is important to predict from first principles the

time online to reduce blood solute content to certain

acceptable levels (much as a functioning human kid-

ney should do).

Because the solute flux is small relative to total

blood flow, we can model a single hollow fiber as a

straight pipe with walls permeable to certain solutes;

so at quasi-steady state in the flowing blood phase,

the solute balance for species A is taken as

v0
@CA

@z
¼ DA

1

r

@

@r
r
@CA

@r

� �

where v0 is the constant, uniform (plug) velocity pro-

file, DA is solute diffusivity in blood, and CA is the

solute molar composition. To account for mass trans-

fer resistances through the wall and across the outer

tube film resistance, we define an overall transport

coefficient:

1

K0L

¼ tw

Dw

þ 1

k0

FIGURE 10.9 Loshmilt diffusion cell response curve.
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where tw is wall thickness, Dw is diffusivity of spe-

cies A through polymeric wall, and k0 accounts for

film resistance on the dialysis solution side. From

this, we can write the flux at the blood–wall interface

as

�DA

@CA

@r

� �
r¼R

¼ K0L CA � CD½ �r¼R

where CD is the concentration of solute A in dialysis

solution, usually taken as zero.

(a) We shall denote the blood inlet solute composi-

tion as C0 at the axial position z¼ 0. For a single

pass system, show that the average composition

CA obeys the analytical solution at position z¼ L:

CA

C0

¼ 4
X1
n¼1

exp �l2nððLDAÞ=v0R2Þ� 
l2n 1þ ðl2n=Bi2Þ

 �

where Bi¼K0LR=DA and the eigenvalues are

obtained from

lnJ1 lnð Þ ¼ Bi J0 lnð Þ

Figure 10.10 illustrates behavior of the exit com-

position as Biot number changes.

(b) For normal kidney function, a uric acid level for

men is 3.5–8.5mg/dL, and for women it is 2.5–

7.5mg/dL. Suppose the blood from a patient sus-

tains a level 20mg/dL, which as a one-pass design

goal we wish to reduce to 7.5. Furthermore, take

the hollow-fiber length to be 22.5 cm, with an

inner radius of 0.25mm and wall thickness of

0.1mm. Diffusivity of uric acid through the poly-

meric wall is around 10�7 cm2/s, while diffusivity

of uric acid in blood is taken as 2.5
 10�6 cm2/s.

You may correctly assume k0 is quite large, so

film resistance on the dialysis solution side is neg-

ligible. What is the required single-tube blood

velocity to meet the design goal?

Answer: 0.18mm/s

10.53. Adsorption of low-volatility substances on silica gel is

controlled by surface diffusion (Masamune and Smith

1965) so that a model for uptake of solutes such as

ethyl alcohol on spherical pellets suggests that equili-

brium adsorption at the particle outer surface is fol-

lowed by surface diffusion into the solid particle

interior. Assuming the particle size is unchanged in

time, the appropriate material balance is

@q

@t
¼ D

1

r2
@

@r
r2
@q

@r

� �

subject to conditions

q ¼ 0; t ¼ 0; 0 < r < R

q ¼ q�; t > 0; r ¼ R

@q

@r
¼ 0; t > 0; r ¼ 0

The composition of the solid-phase q(r,t) (moles

solute/gram solid) can be determined by separation of

variables. The case of spherical geometry can be miti-

gated somewhat by a change of variables: q¼ u(r,t)/r,

hence, yielding the elementary result

@u

@t
¼ D

@2u

@r2

(a) Find the average particle composition defined as

q ¼ 3

R3

� �Z R

0

qðr; tÞr2dr

and show that the final result agrees with Crank

(1975):

q

q�
¼ 1� 6

p2

X1
n¼1

1

n2
exp

�n2p2Dt

R2

� �

(b) Do and Rice (1986) suggest that a linear driving

force (LDF) result can be obtained by assuming the

existence of a parabolic profile within the particle:

q ¼ a0ðtÞ þ a2ðtÞr2
FIGURE 10.10 Exit composition from kidney dialysis

cartridge.
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Use this and the transport equation to show

@q

@t
¼ 15D

R2
ðq� � qÞ

This LDF approximation has become widely used

to model complicated processes, such as pressure

swing adsorption.

10.6�. When a thin membrane is stretched over a cylindrical

hoop, the drumhead surface movement w(r,t) obeys

the approximate force balance:

s
1

r

@

@r
r
@w

@r

� �
¼ r

@2w

@t2

where r is the membrane density g/cm2, and s is the

applied tension, dyn/cm. Suppose the initial condition

is such that the membrane shape is

wðr; 0Þ ¼ w0 1� r

R

� 	2� �

where R denotes hoop radius.

(a) Show that the membrane vibrates according to the

relation

wðr; tÞ
w0

¼ 4
X1
n¼1

J2ðlnÞ
l2nJ

2
1ðlnÞ

J0 ln
r

R

� 	
cos t

ffiffiffi
s

r

r
ln

R

� �

where

J0ðlnÞ ¼ 0

Note, recurrence relations show

J2 lnð Þ ¼ 2J1 lnð Þ
ln

so

An ¼ 8

l3nJ1 lnð Þ

(b) Find an expression to compute the lowest possible

frequency; this is related to the method of tuning

drums, violins, and so on.

Answer: v1 ¼ 2:405

R

ffiffiffi
s

r

r
10.73. One method to assess axial dispersion in packed

beds is to inject a small amount of solute upstream

N0 and measure its distribution downstream CA(x, t).

Thus, for plug flow with interstitial velocity v, the

material balance can be shown to be

v
@CA

@x
þ @CA

@t
¼ Da

@2CA

@x2

where Da denotes axial dispersion coefficient. A

simpler equation results by introducing a coordinate

moving with the fluid: z¼ x� vt.

(a) Show that the change of coordinate gives a form

of Fick’s second law

@CA

@t
¼ Da

@2CA

@z2

(b) A new particular solution (to some unspecified

problem) can be obtained by differentiating the

error function solution for step input; show that

this gives

CA ¼ Kffiffiffiffiffiffiffiffiffiffi
4Dat

p exp � z2

4Dat

� �

We shall use this solution to describe response to a

pulse of solute.

(c) Find the constant K by noting that N0 must be

conserved at any time t > 0 to get1

CAðz; tÞ ¼ N0

Af

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4pDat
p exp � z2

4Dat

� �

where Af is the flow area, defined as total area

times porosity.

(d) Use this result to suggest methods for finding Da

if the experimental response curves at some posi-

tion x¼ L are known. Note, the residence time for

injected solute is L=v, yet the maximum of CA

arrives earlier by an amount Da=v
2 when

Da=v
2 � L=v. Prove this assertion.

10.8�. An incompressible fluid, initially at rest in a circular

tube of length L, is subjected to the application of a

step change in pressure gradient, so that for laminar

conditions, the local velocity along the tube axis obeys

r
@v

@t
¼ m

1

r

@

@r
r
@v

@r

� �
þ Dp

L

At the final steady state, the velocity profile obeys

m
1

r

@

@r
r
@v

@r

� �
þ Dp

L
¼ 0

1The behavior at z¼ 0 is similar to an impulse, in the sense that CA!1
as t! 0.
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Hence, since

r ¼ R; v ¼ 0 and r ¼ 0;
dv

dr
¼ 0

then

vðrÞ ¼ R2Dp

4mL

� �
1� r

R

� 	2� �

As it stands, the equation describing transient velocity

is inhomogeneous and a separation of variables

approach will fail. This can be remedied by the fol-

lowing technique. Define velocity as being made up

of two parts, a steady part plus a deviation from the

steady state:

vðr; tÞ ¼ vðrÞ þ yðr; tÞ

When this is inserted above, the steady part causes

cancellation of Dp=L; hence,

r
@y

@t
¼ m

1

r

@

@r
r
@y

@r

� �

(a) Show that the deviation velocity y(r, t) must obey

the initial condition:

yðr; 0Þ ¼ �2v0 1� r

R

� 	2� �

where

2v0 ¼ R2Dp

4mL

and v0 is the average tube velocity at steady state;

the no-slip and symmetry conditions are also

obeyed. Hence,

yðR; tÞ ¼ 0 and
@yð0; tÞ

@r
¼ 0

(b) The equation and boundary conditions are now

homogeneous; apply the separation variables

method and show

yðj; tÞ ¼
X1
n¼1

AnJ0ðlnjÞexpð�l2ntÞ

where

j ¼ r

R
; t ¼ mt

rR2
; J0ðlnÞ ¼ 0

(c) Evaluate An and obtain the analytical prediction:

yðj; tÞ
v0

¼ �
X1
n¼1

16

l3nJ1ðlnÞ
J0 lnjð Þexp �l2nt


 �
The absolute velocity is calculated using

vðj; tÞ
v0

¼ 2ð1� j2Þ

�
X1
n¼1

16

l3nJ1ðlnÞ
J0ðlnjÞexp �l2nt


 �
(d) Estimate the time required for the centerline

velocity to reach 99% of the final steady value if

m=r¼ 1 cm2/s and the tube radius is 1 cm. The

development of centerline velocity is depicted in

Fig. 10.11.

Answer: tSS¼ .814 s

10.9�. The production of metals in industries involves

solidification, and sand molds are used extensively

(see Fig. 10.12).

(a) As a result of heat transfer during the solidifica-

tion process, where is the dominant heat transfer

resistance located? Explain your answer.

(b) To understand the heat flow in the sand mold, set

up the coordinate x as shown in the figure.

Explain why the coordinate system selected is a

good one.

(c) If there is no heat resistance in the metal melt,

what is the boundary condition at x¼ 0 (i.e., at

metal/sand mold interface)?

FIGURE 10.11 Start-up flow in tube.
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(d) In practice, the temperature profile in the mold

penetrates only a short distance (short penetration

theory is applicable). Considering this circum-

stance, suggest a suitable condition far from the

metal–sand interface.

(e) The sand mold is initially at ambient temperature

before the metal melt is poured into the mold.

Write down the initial condition for the heat

balance equation.

(f) Show that the appropriate transient heat balance is

given by

@T

@t
¼ a

@2T

@x2

(g) Show that a particular solution to part (f) can be

written in terms of the error function (Chapter 4):

T � TM

T0 � TM

¼ erf
x

2
ffiffiffiffiffi
at

p
� �

where TM is the melt temperature and T0 is the ini-

tial sand mold temperature.

(h) Show the local heat flux at x¼ 0 is given by

qxjx¼0 ¼ �k
@T

@x

����
x¼0

¼ kðTM � T0Þffiffiffiffiffiffiffiffi
pat

p

(i) Let L be the thickness of the solid metal (see

Fig. 10.12). Carry out the heat balance around the

solid metal and show that the heat balance is

rMHM

dL

dt
¼ kðTM � T0Þffiffiffiffiffiffiffiffi

pat
p

What do rM and HM represent? What is the initial

condition for this heat balance equation?

(j) Integrate the equation in part (i) to derive the solu-

tion for the metal thickness L as a function of

time. Discuss this result and suggest ways to

reduce the solidification time.

10.10�. In order to obtain the solubility of gas in a polymer

membrane and the diffusivity of the dissolved gas

within the membrane, an experimental system is

set up as follows. A membrane is placed between

two closed reservoirs—one is large and the other is

small (see Fig. 10.13).

Initially, the membrane and the two reservoirs

are thoroughly evacuated with a vacuum pump. The

system is then isolated from the vacuum pump by

closing in-line valves. Next, a dose of gas is intro-

duced into the bottom large reservoir, such that its

pressure is P0. This gas then dissolves into the mem-

brane and then diffuses to the top (small) reservoir,

where its pressure is recorded with a highly sensitive

pressure transducer.

(a) If composition varies only in the direction normal

to the flat interface, perform a transient shell bal-

ance on a thin slice of membrane using Fick’s law

to describe diffusion flux of dissolved gas.

(b) Solubility can be described by Henry’s law, so

that at the lower interface (denoted as x¼ 0) take

the boundary condition:

Cðx ¼ 0; tÞ ¼ HP0

Pressure is so low that convective transport in the

membrane by Darcy’s law is negligible.

(c) Show that the solution to the mass balance equa-

tion is

C

HP0

¼ 1� x

L

h i

� 2

p

X1
n¼1

sin npðx=LÞð Þ
n

exp � n2p2Dt

L2

� �

FIGURE 10. 12 Sand molds for smelters.

FIGURE 10.13 Membrane solubility experiment.
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(d) Note there are two distinct groups of terms in this

solution. What does the first (bracketed) term

represent?

(e) If the volume of the small reservoir is V and the

recorded pressure at the time t is P, write down

the mass balance equation of this reservoir and

show that it has the form

V

RT

dP

dt
¼ �AD

@C

@x

����
x¼L

where A denotes surface area, and R is the gas

constant.

(f) Substitute the solution for C in part (c) to the mass

balance equation of part (e), and integrate to show

that the solution for the pressure of the small res-

ervoir is

P

P0

¼ ART

VL
HDtþ 2HL2

p2

X1
n¼1

cos ðnpÞ
n2

(

1� exp � n2p2Dt

L2

� �� �)

The response of the small reservoir pressure ratio

is illustrated in Fig. 10.14, where t¼Dt=L2.

(g) At sufficiently large time, the solution of part (f) is

reduced to

P ¼ ARTP0

VL
HDt� L2H

6

� �

Use this relation to show how the solubility and

diffusivity are determined from experimental data.

10.11�. Dissolution of a solid particle in a finite volume

(e.g., dissolution of a medicine tablet in an organ)

may be considered as a kinetic process with the

existence of a surface layer adjacent to the solid

surface and the diffusion through this layer being

the controlling step to the dissolution process. The

dissolved material is then consumed by the differ-

ent parts of the organ according to a first-order

chemical reaction.

(a) The thickness of the surface layer around the solid

particle is taken as d. Assuming the particle is

spherical in shape, derive the mass balance equa-

tion for the dissolved species in this layer (see

Fig. 10.15). Then show that under quasi-steady-

state conditions, the mass balance equation is

D

r2
@

@r
r2
@C

@r

� �
¼ 0

What does this quasi-steady state imply? What do

D and C represent?

(b) The boundary conditions to the mass balance in

part (a) are

r ¼ R; C ¼ C0

r ¼ Rþ d; C ¼ Cb

What do R, C0, and Cb represent?

(c) If the density of the particle is r and the molecular

weight is M, show that the particle radius is gov-

erned by the following equation:

r

M

dR

dt
¼ D

@C

@r

����
r¼R

Hint: Carry out mass balance around the particle.

(d) If the consumption of the dissolved species in the

finite volume is very fast, that is, Cb  0, solve the

mass balance equation for the dissolved species in

the surface layer in part (a) and the particle radius

equation in part (c) to derive a solution for the

FIGURE 10.14 Pressure response for membrane gas-

solubilty.

FIGURE 10.15 Dissolution of spheres in finite

volume.
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particle radius as a function of time, and then

determine the time it takes to dissolve completely

the solid particle.

(e) If the consumption of the dissolved species in the

finite volume is slow and the rate of consumption

per unit volume is kCb, derive a mass balance

equation for the dissolved species in the finite vol-

ume. Solve this mass balance equation together

with the mass balance in part (a) and the particle

radius equation in part (d) to obtain solutions for

the particle radius and the dissolved species con-

centrations as a function of time.

Answer: ðdÞtf ¼
rd R0 þ dln

d

R0 þ d

� �� �
DMC0

10.12�. As a design engineer, you are asked by your boss to
design a wetted wall tower to reduce a toxic gas in

an airstream down to some acceptable level. At

your disposal are two solvents, which you can use

in the tower; one is nonreactive with the toxic gas

but is cheap, whereas the other is reactive and quite

expensive. In order to choose which solvent to use,

you will need to analyze a model to describe the

absorption of the toxic gas into the flowing solvent

(see Fig. 10.16).

(a) For the nonreactive solvent, derive from first prin-

ciples the mass balance equation for the absorbed

toxic gas into the solvent and show

Vmax 1� x

d

� 	2� �
@C

@z
¼ D

@2C

@x2

(b) What are the boundary conditions for the mass

balance equation obtained in part (a). Consider

two cases. In Case 1, the gas stream is turbulent,

whereas in Case 2, it is not.

(c) For the reactive solvent, derive from the first prin-

ciples the mass balance for the absorbed toxic

species and assume that the reaction between the

absorbed toxic species and the solvent follows

first-order kinetics.

Vmax 1� x

d

� 	2� �
@C

@z
¼ D

@2C

@x2
� kC

(d) Assuming that you have obtained the solution for

the distribution of absorbed concentration of the

toxic species, obtain a formula to calculate the

mass flux (moles=(area time)) into the falling film

as a function of z.

NðzÞ ¼ �D
@C

@x

����
x¼0

Next, for a falling film of length L and width W,

obtain a formula for the mass transfer (moles/

time) into the film.

Mass flux ¼ W

Z L

0

NðzÞdz

¼ �WD

Z L

0

@C

@x

����
x¼0

dz

(e) For a given length and width and a given flow rate

of liquid, which solvent do you expect to give

higher absorption rate and why?

10.133. The heat exchanger described in Section 1.2 oper-

ates at steady state until an upset occurs in the inlet

temperature.

(a) Show that the fluid temperature response obeys

the PDE:

rCp

@T

@t
þ V0rCp

@T

@z
þ 2h

R

� �
Tðz; tÞ � Tw½ � ¼ 0

with the stipulation that the wall temperature (Tw)

remains everywhere constant.

(b) Introduce deviation variables of the form

Tðz; tÞ ¼ TðzÞ þ T̂ðz; tÞ
T0ðtÞ ¼ T0 þ T̂0ðtÞFIGURE 10.16 Wetted wall tower.
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and show that the following equations result:

rCp

@T̂

@t
þ V0rCp

@T̂

@z
þ 2h

R

� �
T̂ ¼ 0;

T̂ðz; 0Þ ¼ 0; T̂ð0; tÞ ¼ T̂0ðtÞ

V0rCp

dT

dz
þ 2h

R
T � Tw

�  ¼ 0

The solution to the steady-state equation has

already been obtained and is given in Eq. 1.17 as

TðzÞ ¼ Tw þ ðT0 � TwÞexp � 2h

R

z

V0rCp

� �

(c) If the inlet temperature sustains a step change

of magnitude aT0ð0 < a < 1Þ, so that

T̂0ðtÞ ¼ aT0uðtÞ, show that the Laplace transform

LT̂ðz; tÞ is

T̂ðs; zÞ ¼ aT0

1

s
expð�stÞexpð�t=tiÞ

where

t ¼ z

V0

local residence time

ti ¼ 2h

RrCp

� ��1

thermal time constant

(d) Invert the Laplace transform and show that

T̂ðt; tÞ ¼ aT0 exp � t

ti

� �
uðt� tÞ

where

uðt� tÞ ¼ 0 when t < t

1 when t > t

�
Thus, the disturbance does not appear at the heat

exchanger exit until one full residence time has

elapsed. The dynamics associated with the wall

may have considerable significance, as illustrated

in Problem 10.14�.

10.14�. Suppose the heat exchanger in Problem 10.13 is

operated so that the coolant stream temperature

outside the tubular wall is relatively constant, but

the wall temperature is allowed to vary. Denote the

inside and outside film coefficients as hi and h0,

respectively, and if conduction along the wall axis

can be ignored, it is easy to show the applicable

thermal balances are

rCp

@T

@t
þ V0rCp

@T

@z
þ 2hi

R
Tðz; tÞ � TwðtÞ½ � ¼ 0

AwrwCpw

@Tw

@t
¼ hiPiðT � TwÞ � h0P0ðTw � TcÞ

where Aw denotes the wall cross-sectional area and

Tc represents the (constant) coolant temperature.

The inner and outer tube perimeters are approxi-

mately equal, so take Pi � P0 ¼ P ¼ 2pR.

(a) Rearrange the dynamic equations into a more

tractable form and show that

@T

@t
þ @T

@t
þ 1

ti
ðT � TwÞ ¼ 0

C
@Tw

@t
¼ 1

ti
ðT � TwÞ � 1

t0
ðTw � TcÞ

where

t ¼ z=V0 hot fluid residence time

ti ¼ 2hi

RrCp

� ��1

inner thermal time constant

t0 ¼ 2h0

RrCp

� ��1

outer thermal time constant

C ¼ R0

R

� �2

�1

" #
rwCpw

rCp

thermal capacitance ratio

R0 ¼ outer tube radius

(b) Introduce perturbation variables of the form

Tðt; tÞ ¼ TðtÞ þ T̂ðt; tÞ
Twðt; tÞ ¼ TwðtÞ þ T̂wðt; tÞ

and show that the new dynamic equations are

@T̂

@t
þ @T̂

@t
þ 1

ti
T̂ � T̂w


 � ¼ 0

C
@T̂w

@t
¼ 1

ti
T̂ � T̂w


 �� 1

t0
T̂w

where we note that Tc is constant (hence, T̂ c ¼ 0).

(c) Solve the steady-state equations and show that the

overall heat transfer coefficient 1=U¼ 1=hiþ 1=h0
arises naturally:

TðtÞ ¼ Tc þ T0 � Tc


 �
exp � 2U

RrCp

t

� �

where T0 denotes the steady inlet temperature and

U denotes overall heat transfer coefficient:

U ¼ hih0=ðhi þ h0Þ
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and the local wall temperature must obey

TwðtÞ ¼ hi

hi þ h0
TðtÞ þ h0

hi þ h0
Tc

where in the limit as h0=hi ! 1, we see that

Tw ! Tc, which corresponds to the condition in

Problem 10.13.

(d) To reduce algebra in subsequent manipulations

and since it is clear that exchangers do not

respond to inlet disturbances until t > t, it is wise

to introduce a change of variables by letting

u ¼ t� t ¼ t� z=V0

Show that the dynamic equations become, since

T̂ðt; tÞ ¼ T̂ðu; tÞ

@T̂

@t
þ 1

ti
T̂ � T̂w


 � ¼ 0

C
@T̂w

@u
¼ 1

ti
T̂ � T̂w


 �� 1

t0
ðT̂wÞ

(e) Take Laplace transforms with respect to u to

obtain, for an inlet step of aT0uðtÞ ¼ T̂ðt; 0Þ,

T̂wðs; tÞ ¼ 1=ti
Csþ 1=ti þ 1=t0

T̂ðs; tÞ

and since T̂ðt; 0Þ ¼ T̂ðu; 0Þ, because u¼ t when

t¼ 0; hence,LT̂ðu; 0Þ ¼ aT0=s,

T̂ðs;tÞ ¼ aT0 exp � t

t1

� �
1

s
exp

t=t2i
Csþ 1=tiþ 1=t0

� �

(f) Invert the Laplace transform T̂ðs; tÞ; noting that

L�1 1

s
exp

k

s

� �
¼ I0 2

ffiffiffiffiffi
kt

p� 	

in Appendix C, and noting further that

1

s
exp

k

sþ a

� �
¼ sþ a

s

� 	 1

sþ a

� �
exp

k

sþ a

� �

Hence, use the shifting theorem to see

T̂ðu; tÞ ¼ aT0 exp � t

ti

� �


 uðuÞe�auI0 2
ffiffiffiffiffi
ku

p� 	
þ a

Z u

0

e�abI0 2
ffiffiffiffiffiffi
kb

p� 	
db

� �

where u(u) is inserted to remind that no response

occurs unless u> 0, and the parameters are

a ¼ 1

C

1

ti
þ 1

t0

� �
; sec�1

k ¼ t

Ct2i
; sec�1

u ¼ t� t > 0; sec

The response is similar to Problem 10.13 at small

u> 0 (one residence time). Unlike the previous

problem, dynamic behavior continues, owing to

the thermal capacitance effect of the wall.

10.153. Show that a formally equivalent solution for Exam-

ple 10.6 can be obtained by writing Eq. 10.307 as

Cðz; sÞ ¼ C0

s
exp ð�zÞexp z

sþ 1

� �

¼ C0

sþ 1

s

� �
1

sþ 1

� �
expð�zÞexp z

sþ 1

� �

and hence, obtain

Cðt; zÞ
C0

¼ uðtÞexpð�t � zÞI0 2
ffiffiffiffiffi
zt

p
 �

þ
Z t

0

expð�b� zÞI0 2
ffiffiffiffiffi
bz

p� 	
db

where u(t) is inserted because no response occurs

until t> 0. Compare this with Eq. 10.309 to prove

the property for J functions:

Jðz; tÞ þ Jðt; zÞ ¼ 1þ expð�t � zÞI0 2
ffiffiffiffiffi
tz

p
 �
10.16�. Consider the stirred pot discussed in Section 10.2.1,

whereby pure solvent is used to extract oil from

spherically shaped (e.g., soybeans) seeds. Suppose

m seeds of radius R containing oil composition C0

are thrown into a well-stirred pot containing pure

solvent. The material balances for transient extrac-

tion are seen to be, for the solvent solution

V
dC

dt
¼ �mð4pR2ÞD @cðR; tÞ

@r

and for the porous seeds, we have

@c

@t
¼ D

1

r2
@

@r
r2
@c

dr
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(a) Express the equations using dimensionless inde-

pendent variables and obtain the coupled integro-

differential balances:

CðtÞ ¼ �3a

Z t

0

@c

@j

����
j¼1

dt

@c

@t
¼ 1

j2
@

@j
j2
@c

@j

� �

where

j ¼ r

R
; t ¼ tD

R2
;

a ¼ m

V

4

3
pR3

� �
. . . capacity ratio

(b) Apply Laplace transforms for the well-stirred con-

dition (i.e., C(t) ¼ c(1; t)) so that film resistance

is negligible, and thus obtain the transient compo-

sition of oil in the solvent phase:

CðtÞ
C0

¼ a

1þ a
� 6a

X1
n¼1

exp �l2nt

 �

l2n þ 9aþ 9a2
� 

where

tan ln ¼ 3aln

l2n þ 3a
; ln > 0

Note: Use series expansions to show that a simple

pole exists at s¼ 0.

Eigenvalues are tabulated in Table 10.1 for

the values of a¼ 0.2, 0.5, and 1, and Fig. 10.17

illustrates the response of solvent composition

with time.

10.17�. The problem of desorption of bound solute from

particles thrown into a well-stirred pot of solvent

is formally equivalent to the leaching of oil

from seeds, worked out in Problem 10.16. Thus,

fluid-filled sorbent particles, initially containing

solute on the solid phase, obey the linear partition

relationship:

q ¼ Kc

where q denotes solid solute composition as moles

solute per unit volume solid, and c is the solute in

the fluid phase within the solid pore structure with

composition moles per unit volume fluid.

The material balance for a single particle in the

stirred pot is

e
@c

@t
þ ð1� eÞ @q

@t
¼ eDp

1

r2
@

@r
r2
@c

@r

� �

where Dp denotes pore diffusivity, e is the particle

void fraction (porosity), and (1� e) represents solid
volume fraction.

Inserting the linear partition coefficient and rear-

ranging, we find the identical diffusion equation as

in the oil seed problem:

@c

@t
¼ D

1

r2
@

@r
r2
@c

@r

� �

where the new diffusivity is seen to be

D ¼ eDp

eþ ð1� eÞK

TABLE 10.1 Eigenvalues for tan ln ¼ 3aln

l2n þ 3a

i a¼ 0.2 a¼ 0.5 a¼ 1

1 3.3117 1012 3.5058 8947 3.7263 8470

2 6.3756 5983 6.5023 8663 6.6814 3485

3 9.4875 1775 9.5776 6992 9.7155 6609

4 12.6137 2372 12.6830 1447 12.7927 1161

5 15.7459 5800 15.8020 4234 15.8923 9684

6 18.8812 6941 18.9283 0870 19.0048 4951

7 22.0183 5816 22.0588 3600 22.1251 0812

8 25.1565 6476 25.1920 7365 25.2504 4796

9 28.2955 1960 28.3271 3870 28.3792 6573

10 31.4349 9965 31.4634 9280 31.5105 6238

11 34.5748 6239 34.6007 8953 34.6436 8526

12 37.7150 1258 37.7387 9608 37.7781 9091

13 40.8553 8411 40.8773 5031 40.9137 6798

14 43.9959 2970 44.0163 3589 44.0501 9163

15 47.1366 1467 47.1556 6720 47.1872 9559

FIGURE 10.17 Oil extraction from seeds.

PROBLEMS 265



The mass balance for m particles exchanging solute

with an initially clean solvent is also similar to the

oil seed problem for constant solvent volume V:

V
dC

dt
¼ �mð4pR2ÞeDp

@cðR; tÞ
@r

where the derivative is evaluated at the outer rim of

the particle where r¼R.

(a) Introduce dimensionless variables j ¼ r=R; t ¼
tD=R2 and show that the process of physical

desorption is formally equivalent to the leaching

problem of 10.16 if the capacity ratio is defined as

a ¼ m ð4=3ÞpR3

 �½eþ ð1� eÞK�

V

(b) The reverse process of adsorption from concen-

trated solutions in well-stirred pots can be worked

out using the above equations, except the initial

conditions are reversed:

Cð0Þ ¼ C0; cðr; 0Þ ¼ qðr; 0Þ ¼ 0

Use Laplace transforms to show that the bulk,

well-stirred solution varies according to the fol-

lowing relation:

CðtÞ
C0

¼ 1

1þ a
þ 6a

X1
n¼1

expð�l2ntÞ
ð9aþ 9a2 þ l2nÞ

where the eigenvalues are found from

tan ln ¼ 3aln

3aþ l2n

(c) As a final check on results, use an elementary,

overall material balance (initial system solute¼
final system solute) to prove that for desorption,

Cð1Þ ¼ a

1þ a
C0

and for adsorption

Cð1Þ ¼ 1

1þ a
C0

The evaluation of the often-missed pole at s¼ 0

can be circumvented in this and Problem 10.16 by

writing variables as a deviation from future steady

state, that is,

cðr; tÞ ¼ Cð1Þ þ ĉðr; tÞ

It is easy to see that the deviation variable at

r¼R is

ĉ

C0

¼ �6a
X1
n¼1

exp �l2nt

 �

9aþ 9a2 þ l2n

where the positive sign corresponds to adsorption

and the negative to desorption.

10.18�. Heat regenerators operate in a manner similar to

packed bed adsorbers. Thus, large beds of solids

(ceramic or metal balls, river rocks, etc.) are heated

using, for example, warm daytime air, and this

stored heat is then recycled for home heating at

night. Thus, consider a packed bed of solid with

voidage e into which air of uniform temperature T0
is injected. The bed sustains an initial temperature

Ti. The air exiting the packed bed is thus heated,

and the bed is cooled; hence, the heat exchange is a

transient process much the same as adsorption or

desorption of solute from granular beds.

(a) Perform a transient heat balance on the packed

bed, assuming the superficial gas velocity is uni-

form and constant at a value U0 and the walls are

perfectly insulated, and thus show

erf cf
@Tf

@t
þ ð1� eÞrscs

@Ts

@t
þ U0rf cf

@Tf

@x
¼ 0

where x denotes axial position from the bed inlet.

(b) Perform a transient heat balance on the solid

phase, taking the volumetric gas film coefficient

to be hGa, where a denotes interfacial area of the

solid phase per unit column volume, and show

ð1� eÞrscs
@Ts

@t
¼ �hGa Ts � Tf


 �
(c) Introduce interstitial velocity v¼U0=e and the

change of variables, which accounts for the reality

that a thermal wave front has a null response until

the residence time (x=v) is exceeded:

u ¼ t� x

v

to show that

rf cf v
@Tf

@x

� �
u

¼ hGa

e
Ts � Tf


 �

ð1� eÞrscs
@Ts

@u

� �
x

¼ �hGa Ts � Tf


 �
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(d) Combine the remaining variables to remove

excess baggage and obtain

@Tf

@z
¼ Ts � Tf


 �
@Ts

@t
¼ � Ts � Tf


 �
where

z ¼ xhGa

erf cf v
; t ¼ uhGa

ð1� eÞrscs
(e) Solve the remaining equation using Laplace trans-

forms, noting the initial bed temperature is Ti and

the inlet air temperature is T0, and show
2

Ti � Tf

Ti � T0

¼ expð�z � tÞI0 2
ffiffiffiffiffi
tz

p
 � � uðtÞ
þ expð�zÞ

Z t

0

expð�bÞI0 2
ffiffiffiffiffi
bz

p� 	
db

where u(0)¼ 0, u(0þ)¼ 1.

Note: u(t) is added as a reminder that a

response cannot occur until time exceeds local

residence time, that is, when t> 0.

(f) Program the series expansion for the Bessel func-

tion (compare truncating the series expansion at

10 and then 20 terms and note when

x > 5 : I0ðxÞ  ex=
ffiffiffiffiffiffiffiffi
2px

p
) and use the trapezoidal

or Simpson’s rule to compute the integral and thus

produce plots of the dimensionless exit tempera-

ture versus real-time t using the following solid

and air properties at 20�C:

packed height at exit ¼ 300 cm

voidage ¼ 0:4

superficial gas velocity ¼ 30 cm=sec

hGa ¼ 0:8 cal=ðcm3- hr-�CÞ
rf ¼ 0:00144 g=cm3

rs ¼ 2 g=cm3

cf ¼ 0:2 cal=ðg-�CÞ
cs ¼ 0:237 cal=ðg-�CÞ

(g) Suppose the initial bed temperature (Ti) is 25
�C,

and the inlet temperature (T0) is 20�C. Use the

properties in part (f) to compute the time corre-

sponding to air exiting the bed at 21�C.
(h) If we included the heat holding capacitance of the

metal walls of the vessel, insulated on the outside,

the total bed unit capacitance is increased and

the response time is slowed somewhat. Redo the

problem to account for wall effects and show

rwCw

@Tw

@t
¼ � hw

dw
ðTw � Tf Þ

Here, we have taken the wall density to be rw and

the specific heat is Cw; the wall heat transfer

coefficient and wall thickness are hw and dw,

respectively.

10.193. A capillary tube method to analyze binary liquid

diffusivity was reported in Mickley et al. (1957): a

straight, narrow bore capillary tube of known inter-

nal length has one end sealed and is filled with a

binary solution of known composition. The capil-

lary is maintained in a vertical position with the

open end pointed upward. A slow stream of

pure solvent is allowed to continuously sweep past

the open mouth of the capillary tube. We shall des-

ignate species A as solute and species B as solvent.

After an elapsed time t, the capillary is removed

and the solution it contains is well mixed and then

analyzed for composition to find how much solute

A was extracted. Generally, several such experi-

ments are conducted at different values of t.

If the diffusivity does not change too much with

composition (actually, an average diffusivity is

computed corresponding to the average composi-

tion between initial and final states), the transient

form of Fick’s law for equimolar counterdiffusion

and constant molar density is

@xA
@t

¼ DAB

@2xA

@z2

where z denotes position (z¼ 0 is the position of

the open mouth and z¼ L is the closed end). Suit-

able initial and boundary conditions are as follows:

t ¼ 0; xA ¼ x0 ðinitial composition knownÞ
z ¼ 0; xA ¼ 0 ðpure solvent at mouthÞ
z ¼ L; DAB

@xA
@z

¼ 0 ðimpermeable boundaryÞ

(a) Apply the method of separation of variables and

show that suitable Sturm–Liouville conditions

2Noting the symmetrical property of the J function,

Jðz; tÞ ¼ 1�
Z z

0

exp ð�t � bÞI0 2
ffiffiffiffiffi
tb

p� 	
db

so that

Jðz; tÞ þ Jðt; zÞ ¼ 1þ exp ð�t � bÞI0 2
ffiffiffiffiffi
tz

p
 �
Hence, it can be shown that another form of solution is obtainable,

which is strictly analogous to the results in Example 10.6.
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exist for the application of the orthogonality

condition.

(b) Show that the appropriate eigenvalues for the

stated conditions are given by

ln ¼ 2n� 1

2

� �
p; n ¼ 1; 2; 3; � � �

(c) The fraction solute A remaining (after an experi-

ment) is computed using

R ¼ 1

L

Z L

0

xAðz; tÞ
x0

dz

Show that R obeys the analytical result

R ¼ 8

p2

X1
n¼1

1

ð2n� 1Þ2 exp �ð2n� 1Þ2p2

4

DABt

L2

� �" #

(d) Indicate by a graphical representation how long

time experiments could be used to find DAB

directly (long time implies DABt=L
2 	 1).

10.20�. The capillary tube experiment described in Prob-

lem 10.19 was analyzed from the point of view of

long time (DABt=L
2 	 1). We wish to reconsider

this analysis in order to derive a suitable relation-

ship for short-time conditions, such that

DABt=L
2 � 1. For short-time conditions, the effect

of concentration-dependent diffusivity is mini-

mized (Rice and Goodner 1986). In the analysis to

follow, use dimensionless independent variables:

u ¼ DABt

L2
; z ¼ z

L

(a) Apply Laplace transforms to the nondimensional

transport equation and show that

RðsÞ ¼ 1

s
� 1

s3=2
1� expð�2

ffiffi
s

p Þ
1þ expð�2

ffiffi
s

p Þ
� �

(b) The so-called initial-value theorem can be derived

from the definition

Z 1

0

f ðtÞe�stdt ¼ sFðsÞ � f ð0Þ

The existence of the Laplace transform depends

on the condition that any exponential order for f(t)

is dominated by e�st, so that in the limit s!1,

lim!1 s � FsðsÞ ¼ f ð0Þ

So, for example, if we apply this all the way as

s!1 for the function RðsÞ, we find

lim sR
s!1

ðsÞ ¼ 1 ¼ Rð0Þ

which correctly shows that the fraction remaining

at time zero is unity (no extraction took place).

If we carry the limit for RðsÞ only partly, that

is, let s! large, we find the compact transform:

RðsÞ  1

s
� 1

s3=2

Hence, for small time, show that

RðtÞ  1� 2
DABt

pL2

� �1=2

(c) For moderate times (DABt=L
2� 1), the denomina-

tor of RðsÞ can be expanded using the binomial

theorem:

1

1þ e
 1� eþ e2

Hence, show that the additional terms are

RðtÞ  1� 2
DABt

pL2

� �1=2

�

4

ffiffiffiffiffiffiffiffiffiffi
DABt

pL2

r !
exp � L2

DABt

� �
þ 4 erfc

ffiffiffiffiffiffiffiffiffiffi
L2

DABt

s0
@

1
A

10.213. Nusselt Revisited

The analysis of heat transfer in Example 10.7, the

so-called Nusselt problem, could have been inverted

without resort to residue theory, by a clever use

of partial fraction expansion. If it is known that

only distinct poles exist, as in this example, then

u(s, j) could be expanded as an infinity of partial

fractions:

uðs; jÞ ¼ 1

s

J0 i
ffiffi
s

p
jð Þ

J0 i
ffiffi
s

pð Þ ¼ A0

s
þ
X1
n¼1

An

s� sn

(a) Show that the first coefficient is simply A0¼ 1.

(b) The remaining poles (eigenvalues) were found by

setting J0 i
ffiffi
s

pð Þ ¼ 0; hence, we obtained sn ¼ �l2n
since J0(ln)¼ 0. For any of the remaining
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coefficients, say Aj, we could use the usual partial

fraction algorithm to see

Aj ¼ lim
s!sj

ðs� sjÞ f ðsÞ
gðsÞ

where

f ðsÞ ¼ J0 i
ffiffi
s

p
j


 �
; gðsÞ ¼ s � J0 i

ffiffi
s

p
 �
However, in doing so, we arrive at the indetermi-

nancy 0=0, since g(sj)¼ 0. To resolve this, expand

g(s) around the point sj using the Taylor series:

gðsÞ ¼ gðsjÞ þ @g

@s

����
sj

ðs� sjÞ þ 1

2!

@2g

@s2

����
sj

ðs� sjÞ2

þ � � �

and show that

Aj ¼ f ðsjÞ
@g=@sÞð jsj

¼ �2
J0ðljjÞ
ljJ1ðljÞ

(c) Invert the partial fractions term by term and show

that the results are identical to Example 10.7.

10.22�. Dielectric Film Heat Transfer

Thin films of dielectric material are used in semi-

conductor applications. Because thin films behave

differently from the bulk materials, it is therefore

important to measure the thermal conductivity of thin

films experimentally. A film (in the form of a strip) of

thickness 0.6mm is used as a free-standing film (i.e.,

there is no support underneath) supported by support

blocks at the edge of the film (see figure below). A

small DC heater is mounted at the midpoint of the

thin film. This heater will provide a constant heat

flux along the film. It is claimed by an engineer from

a semiconductor company that the thermal conduc-

tivity can be obtained by simply measuring the tem-

perature at a location A on the thin film.

(a) Derive an expression to calculate the steady tem-

perature at a point along the thin strip to prove or

disprove the statement made by the chief engineer

who claimed conductivity can be deduced by

comparing a temperature measurement with the

prediction of theory. Carefully state all assump-

tions in your derivation, and show that the heat

balance leads to the following equation:

k
d2T

dx2
� 2h

d

� �
ðT � TaÞ ¼ 0

The heater location is positioned at x¼ 0. If the

film is W wide and d thick and so the cross-

sectional area is A¼Wd, show that the rate of

heat input is Q¼Aq(0), where the flux is q(0)¼�
k(dT/dx)x¼ 0. From this, show the solution of this

ODE is given as follows, where we have intro-

duced the driving force as the dependent variable,

namely, u¼ (T� Ta):

u ¼ Q exp ð�x
ffiffiffi
l

p Þ
W

ffiffiffiffiffiffiffiffiffiffi
2hkd

p

in which we have lumped parameter to give l¼ 2

h=(kd).
Is this result dimensionally consistent? Is it

possible to find conductivity with temperature

measurement in only one position, since the heat

transfer coefficient is also unknown?

(b) The thermal diffusivity a¼ k=(rCp) is also

needed by the company to determine the transient

heating and cooling of the material. The same

engineer of the above-mentioned company also

suggests that to measure the thermal diffusivity, a

transient experiment must be carried out. Prove

whether this chief engineer is right or wrong using

first principles to derive the transient heat balance.

(c) If the DC current used to supply heat is maintained

for a short, finite time and then switched off, use

the transient heat balance equation from part (b)

for these conditions to describe the temperature

distribution along the thin film. Such an experi-

mental input could be modeled as an impulse or

Dirac delta function (see Section 9.9.4). Show that

the impulse response to the heater pulse can be

obtained as

u ¼ ðT � TaÞ ¼ Q

ffiffiffiffiffi
a

pt

r
exp t=t � x2=4atð Þ

kWd

Here, we have defined the time constant

t ¼ ðrdCpÞ=ð2hÞ.
Show if it is possible to use a continuous plot of

temperature difference u versus time at the given

position d1 along with the above model solution to
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find a reliable value of thermal diffusivity. Was the

chief engineer correct in his prediction?

Note: Temperature excursions in the film away

from the ambient will be quite small in this

experiment, so the selection of the measuring

device is critical for accuracy.

10.23�. Body Implants for Drug Release
To provide a long-term and localized source of

active medicine, controlled-release polymer im-

plants are tested for its drug delivery to reduce the

systemic side effects and dose-to-dose variability

associated with conventional oral administration.

The spherical polymer dose is implanted in the body

cavity and it is surrounded with tissue, taken to be

infinite in extent relative to the small drug-filled

polymer sphere. The process of drug transport and

consumption takes the following path. The active

drug is initially distributed uniformly within the

polymer implant with a concentration of C0 (mol/m3

of polymer), and the tissue surrounding the polymer

is taken to be free of active drugs. At time zero, the

active ingredient will begin to diffuse out of the

polymer and into the tissue. Diffusion flux is taken

to obey Fick’s law. When the drug is in the tissue

phase, it is consumed by the irreversible metabolism

(irreversible reaction), which will be taken as first-

order reaction kinetics. The drug must first solubilize

as it moves from the sphere perimeter to the human

tissue. This reversible equilibrium process is

assumed to obey a form of Henry’s law. This equili-

brium exists only at the interface of polymer and tis-

sue phases.

The concentration of the drug within the polymer

phase is denoted as Cs and the concentration in tissue

phase is denoted as simply C. To simplify the devel-

opment, we shall use the Laplacian operator for

spherical geometry, namely, r2 ¼ ð1=r2Þð@=@rÞ
r2ð@=@rÞð Þ.

(a) Show that the drug distribution within the poly-

mer phase is given by

@Cs

@t
¼ Dsr2Cs

(b) Similarly, show that the tissue phase obeys

@C

@t
¼ Dr2C � kC

(c) Use the Laplace transform to set up to solve for

the drug distribution within the tissue, using the

spatial conditions (the initial conditions are

Cs¼C0 and C is zero):

r ! 1; C ! 0

r ¼ 0;
@Cs

@r
¼ 0

At the boundary between the phases, we require

continuity as follows:

r ¼ R; Cs ¼ HC; � Ds

@Cs

@r
¼ �D

@C

@r

Set up the Laplace transformed solutions, and use

the numerical inversion methods discussed in

Section 9.13; compare and contrast the Zakian

and the Fourier approximations for the inversion

to the time domain. Ensure that all your trans-

forms obey all BC and IC and have no mis-

behavior at the centerline r¼ 0 and also at large

distances where r!1.

10.24�. Skin Patch for Drug Release

A pharmaceutical company recently patented a new

drug patch to treat a skin wound. The idea of this

patch is to release a reasonably constant rate of

active ingredient to the wound, and to achieve this

goal, the company developed the patch as a two-

layer material. One layer that is adjacent to the skin

is a gel layer, which is designed to control the rate of

release of active ingredient, while the top layer is

loaded with active ingredient (see figure below for

details). The gel layer is the layer through which the

active ingredient must diffuse to reach the skin,

where the active ingredient is instantly consumed.

The diffusion flux, as moles transported per unit area

and per time, is given by J¼�D@C/@x.

(a) Show that the mass balance equation describing

the distribution of active ingredient across the gel

layer is @C=@t ¼ D@2C=@x2.

(b) Show that the initial and boundary conditions

could take the following forms: t¼ 0, C¼ 0;

x¼ 0, C¼C0; x¼1, C¼ 0. Apply the combina-

tion of variables to show that the solution to the

mass balance equation of part (a) is

C=C0 ¼ 1� erf x=
ffiffiffiffiffiffiffiffi
4Dt

p
 �
.

(c) Once the patch is applied onto the wound, how

long does it take before the active ingredient

reaches the skin and becomes effective? This will

let the medical personnel know how long it takes

for the patch to start to become effective in the

treatment. The effective concentration in this

instance is taken to be 0.5% of the concentration

of the active ingredient in the top layer.
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(d) If the quantity of the active ingredient is M, find

an expression to determine the time taken to con-

sume all the active ingredients. This will let the

medical personnel know the time to replace

the patch.

Useful information:

erfð2Þ ¼ 0:995

10.253. Implant Revisited

The implant problem posed in Problem 10.23 proved

to be quite intractable, so a numerical inversion of

the Laplace transform was suggested, using the

Zakian and Fourier approximations. Under certain

restrictive conditions, it is possible to find a tracta-

ble, analytical solution. We shall invoke two key

approximations: first, we shall take the diffusion of

drug species within the polymer to be very fast; sec-

ond, we shall invoke the quasi-steady approximation

for the tissue phase.

(a) Show that the mass balance around the well-

mixed sphere (i.e., fast diffusion) can be repre-

sented by

4

3
pR3 dCs

dt
¼ �4pR2ðJRÞ

The diffusion flux into the tissue region is repre-

sented by

JR ¼ �D@C=@rjr¼R

(b) The mass balance for the tissue region can be

approximated by the quasi-steady assumption,

so the time derivative is ignored and the mass

transfer equation can be written in reference to

Problem 10.23 simply as

D
1

r2
@

@r
r2
@C

@r

� �
� kC ffi 0

Find the quasi-steady solution by introducing

the variables change C¼ f(r, t)=r and then show

D
@2f

@r2
� kf ¼ 0

From this, obtain the two solutions, only one of

which is admissible (why?) and then show

C ¼ A

r
exp �r

ffiffiffiffi
k

D

r !

Evaluate the arbitrary function A(t) using the sol-

ubility condition at r¼R and finally obtain

C ¼ ½CsðtÞ=H�ðR=rÞexp �ðr� RÞ
ffiffiffiffiffiffiffiffiffi
k=D

pn o

(c) Use this result to find the flux at r¼R, which can

be inserted into part (a) to see

dCsðtÞ
dt

¼ � 3D

HR2
ð1þ fÞCsðtÞ

Use the initial condition Cs¼C0 and finally show

Cs ¼ C0 exp½�ð3=HÞð1þ fÞt�

The dimensionless reaction factor is f ¼ R
ffiffiffiffiffiffiffiffiffi
k=D

p
and the dimensionless time is t¼ tD/R2.
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11
TRANSFORMMETHODS FOR LINEAR PDEs

11.1 INTRODUCTION

In the previous chapters, partial differential equations with

finite space domain were treated by the method of separa-

tion of variables. Certain conditions must be satisfied before

this method could yield practical results. We can summarize

these conditions as follows:

1. The partial differential equation must be linear.

2. One independent variable must have a finite domain.

3. The boundary conditions must be homogeneous for at

least one independent variable.

4. The resulting ODEs must be solvable, preferably in

analytical form.

With reference to condition (4), quite often the ODEs gen-

erated by separation of variables do not produce easy ana-

lytical solutions. Under such conditions, it may be easier to

solve the PDE by approximate or numerical methods, such

as the orthogonal collocation technique, which is presented

in Chapter 12. Also, the separation of variables technique

does not easily cope with coupled PDE, or simultaneous

equations in general. For such circumstances, transform

methods have had great success, notably the Laplace trans-

form. Other transform methods are possible, as we show in

this chapter.

The spatial domain for problems normally encountered

in chemical engineering are usually composed of rectangu-

lar, cylindrical, or spherical coordinates. Linear problems

having these types of domain usually result in ODEs (after

the application of separation of variables) that are solvable.

Solutions of these ODEs normally take the form of trigono-

metric, hyperbolic, Bessel, and so on. Among special func-

tions, these three are familiar to engineers because they

arise so frequently. They are widely tabulated in hand-

books; for example, the handbook by Abramowitz and

Stegun (1964) provides an excellent resource on the proper-

ties of special functions.

If the boundary conditions arising in linear analysis are

nonhomogeneous, they must be transformed to become

homogeneous as taught in Chapters 1 and 10. This is nor-

mally done by transforming the dependent variable so that

the new partial differential equation will have homogeneous

boundary conditions.

Although the separation of variables method is easy to

apply, considerable practice is required to use it success-

fully. In this section, a method called the Sturm–Liouville

integral transform, will be presented. This method is also

known as the finite integral transform method. It has the

distinct advantage of all operational mathematics, which is

simplicity.

11.2 TRANSFORMS IN FINITE DOMAIN:

STURM–LIOUVILLE TRANSFORMS

The strategy for using Sturm–Liouville transforms is, first,

to carefully lay out the algebraic rules for this class of oper-

ator. Obviously, the defining equation and boundary condi-

tions must be of the Sturm–Liouville type, as discussed in

Chapter 10.
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11.2.1 Development of Integral Transform Pairs

The method of finite integral transforms (FIT) involves an

operator (similar to the Heaviside operator) that transforms

the original equation into another, simpler domain. The

solution in the new domain will be seen to be quite elemen-

tary. However, to be of practical value, it must be trans-

formed back to the original space. The operation for this

inverse transformation, together with the original operator,

will form what we will call later the integral transform pair.

Figure 11.1 illustrates the mapping of the integral transform

pair. The Laplace transform and its inverse defined in

Eqs. 9.1 and 9.3 form an integral transform pair.

We shall denote the transform pairs as L (forward opera-

tor) and L�1 (inverse operator), similar to the operators D

and D�1 discussed in Chapter 2. Figure 11.1 outlines in

graphic form the movement between domains, much the

same as the Laplace transform moves from t to s domains,

and back again. The solution methodology within the space

A is very difficult and tortuous. The solution may be more

easily obtained by transforming the original equation into

space B, where the solution is more straightforward.

Following this, the desired solution can be obtained by the

inversion process using the operator L�1. The method

becomes particularly attractive when solving certain types

of simultaneous, coupled partial differential equations.

Because they depend on the Sturm–Liouville equation,

the separation of variables method and the integral trans-

form yield exactly the same solution, as you would expect.

But the advantage of the integral transform is the simplicity

of handling coupled PDEs, for which other methods are

unwieldy. Moreover, in applying the finite integral trans-

form, the boundary conditions need not be homogeneous

(see Section 11.2.3).

EXAMPLE 11.1

To demonstrate the development of the integral transform pair in a

practical way, consider the Fickian diffusion or Fourier heat con-

duction problem in a slab object (Fig. 11.2)

@y

@t
¼ @2y

@x2
ð11:1Þ

where y could represent a dimensionless concentration or

temperature.

The partial differential Eq. 11.1 is subjected to conditions

x ¼ 0;
@y

@x
¼ 0 ð11:2aÞ

x ¼ 1; y ¼ 0 ð11:2bÞ
t ¼ 0; y ¼ 1 ð11:3Þ

We note that the boundary conditions (11.2) are homogeneous.

We define the spatial domain as (0, 1) but any general domain

(a, b) can be readily converted to (0, 1) by a simple linear

transformation

x ¼ ðx0 � aÞ
ðb� aÞ ð11:4Þ

where x0 2(a; b) and x 2(0; 1). This convenient symbolism sim-

ply means, x0 is bounded by a and b, so a � x0 � b and

0 � x � 1.

Now multiply the LHS and RHS of Eq. 11.1 by a continuous

function Kn(x) (called the kernel) such that the function Kn(x)

belongs to an infinite-dimensional space of twice-differentiable

functions in the domain (0, 1). Equation 11.1 then becomes

@y

@t
KnðxÞ ¼ @2y

@x2
KnðxÞ ð11:5Þ

We can see analogies with the Laplace transform, which has an

unbounded domain and the kernel is

KðxÞ ¼ e�sx ð11:6Þ

If we integrate Eq. 11.5 with respect to x over the whole domain of

interest, we find

d

dt

Z 1

0

yðx; tÞKnðxÞdx ¼
Z 1

0

@2y

@x2
KnðxÞdx ð11:7aÞ

FIGURE 11.1 Schematic diagram of the transform pair.

FIGURE 11.2 Temperature profile in a slab object.

274 TRANSFORMMETHODS FOR LINEAR PDEs



Since the function Kn(x) is assumed to be twice differentiable, we

can carry out integration by parts on the integral on the RHS of Eq.

11.7a twice to see

d

dt

Z 1

0

yðx; tÞKnðxÞdx ¼ @y

@x
KnðxÞ � y

dKnðxÞ
dx

� �1
0

þ
Z 1

0

y
d2Kn

dx2
dx

ð11:7bÞ

Now, making use of the boundary conditions (11.2) to evaluate the

square bracket term on the RHS of Eq. 11.7b, we have

d

dt

Z 1

0

yðx; tÞKnðxÞdx ¼ @yð1; tÞ
@x

Knð1Þ � yð0; tÞ dKnð0Þ
dx

� �

þ
Z 1

0

y
d2Kn

dx2
dx

ð11:8Þ

Up to this point, it looks as if the new Eq. 11.8 is just as com-

plicated as the original Eq. 11.1. However, at this point we have

not specified the specific form for the kernel function Kn(x). It is

Eq. 11.8 that provides the hint to simplify matters. It is our aim to

solve for Z 1

0

yðx; tÞKnðxÞdx

so the RHS must also be known or written in terms of this integral

product. Since the following variables are not known or specified

@yð1; tÞ
@x

and yð0; tÞ

we have only one way to remove the bracketed terms (the so-

called unwelcome terms) on the RHS of Eq. 11.8 and that is by

setting

x ¼ 0;
dKn

dx
¼ 0 ð11:9aÞ

x ¼ 1; Kn ¼ 0 ð11:9bÞ

Equations 11.9 specify boundary conditions for the function Kn(x)

(even though this function is still unknown at this stage), and it is

noted that these boundary conditions are identical in form to

the boundary conditions (11.2) for the function y.

Having defined the boundary conditions (11.9), Eq. 11.8 now

takes the simple structure

d

dt

Z 1

0

yðx; tÞKnðxÞdx ¼
Z 1

0

y
d2Kn

dx2
dx ð11:10Þ

To proceed further, we shall need to specify Kn(x). Equation 11.10

is now simpler, but cannot be solved because the LHS and RHS

appear to involve two different functional forms. One way to

resolve this difficulty is to define Kn by setting

d2KnðxÞ
dx2

¼ �j2nKnðxÞ ð11:11Þ

from which the reader can see that the integral product yKn

exists on both sides of the equation.

We could have made the RHS of Eq. 11.11 a positive number

rather than negative, but it can be proved that the negative number

is the only option that will yield physically admissible solutions.

This will be proved later in dealing with a general Sturm–Liouville

system (see Section 11.2.2).

With Eq. 11.11, Eq. 11.10 becomes

d

dt

Z 1

0

yðx; tÞKnðxÞdx ¼ �j2n

Z 1

0

yðx; tÞKnðxÞdx ð11:12Þ

Now, Eq. 11.11 for Kn(x) is subject to two boundary conditions

(11.9) and is called the associated eigenproblem for Eq. 11.1.

The function Kn(x) is called the kernel or eigenfunction,

whereas jn is the corresponding eigenvalue. The solution for

this particular eigenproblem subject to conditions (11.9) is

KnðxÞ ¼ cosðjnxÞ ð11:13Þ

where the countably infinite eigenvalues are

jn ¼ n� 1
2

� �
p for n ¼ 1; 2; 3; . . . ;1 ð11:14Þ

which arises since Kn(1)¼ cos(jn)¼ 0. The first eigenvalue is

p/2, and successive eigenvalues differ byp.
In arriving at Eq. 11.13, the multiplicative constant of integra-

tion for cos(jnx) has been arbitrarily set equal to unity. The actual

values of the multiplicative constants are added later when the

inversion process takes place.

It is cumbersome to carry the full integral representation all the

way through the analysis, so we define hy;Kni as an “image” of the

function y, defined as

hy;Kni ¼
Z 1

0

yKnðxÞdx ð11:15Þ

This is typical operator format; for example, we replace Kn with

e�st, we would have the Laplace transform with respect to time,

written for an unbounded time domain as

Ly ¼
Z 1

0

ye�stdt

Now Eq. 11.12 can be written compactly using this image as

d

dt
hy;Kni ¼ �j2nhy;Kni ð11:16Þ

which is a simple, first-order ODE in the variable hy;Kni ¼ f ðtÞ.
This result is clearly much simpler than the original partial

differential equation 11.1. To solve this first-order equation for

hy;Kni, we need to specify an initial condition. This can be readily
found by inspecting the “image” of the initial condition (11.3)

where, since y(x, 0)¼ 1, we have

t ¼ 0; hy;Kni ¼ h1;Kni ð11:17Þ
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where h1;Kni by definition in Eq. 11.15 is simply

h1;Kni ¼
Z 1

0

Kn dx ¼ sinðjnxÞ
jn

����1
0

¼ �ð�1Þn
n� ð1=2Þð Þp

We remind the reader that Kn(x) is a function of x only.

The solution of the simple first-order ODE in Eq. 11.16 subject

to the initial condition (11.17) is quite simple, so the sought-after

f(t) is

hy;Kni ¼ h1;Knie�j2nt ð11:18Þ

where h1;Kni is a computable constant as shown in the previous

step. Up to this point, one can easily recognize the similarity

between the separation of variables and the integral transform

approaches by noting the appearance of the exponential function

on the RHS of Eq. 11.18 and by noting the analogous eigenpro-

blem in Eq. 11.11.

The image of y by the forward integral transform is hy;Kni, and
of course there are infinite eigenfunctions Kn so there are infinite

solutions for hy;Kni, where n¼ 1, 2, . . . . This is the basis for a

special type of function space, called a Hilbert space. In fact,

whether we like it or not, every time we deal with an infinity of

series solutions, we are in a sense dealing with Hilbert space. In

the context of the present problem, the Hilbert space is an infinite-

dimensional space, and this space has infinite coordinates and each

coordinate is represented by an eigenfunction. This arises because

the eigenvalues given in Eq. 11.14 are countably infinite.

The mapping diagram (Fig. 11.3) shows that a function y in the

space A is mathematically equivalent to the many images

hy;K1i; hy;K2i, and so on. From elementary vector analysis in a

three-dimensional Euclidean space, we may regard Kn as one of

the coordinates and hy;Kni is the projection of y onto the coordi-

nate Kn.

We shall return to the subject of Hilbert space when we will

deal with the generalized integral transform. For the present, let us

return to the solution hy;Kni in the space B. Of course, this solu-

tion is not what we desire. It is y(x, t) that we are after. In analogy

with Euclidean space, if we know the projection on the coordinate

Kn as hy;Kni, the function y can be reconstructed in terms of a

linear combination of all, countably infinite, coordinates; hence,

y ¼
X1
m¼1

amðtÞKmðxÞ ð11:19Þ

where am is some set of arbitrary functions of time.

The only task remaining is to find suitable values for am(t),

which must be clearly dependent on time, t. Since the function

Kn(x) is the eigenfunction, an orthogonality condition must be

associated with it. This condition simply states that, under a proper

definition of an inner product (to be defined shortly), the eigen-

functions are orthogonal to each other. As we have shown in Chap-

ter 10, the orthogonality condition for the present problem (cf. Eq.

11.11 with Sturm–Liouville equation) is obviously,

Z 1

0

KnðxÞKmðxÞdx ¼ 0 for n 6¼ m ð11:20Þ

The integral form of this orthogonality condition is identical to the

definition of the integral transform (11.15) if we replace y with

Km(x) and see

hKn;Kmi ¼
Z 1

0

KnðxÞKmðxÞdx ð11:21Þ

where obviously hKn;Kmi ¼ hKm;Kni.
We shall use this as the definition of the inner product for the

present case. The eigenfunction Kn(x) is orthogonal to all other

eigenfunctions except to itself, since when n¼m, the integral is

finite; that is,

Z 1

0

K2
nðxÞdx 6¼ 0

By multiplying both sides of Eq. 11.19 by Kn, and integrating over

the domain [0,1], we obtain the inner products on the RHS as

hy;Kni ¼ anhKn;Kni þ
X1
m¼1
m6¼n

amhKm;Kni ð11:22Þ

Making use of the orthogonality condition (11.20), the summation

of series terms in the RHS of Eq. 11.22 is identically zero. Thus,

the coefficients an (or am) can be found directly

an ¼ hy;Kni
hKn;Kni ¼

h1;Knie�j2nt

hKn;Kni ð11:23Þ

since hy;Kni is known from Eq. 11.18.

Substituting an from Eq. 11.23 into Eq. 11.19, we have, since

m¼ n,

y ¼
X1
n¼1

hy;Kni
hKn;KniKnðxÞ ð11:24Þ

Equations 11.15 and 11.24 define the integral transform pairs for

the finite integral transform. The complete solution is now at hand,

when the integrals h1;Kni and hKn;Kni are inserted along with

Kn ¼ cosðjnxÞ.
Since we now know the solutions to the eigenfunction and eigen-

value problems as Eqs. 11.13 and 11.14, the solution for y is simply

y ¼ 2
X1
n¼1

sinðjnÞ
jn

cosðjnxÞe�j2nt ð11:25Þ
FIGURE 11.3 Mapping diagram.
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since it is easy to see

h1;Kni ¼
Z 1

0

cosðjnxÞdx ¼ sinðjnÞ
jn

hKn;Kni ¼
Z 1

0

cos2ðjnxÞdx ¼ x

2
þ sinð2jnxÞ

4jn

� �1
0

¼ 1

2

with jn defined in Eq. 11.14. This is exactly the same form obtainable

by the method of separation of variables.

Equation 11.24 not only defines the inversion process but also

states that the function y can be expressed as a linear combination

of all scaled projections

hy;Kni
½hKn;Kni�1=2

ð11:26aÞ

with the unit vector in normalized form as

fnðxÞ ¼
KnðxÞ

½hKn;Kni�1=2
ð11:26bÞ

The normalized unit vector fn(x) means that hfn;fni ¼ 1. Thus,

the normalized form of Eq. 11.24 is usually written as

y ¼
X1
n¼1

hy;Kni
½hKn;Kni�1=2

� KnðxÞ
½hKn;Kni�1=2

¼
X1
n¼1

h1;Kni
hKn;Kni cosðjnxÞexpð�j2ntÞ ð11:27Þ

which is a direct analogue of a three-dimensional Euclidean vector

space. For example, a vector a has the representation in rectangu-

lar coordinates as

a ¼ a1iþ a2jþ a3k ð11:28Þ

where i, j, and k are unit vectors of the three directional coordi-

nates and a1, a2, a3 are projections of the vector a onto these coor-

dinates. Thus, it is clear that the finite integral transform is similar

to the Euclidean vector space except that countably infinite coordi-

nates exist.

Schematic plots of y(x, t) as function of x and t are shown in

Fig. 11.2.

11.2.2 The Eigenvalue Problem and the

Orthogonality Condition

Using an elementary example, we have introduced the

methodology and the conceptual framework for the finite

integral transform, most notably the concept of the inte-

gral transform pairs. The function y is called the object

and the product pair hy;Kni is called the integral trans-

form of y or the “image” of y. The operator h ; i is called
the transform operator or the inner product. Kn(x) is

called the kernel of the transform and can be regarded as

a coordinate in the infinite dimensional Hilbert space,

within which an inner product is defined. The equation

describing the kernel Kn is called the associated

eigenproblem.

In this section, we will apply the finite integral transform

to a general Sturm–Liouville system, and the integral trans-

form is therefore called the Sturm–Liouville integral trans-

form. Thus, all finite integral transforms are covered at

once: Fourier, Hankel, and so on.

It was clear in the previous example that cosine func-

tions occurred in the natural course of analysis. In fact,

the transformation we performed there is often called the

finite Fourier transform. However, the broad category of

such finite transforms is called Sturm–Liouville.

The eigenvalue problem of a general Sturm–Liouville

system must be of the following general form, in

analogy with the Sturm–Liouville relation given by

Eq. 10.185

d

dx
pðxÞ dKðxÞ

dx

� �
� qðxÞKðxÞ þ jrðxÞKðxÞ ¼ 0 ð11:29Þ

where x lies between a and b and j is a constant (replacing

b in Eq. 10.185). We have written q(x) with a negative sign

in the present case, and stipulate that qðxÞ � 0.

The boundary conditions for an eigenvalue problem

must be homogeneous

x ¼ a; A1KðaÞ þ A2

dKðaÞ
dx

¼ 0 ð11:30aÞ

x ¼ b; B1KðbÞ þ B2

dKðbÞ
dx

¼ 0 ð11:30bÞ

where A1, A2 and B1, B2 are constants, which can take zero

values.

These forms admit dK/dx¼ 0 or K¼ 0 at either x¼ a or

x¼ b. The conditions on the functions p(x), q(x), and r(x)

are not too restrictive. These are p(x), q(x), r(x), and dp/dx

are continuous, and p(x) and r(x) are positive and q(x) is

nonnegative in the domain [a, b].

Since generally there is more than one eigenvalue and its

corresponding eigenfunction, we denote the nth eigenvalue

and its eigenfunction as jn and Kn(x).

The Sturm–Liouville equations corresponding to eigen-

values jn and jm are

d

dx
pðxÞ dKnðxÞ

dx

� �
� qðxÞKnðxÞ þ jnrðxÞKnðxÞ ¼ 0

ð11:31aÞ
d

dx
pðxÞ dKmðxÞ

dx

� �
� qðxÞKmðxÞ þ jmrðxÞKmðxÞ ¼ 0

ð11:31bÞ
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The corresponding general, homogeneous boundary condi-

tions suitable for orthogonality are

x ¼ a; A1KnðaÞ þ A2

dKnðaÞ
dx

¼ A1KmðaÞ þ A2

dKmðaÞ
dx

¼ 0

ð11:32aÞ

x ¼ b; B1KnðbÞ þ B2

dKnðbÞ
dx

¼ B1KmðbÞ þ B2

dKmðbÞ
dx

¼ 0

ð11:32bÞ

By multiplying Eq. 11.31a by Km(x) and Eq. 11.31b by

Kn(x) and eliminating q(x) between the two resulting equa-

tions, we obtain

� d

dx
pðxÞ dKnðxÞ

dx

� �
KmðxÞ þ d

dx
pðxÞ dKmðxÞ

dx

� �
KnðxÞ

¼ ðjn � jmÞrðxÞKnðxÞKmðxÞ ð11:33Þ

Integrating Eq. 11.33 with respect to x over the domain of

interest yields

�
Z b

a

d

dx
pðxÞ dKnðxÞ

dx

� �
KmðxÞdx

þ
Z b

a

d

dx
pðxÞ dKmðxÞ

dx

� �
KnðxÞdx

¼ ðjn � jmÞ
Z b

a

rðxÞKnðxÞKmðxÞdx ð11:34Þ

Carrying out integration by parts on the two integrals on the

LHS of Eq. 11.34 gives

� pðxÞKmðxÞ dKnðxÞ
dx

� �b
a

þ pðxÞKnðxÞ dKmðxÞ
dx

� �b
a

¼ ðjn � jmÞ
Z b

a

rðxÞKnðxÞKmðxÞdx ð11:35Þ

Finally, substituting the homogeneous boundary conditions

(Eq. 11.32) into Eq. 11.35, terms cancel and what remains

is the orthogonality conditionZ b

a

rðxÞKnðxÞKmðxÞdx ¼ 0 for n 6¼ m ð11:36Þ

which is the inner product for the general case (cf.

Eq. 11.21).

We say that Kn(x) is orthogonal to Km(x) with respect to

the weighting function r(x). This orthogonality condition

provides us a way to define the inner product (or the integral

transform) for the Hilbert space. This integral transform on

any function g(x, t) is defined as

hgðx; tÞ;Kni ¼
Z b

a

rðxÞgðx; tÞKnðxÞdx ð11:37Þ

where g(x,t) is any continuous function. With this definition

of integral transform (inner product), the coordinate Kn of

the Hilbert space is then orthogonal to all other coordinates,

and the so-called unit vector of the Kn coordinate, as men-

tioned previously, is simply

fnðxÞ ¼
KnðxÞ

½hKn;Kni�1=2
ð11:38Þ

where it is easy to see that hfn;fni ¼ 1, which implies nor-

malization. With this definition of the unit vector, an arbi-

trary function y can be represented by the following series

expansion:

y ¼
X1
n¼1

hy;Kni
½hKn;Kni�1=2

fnðxÞ for a < x < b ð11:39Þ

where hy;Kni=½hKn;Kni�1=2 is viewed as the scaled pro-

jection of the function y onto the coordinate Kn. It is

also called the Fourier constant in many textbooks. Equa-

tion 11.39 can be proved by assuming that y can be

expressed as a linear combination of Kn; then after apply-

ing the orthogonality condition (Eq. 11.36), we obtain the

expression previously given.

Next, we will prove that the eigenvalues are positive.

Let us start from Eq. 11.35, and if we take jn ¼ an þ ibn
and let jm be the conjugate of jn, so that we have

jm ¼ an � ibn

Eq. 11.35 then becomes

� pðxÞKnðxÞ dKnðxÞ
dx

� �b
a

þ pðxÞKnðxÞdKnðxÞ
dx

�b
a

"

¼ 2ibn

Z b

a

rðxÞKnðxÞKnðxÞdx ð11:40Þ

where Kn is the complex conjugate of Kn(x).

By using the homogeneous boundary conditions

(Eqs. 11.32), Eq. 11.40 becomes

2ibn

Z b

a

rðxÞK2
nðxÞdx ¼ 0 ð11:41Þ

Now, since r(x) is assumed positive over the domain (a, b),

the integral of Eq. 11.41 is therefore positive definite.

Hence, we must have

bn ¼ 0 ð11:42Þ
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This proves that the eigenvalues of the Sturm–Liouville

system are real, not complex numbers.

We have just established that the eigenvalues are real.

Next, we wish to show that they are positive. By multiply-

ing Eq. 11.29 by Kn and integrating the result with respect

to x from a to b, we obtain

jn ¼

Z b

a

pðxÞ dKnðxÞ=dx½ �2dxþ
Z b

a

qðxÞ½KnðxÞ�2dxZ b

a

rðxÞ½KnðxÞ�2dx
ð11:43Þ

Since p(x) and r(x) are positive functions and q(x) is non-

negative (i.e., q(x) can be zero), it is clear from Eq. 11.43

that all integrals are positive definite, hence jn must be

positive.

The above analysis (from Eq. 11.31 to Eq. 11.43) has

established the following theorem.

Theorem 11.1

For a Sturm–Liouville system defined as

d

dx
pðxÞ dKðxÞ

dx

� �
� qðxÞKðxÞ þ jrðxÞKðxÞ ¼ 0

subject to

A1KðaÞ þ A2

dKðaÞ
dx

¼ B1KðbÞ þ B2

dKðbÞ
dx

¼ 0

and p(x), q(x), r(x), and dp(x)/dx are continuous, p(x) and

r(x) are positive, and q(x) is nonnegative over the domain

(a, b), the eigenfunction Kn will have the following ortho-

gonality conditions:

Z b

a

rðxÞKnðxÞKmðxÞdx ¼ 0 for n 6¼ m

and the eigenvalues are real and positive.

The eigenfunctions Kn(x) together with the definition of

integral transform (inner product) defined in Eq. 11.37 will

define a Hilbert space, and any arbitrary function y can be

represented as a series as

y¼:
X1
n¼1

hy;Kni
hKn;KniKnðxÞ ð11:44Þ

which defines the inverse transform.

If the function y satisfies the same homogeneous bound-

ary conditions as those for the eigenfunctions, then the

series representation (Eq. 11.44) will converge uniformly to

y for all x in the domain [a, b]. Proof of this can be found in

Churchill (1958) using the Green’s function approach.

To generalize the integral transform approach, let us

consider the following operator:

L ¼ 1

rðxÞ �
d

dx
pðxÞ d

dx

� �
� qðxÞ

rðxÞ ð11:45Þ

This implies the eigenfunctions satisfy LKn ¼ �jnKn, by

comparison with Eq. 11.29. Here, r(x), p(x), and q(x) are

continuous functions and p(x), r(x)> 0, and q(x) is non-

negative, and the following two boundary operators are

defined:

Mð�Þ ¼ A1ð�Þ þ A2

dð�Þ
dx

� �
a

ð11:46aÞ

Nð�Þ ¼ B1ð�Þ þ B2

dð�Þ
dx

� �
b

ð11:46bÞ

where M(�) is a boundary operator at the point x¼ a, and

N(�) is the boundary operator at the point x¼ b. Henceforth,

it will be understood that M operates at point a and N at

point b.

Suppose the problem we wish to solve is the ODE

LyðxÞ ¼ f ðxÞ ð11:47aÞ

where f (x) is some continuous forcing function. Further-

more, suppose Eq. 11.47a is subject to the following

boundary conditions:

My ¼ 0 and Ny ¼ 0 ð11:47bÞ

that is,

A1yðaÞ þ A2

dyðaÞ
dx

¼ 0 and B1yðbÞ þ B2

dyðbÞ
dx

¼ 0

Suppose, we now take the approach of Example 11.1 as

follows:

1. Multiplying the LHS and RHS of Eq. 11.47a by

Kn(x).

2. Integrating the result twice with respect to x from

a to b.

3. Making use of the boundary conditions (11.47b) and

then removing the unwelcome terms.

We then obtain the following associated eigenproblem for

Eq. 11.47, which is the Sturm–Liouville system:

LKn ¼ �jnKn

MKn ¼ 0 and NKn ¼ 0
ð11:48Þ

11.2 TRANSFORMS IN FINITE DOMAIN: STURM–LIOUVILLE TRANSFORMS 279



In the process of deriving the eigenproblem, the integral

transform (inner product) evolves naturally and is given

as in Eq. 11.37, and the transform of Eq. 11.47a is

simply,

hLy;Kni ¼ h f ðxÞ;Kni ð11:49Þ

It is not difficult to prove (see Problems), using integration

by parts, the following formula:

hLy;Kni ¼ hy; LKni ð11:50Þ

If an operator L satisfies the above relation, it is called a

self-adjoint operator. This self-adjoint property is impor-

tant in the derivation of the Sturm–Liouville theorem. In

fact, it was the critical component in the derivation of the

orthogonality condition (11.36).

Performing the self-adjoint operation (11.50) on the

LHS of Eq. 11.49, we see directly

hy; LKni ¼ h f ðxÞ;Kni ð11:51Þ

But from the definition of the Sturm–Liouville eigenvalue

problem (Eq. 11.48), the LHS of Eq. 11.51 gives

hy;�jnKni ¼ �jnhy;Kni

hence, we now have

�jnhy;Kni ¼ h f ðxÞ;Kni

which can be solved directly for hy;Kni

hy;Kni ¼ � 1

jn
h f ðxÞ;Kni

Thus, the self-adjoint property allows direct solution for the

transform hy;Kni.
The inversion will then be given as shown in Eq. 11.39,

that is,

y ¼ �
X1
n¼1

h f ðxÞ;Kni
jnhKn;KniKnðxÞ ð11:52Þ

The solution is complete when the elementary integrals

hKn;Kni and h f ;Kni are inserted.
One can see that the integral transform indeed facili-

tates the resolution of ODE boundary value problems and

also partial differential equations comprised of Sturm–

Liouville operators (e.g., Eq. 11.45). The simplicity of

such operational methods lead to algebraic solutions and

also give a clearer view on how the solution is repre-

sented in Hilbert space. Moreover, students may find that

the Sturm–Liouville integral transform is a faster and

fail-safe way of getting the solution. Thus, Eq. 11.52 rep-

resents the solution to an almost infinite variety of ordi-

nary differential equations, as we see in more detail in

the homework section.

The application of the Sturm–Liouville integral trans-

form using the general linear differential operator (11.45)

has now been demonstrated. One of the important new com-

ponents of this analysis is the self-adjoint property defined

in Eq. 11.50. The linear differential operator is then called a

self-adjoint differential operator.

Before we apply the Sturm–Liouville integral transform

to practical problems, we should inspect the self-adjoint

property more carefully. Even when the linear differential

operator (Eq. 11.45) possesses self-adjointness, the self-

adjoint property is not complete since it actually depends

on the type of boundary conditions applied. The homoge-

neous boundary condition operators, defined in Eq. 11.46,

are fairly general and they lead naturally to the self-adjoint

property. This self-adjoint property is correct only when the

boundary conditions are unmixed as defined in Eq. 11.46,

that is, conditions at one end do not involve the conditions

at the other end. If the boundary conditions are mixed, then

the self-adjoint property may not be applicable.

EXAMPLE 11.2

Now, we consider application of the transform technique to a tran-

sient problem of heat conduction or Fickian diffusion in a cylinder

(Fig. 11.4). The slab problem (Example 11.1) was dealt with in

Section 11.2.2.

A transient heat or mass balance equation in a cylinder has the

following form

@y

@t
¼ 1

x

@

@x
x
@y

@x

� �
� Ly ð11:53Þ

FIGURE 11.4 Temperature profiles in a cylinder.
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subject to the following initial and boundary conditions:

t ¼ 0; y ¼ 1 ð11:54Þ

x ¼ 0;
@y

@x
¼ 0 ð11:55Þ

x ¼ 1; y ¼ 0 ð11:56Þ

To apply the Sturm–Liouville integral transform, we follow the

same procedure as described in Example 11.1; that is,

1. Multiply Eq. 11.53 by xKn(x) and integrate the result with

respect to x from 0 to 1.

2. Apply the boundary conditions (11.55) and (11.56) and

remove the unwelcome terms.

We then obtain the following associated eigenproblem, which

defines the kernel Kn of the transform

1

x

d

dx
x
dKn

dx

� �
þ j2nKnðxÞ ¼ 0 ð11:57aÞ

and the requirements similar to Eqs. 11.8 and 11.9 are

x ¼ 0;
dKn

dx
¼ 0 ð11:57bÞ

x ¼ 1; Kn ¼ 0 ð11:57cÞ

In symbolic form, we could write Eq. 11.57a as LKn ¼ �j2nKnðxÞ.
From the process outlined, we obtain not only the equations for

the kernel (Eq. 11.57) but also the definition of the integral trans-

form, which evolved naturally to become

hy;Kni ¼
Z 1

0

xyðxÞKndx ð11:58Þ

where the natural weighting function for cylinders is x (for

spheres, it would be x2, and for slabs, unity).

You may note that the eigenvalue in Eq. 11.57a is specified as

j2n. It is also clear that the solution of Eq. 11.57 is

Kn ¼ J0ðjnxÞ ð11:59Þ

and the eigenvalues arise naturally from the boundary condition

x¼ 1; Kn¼ 0, so that the transcendental relation allows computa-

tion of jn

J0ðjnÞ ¼ 0 ð11:60Þ

Again, the multiplicative constant for Kn is taken as unity. The

properties of Bessel function are discussed in Chapter 3.

By applying the integral transform defined in Eq. 11.58 to

Eq. 11.53, we have first

dhy;Kni
dt

¼ hLy;Kni ð11:61Þ

Now, applying the self-adjoint property as

hLy;Kni ¼ hy; LKni

we get

dhy;Kni
dt

¼ hy; LKni ¼ hy;�j2nKni

where we have replaced LKn ¼ �j2nKn. Now, making use of the

definition of the integral transform (Eq. 11.58), the above equation

becomes

dhy;Kni
dt

¼
Z 1

0

xyð�j2nKnÞdx ¼ �j2n

Z 1

0

xyKndx ¼ �j2nhy;Kni
ð11:62Þ

Thus, the self-adjoint property accomplishes the steps from 11.10

to 11.16 in a single step! The initial condition for Eq. 11.62 is

obtained by taking the transform of Eq. 11.54; that is,

t ¼ 0; hy;Kni ¼ h1;Kni ¼
Z 1

0

1xKnðxÞdx ¼ J1ðjnÞ
jn

ð11:63Þ

The solution of Eq. 11.62 subject to the initial condition (11.63) is

hy;Kni ¼ h1;Knie�j2nt ð11:64Þ

Finally, the inverse of hy;Kni is simply

y ¼
X1
n¼1

hy;Kni
hKn;KniKnðxÞ ¼

X1
n¼1

h1;Kni
hKn;KniKnðxÞe�j2nt ð11:65Þ

where KnðxÞ ¼ J0ðjnxÞ, and the inner product for n¼m is

hKn;Kni ¼
Z 1

0

xJ20ðjnxÞdx ¼ J21ðjnÞ
2

The solution methodology for the Sturm–Liouville integral trans-

form is now quite straightforward and of course yields the same

results as the separation of variables method, as the reader can verify.

The solution form obtained in Eq. 11.65 for cylindrical coordi-

nates is identical in structure for other coordinates, that is, rectan-

gular and spherical. The only difference among them is the

definition of the eigenproblem. We tabulate below the value for

Kn, h1;Kni, and hKn;Kni for the three geometries: slab, cylinder,

and sphere, respectively.

Slab

Kn ¼ cosðjnxÞ; jn ¼ n� 1
2

� �
p; h1;Kni ¼ sinðjnÞ

jn
;

hKn;Kni ¼ 1
2

ð11:66aÞ

Cylinder

Kn ¼ J0ðjnxÞ; J0ðjnÞ ¼ 0; h1;Kni ¼ J1ðjnÞ
jn

;

hKn;Kni ¼ J21ðjnÞ
2

ð11:66bÞ
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Sphere

Kn ¼ sinðjnxÞ
x

; jn ¼ np; h1;Kni ¼ � cosðjnÞ
jn

;

hKn;Kni ¼ 1

2

ð11:66cÞ

11.2.3 Inhomogeneous Boundary Conditions

In the previous section, we developed the finite integral

transform for a general Sturm–Liouville system. Homoge-

neous boundary conditions were used in the analysis up to

this point. Here, we would like to discuss cases where the

boundary conditions are not homogeneous, and determine

if complications arise that impede the inversion process.

If the boundary conditions are not homogeneous, they

can be rendered so by rearranging the dependent variable as

discussed in Chapter 1. To show this, we use an example

that follows the nomenclature of the previous section

@y

@t
¼ Ly ð11:67Þ

t ¼ 0; y ¼ y0ðxÞ ð11:68Þ
My ¼ a ð11:69aÞ
Ny ¼ b ð11:69bÞ

where L, M, and N are operators of the type defined in

Eqs. 11.45 and 11.46.

We can decompose y(x, t) into two parts (such as devia-

tion variables used in Chapters 9 and 10)

yðx; tÞ ¼ Yðx; tÞ þ uðxÞ ð11:70Þ

Substitution of Eq. 11.70 into Eqs. 11.67 to 11.69 yields

@Y

@t
¼ LY þ Lu ð11:71Þ

t ¼ 0; Y þ uðxÞ ¼ y0ðxÞ ð11:72Þ
MðY þ uÞ ¼ a ð11:73aÞ
NðY þ uÞ ¼ b ð11:73bÞ

To make the boundary conditions for Y homogeneous, we

could define the following auxiliary equation for u, which

is simply the steady-state solution

Lu ¼ 0; MðuÞ ¼ a; NðuÞ ¼ b ð11:74Þ

Having defined u as in Eq. 11.74, the governing equations

for the new dependent variable Y become

@Y

@t
¼ LY ð11:75Þ

t ¼ 0; Y ¼ y0ðxÞ � uðxÞ ð11:76Þ
MðYÞ ¼ NðYÞ ¼ 0 ð11:77Þ

This new set of equations for Y now can be readily solved

by either the method of separation of variables or the

Sturm–Liouville integral transform method. We must also

find u(x), but this is simply described by an elementary

ODE (Lu ¼ 0), so the inhomogeneous boundary conditions

(11.74) are not a serious impediment.

EXAMPLE 11.3

We wish to investigate the solution of the following problem

@y

@t
¼ r2y ð11:78aÞ

subject to the initial and boundary conditions

t ¼ 0; y ¼ 0 ð11:78bÞ

x ¼ 0;
@y

@x
¼ 0 ð11:78cÞ

x ¼ 1;
@y

@x
¼ Bið1� yÞ ð11:78dÞ

where the operatorr2 is the Laplacian operator defined as

r2 ¼ 1

xs
@

@x
xs

@

@x

� �
ð11:79Þ

with s being the shape factor of the domain. It takes a value of 0,

1, or 2 for slab, cylindrical, or spherical coordinates.

The model Eqs. 11.78 describe the concentration distribution in

a particle where adsorption is taking place with a linear adsorption

isotherm. The external film mass transfer is reflected in the dimen-

sionless Biot (Bi) number. The model equations can also describe

heat conduction in a solid object and the heat transfer coefficient is

reflected in the dimensionless Bi parameter.

We note that the boundary condition (11.78d) is inhomo-

geneous. To render the boundary conditions homogeneous, we

need to solve the steady-state problem

r2u ¼ 0 ð11:80aÞ

subject to

x ¼ 0;
du

dx
¼ 0 and x ¼ 1;

du

dx
¼ Bið1� uÞ ð11:80bÞ

Solution of Eqs. 11.80 is simply

u ¼ 1 ð11:81Þ
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Thus, the new dependent variable Y is defined as in Eq. 11.70;

that is,

Y ¼ y� 1 ð11:82Þ

Substitution of Eq. 11.82 into Eq. 11.78 would yield the following

set of equations for Y having homogeneous boundary conditions:

@Y

@t
¼ r2Y ð11:83aÞ

t ¼ 0; Y ¼ �1 ð11:83bÞ

x ¼ 0;
@Y

@x
¼ 0 ð11:83cÞ

x ¼ 1;
@Y

@x
þ Bi � Y ¼ 0 ð11:83dÞ

This new set of equations now can be solved readily by the

finite integral transform method. Using the procedure outlined

in the last two examples, the following integral transform is

derived as

hY;Kni ¼
Z 1

0

xsYðx; tÞKnðxÞdx ð11:84Þ

where the kernel of the transform is defined from the following

associated eigenproblem:

r2KnðxÞ þ j2nKnðxÞ ¼ 0 ð11:85aÞ

x ¼ 0;
dKn

dx
¼ 0 ð11:85bÞ

x ¼ 1;
dKn

dx
þ BiKn ¼ 0 ð11:85cÞ

Using the procedure described in the earlier sections, the solu-

tion for Y is readily seen to be

Y ¼ �
X1
n¼1

h1;Knie�j2nt

hKn;Kni KnðxÞ ð11:86Þ

and hence

y ¼ 1�
X1
n¼1

h1;Knie�j2nt

hKn;Kni KnðxÞ ð11:87Þ

For three different shapes, the expressions for KnðxÞ; jn;
h1;Kni, and hKn;Kni are as follows:

Slab

KnðxÞ ¼ cosðjnxÞ ð11:88aÞ
jn sinðjnÞ ¼ Bi cosðjnÞ ð11:88bÞ

h1;Kni ¼ sinðjnÞ
jn

ð11:88cÞ

hKn;Kni ¼ 1

2
1þ sin2ðjnÞ

Bi

� �
ð11:88dÞ

Cylinder

Kn ¼ J0ðjnxÞ ð11:89aÞ
jnJ1ðjnÞ ¼ Bi � J0ðjnÞ ð11:89bÞ

h1;Kni ¼ J1ðjnÞ
jn

ð11:89cÞ

hKn;Kni ¼ J21ðjnÞ
2

1þ jn
Bi

� �2
" #

ð11:89dÞ

Sphere

Kn ¼ sinðjnxÞ
x

ð11:90aÞ

jncosðjnÞ ¼ ð1� BiÞsinðjnÞ ð11:90bÞ

h1;Kni ¼ ½sinðjnÞ � jncosðjnÞ�
j2n

ð11:90cÞ

hKn;Kni ¼ 1

2
1þ cos2ðjnÞ

ðBi� 1Þ
� �

ð11:90dÞ

The concentration distribution is defined in Eq. 11.87, and

of practical interest is the volumetric average. The volumet-

ric average is defined as

yavg ¼ ðsþ 1Þ
Z 1

0

xsyðx; tÞdx ð11:91Þ

Substitution of Eq. 11.87 into Eq. 11.91 yields the following gen-

eral solution for the volumetric average:

yavg ¼ 1� ðsþ 1Þ
X1
n¼1

h1;Kni2
hKn;Kni � e

�j2nt ð11:92Þ

Of further interest is the half-time of the process, that is, the

time at which the average concentration is half of the equili-

brium concentration. This is found by simply setting yavg equal

to 1
2
and solving the resulting equation for the half time t0.5. For

example, when Bi ! 1, the following solution for the half

time is obtained:

t0:5 ¼
0:19674 for s ¼ 0

0:06310 for s ¼ 1

0:03055 for s ¼ 2

8>><
>>: ð11:93Þ

The average concentration (or temperature) and the half-time

solutions are particularly useful in adsorption and heat transfer

studies, as a means to extract parameters from experimental

measurements.
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EXAMPLE 11.4

As an alternative to the previous example, we can also solve the

problems with inhomogeneous boundary conditions by direct

application of the finite integral transform, without the neces-

sity of homogenizing the boundary conditions. To demonstrate

this, we consider the following transient diffusion and reaction

problem for a catalyst particle of slab, cylindrical, or spherical

shape. The dimensionless mass balance equations in a catalyst

particle with a first-order chemical reaction are

@y

@t
¼ r2y� f2y ð11:94aÞ

t ¼ 0; y ¼ 0 ð11:94bÞ

x ¼ 0;
@y

@x
¼ 0 ð11:94cÞ

x ¼ 1; y ¼ 1 ð11:94dÞ

where the Laplacian operator r2 is defined as in Eq. 11.79, and

f is the Thiele modulus.

If we applied the previous procedure, we must solve the steady-

state equation

r2u� f2u ¼ 0 ð11:95aÞ

x ¼ 0;
du

dx
¼ 0 and x ¼ 1; u ¼ 1 ð11:95bÞ

and then the finite integral transform is applied on the following

equation for Y(y¼ Yþ u)

@Y

@t
¼ r2Y � f2Y ð11:96aÞ

t ¼ 0; Y ¼ �uðxÞ ð11:96bÞ

x ¼ 0;
@Y

@x
¼ 0 ð11:96cÞ

x ¼ 1; Y ¼ 0 ð11:96dÞ

The solutions for the steady-state concentration u are

u ¼ coshðfxÞ
coshðfÞ ð11:97aÞ

u ¼ I0ðfxÞ
I0ðfÞ ð11:97bÞ

u ¼ sinhðfxÞ
x sinhðfÞ ð11:97cÞ

for slab, cylinder, and sphere, respectively.

To find Y, we apply the finite integral transform to Eqs. 11.96a,

where we again solve the following associated eigenproblem

r2Kn � f2Kn þ j2nKn ¼ 0 ð11:98aÞ

x ¼ 0;
dKn

dx
¼ 0 ð11:98bÞ

x ¼ 1; Kn ¼ 0 ð11:98cÞ

and then follow the procedure of the previous example to find

the solution. However, it is possible to attack the problem

directly, as we show next.

To avoid the process of homogenization, we simply apply the

integral transform directly to the original Eq. 11.94. For a given

differential operator r2 and the boundary conditions defined in

Eqs. 11.94c and 11.94d, the kernel of the transform is defined

from the following eigenproblem:

r2Kn þ j2nKn ¼ 0 ð11:99aÞ

x ¼ 0;
dKn

dx
¼ 0 ð11:99bÞ

x ¼ 1; Kn ¼ 0 ð11:99cÞ

This particular eigenproblem was obtained by simply applying the

operator r2 on Kn and setting it equal to �j2nKn. The boundary

condition of this eigenfunction is the homogeneous version of

Eqs. 11.94c and 11.94d.

The several solutions for this eigenproblem itself have already

been given in Eqs. 11.88–11.90 for slab, cylinder, and sphere,

respectively.

The integral transform for this inhomogeneous problem is

defined as before

hy;Kni ¼
Z 1

0

xsyðx; tÞKnðxÞdx ð11:100Þ

where the general weighting function is xs.

Now, by applying the integral transform directly to the original

equation Eq. 11.94, we obtain

dhy;Kni
dt

¼ j2n h1;Kni � hy;Kni½ � � f2hy;Kni ð11:101Þ

where the first two terms on the RHS of Eq. 11.101 arise from the

integration by parts, as illustrated earlier in Eq. 11.8.

The initial condition of Eq. 11.101 is obtained by taking the

transform of Eq. 11.94b; that is,

t ¼ 0; hy;Kni ¼ 0 ð11:102Þ

The solution of Eq. 11.101 subject to the initial condition (11.102)

is

hy;Kni ¼ h1;Kni j2n
ðj2n þ f2Þ �

h1;Knij2n
ðj2n þ f2Þ e

�j2nt ð11:103Þ

The first term on the RHS of Eq. 11.103 can be rearranged to give

hy;Kni ¼ h1;Kni � h1;Kni f2

ðj2n þ f2Þ

" #
� h1;Knij2n
ðj2n þ f2Þ e

�j2nt

ð11:104Þ
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The inverse of Eq. 11.104 can now be readily obtained as

y ¼
X1
n¼1

hy;Kni
hKn;KniKnðxÞ ð11:105aÞ

or

y¼
X1
n¼1

h1;Kni
hKn;KniKnðxÞ � f2

X1
n¼1

h1;KniKnðxÞ
ðj2n þ f2ÞhKn;Kni

�
X1
n¼1

h1;Knij2ne�j2nt

ðj2n þ f2ÞhKn;Kni

ð11:105bÞ

The first series on the RHS of Eq. 11.105b is, in fact, the series

representation of the function “1,” that is, the solution can now be

rewritten as

y ¼ 1� f2
X1
n¼1

h1;KniKnðxÞ
ðj2n þ f2ÞhKn;Kni

�
X1
n¼1

h1;Knij2ne�j2nt

ðj2n þ f2ÞhKn;Kni
ð11:106Þ

where Kn(x); jn; h1;Kni; hKn;Kni are defined in Eqs. 11.88–

11.90 for slab, cylinder, and sphere, respectively.

The solution obtained by the second method is quite straight-

forward and faster than the traditional way, even though the con-

ventional way could yield the steady-state solution in an analytical

form (Equation 11.97), yet the second method yields the steady-

state solution in a series form (the first two terms of Equation

11.106). The series in the second set of terms on the RHS of Eq.

11.106 has a slow convergence property. For the summation done

by a computer, this is not really a hurdle, but the series can be fur-

ther rearranged to have faster convergence rate. Interested readers

should refer to Do and Bailey (1981) and Johnston and Do (1987)

for this convergence enhancement.

11.2.4 Inhomogeneous Equations

The last section deals with the case of nonhomogeneous

boundary conditions. Now, we will study the problem when

the equation itself is inhomogeneous.

Now, if the partial differential equation is inhomo-

geneous of the form

@y

@t
¼ Ly� f ðxÞ ð11:107Þ

t ¼ 0; y ¼ y0ðxÞ ð11:108Þ
MðyÞ ¼ NðyÞ ¼ 0 ð11:109Þ

A new dependent variable Y can be introduced as in

Eq. 11.70. Substituting Eq. 11.70 into Eqs. (11.107–

11.109) gives

@Y

@t
¼ LY þ Lu� f ðxÞ ð11:110Þ

t ¼ 0; Y þ uðxÞ ¼ y0ðxÞ ð11:111Þ
MðY þ uÞ ¼ NðY þ uÞ ¼ 0 ð11:112Þ

Thus, if we define u as the steady-state solution

LuðxÞ � f ðxÞ ¼ 0 and MðuÞ ¼ NðuÞ ¼ 0 ð11:113Þ

the new set of equations for Y are homogeneous and are the

same as Eqs. 11.75–11.77, which then can be readily solved

by either the separation of variables method or the finite

integral transform method. However, we can also attack

this problem directly without introducing deviation from

steady state, as we show next.

As in the previous section, we can obtain the solution for

y by directly applying the integral transform to Eq. 11.107.

The kernel of the transform is obtained from an eigenpro-

blem, which is defined by taking the operator L on Kn and

setting the result equal to �j2nKn; that is,

LKnðxÞ þ j2nKnðxÞ ¼ 0 ð11:114aÞ
MðKnÞ ¼ NðKnÞ ¼ 0 ð11:114bÞ

The application of the transform to Eq. 11.107 would

yield

dhy;Kni
dt

¼ hLy;Kni � h f ðxÞ;Kni ð11:115Þ

Using the self-adjoint property (obtained by integration by

parts of the first term on the RHS of Eq. 11.115), we have

dhy;Kni
dt

¼ hy; LKni � h f ðxÞ;Kni ð11:116Þ

Next, using the definition of the kernel, Eq. 11.116

becomes

dhy;Kni
dt

¼ �j2nhy;Kni � h f ðxÞ;Kni ð11:117Þ

The initial condition of Eq. 11.117 is obtained by taking the

transform of Eq. 11.108

t ¼ 0; hy;Kni ¼ hy0ðxÞ;Kni ð11:118Þ

The solution of the I-factor ODE in Eq. 11.117, subject to

the initial condition (11.118), is

hy;Kni ¼ � 1

j2n
h f ðxÞ;Kni

þ hy0ðxÞ;Kni þ 1

j2n
h f ðxÞ;Kni

" #
e�j2nt ð11:119Þ
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from which the inverse can be obtained as

y¼�
X1
n¼1

hf ðxÞ;KniKnðxÞ
j2nhKn;Kni

þ
X1
n¼1

hy0ðxÞ;Kni þ ð1=j2nÞhf ðxÞ;Kni
	 


e�j2nt

hKn;Kni KnðxÞ

ð11:120Þ

The first term on the RHS of Eq. 11.120 is the series

representation of the steady-state solution u, defined in

Eq. 11.113.

11.2.5 Time-Dependent Boundary Conditions

Even when the boundary conditions involve time-depen-

dent functions, the method described in the previous section

can be used to good effect. Let us demonstrate this by solv-

ing a mass transfer problem in a particle when the bulk con-

centration varies with time.

EXAMPLE 11.5

The mass balance equations in dimensionless form are

@y

@t
¼ r2y ð11:121Þ

t ¼ 0; y ¼ 0 ð11:122Þ

x ¼ 0;
@y

@x
¼ 0 ð11:123aÞ

x ¼ 1; y ¼ e�t ð11:123bÞ

where !2 is defined in Eq. 11.79. Equation 11.123b is the time-

dependent boundary condition.

The boundary condition (11.123b) represents the situation

where the particle is exposed to a bulk concentration, which

decays exponentially with time.

The general integral transform for any coordinate system is

hy;Kni ¼
Z 1

0

xsyðx; tÞKnðxÞdx ð11:124Þ

where the kernel Kn(x) is defined as in the eigenproblem equation

(11.99).

Taking the integral transform of Eq. 11.121 would give

dhy;Kni
dt

¼ hr2y;Kni ð11:125Þ

Carrying out the integration by parts of the first term on the RHS

of Eq. 11.125 gives

dhy;Kni
dt

¼ xsKn

@y

@x
� xsy

dKn

dx

� �1
0

þ
Z 1

0

xsðr2KnÞy dx

ð11:126Þ

Using the boundary conditions for y (Eqs. 11.32) and the boundary

conditions for Kn (Eqs. 11.99b and 11.99c) along with Eq. 11.99

ðr2Kn ¼ �j2nKnÞ, then Eq. 11.126 becomes

dhy;Kni
dt

¼ � dKnð1Þ
dx

e�t � j2nhy;Kni ð11:127Þ

Multiplying Eq. 11.99a by xs and integrating the result from 0 to 1

gives

� dKnð1Þ
dx

¼ j2nh1;Kni ð11:128Þ

in which the condition (11.99b) has been used.

Using Eq. 11.128, Eq. 11.127 can be rewritten as

dhy;Kni
dt

¼ j2nh1;Knie�t � j2nhy;Kni ð11:129Þ

Rearrange Eq. 11.129 as

dhy;Kni
dt

þ j2nhy;Kni ¼ j2nh1;Knie�t ð11:130Þ

The initial condition for Eq. 11.130 can be obtained by taking the

transform of Eq. 11.122

t ¼ 0; hy;Kni ¼ 0 ð11:131Þ

Equation 11.130 is a first-order ordinary differential equation with

exponential forcing function (I-factor form). The methods from

Chapter 2 show

hy;Kni ¼ j2nh1;Kni e
�t � e�j2nt

ðj2n � 1Þ ð11:132Þ

The inverse of the previous equation is

y ¼
X1
n¼1

j2nh1;Kni½e�t � e�j2nt�KnðxÞ
ðj2n � 1ÞhKn;Kni

ð11:133Þ

The mean concentration in the particle (of practical interest) is

then given by

yðtÞ ¼ ðsþ 1Þ
X1
n¼1

j2nh1;Kni2½e�t � e�j2nt�
ðj2n � 1ÞhKn;Kni

ð11:134Þ

where all eigenproperties are given in Eqs. 11.88–11.90 for slab,

cylinder, and sphere, respectively. For example, for a slab particle,

the explicit solution is

yðtÞ ¼ 2
X1
n¼1

½e�t � e�j2nt�
ðj2n � 1Þ

Figure 11.5 shows a plot of this mean concentration versus time.

It rises from zero (initial state) to some maximum value and

then decays to zero because of the depletion of the external

source.
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11.2.6 Elliptic Partial Differential Equations

We have demonstrated the application of the finite inte-

gral transform to a number of parabolic partial differen-

tial equations. These are important because they

represent the broadest class of time-dependent PDEs

dealt with by chemical engineers. Now, we wish to illus-

trate its versatility by application to elliptic differential

equations, which are typical of steady-state diffusional

processes (heat, mass, and momentum), in this case for

two spatial variables. We have emphasized the parabolic

PDEs, relative to the elliptic ones, because many texts

and much mathematical research have focused too long

on elliptic PDEs.

EXAMPLE 11.6

Consider the problem introduced in Chapter 1, connected with

modeling the cooling of a bath owing to protruding cylindrical

rods. The model equations in dimensionless form were given as

1

j

@

@j
j
@u

@j

� �
þ D2 @

2u

@z2
¼ 0 ð11:135Þ

j ¼ 0;
@u

@j
¼ 0 ð11:136aÞ

j ¼ 1;
@u

@j
¼ �Biu ð11:136bÞ

z ¼ 0; u ¼ 1 ð11:137aÞ

z ¼ 1;
@u

@z
¼ 0 ð11:137bÞ

We note early that the boundary conditions are homogeneous

in the j-domain (Eq. 11.36). So, if we take the integral trans-

form with respect to this variable, the transform is defined as

hu;Kni ¼
Z 1

0

juðj; zÞKnðjÞdj ð11:138Þ

where Kn(j) is the kernel of the transform and is defined in

terms of the associated eigenproblem

1

j

d

dj
j
dKn

dj

� �
þ b2

nKnðjÞ ¼ 0 ð11:139aÞ

j ¼ 0;
dKn

dj
¼ 0 ð11:139bÞ

j ¼ 1;
dKn

dj
¼ �BiKn ð11:139cÞ

where, by comparison with the Sturm–Liouville equation, the

weighting function must be j.

The solution of this associated eigenproblem is

KnðxÞ ¼ J0ðbnjÞ ð11:140Þ

where the eigenvalues bn are determined by inserting Eq. 11.140

into Eq. 11.139c to get the transcendental relation

bnJ1ðbnÞ ¼ BiJ0ðbnÞ ð11:141Þ

Taking the integral transform of Eq. 11.135, we have

1

j

@

@j
j
@u

@j

� �
;Kn

� �
þ D2 @2u

@z2
;Kn

� �
¼ 0

Since the integral transform is with respect to j, the second term

on the LHS then becomes

1

j

@

@j
j
@u

@j

� �
;Kn

� �
þ D2 d2

dz2
u;Knh i ¼ 0 ð11:142aÞ

Now, let us consider the first term on the LHS of Eq. 11.142a and

utilize the definition of the transform as given in Eq. 11.138. We

then have

1

j

@

@j
j
@u

@j

� �
;Kn

� �
¼
Z 1

0

j
1

j

@

@j
j
@u

@j

� �� �
Kndj ð11:142bÞ

Carrying out the integration by parts twice on the integral on the

RHS of Eq. 11.142b gives

1

j

@

@j
j
@u

@j

� �
;Kn

� �
¼
Z 1

0

ju
1

j

d

dj
j
dKn

dj

� �� �
dj

1

j

@

@j
j
@u

@j

� �
;Kn

� �
¼ u;

1

j

d

dj
j
dKn

dj

� �� � ð11:142cÞ

which is, in fact, the self-adjoint property.

FIGURE 11.5 Plot of the mean concentration (Eq. 11.134)

versus t.
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Using the definition of the eigenproblem (Eq. 11.139a),

Eq. 11.142c becomes

1

j

@

@j
j
@u

@j

� �
;Kn

� �
¼
Z 1

0

ju½�b2nKn�dj ¼ �b2n

Z 1

0

juKndj

that is,

1

j

@

@j
j
@u

@j

� �
;Kn

� �
¼ �b2

nhu;Kni ð11:142dÞ

Substituting Eq. 11.142d into Eq. 11.142a, we get

�b2
nhu;Kni þ D2 d

2hu;Kni
dz2

¼ 0 ð11:143Þ

Taking the integral transform of Eq. 11.37, we have

z ¼ 0; hu;Kni ¼ h1;Kni ð11:144aÞ

z ¼ 1;
dhu;Kni

dz
¼ 0 ð11:144bÞ

Equation 11.143 is a second-order ordinary differential equation,

and its general solution is

hu;Kni ¼ a exp
bnz

D

� �
þ b exp �bnz

D

� �
ð11:145Þ

Applying the transformed boundary conditions (11.144), the inte-

gration constants a and b can be found. The final solution written

in terms of hyperbolic functions is

hu;Kni ¼ h1;Kni cosh bnð1� zÞ=D½ �
cosh bn=Dð Þ ð11:146Þ

Knowing the projection hu;Kni on the basis function Kn(j), the

vector u can be constructed as a linear combination as was done

previously to yield the inverse transform

u ¼
X1
n¼1

hu;Kni
hKn;KniKnðxÞ ð11:147aÞ

or in terms of specific functions

uðj; zÞ ¼
X1
n¼1

h1;Kni
hKn;Kni

cosh bnð1� zÞ=D½ �
cosh bn=Dð Þ KnðjÞ ð11:147bÞ

Equation 11.147b yields the solution of u in terms of j and z. Here,

h1;Kni ¼
Z 1

0

jKnðjÞdj ¼
Z 1

0

jJ0ðbnjÞdj ¼
J1ðbnÞ
bn

ð11:148aÞ

and

hKn;Kni ¼
Z 1

0

jK2
nðjÞdj ¼

J21ðbnÞ
2

1þ bn
Bi

� �2
" #

ð11:148bÞ

The quantity of interest, flux through the base of the rod, which

was needed in Chapter 1, is

I ¼
Z 1

0

j � @uðj; 0Þ
@z

� �
dj ð11:149Þ

Differentiate Eq. 11.147b with respect to z, evaluate this at z¼ 0,

and substitute the final result into Eq. 11.149 to get

I ¼
X1
n¼1

h1;Kni2
hKn;Kni

bn

D

� �
tanh

bn
D

� �
ð11:150Þ

Substituting Eqs. 11.48 into Eq. 11.150 then yields

I ¼ 2

D

X1
n¼1

tanh bn=Dð Þ
bn 1þ bn=Bið Þ2
h i ð11:151Þ

Since the original partial differential equation is elliptic, we could

have taken the finite integral transform with respect to z instead of

j. If we now define

v ¼ 1� u ð11:152Þ

so that the boundary conditions in z are homogeneous, we will

have the following partial differential equation in terms of v:

1

j

@

@j
j
@v

@j

� �
þ D2 @

2v

@z2
¼ 0 ð11:153Þ

j ¼ 0;
@v

@j
¼ 0 ð11:154aÞ

j ¼ 1;
@v

@j
¼ Bið1� vÞ ð11:154bÞ

z ¼ 0; v ¼ 0 ð11:155aÞ

z ¼ 1;
@v

@z
¼ 0 ð11:155bÞ

Now, let us define the finite integral transform with respect to

z as

hv; Tni ¼
Z 1

0

vðj; zÞTnðzÞdz ð11:156Þ

and then we proceed with the usual integral transform procedure to

obtain the solution for v, and hence, the heat flux. This will be left

as a homework exercise.

We now return to the problem of heat removal from a bath of

hot solvent by way of protruding steel rods (Section 1.6). Various

levels of modeling were carried out with the simplest level (level

1) being the case where the heat loss is controlled by the heat

transfer through the gas film surrounding the steel rod. The rate of

heat loss of this level 1 is (Eq. 1.55c)

Q1 ¼ 2pRhGL2ðT1 � T0Þ ð11:157Þ
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The highest level we dealt with in Chapter 1 is level 4, in which we

considered the axial as well as radial heat conduction in the seg-

ment of the steel rod exposed to the atmosphere. The rate of heat

loss is given in Eq. 1.89, and is written here in terms of integral

flux I (Eq. 11.149)

Q4 ¼
2pR2k

L2
ðT1 � T0ÞI ð11:158Þ

To investigate the significance of the radial and axial conduction in

the steel rod, we investigate the following ratio of heat fluxes

obtained for levels 1 and 4

Ratio ¼ Q4

Q1

¼ D2

Bi
I ð11:159Þ

where D¼R=L2 and Bi ¼ hGR=k.
Figure 11.6 shows this ratio versus D with the Biot as the

parameter in the curves. The radial and axial heat conduction in

the steel rod is insignificant when the ratio is close to one. This is

possible when (i) the parameter Biot number is very small or (ii)

the geometric factor D is much greater than about 1. Let us investi-

gate these two possibilities. The first simply means that the heat

transfer through the gas film surrounding the steel rod is much

smaller than the heat conduction in the steel rod. Hence, the heat

transfer is controlled by the gas film as we would expect on physi-

cal grounds. Thus, the level 4 solution is reduced to a level 1 solu-

tion. The second possibility is that the geometric factor D is much

greater than about 1.

To summarize the method of finite integral transform, we list

(as follows) the key steps in the application of this technique to

solve PDE.

Step 1: Arrange the equation in the format such that the linear

differential operator has the form as given in Eq. 11.45.

Step 2: Define the associated eigenproblem (given in Eq. 11.48)

with the associated homogeneous boundary conditions. This

eigenproblem defines the kernel of the transform.

Step 3: Define the integral transform (as given in Eq. 11.37) and

apply this transform to the governing equation of Step 1.

Step 4: Integrate the result of Step 3 and use the boundary

conditions of both the equation and the eigenproblem; an

equation for the image of y, that is, hy;Kni should be

obtained.

Step 5: Solve the equation for the image hy;Kni.
Step 6: Obtain the inverse y from the image by using either

Eq. 11.24 or 11.39.

We have presented the method of Sturm–Liouville inte-

gral transforms, and applied it to a number of problems in

chemical engineering. Additional reading on this material

can be found in Sneddon (1972) or Tranter (1958).

11.3 GENERALIZED STURM–LIOUVILLE

INTEGRAL TRANSFORM

In the previous sections, we showed how the finite inte-

gral transform technique can be applied to single linear

partial differential equations having finite spatial domain.

The Sturm–Liouville integral transform was presented

with necessary concepts of eigenproblem and orthogonal-

ity to facilitate the solution of single partial or ordinary

differential equations. In this section, we shall deal with

coupled linear partial differential equations also having a

finite spatial domain, and we set out to show that the

same procedure can be applied if we introduce the con-

cept of function space, with elements having state varia-

bles as components. This will require representation

using vector analysis.

11.3.1 Introduction

We illustrated in the previous sections that a single equation

can be solved by either the method of separation of variables

or the method of finite integral transform. The integral trans-

form is more evolutionary in format and requires less intuition

and practice than the method of separation of variables. In this

section, however, we will show how to apply a generalized

form of the Sturm–Liouville integral transform to coupled

PDEs. With this generalized integral transform, large systems

of linear partial differential equations can be solved, and the

methodology follows naturally from the Sturm–Liouville inte-

gral transform presented earlier. Although the procedure is

developed in an evolutionary format, its application is not as

straightforward as the Laplace transform (Chapters 9 and 10)

if the problem has a time-like variable.

The approach we shall take is to teach by example, as

we did in the finite Sturm–Liouville integral transform.

We start by using the batch adsorber problem to illustrate

the procedure. A comprehensive account of the method

can be found in the book by Ramkrishna and Amundson

(1987).

FIGURE 11.6 Plot of Q4=Q1 versus D with Biot as parameter.
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11.3.2 The Batch Adsorber Problem

To apply Sturm–Liouville transforms to coupled PDEs, we

shall need to introduce a new concept: function space. We

introduce this methodology by way of a practical example:

batch adsorption in a vessel (Fig. 11.7).

EXAMPLE 11.7

Let us start with the derivation of the mass balance equations

for a batch adsorber containing spherical adsorbent particles.

The solute molecules diffuse from the bulk reservoir into the

particles through a network of pores within the particle.

The diffusion process is generally described by a Fickian type

equation

J ¼ �De

@C

@r
ð11:160Þ

where De is the effective diffusivity of the solute in the particle,

and the flux J has units of moles transported per unit total cross-

sectional area per unit time.

During the diffusion of solute molecules through the network

of pores, some of the solute molecules are adsorbed onto the inte-

rior surface of the particle. This process of adsorption is normally

very fast relative to the diffusion process, and so we can model it

as local equilibrium between the solute in the pore fluid and the

solute bound to the interior surface of the particle. This partition-

ing is often referred to as the adsorption isotherm, which implies

constant temperature conditions. When the solute concentration in

the pore is low enough, the relationship becomes linear (Henry’s

law); hence, mathematically, we can write

Cm ¼ KC ð11:161Þ

where C is the solute concentration in the pore, Cm is the concen-

tration on the interior surface, and K is the slope of the linear

isotherm, which represents the strength of the adsorption. We

take the units of Cm as moles per volume of particle (excluding

the pore volume), so typical units would be mol=cm3 solid.

We are now in a position to derive the mass balance equation

inside the particle. By carrying out the mass balance equation over

a small element of thickness Dr at the position r (Fig. 11.8), we

obtain for an element of spherical particle

4pr2Jjr � 4pr2JjrþDr ¼
@

@t
4pr2Dr eC þ 4pr2Drð1� eÞCm

	 

ð11:162Þ

The porosity e enters into the accumulation terms, thereby

accounting separately for hold-up in fluid and solid phases.

Dividing Eq. 11.162 by 4pDr, and taking the limit when the

element shrinks to zero gives

e
@C

@t
þ ð1� eÞ @Cm

@t
¼ � 1

r2
� @
@r

ðr2JÞ ð11:163Þ

Now substituting Eqs. 11.160 and 11.161 into Eq. 11.163 gives

eþ ð1� eÞK½ � @C
@t

¼ De

1

r2
@

@r
r2
@C

@r

� �
ð11:164Þ

If diffusion occurred only in the pore fluid, we would replace De

with eDpore. As it now stands, diffusion is allowed in both pore

and solid phases (i.e., surface diffusion of adsorbed molecules

may occur).

This equation describes the change of the solute concentration

in the void space of the particle. Basically, it states that the rate of

FIGURE 11.8 Shell element of adsorbent particle.

FIGURE 11.7 Batch adsorber.
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change of mass hold-up in the particle (LHS of Eq. 11.164) is

balanced by the rate of intraparticle diffusion (RHS). Since the

mass balance equation (Eq. 11.164) is second order with respect

to the spatial variable, we shall need two boundary conditions

to complete the mass balance on the particle. One condition

will be at the center of the particle where symmetry must be

maintained. The other is at the exterior surface of the particle.

If the stirred pot containing the particles is well mixed, then the

fluid at the surface of particles is the same composition as the

well-mixed fluid. These physical requirements are written math-

ematically as

r ¼ 0;
@C

@r
¼ 0 ð11:165aÞ

r ¼ R; C ¼ Cb ð11:165bÞ

where Cb is the solute concentration in the reservoir. If the pot

is not so well stirred, we would need to account for film resist-

ance at the particle surface.

Note that the solute concentration changes with time because

the reservoir is finite (i.e., the solute capacity is finite). To learn

how this solute concentration changes with time, we must also

carry out a mass balance for the fluid contained in the reservoir

(i.e., excluding the particles that carry their own pore fluid).

Let the (dry) mass of the particle be mp and the particle density

be rp, hence, the number of particles in the reservoir is

Np ¼
mp=rp
� �
4pR3=3

ð11:166Þ

The influx into a single particle is equal to the product of the flux

at the exterior surface and the area of the exterior surface; that is,

M ¼ ð4pR2Þ De

@CðR; tÞ
@r

� �
ð11:167Þ

So, the total mass loss from the reservoir is the product of the

above two equations; that is,

3

R

mp

rp

 !
De

@CðR; tÞ
@r

ð11:168Þ

Knowing this mass loss, the total mass balance equation for the

solute in the reservoir is

V
dCb

dt
¼ � 3

R

mp

rp

 !
De

@CðR; tÞ
@r

ð11:169Þ

where V is the fluid reservoir volume excluding the particle vol-

ume. This equation describes the concentration changes in the res-

ervoir. The initial condition for this equation is

t ¼ 0; Cb ¼ Cb0 ð11:170Þ

If we assume that the particle is initially filled with inert solvent

(i.e., free of solute), the initial condition for C then is

t ¼ 0; C ¼ 0 ð11:171Þ

Before we demonstrate the method of generalized integral trans-

forms, we convert the dimensional mass balance equations into

dimensionless form. This is achieved by defining the following

dimensionless variables and parameters

A ¼ C

Cb0

; Ab ¼ Cb

Cb0

; x ¼ r

R
; t ¼ Det

R2½eþ ð1� eÞK�
ð11:172Þ

B ¼ mp=rp
� �½eþ ð1� eÞK�

V
ð11:173Þ

These new variables allow the transport equations to be repre-

sented in much more simplified form

@A

@t
¼ 1

x2

@

@x
x2

@A

@x

� �
ð11:174aÞ

dAb

dt
¼ � 3

B
� @Að1; tÞ

@x
ð11:174bÞ

subject to the following initial and boundary conditions:

t ¼ 0; A ¼ 0; Ab ¼ 1 ð11:175Þ

x ¼ 0;
@A

@x
¼ 0 ð11:176aÞ

x ¼ 1; A ¼ Ab ð11:176bÞ

The previous set of equations describes the concentration changes

in spherically shaped particles. For particles of slab and cylindrical

shape, Eqs. 11.47 are simply replaced by

@A

@t
¼ 1

xs
@

@x
xs

@A

@x

� �
ð11:177aÞ

dAb

dt
¼ �ðsþ 1Þ

B

@Að1; tÞ
@x

ð11:177bÞ

subject to the initial condition (11.175) and the boundary condi-

tions (11.176). Here, the shape factor s can take a value of 0, 1, or

2 to account for slab, cylindrical, or spherical geometries, respec-

tively. This structure allows very general solutions to evolve.

The parameter B is dimensionless, and it is the ratio of the mass

of adsorbate in the reservoir at equilibrium to the total mass of

adsorbate in the particle (also at equilibrium). Generally, this

parameter is of order of unity for a well-designed experiment. If

this parameter is much larger than unity (i.e., very large reservoir),

then there will be practically no change in the reservoir concentra-

tion. When it is much less than unity, most of the solute in the

reservoir will be adsorbed by the particle; hence, the bulk concen-

tration will be close to zero at equilibrium.

Equations 11.174–11.176 completely define the physical sys-

tem for a batch adsorber. By suitable change of symbols, those

equations can also describe the heating or cooling of a solid in a

finite liquid bath, with A being the dimensionless temperature of
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the solid object, Ab being the dimensionless temperature in the res-

ervoir, and B being the ratio of heat capacitances for the two

phases. It can also be used to describe leaching from particles, as

for liquid–solid extraction, when the boundary conditions are suit-

ably modified.

The batch adsorber problem will yield a finite steady-state con-

centration for the individual particle and within the well-mixed

reservoir. This steady-state concentration can be readily obtained

from Eqs. 11.174 as follows.

By multiplying Eq. 11.174a by 3x2 dx and integrating the

result from 0 to 1, we obtain the following equation for average

concentration

dA

dt
¼ �3

@Að1; tÞ
@x

ð11:178Þ

where the mean concentration in the particle is defined as

A ¼ 3

Z 1

0

x2A dx ð11:179Þ

Combining Eq. 11.174b with Eq. 11.178 yields

dA

dt
þ B

dAb

dt
¼ 0 ð11:180Þ

This is the differential form of the overall mass balance equation

combining both phases. Integrating this equation with respect to

time and using the initial condition (11.175) yields the following

integral overall mass balance equation:

Aþ BAb ¼ B ð11:181Þ

As time approaches infinity, the fluid concentration in the adsorb-

ent is equal to the concentration in the reservoir. Let this concen-

tration be A1. Then, we have

A1 ¼ B

ð1þ BÞ ð11:182Þ

We now define the following new variables, which are the devia-

tion of the concentration variables from their corresponding

steady-state values:

y ¼ A� A1 ð11:183aÞ
yb ¼ Ab � A1 ð11:183bÞ

The new mass balance equations will become

@y

@t
¼ 1

x2
� @

@x
x2

@y

@x

� �
ð11:184aÞ

dyb
dt

¼ � 3

B

@yð1; tÞ
@x

ð11:184bÞ

subject to the following initial and boundary conditions in dimen-

sionless form:

t ¼ 0; y ¼ � B

ð1þ BÞ ; yb ¼
1

ð1þ BÞ ð11:185Þ

x ¼ 0;
@y

@x
¼ 0 ð11:186aÞ

x ¼ 1; y ¼ yb ð11:186bÞ

This set of equations (Eqs. 11.84) can be solved readily by the

Laplace transform method, as was done in Problem 10.17.

Here, we are going to apply the method of generalized integral

transforms to solve this set of equations.

To apply this technique, it is necessary to define a function

space. This is needed because we are dealing with two state varia-

bles (y and yb), and they are coupled through Eqs. 11.184. Let us

denote this function space as H (Fig. 11.9).

Inspecting the two differential equations (Eqs. 11.184), we see

a logical choice for an element of the function space as simply the

vector

V ¼ ½y; yb�T ð11:187Þ

where superscript T denotes transpose of a vector. The operation

on state variables using vector algebra is detailed in Chapters 1

and 2.

After defining our space, we need to designate a suitable

operator, which manipulates variables in this function space. This

operator is similar to integral or derivative operators in the case of

scalar functions. By inspecting the RHS of Eqs. 11.184, we deduce

the following operator for the function space of elements V

L ¼
1

x2
@

@x
x2

@

@x

� �
0

� 3

B
lim
x!1

@

@x
0

2
664

3
775 ð11:188Þ

Defining this matrix operator is the second key step in the method-

ology of the generalized integral transform method. The operator L

applied onto an element V will give another element also lying in

the same space (Fig. 11.10).

With these definitions of the element and the operator, the orig-

inal equations (Eqs. 11.184) can be put into the very compact form

dV

dt
¼ LV ð11:189Þ

which of course is just another way to represent Eqs. 11.184.

Thus, so far we have created a function space H, which has the

elementsV along with an operator L operating in that space. Now,

FIGURE 11.9 Rule 1 of the generalized integral transform.
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we need to stipulate properties for this space because not all com-

binations of y and yb can belong to the space. To belong to this

space, the components y and yb of the element V must satisfy the

boundary conditions (Eqs. 11.186). This is the third key point of

the methodology; that is, properties must be imposed on all ele-

ments of the space (Fig. 11.11).

The initial condition from Eq. 11.185 can also be written in the

compact form

t ¼ 0; V ¼ V0 ¼ � B

ð1þ BÞ;
1

ð1þ BÞ
� �T

ð11:190Þ

Thus, we have cast the variables in the original equations into a

format of a functional space. To apply the generalized integral

transform, we need to endow our function space with an inner

product; that is, an operation between two elements in the function

space H. This is our fourth key point. The inner product for the

function space is similar to the conventional dot product of the

Euclidean vector space.

Obviously, we can define an inner product to have any form

at this point, but there will be only one definition of the

inner product that will make the operator L self-adjoint, a

property discussed earlier in the application of integral

transforms. The inner product (i.e., the operation between

two elements) is not known at this stage, but it will arise

naturally from the analysis of the associated eigenproblem.

Eigenproblem
The form of the associated eigenproblem for Eq. 11.189 is

derived in exactly the same way as in the last section. One

simply uses the operator L, operates on the so-called eigen-

function K, and sets the result to equal to �jK. Thus, the

eigenproblem is

LK ¼ �j �K ð11:191Þ
where the components of this eigenfunction areW and D

K ¼ ½W ;D�T ð11:192Þ

We can view the vector K as special elements of the func-

tion space H. Since the eigenfunction K belongs to

the function space H, its components must satisfy the prop-

erties set out for this space (recall our third key point), that

is, they must satisfy the following conditions:

x ¼ 0;
dW

dx
¼ 0 ð11:193aÞ

x ¼ 1; W ¼ D ð11:193bÞ

As we have observed with the Sturm–Liouville integral

transform and we will observe later for this generalized

integral transform, there will arise an infinite set of eigen-

values and an infinite set of corresponding eigenfunctions.

We then rewrite Eqs. 11.191–11.193 as follows to represent

the nth values:

LKn ¼ �jnKn ð11:194aÞ

x ¼ 0;
dWn

dx
¼ 0 ð11:194bÞ

x ¼ 1; Wn ¼ Dn ð11:194cÞ

To obtain the analytical form for the eigenfunction and its

eigenvalue, we need to solve Eqs. 11.194 by inserting Kn

¼ [Wn, Dn]
T. Written in component form, Eq. 11.194a

becomes

1

x2
d

dx
x2

dWn

dx

� �
þ jnWn ¼ 0 ð11:195aÞ

3

B

dWnð1Þ
dx

¼ jnDn ð11:195bÞ

Equation 11.195a is a linear second-order ordinary differen-

tial equation. The methods taught in Chapters 2 and 3 can

be used to solve this elementary equation. The solution for

the boundary conditions stated (taking the multiplicative

constant as unity) is

Wn ¼ sinð ffiffiffiffi
jn

p
xÞ

x
ð11:196Þ

FIGURE 11.11 Rule 3 of the generalized integral transform.

FIGURE 11.10 Rule 2 of the generalized integral transform.
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Equation 11.196 is the first component of the eigenfunc-

tion Kn. To obtain the second component Dn, we can use

either Eq. 11.194c or Eq. 11.195b. We use Eq. 11.194c to

yield the solution for Dn

Dn ¼ sinð
ffiffiffiffi
jn

p
Þ ð11:197Þ

Thus, the eigenfunction Kn¼ [Wn, Dn]
T is determined

with its components Wn and Dn defined in Eqs. 11.196

and 11.197. To completely determine this eigenfunction

Kn, we need to find the corresponding eigenvalue.

This can be accomplished by using Eq. 11.195b, and

we obtain the following transcendental equation for the

many eigenvalues

ffiffiffiffi
jn

p
cot

ffiffiffiffi
jn

p
� 1 ¼ B

3

� �
jn ð11:198Þ

Figure 11.12 shows plots of the LHS and RHS of

Eq. 11.198 versus
ffiffiffi
j

p
. The intersection between these

two curves yields the spectrum of countably infinite

eigenvalues.

Inner Product
As we mentioned earlier, the fourth point of the

development of this method is the inner product, which is

the necessary ingredient to allow inversion. To obtain the

inner product, just as in the case of Sturm–Liouville trans-

form, we will start from the definition of the eigenproblem

(Eqs. 11.195).

Multiplying Eq. 11.195a by x2Wm (where m 6¼ n) yields

the equation

WmðxÞ d

dx
x2

dWn

dx

� �
þ jnx

2WnWm ¼ 0 ð11:199Þ

Integrating this equation over the whole domain of interest,

we have

Z 1

0

WmðxÞ d

dx
x2

dWn

dx

� �
dxþ jn

Z 1

0

x2WnWmdx ¼ 0

ð11:200Þ

Carrying out the integration by parts of the first term on the

RHS of Eq. 11.200, we obtain

Wmð1Þ dWnð1Þ
dx

�
Z 1

0

x2
dWn

dx

dWm

dx
dx

þ jn

Z 1

0

x2WnWm dx ¼ 0 ð11:201Þ

Because n and m are arbitrary integers, we can interchange

them in Eq. 11.200 to yield the equation

Wnð1Þ dWmð1Þ
dx

�
Z 1

0

x2
dWm

dx

dWn

dx
dx

þ jm

Z 1

0

x2WmWn dx ¼ 0 ð11:202Þ

Subtracting Eq. 11.202 from Eq. 11.201, we have

ðjn � jmÞ
Z 1

0

x2WnWmdxþWmð1Þ dWnð1Þ
dx

�Wnð1Þ dWmð1Þ
dx

¼ 0 ð11:203Þ

Next, we multiply Eq. 11.195b by Dm and obtain the

result

�Dm

dWnð1Þ
dx

þ B

3
jnDnDm ¼ 0 ð11:204Þ

Replacing Dm in the first term with (obtained from

Eq. 11.194c)

Dm ¼ Wmð1Þ ð11:205Þ

to obtain

�Wmð1Þ dWnð1Þ
dx

þ B

3
jnDnDm ¼ 0 ð11:206Þ

FIGURE 11.12 Plots of LHS and RHS of the transcendental

equation (11.198) versus
ffiffiffiffi
jn

p
.
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Now, we interchange n and m in Eq. 11.206 to obtain a new

equation similar in form to Eq. 11.206. Then, we subtract

this equation from Eq. 11.206 to get

B

3
ðjn � jmÞDnDm þWnð1Þ dWmð1Þ

dx
�Wmð1Þ dWnð1Þ

dx
¼ 0

ð11:207Þ

Finally, adding Eqs. 11.203 and 11.207 to eliminate the

cross term Wnð1Þ � dWmð1Þ=dx, we obtain the equation

ðjn � jmÞ
Z 1

0

x2WnWmdxþ B

3
DnDm

� �
¼ 0 ð11:208Þ

Since the eigenvalues corresponding to n and m (n 6¼ m) are

different, Eq. 11.208 gives us information on exactly how

we should define the inner product. This inner product leads

to a natural notion of distance between elements of the

function space H. If we define two vectors

u ¼ u1

u2

� �
and v ¼ v1

v2

� �
ð11:209Þ

as elements of the function space H, the inner product

should be defined for the present problem as

hu; vi ¼
Z 1

0

x2u1v1dxþ B

3
u2v2 ð11:210Þ

Thus, we see from Eq. 11.210 that the inner product of two

vector elements u and v is a scalar quantity, which may be

regarded as a measure of length between these two vector

elements.

Of course, we can choose an inner product of any form

we wish, but Eq. 11.210 is the only form that leads to the

orthogonality conditions between two eigenfunctions, and

for the present problem

hKn;Kmi ¼ 0 for n 6¼ m ð11:211Þ

Thus, we have endowed the function space for the current

problem with an inner product, defined as in Eq. 11.210.

Since the eigenfunctions are orthogonal to each other with

respect to the inner product, they will form a complete basis

for other elements of the space. This is a general approach,

and the obvious choices allow an orthogonality condition to

evolve.

Self-Adjoint Property
The next important property we need to prove is the self-

adjoint property for the differential operator defined in

Eq. 11.188. Let u and v be elements of the function space,

that is, they must satisfy the boundary values

@u1ð0Þ
@x

¼ 0; u2 ¼ u1ð1Þ ð11:212Þ

@v1ð0Þ
@x

¼ 0; v2 ¼ v1ð1Þ ð11:213Þ

These represent symmetry at centerline and equality of

boundary concentrations.

We need to validate the following self-adjoint property

hLu; vi ¼ hu;Lvi ð11:214Þ

Let us consider first the LHS of Eq. 11.214. By definition of

the inner product (Eq. 11.210), we have

hLu; vi ¼
Z 1

0

x2
1

x2
@

@x
x2

@u1
@x

� �� �
v1 dx� B

3

3

B

@u1ð1Þ
@x

v2

ð11:215Þ

or

hLu; vi ¼
Z 1

0

@

@x
x2

@u1
@x

� �
v1dx� @u1ð1Þ

@x
v2 ð11:216Þ

Carrying out the integration by parts of the first term of the

RHS of Eq. 11.216 gives

hLu; vi ¼ v1ð1Þ @u1ð1Þ
@x

� @v1ð1Þ
@x

u1ð1Þ

þ
Z 1

0

x2
1

x2
@

@x
x2

@v1
@x

� �� �
u1dx� @u1ð1Þ

@x
v2

ð11:217Þ

Now, we combine the three nonintegral terms on the RHS

of Eq. 11.217 and make use of Eqs. 11.212 and 11.213. We

then obtain the result

hLu; vi ¼
Z 1

0

x2
1

x2
@

@x
x2

@v1
@x

� �� �
u1dx� @v1ð1Þ

@x
u2

ð11:218Þ

The RHS is the definition of hu;Lvi. Thus, we have proved
the self-adjoint property for the differential operator L.

Transform Equations
After defining the eigenfunctions (i.e., the orthogonal

basis), the inner product and the self-adjoint property, we

are ready to apply the integral transform to the physical sys-

tem (Eq. 11.189).

Taking the inner product of Eqs. 11.189 and 11.190 with

one of the eigenfunction Kn (in the manner of the Sturm–-

Liouville integral transform, this action is regarded as the
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projection of the vectorV onto the basis Kn), we have

d

dt
hV;Kni ¼ hLV;Kni ð11:219Þ

t ¼ 0; hV;Kni ¼ hV0;Kni ð11:220Þ

The inner product hV;Kni can be treated as the projection

or image of V onto the basis Kn. Now, we make use of the

self-adjoint property (Eq. 11.214) on the RHS of Eq. 11.219

to get

d

dt
hV;Kni ¼ hV;LKni ð11:221Þ

Using the definition of the eigenproblem (Eq. 11.194a),

Eq. 11.221 becomes

d

dt
hV;Kni ¼ �jnhV;Kni ð11:222Þ

from which the solution is

hV;Kni ¼ hV0;Knie�jnt ð11:223Þ

Thus, to solve the problem up to this point we have used the

inner product, the eigenproblem and the self-adjoint prop-

erty of the linear operator. It is recalled that the actions

taken so far are identical to the Sturm–Liouville integral

transform treated in the last section. The only difference is

the element. In the present case, we are dealing with multi-

ple elements, so the vector (rather than scalar) methodology

is necessary.

Inverse
Knowing the projection or image hV;Kni (Eq. 11.223), we
can reconstruct the original vector by using the following

series expansion in terms of coordinate vectors Kn

V ¼
X1
n¼1

dnKn ð11:224Þ

where dn is a linear coefficient. These coordinate vectors

(eigenfunctions) form a complete set in the function

space, so the determination of the linear coefficients dn is

unique.

Applying the orthogonality condition (i.e., by taking the

inner product of Eq. 11.224 with the eigenfunction basis

where the inner product is defined in Eq. 11.210), we obtain

the following expression for the linear coefficient

dn ¼ hV;Kni
hKn;Kni ð11:225Þ

Hence, the final solution is

V ¼
X1
n¼1

hV;Kni Kn

hKn;Kni
� �

ð11:226Þ

If we now treat

Kn

½hKn;Kni�1=2
ð11:227Þ

as the nth normalized basis function, the solution vector

V is the summation of all its projections hV;Kni=
½hKn;Kni�1=2 multiplied by the nth normalized basis func-

tion (Eq. 11.227).

Next, we substitute the known solution of the projection

or image hV;Kni given in Eq. 11.223 into Eq. 11.226 to get

V ¼
X1
n¼1

hV0;Kni
hKn;Kni e

�jntKn ð11:228Þ

Our final task is to evaluate the various inner products

appearing in the solution, hV0;Kni and hKn;Kni. Using the

definition of the inner product (Eq. 11.210), we have

hV0;Kni ¼
Z 1

0

x2 � B

ð1þ BÞ
� �

Kn dxþ B

3

1

ð1þ BÞ
� �

Dn

ð11:229Þ

whereV0 denotes initial state vector, and

hKn;Kni ¼
Z 1

0

x2K2
ndxþ B

3
D2

n ð11:230Þ

where Wn and Dn are given in Eqs. 11.196 and 11.197.

Straightforward evaluation of these integrals gives

hV0;Kni ¼ � ½sinð ffiffiffiffi
jn

p Þ � ffiffiffiffi
jn

p
cosð ffiffiffiffi

jn
p Þ�

jn
ð11:231Þ

and

hKn;Kni ¼ 1

2
� 1

4
ffiffiffiffi
jn

p sinð2
ffiffiffiffi
jn

p
Þ þ B

3
sin2ð

ffiffiffiffi
jn

p
Þ ð11:232Þ

Knowing the vector given in Eq. 11.228, the concentration

in the particle is the first component and the concentration

in the reservoir is the second component of the vector.

The solution for the bulk concentration Ab can be

obtained from the second component of the vector defined

in Eq. 11.228, that is,

Ab ¼ B

ð1þ BÞ þ
X1
n¼1

hV0;Knie�jnt

hKn;Kni Dn ð11:233Þ
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Substituting Eqs. 11.231 and 11.232 into Eq. 11.233 gives

the following explicit solution for the bulk fluid concentra-

tion (compare with Problems 10.16 and 10.17):

Ab ¼ B

ð1þ BÞ þ
B

3

X1
n¼1

e�jnt

ð1=2Þ þ ðB=2Þ þ ðB2=18Þjn
	 


ð11:234Þ

To evaluate the series on the RHS of Eq. 11.234, we need to

first determine the eigenspectrum (defined by the transcen-

dental equation 11.198). This is a nonlinear equation and

can be easily handled by the methods presented in Appen-

dix A. Figure 11.12 shows that the nth eigenvalue
ffiffiffiffi
jn

p
lies

between np and (nþ 1)p. We, therefore, can start with a

bisection method to get close to the solution and then

switch to the Newton–Raphson method to get the quadratic

convergence. Note that when eigenvalues are large, the dif-

ference between eigenvalues is very close to p. This addi-

tional information is also useful in determining large

eigenvalues.

Figure 11.13 illustrates the behavior of Ab¼Cb=C0 ver-

sus t. This family of plots is very useful for those who

would like to use a batch adsorber to determine the effective

diffusivity of solute in an adsorbent particle. With a few

modifications of symbols, it could also be used to determine

the thermal conductivity of solid. In an experiment, the bulk

fluid concentration is monitored as function of time, t.

Since the partition coefficient K is available from equili-

brium experiments, that is, the slope of the linear isotherm

is known, the parameter B can be calculated. Knowing B,

the curve in Fig. 11.13 corresponding to this value of B will

be the characteristic curve for the given system. From this

curve, we can obtain the dimensionless time tj (see the sam-

ple in Fig. 11.13) from every measured Abj at the time tj.

Now, since the dimensionless time t is related to the real

time t by Eq. 11.172, we simply plot tj versus tj and this

should give a straight line through the origin with a slope of

De

R2½eþ ð1� eÞK� ð11:235Þ

Thus, knowing the particle characteristics, R and e, and the

slope of the linear isotherm, we can readily determine

the effective diffusivity De. This method can be conve-

niently carried out with a simple linear plot, without

recourse to any numerical optimization procedures (pro-

vided, of course, that the capacity ratio B is known

beforehand).

This example summarizes all the necessary steps for the

generalized integral transform. To recap the technique, we

list below the specific steps to apply this technique.

Step 1: Define a function space with stipulated elements.

Step 2: Define the operator to manipulate elements of the

space.

Step 3: Define the properties for the space (decided by

BCs).

Step 4: Define an inner product, and derive the orthogonal-

ity condition and the self-adjoint property.

Step 5: Use superposition of solutions to define the inver-

sion back to theV domain.

In the final step, we use the self-adjoint property and the

definition of the eigenproblem to solve for the image (or

projection of our variables on the nth eigenvalue coordi-

nate). Knowing the image, the inverse can be found in a

straightforward manner using the orthogonality condition.

We have applied the methodology for the generalized

integral transform to the batch adsorber. Although the

approach shows striking similarity to the conventional

Sturm–Liouville transform, no special representation of the

operator L has been proposed. For some partial differential

equations, the operator is decomposed before the general-

ized integral transform can be applied. The book by Ramk-

rishna and Amundson (1984) gives additional details for

these special circumstances.

PROBLEMS

11.12. A general form of the second-order differential oper-

ator defined as

L ¼ 1

r0ðxÞ p0ðxÞ
d2

dx2
þ p1ðxÞ

d

dx
þ p2ðxÞ

� �
FIGURE 11.13 Plots of Ab versus nondimensional t with B as

the varying parameter.

PROBLEMS 297



may not be self-adjoint. The function p0 is a positive

function over the whole domain of interest. To

make use of the nice property of self-adjointness,

the above operator must be converted to a self-

adjoint form.

(a) Multiply the denominator and the numerator of

the above operator by g(x) to show that

L ¼ 1

r0ðxÞgðxÞ

� p0ðxÞgðxÞ
d2

dx2
þ p1ðxÞgðxÞ

d

dx
þ p2ðxÞgðxÞ

� �

Rearrange the above equation as

L ¼ 1

r0ðxÞgðxÞ
� p0ðxÞgðxÞ

d2

dx2
þ p1ðxÞ
p0ðxÞ

d

dx

� �
þ p2ðxÞgðxÞ

� �

and compare with the following differentiation

formula

d

dx
I
d

dx

� �
¼ I

d2

dx2
þ 1

I

dI

dx

d

dx

� �

to show that

I ¼ p0ðxÞgðxÞ
1

I

dI

dx
¼ p1ðxÞ

p0ðxÞ
(b) Show that the solution for g(x) will take the form

gðxÞ ¼ 1

p0ðxÞ
exp

Z x

a

p1ðsÞ
p0ðsÞ

ds

� �

(c) With this definition of the positive function g(x)

(since p0(x) is positive), show that the linear dif-

ferential operator is

L ¼ 1

r0ðxÞgðxÞ
d

dx
p0ðxÞgðxÞ

d

dx

� �
þ p2ðxÞgðxÞ

� �

(d) Define

r0ðxÞgðxÞ ¼ rðxÞ > 0

p0ðxÞgðxÞ ¼ pðxÞ > 0

and

p2ðxÞgðxÞ ¼ �qðxÞ � 0

and show that the above differential operator is

exactly the same as the self-adjoint Sturm–

Liouville differential operator, defined in

Eq. 11.45.

(e) If the boundary conditions are

A1yðaÞ þ A2

dyðaÞ
dx

¼ 0

B1yðbÞ þ B2

dyðbÞ
dx

¼ 0

show that the new operator obtained in (d) is self-

adjoint.

11.22. Consider the following second-order differential

operator:

L ¼ d2

dx2
þ 1

x

d

dx

Comparing it with the form of the operator of Prob-

lem 11.1, we have

r0ðxÞ ¼ 1 > 0; p0ðxÞ ¼ 1 > 0; p1ðxÞ ¼
1

x

(a) Use the method of Problem 11.1 to show that the

function g(x) is

gðxÞ ¼ exp

Z x

a

1

s
ds

� �
¼ x

a

(b) Then show that the new operator is

L ¼ 1

x

d

dx
x

d

dx

� �

which is the usual Laplacian operator in cylindri-

cal coordinates. Show that it is self-adjoint with

the two boundary conditions

x ¼ 0;
dy

dx
¼ 0

x ¼ a; y ¼ 0

11.33. Repeat Problem 10.1 by using the method of finite

integral transform. Compare the solution obtained

by this method with that obtained by the method of

separation of variables.

11.4	. A very long, cylindrical stainless steel rod having a

diameter of 1.5m is heated to 200
C until the tem-

perature is uniform throughout. The rod then is

quickly cooled under a strong flow of air at 25
C.
Under these conditions, the heat transfer coefficient

of the film surrounding the rod is calculated as
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150W m�2 K�1. The thermal properties of the

stainless steel are k¼ 15Wm�1 K�1 and k=rCp¼
4� 10�6m2=s.

(a) Obtain the analytical solution by the method of

finite integral transform and determine the time it

takes for the center to reach 50
C.
(b) What will be the surface temperature when the

center reaches 50
C?
(c) If the airflow is extremely high (i.e., ideal), what

will be the surface temperature and how long will

it take for the center to reach 50
C? Compare this

time with that in (a).

11.5	. A hot slab of aluminum is quickly quenched in a

water bath of temperature 50
C. The heat transfer

coefficient of water film surrounding the slab is

10,000Wm�2 K�1. This is a one-dimensional

problem, since the slab is thin. Ignore losses from

the edges.

(a) Obtain the transient solution by the method of

finite integral transforms.

(b) If the initial temperature of the slab is 500
C, cal-
culate the center temperature after 30 s and 1min

exposure in the water bath. The slab half thickness

is 0.05m. Properties of the aluminum are

k ¼ 200Wm�1 K�1;

Cp ¼ 1020 J kg�1 K�1; r ¼ 2700 kg m�3

(c) After 30 s exposure in water bath, the slab is

quickly removed and allowed to cool to a flow of

air of 25
C with a heat transfer coefficient of

150Wm�2 K�1. What will be the center and sur-

face temperatures after 5min of exposure in air.

11.6	. The partial differential equation (Eq. 11.153), rewrit-
ten as follows, has homogeneous boundary condi-

tions in z.

1

j

@

@j
j
@v

@j

� �
þ D2 @

2v

@z2
¼ 0

j ¼ 0;
@v

@j
¼ 0

j ¼ 1;
@v

@j
¼ Bið1� vÞ

z ¼ 0; v ¼ 0

z ¼ 1;
@v

@z
¼ 0

(a) Use the usual procedure of finite integral trans-

forms to show that the transform with respect to z

is defined as

hv; Tni ¼
Z 1

0

vðj; zÞTnðzÞdz

where Tn is defined from the associated eigen-

problem

d2Tn

dz2
þ g2

nTn ¼ 0

z ¼ 0; Tn ¼ 0

z ¼ 1;
dTn

dz
¼ 0

(b) Show that the solution of the eigenproblem of (a)

is

TnðzÞ ¼ cos½gnð1� zÞ�

where the eigenvalues are given as

gn ¼ n� 1
2

� �
p

with n¼ 1, 2, 3, . . .

(c) Take the integral transform of the partial differen-

tial equation and two boundary conditions in j and

show that the differential equation for hv;Tni and
its boundary conditions are

1

j

d

dj
j
dhv; Tni

dj

� �
� D2g2nhv; Tni ¼ 0

j ¼ 0;
dhv; Tni

dj
¼ 0

j ¼ 1;
dhv; Tni

dj
¼ Bi h1; Tni � hv; Tni½ �

(d) Use the Bessel function discussed in Chapter 3 to

show that the solution for hv; Tni of (c) is

hv; Tni ¼ aI0ðDgnjÞ þ bK0ðDgnjÞ

where a and b are constants of integration.

(e) Use the transformed boundary conditions to show

that

a ¼ h1; Tni
I0ðDgnÞ þ ð1=BiÞDgnI1ðDgnÞ½ � ; b ¼ 0
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hence, the complete solution for hv; Tni is

hv; Tni ¼ h1; TniI0ðDgnjÞ
I0ðDgnÞ þ ð1=BiÞDgnI1ðDgnÞ½ �

(f) Start from the eigenproblem to show that the

orthogonality condition is

Z 1

0

TnðgnzÞTmðgmzÞdz ¼ 0 n 6¼ m

(g) Use the orthogonality condition to show that the

inverse v is given by

v ¼
X1
n¼1

h1; TniI0ðDgnjÞcos½gnð1� zÞ�
hTn; Tni I0ðDgnÞ þ ð1=BiÞDgnI1ðDgnÞ½ �

11.7	. (a) To show that the eigenvalue of Example 11.7 is

real valued, assume the eigenvalue j is a complex

number as

jn ¼ an þ ibn

and let the mth eigenvalue be the conjugate of the

nth eigenvalue; that is,

jm ¼ jn ¼ an � ibn

Substitute these two relations into Eq. 11.208 to

show that

2ibn

Z 1

0

x2W2
ndxþ B

3
D2

n

� �
¼ 0

hence, show

bn ¼ 0

(b) Part (a) shows that the eigenvalue is real valued.

Now, show that the eigenvalue is positive.

Hint: Multiply Eq. 11.195a by x2Wndx and

carry out the integration by multiplying

Eq. 11.195b with Dn and then adding them in the

following way:

jn

Z 1

0

x2W2
ndxþ B

3
D2

n

� �

¼ �
Z 1

0

Wn

d

dx
x2

dWn

dx

� �
dxþ Dn

dWnð1Þ
dx

Carry out the integration by parts of the first term

on the RHS and use Eq. 11.194c to see

Wnð1Þ ¼ Dn, then solve for jn to get

jn ¼

Z 1

0

x2 dWn=dxð Þ2dxZ 1

0

x2W2
ndxþ ðB=3ÞD2

n

11.8	. Apply the generalized integral transform method to

solve the following problem

@y1
@t

¼ b2
@2y1
@x2

for 0 < x < d

@y2
@t

¼ @2y2
@x2

for d < x < 1

subject to the following boundary conditions:

x ¼ d; y1 ¼ y2; b2 @y1
@x

¼ @y2
@x

x ¼ 0;
@y1
@x

¼ 0

x ¼ 1; y2 ¼ 0

The initial condition is assumed to take the form

t ¼ 0; y1 ¼ y2 ¼ 1

(a) Show that the function space H for this

problem will contain elements having the follow-

ing form

V ¼ y1

y2

� �

and the operator operating on this space will be

L ¼
b2 @2

@x2
0

0
@2

@x2

2
6664

3
7775

(b) Then show that the equation can be cast into the

form

@V

@t
¼ LV

with the initial condition

V0 ¼
y1ð0Þ
y2ð0Þ

" #
¼

1

1

" #
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(c) Show that the eigenproblem for the above prob-

lem is

LKn ¼ �j2nKn

where the eigenfunction has two components as

Kn ¼
Wn

Dn

" #

(d) Show that the homogeneous boundary conditions

forWn and Dn are

x ¼ d; Wn ¼ Dn; b2
dWn

dx
¼ dDn

dx

x ¼ 0;
dWn

dx
¼ 0

x ¼ 1; Dn ¼ 0

(e) Solve the eigenproblem and show that Wn and Dn

will take the form

Wn ¼ cos
jn
b
x

� �
Dn ¼ A sinðjnxÞ þ BcosðjnxÞ

where A and B are given by

A ¼ cos
jn
b
d

� �
sinðjndÞ � b sin

jn
b
d

� �
cosðjndÞ

B ¼ cos
jn
b
d

� �
cosðjndÞ þ b sin

jn
b
d

� �
sinðjndÞ

and show that the eigenvalue is determined from

the following transcendental equation:

cos
jn
b
d

� �
sinðjndÞ � b sin

jn
b
d

� �
cosðjndÞ

� �
sinðjnÞ

þ cos
jn
b
d

� �
cosðjndÞ þ b sin

jn
b
d

� �
sinðjndÞ

� �
cosðjnÞ ¼ 0

(f) Start from the eigenproblem to show that the inner

product, which defines the integral transform, is

hu; vi ¼
Z d

0

u1v1dxþ
Z 1

d

u2v2dx

for

u ¼ u1

u2

� �
; v ¼ v1

v2

� �

(g) With this definition of inner product, show that the

eigenvalues are orthogonal to each other; that is,

hKn;Kmi ¼ 0 for n 6¼ m

(h) Prove the self-adjoint property

hLu; vi ¼ hu;Lvi

(i) Now solve the problem and show that the solution

is

V ¼
X1
n¼1

hV;Kni
hKn;KniKn

where

hV;Kni ¼ hV0;Kniexpð�j2ntÞ

with

hV0;Kni ¼
Z d

0

ð1ÞWn dxþ
Z 1

d

ð1ÞDndx
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12
APPROXIMATE AND NUMERICAL SOLUTION
METHODS FOR PDEs

In the previous three chapters, we described various analyti-

cal techniques to produce practical solutions for linear par-

tial differential equations. Analytical solutions are most

attractive because they show explicit parameter depen-

dences. In design and simulation, the system behavior as

parameters change is quite critical. When the partial differ-

ential equations become nonlinear, numerical solution is the

necessary last resort. Approximate methods are often

applied, even when an analytical solution is at hand, owing

to the complexity of the exact solution. For example, when

an eigenvalue expression requires trial–error solutions in

terms of a parameter (which also may vary), then the

numerical work required to successfully use the analytical

solution may become more intractable than a full numerical

solution would have been. If this is the case, solving the

problem directly by numerical techniques is attractive since

it may be less prone to human error than the analytical

counterpart.

In this chapter, we will present several alternatives,

including polynomial approximations, singular perturbation

methods, finite-difference solutions, and orthogonal collo-

cation techniques. To successfully apply the polynomial

approximation, it is useful to know something about

the behavior of the exact solution. Next, we illustrate how

perturbation methods, similar in scope to Chapter 6, can

be applied to partial differential equations. Finally, finite-

difference and orthogonal collocation techniques are dis-

cussed since these are becoming standardized for many

classic chemical engineering problems.

12.1 POLYNOMIAL APPROXIMATION

Polynomial approximation involves two key steps. One is

the selection of the form of the solution, normally presented

as a polynomial expression in the spatial variable with time-

dependent coefficients. The second step is to convert the

differential equation into an integral form. This means that

if the governing equation is a differential heat balance equa-

tion, then one necessary step is to convert this into an inte-

gral heat balance equation, on which the polynomial

approximation will be applied. Since the process is in

essence a form of “averaging,” the final approximate solu-

tion is not unique. The advantage of the polynomial approx-

imation technique is the simplicity of the final result and the

ease with which it can be used for study of complex phe-

nomenon (Rice 1982). The method evolves quite naturally,

as we show next in a classical example.

EXAMPLE 12.1

Find an approximate solution, valid for long times, to the linear

parabolic partial differential equation, describing mass or heat

transport from/to a sphere with constant physical properties, such

as thermal conductivity and diffusion coefficient

@y

@t
¼ 1

x2
@

@x
x2

@y

@x

� �
ð12:1aÞ
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subject to the following initial and boundary conditions:

t ¼ 0; y ¼ 0 ð12:1bÞ

x ¼ 0;
@y

@x
¼ 0 ð12:1cÞ

x ¼ 1; y ¼ 1 ð12:1dÞ

For mass transfer, the dimensionless variables are

x ¼ r

R
; t ¼ Dt

R2
; y ¼ C0 � C

C0 � CB

where C0 is the initial composition, CB is bulk fluid composition at

the boundary r¼R, and D represents diffusivity.

This linear partial differential equation was solved analytically

in Chapters 10 and 11 using Laplace transform, separation of vari-

ables, and finite integral transform techniques, respectively. A

solution was given in the form of infinite series

yðx; tÞ ¼ 1� 2

x

X1
n¼1

ð�cos jnÞ sin ðjnxÞ
jn

expð�j2ntÞ; jn ¼ np

ð12:2Þ

The solution for the average concentration, which is needed later

for comparison with the approximate solutions, is

y ¼ 3

Z 1

0

x2yðx; tÞ dx ¼ 6

p2

X1
n¼1

expð�n2p2tÞ
n2

ð12:3Þ

Except for short times, the series on the RHS of Eq. 12.3 con-

verges quite fast, hence, only a few terms are needed. For short

times, the following solution, obtained from the Laplace transform

analysis, is particularly useful

y � 6ffiffiffi
p

p
� � ffiffiffi

t
p ¼ 3:38514

ffiffiffi
t

p ð12:4Þ

We wish to generate a compact, polynomial approximation to this

elementary problem. As a first approximation, we assume that the

solution will take the following parabolic profile:

yaðx; tÞ ¼ a1ðtÞ þ a2ðtÞx2 ð12:5Þ

where a1ðtÞ and a2ðtÞ are unknown coefficients, which are func-

tions of time only. The linear term with respect to x was not

included in light of the symmetry condition at the center of the

particle. This means that the center condition is automatically sat-

isfied by Eq. 12.5.

Next, we integrate the differential mass (heat) balance equation

by multiplying the LHS and RHS of Eq. 12.1a with x2dx and inte-

grate over the whole domain of interest (i.e., [0,1]), to find

dy

dt
¼ 3

@y

@x

� �
x¼1

ð12:6Þ

It is useful to note that the volumetric mean concentration is

defined as

y ¼
R 1
0
x2y dxR 1

0
x2 dx

¼ 3

Z 1

0

x2y dx ð12:7Þ

Knowing the form of the assumed solution (Eq. 12.5), we can

obtain the two relations

ya ¼ 3

Z 1

0

x2yaðx; tÞ dx ¼ a1ðtÞ þ 3
5
a2ðtÞ ð12:8Þ

@ya
@x

� �
x¼1

¼ 2a2ðtÞ ð12:9Þ

Next, substitute the assumed solution into the boundary condition

at the particle surface, to see

yað1; tÞ ¼ a1ðtÞ þ a2ðtÞ ¼ 1 ð12:10Þ

Subtracting Eq. 12.10 from Eq. 12.8 yields

1� ya ¼ 2
5
a2ðtÞ ð12:11Þ

Finally, eliminating a2(t) from Eqs. 12.9 and 12.11, we obtain

@ya
@x

� �
x¼1

¼ 5ð1� yaÞ ð12:12Þ

If we now assume that the overall mass balance equation

(Eq. 12.6) is satisfied by the approximate solution Eq. 12.5, then

substituting Eq. 12.12 into that overall mass balance equation we

have

dya
dt

¼ 15ð1� yaÞ ð12:13Þ

The initial condition for this equation is

t ¼ 0; ya ¼ 0 ð12:14Þ

The solution to Eq. 12.13 is straightforward

ya ¼ 1� expð�15tÞ ð12:15Þ

Knowing the mean concentration, the coefficients a1(t) and a2(t)

are determined from (using Eqs. 12.8 and 12.10)

a2ðtÞ ¼ 5
2
ð1� yaÞ ¼ 5

2
expð�15tÞ ð12:16aÞ

a1ðtÞ ¼ 1� a2ðtÞ ¼ 1� 5
2
expð�15tÞ ð12:16bÞ

Now, the approximate solution ya(x, t) can be written rather com-

pactly as

yaðx; tÞ ¼ 1� 5
2
expð�15tÞ� �þ 5

2
expð�15tÞx2 ð12:17Þ
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Thus, we see that the procedure for obtaining the approximate

solution is as follows:

1. Assume an expression for the solution as a polynomial in

terms of the spatial variable with the coefficients as a func-

tion of time.

2. Integrate the differential equation over the whole domain

of interest to obtain an “average” integral equation, which

is satisfied by the approximate solution.

3. Solve the equation for the mean concentration.

4. Knowing the mean concentration, determine the time-

dependent coefficients of the assumed polynomial solu-

tion, and finally obtain the complete polynomial

representation.

Observing Steps 3 and 4, we see that the procedure yields the

mean (average) concentration first and then the polynomial

approximate solution. This is in reverse order to the usual analyti-

cal procedure (such as the separation of variables or integral trans-

forms) where we obtain the solution y(x, t) first before the mean

concentration can be determined.

Figure 12.1 shows plots of the average concentrations obtained

from the analytical (Eq. 12.3) and polynomial approximate proce-

dure (Eq. 12.15) versus t. Inspection of the curves shows that the two solutions cross each

other. This is expected since the polynomial approximate solution

satisfies the mass balance equation only in some average sense.

Now, the exact solution behaves roughly as
ffiffiffi
t

p
for small times (see

Eq. 12.4), so Fig. 12.1 also shows plots of the average concentra-

tions versus
ffiffiffi
t

p
. The polynomial solution fails to exhibit the linearffiffiffi

t
p

dependence at short times, but rather it takes a sigmoidal shape.

We may have expected poor performance at short times, since

we may have recognized from our earlier work that many terms

are necessary for the short time period. To see this more clearly,

we plot the exact solution y(x, t) (Eq. 12.2) and the polynomial

approximate solution ya(x, t) (Eq. 12.17) at two values of times,

0.02 and 0.1. It is seen in Fig. 12.2 that the concentration profile

obtained from the approximate solution has negative values over a

portion of the spatial domain for t¼ 0.02.

We inspect the exact concentration profiles in Fig. 12.3 for a

few values of time and note that the profiles are quite sharp and

they move into the interior of the particle like a penetration front;

that is, there is a time-dependent position in the particle domain

where the concentration tends to zero. This physical reasoning on

the solution behavior may help to develop another scheme for

approximate solution, as we show next, which is applicable to

short times.

Before we develop this new scheme, it is convenient to trans-

form the spherical coordinate problem by applying the following

change of variables:

y ¼ v

x
ð12:18Þ

With this transformation, we have

dy

dx
¼ 1

x

dv

dx
� v

x2
ð12:19aÞ

d

dx
x2

dy

dx

� �
¼ d

dx
x2

1

x

dv

dx
� v

x2

� �� �
¼ x

d2v

dx2
ð12:19bÞFIGURE 12.1 Plots of exact and approximate average

concentrations.

FIGURE 12.2 Exact and approximate concentration profiles.
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and the mass balance equation (Eq. 12.1a) becomes

@v

@t
¼ @2v

@x2
ð12:20Þ

The initial and boundary conditions on v are

t ¼ 0; v ¼ 0 ð12:21Þ

x ¼ 0; y is finite;v � x ð12:22aÞ

x ¼ 1; v ¼ 1 ð12:22bÞ

For the new set of equations in terms of v, we propose the new

polynomial approximate solution for v to take the form

va ¼ a0ðtÞ þ a1ðtÞxþ a2ðtÞx2 ð12:23Þ

where x lies between the penetration front X(t) and the particle

surface (x¼ 1). Since the approximate solution is valid only in

this new subdomain, we need to introduce the following condition

for va at the position X(t)

x ¼ XðtÞ; va ¼ 0 ð12:24Þ

that is, the concentration at the penetration front is zero. Further-

more, since the penetration front is still an unknown at this stage,

we need to define one more equation for the complete formulation

of the approximate problem. This is introduced by assuming that

at the penetration front, X(t), the slope of the profile for va is zero,
that is,

x ¼ XðtÞ; @va
@x

¼ 0 ð12:25Þ

Using the conditions (Eqs. 12.22b, 12.24, and 12.25), and follow-

ing the usual procedure, the approximate solution becomes

va ¼ x� XðtÞ
1� XðtÞ
� �2

ð12:26Þ

where the penetration front X(t) is still an unknown function of

time.

Next, we integrate Eq. 12.20 with respect to x from X(t) to 1

and obtain

d

dt

Z 1

XðtÞ
v dx ¼ @v

dx

� �1
x¼XðtÞ

ð12:27Þ

Now, we assume that the approximate solution, va, satisfies the

integral mass balance relation Eq. 12.27, and we substitute

Eq. 12.26 into Eq. 12.27 to obtain the following differential equa-

tion for the penetration front:

d

dt
1� XðtÞ½ � ¼ 6

1� XðtÞ ð12:28aÞ

The initial condition for the penetration front will be the position

at the particle surface

t ¼ 0; Xð0Þ ¼ 1 ð12:28bÞ

The solution of Eq. 12.28 is clearly seen to be

XðtÞ ¼ 1� 2
ffiffiffiffiffi
3t

p
ð12:29Þ

Knowing the solution for va from Eq. 12.26, the solution for ya is

yaðx; tÞ ¼
1

x

x� XðtÞ
1� XðtÞ
� �2

ð12:30Þ

We can use the polynomial solution to obtain the mean con-

centration

ya ¼
R 1
XðtÞ x

2yadxR 1
0
x2dx

¼ 3

Z 1

XðtÞ
x2yadx

¼ 3

4
½1� XðtÞ�2 þ XðtÞ 1� XðtÞ½ � ð12:31Þ

Substituting the solution for the penetration front (Eq. 12.29)

into Eq. 12.31, we obtain a solution valid for short times

ya ¼ 2
ffiffiffiffiffi
3t

p
� 3t ð12:32Þ

Plots of this approximate solution both for the mean concen-

tration and for the exact solution are shown in Fig. 12.4.

It is seen that the new approximate solution agrees rather well

with the exact solution for short times. It even has the correct
ffiffiffi
t

p
behavior at small time. At very small times, the approximate solu-

tion behaves like

ya � 2
ffiffiffiffiffi
3t

p
¼ 3:4641

ffiffiffi
t

p ð12:33Þ

FIGURE 12.3 Exact concentration profiles at t¼ 0.005, 0.01,

0.015, 0.02, and 0.03.
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which compares well with the exact solution at small times

y � 6ffiffiffi
p

p
� � ffiffiffi

t
p ¼ 3:38514

ffiffiffi
t

p ð12:34Þ

All seems well, but the polynomial approximate solution starts to

fail when the penetration front reaches the center of the particle.

Hence, this polynomial solution is valid only for t less than 1=12
(obtained by setting Eq. 12.29 to zero), at which time the net

uptake is about 75%.

As we have mentioned in the introduction, the polynomial solu-

tion is certainly not unique and depends on choices made early by

the analyst. We have observed that the first approximate solution

(parabolic profile approximation) agrees with the exact solution in

the average sense over the whole time course (reflected by the cross-

over between the two solutions). The second approximation, using

the notion of penetration front, agrees rather well with the exact solu-

tion but fails when uptake is more than 75%. We now present below

another method of finding a polynomial approximation, which may

help to bridge the gap between the previous two solutions.

In this new formulation, we propose an arbitrary power law

expression for the approximate solution (Do and Mayfield 1987)

yaðx; tÞ ¼ a0ðtÞ þ anðtÞxnðtÞ ð12:35Þ
in light of the profiles of the exact solution (Fig. 12.3). Here, the

approximate profile follows a polynomial of degree n and this

degree n is a function of time. From Eq. 12.35, we obtain

yaðtÞ ¼ a0ðtÞ þ 1

3þ nðtÞ
� �

anðtÞ ð12:36aÞ

@ya
@x

� �
x¼1

¼ nðtÞanðtÞ ð12:36bÞ

If we substitute Eq. 12.36 into the integral mass balance equation

(Eq. 12.6), we obtain

dya
dt

¼ 3 3þ nðtÞ½ �ð1� yaÞ ð12:37Þ

Note, so far we have not stipulated a value for the exponent n(t).

This time-dependent function can be estimated by substituting the

exact solution (Eq. 12.3) into Eq. 12.37, yielding the result for n(t)

nðtÞ ¼ 1=3 dyðtÞ=dt½ �
1� yðtÞ � 3 ð12:38Þ

Figure 12.5a shows a behavior of n versus t. It is seen that this

exponent is a very large number when time is small and then it

decreases rapidly and eventually reaches an asymptote of

0.2899. The large number for n at small times is indeed

reflected by the sharp profiles, and when times are larger, the

profiles are more shallow, and this naturally leads to smaller

values for the exponent n.

The asymptote for the exponent n, n1¼ 0.2899, can be easily

derived by comparison with the exact solution (Eq. 12.3). When

times are large, the infinite series on the RHS of Eq. 12.3 can be

truncated to only one term; that is,

yðtÞ � 1� 6

p2
expð�p2tÞ ð12:39Þ

FIGURE 12.5 (a) Plot of n versus t. (b) Plot of n versus

ð1� yÞ=y.

FIGURE 12.4 Plots of the mean concentration versus t.
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Substituting the asymptotic solution into Eq. 12.38, we obtain the

limiting value for n

n1 ¼ p2

3
� 3 ¼ 0:2899 ð12:40Þ

confirming the numerical observation shown in Fig. 12.5.

If we now plot the exponent n versus

ð1� yÞ
y

ð12:41Þ

as shown in Fig. 12.5b, we see that the curve exhibits a linear pat-

tern over most of the domain, except when times are very large.

The linear expression that best represents the linear part of this

plot is

n ¼ aþ b
ð1� yÞ

y
where a ¼ �0:591 and b ¼ 1:9091

ð12:42Þ

When this is inserted into Eq. 12.37, we find

dya
dt

¼ 3 3þ aþ b
1� ya
ya

� �� �
ð1� yaÞ ð12:43aÞ

The initial condition for Eq. 12.43a is

t ¼ 0; ya ¼ 0 ð12:43bÞ

Before we integrate this equation, let us investigate this equation at

small times. At small times, Eq. 12.43a is approximated by

dya
dt

� 3b

ya
ð12:44Þ

of which the solution is

yaðtÞ �
ffiffiffiffiffiffi
6b

p ffiffiffi
t

p ¼ 3:3845
ffiffiffi
t

p ð12:45Þ

This solution has the correct
ffiffiffi
t

p
dependence, and it compares very

well with the exact solution (Eq. 12.4).

Now, we return to the solution of Eq. 12.43, which is finally

ln
1

1� ya

� �
þ b

ð3þ a� bÞ ln
b

bþ ð3þ a� bÞya

� �
¼ 3ð3þ aÞt

ð12:46Þ

Curves for the mean concentrations of the exact and approximate

solutions are shown in Fig. 12.6. Good agreement between these

two solutions is observed over the whole course of practical time-

scales. While the approximate solution is now quite compact, the

form it takes is not explicit in y but only in t, a serious

shortcoming.

EXAMPLE 12.2

A PROBLEMWITH SEMI-INFINITE DOMAIN

We have tested polynomial approximation methods for a finite

spatial domain, using several variations on the polynomial

form. In this example, we will show how the polynomial

approximation can also be carried out on problems having

semi-infinite domain.

We consider again the classical problem of mass or heat

transfer in a semi-infinite domain. Let us consider a mass trans-

fer problem where a gas is dissolved at the interface and then

diffuses into liquid of unlimited extent. Ignoring the gas film

mass transfer resistance, the mass balance equations in nondi-

mensional form are

@y

@t
¼ @2y

@x2
ð12:47Þ

subject to the following initial and boundary conditions

t ¼ 0; y ¼ 0 ð12:48Þ

x ¼ 0; y ¼ 1 ð12:49aÞ

x ! 1; y ¼ 0;
@y

@x
¼ 0 ð12:49bÞ

The timescale (t) is written as the product Dt, where D is dis-

solved gas diffusivity, and x is the actual distance from the

interface. Here, y denotes C=C� where C� is the gas solubility.
The exact solution can be obtained by the combination of vari-

ables (Chapter 10), shown as follows:

y ¼ 1� erf
x

2
ffiffiffi
t

p
� �

¼ erfc
x

2
ffiffiffi
t

p
� �

ð12:50Þ

FIGURE 12.6 Plots of the mean concentration versus t.
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It is useful for comparison purposes to calculate the mass flux at

the gas–liquid interface for exposure t

flux ¼ �D
@C

@x

				
x¼0

¼ 2ffiffiffi
p

p DC�

2
ffiffiffiffiffiffi
Dt

p ¼ C�
ffiffiffiffiffi
D

pt

r

In terms of original variables, this is written

� @y

@x

				
x¼0

¼ 1ffiffiffiffiffiffi
pt

p ð12:51Þ

Similarly, the time average (net) mass transfer into the liquid

medium is

Average mass transfer ¼ 1

te

Z te

0

�D
@C

@x

				
x¼0

� �
dt ¼ 2C�

ffiffiffiffiffiffiffi
D

pte

r

Or, written in terms of te¼Dte, this is

Z te

0

�@y

@x

				
x¼0

dt ¼ 2

ffiffiffiffi
te

p

r
ð12:52Þ

which is the net penetration following exposure time te, since

te¼Dte has units length squared.

In our formulation for the polynomial approximation solution,

we will assume that there is a penetration front moving into the

bulk liquid medium; that is, there is an effective mass transfer

domain where most of the mass diffusion is taking place. Let this

mass penetration front be denoted X(t), then beyond this front,

there will be no dissolved gas; that is,

x � XðtÞ; yaðx; tÞ ¼ 0 ð12:53aÞ

Following the procedure in the last example, we will also intro-

duce the condition that the slope of the concentration profile tends

to zero at the position X(t)

x ¼ XðtÞ; @ya
@x

¼ 0 ð12:53bÞ

Our next step is to convert the differential mass balance equation

in the liquid domain into an integral form. This is accomplished by

integrating Eq. 12.47 with respect to x from the gas–liquid inter-

face (x¼ 0) to the penetration front (x¼X(t)). In so doing, we

find the interesting result:

dy

dt
¼ � @y

@x

� �
x¼0

ð12:54Þ

Here, we have used the Leibnitz rule (Eq. 4.2) for differentiating

under the integral sign, and the condition given by Eq. 12.53a.

The LHS is the rate of change of the mean concentration over the

effective domain of mass transfer. This mean concentration is

defined for Cartesian coordinates as

yðtÞ ¼
Z XðtÞ

0

yðx; tÞ dx ð12:55Þ

Now, we are at the crucial step in the polynomial approximation

technique. We assume that the concentration over the effective

domain of mass transfer is to take the form

yaðx; tÞ ¼ a0ðtÞ þ a1ðtÞxþ a2ðtÞx2 ð12:56Þ

where again the subscript a denotes the approximate solution.

Using the conditions at the gas–liquid interface (Eq. 12.49a)

and at the penetration front (Eq. 12.53), the polynomial approxi-

mation expression can be written as

yaðx; tÞ ¼ 1� x
XðtÞ

� �2
ð12:57Þ

which is a quadratic expression.

Having the form for the polynomial, we now force it to satisfy

the overall mass balance equation (Eq. 12.54); hence, we have the

equation for the penetration front

dXðtÞ
dt

¼ 6

XðtÞ ð12:58aÞ

The initial condition for the penetration front is the position at the

gas–liquid interface, that is,

t ¼ 0; Xð0Þ ¼ 0 ð12:58bÞ

Hence, the solution for the penetration front is

XðtÞ ¼ 2
ffiffiffiffiffi
3t

p
ð12:59Þ

Knowing the solution for the penetration front, the solution for the

concentration profile is obtained from (Eq. 12.57)

yaðx; tÞ ¼ 1� x
2
ffiffiffiffiffi
3t

p
� �2

ð12:60Þ

This concentration profile allows us to obtain the mass flux and the

average mass transfer rate up to time t

� @y

@x

				
x¼0

¼ 1ffiffiffiffiffi
3t

p ð12:61aÞ

Z te

0

� @y

@x

				
x¼0

� �
dt ¼ 2

ffiffiffiffi
te

3

r
ð12:61bÞ

Curves showing y versus t are presented in Fig. 12.7, where the

exact solutions are also shown for comparison. Good agreement

between the two solutions is observed.

Now, we extend the number of terms in the polynomial approx-

imate solution to see if improved accuracy can be obtained. By

keeping four terms, instead of three, the polynomial approxima-

tion solution can be written as

yaðx; tÞ ¼ a0ðtÞ þ a1ðtÞxþ a2ðtÞx2 þ a3ðtÞx3 ð12:62Þ

which is a cubic profile in the effective domain of mass transfer

(0 < x < X(t)).
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Since there are four terms in the polynomial approximation

solution, we shall need one more condition, in addition to the ones

imposed in the last trial (Eqs. 12.49a and 12.53). It is reasonable to

focus on the penetration front again, and we shall take the added

condition

x ¼ XðtÞ; @2ya
@x2

¼ 0 ð12:63Þ

This forces curvature of the profiles to move quickly toward zero.

Using the conditions at the gas–liquid interface and at the pen-

etration front, we finally obtain the following expression for the

concentration profile:

yaðx; tÞ ¼ 1� x
XðtÞ

� �3
ð12:64Þ

Substituting this expression into the integral mass balance equa-

tion (Eq. 12.54), and integrating the result we have the solution for

the penetration front

XðtÞ ¼ 2
ffiffiffiffiffi
6t

p
ð12:65Þ

Therefore, the gradient and penetration are

� @ya
@x

				
x ¼ 0

¼ 3

2
ffiffiffiffiffi
6t

p ð12:66aÞ

Z te

0

� @ya
@x

				
x ¼ 0

� �
dt ¼ 3ffiffiffi

6
p
� � ffiffiffiffi

te
p ð12:66bÞ

It is interesting to see that the quadratic solutions (Eqs. 12.61) are

more accurate than the cubic solutions (Eqs. 12.66). For example,

the percentage relative error between the cubic approximation

solution and the exact solution is 8.6% compared to 2.3% for the

quadratic solutions. This example provides a warning to the ana-

lyst: additional terms may not be worth the effort.

12.2 SINGULAR PERTURBATION

The method of singular perturbation taught in Chapter 6 for

application to ODEs can also be applied to partial differen-

tial equations. The methodology for partial differential equa-

tions is not as straightforward as for ODEs, and ingenuity is

often needed for a successful outcome. We illustrate singular

perturbation in the following example for adsorption in a

porous slab particle with a rectangular (irreversible)

isotherm.

EXAMPLE 12.3

Consider a slab-shaped porous particle into which solute mole-

cules diffuse through the tortuous network of pores. Along their

path of diffusion, they adsorb onto the internal solid surface with

an irreversible rate, modeled as

Rads ¼ kaCðCms � CmÞ ð12:67Þ

where ka is the rate constant for adsorption, C is the solute intra-

particle concentration (mol/cc of fluid volume) in the internal pore

at the position r, Cm is the solute concentration on the surface

(mol/cc of particle volume excluding the fluid volume), and Cms is

its maximum concentration. The units of Rads are moles adsorbed

per unit particle volume, per unit time. The rate expression shows

that uptake ceases as C! 0, and also when the surface is saturated

as Cm ! Cms.

The rate of diffusion of solute molecules through the pore net-

work is assumed to take the following “Fickian” type diffusion

formula

J ¼ �De

@C

@r
ð12:68Þ

where the flux J has the units of mole transported per unit cross-

sectional area per unit time. The diffusion through the pore net-

work is assumed to be the only mode of transport of molecules

into the interior of the particle. In general, the adsorbed molecules

also diffuse along the surface (surface diffusion), but in the present

case we assume that the adsorbed molecules are bound so strongly

on the surface that their mobility can be neglected compared to the

mobility of the free molecules in the pore.

Knowing the rate of adsorption (i.e., the rate of mass removal

from the internal fluid phase) and the rate of diffusion into the

particle, we are now ready to derive a mass balance equation

for the free species in a thin shell having a thickness of Dr at the
position r. The mass balance equation on this thin element is

SJjr � SJjrþDr � SDrRads ¼ @

@t
ðSDreCÞ ð12:69Þ

where the term on the RHS is the accumulation term of the free

species in the element, and the first two terms on the LHS are the

diffusion terms in and out of the element, whereas the last term is

the removal term from the fluid phase. Here, S is the cross-

sectional area, which is constant for slab geometry.

FIGURE 12.7 Plots of mass transfer versus
ffiffiffi
t

p
.
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Dividing Eq. 12.69 by SDr and taking the limit when the ele-

ment shrinks to zero (i.e., Dr! 0), we have the following differen-

tial mass balance equation

e
@C

@t
¼ � @J

@r
� Rads ð12:70Þ

Substituting the flux equation (Eq. 12.68) and the equation for the

adsorption rate (Eq. 12.67) into the above mass balance equation,

we obtain

e
@C

@t
¼ De

@2C

@r2
� kadsCðCms � CmÞ ð12:71Þ

At this point, we recognize the system to be nonlinear, owing to

the adsorption terms. Note, e is the volume fraction fluid.

Equation 12.71 includes the adsorption term, which involves

the concentration of the adsorbed species, Cm. So to complete the

formulation of the mass balance inside the particle, we need to

write the mass balance relation for the adsorbed species. Since we

assume that there is no mobility of the adsorbed species, the mass

balance is basically the balance between the mass uptake and the

accumulation, that is,

@

@t
SDrð1� eÞCm½ � ¼ SDrRads½ � ð12:72Þ

Where (1�e) is volume fraction solid.

Dividing this equation by SDr and using Eq. 12.67, we rewrite

the above equation as

ð1� eÞ @Cm

@t
¼ kadsCðCms � CmÞ ð12:73Þ

Equations 12.71 and 12.73 now completely define the differential

mass balance inside the particle. To know how the concentrations

of both the free species and the adsorbed species evolve, we need

to specify initial and boundary conditions. We assume initially the

particle is free from solute of any form, and the fluid surrounding

the particle is thoroughly stirred so that there is no film mass trans-

fer resistance. Mathematically, these conditions are

t ¼ 0; C ¼ Cm ¼ 0 ð12:74Þ

r ¼ 0;
@C

@r
¼ 0 and r ¼ R; C ¼ C0 ð12:75Þ

where C0 is the constant external bulk concentration and R repre-

sents the distance from the centerline of the slab-shaped particle

whose thickness is 2R.

To eliminate excess baggage, we nondimensionalize the mass

balance equations by defining the following nondimensional varia-

bles and parameters:

y ¼ C

C0

; ym ¼ Cm

Cms
; t ¼ Det

R2 ð1� eÞðCms=C0Þ½ � ; x ¼ r

R

ð12:76Þ

s ¼ eC0

ð1� eÞCms
; m ¼ De

kadsCmsR
2

ð12:77Þ

With these definitions of variables and parameters, the nondimen-

sional mass balance equations take the uncluttered form contain-

ing only two (dimensionless) parameters

sm
@y

@t
¼ m

@2y

@x2
� yð1� ymÞ ð12:78aÞ

m
@ym
@t

¼ yð1� ymÞ ð12:78bÞ

subject to the following nondimensional initial and boundary con-

ditions

t ¼ 0; y ¼ ym ¼ 0 ð12:79Þ

x ¼ 0;
@y

@x
¼ 0 and x ¼ 1; y ¼ 1 ð12:80Þ

Once again, remember that these mass balance equations are non-

linear (because of the nonlinear adsorption expression); hence,

they cannot be solved by direct analytical means. Generally,

numerical methods must be used to solve this problem. However,

when the adsorption rate is much faster than the diffusion rate

(i.e., m� 1), conventional numerical methods will run into some

difficulty owing to instability. This arises because of the steepness

of the profiles generated. To achieve convergence with conven-

tional numerical schemes, a large number of discretization points

must be used for the spatial domain. The fine mesh is necessary to

observe such a very sharp change in the profile.

Perhaps, we can exploit in a positive way the smallness of the

parameter m(m� 1) and use singular perturbation to advantage.

Before we proceed with the formality of the singular perturbation

structure, let us have a look at the remaining parameter, s. We

rewrite this parameter as a capacity ratio

s ¼ eC0

ð1� eÞCms
¼ VeC0

Vð1� eÞCms
ð12:81Þ

where the numerator is the mass holdup in the fluid phase within

the particle and the denominator is the holdup on the adsorbed

phase. In most practical adsorbents this ratio is very small. For

example, the following parameters are typical of a practical gas

phase separation process

e ¼ 0:4; C0 ¼ 0:000001 mol=cc; Cms ¼ 0:001 mol=cc

Using these values, the value of s is 0.000667, which is a very

small number indeed. This means that when the adsorption rate is

much faster than the diffusion rate into the particle, we have two

small parameters at our disposal, m and s.

Now, we can proceed with the delineation of the formal struc-

ture for a singular perturbation approach. For given x and t, we

write y and ym as asymptotic expansions, and the first few terms are

yðx; t;m; sÞ ¼ y0ðx; tÞ þ my1ðx; tÞ þ oðmÞ ð12:82aÞ

ymðx; t;m; sÞ ¼ ym0ðx; tÞ þ mym1ðx; tÞ þ oðmÞ ð12:82bÞ
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We next substitute these expansions into Eqs. 12.78 and then

observe the order of magnitude of all terms. This leads to a

sequence of infinite subproblems. We write below the first two sub-

problems

Oð1Þ : y0ð1� ym0Þ ¼ 0 ð12:83Þ

OðmÞ : @2y0
@x2

� y1ð1� ym0Þ þ y0ym1 ¼ 0 ð12:84aÞ

@ym0
@t

¼ y1ð1� ym0Þ � y0ym1 ð12:84bÞ

Equation 12.83 is the leading order (or zero-order) subproblem, and

Eqs. 12.84 are first-order subproblems. We start with the leading

order problem. Inspecting Eq. 12.83, we note that there are two

possibilities (i.e., two solutions). One solution is

y10 ¼ 0 and y1m0 6¼ 1 ð12:85Þ

and the other is

y110 6¼ 0 and y11m0 ¼ 1 ð12:86Þ

The existence of the two solutions simply means that the spatial

domain (0,1) must be divided into two subdomains, and each solu-

tion is valid only in one such subdomain. If we stipulate a demarca-

tion point dividing these two subdomains as X(t), the two

subdomains are (0, X(t)) and (X(t), 1). Since the supply of solute

comes from the exterior surface of the particle, it is obvious that the

solution set (set 1) having zero intraparticle fluid concentration must

be applicable in the subdomain (0, X(t)), which is the inner core.

The other solution set having the saturation adsorbed phase concen-

tration Cms (ym0¼ 1) is valid in the subdomain (X, 1), which is the

outer shell. Figure 12.8 illustrates graphically these subdomains.

Let us consider the subdomain (0, X) first. We replace the set

applicable to this domain (Eq. 12.85) into the first-order sub-

problem Eqs. 12.84, and obtain

@y1m0
@t

¼ 0 ð12:87Þ

This, with the zero initial condition Eq. 12.79, simply implies that

y1m0 ¼ 0 ð12:88Þ

Thus, the leading order solutions in the subdomain (0, X)

(Eqs. 12.85 and 12.88) suggest that in the inner core of the parti-

cle, there is no solute of any form, either in the free or in the

adsorbed state.

Now, we turn to the other subdomain (X, 1), the outer shell.

Substitute Eq. 12.86 into the first-order subproblem Eqs. 12.84,

and obtain

@2y110
@x2

¼ 0 for x 2 ðXðtÞ; 1Þ ð12:89Þ

This equation, when written in dimensional form, is

De

@2C

@r2
¼ 0 for x 2 ðXðtÞ; 1Þ ð12:90Þ

This equation simply states that in the outer subdomain the move-

ment of the free species is controlled purely by diffusion. This is

so because the outer subdomain is saturated with adsorbed species

(ym0¼ 1) and there is no further adsorption taking place in this

subdomain. Hence, free molecules diffuse through this outer shell

without any form of mass retardation.

To solve Eq. 12.89, we must impose boundary conditions. One

condition is that at the exterior particle surface where y(1, t)¼ 1

(Eq. 12.80) and the other must be at the demarcation position,

X(t). Since we know that the concentration of the free species is

zero in the inner core, the appropriate boundary condition at this

demarcation position is modeled as

x ¼ XðtÞ; y110 ¼ 0 ð12:91Þ

Solution of Eq. 12.89 subject to boundary conditions, Eqs. 12.80

and 12.91, is obtained by successive integration to be

y110 ¼ a0ðtÞxþ a1ðtÞ

hence, when the boundary conditions are applied, we finally obtain

y110 ¼ x� XðtÞ
1� XðtÞ for x 2 ðXðtÞ; 1Þ ð12:92Þ

Thus far, we know that the domain is broken up into two subdo-

mains and the solutions for these two subdomains are given in

Eqs. 12.85, 12.86, 12.88 and 12.92 as a function of the demarca-

tion position, X(t). At this stage, we have no knowledge regarding

the form X(t) must take. Even if we solve more higher order sub-

problems, we will not obtain any information about the demarca-

tion function X(t). The movement of this front is dictated by

adsorption, which occurs only in the neighborhood of the demar-

cation position (the so-called adsorption front), and the solutions

obtained so far are not valid when we are close to the adsorption

front. These solutions (Eqs. 12.85, 12.86, 12.88 and 12.92) are,

therefore, called the outer solutions because they are strictly valid

only in regions far removed from the point X(t).FIGURE 12.8 Schematic diagram of the two subdomains.
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To reveal the behavior near the adsorption front, we must

enlarge the spatial scale around that front. This can be achieved by

stretching (or magnifying) the spatial scale around this point as

j ¼ ½x� XðtÞ�
mg

ð12:93Þ

where j is called the inner variable and mg represents the relative

thickness of the adsorption front.

Thus, to obtain the relevant equations applicable in the neigh-

borhood of the adsorption front, we need to make the variables

transformation

ðx; tÞ ! ðj; tÞ ð12:94Þ

In the manner of Chapter 10, we write the total derivative

dy ¼ @y

@j

� �
t

djþ @y

@t

� �
j

dt ¼ @y

@x

� �
t

dxþ @y

@t

� �
x

dt ð12:95Þ

and by equating like coefficients where

dj ¼ 1

mg
dx� dX

dt

dt

mg

and taking the front velocity as

Z ¼ dX

dt

we obtain

@y

@t

� �
x

¼ @y

@t

� �
j

� 1

mg
ZðtÞ @y

@j

� �
t

ð12:96aÞ

@ym
@t

� �
x

¼ @ym
@t

� �
j

� 1

mg
ZðtÞ @ym

@j

� �
t

ð12:96bÞ

and for the second derivative

@2y

@x2

� �
t

¼ 1

m2g

@2y

@j2

� �
t

ð12:96cÞ

The velocity of the wave front

ZðtÞ ¼ dXðtÞ
dt

ð12:96dÞ

is not necessarily constant.

Substituting Eqs. 12.96 into Eqs. 12.78 to effect the transfor-

mation, we obtain the following equations that are valid in the

neighborhood of the adsorption front

�sm1�gZðtÞ @y
@j

þ sm
@y

@t
¼ m1�2g @

2y

@j2
� yð1� ymÞ ð12:97aÞ

�m1�gZðtÞ @ym
@j

þ m
@ym
@t

¼ yð1� ymÞ ð12:97bÞ

where we have dropped the subscripts j and t from the partial

derivatives for the sake of simplicity of notation.

In the neighborhood of the adsorption front, the concentration

of the free species is very low and the concentration of the

adsorbed species varies from unity in the outer shell to zero in the

inner core (see Fig. 12.9 for the behavior of the inner solutions).

Thus, we will assume that the inner solutions have the asymptotic

expansions

yðiÞ ¼ ml½yðiÞ0 þ oðmÞ� ð12:98aÞ

yðiÞm ¼ y
ðiÞ
m0 þ oðmÞ ð12:98bÞ

If we substitute these expansions into Eq. 12.97, we then obtain

the equations

�sm1�gþlZðtÞ @y
ðiÞ
0

@j
þ sm1þl @y

ðiÞ
0

@t
¼ m1�2gþl @

2y
ðiÞ
0

@j2
� mly

ðiÞ
0 ð1� y

ðiÞ
m0Þ

ð12:99aÞ

�m1�gZðtÞ @y
ðiÞ
m0

@j
þ m

@y
ðiÞ
m0

@t
¼ mly

ðiÞ
0 ð1� y

ðiÞ
m0Þ ð12:99bÞ

If we now match the diffusion term (the first term on the RHS of

Eq. 12.99a) with the adsorption term (the second term), and match

the accumulation of the adsorbed species with the adsorption term

in Eq. 12.99b, we obtain the two equations for g and l

1� 2g þ l ¼ l ð12:100aÞ

1� g ¼ l ð12:100bÞ

This results in

l ¼ g ¼ 1
2

ð12:101Þ

FIGURE 12.9 Behavior of the inner solutions.
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This result implies that the thickness of the adsorption front is

on the order of m0.5. With these values of l and g, Eqs. 12.99 then

become

�smZðtÞ @y
ðiÞ
0

@j
þ sm3=2 @y

ðiÞ
0

@t
¼ m1=2 @

2y
ðiÞ
0

@j2
� m1=2y

ðiÞ
0 ð1� y

ðiÞ
m0Þ

ð12:102aÞ

�m1=2ZðtÞ @y
ðiÞ
m0

@j
þ m

@y
ðiÞ
m0

@t
¼ m1=2y

ðiÞ
0 ð1� y

ðiÞ
m0Þ ð12:102bÞ

from which we can obtain the leading order subproblem for the

inner solutions

@2y
ðiÞ
0

@j2
� y

ðiÞ
0 ð1� y

ðiÞ
m0Þ ¼ 0 ð12:103aÞ

�ZðtÞ @y
ðiÞ
m0

@j
¼ y

ðiÞ
0 ð1� y

ðiÞ
m0Þ ð12:103bÞ

Eliminating the nonlinear adsorption terms between Eqs. 12.103a

and 12.103b, we obtain

�ZðtÞ @y
ðiÞ
m0

@j
¼ @2y

ðiÞ
0

@j2
ð12:104Þ

To find the conditions for the inner solutions, we have to match

with the outer solutions in the limits of j approaching to þ1
(matching with the outer solutions in the outer shell) and to �1
(matching with the outer solutions in the inner core). Proceeding

with the matching, we obtain the following conditions for the inner

solutions (see Fig. 12.9)

j ! 1; y
ðiÞ
m0 ¼ 1;

@y
ðiÞ
0

@j
¼ @y110

@x
¼ 1

1� XðtÞ ð12:105aÞ

j ! �1; y
ðiÞ
m0 ¼ 0;

@y
ðiÞ
0

@j
¼ 0 ð12:105bÞ

Integrating Eq. 12.104 with respect to j from �1 to þ1 and

using the boundary conditions (12.105), we obtain the following

ordinary differential equation for the adsorption front position, X(t):

dXðtÞ
dt

¼ � 1

1� XðtÞ ð12:106Þ

The initial condition of this adsorption front will be at the particle

exterior surface

t ¼ 0; Xð0Þ ¼ 1 ð12:107Þ

Therefore, the adsorption position as a function of time can be

obtained as integration of Eq. 12.106

XðtÞ ¼ 1�
ffiffiffiffiffi
2t

p
ð12:108Þ

Knowing this front as a function of time, the fractional amount

adsorbed up to time t is simply

F ¼
Z 1

XðtÞ
ymdx ¼

ffiffiffiffiffi
2t

p
for t 2 0; 1

2

� � ð12:109Þ

Equation 12.109 is plotted in Fig. 12.10. Also shown in the figure

are the numerical calculations using the orthogonal collocation

method (to be discussed in the next section). It is remarkable to

see that the singular perturbation result agrees extremely well

with the numerically exact solution even with m¼ 0.01. Note that

the thickness of the neighborhood of the adsorption front is m1/2.

In Fig. 12.10, we also show the comparison between the singular

perturbation solution and the numerically exact solution for

m¼ 0.1. The agreement is not as satisfactory as the previous case.

Additional computations show good agreement when m¼ 0.001.

Thus, the singular perturbation result is quite reasonable when m

is less than 0.01.

We have shown an example of the application of the singular

perturbation technique to PDE. Obviously, even for this simple

example, the application still requires some knowledge of the solu-

tion behavior. Its application is not as straightforward as that for

FIGURE 12.10 Plots of uptake versus time.
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ODEs, but we present it here for the serious readers who may have

practical problems in setting up the procedure. More often than

not, when an analytical means is not available to solve the prob-

lem, we suggest that numerical methods should be tried first to get

an overall picture of the system behavior. Often, this leads to

enough insight to try an analytical approach such as singular per-

turbation. The rewards for analytical methods are simplicity and

compactness, which are highly valued in the scientific community.

Numerical procedures, as we show presently, pose little diffi-

culty when nondimensional parameters are of order of unity. How-

ever, some difficulty in convergence arises when parameters

become small or large. In this case, the singular perturbation

method can be tried to isolate the sharpness of the solution behav-

ior. It is difficult to imagine, however, that numerical methods

could ever lead to the simple result XðtÞ ¼ 1� ffiffiffiffiffi
2t

p
.

We end this chapter by noting that the application of the singu-

lar perturbation method to partial differential equations requires

more ingenuity than its application to ODEs. However, as in the

case of ODEs, the singular perturbation solutions can be used as a

tool to explore parametric dependencies and, as well, as a valuable

check on numerical solutions. The book by Cole (1968) provides a

complete and formal treatment of partial differential equations by

the singular perturbation method.

12.3 FINITE DIFFERENCE

The finite-difference method is one of the oldest methods to

handle differential equations. Like the orthogonal colloca-

tion method discussed in Chapter 8, this technique involves

the replacement of continuous variables, such as y and x,

with discrete variables, that is, instead of obtaining a solu-

tion that is continuous over the whole domain of interest,

the finite-difference method will yield values at discrete

points, chosen by the analyst.

In the finite-difference method, a derivative at a discrete

point, say point xj, is evaluated using the information about

discrete variables close to that point xj (local information).

This is in contrast to the orthogonal collocation method for

which a derivative is evaluated by using information from

all discrete variables. This is the reason why the collocation

method is more stable than the finite-difference procedure.

However, the finite-difference technique, owing to the fact

that it utilizes only the local information, is readily applied

to handle many problems of awkward geometry. As long as

the grid size is properly chosen, the finite-difference

approach leads to stable solutions. This section will

describe the procedure for the finite-difference representa-

tion in solving differential equations.

Let us consider the Taylor series of a function y(xþDx)
evaluated around the point x, as

yðxþ DxÞ ¼ yðxÞ þ dyðxÞ
dx

Dxþ d2yðxÞ
dx2

ðDxÞ2 þ 	 	 	
ð12:110Þ

Now, if the second and higher order terms are ignored, we

have

dyðxÞ
dx

� yðxþ DxÞ � yðxÞ
Dx

ð12:111Þ

which simply states that the slope of the function y at point

x is approximated by the slope of the line segment joining

between two points (x, y(x)) and (xþDx, y(xþDx)). Thus,
the first derivative is calculated using the local discrete

points, and this formula is correct to the first order since the

first term omitted in Eq. 12.110 is in the order of (Dx)2.
Similarly, if we expand the function y(x�Dx) around

the point x using the Taylor series method, we would obtain

the formula

yðx� DxÞ ¼ yðxÞ � dyðxÞ
dx

Dxþ d2yðxÞ
dx2

ðDxÞ2 þ 	 	 	
ð12:112Þ

Again, when the second and higher order terms are ignored,

the first derivative can be calculated from another formula,

using discrete points (x, y(x)) and (x�Dx, y(x�Dx)), as

dyðxÞ
dx

� yðxÞ � yðx� DxÞ
Dx

ð12:113Þ

Like Eq. 12.111, this approximation of the first derivative at

the point x requires only values close to that point.

Another formula for approximating the first derivative

can be obtained by subtracting Eq. 12.110 from 12.112;

we obtain

dyðxÞ
dx

� yðxþ DxÞ � yðx� DxÞ
2Dx

ð12:114Þ

This formula is more accurate than the last two (Eqs.

12.111 and 12.113) because the first term truncated in

deriving this equation contains (Dx)2, compared to (Dx) in
the last two formulas.

To obtain the discrete formula for the second derivative,

we add Eq. 12.110 and 12.112 and ignore the third-order

and higher order terms to obtain

d2yðxÞ
dx2

� yðxþ DxÞ � 2yðxÞ þ yðx� DxÞ
ðDxÞ2 ð12:115Þ

The first term truncated in deriving this formula contains

(Dx)2; hence, the error for this formula is comparable to

Eq. 12.114 obtained for the first derivative.

We can proceed in this way to obtain higher order deriv-

atives, but only first and second derivatives are needed to

handle most engineering problems. For cylindrical and

spherical coordinates, the shifted position procedure in
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Problem 12.8 shows how to deal with the Laplacian

operators.

12.3.1 Notations

To simplify the analysis, it is convenient to define a few

shorthand notations just as we did in the other techniques.

We have shown in Chapter 8 that, without loss of generality,

the spatial domain can be taken to be [0, 1] as any domain

[a, b] can be readily transformed to [0, 1].

Let the domain be divided into N equal intervals with the

length of each interval, called the grid size, given as

Dx ¼ 1

N

We define the point i as the point having the coordinate

i(Dx), and denote that point xi; that is,

xi ¼ iðDxÞ for i ¼ 0; 1; 2; . . . ;N

This means x0 ¼ 0; xN ¼ 1; xiþ1 ¼ ði þ 1ÞDx; xi�1 ¼
ði � 1ÞDx, etc.

The variable y corresponding to the point xi is denoted as

yi; that is, y(xi)¼ yi. In terms of these shorthand notations,

the three previous formulas for approximating first deriva-

tives are, respectively,

dy

dx

� �
i

� yiþ1 � yi
Dx

ð12:116aÞ

dy

dx

� �
i

� yi � yi�1

Dx
ð12:116bÞ

dy

dx

� �
i

� yiþ1 � yi�1

2Dx
ð12:116cÞ

and the approximating formula for the second derivative is

d2y

dx2

� �
i

� yiþ1 � 2yi þ yi�1

ðDxÞ2 ð12:117Þ

Equations 12.116a and b are first-order correct, whereas the

last two are second-order correct.

12.3.2 Essence of the Method

It is best to illustrate the essence of the method by way of a

simple example. An iterative solution is sought which, in

the limit of small grid size, should converge very closely to

the exact solution.

EXAMPLE 12.4

Let us start with the elementary second-order differential equation

d2y

dx2
� 2

dy

dx
� 10y ¼ 0 for 0 < x < 1 ð12:118Þ

This relation can be used to describe a chemical reaction occurring

in a fixed bed. The equation, of course, can be handled by tech-

niques developed in Chapters 2 and 3, but we will solve it numeri-

cally for the purpose of demonstration.

We first divide the domain into N intervals, with the grid size

being Dx¼ 1=N. The ith point is the point having the coordinate

i(Dx). Eq. 12.118 is valid at any point within the domain [0,1];

thus, if we evaluate it at the point xi, we have

d2y

dx2

				
xi

�2
dy

dx

				
xi

� 10yjxi ¼ 0 ð12:119Þ

Using the discrete formula for the first and second derivatives,

(Eqs. 12.116c and 12.117), which are both second-order correct,

we obtain

yiþ1 � 2yi þ yi�1

ðDxÞ2 � 2
yiþ1 � yi�1

2Dx
� 10yi ¼ 0 ð12:120aÞ

Simplifying this equation gives the finite-difference equation

ayi�1 � byi � gyiþ1 ¼ 0 ð12:120bÞ

where

a ¼ 1

ðDxÞ2 þ
1

Dx
; b ¼ 2

ðDxÞ2 þ 10; g ¼ 1

Dx
� 1

ðDxÞ2
ð12:120cÞ

This discrete equation (Eq. 12.120b) can be solved using the cal-

culus of finite difference (Chapter 5), to give a general solution in

terms of arbitrary constants.1 Boundary conditions are necessary

to complete the problem, if we wish to develop an iterative solu-

tion. The remainder of the procedure depends on the form of the

specified boundary conditions. To show this, we choose the fol-

lowing two boundary conditions:

x ¼ 0; y ¼ 1 ð12:121Þ

x ¼ 1;
dy

dx
¼ 0 ð12:122Þ

1 This finite difference equation has the general analytical solution

yi ¼ Aðr1Þi þ Bðr2Þi

where

r1:2 ¼ �b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4ag

p
2g
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where the boundary condition at x¼ 0 involves the specification of

the value of y while the other involves the first derivative.

Evaluating Eq. 12.120b at the point x1 (i.e., the first point next

to the left boundary) would give

ay0 � by1 � gy2 ¼ 0

But since we specify the value of y at x¼ 0 as y0¼ 1, the above

equation will become

�by1 � gy2 ¼ �a ð12:123Þ

To deal with the other boundary condition at x¼ 1, we apply the

second-order correct approximation for the first derivative at

x¼ 1; that is, Eq. 12.122 becomes

yNþ1 � yN�1

2Dx
� 0 ; yNþ1 � yN�1

Note that the point yNþ1 is a fictitious point, since it is outside the

domain of interest.

Evaluating Eq. 12.120b at i¼N (i.e., at the boundary)

will yield

ayN�1 � byN � gyNþ1 ¼ 0

but since yNþl¼ yN�l, the previous equation will become

ða� gÞyN�1 � byN ¼ 0 ð12:124Þ

Thus, our finite-difference equations are Eq. 12.123, Eq. 12.120b

for i¼ 2,3, . . . , N� 1, and Eq. 12.124, totalling N equations,

and we have exactly N unknown discrete variables to be found

(y1, y2, . . . , yN). Since the starting equation we choose is linear,

the resulting set of N equations are linear algebraic equations,

which can be handled by the usual matrix methods given in

Chapter 2. The matrix formed by this set of linear equations has a

special format, called the tridiagonal matrix, which will be consid-

ered in the next section.

To summarize the finite-difference method, all we

have to do is to replace all derivatives in the equation to

be solved by their appropriate approximations to yield a

finite-difference equation. Next, we deal with boundary

conditions. If the boundary condition involves the specifi-

cation of the variable y, we simply use its value in the

finite-difference equation. However, if the boundary con-

dition involves a derivative, we need to use the fictitious

point that is outside the domain to effect the approxima-

tion of the derivative as we did in the above example at

x¼ 1. The final equations obtained will form a set of

algebraic equations that are amenable to analysis by

methods such as those in Appendix A. If the starting

equation is linear, the finite-difference equation will be

in the form of tridiagonal matrix and can be solved by

the Thomas algorithm presented in the next section.

12.3.3 Tridiagonal Matrix and the Thomas Algorithm

The tridiagonal matrix is a square matrix in which all ele-

ments, not on the diagonal line, and the two lines adjacent

and parallel to the diagonal line are zero. Elements on these

three lines may or may not be zero. For example, a 7� 7

tridiagonal matrix will have the following format

þ þ 0 0 0 0 0

þ þ þ 0 0 0 0

0 þ þ þ 0 0 0

0 0 þ þ þ 0 0

0 0 0 þ þ þ 0

0 0 0 0 þ þ þ
0 0 0 0 0 þ þ

2
666666666666664

3
777777777777775

ð12:125Þ

with the symbol þ denoting value that may or may not

be zero.

With this special form of the tridiagonal matrix, the

Thomas algorithm (Von Rosenberg 1969) can be used to

effect a solution. The algorithm for a square N�N tridiago-

nal matrix is simple and is given as follows.

The equations are

aiyi�1 þ biyi þ ciyiþ1 ¼ di for 1 < i < N

with a1 ¼ cN ¼ 0

Step 1: Compute

bi ¼ bi � aici�1=bi�1 with b1 ¼ b1

g i ¼ ðdi � aig i�1Þ=bi with g1 ¼ d1=b1

Step 2: The values of the dependent variables are calcu-

lated from

yN ¼ gN and yi ¼ g i � ciyiþ1=bi

Now, coming back to the problem at hand in the last sec-

tion, let us choose five intervals; that is, N¼ 5 and Dx
¼ 1/5¼ 0.2. The five linear equations are (written in

matrix form)

�b �g 0 0 0

a �b �g 0 0

0 a �b �g 0

0 0 a �b �g

0 0 0 ða� gÞ �b

2
66666664

3
77777775
	

y1

y2

y3

y4

y5

2
66666664

3
77777775
¼

�a

0

0

0

0

2
66666664

3
77777775

ð12:126Þ
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The first equation comes from the boundary condition

at x¼ 0 (Eq. 12.123), the next four come from

Eq. 12.120b, and the last comes from the boundary con-

dition at x¼ 1 (Eq. 12.124). Solving this set of equations

using the Thomas algorithm just presented will yield

solutions for discrete values y1 to y5. Table 12.1 shows

these approximate values and the exact solution, which

is obtained using complementary solution methods

taught in Chapter 2:

y ¼ r2e
r2er1x � r1e

r1er2x

r2er2 � r1er1
; r1;2 ¼ 1


ffiffiffiffiffi
11

p
ð12:127Þ

An increase in the number of intervals (smaller grid size)

will yield approximate solutions closer to the exact solu-

tion, as one may expect.

12.3.4 Linear Parabolic Partial Differential Equations

The preliminary steps for solving partial differential equa-

tions by finite-difference methods is similar to the last sec-

tion. We shall now illustrate this for parabolic partial

differential equations.

EXAMPLE 12.5

Let us start with a linear equation written in nondimensional

form as

@y

@t
¼ @2y

@x2
ð12:128aÞ

x ¼ 0; y ¼ 1 ð12:128bÞ

x ¼ 1; y ¼ 0 ð12:128cÞ
This equation describes many transient heat and mass transfer pro-

cesses, such as the diffusion of a solute through a slab membrane

with constant physical properties. The exact solution, obtained

by the Laplace transform, separation of variables (Chapter 10), or

the finite integral transform (Chapter 11), is given as

y ¼ 1� x� 2

p

X1
n¼1

sinðnpxÞ
n

e�n2p2t ð12:129Þ

We will use this exact solution later for evaluating the efficiency of

the finite-difference solutions.

First, we divide the membrane spatial domain into N equal

intervals with the grid size being Dx¼ 1=N. Next, evaluating
Eq. 12.128a at N� 1 interior points (i.e., points within the

domain), we have

@yi
@t

¼ @2y

@x2

				
xi

� yiþ1 � 2yi þ yi�1

ðDxÞ2 for i ¼ 1; 2; . . . ;N � 1

ð12:130Þ
in which we have used Eq. 12.117 for the approximation of the

second partial derivative. Note that xi¼ i(Dx) and yi¼ y(xi).

Since the values of y at the boundary points are known in this

problem (i.e., y0¼ 1 and yN¼ 0), the above equation written for

i¼ 1 and i¼N� 1 will become

@y1
@t

� y2 � 2y1 þ 1

ðDxÞ2 ð12:131Þ

@yN�1

@t
� �2yN�1 þ yN�2

ðDxÞ2 ð12:132Þ

Thus, Eq. 12.131, Eq. 12.130 for i¼ 2, 3, . . . , N� 2, and Eq.

12.132 will form a set of N� 1 equations with N� 1 unknowns

(y1, y2, . . . , yN�1). This set of coupled ordinary differential equa-

tions can be solved by any of the integration solvers described in

Chapter 7. Alternatively, we can apply the same finite-difference

procedure to the time domain, for a completely iterative solution.

This is essentially the Euler, backward Euler, and the Trapezoidal

rule discussed in Chapter 7, as we shall see.

We use the grid size in the time domain as Dt and the index j to

count the time, such that

tj ¼ jðDtÞ ð12:133Þ
The variable at the grid point xi and at the time tj is denoted as yi,j.

The N� 1 ordinary differential equations (Eqs. 12.130, 12.131,

and 12.132) are valid at times greater than 0; thus, evaluating those

equations at an arbitrary time tj would give the approximations for

time derivative as

@y1; j
@t

� y2; j � 2y1; j þ 1

ðDxÞ2 ð12:134aÞ

@yi;j
@t

� yiþ1; j � 2yi;j þ yi�1; j

ðDxÞ2 for i ¼ 2; 3; . . . ; N � 2

ð12:134bÞ

@yN�1; j

@t
� �2yN�1; j þ yN�2; j

ðDxÞ2 ð12:134cÞ

If we use the forward difference in time (an analogue to

Eq. 7.72) as

@yi; j
@t

� yi; jþ1 � yi; j

Dt
ð12:135Þ

TABLE 12.1 Comparison Between the Approximate and the

Exact Solutions

x yapprox yexact Relative Error%

0.2 0.635135 0.630417 0.75

0.4 0.405405 0.399566 1.46

0.6 0.263514 0.258312 2.01

0.8 0.182432 0.178912 1.97

1.0 0.152027 0.151418 0.40
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then Eq. 12.134 will become

y1; jþ1 � y1; j

Dt
� y2;j � 2y1; j þ 1

ðDxÞ2 ð12:136aÞ

yi;jþ1 � yi;j

Dt
� yiþ1; j � 2yi;j þ yi�1; j

ðDxÞ2
for i ¼ 2; 3; . . . ; N � 2

ð12:136bÞ

yN�1; jþ1 � yN�1; j

Dt
� �2yN�1; j þ yN�2;j

ðDxÞ2 ð12:136cÞ

All the values of y at the jth time are known, and hence, the previ-

ous equation can be written explicitly in terms of the unknown

yi, jþ1 at the time tjþ1 as

y1; jþ1 �
Dt

ðDxÞ2 ðy2;j þ 1Þ þ 1� 2Dt

ðDxÞ2
" #

y1; j ð12:137aÞ

yi; jþ1 �
Dt

ðDxÞ2 ðyiþ1; j þ yi�1; jÞ þ 1� 2Dt

ðDxÞ2
" #

yi;j

for i ¼ 2; 3; . . . ;N � 2 ð12:137bÞ

yN�1; jþ1 �
Dt

ðDxÞ2 yN�2;j þ 1� 2Dt

ðDxÞ2
" #

yN�1; j ð12:137cÞ

To solve this set of equations, we need initial conditions. Let us

assume that the membrane is initially solute free. Hence, the initial

conditions for this discrete set of variables are

yi;0 ¼ 0 for i ¼ 1; 2; . . . ;N � 1 ð12:138Þ

All the terms on the right-hand side of Eq. 12.137 are known, and

hence, this makes the forward difference in time rather attractive.

However, as in the Euler method (Chapter 7), this forward differ-

ence scheme in time suffers the same handicap, that is, it is

unstable if the grid size is not properly chosen. Using the stability

analysis (von Rosenberg 1969), the criterion for stability (see

Problem 12.12) is

Dt

ðDxÞ2 �
1

2
ð12:139Þ

which plays a similar role as the condition hl < 2 for the explicit

Euler method of Chapter 7. This restriction is quite critical, since

to reduce the error in the x domain (i.e., the profile at a given time)

the grid size Dx must be small; therefore, the time step size to sat-

isfy the above criterion must also be small for stability.

To resolve the problem of stability, we approach the problem in

the same way as we did in the backward Euler method. We evalu-

ate Eq. 12.130 at the unknown time level tjþ1 and use the follow-

ing backward difference formula for the time derivative term

(which is first-order correct)

@yi;jþ1

@t
� yi;jþ1 � yi;j

Dt
ð12:140Þ

we obtain

yi;jþ1 � yi;j

Dt
� yiþ1; jþ1 � 2yi;jþ1 þ yi�1; jþ1

ðDxÞ2
for i ¼ 1; 2; . . . ;N � 1 ð12:141Þ

Rearranging this equation in the form of the tridiagonal matrix, we

have

yi�1; jþ1 � 2þ ðDxÞ2
Dt

" #
yi;jþ1 þ yiþ1; jþ1 ¼ �ðDxÞ2

Dt
yi;j ð12:142Þ

for i¼ 1,2,3, . . . , N� 1.

When i¼ 1, the above equation can be written as

� 2þ ðDxÞ2
Dt

" #
y1; jþ1 þ y2;jþ1 ¼ �ðDxÞ2

Dt
y1; j � 1 ð12:143Þ

in which we have made use of the boundary condition (12.128b);

that is,

y0;j ¼ 1 for all j ð12:144Þ

Similarly, for i¼N� 1, we have

yN�2;jþ1 � 2þ ðDxÞ2
Dt

" #
yN�1; jþ1 ¼ �ðDxÞ2

Dt
yN�1; j ð12:145Þ

in which we have made use of the other boundary condition at

x¼ 1; that is,

yN;j ¼ 0 for all j ð12:146Þ

If we arrange the derived finite-difference equations in the order

Eq. 12.143, Eq. 12.142 for i¼ 2,3, . . . , N� 2, and Eq. 12.145,

they will form a set of equations in tridiagonal form, which can be

solved by the Thomas algorithm presented in Section 12.3.3. Com-

paring these equations with the equation format for the Thomas

algorithm, we must have

ai ¼ 1; bi ¼ � 2þ ðDxÞ2
Dt

" #
; ci ¼ 1 ð12:147aÞ

di ¼ �ðDxÞ2
Dt

yi;j � di1; a1 ¼ 0; cN�1 ¼ 0 ð12:147bÞ

where di1 is the Kronecker delta function. With this new scheme of

backward in time (similar to the backward Euler method), there

will be no restriction on the size of Dt for stability (see Problem

12.13). Since it is stable, one can choose the step size of any
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magnitude to minimize the truncation error. As we have discussed

in Chapter 7, even though the backward Euler method is very sta-

ble, the formula used in the approximation of the time derivative is

only first-order correct (Eq. 12.140). So, we shall need a better

scheme, which will utilize the second-order correct formula for

the time derivative.

The second-order correct formula for the time derivative is

derived by using the Taylor series of y(t þ Dt) around the point

t þ Dt=2 shown as

yðtþ DtÞ � yðtþ Dt=2Þ þ @y

@t

� �
tþDt=2

Dt

2
þ 1

2!

@2y

@t2

� �
tþDt=2

Dt
2


 �2
þ 	 	 	

ð12:148aÞ

Similarly, we can write for any function y(t) as a Taylor series

expansion around the time (t þ Dt=2)

yðtÞ � yðtþ Dt=2Þ � @y

@t

� �
tþDt=2

Dt

2
þ 1

2!

@2y

@t2

� �
tþDt=2

Dt

2

� �2

þ 	 	 	

ð12:148bÞ

Subtracting these two equations will yield the following equation

for the approximation of the time derivative at the time

tjþ1=2ðtjþ1=2 ¼ tþ Dt=2Þ:

@y

@t

� �
tjþ1=2

� yjþ1 � yj

Dt
ð12:149Þ

The first term omitted in the previous formula contains (Dt)2; thus,
the formula is of second-order correct. This approximation is the

famous Crank and Nicolson equation (Crank and Nicolson 1947).

Now let us evaluate the mass balance equation (Eq. 12.128a) at

the time tjþl/2 and use the above formula for the approximation of

the time derivative, we have

yi;jþ1 � yi;j

Dt
� @2y

@x2

� �
i;jþ1=2

ð12:150Þ

The second derivative on the RHS, if approximated by the proce-

dure derived in the last two methods, will be given by

@2y

@x2

� �
i; jþ1=2

� yi�1; jþ1=2 � 2yi; jþ1=2 þ yiþ1; jþ1=2

ðDxÞ2 ð12:151Þ

The values of y at tjþ1/2 are not what we are after. What we want

are y at tjþ1 in terms of what we already know at tj. To get around

this, we assume that the step size is sufficiently small such that the

following arithmetic mean for the second-order spatial derivative

is applicable

@2y

@x2

� �
i; jþ1=2

� 1

2

@2y

@x2

� �
i; j

þ @2y

@x2

� �
i; jþ1

" #
ð12:152Þ

This is very similar to the trapezoidal rule taught in Chapter 7.

Using Eq. 12.117 for the approximation of the second deriva-

tive, Eq. 12.152 becomes

@2y

@x2

� �
i;jþ1=2

� 1

2

yiþ1;j � 2yi;j þ yi�1;j

ðDxÞ2 þ yiþ1;jþ1 � 2yi;jþ1 þ yi�1;jþ1

ðDxÞ2
" #

ð12:153Þ
Next, substitute this equation into Eq. 12.150, and we have

yi;jþ1 � yi;j

Dt
� 1

2

yiþ1;j � 2yi;j þ yi�1;j

ðDxÞ2 þ yiþ1;jþ1 � 2yi;jþ1 þ yi�1;jþ1

ðDxÞ2
" #

ð12:154Þ
This equation is now second-order correct in both x and t.

Remember that all values of y at the jth time step are known and

so we can obtain the values at tjþ1. Rearranging the previous equa-

tion in the form of tridiagonal matrix, we have

yi�1; jþ1 � 2þ 2ðDxÞ2
Dt

" #
yi;jþ1 þ yiþ1; jþ1

� �yi�1; j þ 2� 2ðDxÞ2
Dt

" #
yi;j � yiþ1; j ð12:155Þ

for i¼ 1,2, . . . , N� 1, and j¼ 0,1,2,3, . . .

For i¼ 1 (i.e., the first discrete point adjacent to the left

boundary) and i¼N� 1 (the last point adjacent to the right

boundary), the previous equation involves the boundary values

y0, j, y0, jþ 1, yN, j, and yN, jþ 1. The boundary condition (Eqs.

12.128b and 12.128c) provides these values; that is,

y0;j ¼ y0;jþ1 ¼ 1 ð12:156aÞ

yN;j ¼ yN;jþ1 ¼ 0 ð12:156bÞ

After these boundary conditions are substituted into Eq. 12.155 for

i¼ 1 and i¼N� 1, we get

� 2þ 2ðDxÞ2
Dt

" #
y1; jþ1 þ y2; jþ1 � �2þ 2� 2ðDxÞ2

Dt

" #
y1; j � y2;j

ð12:157Þ

yN�2;jþ1 � 2þ 2ðDxÞ2
Dt

" #
yN�1; jþ1 � �yN�2;j þ 2� 2ðDxÞ2

Dt

" #
yN�1; j

ð12:158Þ

When the equations are put in the order, Eq. 12.157, Eq. 12.155

(for i¼ 2,3, . . . , N� 2), and Eq. 12.158, we obtain a (N� 1,

N� 1) matrix of tridiagonal form with N� 1 unknown discrete

variables y1–yN�1. This can be solved by the Thomas algorithm of

Section 12.3.3.

Note that the backward difference in time method and the

Crank–Nicolson method both yield finite-difference equations in

the form of tridiagonal matrix, but the latter involves computations

of three values of y(yi�1, yi, and yiþ1) of the previous time tj,

whereas the former involves only yi.
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Since the time derivative used in the Crank–Nicolson method is

second-order correct, its step size can be larger and hence more

efficient (see Fig. 12.11c). Moreover, like the backward difference

method, the Crank–Nicolson is stable in both space and time.

Another useful point regarding the Crank–Nicolson method is

that the forward and backward differences in time are applied suc-

cessively. To show this, we evaluate the finite-difference equation

at the (j þ 2)th time by using the backward formula; that is,

yi�1; jþ2 � 2þ ðDxÞ2
Dt

" #
yi;jþ2 þ yiþ1; jþ2 ¼ �ðDxÞ2

Dt
yi;jþ1

ð12:159Þ

If we evaluate the values of y at the (j þ l)th time on the RHS of

Eq. 12.159 using the forward difference formula in time, we would

obtain

yi�1; jþ2 � 2þ ðDxÞ2
Dt

" #
yi;jþ2 þ yiþ1; jþ2

¼ �yi�1; j þ 2� 2ðDxÞ2
Dt

" #
yi;j � yiþ1; j ð12:160Þ

Thus, we see that this formula is basically the Crank–Nicolson

formula written for the time step size of 2(Dt) (compare this with

Eq. 12.155 where the step size is (Dt)).
Figure 12.11 shows plots of y1¼ y(x¼ 0.2) as a function of

time. Computations from the forward difference scheme are

shown in Fig. 12.11a, while those of the backward difference and

the Crank–Nicolson schemes are shown in Fig. 12.11b and c,

respectively. Time step sizes of 0.01 and 0.05 are used as parame-

ters in these three figure parts. The exact solution (Eq. 12.129) is

also shown in these figure parts as dashed lines. It is seen that the

backward difference and the Crank–Nicolson methods are stable

no matter what step size is used, whereas the forward difference

scheme becomes unstable when the stability criterion of

Eq. 12.139 is violated. With the grid size of Dx¼ 0.2, the maxi-

mum time step size for stability of the forward difference method

is Dt¼ (Dx)2=2¼ 0.02.

12.3.5 Nonlinear Parabolic Partial Differential

Equations

We have demonstrated the method of finite differences for

solving linear parabolic partial differential equations. But

the utility of the numerical method is best appreciated

when we deal with nonlinear equations. In this section, we

will consider a nonlinear parabolic partial differential equa-

tion, and show how to deal with the nonlinear terms.

EXAMPLE 12.6

Let us again consider the same problem of mass transfer through a

membrane of Example 12.5, but this time we account for the fact

that diffusivity is a function of the intramembrane concentration.

The nondimensional equation can be written as

@y

@t
¼ @

@x
f ðyÞ @y

@x

� �
ð12:161Þ

Expanding the RHS will give

@y

@t
¼ f ðyÞ @

2y

@x2
þ f 0ðyÞ @y

@x

� �2

ð12:162Þ

As in Example 12.5, if we divide the domain [0, 1] into N inter-

vals, evaluate the above equation at the (j þ l/2)th time, and

use the second-order correct formula for both time and space

FIGURE 12.11 Plots of y1 versus time for (a) forward differ-

ence; (b) backward difference; and (c) Crank–Nicolson.
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derivatives, we have the following finite-difference formulas for

the derivatives:

@y

@t

� �
i;jþ1=2

� yi;jþ1 � yi;j

Dt
ð12:163Þ

@2y

@x2

� �
i;jþ1=2

� 1

2

yi�1; jþ1 � 2yi;jþ1 þ yiþ1; jþ1

ðDxÞ2 þ yi�1; j � 2yi;j þ yiþ1; j

ðDxÞ2
" #

ð12:164Þ

@y

@x

� �
i;jþ1=2

� 1

2

yiþ1; jþ1 � yi�1; jþ1

2ðDxÞ þ yiþ1; j � yi�1; j

2ðDxÞ
� �

ð12:165Þ

The first equation comes from Eq. 12.149, the second from

Eq. 12.153, and the last is the Crank–Nicolson analogue for the

first spatial derivative, similar in form to the second spatial deriva-

tive Eq. 12.153 derived earlier.

We have dealt with the derivative terms in Eq. 12.162, let us

now turn to dealing with f(y) and f 0ðyÞ. Evaluating these at the dis-

crete point i and time (j þ 1=2), we have

f ðyÞi;jþ1=2 ¼ f ðyi;jþ1=2Þ ð12:166Þ

and

f 0ðyÞi;jþ1=2 ¼ f 0ðyi;jþ1=2Þ ð12:167Þ

The complication we have here is the unknown yi,jþ1/2 appearing

in the above two equations. One simple way of resolving this prob-

lem is to use the known values of y at the jth time, that is,

f ðyÞi;jþ1=2 � f ðyi;jÞ ð12:168aÞ

f 0ðyÞi;jþ1=2 � f 0ðyi;jÞ ð12:168bÞ

then substitute these equations together with the equations for the

derivatives (Eqs. 12.163–12.165) into Eq. 12.162 and use the

information on the boundary values (Eqs. 12.128b and 12.128c) to

obtain a set of equations of tridiagonal matrix form. Solving this

using the Thomas algorithm will yield values of y at the (j þ l)th

time. Note, however, that to obtain this solution, f(y) and f 0ðyÞ
were approximated using values of y at the jth time. To improve

the solution, we use the better approximation for f(y) and f 0ðyÞ by
applying the averaging formulas

f ðyÞi;jþ1=2 � f
yi;j þ y�i;jþ1

2

� �
ð12:169aÞ

f 0ðyÞi;jþ1=2 � f 0
yi;j þ y�i;jþ1

2

� �
ð12:169bÞ

where y�i;jþ1 is obtained from the last approximation. We can, of

course, repeat this process with the iteration scheme to solve for

y(kþ1) at the (k þ l)th iteration

f ðyÞi;jþ1=2 � f
yi;j þ y

ðkÞ
i;jþ1

2

 !
ð12:170Þ

with

y
ð0Þ
i;jþ1 ¼ yi;j ð12:171Þ

The iteration process can be stopped when some convergence cri-

terion is satisfied. The following one is commonly used to stop the

iteration sequence:

y
ðkþ1Þ
i;jþ1 � y

ðkÞ
i;jþ1

y
ðkþ1Þ
i;jþ1

					
					 < e for all i

where e is some predetermined small value.

There are a number of variations of such methods in the litera-

ture. They basically differ in the way the nonlinear coefficients are

evaluated. For example, for the function

f ðyÞi;jþ1=2 ¼ f ðyi;jþ1=2Þ ð12:172Þ

the value of yi,jþ1/2 in the argument can be found by applying the

finite-difference formula to the equation with a time step of Dt/2,

and using f(yi,j) and f 0ðyi;jÞto approximate f(y) and f 0ðyÞ, respec-
tively. Other variations can be found in Douglas (1961) and Von

Rosenberg (1969). There exists considerable scope for student-

generated averaging techniques, of the type shown previously.

12.3.6 Elliptic Equations

Treatment of elliptic equations is essentially the same as

that for parabolic equations. To show this, we demonstrate

the technique with the following example wherein two

finite spatial variables exist.

EXAMPLE 12.7

Consider a rectangle catalyst of two dimensions in which a first-

order chemical reaction is taking place. The nondimensional equa-

tion is

@2y

@x2
þ @2y

@z2
� f2y ¼ 0 ð12:173aÞ

where f2 is the typical Thiele modulus, and y¼C=C0 with C0

being the bulk concentration.

The boundary conditions to this problem are assumed to take

the form

x ¼ 0;
@y

@x
¼ 0 ð12:173bÞ

x ¼ 1; y ¼ 1 ð12:173cÞ

z ¼ 0;
@y

@z
¼ 0 ð12:173dÞ

z ¼ 1; y ¼ 1 ð12:173eÞ
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Due to the symmetry of the catalyst, we consider only the positive

quadrant (i.e., x and z are positive). Let us divide the domains x

and z into N intervals. The coordinate of the x domain is i(Dx) and
that of the z domain is j(Dz), where

Dx ¼ 1

N
¼ h; Dz ¼ 1

N
¼ h

Next, we evaluate the differential equation at the point (i, j)

@2y

@x2

� �
i;j

þ @2y

@z2

� �
i;j

� f2yi;j ¼ 0 ð12:174Þ

for i, j¼ 1,2, . . . , N� 1.

Using the approximation formula for the second derivative (Eq.

12.117), Eq. 12.174 will become

ðyi�1; j � 2yi;j þ yiþ1; jÞ þ ðyi;j�1 � 2yi;j þ yi;jþ1Þ � h2f2yi;j ¼ 0

ð12:175Þ

One method for solving this set of equations is the alternate direc-

tion implicit method. The basic idea of this approach utilizes the

fact that the elliptic PDE (Eq. 12.173a) is the steady-state solution

of the associated transient partial differential equation

@y

@t
¼ a

@2y

@x2
þ @2y

@z2
� f2y

� �
ð12:176Þ

where a is some arbitrary constant.

Now, let us use the finite difference to approximate the previ-

ous parabolic PDE. Suppose that we know values of y at the time

tk and wish to use the finite-difference approach to find their val-

ues at the next time tkþ1. The time derivative @y=@t evaluated at

the time tkþ1 is approximated by

@y

@t

� �ðkþ1Þ

i;j

¼ y
ðkþ1Þ
i;j � y

ðkÞ
i;j

Dt
ð12:177aÞ

where the subscripts i and j denote the positions in the x and z

domains, respectively, whereas the superscript k represents the

time tk.

If we approximate the second-order spatial derivatives @2y=@x2

at the time (kþ 1) by the values of y at the time tkþ1 and the other

derivative @2y=@z2 by the values of y at the time tk, we have

@2y

@x2

� �ðkþ1Þ

i;j

¼ y
ðkþ1Þ
i�1; j � 2y

ðkþ1Þ
i;j þ y

ðkþ1Þ
iþ1; j

ðDxÞ2 ð12:177bÞ

@2y

@z2

� �ðkÞ

i;j

¼ y
ðkÞ
i;j�1 � 2y

ðkÞ
i;j þ y

ðkÞ
i;jþ1

ðDzÞ2 ð12:177cÞ

The purpose of the last step is to evaluate the value of y in the

x-direction while assuming that the spatial derivative in z is

approximated by the values of discrete y at the old time tk.

The reaction term f2y can be approximated by the arithmetic

mean between the values at time tk and tkþ1; that is,

f2y ¼ f2

2
y
ðkÞ
i;j þ y

ðkþ1Þ
i;j


 �
ð12:177dÞ

Substituting Eqs. 12.177 into Eq. 12.176, we have

r y
ðkþ1Þ
i;j � y

ðkÞ
i;j

h i
¼ y

ðkþ1Þ
i�1; j � 2y

ðkþ1Þ
i;j þ y

ðkþ1Þ
iþ1; j


 �
þ y

ðkÞ
i;j�1 � 2y

ðkÞ
i;j þ y

ðkÞ
i;jþ1


 �
� f2h2

2
y
ðkþ1Þ
i;j þ y

ðkÞ
i;j


 �
ð12:178aÞ

where

r ¼ h2

aDt
; h ¼ Dx ¼ Dz ð12:178bÞ

Rearranging Eq. 12.178a by grouping all terms at time tkþ1 to one

side and terms at time tk to the other side, we then have

y
ðkþ1Þ
i�1; j � 2þ rþ 1

2
h2f2


 �
y
ðkþ1Þ
i;j þ y

ðkþ1Þ
iþ1; j

¼ �y
ðkÞ
i;j�1 þ 2� rþ 1

2
h2f2


 �
y
ðkÞ
i;j � y

ðkÞ
i;jþ1 ð12:179aÞ

Now, if we apply Eq. 12.176 at the next time tkþ2 and approximate

the derivatives as

@y

@t

� �ðkþ2Þ

i;j

¼ y
ðkþ2Þ
i;j � y

ðkþ1Þ
i;j

Dt

@2y

@x2

� �ðkþ1Þ

i;j

¼ y
ðkþ1Þ
i�1; j � 2y

ðkþ1Þ
i;j þ y

ðkþ1Þ
iþ1; j

ðDxÞ2

@2y

@z2

� �ðkþ2Þ

i;j

¼ y
ðkþ2Þ
i;j�1 � 2y

ðkþ2Þ
i;j þ y

ðkþ2Þ
i;jþ1

ðDzÞ2

In opposite to what we did in the last time step, here we approxi-

mate the spatial derivative in z at the time tk þ 2, whereas the

spatial derivative in x is approximated using old values at the

time tkþ 1.

The reaction term is approximated by the arithmetic mean

between values at tkþ 1 and tkþ 2; that is,

f2y ¼ f2

2
y
ðkþ1Þ
i;j þ y

ðkþ2Þ
i;j


 �

Substituting these approximation formulas into Eq. 12.176, we

obtain the equation (after some algebraic manipulation)

y
ðkþ2Þ
i;j�1 � 2þ rþ 1

2
h2f2


 �
y
ðkþ2Þ
i;j þ y

ðkþ2Þ
i;jþ1

¼ �y
ðkþ1Þ
i�1; j þ 2� rþ 1

2
h2f2


 �
y
ðkþ1Þ
i;j � y

ðkþ1Þ
iþ1; j ð12:179bÞ
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Equations 12.179a and 12.179b are iteration equations known as

the Peaceman–Rachford alternating direction omplicit scheme

(1955). Basically, this iteration scheme assumes an initial guess of

all points and the process is started by keeping j constant and

applying Eq. 12.179a to find the next estimate along the ith coordi-

nate. This is achieved with the Thomas algorithm since the matrix

is tridiagonal. Knowing this, we apply Eq. 12.179b to find the next

estimate along the jth coordinate and the process continues until

the method provides convergent solutions. Because of the alterna-

tion between directions, the method was given the name alternat-

ing direction implicit method.

Note the definition of the parameter r in Eq. 12.178b. Since our

main concern is to solve elliptic equation, that is, the steady-state

solution to Eq. 12.176, the solution can be obtained effectively by

choosing a sequence of parameters rk (Peaceman and Rachford

1955). The optimum sequence of this parameter is found only for

simple problems. For other problems, it is suggested that this opti-

mum sequence is obtained by numerical experiments. However, if

the scalar parameter r is kept constant, the method has been

proved to converge for all values of r. Interested readers should

refer to Wachspress and Habetler (1960) for further exposition of

this method.

Dealing with nonlinear elliptic equations is more difficult than

linear equations, as one would expect. All schemes proposed to

handle nonlinear elliptic equations are of the iterative type. Doug-

las (1959) has proposed a useful way to deal with nonlinearities.

12.4 ORTHOGONAL COLLOCATION FOR
SOLVING PDEs

In Chapters 7 and 8, we presented numerical methods for

solving ODEs of initial and boundary value type. The

method of orthogonal collocation discussed in Chapter 8

can also be used to solve PDEs. For elliptic PDEs with two

spatial domains, the orthogonal collocation is applied on

both domains to yield a set of algebraic equations, and for

parabolic PDEs the collocation method is applied on the

spatial domain (domains if there are more than one) result-

ing in a set of coupled ODEs of initial value type. This set

can then be handled by the methods provided in Chapter 7.

We will illustrate the application of orthogonal colloca-

tion to a number of examples. Elliptic PDEs will be dealt

with first and typical parabolic equations occurring in

chemical engineering will be considered next.

Before we start with orthogonal collocation, it is worth-

while to list in Table 12.2 a number of key formulas devel-

oped in Chapter 8, since they will be needed in this section.

Table 12.2 shows the various formula for the few basic

properties of the orthogonal collocation method.

We can use Table 12.2 as follows. Suppose the number

of collocation points is chosen as Nþ 2, where N is the

number of the interior interpolation points and 2 represents

two boundary points. The Lagrangian interpolation polyno-

mial is thus defined as in Eq. 12.180c with the building

blocks lj(x) given in Eq. 12.180d. The first and second

derivatives at interpolation points are given in Eq. 12.180e,

and the integral with the weighting function xb
0 ð1� xÞa0

is

given in Eq. 12.180g. The optimal parameters a and b for

the Jacobi polynomial are given in Eq. 12.180i. Thus, on a

practical level, this table will prove quite useful.

12.4.1 Elliptic PDE

We now show the application of the orthogonal collocation

method to solve an elliptic partial differential equation.

EXAMPLE 12.8

The level 4 of modeling the cooling of a solvent bath using cylin-

drical rods presented in Chapter 1 gave rise to an elliptic partial

differential equation. These equations were derived in Chapter 1,

and are given here for completeness.

1

j

@

@j
j
@u

@j

� �
þ D2 @

2u

@z2
¼ 0 ð12:181Þ

j ¼ 0;
@u

@j
¼ 0 ð12:182aÞ

j ¼ 1;
@u

@j
¼ �Bi 	 u ð12:182bÞ

z ¼ 0; u ¼ 1 ð12:182cÞ

z ¼ 1;
@u

@z
¼ 0 ð12:l82dÞ

This set of equations has been solved analytically in Chapter 11

using the finite integral transform method. Now, we wish to apply

the orthogonal collocation method to investigate a numerical solu-

tion. First, we note that the problem is symmetrical both in j at

j¼ 0 and in z at z¼ 1. Therefore, to make full use of the symmetry

properties, we make the transformations

y ¼ ð1� zÞ2 and z ¼ j2 ð12:183Þ

which is a transformation we have consistently employed when

dealing with problems having symmetry. With this transformation,

Eq. 12.181 then becomes

4z
@2u

@z2
þ 4

@u

@z
þ D2 4y

@2u

@y2
þ 2

@u

@y

� �
¼ 0 ð12:184Þ

The boundary conditions at j¼ 0 and z¼ 1 are not needed,

owing to the transformation. Hence, the remaining boundary

conditions for Equation 12.184 written in terms of y and z vari-

ables are

z ¼ 1;
2

Bi

@u

@z
þ u ¼ 0 ð12:185aÞ
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TABLE 12.2 Collocation Formulas

N + 1 Interpolation Points: N Interior Points and 1 Boundary Point

Variables Boundary Points at x¼ 0 Boundary Points at x¼ 1

N + 2 Interpolation Points:

N Interior Points and 2 Boundary Points

Equation

Number

Interpolation points x0 ¼ 0; x1; x2; . . . ; xN
are root of J

ða;bÞ
N ðxÞ ¼ 0

x1; x2; . . . ; xN are root of J
ða;bÞ
N ðxÞ ¼ 0;

xNþ1 ¼ 1

x0 ¼ 0; x1; x2; . . . ; xN are root of J
ða;bÞ
N ðxÞ ¼ 0

and xNþ1 ¼ 1

12.180a

Number of points N þ 1 N þ 2 12.180b

Lagrangian

interpolation

polynomial

yNðxÞ ¼
XNþ1

j¼1

ljðxÞyj yNþ1ðxÞ ¼
XNþ2

j¼1

ljðxÞyj 12.180c

Lagrangian

building blocks

ljðxÞ ¼
YNþ1

i ¼ 1
i 6¼ j

ðx� xiÞ
ðxj � xiÞ ljðxÞ ¼

YNþ2

i ¼ 1
i 6¼ j

ðx� xiÞ
ðxj � xiÞ 12.180d

Derivatives
dyNðxiÞ

dx
¼
XNþ1

j¼1

Aijyj;
d2yNðxiÞ

dx2
¼
XNþ1

j¼1

Bijyj
dyNþ1ðxiÞ

dx
¼
XNþ2

j¼1

Aijyj;
d2yNþ1ðxiÞ

dx2
¼
XNþ2

j¼1

Bijyj 12.180e

Matrices A & B Aij ¼ dljðxiÞ
dx

; Bij ¼ d2ljðxiÞ
dx2

; i; j ¼ 1; 2; . . . ;N þ 1 Aij ¼ dljðxiÞ
dx

; Bij ¼ d2ljðxiÞ
dx2

; i; j ¼ 1; 2; . . . ;N þ 2 12.180f

Desired integral

Z 1

0

xb
0 ð1� xÞa0h i

yNðxÞdx �
XNþ1

j¼1

wjyj

Z 1

0

xb
0 ð1� xÞa0h i

yNþ1ðxÞdx �
XNþ2

j¼1

wjyj 12.180g

Quadrature weights wj ¼
Z 1

0

xb
0 ð1� xÞa0h i

ljðxÞdx wj ¼
Z 1

0

xb
0 ð1� xÞa0h i

ljðxÞdx 12.180h

a and b of the

Jacobian

polynomial

a ¼ a0; b ¼ b0 þ 1 a ¼ a0 þ 1; b ¼ b0 a ¼ a0 þ 1; b ¼ b0 þ 1 12.180i

3
2
5



and

y ¼ 1; u ¼ 1 ð12:185bÞ
Now, we have two new spatial domains, z and y. The first step in

the orthogonal collocation scheme is to choose interpolation points.

We shall choose N interior collocation points in the z domain and M

points in the y domain. Thus, the total number of interpolation

points in the z domain is Nþ 1, including the point at z¼ 1, and

that in the y domain is Mþ 1, including the point at y¼ 1.

If we use the index i to describe the ith point in the z domain

and k to denote the kth point in the y domain, the heat balance

equation (Eq. 12.184) must be satisfied at the point (i, k) for i¼ 1,

2, . . . , N and k¼ 1, 2, . . . , M (i.e., the interior points). Evaluat-

ing Eq. 12.184 at the (i, k) point, we have

4zi
@2u

@z2

				
i;k

þ 4
@u

@z

				
i;k

þ D2 4yk
@2u

@y2

				
i;k

þ 2
@u

@y

				
i;k

" #
¼ 0 ð12:186Þ

for i¼ 1, 2, . . . , N and k¼ 1, 2, . . . ,M.

Using the approximation formula for the first- and second-

order derivative equations (Eq. 12.180e), we have

@u

@z

				
i;k

¼
XNþ1

j¼1

Azði; jÞuðj; kÞ ð12:187aÞ

@2u

@z2

				
i;k

¼
XNþ1

j¼1

Bzði; jÞuðj; kÞ ð12:187bÞ

@u

@y

				
i;k

¼
XMþ1

l¼1

Ayðk; lÞuði; lÞ ð12:187cÞ

@2u

@y2

				
i;k

¼
XMþ1

l¼1

Byðk; lÞuði; lÞ ð12:187dÞ

where Az and Bz are first- and second-order derivative matrices in

the z domain, and Ay and By are derivative matrices in the y

domain. Note again that once the interpolation points are chosen

in the z and y domains, these derivative matrices are known.

Substituting Eqs. 12.187 into Eq. 12.186, we have

XNþ1

j¼1

Czði; jÞuðj; kÞ þ D2
XMþ1

l¼1

Cyðk; lÞuði; lÞ ¼ 0 ð12:188aÞ

where

Czði; jÞ ¼ 4ziBzði; jÞ þ 4Azði; jÞ
and

Cyðk; lÞ ¼ 4ykByðk; lÞ þ 2Ayðk; lÞ
ð12:188bÞ

The last terms of the two series contain the boundary values. By

taking them out of the series, we haveXN
j¼1

Czði; jÞuðj; kÞ þ Czði;N þ 1ÞuðN þ 1; kÞ

þ D2
XM
l¼1

Cyðk; lÞuði; lÞ þ Cyðk;M þ 1Þuði;M þ 1Þ
" #

¼ 0

ð12:189Þ

Note that the boundary condition (Eq. 12.185b) gives

uði;M þ 1Þ ¼ 1 ð12:190Þ

and from the boundary condition (Eq. 12.185a), we have

2

Bi

@u

@z

				
Nþ1;k

þ uðN þ 1; kÞ ¼ 0 ð12:191Þ

Using the first derivative formula (Eq. 12.180e) at the boundary

point (i¼N þ 1), the previous equation can be written in terms of

the discrete values u given as

2

Bi

XNþ1

j¼1

AzðN þ 1; jÞuðj; kÞ þ uðN þ 1; kÞ ¼ 0 ð12:192Þ

from which u(N þ 1, k) can be solved directly as

uðN þ 1; kÞ ¼ �ð2=BiÞPN
j¼1 AzðN þ 1; jÞuðj; kÞ

1þ ð2=BiÞAzðN þ 1;N þ 1Þ½ � ð12:193Þ

Substitute Eqs. 12.190 and 12.193 into Eq. 12.189 to yield

XN
j¼1

Dði; jÞuðj; kÞ þ D2
XM
l¼1

Cyðk; lÞuði; lÞ þ Cyðk;M þ 1Þ
" #

¼ 0

ð12:194Þ

for i¼ 1, 2, . . . , N and k¼ 1, 2, . . . , M, where the matrix D is

given by

Dði; jÞ ¼ Czði; jÞ � ð2=BiÞCzði;N þ 1ÞAzðN þ 1; jÞ½ �
1þ ð2=BiÞAzðN þ 1;N þ 1Þ½ � ð12:195Þ

for i¼ 1, 2, . . . , N and k¼ 1, 2, . . . M.

Equation 12.194 represents M�N coupled algebraic equations

with the same number of unknown u(i,k), i¼ 1, 2, . . . , N and

k¼ 1, 2, . . . , M. These equations can be solved using any of the

algebraic solution methods described in Appendix A. Before doing

this, we will introduce the global indexing scheme such that the

variable u with two indices (because of the two coordinates) is

mapped into a single vector with one counting index. This is done

for the purpose of programming and subsequent computation. We

define a new variable Y as

Y ðk � 1ÞN þ i½ � ¼ uði; kÞ ð12:196Þ
Equation 12.194 then becomes

XN
j¼1

Dði; jÞY ðk � 1ÞN þ i½ �

þ D2
XM
l¼1

Cyðk; lÞY ðl � 1ÞN þ i½ � þ Cyðk;M þ 1Þ
" #

¼ 0

ð12:197Þ

for i¼ 1, 2, . . . , N and k¼ 1, 2, . . . ,M.
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For example, if we choose N¼M¼ 2, the unknown vector Y of

Eq. 12.196 is

Yð1Þ
Yð2Þ
Yð3Þ
Yð4Þ

2
666664

3
777775 ¼

uð1; 1Þ
uð2; 1Þ
uð1; 2Þ
uð2; 2Þ

2
666664

3
777775 ð12:198Þ

and Eq. 12.197 written in component form is

Dð1; 1ÞYð1Þ þ Dð1; 2ÞYð2Þ þ D2 Cyð1; 1ÞYð1Þ þ Cyð1; 2ÞYð3Þ þ Cyð1; 3Þ½ � ¼ 0

Dð2; 1ÞYð1Þ þ Dð2; 2ÞYð2Þ þ D2 Cyð1; 1ÞYð2Þ þ Cyð1; 2ÞYð4Þ þ Cyð1; 3Þ½ � ¼ 0

Dð1; 1ÞYð3Þ þ Dð1; 2ÞYð4Þ þ D2 Cyð2; 1ÞYð1Þ þ Cyð2; 2ÞYð3Þ þ Cyð2; 3Þ½ � ¼ 0

Dð2; 1ÞYð3Þ þ Dð2; 2ÞYð4Þ þ D2 Cyð2; 1Þ þ Cyð2; 2ÞYð4Þ þ Cyð2; 3Þ½ � ¼ 0

ð12:199Þ

Since our original elliptic equation is linear, the resulting discre-

tized equation (Eq. 12.199) is also linear. Therefore, if we define

E ¼

Dð1; 1Þ þ D2Cyð1; 1Þ Dð1; 2Þ D2Cyð1; 2Þ 0

Dð2; 1Þ Dð2; 2Þ þ D2Cyð1; 1Þ 0 D2Cyð1; 2Þ
D2Cyð2; 1Þ 0 Dð1; 1Þ þ D2Cyð2; 2Þ Dð1; 2Þ

0 D2Cyð2; 1Þ Dð2; 1Þ Dð2; 2Þ þ D2Cyð2; 2Þ

2
666664

3
777775

ð12:200aÞ

and

b ¼

�D2Cyð1; 3Þ
�D2Cyð1; 3Þ
�D2Cyð2; 3Þ
�D2Cyð2; 3Þ

2
6666664

3
7777775 ð12:200bÞ

Equation 12.199 can be written in compact vector format

EY ¼ b ð12:201Þ

from which the unknown vector Y can be readily obtained by

using matrix algebra. The solution for Y is

Y ¼ E�1b

12.4.2 Parabolic PDE: Example 1

We saw in the last example for the elliptic PDE that the

orthogonal collocation was applied on two spatial domains

(sometime, called double collocation). Here, we wish to

apply it to a parabolic PDE. The heat or mass balance equa-

tion used in Example 11.3 (Eq. 11.55) is used to demon-

strate the technique. The difference between the treatment

of parabolic and the elliptic equations is significant. The

collocation analysis of parabolic equations leads to coupled

ODEs, in contrast to the algebraic result for the elliptic

equations.

EXAMPLE 12.9

The nondimensional heat or mass balance equations are

@y

@t
¼ 1

x

@

@x
x
@y

@x

� �
ð12:202aÞ

t ¼ 0; y ¼ 0 ð12:202bÞ

x ¼ 0;
@y

@x
¼ 0 ð12:202cÞ

x ¼ 1; y ¼ 1 ð12:202dÞ

The quantity of interest is the mean concentration or temperature,

which is calculated from the integral

I ¼ 2

Z 1

0

xy dx ð12:203Þ

We note that this problem is symmetrical at x¼ 0. Therefore, the

application of the symmetry transformation

u ¼ x2 ð12:204Þ
is appropriate. In terms of this new independent variable u¼ x2,

the mass (heat) balance equations (Eqs. 12.202) become

@y

@t
¼ 4u

@2y

@u2
þ 4

@y

@u
ð12:205aÞ

u ¼ 1; y ¼ 1 ð12:205bÞ
The mean concentration or temperature I in terms of the new inde-

pendent u is

I ¼
Z 1

0

y du ð12:206Þ

The weighting function of the above integral is

WðuÞ ¼ ub
0 ð1� uÞa0

; a0 ¼ b0 ¼ 0 ð12:207Þ

Therefore, to use the Radau quadrature with the exterior point

(u¼ 1) included, the N interior collocation points are chosen as

roots of the Jacobi polynomial J
ða;bÞ
N with a¼ 1 and b¼ 0. Once N

þ 1 interpolation points are chosen, the first- and second-order

derivative matrices are known.

Evaluating Eq. 12.205a at the interior collocation point i gives

@yi
@t

¼ 4ui
@2y

@u2

				
i

þ 4
@y

@u

				
i

ð12:208Þ

for i¼ 1, 2, . . . , N.
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The first- and second-order derivatives at the collocation point i

are given by the formula

@y

@u

				
i

¼
XNþ1

j¼1

Aijyj ;
@2y

@u2

				
i

¼
XNþ1

j¼1

Bijyj ð12:209Þ

where A and B are given in Eq. 12.180f.

When we substitute Eq. 12.209 into Eq. 12.208, this equation is

obtained

dyi
dt

¼
XNþ1

j¼1

Cijyj ð12:210Þ

where the matrix C is defined as

Cij ¼ 4uiBij þ 4Aij ð12:211Þ

Next, we take the last term of the series out of the summation and

make use of the boundary condition, y(l)¼ yNþl¼ 1, and obtain

the equation

dyi
dt

¼
XN
j¼1

Cijyj þ Ci;Nþ1 ð12:212Þ

for i¼ 1, 2, 3, . . . , N.

The above equation represents N coupled ODEs and they are

readily solved by using the methods discussed in Chapter 7, such

as the Runge–Kutta–Gill method. Once the concentration y is

obtained from the integration of Eq. 12.212, the mean concentra-

tion or temperature I is calculated from the quadrature formula

I ¼
XNþ1

j¼1

wjyj ð12:213Þ

where the quadrature weights are given in Eq. 12.180h.

Figure 12.12 shows plots of the mean concentration or temper-

ature versus t for N¼ 2, 3, 5, and 10. The plots for N¼ 5 and 10

practically superimpose the exact solution given in Eq. 11.87. This

example shows the simplicity of the collocation method, and the

number of collocation points needed for many problems is usually

less than 10. A larger number of points may be needed to handle

sharp gradients in the mass transfer zone.

12.4.3 Coupled Parabolic PDE: Example 2

EXAMPLE 12.10

To further demonstrate the simplicity and the straightforward

nature of the orthogonal collocation method, we consider the

adsorption problem dealt with in Section 12.2 where the singular

perturbation approach was used. The nondimensional mass bal-

ance equations are

sm
@y

@t
¼ m

@2y

@x2
� yð1� ymÞ ð12:214aÞ

m
@ym
@t

¼ yð1� ymÞ ð12:214bÞ

subject to the nondimensional initial and boundary conditions

t ¼ 0; y ¼ ym ¼ 0 ð12:214cÞ

x ¼ 0;
@y

@x
¼ 0 and x ¼ 1; y ¼ 1 ð12:214dÞ

Again, we note the symmetry condition at x¼ 0 and make the

symmetry transformation u¼ x2. In terms of this new variable, the

mass balance equations are

sm
@y

@t
¼ m 4u

@2y

@u2
þ 2

@y

@u

� �
� yð1� ymÞ ð12:215aÞ

m
@ym
@t

¼ yð1� ymÞ ð12:215bÞ

The initial and boundary conditions are

t ¼ 0; y ¼ ym ¼ 0 ð12:216Þ

u ¼ 0; y ¼ 1 ð12:217Þ

Our objective here is to obtain the mean adsorbed concentration

versus time. In nondimensional form, this mean concentration is

given by

ym ¼
Z 1

0

ymdx ð12:218Þ

Written in terms of the u variable, the above equation becomes

ym ¼ 1

2

Z 1

0

u�1=2ymdu ð12:219Þ
FIGURE 12.12 Plots of I versus t for N¼ 2, 3, 5, and 10.
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The weighting function in the above integral is W(u) = u�1/2

(1� u)0, that is, a0 = 0 and b0 =� 1
2
. Therefore, the N interior

collocation point must be chosen as the root of the Nth degree

Jacobi polynomial J
ð1;�1=2Þ
N (see Eq. 12.180i) and the (N þ1)th

point is the point u¼ 1.

The mass balance equation (Eq. 12.215a) is valid in the interior

of the domain; thus, we evaluate it at the ith interior collocation

point (i¼ 1, 2, 3, . . . , N) and obtain

sm
@yðiÞ
@t

¼ m 4uðiÞ @
2y

@u2

				
i

þ 2
@y

@u

				
i

� �
� yðiÞ 1� ymðiÞ

� � ð12:220Þ

for i¼ 1, 2, 3, . . . , N.

Equation 12.215b, on the other hand, is valid at all points

including the point at the boundary; that is, i¼N þ 1. Evaluating

this equation at the interpolation point i, we have

m
@ymðiÞ
@t

¼ yðiÞ 1� ymðiÞ
� � ð12:221Þ

for i¼ 1, 2, 3, . . . , N, N þ 1.

Using the following formula for the first and second derivatives

@y

@u

				
i

¼
XNþ1

j¼1

Aði; jÞyðjÞ ð12:222aÞ

@2y

@u2

				
i

¼
XNþ1

j¼1

Bði; jÞyðjÞ ð12:222bÞ

and substituting them into Eq. 12.220, we obtain

sm
@yðiÞ
@t

¼ m
XNþ1

j¼1

Cði; jÞyðjÞ � yðiÞ 1� ymðiÞ
� � ð12:223Þ

for i¼ 1, 2, . . . , N, where

Cði; jÞ ¼ 4uðiÞBði; jÞ þ 2Aði; jÞ ð12:224Þ

Taking the last term of the series in Eq. 12.223 out of the summa-

tion sign, we obtain

sm
@yðiÞ
@t

¼ m
XN
j¼1

Cði; jÞyðjÞ þ Cði;N þ 1ÞyðN þ 1Þ
" #

� yðiÞ 1� ymðiÞ
� � ð12:225Þ

From the boundary condition (Eq. 12.217), we have

yðN þ 1Þ ¼ 1 ð12:226Þ
Using this information, Eq. 12.225 becomes

sm
@yðiÞ
@t

¼ m
XN
j¼1

Cði; jÞyðjÞ þ Cði;N þ 1Þ
" #

� yðiÞ 1� ymðiÞ
� �

ð12:227Þ

The equation for the adsorbed species (Eq. 12.221) can be written

for interior points (i¼ 1, 2, . . . , N)

m
@ymðiÞ
@t

¼ yðiÞ 1� ymðiÞ
� � ð12:228Þ

and for the boundary point (i¼N þ 1)

m
@ymðN þ 1Þ

@t
¼ yðN þ 1Þ 1� ymðN þ 1Þ� � ð12:229Þ

But since y(N þ 1)¼ 1, the above equation then becomes:

m
@ymðN þ 1Þ

@t
¼ 1� ymðN þ 1Þ� � ð12:230Þ

Equation 12.227 together with Eqs. 12.228 and 12.230 repre-

sents 2N þ 1 equations and we have exactly the same number

of unknowns, y(l), y(2), . . . , y(N), ym(1), ym(2), . . . , ym(N),

ym(N þ 1).

If we now introduce a new vector Y, a new global indexing

scheme evolves for the purpose of programming as

YðiÞ ¼ yðiÞ for i ¼ 1; 2; . . . ;N ð12:231aÞ

YðN þ iÞ ¼ ymðiÞ for i ¼ 1; 2; . . . ;N;N þ 1 ð12:231bÞ

Equations 12.227, 12.228, and 12.230 then become

sm
@YðiÞ
@t

¼ m
XN
j¼1

Cði; jÞYðjÞ þ Cði;N þ 1Þ
" #

� YðiÞ 1� YðN þ iÞ½ � ð12:232aÞ

m
@YðN þ iÞ

@t
¼ YðiÞ 1� YðN þ iÞ½ � ð12:232bÞ

for i¼ 1, 2, 3, . . . , N, and

m
@Yð2N þ 1Þ

@t
¼ 1� Yð2N þ 1Þ½ � ð12:232cÞ

Equations 12.232 can be solved by any of the numerical schemes

presented in Chapter 7. After the vector Y is known, the mean con-

centration defined in Eq. 12.219 can be written as the quadrature

ym ¼ 1

2

XNþ1

j¼1

wðjÞymðjÞ ð12:233Þ

where w(j) are known quadrature weights.

Plots of the mean concentration versus time for s¼ 0.001 and

m¼ 0.01 and 0.1 are shown in Fig. 12.10 along with a comparison

of the singular perturbation solution.
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12.5 ORTHOGONAL COLLOCATION ON

FINITE ELEMENTS

The previous section showed how straightforward the

orthogonal collocation can be when solving partial differen-

tial equations, particularly parabolic and elliptic equations.

We now present a variation of the orthogonal collocation

method, which is useful in solving problems with a sharp

variation in the profiles.

The method taught in Chapter 8 (as well as in Section

12.4) can be applied to the whole domain of interest [0,1]

(any domain [a,b] can be easily transformed into [0,1]), and

it is called the global orthogonal collocation method. A var-

iation of this is the situation where the domain is split into

many subdomains and the orthogonal collocation is then

applied on each subdomain. This is particularly useful

when dealing with sharp profiles and, as well, it leads to

reduction in storage for efficient computer programming.

In this section, we will deal with the orthogonal colloca-

tion on finite elements, that is, the domain is broken down

into a number of subdomains (called elements) and the

orthogonal collocation is then applied on each element. At

the junctions of these elements, we impose the obvious

physical conditions on the continuity of concentration (or

temperature) and the continuity of mass flux (or heat flux).

We will demonstrate the orthogonal collocation on finite

element by using the example of diffusion and reaction in a

catalyst, a problem discussed in Chapter 8. When the reaction

rate is very high compared to diffusion, the concentration pro-

file in the particle is very sharp, and if the traditional orthogo-

nal collocation method is applied, as we did in Chapter 8, a

large number of collocation points are required to achieve a

reasonable accuracy. Using this approach in problems having

sharp gradients can be a very expensive exercise because of

the excessive number of collocation points needed.

To alleviate this problem of sharp gradients, we present

in this section the orthogonal collocation on finite elements,

where the domain is broken down into many subdomains

and orthogonal collocation is then applied on each element.

This flexibility will allow us to concentrate collocation

points in the region where the sharp gradient is expected.

In regions where the gradients are shallow we need only a

few points. This new method is called the orthogonal collo-

cation on finite elements.

EXAMPLE 12.11

It is useful to illustrate collocation on finite elements by treating

the diffusion and reaction problem described in Chapter 8. The

governing equations written in nondimensional form are

d2y

dx2
� f2y ¼ 0 ð12:234aÞ

subject to

x ¼ 0;
dy

dx
¼ 0 ð12:234bÞ

x ¼ 1; y ¼ 1 ð12:234cÞ

The first step is to split the domain [0,1] into many subdomains.

For the sake of demonstration, we use only two subdomains. Let w

be the point that splits the domain [0,1] into two subdomains [0, w]
and [w, 1]. Next, we denote y1 to describe y in the first domain, and

y2 is the solution in the second subdomain. Of course, y1 and y2
must satisfy the mass balance equation (Eq. 12.234a), which is

valid at all points within the domain [0, l]. Before we apply the

orthogonal collocation in each subdomain, we must normalize the

domains to have a range of [0,1]. This can be easily achieved by

denoting a new coordinate for the subdomain 1 as v1 defined as

v1 ¼ x

w
ð12:235Þ

Similarly, we denote a new coordinate for the subdomain 2 as v2
and it is defined as

v2 ¼ x� w

1� w
ð12:236Þ

Thus, we see immediately that v1 and v2 range between 0 and 1 in

their respective domains (see Fig. 12.13).

In terms of v1, the mass balance equations in the subdomain 1

are (noting that dv1=dx¼ 1=w)

d2y1
dv21

� w2f2y1 ¼ 0 ð12:237Þ

subject to the condition at the center of the particle Eq. 12.234b

v1 ¼ 0;
dy1
dv1

¼ 0 ð12:238Þ

Similarly, the mass balance equations in the subdomain 2 written

in terms of v2 are (also noting that dv2=dx¼ 1=(1�w))

d2y2
dv22

� ð1� wÞ2f2y2 ¼ 0 ð12:239Þ

FIGURE 12.13 Two elements in the domain [0,1].
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subject to the condition at the exterior surface of the particle

Eq. 12.234c

v2 ¼ 1; y2 ¼ 1 ð12:240Þ
Equations 12.237 and 12.239 are two second-order differential

equations, and therefore for the complete formulation we must

have four conditions. Equations 12.238 and 12.240 provide two,

and hence, we require two more conditions. These are obtained by

invoking the continuity of concentration and mass flux at the junc-

tion of the two subdomains, that is,

y1ðx ¼ w�Þ ¼ y2ðx ¼ wþÞ ð12:241Þ
and

dy1ðx ¼ w�Þ
dx

¼ dy2ðx ¼ wþÞ
dx

ð12:242Þ

Written in terms of their respective variables v1 and v2, we have

y1ðv1 ¼ 1Þ ¼ y2ðv2 ¼ 0Þ ð12:243Þ

and

1

w

dy1
dv1

� �
v1¼1

¼ 1

ð1� wÞ
dy2
dv2

� �
v2¼0

ð12:244Þ

Thus, the complete formulation of equations is given in Eqs.

12.237–12.240, 12.243, and 12.244. The quantity of interest is the

nondimensional reaction rate, defined as

I ¼
Z 1

0

y dx ð12:245Þ

When written in terms of variables appropriate for the two subdo-

mains, we have

I ¼ w

Z 1

0

y1dv1 þ ð1� wÞ
Z 1

0

y2 dv2 ð12:246Þ

We are now ready to apply the orthogonal collocation to each sub-

domain. Let us start with the first subdomain. Let N be the number

of interior collocation points; hence, the total number of colloca-

tion points will be Nþ 2, including the points v1¼ 0 (center of par-

ticle) and v1¼ 1 (junction point between the two subdomains).

The mass balance equation (Eq. 12.237) will be valid only for the

interior collocation points, that is,

d2y1
dv21

� �
i

� w2f2y1ðiÞ ¼ 0 for i ¼ 2; 3; . . . ;N þ 1 ð12:247Þ

where y1(i) is the value of yl at the collocation point i. The first

term on the LHS is the second-order derivative at the collocation

point i. From Eq. 12.180e, this second-order derivative can be

written as

d2y1
dv21

� �
i

¼
XNþ2

j¼1

B1ði; jÞy1ðjÞ ð12:248Þ

where B1 is the second-order derivative matrix for the subdomain

1 having a dimension of (N þ 2, N þ 2). Remember that this

matrix is fixed once the collocation points are known. Equation

12.247 then becomes

XNþ2

j¼1

B1ði; jÞy1ðjÞ � w2f2y1ðiÞ ¼ 0 for i ¼ 2; 3; . . . ;N þ 1

ð12:249Þ

The boundary condition at v1¼ 0 (Eq. 12.238) is rewritten as

dy1
dv1

� �
v1¼0

¼ 0 ð12:250Þ

Using the formula for the first derivative (Eq. 12.180e), this equa-

tion becomes

XNþ2

j¼1

A1ð1; jÞy1ðjÞ ¼ 0 ð12:251Þ

where the first-order derivative matrix A1 has a dimension of

(N þ 2, N þ 2). Again, just like the second-order derivative matrix

B1, this matrix is also known once the collocation points are

chosen.

Before we consider the collocation analysis of the junction

point, x¼w, (v1¼ 1 or v2¼ 0), we consider the collocation analy-

sis of the equations in the subdomain 2. If we choose M (M can be

different from N used for the subdomain 1) as the number of inte-

rior collocation points of the subdomain 2, the total number of

interpolation points will be Mþ 2 including the two end points

(v2¼ 0 the junction point, and v2¼ 1 the exterior surface of the

particle). Evaluating the mass balance equation (Eq. 12.239) at the

interior collocation point i (i¼ 2, 3, . . . ,Mþ 1), we obtain

d2y2
dv22

� �
i

� ð1� wÞ2f2y2ðiÞ ¼ 0 ð12:252Þ

Using the second-order derivative formula (Eq. 12.180e), the first

term can be written in terms of the second-order derivative matrix

B2 (M þ 2,M þ 2). Equation 12.252 then becomes

XMþ2

j¼1

B2ði; jÞy2ðjÞ � ð1� wÞ2f2y2ðiÞ ¼ 0 for i ¼ 2; 3; . . . ;M þ 1

ð12:253Þ

The boundary condition at the exterior particle surface

Eq. 12.240 is

y2ðM þ 2Þ ¼ 1 ð12:254Þ

Now, we turn to the conditions at the junction of the two subdo-

mains. The first condition of continuity of concentration

(Eq. 12.243) is written in terms of the collocation variables as

y1ðN þ 2Þ ¼ y2ð1Þ ð12:255Þ
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And the second condition of continuity of flux becomes

1

w

dy1
dv1

� �
Nþ2

¼ 1

ð1� wÞ
dy2
dv2

� �
1

ð12:256Þ

that is, the LHS is evaluated at the last collocation point of the first

subdomain, whereas the second term is evaluated at the first point

of the second subdomain. Using the first order derivative formula

(Eq. 12.180e), the previous equation becomes

1

w

XNþ2

j¼1

A1ðN þ 2; jÞy1ðjÞ ¼
1

ð1� wÞ
XMþ2

j¼1

A2ð1; jÞy2ðjÞ ð12:257Þ

where A1(N þ 2, N þ 2) and A2(M þ 2, M þ 2) are the first-order

derivative matrices of the first and second subdomains, respectively.

Thus, we have now completed the orthogonal collocation treat-

ment of finite elements. We have an equal number of equations

and unknown variables. Let us now rewrite our collocation equa-

tions (Eqs. 12.249, 12.251, 12.253, 12.254, and 12.256) in the fol-

lowing order:

XNþ2

j¼1

A1ð1; jÞy1ðjÞ ¼ 0 ð12:258aÞ

XNþ2

j¼1

B1ði; jÞy1ðjÞ � w2f2y1ðiÞ ¼ 0 for i ¼ 2; 3; . . . ;N þ 1

ð12:258bÞ

1

w

XNþ2

j¼1

A1ðN þ 2; jÞy1ðjÞ ¼
1

ð1� wÞ
XMþ2

j¼1

A2ð1; jÞy2ðjÞ ð12:258cÞ

XMþ2

j¼1

B2ði; jÞy2ðjÞ � ð1� wÞ2f2y2ðiÞ ¼ 0 for i ¼ 2; 3; . . . ;M þ 1

ð12:258dÞ

y2ðM þ 2Þ ¼ 1 ð12:258eÞ

Note, the continuity condition of concentration at the junction,

y1(N þ 2)¼ y2(l), is not listed as part of Eqs. 12.158, and we shall

see that this is taken care of in the global indexing scheme.

Since we have two sets of variables, y1¼ [y1(1), y1(2), . . . ,

y1(N þ 2)]T and y2¼ [y2(1), y2(2), . . . , y2(M þ 2)]T, it is con-

venient to define a global indexing scheme, which maps these

two sets into one vector set and is convenient for programming,

as follows:

YðiÞ ¼ y1ðiÞ for i ¼ 1; 2; . . . ;N þ 2 ð12:259aÞ

YðN þ 1þ iÞ ¼ y2ðiÞ for i ¼ 1; 2; . . . ;M þ 2 ð12:259bÞ

With this definition of the new vector Y, the concentrations for

y1(Nþ 2) and y2(1) at the junction are mapped into the same varia-

ble Y(Nþ 2). This means that the continuity of concentration con-

dition at the junction (Eq. 12.255) is automatically satisfied by

this mapping. The vector Y has NþMþ 3 components, that is,

NþMþ 3 unknowns.

With the new definition of vector Y, Eqs. 12.258 can be written

as

XNþ2

j¼1

A1ð1; jÞYðjÞ ¼ 0 ð12:260aÞ

XNþ2

j¼1

B1ði; jÞYðjÞ � w2f2YðiÞ ¼ 0 for i ¼ 2; 3; . . . ;N þ 1

ð12:260bÞ

1

w

XNþ2

j¼1

A1ðN þ 2; jÞYðjÞ ¼ 1

ð1� wÞ
XMþ2

j¼1

A2ð1; jÞYðN þ 1þ jÞ

ð12:260cÞ

XMþ2

j¼1

B2ði; jÞYðN þ 1þ jÞ �ð1� wÞ2f2YðN þ 1þ iÞ ¼ 0

for i ¼ 2; 3; . . . ;M þ 1 ð12:260dÞ

YðN þM þ 3Þ ¼ 1 ð12:260eÞ

Equations 12.260 represent NþMþ 3 equations, and we have

exactly the same number of unknown variables.

In general, the set of Eqs. 12.260 is a set of nonlinear algebraic

equations, which can be solved by the Newton’s method taught in

Appendix A. For the present problem, since the governing equa-

tions are linear (Eq. 12.234), the resulting discretized equations

(Eqs. 12.260) are also linear and we will show, as follows, how

these linear equations can be cast into the matrix–vector format.

We must first arrange Eqs. 12.260 into the familiar form of sum-

mation from 1 to N þ M þ 3 because our unknown vector Y has a

dimension of N þM þ 3.

We first shift the index j in the second series in Eq. 12.260c and

the first series of Eq. 12.260d by N þ 1 as

XMþ2

j¼1

A2ð1; jÞYðN þ 1þ jÞ ¼
XNþMþ3

j¼Nþ2

A2ð1; j � N � 1ÞYðjÞ

ð12:261Þ

XMþ2

j¼1

B2ði; jÞYðN þ 1þ jÞ ¼
XNþMþ3

j¼Nþ2

B2ði; j � N � 1ÞYðjÞ

ð12:262Þ

for i ¼ 2,3, . . . ,M þ 1.

The idea of this shift is to bring the counting index for Y into

the format of Y(j) instead of Y(j þ N þ 1). With this shift in j,

Eqs. 12.260c and 12.260d then become

1

w

XNþ2

j¼1

A1ðN þ 2; jÞYðjÞ � 1

ð1� wÞ
XNþMþ3

j¼Nþ2

A2ð1; j �N �1ÞYðjÞ ¼ 0

ð12:263Þ
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and

XNþMþ3

j¼Nþ2

B2ði; j � N � 1ÞYðjÞ � ð1� wÞ2f2YðN þ 1þ iÞ ¼ 0

ð12:264Þ

for i¼ 2, 3, . . . ,M þ 1.

Now, we note that Eq. 12.260a is written for i¼ 1 (the first

point of the first subdomain), Eq. 12.260b is for i¼ 2, 3, . . . , N þ
1 (the N interior points in the first subdomain), Eq. 12.263 is for

i¼N þ 2 (the junction point). To convert Eq. 12.264 into the new

index i¼N þ 3, N þ 4, . . . , N þ M þ 2 (i.e., the M interior

points for the second subdomain) for the purpose of continuous

counting of the index i, we need to shift the index i of Eq. 12.264

by N þ 1, and as a result we have the equation

XNþMþ3

j¼Nþ2

B2ði � N � 1; j � N � 1ÞYðjÞ � ð1� wÞ2f2YðiÞ ¼ 0

ð12:265Þ

for i¼N þ 3, N þ 4, . . . , N þM þ 2.

Thus Eq. 12.265 is valid for i¼N þ 3, N þ 4, . . . , N þ M þ
2 (for the M interior collocation points in the second subdomain).

Finally, Eq. 12.260e is valid for i¼N þ M þ 3, the last point of

the second subdomain. Figure 12.14 shows the setup of all colloca-

tion equations.

Now, the final format of equations that we wish to solve is as

follows:

For i¼ 1, XNþ2

j¼1

A1ð1; jÞYðjÞ ¼ 0 ð12:266aÞ

For i¼ 2, 3, . . . , N þ 1,

XNþ2

j¼1

B1ði; jÞYðjÞ � w2f2YðiÞ ¼ 0 ð12:266bÞ

For i¼N þ 2,

1

w

XNþ2

j¼1

A1ðN þ 2; jÞYðjÞ � 1

ð1� wÞ
XNþMþ3

j¼Nþ2

A2ð1; j � N � 1ÞYðjÞ ¼ 0

ð12:266cÞ

For i¼N þ 3, N þ 4, . . . , N þM þ 2,

XNþMþ3

j¼Nþ2

B2ði � N � 1; j � N � 1ÞYðjÞ � ð1� wÞ2f2YðiÞ ¼ 0

ð12:266dÞ

For i¼N þM þ 3,

YðN þM þ 3Þ ¼ 1 ð12:266eÞ

Note the continuous counting of the index in Eqs. 12.266a–

12.266e.

If we now define a new function H(i) as

HðiÞ ¼
0 if i � 0

1 if i > 0

(
ð12:267Þ

Equation 12.266a can be now written with a summation hav-

ing the index j running from 1 to NþMþ 3 instead of from

1 to Nþ 2.

For i¼ 1,

XNþMþ3

j¼1

A1ð1; jÞHðN þ 3� jÞYðjÞ ¼ 0 ð12:268aÞ

The idea for this is to convert Eqs. 12.266 into the full vector–

matrix format, that is, the index of Y is j and the counting of this

index runs from 1 to NþMþ 3, the full dimension of the unknown

matrix Y. Likewise, we can do this for Eqs. 12.266b–12.266e,

and obtain:

For i¼ 2, 3, . . . , N þ 1,

XNþMþ3

j¼1

B1ði; jÞ � w2f2dði; jÞ� �
HðN þ 3� jÞYðjÞ ¼ 0 ð12:268bÞ

For i¼N þ 2,

XNþMþ3

j¼1

�
1

w
A1ðN þ 2; jÞHðN þ 3� jÞ

� 1

ð1� wÞA2ð1; j � N � 1ÞHðj � N � 1Þ
�
YðjÞ¼ 0 ð12:268cÞ

For i¼N þ 3, N þ 4, . . . , N þM þ 2,

XNþMþ3

j¼1

�
B2ði � N � 1; j � N � 1Þ

� ð1� wÞ2f2dði; jÞ
�
Hðj � N � 1ÞYðjÞ¼ 0 ð12:268dÞFIGURE 12.14 Two subdomains and the distribution of

equations.

12.5 ORTHOGONAL COLLOCATION ON FINITE ELEMENTS 333



For i¼N þM þ 3,

YðN þM þ 3Þ ¼ 1 ð12:268eÞ

where d(i, j) is the Kronecker delta function and is defined as

dði; jÞ ¼ 0 if i 6¼ j

1 if i ¼ j

(
ð12:269Þ

With the summation now carried from 1 to N þM þ 3, we can see

clearly Eqs. 12.268 can be readily converted into the simple vec-

tor–matrix format

DY ¼ F ð12:270Þ

where

Y ¼ Yð1Þ; Yð2Þ; Yð3Þ; . . . ; YðN þM þ 3Þ½ �T ð12:271aÞ

F ¼ 0; 0; 0; . . . ; 1½ �T ð12:271bÞ

and the matrix D of dimension (N þ M þ 3, N þ M þ 3) is given

by:

For i¼ 1,

Dð1; jÞ ¼ A1ð1; jÞHðN þ 3� jÞ ð12:272aÞ

For i¼ 2, 3, . . . , N þ 1,

Dði; jÞ ¼ B1ði; jÞ � w2f2dði; jÞ� �
HðN þ 3� jÞ ð12:272bÞ

For i¼N þ 2,

DðN þ 2; jÞ ¼ 1

w
A1ðN þ 2; jÞHðN þ 3� jÞ

� 1

ð1� wÞA2ð1; j � N � 1ÞHðj � N � 1Þ

ð12:272cÞ
For i¼N þ 3, N þ 4, . . . , N þM þ 2,

Dði; jÞ ¼ B2ði � N � 1; j � N � 1Þ � ð1� wÞ2f2dði; jÞ
h i

Hðj � N � 1Þ
ð12:272dÞ

For i¼N þM þ 3,

DðN þM þ 3; jÞ ¼ Hðj � N �M � 2Þ ð12:272eÞ

The linear equation (Eq. 12.272) can be readily solved by matrix

inversion to find the solution for the vector Y. Knowing this vector

Y, the quantity of interest I is calculated in Eq. 12.246. It is written

in terms of the quadrature as

I ¼ w
XNþ2

j¼1

w1ðjÞy1ðjÞ þ ð1� wÞ
XMþ2

j¼1

w2ðjÞy2ðjÞ ð12:273Þ

Written in terms of Y, we have

I ¼ w
XNþ2

i¼1

w1ðjÞYðjÞ þ ð1� wÞ
XMþ2

j¼1

w2ðjÞYðN þ 1þ jÞ ð12:274Þ

This completes the analysis on finite elements.

If we wished to write the matrix D, we choose the number of

interior collocation point in the subdomain 1 as N¼ 1 and that in

the second subdomain asM¼ 2. The matrix D is then given by

FIGURE 12.15 Plots if I versus the number of interior collocation numberM and the concentration profile versus x.
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D ¼

A1ð1; 1Þ A1ð1; 2Þ A1ð1; 3Þ 0 0 0

B1ð2; 1Þ B1ð2; 2Þ � w2f2 B1ð2; 3Þ 0 0 0

A1ð3; 1Þ=w A1ð3; 2Þ=w A1ð3; 3Þ=w� A2ð1; 1Þ=ð1� wÞ �A2ð1; 2Þ=ð1� wÞ �A2ð1; 3Þ=ð1� wÞ �A2ð1; 4Þ=ð1� wÞ
0 0 B2ð2; 1Þ B2ð2; 2Þ � ð1� wÞ2f2 B2ð2; 3Þ B2ð2; 4Þ
0 0 B2ð3; 1Þ B2ð3; 2Þ B2ð3; 3Þ � ð1� wÞ2f2 B2ð3; 4Þ
0 0 0 0 0 1

2
666666666664

3
777777777775

ð12:275Þ

with Y and F given by

Y ¼

Yð1Þ
Yð2Þ
Yð3Þ
Yð4Þ
Yð5Þ
Yð6Þ

2
666666666664

3
777777777775

and F ¼

0

0

0

0

0

1

2
666666666664

3
777777777775

ð12:276Þ

Figure 12.15 shows plots of the concentration profile (y versus x)

using the orthogonal collocation on finite elements method for

f¼ 100 (very fast reaction). It is seen that due to the very fast

reaction relative to diffusion, the profile is very sharp and is con-

centrated near the surface of the catalyst. Also, on the same figure

are plots of the nondimensional chemical reaction rate, I (Eq.

12.245), versus the number of the interior collocation point of the

second subdomain (M). The number of the interior collocation

point in the first domain is chosen as 1 since the profile in that

subdomain is very flat and close to zero. The location w between

the two subdomains is the varying parameter in Fig. 12.15. Also

shown in the figure are plots of the numerical solution using the

global orthogonal collocation method (Example 8.4), shown as a

dashed line. The exact solution for the nondimensional reaction

rate is tanh (f)/f¼ 0.01. It is seen in the figure that the results

using the orthogonal collocation on finite elements with w¼ 0.9

agree well with the exact solution for M¼ 6. On the other hand,

the global orthogonal collocation solution is of comparable accu-

racy only when the number of interior collocation points used

is more than 10. It is noted that, however, that the global colloca-

tion method uses the transformation u¼ x2 in the analysis. What

this means is that the global collocation method uses only even

polynomials in x, whereas the orthogonal collocation on finite ele-

ments use both odd and even polynomials, thus doubling the num-

ber of equations without increasing the accuracy. However, it is

clear in this simple example where sharp gradients exist that the

orthogonal collocation on finite elements is clearly more

advantageous.

The application of the orthogonal collocation on finite ele-

ments is straightforward as we have illustrated in the above exam-

ple of linear ordinary differential equation. The resulting set of

discretized equations is a set of linear equations (Eqs. 12.260),

which is amenable to matrix approach by using the global indexing

procedure described from Eqs. 12.261–12.272. For nonlinear ordi-

nary differential equations, the resulting set of discretized equations

will be a set of nonlinear algebraic equations, which can be handled

by the Newton’s approach discussed in Appendix A.

The orthogonal collocation on finite elements can also be

applied to partial differential equations as straightforward as we

did in the last example for ODE. If the partial differential equa-

tions are linear, the resulting set of equations will be a set of

coupled linear ordinary differential equations. On the other hand,

if the equations are nonlinear, the discretized equations are

coupled nonlinear ordinary differential equations. In either case,

these sets of coupled ordinary differential equations can be solved

effectively with integration solvers taught in Chapter 7. More of

this can be found in Finlayson (1980).

PROBLEMS

12.13. Apply the polynomial approximation technique, as

in Example 12.1, for the following cases:

(a) Rectangular coordinates

@y

@t
¼ @2y

@x2

(b) Cylindrical coordinates

@y

@t
¼ 1

x

@

@x
x
@y

@x

� �
with the same initial and boundary conditions as

given in Eq. 12.1.

12.23. Replace the fixed boundary conditions in Example

12.1 with a boundary condition (Eq. 12.1d) of the

resistance type

x ¼ 1;
@y

@x
¼ Bið1� yÞ

where Bi¼ kcR=D and as before y¼ (C0�C)=(C0�
CB), and find the polynomial approximate solution.

12.33. The following equations describe a constant heat

flux problem into a semiinfinite slab material

@y

@t
¼ @2y

@x2

t ¼ 0; y ¼ 0

x ¼ 0; � @y

@x
¼ 1

x ! 1;
@y

@x
! 0
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The exact solution to this problem (obtained by

Laplace transform) is

yðx; tÞ ¼ 2

ffiffiffi
t

p

r
exp � x2

4t

� �
� x erfc

x

2
ffiffiffi
t

p
� �

and the surface temperature is

yð0; tÞ ¼
ffiffiffiffiffi
4t

p

r

(a) Assuming that the penetration depth is X(t) and
the temperature and heat flux at the penetration

front are zero (see Eqs. 12.24 and 12.25), show

that the integral heat balance equation isZ XðtÞ

0

yðx; tÞ dx ¼ t

(b) Next, assume that the temperature profile is para-

bolic, then prove that the expression for the tem-

perature distribution must be

yðx; tÞ ¼ XðtÞ
2

1� x
XðtÞ

� �2
(c) Show that the approximate solution for the pene-

tration depth is

XðtÞ ¼
ffiffiffiffiffi
6t

p

(d) Derive the solution for the temperature at x¼ 0

and compare your results with the exact solution.

12.43. Modeling the heating of a semi-infinite slab with a

film resistance at the surface gives rise to the nondi-

mensional equations

@y

@t
¼ @2y

@x2

t ¼ 0; y ¼ 0

x ¼ 0;
@y

@x
¼ Bihðy� 1Þ

The exact solution to the problem is

y ¼ erfc
x

2
ffiffiffi
t

p
� �

� exp ðBihxþ Bi2htÞerfc
x

2
ffiffiffi
t

p þ Bih
ffiffiffi
t

p� �

where y ¼ ðT � T0Þ=ðTB � T0Þ and T ¼ T0 at t ¼ 0

and T ¼ TB for X< 0, with Bih ¼ hL=R.

(a) Use the quadratic approximation for the tempera-

ture distribution, using penetration front X(t), to

find the approximate solution

yaðx; tÞ �
BihXðtÞ

2þ BihXðtÞ 1� x
XðtÞ

� �2
where the penetration X is determined from the

implicit equation

ðBihXÞ2 þ 4BihX � 8ln 1þ BihX

2

� �
¼ 12Bi2ht

(b) Derive the approximate surface temperature and

compare it with the exact solution.

12.53. Example 12.4 considers a problem of first-order

chemical reaction in a fixed bed. The boundary con-

dition at the bed entrance does not account for the

axial diffusion of mass. To account for this, the

boundary conditions at the two ends should be

(Danckwerts boundary conditions)

x ¼ 0;
dy

dx
¼ 2ðy� 1Þ

x ¼ 1;
dy

dx
¼ 0

with the mass balance equation the same as Eq.

12.118.

(a) Apply suitable finite-difference representation

(second-order correct for first and second deriva-

tives, Eqs. 12.116c and 12.117) to show that the

mass balance equation takes the form

ayi�1 � byi � gyiþ1 ¼ 0

where a, b, and g are given in Eq. 12.120c.

(b) Use fictitious points one step in front of the bed and

one step after the bed to show that the two bound-

ary conditions written in finite-difference form are

y1 � y�1

2Dx
� 2ðy0 � 1Þ

yNþ1 � yN�1

2Dx
� 0

where y�1 and yNþ1 are discrete values of y of the

points before and after the bed, respectively.

(c) Make use of the finite-difference approximation

for the boundary conditions to show that the

finite-difference equations describing the system

behavior are

�ð4aDxþ bÞy0 þ ða� gÞy1 ¼ �4aDx

ayi�1 � byi � gyiþ1 ¼ 0 for i ¼ 1; 2; . . . ;N � 1
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and

ða� gÞyN�1 � byN ¼ 0

(d) Use the Thomas algorithm to solve the finite-

difference equations in (c).

12.63. Modeling of a second-order chemical reaction in cat-

alyst of slab geometry with constant physical and

chemical properties will give rise to the equation

d2y

dx2
� f2y2 ¼ 0

where f2 is the square of the Thiele modulus, which

describes the relative strength between the reaction

rate and the diffusion rate. Assume constant temper-

ature conditions exist.

(a) Show that suitable variables for nondimensional

analysis are

y ¼ C

C0

; x ¼ r

R
; f2 ¼ kC0R

2

De

where C0 is the bulk fluid concentration, R is the

half length of the catalyst, De is the effective dif-

fusivity, and k is the chemical reaction rate con-

stant per unit catalyst volume.

(b) If there is symmetry at the center and a stagnant

film surrounds the catalyst, show that the bound-

ary conditions should take the form

x ¼ 0;
dy

dx
¼ 0

x ¼ 1;
dy

dx
¼ Bið1� yÞ

where Bi ¼ kcR=De.

(c) Apply finite differencing to the mass balance

equation and write the approximation to the mass

balance equation as

yi�1 � 2yi þ yiþ1 � f2ðDxÞ2y2i � 0

(d) Similarly, show that the finite-difference approxi-

mation of the two boundary conditions are

y1 � y�1

2Dx
� 0

yNþ1 � yN�1

2Dx
� Bið1� yNÞ

where y�1 and yNþ1 are discrete values at two fic-

titious points outside the domain.

(e) Eliminate the values of y at fictitious points to

show that the final finite-difference equations

describing the system are

�2y0 � f2ðDxÞ2y20 þ 2y1 ¼ 0

yi�1 � 2yi � f2ðDxÞ2y2i þ yiþ1 ¼ 0

for i ¼ 1; 2; . . . ;N � 1

2yN�1 � ð2þ 2BiDxÞyN � f2ðDxÞ2y2N ¼ �2BiDx

(f) For f2¼ 10, Bi¼ 100, and N¼ 3, the above set of

four equations is a coupled set of nonlinear alge-

braic equations. Apply the Newton technique of

Appendix A to solve for the discrete values of

concentration.

12.73. It was demonstrated in the text that the number of

equations to be solved using the method of finite dif-

ference depends on the type of boundary conditions.

For example, if the functional values are specified at

two end points of a boundary value problem, the

number of equations to be solved is N� 1. On the

other hand, if the functional value is specified at

only one point and the other end involves a first

derivative, then the number of equations is N. This

homework problem will show that the variation in

the number of equations can be avoided if the loca-

tions of the discrete point are shifted as

xi ¼ i � 1
2

� 
Dx

instead of the conventional way of defining x1¼ iDx.
With this new way of defining the point, the first point

will be Dx=2 from the left boundary, and the Nth point

will also be Dx=2 from the right boundary. Fig-

ure 12.16 shows the locations of all discrete points.

Consider the following set of equations:

d2y

dx2
� 2

dy

dx
� 10y ¼ 0

x ¼ 0;
dy

dx
¼ 2ðy� 1Þ

x ¼ 1;
dy

dx
¼ 0

x = 0

x1

Δx Δx

x0

2
xi – 1 xi xi +1 xn +1xn 

x = 1

FIGURE 12.16
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(a) Apply finite-difference approximations to the

governing equation to show that it will take the

form

ayi�1 � byi � gyiþ1 ¼ 0

where

a ¼ 1

Dx
þ 1

ðDxÞ2 ; b ¼ 2

ðDxÞ2 þ 10;

g ¼ 1

Dx
� 1

ðDxÞ2

(b) Next, apply the finite difference to the first bound-

ary condition (i.e., the condition at x¼ 0) to show

that

y1 � y0
Dx

� 2ðyjx¼0 � 1Þ

where y0 is the value of y at the fictitious point x0,

which is Dx=2 outside the left boundary as shown

in the above figure, and yjx¼0 is the value of y at

the point x¼ 0. But note that there is no grid point

at x¼ 0. To resolve this, we need to approximate

this value based on values at two sides of the posi-

tion x¼ 0. To approximate this value, we take the

average of the values of y at the two sides of

x¼ 0, that is,

yjx¼0 �
y1 þ y0

2

Use this to substitute into the finite-difference

relation for the boundary condition at x¼ 0 to

solve for y0. Show that this exercise takes the form

y0 �
1� Dx

1þ Dx

� �
y1 þ

2Dx

1þ Dx

(c) Apply the same procedure at in (b) to the right

boundary condition to show that

yNþ1 � yN

where yNþl is the value of y at the fictitious point

Dx=2 outside the right boundary.

(d) Insert the values of y0 and yNþl obtained in (b) and

(c) into the finite-difference analogue of the gov-

erning equation to yield N equations with N

unknowns (y1, y2, . . . , yN). Solve the resulting N

linear equations using the Thomas algorithm. Use

N¼ 3,5, and 10 and compare the approximate

solutions with the exact solution.

This problem shows how useful the shifted position

strategy is in solving differential equations. It does not

matter what form the boundary conditions take, yet the

number of equations will always be N. The only minor

disadvantage of this procedure is that the values of y at

the boundaries are not given directly from the solution

of the finite-difference equations. They must be deter-

mined from the average of the last interior value and

the exterior value, as described in (b).

12.82. The shifted position procedure discussed in Prob-

lem 12.7 is also useful when dealing with problems

with radial coordinates, such as problems having

cylindrical and spherical geometries. To show this,

solve the following problem of first-order chemical

reaction in a spherical catalyst having the dimen-

sionless form

d2y

dx2
þ 2

x

dy

dx
� 9y ¼ 0

x ¼ 0;
dy

dx
¼ 0

x ¼ 1; y ¼ 1

(a) Apply the second-order correct analogue to the

derivatives of the governing equation to show that

the finite-difference approximation is

yi�1 � 2yi þ yiþ1

ðDxÞ2 þ 2

xi

yiþ1 � yi�1

2Dx
� 9yi � 0

where xi¼ (i� 1
2
)Dx.

(b) Next, apply the finite-difference approximation to

the boundary conditions at two end points to show

that

y0 � y1;
yNþ1 þ yN

2
� 1

where y0 and yNþl are values of y at two fictitious

points Dx=2 outside the boundaries.

(c) Solve the N resulting linear difference equations

and compare it with the exact solution

y ¼ 1

x

sinhð3xÞ
sinhð3Þ

12.93. Apply the conventional layout of the discrete points,

that is, xi¼ iDx, to solve the linear parabolic partial

differential equation

@y

@t
¼ @2y

@x2
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subject to the boundary conditions

x ¼ 0; y ¼ 1

x ¼ 1;
dy

dx
þ 10y ¼ 0

t ¼ 0; y ¼ 0

(a) Apply the second-order correct analogue to the

second order spatial derivative, and the first-order

correct forward formula for the time derivative to

show that the value of y at the position xi and the

time tjþ1 is given explicitly as

yi;jþ1 ¼ yi;j þ
Dt

ðDxÞ2 ðyi�1; j � 2yi;j þ yiþ1; jÞ

(b) The boundary condition at the left boundary is

trivial. To handle the condition at the right bound-

ary, apply the finite difference to show that

yNþ1; j � yN�1; j

2ðDxÞ þ 10yN;j ¼ 0

where yNþ1 is the value of y at the fictitious point

outside the right boundary. Use this finite-

difference analogue of the boundary condition at

x¼ 1 to eliminate yNþ1 from the finite-difference

equation and hence finally obtain N equations for

y1,jþ1, y2,jþ1, . . . , yN,jþ1, which can be solved

explicitly.

(c) Choose N¼ 5 (i.e., Dx¼ 0.2), and compute the

solutions in (b) with Dt¼ 0.01, 0.02, and 0.05.

Discuss the results obtained.

12.103. Use the backward difference in the approximation

of time derivative to solve Problem 12.9.

(a) Show that the finite-difference analogue to the

governing equation becomes

yi�1; jþ1 � 2þ ðDxÞ2
Dt

" #
yi;jþ1 þ yiþ1; jþ1 ¼ �ðDxÞ2

Dt
yi;j

that is, the values of y at the time tjþ1, are written

in terms of the values of y at tj.

(b) Treat the boundary conditions the same way as in

Problem 12.9 and prove that the final N equations

will take the form of tridiagonal matrix.

(c) Use the Thomas algorithm to solve the finite-

difference equations for Dx¼ 0.2 and Dt¼ 0.01,

0.02, and 0.05. From the computed results, dis-

cuss the stability of the problem.

12.113. Solve Problem 12.9 using the Crank–Nicolson

method, and show that the final N finite-difference

equations have the tridiagonal matrix form. Com-

pute the results and discuss the stability of the

simulations.

12.12�. This homework problem will illustrate the stability

of the three different methods of approximating

time derivatives in solving the problem

@y

@t
¼ @2y

@x2

subject to

x ¼ 0; y ¼ 1 and x ¼ 1; y ¼ 0

(a) Apply the Taylor series expansions to y(xþ Dx, t)
and y(x�Dx, t) around the point (x, t) and use

the results of these two expansion to show that

@2y

@x2

� �
x;t

¼ yðxþ Dx; tÞ � 2yðx; tÞ þ yðx� Dx; tÞ
ðDxÞ2

� 2

4!

@4y

@x4

� �
x;t

ðDxÞ2 þ 	 	 	

(b) Similarly, use the Taylor series expansion of

y(x, t þ Dt) around the point (x, t) to show that

@y

@t

� �
x;t

¼ yðx; tþ DtÞ � yðx; tÞ
Dt

� 1

2!

@2y

@t2

� �
x;t

Dtþ 	 	 	

(c) Substitute these equations in (a) and (b) into the

governing equation, and use the notations

yðx; tÞ ¼ yi;j ; yðxþ Dx; tÞ ¼ yiþ1; j ;

yðx; tþ DtÞ ¼ yi;jþ1

to obtain the equation

yi;jþ1 � yi;j

Dt
� 1

2!

@2y

@t2

� �
i;j

Dtþ . . .

¼ yi�1; j � 2yi;j þ yiþ1; j

ðDxÞ2 � 2

4!

@4y

@x4

� �
i;j

ðDxÞ2 þ . . .

(d) If z is the finite-difference solution in approximat-

ing y, that is,

zi;jþ1 � zi;j

Dt
¼ zi�1; j � 2zi;j þ ziþ1; j

ðDxÞ2

then show that the error of the finite-

difference solution, defined as e¼ y� z, is
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given by the equation

ei;jþ1 � ei;j

Dt
� 1

2!

@2y

@t2

� �
i;j

Dtþ 	 	 	

¼ ei�1; j � 2ei;j þ eiþ1; j

ðDxÞ2 þ 2

4!

@4y

@x4

� �
i;j

ðDxÞ2 þ 	 	 	

(e) Neglecting the small order terms in (d) to show

that the finite-difference solution for the error e is

ei;jþ1 � ei;j

Dt
¼ ei�1; j � 2ei;j þ eiþ1; j

ðDxÞ2

and also show that e0,j¼ eN, j¼ 0.

(f) By virtue of the fact that the finite-difference

equation and the governing equation have homo-

geneous boundary conditions, assume that the

error will take the form

ei;j ¼ KiTj

This is identical to the separation of variables

method described in Chapter 10. Substitute this

into the finite-difference equation for the error to

show that

Tjþ1

Tj

¼ Dt

ðDxÞ2
Ki�1 � 2Ki þ Kiþ1

Ki

� �
þ 1

The LHS is a function of j (i.e., time), whereas the

RHS is a function of i (i.e., x); therefore, the only

possibility that these two can be equated is that

they must be equal to the same number. Let this

number be l. Hence, show that the equation for K

will take the form

Ki�1 � 2Ki þ Kiþ1 þ ðDxÞ2
Dt

ð1� lÞKi ¼ 0

with K0¼KN¼ 0.

(g) One possible solution that satisfies the homoge-

neous boundary conditions is

Ki ¼ sinðppxiÞ
Substitute this into the equation for K and finally

show l will be

l ¼ 1� 4Dt

ðDxÞ2 sin
2 ppDx

2

� �

(h) Now, since Tjþ1=Tj¼ l, hence, to prevent the

error from exploding, the constraint on l must be

l < 1; that is,

1� 4Dt

ðDxÞ2 sin
2 ppDx

2

� �					
					 < 1

from which show that the final constraint on the

step sizes in time (so that the finite-difference

solution is bounded) will be

Dt

ðDxÞ2 <
1

2

This is the stability criterion for the forward dif-

ference scheme in time.

12.13�. For the backward difference in time, follow the

same procedure as in Problem 12.12 to show that

the finite-difference equation for the error in solv-

ing the same problem is

ei;jþ1 � ei;j

Dt
¼ ei�1; jþ1 � 2ei;jþ1 þ eiþ1; jþ1

ðDxÞ2

subject to e0,j¼ eN,j¼ 0.

(a) Assume ei,j takes the form

ei;j ¼ KiTj

and substitute this into the finite-difference equa-

tion for the error to show that

Tjþ1

Tj

¼ l

and

Ki�1 � 2Ki þ Kiþ1 þ ð1� lÞðDxÞ2
lDt

Ki ¼ 0

(b) Let Ki¼ sin(ppxi) and substitute it into the equa-

tion for K to show that l will take the form

l ¼ 1

1þ ½4Dt=ðDxÞ2�sin2 ppDx=2ð Þ

which is always less than 1. This means that the

backward formula is always stable for any step

size in time used.

12.143. Repeat Problem 12.13 for the Crank–Nicolson

method to show that l will take the form

l ¼ 1� 2½Dt=ðDxÞ2�sin2 ppDx=2ð Þ
1þ 2½Dt=ðDxÞ2�sin2 ppDx=2ð Þ

which is also always less than 1. Thus, the Crank–

Nicolson method is always stable.

340 APPROXIMATE AND NUMERICAL SOLUTIONMETHODS FOR PDEs



12.15�. The modeling of cooling a fluid in a laminar pipe

flow was considered in Example 10.3. Neglecting

the axial heat conduction relative to the convection

term, the following heat balance equation describes

the temperature change inside the pipe:

2v0 1� r
R


 �2� �
@T

@z
¼ a

1

r

@

@r
r
@T

@r

� �

where a¼ k=rCp defines thermal diffusivity, v0 is
the mean velocity, R is the pipe radius, and r and z

are radial and axial coordinates, respectively.

The initial and boundary conditions are given by

z ¼ 0; T ¼ T0

r ¼ 0;
@T

@r
¼ 0

r ¼ R; T ¼ Tw

(a) Define the nondimensional variables as in Eq.

10.216 and then show that the governing equation

will become

ð1� j2Þ @T
@z

¼ 1

j

@

@j
j
@T

@j

� �

(b) Show that the bulk mean temperature at any point

along the pipe is given by

TðzÞ ¼ 4

Z 1

0

jð1� j2ÞTðj; zÞdj

(c) Note the symmetry condition at the center of the

pipe, then use the usual transformation of u¼ j2

to show that the governing equation will take the

form

ð1� uÞ @T
@z

¼ 4u
@2T

@u2
þ 4

@T

@u

and that the conditions will be

z ¼ 0; T ¼ T0

u ¼ 1; T ¼ Tw

(d) Apply the orthogonal collocation by assuming the

function y(j,z) takes the form of Lagrangian inter-

polation polynomial

yðu; zÞ ¼ lNþ1ðuÞyðuNþ1; zÞ þ
XN
j¼1

ljðuÞyðuj; zÞ

with N þ 1 interpolation points, where the first N

points are zeros of the Jacobi polynomial

J
0;0
N ðuÞ ¼ 0 and the (N þ l)th point is uNþ1¼1.

The functions lj(u) are Nth degree Lagrangian

polynomial, defined in Eq. 8.90.

Substitute this approximation polynomial into

the governing equation and force the residual to

be zero at the collocation points (u1–uN) and show

that the N discretized equations are

@Ti

@z
¼ Ci;Nþ1Tw þ

XN
j¼1

Ci;jTj for i ¼ 1; 2; . . . ;N

where Ci,j is defined as

Ci;j ¼ 4uiBi;j þ 4Ai;j

1� ui

with Aij and Bij are first and second derivative

matrices, respectively, defined in Eqs. 8.102 and

8.103.

(e) The N coupled ordinary differential equations

have initial condition

z ¼ 0; Ti ¼ T0 for i ¼ 1; 2; . . . ;N

This set of equations is linear and is susceptible to

linear analysis. Use the vector–matrix approach of

Section 2.7 and 2.8 to show that the solution is

T ¼ T0U expðKzÞU�1I

where I is the identity matrix, K is the diagonal

matrix with eigenvalues on the diagonal line, U is

the matrix of eigenvectors of C.

(f) Once T is found in (e), show that the mean bulk

temperature is obtained from the Gauss–Jacobi

quadrature

TðzÞ ¼
XN
j¼1

wj 2ð1� ujÞTðuj ; zÞ
� �

where wj are Gauss–Jacobi quadrature weights.

This cooling of fluid in a pipe with wall heat

transfer resistance was solved by Michelsen

(1979) using the method of orthogonal colloca-

tion. This problem without the wall resistance is a

special case of the situation dealt with by Michel-

sen, and is often referred to as the Graetz problem

(see Example 10.3 and Problem 3.4).

12.16�. Example 10.2 considers the modeling of a CVD

process in a parallel flat plate system. The entrance
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length problem was analytically dealt with by the

method of combination of variables. Here, we

assume that the chemical reaction at the plate fol-

lows a nonlinear reaction, and apply the orthogonal

collocation to solve this problem numerically.

(a) Show that the governing equation and conditions

take the form

vmax 1� x
B


 �2� �
@C

@z
¼ DA

@2C

@x2

x ¼ 0;
@C

@x
¼ 0

x ¼ B; � DA

@C

@x
¼ f ðCÞ

where f(C) is the nonlinear chemical rate per unit

surface area.

(b) Reduce the set of equations in (a) to the following

nondimensional form such that the x-directed

coordinate is normalized to (0, 1)

ð1� j2Þ @C
@z

¼ @2C

@j2

(c) Note the symmetry condition in the j-directed

coordinate, apply the usual transformation u¼ j2,

where j¼ x=B, to reduce the governing equation

to a new set of equations

ð1� uÞ @C
@z

¼ 4u
@2C

@u2
þ 2

@C

@u

u ¼ 1;
@C

@u
¼ GðCÞ

What is the form of G written in terms of f(C) and

other variables?

(d) Apply the orthogonal collocation and show that

the discretized equations take the form

dCi

dz
¼ Ci:Nþ1CNþ1 þ

XN
j¼1

Ci;jCj

for i ¼ 1; 2; . . . ;N
and

XN
j¼1

ANþ1; jCj þ ANþ1;Nþ1CNþ1 ¼ GðCNþ1Þ

where

Ci;j ¼ 4uiBi;j þ 2Ai;j

1� ui

Here, A and B are first- and second-order deriva-

tive matrices.

(e) The set of discretized equations in (d) is nonlinear

because of the nonlinear reaction. Develop a

scheme by applying methods of Chapter 7 to

show how these equations are integrated.
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APPENDIX A

REVIEW OFMETHODS FOR NONLINEAR
ALGEBRAIC EQUATIONS

This appendix presents a number of solution methods to

solve systems of algebraic equations. We will start with the

basic techniques, such as bisection and successive substitu-

tion, and then discuss one of the most widely used Newton–

Raphson methods. These methods are useful in solving

roots of polynomials such as f (x)¼ 0.

A.1 THE BISECTION ALGORITHM

The bisection algorithm is the most simple method to locate

a root of a nonlinear algebraic equation if we know the

domain [a, b] that bounds the root. This implies that the

functional values at x¼ a and x¼ b must be different in

sign (see Fig. A.1) and if the function is continuous, which

is often the case in chemical engineering problems, then

there will be at least one root lying inside that domain

[a, b]. This domain is often known, especially when we

solve transcendental equations for determining eigenvalues

(Chapters 10 and 11), and therefore this algorithm is quite

suitable as a starter. Following this initiation step, a much

faster convergence (Newton–Raphson) method is used

at some point to speed up convergence. We shall discuss

Newton–Raphson in Section A.3.

Given a continuous function f (x), defined in the interval

[a, b] with f (a) and f (b) being of opposite sign, there exists

a value p (a< p< b), for which f (p) = 0. There may be more

than one value of p.

The method calls for a repeated halving of the sub-

interval [a, b] and at each stop, locating the “half ” region

containing p.

To begin the process of repeated halving, we make a first

iteration to find p (call this p1) and let p1 be the midpoint of

[a, b]; that is,

p1 ¼
a1 þ b1ð Þ

2

where

a1 ¼ a and b1 ¼ b

If f (p1)¼ 0, then p1 is the solution. If not, then f (p) has the

same sign as either f (a1) or f (b1). If f (p1) and f (a1) have the

same sign, then p2 (p1, b1) (i.e., p lies between p1 and b1)

and we set a2¼ p1 and b2¼ b1. If f (p1) and f (b1) are of the

same sign, then p2 (a1, p1), and we set a2¼ a1 and b2¼ p1.

We then apply the same procedure to the subinterval [a2, b2]

until a convergence test is satisfied. Figure A.1 shows the

graphical representation of this iteration.

Some convergence tests could be used to stop the itera-

tion. Given a tolerance e> 0, we generate p1, p2, . . . , pn
until one of the following conditions is met:

jpn � pn�1j < e ðA:1aÞ
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jpn � pn�1j
jpnj

< e jpnj 6¼ 0 ðA:1bÞ

jf ðpnÞj < e ðA:1cÞ

Difficulties may arise using any of these stopping criteria,

especially the criterion (A.la). If there is no knowledge

beforehand regarding the function f or the approximate

location of the exact root p, Eq. A.1b is the recommended

stopping criterion.

Drawbacks of the bisection method are as follows:

1. An interval [a, b] must be found with the product

f (a) � f (b) being negative.
2. The convergence rate is rather slow (relative to the

Newton’s method).

Despite the drawbacks of the bisection listed above, it has

two advantages:

1. The method is very simple.

2. The method always converges.

The key advantage of the technique is if an interval [a, b] is

found, the method always converges. For this reason, it is

often used as a “starter” for the more efficient root-seeking

methods described later.

A.2 THE SUCCESSIVE SUBSTITUTION METHOD

The bisection method presented in the previous section can

only be used when an interval [a, b] is known. However, if

this is not possible, the present and the following sections

(Newton–Raphson) will prove to be useful.

Let us start with the single nonlinear algebraic equation:

FðxÞ ¼ 0 ðA:2Þ

which we will generalize later for a set of nonlinear

equations.

The underlying principle of the successive substitution

method is to arrange the given equation to the form

x ¼ f ðxÞ ðA:3Þ

One way of doing this is to simply add x to the LHS and

RHS of Eq. A.2 as

x ¼ xþ FðxÞ ¼def f ðxÞ ðA:4Þ

The iteration scheme for the successive substitution method

to search for a root is defined as

xðkþ1Þ ¼ xðkÞ þ FðxðkÞÞ ¼ f ðxðkÞÞ ðA:5Þ

where the superscript k denotes the iteration number. It is

expressed in bracketed form to distinguish it from powers.

Application of the successive method is quite simple. We

choose (by guessing) a value for x(0) and calculate x(1) from

the iteration equation (A.5). Repeating the procedure, we

obtain x(2) and x(3), and so on. The method may or may not

converge, but the method is direct and very easy to apply,

despite the uncertainty of convergence. We will demon-

strate the method and its uncertainty in the following

example.

Consider the elementary equation:

FðxÞ ¼ x2 � 4 ¼ 0 ðA:6Þ

for which the exact solution is x¼� 2.

The iteration equation for this example can be initiated

by adding x to both sides of Eq. A.6; that is,

x ¼ x2 � 4þ x ¼ f ðxÞ ðA:7Þ

The iteration scheme for this equation is

xðkþ1Þ ¼ ðxðkÞÞ2 � 4þ ðxðkÞÞ ðA:8Þ

FIGURE A.1 Graphical representation of the bisection technique.
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Starting with an initial guess of x(0)¼ 3, we get the follow-

ing diverging behavior: x(1)¼ 8, x(2)¼ 68, x(3)¼ 4688. The

method does not converge. Even if we try x(0)¼ 2.01, which

is very close to the exact solution, again the method does

not converge. This method exhibits a divergence behavior,

even when the initial guess is close to the exact solution.

Before we discuss conditions to make this method to con-

verge, we rearrange Eq. A.6 by dividing it by (�2x) and

obtain

GðxÞ ¼ 2

x
� x

2
¼ 0 ðA:9Þ

The successive substitution is applied to this equation, and

the following equation is obtained:

xðkþ1Þ ¼ xðkÞ þ 2

xðkÞ
� xðkÞ

2
¼ xðkÞ

2
þ 2

xðkÞ
ðA:10Þ

Starting with x(0)¼ 4, we obtain x(1)¼ 2.5, x(2)¼ 2.05,

x(3)¼ 2.00061, and x(4)¼ 2.000000093. The iteration pro-

cess for the new arrangement converges rapidly in a few

iterations!

Obviously, the new arrangement for the iteration equa-

tion is better than the original iteration equation (Eq. A.8).

Before we discuss the conditions for convergence, let us

practice this method on a set of coupled nonlinear algebraic

equations.

Consider a set of nonlinear algebraic equations.

F1ðx1; x2; . . . ; xnÞ ¼ 0

F2ðx1; x2; . . . ; xnÞ ¼ 0

..

.

Fnðx1; x2; . . . ; xnÞ ¼ 0

ðA:11Þ

The number of algebraic equations is the same as the num-

ber of unknowns x, where

x ¼ ½x1; x2; . . . ; xn�T ðA:12Þ

The above set of algebraic equations can be written in a

more compact form as

FiðxÞ ¼ 0 ðA:13Þ

for i¼ 1, 2, . . . , n, or in vector form, write as

FðxÞ ¼ 0 ðA:14aÞ

where

F ¼ ½F1;F2; . . . ;Fn�T ; 0 ¼ ½0; 0; . . . ; 0�T ðA:14bÞ

Our objective for a solution is to find x such that Fi(x)¼ 0

for i¼ 1, 2, . . . , n.

By adding xi to the ith equation (Eq. A.13), we have

xi þ FiðxÞ ¼ xi ðA:15Þ
for i¼ 1, 2, . . . , n.

The iteration scheme for successive substitution is

defined as follows:

x
ðkþ1Þ
i ¼ x

ðkÞ
i þ FiðxðkÞÞ ðA:16Þ

for i¼ 1, 2, . . . , n.

Application of the successive substitution method is sim-

ply choosing (by guessing) a value for x(0) and calculate x(1)

according to Eq. A.16 for i¼ 1, 2, . . . , n. Repeating the

procedure, we obtain x(2), x(3) and determine if the method

will converge. Similar to the case of single equation, the

convergence of the iteration scheme is uncertain. We need

to establish conditions that can tell us when the method will

converge.

The following convergence theorem (sometimes called

the contraction mapping theorem) will provide this

information.

Theorem A.1

Let a be the solution of ai¼ fi (a), for i¼ 1, 2, . . . , n.

Assume that given an h> 0, there exists a number 0<m< 1

such that

Xn
j¼1

@f i
@xj

����
���� � m; for jxi � aij < h; i ¼ 1; 2; . . . ; n

and if the iteration equation is

x
ðkÞ
i ¼ f iðxðk�1ÞÞ

then xi(k) converges to ai as k increases.

An elementary proof for this theorem may be found in

Finlayson (1980).

The condition for convergence is conservative; that is, if

the condition is satisfied, the iteration process will con-

verge. However, nothing is said about when the condition is

not met. In such a case, the iteration process may converge

or diverge.

For a one-dimensional problem a¼ f (a), the previous

contraction mapping theorem is reduced as follows. For a

given h> 0, there exists a number m(0<m< 1) such that

|df/dx|<m for |x�a|< h, then the following iteration

xðkÞ ¼ f ðxðk�1ÞÞ ðA:17Þ
will converge to a.
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This can be shown graphically in Fig. A.2 with plots of

functions x and f (x). The solution a is simply the intersec-

tion of these two functions. It is recognized that if the

slope of the function f(x) is less than that of the function x

(i.e., |df/dx|< 1) in the neighborhood of a, then, as we see

in Fig. A.2, any point in that neighborhood will map

itself into the same domain (see the direction of arrows in

Fig. A.2). This explains why the theory was given the name

of contraction mapping.

Therefore, with any starting point in that neighborhood,

the iteration process will converge to the solution a.

The advantages of the successive substitution are as

follows:

1. There is no need to find the interval [a, b] as in the

bisection method.

2. The method is very simple to apply.

And the disadvantages are as follows:

1. There is no guarantee of convergence (the contracting

mapping theorem must be applied, but it is

conservative).

2. A rather slow convergence rate (linear convergence)

persists.

A.3 THE NEWTON–RAPHSONMETHOD

The Newton–Raphson method is one of the most effective

methods to solve nonlinear algebraic equations. We first

illustrate the method with a single equation, and then gener-

alize it to coupled algebraic equations.

Let us assume that the function F(x) is at least twice

differentiated over a domain [a, b]. Let x� 2 [a, b] be an

approximation to a, where a is the exact solution, such that

F0(x�) 6¼ 0 and |x��a| is small.

Consider the Taylor series of F(x) expanded around the

value x�, and keep only up to the first-order derivative term:

FðxÞ � Fðx�Þ þ dFðx�Þ
dx

ðx� x�Þ þ � � � ðA:18Þ

Since a is the exact solution, that is, F(a)¼ 0, we substitute

x¼a into Eq. A.18 and obtain the result:

0 ffi Fðx�Þ þ dFðx�Þ
dx

ða� x�Þ ðA:19Þ

in which we have neglected all the terms higher than

(a� x�)
Solving for a from Eq. A.19, we obtain

a � x� � Fðx�Þ
ðdFðx�ÞÞ=dx ðA:20Þ

Equation A.20 is the basis for the algorithm in the Newton–

Raphson method. The iteration process is defined as

xðkþ1Þ ¼ xðkÞ � FðxðkÞÞ
ðdFðxðkÞÞÞ=dx ðA:21Þ

provided, of course, that

dFðxðkÞÞ
dx

6¼ 0 ðA:22Þ

during the iteration process. Figure A.3 shows the Newton–

Raphson method graphically.

Coming back to the example we used earlier,

FðxÞ ¼ x2 � 4 ðA:23Þ

FIGURE A.3 Graphical representation of the Newton–Raphson

method.

FIGURE A.2 Graphical representation of one-dimensional con-

traction mapping.
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we now apply the Newton–Raphson scheme and obtain the

following iteration scheme using Eq. A.21:

xðkþ1Þ ¼ xðkÞ � ðxðkÞÞ2 � 4

2xðkÞ
¼ xðkÞ

2
þ 2

xðkÞ
ðA:24Þ

A comparison with Eq. A.10 shows we were using the

Newton–Raphson scheme by the artificial device of

division by x.

The Newton–Raphson method is a very powerful

method, but it has the disadvantage that the derivative is

needed. This can be a problem when one deals with com-

plex coupled nonlinear algebraic equations.

To circumvent this problem, one can estimate the

derivative F(x(k)) by the following finite-difference approx-

imation:

dFðxðkÞÞ
dx

� FðxðkÞÞ � Fðxðk�1ÞÞ
xðkÞ � xðk�1Þ ðA:25Þ

Using this approximation, the Newton–Raphson iteration

equation becomes

xðkþ1Þ ¼ xðkÞ � FðxðkÞÞðxðkÞ � xðk�1ÞÞ
F xðkÞð Þ � F xðk�1Þð Þ ðA:26Þ

This formula is often called the secant method, and to initi-

ate it one needs two initial guesses. Normally, these two

guesses are very close to each other. Figure A.4 shows the

secant iteration method graphically.

Now we turn to presenting Newton’s method for coupled

nonlinear algebraic equations, such as portrayed in

Eq. A.14. Newton’s method for this set of equations is

defined in terms of the Jacobian, which is the matrix of

derivatives:

xðkþ1Þ ¼ xðkÞ � J�1ðxðkÞÞ � FðxðkÞÞ ðA:27Þ
for k¼ 0, 1, . . . , and J is the matrix defined as

JðxÞ ¼

@F1

@x1

@F1

@x2
� � � @F1

@xn

@F2

@x1

@F2

@x2
� � � @F2

@xn

..

. ..
. ..

. ..
.

@Fn

@x1

@Fn

@x2
� � � @Fn

@xn

2
6666666666664

3
7777777777775

ðA:28Þ

The matrix J is called the Jacobian matrix. With an initial

guess close to the exact solution, Newton’s method is

expected to give a quadratic convergence, provided of

course that the Jacobian J exists. To illustrate the method

for coupled equations, we inspect the following example:

F1 ¼ 3x21 � x22

F2 ¼ 3x1x
2
2 � x31 � 1

The Jacobian matrix J is given as

J ¼
@F1

@x1

@F1

@x2

@F2

@x1

@F2

@x2

2
664

3
775 ¼

6x1 �2x2

3x22 � 3x21 6x1x2

" #

The iteration scheme for Newton’s method is given in

Eq. A.27 and is repeated here as

xðkþ1Þ ¼ xðkÞ � y

where y is the solution of the set of linear equations:

JðxðkÞÞy ¼ FðxðkÞÞ

which can be solved using any standard linear equation

package, such as MathCad.

We start with the initial guess x
ð0Þ
1 ¼ x

ð0Þ
2 ¼ 1, from

which we can calculate the Jacobian and F as

J ¼ 6 �2

0 6

� �
and F ¼ 2

1

� �

Knowing the Jacobian and F, we can use the iteration equa-

tion to calculate x(1); that is,

xð1Þ ¼ 1

1

" #
� 6 �2

0 6

" #�1

� 2

1

" #
¼

11

18

5

6

2
4

3
5

FIGURE A.4 Graphical representation of the secant method.
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Knowing x(1) of the first iteration, we can calculate the

Jacobian and the function F as

J ¼ 3:6666 �1:6667

0:9630 3:0556

� �
and F ¼ 0:4259

0:04493

� �

and then using the iteration equation to calculate the second

iteration,

xð2Þ ¼
11

18

5

6

2
4

3
5� 3:6667 �1:6667

0:9630 3:0556

" #�1

� 0:4259

0:04493

" #

¼
0:5037

0:8525

" #

Repeating the procedure, the method will converge to the

exact solution x1¼ 0.5 and x2 ¼ 0:5
ffiffiffi
3

p
:

Aweakness of Newton’s method is the analytical evalua-

tion of the Jacobian matrix. In many practical situations,

this is somewhat inconvenient and often tedious. This can

be overcome by using finite difference to approximate the

partial derivative; that is,

@Fi

@xj

� Fiðxþ ejhÞ � FiðxÞ
h

ðA:29Þ

Here, ej is the vector where the only nonzero element is the

jth component, which is equal to unity. In the RHS of

Eq. A.29, only the jth component of the vector x is

increased by a small number h.

A.4 RATE OF CONVERGENCE

We have presented several techniques to handle nonlinear

algebraic equations, but nothing has been said about the

rate of convergence; that is, how fast the iteration process

yields a convergent solution. We discuss this point in the

next section.

Definition of Speed of Convergence

Let {an} be a sequence that converges to a and thereby

define the error as en¼an�a for each n
 0. If positive

constants l and b exist with

lim
n!1

janþ1 � aj
jan � ajb ¼ lim

n!1
jenþ1j
jenjb

¼ l ðA:30Þ

then {an} is said to converge to a of order b, with asymp-

totic error represented by the constant l.

A sequence with a large order of convergence will con-

verge more rapidly than that with low order. The asymptotic

constant l will affect the speed of convergence, but it is not

as important as the order. However, for first-order methods,

l becomes quite important and must be less than unity for

convergence.

If b¼ 1, convergence of the iteration scheme is called

linear and it is called quadratic when b¼ 2.

We now illustrate that the successive iteration of the

function

x ¼ f ðxÞ

has a linear convergence. Let us assume that f (x) maps the

interval [a, b] into itself (i.e., for any values of x lying

between a and b, the operation f will yield a value f (x),

which also lies between a and b) and a positive m(0<m< 1)

exists such that |f 0(x) |<m for all x 2 [a, b]. The conver-

gence theorem proved earlier indicates that f (x) has a unique

fixed point a 2 [a, b] and if a0 2 [a, b], the sequence {an}
will converge to a. The convergence rate will be shown to be

linear provided that f 0(a) 6¼ 0; thus, we have

enþ1 ¼ anþ1 � a ¼ f ðanÞ � f ðaÞ
¼ f 0ðjnÞðan � aÞ ¼ f 0ðjnÞen

ðA:31Þ

where jn lies between an and a for this Taylor expansion to

one term. Since {an} will converge to a, the sequence {jn}

will also converge to a.

Assuming that f 0(x) is continuous on [a, b], we then

have

lim
n!1 f 0ðjnÞ ¼ f 0ðaÞ

Thus, from Eq. A.31, we have

lim
n!1

jenþ1j
jenj ¼ lim

n!1 jf 0ðjnÞj ¼ jf 0ðaÞj

Hence, the successive iteration exhibits a linear conver-

gence and the asymptotic constant is |f 0(a)|, provided

that f 0(a) 6¼ 0. A higher order convergence can occur when

f 0(a)¼ 0. An example of this is Eq. A.10, where

f (x)¼ x/2þ 2/x, so

f 0ðxÞ ¼ 1

2
� 2

x2

and a¼ 2. It is clear that f 0(a)¼ f 0(2)¼ 0, and therefore,

the iteration process of Eq. A.10 has higher order conver-

gence than 1. We have shown earlier that this iteration

scheme is in fact a Newton–Raphson scheme. It clearly
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sustains a quadratic convergence. The following theorem

can be proved (Burden and Faires 1989).

Theorem A.2

Let a be a solution of x¼ f (x). Suppose that f 0(a)¼ 0 and

f 00 is continuous in an open interval containing a. Then,

there exists a d such that for

a0 2 ½a� d;aþ d�

the sequence {an} defined by

anþ1 ¼ f ðanÞ

is quadratically convergent.

A.5 MULTIPLICITY

So far, we have shown various solution techniques for

obtaining simple roots of nonlinear algebraic equations.

Next, we will address the issue of multiple roots and a

method of handling roots having multiplicity higher

than one.

Multiplicity

A solution a of F(x) is said to be a zero of multiplicity m of

F if F(x) can be written as

FðxÞ ¼ ðx� aÞmqðxÞ ðA:32Þ

where

lim
x!a

qðxÞ ¼ c 6¼ 0 ðA:33Þ

The function q(x) is basically the portion of the function

F(x) that does not contribute to the zero a of the function

F(x). Here, we imply a “zero” as simply one of the values

of x, which produces F(x)¼ 0.

To handle the problem of multiple roots, we define a

function

mðxÞ ¼ FðxÞ
F0ðxÞ ðA:34Þ

If a is a root of multiplicity m
 1 and F(x)¼ (x�a)mq(x),

Eq. A.34 then becomes

mðxÞ ¼ ðx� aÞmqðxÞ
mðx� aÞm�1

qðxÞ þ ðx� aÞmq0ðxÞ ðA:35Þ

or

mðxÞ ¼ ðx� aÞqðxÞ
mqðxÞ þ ðx� aÞq0ðxÞ ðA:36Þ

also has a root at a, but of multiplicity one, because

q(a) 6¼ 0.

The Newton–Raphson method can then be applied to the

function m(x) of Eq. A.34 to give

x ¼ f ðxÞ ¼ x� mðxÞ
m0ðxÞ ðA:37Þ

or

x ¼ f ðxÞ ¼ x� FðxÞF0ðxÞ
½F0ðxÞ�2 � ½FðxÞF00ðxÞ� ðA:38Þ

If f (x) defined in Eq. A.38 has the required continuity con-

dition, the iteration applied to f will be quadratically

convergent regardless of the multiplicity of the root.

In practice, the drawback is the requirement of a second

derivative F00(x).

A.6 ACCELERATING CONVERGENCE

Any sequence that is linearly convergent can be accelerated

by a method called the Aitken D2 method.

Let {an} be a linearly convergent sequence with a limit

a. By definition, we have

lim
n!1

jenþ1j
jenj ¼ l; 0 < l < 1 ðA:39Þ

where en¼an�a.

Given a sequence {an}, we now wish to construct a new

sequence {dn}, which will converge at a rate faster than the

original sequence {an}.

For n sufficiently large, and if we assume that all compo-

nents in the sequence en have the same sign,

enþ1 � len ðA:40Þ

Hence,

anþ1 � aþ lðan � aÞ ðA:41Þ

By increasing the index by 1, we have the equation

anþ2 � aþ lðanþ1 � aÞ ðA:42Þ

A.6 ACCELERATING CONVERGENCE 349



Eliminating l between Eqs. A.41 and A.42, we obtain the

equation for a:

a � an � ðanþ1 � anÞ2
ðanþ2 � 2anþ1 þ anÞ ðA:43Þ

The Aitken’s D2 method is based on a new sequence

defined as

dn ¼ an � ðanþ1 � anÞ2
ðanþ2 � 2anþ1 þ anÞ ðA:44Þ

which converges more rapidly than the original sequence

{an}. Additional details on Aitken’s method can be found

in Burden and Faires (1989).

By applying Aitken’s method to a linearly convergent

sequence obtained from fixed point (successive substitu-

tion) iteration, we can accelerate the convergence to qua-

dratic order. This procedure is known as the Steffenson’s

method, which leads to Steffenson’s algorithm as follows.

For a fixed point iteration, we generate the first three

terms in the sequence an, that is, a0, a1, and a2. Next,

we use the D2Aitken method to generate d0. At this stage,

we can assume that the newly generated d0 is a better

approximation to a than a2, and then apply the fixed point

iteration to d0 to generate the next sequence of d0, d1, and

d2. The Aitken method is now applied to the sequence

{dn; n¼ 0, 1, 2} to generate g0, which is a better approxi-

mation to a, and the process continues.
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APPENDIX B

DERIVATION OF THE FOURIER–MELLIN
INVERSION THEOREM

We recall from Section 10.5.1 that solutions of the Sturm–

Liouville equation, along with suitable Sturm–Liouville

boundary conditions, always produced orthogonal func-

tions. Thus, the functions

wnðxÞ ¼ sin
np

L
x

� �
; n ¼ 1; 2; 3; . . . ðB:1Þ

form an orthogonal set in the range of 0� x� L if it

satisfies

d2y

dx2
þ ly ¼ 0; yð0Þ ¼ 0; yðLÞ ¼ 0 ðB:2Þ

since this is a Sturm–Liouville equation if in Eq. 10.185

we stipulate p¼ 1, q¼ 0, r¼ 1, and b¼ l. The eigenvalues
are then seen to be ln ¼ n2p2=L2.

Thus, if we represent a function f (x) in this interval by

an expansion of such orthogonal functions,

f ðxÞ ¼ A1 sin
px

L
þ A2 sin

2px

L
þ � � � ðB:3Þ

or, generally, as

f ðxÞ ¼
X1
n¼1

An sin
npx

L

� �
ðB:4Þ

then the coefficients are obtained using the orthogonality

condition, Eq. 10.174, written for the problem at hand

as

Z L

0

wnðxÞwmðxÞdx ¼ 0; n 6¼ m ðB:5Þ

Hence, the coefficients An are obtained from

An

Z L

0

sin2
npx

L

� �
dx ¼

Z L

0

f ðxÞ sin npx

L

� �
dx ðB:6Þ

Performing the LHS integral, we obtain An:

An ¼ 2

L

Z L

0

f ðxÞ sin npx

L

� �
dx ðB:7Þ

The series representing f (x) is called a Fourier Sine series.

Similarly, we can also express functions in terms of the

Fourier Cosine series:

wnðxÞ ¼ cos
npx

L

� �
; n ¼ 0; 1; 2; 3; . . . ðB:8Þ

provided again the Sturm–Liouville equation is satisfied,

with a different set of boundary conditions:

d2y

dx2
þ ly ¼ 0; y0ð0Þ ¼ 0; y0ðLÞ ¼ 0 ðB:9Þ
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It is important to note that w0(x)¼ 1 in this case, so to

represent f (x) write

f ðxÞ ¼ A0 þ A1 cos
px

L

� �
þ A2 cos

2px

L

� �
þ � � � ðB:10Þ

or, generally,

f ðxÞ ¼ A0 þ
X1
n¼1

An cos
npx

L

� �
; 0 � x � L ðB:11Þ

Using the orthogonality condition as before, noting

Z L

0

cos2
npx

L

� �
dx ¼

L

2
; n ¼ 1; 2; 3; . . .

L; n ¼ 0

8<
: ðB:12Þ

so that the coefficients are computed to be

A0 ¼ 1

L

Z L

0

f ðxÞdx

An ¼ 2

L

Z L

0

f ðxÞ cos npx

L

� �
dx

ðB:13Þ

Thus, Eq. B.10, along with B.13, is known as the Fourier

Cosine representation of f (x), in the interval 0� x� L

(Hildebrand 1962).

The question arises, how is it possible to obtain a similar

representation in the complete semiinfinite interval with

x> 0? It is clear if we replaced L with1 in

wn ¼ sin
npx

L

� �

then wn would vanish. Suppose we consider the relation, as

done by Hildebrand (1962):

2

L

Z L

0

sin ðl1xÞ sin ðl2xÞdx ¼ sin ðl2 � l1ÞL
ðl2 � l1ÞL

� sin ðl2 þ l1ÞL
ðl2 þ l1ÞL ðB:14Þ

One can see the expression on the RHS vanishes if l1 and

l2 are different integral multiples of p/L. Moreover, in the

limit, the RHS becomes unity if l1 and l2 both take on the

same integral multiple of p/L. We also see that as L!1,

the RHS tends to zero for any positive values of l1 and l2,

so long as l1 6¼ l2; but if l1¼ l2, the RHS tends to unity.

Now, in general notation, we can write

wlðxÞ ¼ sin ðlxÞ ðB:15Þ

and obtain in the limit

lim
L!1

2

L

Z L

0

wl1ðxÞ � wl2
ðxÞdx ¼ 0 ðl1 6¼ l2Þ

1 ðl1 ¼ l2Þ

�
ðB:16Þ

This is rather like an orthogonality condition, for any posi-

tive values l1 and l2, in the interval 0� x�1. We are

guided to the conclusion that a representation of a function

f (x) in such semiinfinite intervals must involve all possible

functions of the type in Eq. B.15, where l is not restricted

to discrete values, but can take on any positive number, as a

continuum in l> 0. Previously, we represented f (x) by the

infinite series in the region 0� x� L:

f ðxÞ ¼
X1
n¼1

An sin
npx

L

In the limit as L!1, we can write the contribution

sin (lx) to the series representation of f (x) as A(l)

sin (lx). Now, since l is regarded as a continuous variable,

we can rewrite the summation above as an infinite integral:

f ðxÞ ¼
Z 1

0

AðlÞ sin ðlxÞ dl; 0 < x < 1 ðB:17Þ

where x now resides in the semiinfinite plane.

By these arguments, we have developed a possible repre-

sentation in the time domain, since representations in time

must be semiinfinite in the sense 0� t�1.

Continuing, we must develop a procedure for finding

A(l), much the same as in the discrete case to find An. In

analogy with applications of the orthogonality condition,

we multiply both sides of Eq. B.17 by sin (l0x):

f ðxÞ sin ðl0xÞ ¼ sin ðl0xÞ
Z 1

0

AðlÞ sin ðlxÞ dl ðB:18Þ

Next, integrate both sides over the interval 0–L (where

eventually L!1):

Z L

0

f ðxÞ sin ðl0xÞ dx

¼
Z L

0

sin ðl0xÞ
Z 1

0

AðlÞ sin ðlxÞ dl
� �

dx ðB:19Þ

and if the order of integration can be interchanged, we get

Z L

0

f ðxÞ sin ðl0xÞdx

¼
Z 1

0

AðlÞ
Z L

0

sin ðlxÞ sin ðl0xÞ dx
� �

dl ðB:20Þ
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We shall denote the RHS as FL. Now, if we apply Eq. B.14

to the RHS,

FL ¼ 1

2

Z 1

0

AðlÞ
ðl� l0Þ sin Lðl� l0Þdl

� 1

2

Z 1

0

AðlÞ sin Lðlþ l0Þ
ðlþ l0Þ dl ðB:21Þ

Now, since l is continuous, we can replace it with another

continuous variable; so, replace L(l� l0)¼ t in the first

(noting that dL(l� l0)¼ Ldl¼ dt) and replace L(lþ l0)¼ t

in the second integral to get

FL ¼ 1

2

Z 1

�Ll0

A l0 þ t

L

� � sin ðtÞ
t

dt

� 1

2

Z 1

Ll0

A �l0 þ t

L

� � sin ðtÞ
t

dt ðB:22Þ

Now, since l0> 0, we note in the limit L!1 that the

second integral tends to zero, that is,

Z 1

1
f ðtÞ dt ! 0

and the first becomes

lim
L!1

FL ¼ 1

2

Z 1

�1
Aðl0Þ sin t

t
dt ðB:23Þ

Carrying out this further yields

1

2

Z 1

�1
Aðl0Þ sin t

t
dt ¼ Aðl0Þ

2

Z 1

�1

sin t

t
dt ¼ p

2
Aðl0Þ

ðB:24Þ

To see this last result, take the imaginary part of the integral

Z L

�L

eit

t
dt ¼ log tþ t� t3

3 � ð3!Þ þ � � �
� �L

�L

in the limit as L!1.

We now have formally shown for l0> 0:

Z 1

0

f ðxÞ sin ðl0xÞdx ¼ p

2
Aðl0Þ ðB:25Þ

Since l is continuous, the above result is true for any l; so

replace l0 with l to get the general result:

AðlÞ ¼ 2

p

Z 1

0

f ðxÞ sin ðlxÞ dx ðB:26Þ

This is formally equivalent to Eq. B.7 for the case of

discrete ln.

Now, to represent f (x) for a continuum of l, the integral

representation is, formally,

f ðxÞ ¼
Z 1

0

AðlÞ sin ðlxÞ dl ðB:27Þ

To prevent confusion with the dummy variable x in

Eq. B.26, we rewrite A(l) as

AðlÞ ¼ 2

p

Z 1

0

f ðtÞ sin ðltÞ dt ðB:28Þ

Hence, we now have

f ðxÞ ¼ 2

p

Z 1

0

sin lx

Z 1

0

f ðtÞ sin lt dt
� �

dl ðB:29Þ

This is called the Fourier sine integral. By similar argu-

ments, we can derive the Fourier cosine integral as

f ðxÞ ¼ 2

p

Z 1

0

cos ðlxÞ
Z 1

0

f ðtÞ cos lt dt
� �

dl ðB:30Þ

These are the two building blocks to prove the Fourier–

Mellin inversion theorem for Laplace transforms.

The final stage in this proof is to extend the bounds of

integration to �1< x<1. It is clear that the sine series

represents �f (�x) when x< 0, and the cosine series repre-

sents f (�x) when x< 0. So, if f (x) is an odd function,1 the

representation in the sine integral can include all values of x

(�1 to þ1). However, if f (x) is an even function, then the

cosine integral can represent all values of x. Thus, it is pos-

sible to represent all values of x by using both sine and

cosine components.

Thus, if we split a given function into even and odd parts:

f ðxÞ ¼ f eðxÞ þ f oðxÞ

we can easily see that

1

p

Z 1

0

cos lx

Z 1

�1
f ðtÞ cos lt dt

� �
dl

¼ 1

p

Z 1

0

cos lx

Z 1

�1
f eðtÞ cos lt dt

� �
dl

¼ 2

p

Z 1

0

cos lx

Z 1

�0

f eðtÞ cos lt dt
� �

dl ¼ f eðxÞ;

�1 < x < 1 ðB:31Þ

1 In general, a function f (x) is called an odd function if f (–x) = –f (x) (e.g.,

f (x) = x3) and an even function if f (–x) = f (x) (e.g., f (x) = x2).
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Similarly, for the odd component,

1

p

Z 1

0

sin lx

Z 1

�1
f ðxÞ sin lt dt

� �
dl ¼ f oðxÞ;

�1 < x < 1 ðB:32Þ

Adding the two, we have the representation

f ðxÞ ¼
Z 1

0

½AðlÞ cos ðlxÞ þ BðlÞ sin ðlxÞ� dl ðB:33Þ

where A(l) and B(l) are defined as

AðlÞ ¼ 1

p

Z 1

�1
f ðtÞ cos ðltÞ dt;

BðlÞ ¼ 1

p

Z 1

�1
f ðtÞ sin ðltÞ dt ðB:34Þ

Introducing these and using trigonometric identities, we

write the form

f ðxÞ ¼ 1

p

Z 1

0

Z 1

�1
f ðtÞ cos ½lðt� xÞ�dt

� �
dl;

�1 < x < 1 ðB:35Þ

or equivalently,

f ðxÞ ¼ 1

2p

Z 1

�1

Z 1

�1
f ðtÞ cos ½lðt� xÞ�dt dl ðB:36Þ

This expression is called the complete Fourier integral repre-

sentation and it can represent arbitrary f (x) for all values of

x in the usual sense; f (x) is at least piecewise differentiable

and the integral Z 1

�1
j f ðxÞjdx

exists. Next, by noting one half a function plus one half its

complex conjugate recovers the function:

cos lðt� xÞ ¼ 1
2
exp ðilðt� xÞÞ þ 1

2
exp ð�ilðt� xÞÞ

ðB:37Þ

then the complex form of Eq. B.36 can be shown (Churchill

1963) to be

f ðxÞ ¼ 1

2p

Z 1

�1

Z 1

�1
f ðtÞe�ilðt�xÞdt dl ðB:38Þ

In this expression, t is simply a dummy variable and can be

replaced with any convenient symbol. Later, we shall inspect

arbitrary functions of time f (t) instead of f (x), so it is propi-

tious to replace t with b to get

f ðxÞ ¼ 1

2p

Z 1

�1
eilx

Z 1

�1
f ðbÞeilbdb

� �
dl ðB:39Þ

This form is now suitable for deducing the Fourier–Mellin

inversion formula for Laplace transforms. In terms of real

time as the independent variable, we can write the Fourier

integral representation of any arbitrary function of time,

with the provision that f (t)¼ 0 when t< 0, so Eq. B.39

becomes

f ðtÞ ¼ 1

2p

Z 1

�1
eilt

Z 1

�1
f ðbÞe�ilbdb

� �
dl ðB:40Þ

Suppose we consider the product exp(�s0t)f(t), then the

integral in (B.40) can be written

e�s0tf ðtÞ 1

2p
lim
l!1

Z l

�l

eilt
Z 1

0

f ðbÞe�s0be�ilbdb

� �
dl

ðB:41Þ

This representation is valid provided the integral exists for

the real values of s0:

J ¼
Z 1

0

e�s0tjf ðtÞjdt ðB:42Þ

This simply reflects the requirement that all singularities of

F (s) are to the left of the line through s0, as illustrated in the

first Bromwich path (Fig. 9.4). This guarantees that expo-

nential behavior by f (t) can always be dominated by suitable

selection of positive, real values of s0. Suppose f (t)¼ eat,

then we have

J ¼
Z 1

0

e�s0teatdt ¼
Z 1

0

e�ðs0�aÞtdt ¼ 1

s0 � a
ðB:43Þ

which is finite provided s0>a, hence the integral exists.

Now that existence of the inner integral

Z 1

0

f ðbÞe�s0te�ilbdb

is guaranteed, we can write Eq. B.41 as

f ðtÞ ¼ 1

2p
lim
l!1

Z l

�l

eðilþs0Þt
Z 1

0

f ðbÞe�ðilþs0Þbdb
� �

dl

We can now define the substitution of the complex variable

s¼ ilþ s0, where s0 is a fixed real constant; hence, ds¼ idl
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and we get

f ðtÞ ¼ 1

2pi
lim
l!1

Z s0þil

s0�il

est
Z 1

0

f ðbÞe�sbdb

� �
ds ðB:44Þ

But the interior integral defines, in general, the Laplace

transform:

FðsÞ ¼
Z 1

0

f ðbÞe�sbdb ðB:45Þ

regardless of the symbol used for dummy variable; replacing

the interior with F (s), Eq. B.44 becomes formally identical

to Eq. 9.3, if we replace l with v:

f ðtÞ ¼ 1

2pi
lim
v!1

Z s0þiv

s0�iv

estFðsÞds ðB:46Þ

The integral is taken along the infinite vertical line

through s¼ s0 and parallel to the imaginary axis, as illus-

trated in Fig. 9.4. The existence of F (s) is guaranteed as long

as s0 is greater than the real part of any singularity arising

from F (s).
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APPENDIX C

TABLE OF LAPLACE TRANSFORMS�

F(s) Number f(t)

1

s

1 uðtÞ ¼ 1; t > 0

1

s2
2 rðtÞ ¼ t; t > 0

1

sn
n ¼ 1; 2; 3; . . .ð Þ 3 tn�1

ðn� 1Þ!
1ffiffi
s

p 4 1ffiffiffiffiffi
pt

p

1

s3=2
5

2

ffiffiffi
1

p

r
1

sa
a > 0ð Þ 6 ta�1

GðaÞ
1

sþ a

7 e�ut

1

ðsþ aÞ2
8 te�ut

1

ðsþ aÞðsþ bÞ
9 1

a� b
ðe�bt � e�atÞ

1

ðsþ aÞn n ¼ 1; 2; . . .ð Þ 10 1

ðn� 1Þ! t
n�1e�at
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F(s) Number f(t)

1

ðsþ aÞa a > 0ð Þ 11 ta�1e�at

GðaÞ
s

ðsþ aÞðsþ bÞ
12 1

b� a
ðbe�bt � ae�atÞ

1

s2 þ a2
13 1

a
sin at

s

s2 þ a2
14 cos at

1

s2 � a2
15 1

a
sinh at

s

s2 � a2
16 cosh at

1

sðs2 þ a2Þ
17 1

a2
ð1� cos atÞ

1

s2ðs2 þ a2Þ
18 1

a3
ðat� sin atÞ

1

ðs2 þ a2Þ2
19 1

2a3
ðsin at� at cos atÞ

s

ðs2 þ a2Þ2
20 t

2a
sin at

s2

ðs2 þ a2Þ2
21 1

2a
ðsin atþ at cos atÞ

s2 � a2

ðs2 þ a2Þ2
22 t cos at

s

ðs2 þ a2Þðs2 þ b2Þ
23 cos at� cos bt

b2 � a2
ða2 6¼ b2Þ

1

ðs� aÞ2 þ b2
24 1

b
eat sin bt

ðs� aÞ
ðs� aÞ2 þ b2

25 e at cos bt

3a2

s3 þ a3
26

e�at � eð1=2Þat cos
at

ffiffiffi
3

p

2

� �
� ffiffiffi

3
p

sin
at

ffiffiffi
3

p

2

� �� �
4a3

s4 þ 4a4
27 sin ðatÞ cosh ðatÞ � cos ðatÞ sinh ðatÞ

s

s4 þ 4a4
28 1

2a2
sin ðatÞ sinh ðatÞ½ �

1

s4 � a4
29 1

2a3
sinh ðatÞ � sin ðatÞ½ �

s

s4 � a4
30 1

2a2
cosh ðatÞ � cos ðatÞ½ �

8a3s2=ðs2 þ a2Þ3 31 ð1þ a2t2Þ sin ðatÞ � at cos ðatÞ
1

s

s� 1

s

� �n

32
et

n!

dn

dtn
ðtne�tÞ

(nth degree Laguerre polynomial)
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F(s) Number f(t)

s

ðs� aÞ3=2
33 1ffiffiffiffiffi

pt
p eatð1þ 2atÞ

ffiffiffiffiffiffiffiffiffiffiffi
s� a

p � ffiffiffiffiffiffiffiffiffiffiffi
s� b

p
34 1

2
ffiffiffiffiffiffiffi
pt3

p ðebt � eatÞ

1

aþ ffiffi
s

p 35 1ffiffiffiffiffi
pt

p � aea
2t erfc ða ffiffi

t
p Þ

ffiffi
s

p
s� a2

36 1ffiffiffiffiffi
pt

p þ aea
2t erf ða ffiffi

t
p Þ

ffiffi
s

p
sþ a2

37 1ffiffiffiffiffi
pt

p � 2affiffiffi
p

p e�a2t

Z a
ffiffi
t

p

0

eb
2

db

1ffiffi
s

p ðs� a2Þ
38 1

a
ea

2t erf ða ffiffi
t

p Þ

1ffiffi
s

p ðsþ a2Þ
39 2

a
ffiffiffi
p

p e�a2t

Z a
ffiffi
t

p

0

eb
2

db

1ffiffi
s

p ðaþ ffiffi
s

p Þ
40 ea

2t erfc a
ffiffi
t

p� �
1

sþ að Þ ffiffiffiffiffiffiffiffiffiffiffi
sþ b

p 41 1ffiffiffiffiffiffiffiffiffiffiffi
b� a

p e�at erf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðb� aÞ

ph i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ 2a

p ffiffi
s

p � 1
42 ae�at½I1ðatÞ þ I0ðatÞ�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðsþ aÞðsþ bÞp 43
e�ð1=2ÞðaþbÞtI0

a� b

2
t

� �

ða > 0Þ GðaÞ
ðsþ aÞaðsþ bÞa

44 ffiffiffi
p

p t

a� b

	 
a�1=2

e�ð1=2ÞðaþbÞt � Ia�1=2
a� b

2
t

� �
1

ðsþ aÞ1=2ðsþ bÞ3=2
45

te�ð1=2ÞðaþbÞt I0
a� b

2
t

� �
þ I1

a� b

2
t

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ 2a

p � ffiffi
s

pffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ 2a

p þ ffiffi
s

p
46 1

t
e�atI1ðatÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ a2

p 47 J0ðatÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ a2

p � s
� �affiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a
p a > �1ð Þ

48 aaJaðatÞ

1

ðs2 þ a2Þa a > 0ð Þ 49
ffiffiffi
p

p
GðaÞ

t

2a

	 
a�1=2

Ja�1=2ðatÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ a2

p � s
� �a ða > 0Þ 50 aaa

t
JaðatÞ

s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2

ph ia
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2

p a > �1ð Þ
51 aaIaðatÞ

1

ðs2 � a2Þa a > 0ð Þ 52
ffiffiffi
p

p
G að Þ

t

2a

	 
a�1=2

Ia�1=2ðatÞ

1

s
e�a=s 53 J0ð2

ffiffiffiffiffi
at

p Þ

1ffiffi
s

p e�a=s 54 1ffiffiffiffiffi
pt

p cos ð2 ffiffiffiffiffi
at

p Þ
(Continued)
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F(s) Number f(t)

1ffiffi
s

p ea=s
55 1ffiffiffiffiffi

pt
p cosh ð2 ffiffiffiffiffi

at
p Þ

1

s3=2
e�a=s 56 1ffiffiffiffiffiffi

pa
p sin ð2 ffiffiffiffiffi

at
p Þ

1

s3=2
ea=s

57 1ffiffiffiffiffiffi
pa

p sinh ð2 ffiffiffiffiffi
at

p Þ

1

sm
e�a=s a > 0ð Þ 58 t

a

	 
ðm�1Þ=2
Jm�1ð2

ffiffiffiffiffi
at

p Þ

1

sm
ea=s a > 0ð Þ 59 t

a

	 
ðm�1Þ=2
Im�1ð2

ffiffiffiffiffi
at

p Þ

e�a
ffiffi
s

p
ða > 0Þ 60 a

2
ffiffiffiffiffiffiffi
pt3

p exp �a2

4t

� �
1

s
e�a

ffiffi
s

p
a � 0ð Þ 61

erfc
a

2
ffiffi
t

p
� �

1ffiffi
s

p e�a
ffiffi
s

p
a � 0ð Þ 62 1ffiffiffiffiffi

pt
p exp �a2

4t

� �
s�3=2e�a

ffiffi
s

p
ða � 0Þ 63

2

ffiffiffi
t

p

r
exp �a2

4t

� �
� a erfc

a

2
ffiffi
t

p
� �

1

s
log s

64 G0ð1Þ � log t½G0ð1Þ ¼ �0:5772�

1

sk
log s k � 0ð Þ 65

tk�1 G0ðkÞ
GðkÞ½ �2 �

log t

GðkÞ

( )

log s

s� a
a � 0ð Þ 66 eat log a� Eið�atÞ½ �

log s

s2 þ 1

67 SiðtÞ � cos ðtÞ � CiðtÞ � sin ðtÞ

s log s

s2 þ 1

68 �SiðtÞ � sin ðtÞ � CiðtÞ � cos ðtÞ

1

s
log ð1þ ksÞ k > 0ð Þ 69 �Eið�t=kÞ

log
s� a

s� b

	 

70 1

t
ðebt � eatÞ

1

s
log ð1þ k2s2Þ 71 �2Ciðt=kÞ

1

s
log ðs2 þ a2Þ a > 0ð Þ 72 2 log ðaÞ � 2CiðatÞ

1

s2
log ðs2 þ a2Þ a > 0ð Þ 73 2

a
at � log ðaÞ þ sin ðatÞ � at � CiðtÞ½ �

log
s2 þ a2

s2

� �
74 2

t
1� cos ðatÞ½ �

log
s2 � a2

s2

� �
75 2

t
1� cosh ðatÞ½ �

arctan
k

s

� �
76 1

t
sin ðktÞ

1

s
arctan

k

s

� �
77 Si(kt)
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F(s) Number f(t)

ek
2s2 erfc ðksÞ ðk > 0Þ 78 1

k
ffiffiffi
p

p exp � t2

4k2

� �
1

s
ek

2s2 erfc ðksÞ k > 0ð Þ 79
erf

t

2k

	 

eks erfc ð ffiffiffiffiffi

ks
p Þ ðk > 0Þ 80

ffiffiffi
k

p

p
ffiffi
t

p ðtþ kÞ
1ffiffi
s

p erfc
ffiffiffiffiffi
ks

p	 

81 0 when 0 < t < k

ptð Þ�1=2
when t > k

(

1ffiffi
s

p eks erfc
ffiffiffiffiffi
ks

p	 

k > 0ð Þ 82 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðtþ kÞp
erf

kffiffi
s

p
� �

83 1

pt
sin 2k

ffiffi
t

p� �
1ffiffi
s

p ek
2=s erfc

kffiffi
s

p
� �

84 1ffiffiffiffiffi
pt

p e�2k
ffiffi
t

p

K0ðksÞ 85 0; when 0 < t < k

ðt2 � k2Þ�1=2; when t > k

(

K0 k
ffiffi
s

pð Þ 86 1

2t
exp � k2

4t

� �
1

s
eksK1 k

ffiffi
s

p� � 87 1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðtþ 2kÞ

p
1ffiffi
s

p K1 k
ffiffi
s

p� � 88 1

k
exp � k2

4t

� �
1ffiffi
s

p ek=sK0

k

s

� �
89 2ffiffiffiffiffi

pt
p K0 2

ffiffiffiffiffiffiffi
2kt

p	 

pe�ksI0ðksÞ 90 t 2k � 1ð Þ½ ��1=2; when 0 < t < 2k

0; when t > 2k

(

e�ksI1ðksÞ 91 ðk � tÞ
pk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð2k � 1Þp when 0 < t < 2k

0; when t > 2k

8><
>:

�easEi �asð Þ 92 1

tþ a
ða > 0Þ

1

a
þ seasEi �asð Þ 93 1

t� að Þ2 ða > 0Þ

The exponential, cosine, and sine integral functions are

respectively defined as follows:

EiðtÞ ¼
Z t

�1

eb

b
db

CiðtÞ ¼
Z t

1

cos b

b
db

SiðtÞ ¼
Z t

0

sin b

b
db

These are tabulated in most mathematical handbooks

and are also discussed in Chapter 4.
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APPENDIX D

NUMERICAL INTEGRATION

This appendix provides procedures and formulas for numer-

ical integration. This is the only recourse when the integral

in question cannot be integrated analytically. Many engi-

neering problems give rise to integrals wherein analytical

solutions are not always possible. For example, the solution

of boundary value problems using the method of Galerkin

gives rise to integrals that in general cannot be integrated if

the defining equations are nonlinear. In such cases, the inte-

grands are known functions. However, there are cases

where values of the function yj at discrete points xj are

known and the integral of y with respect to x is required.

The evaluation of the integral in this case must be dealt

with numerically. We will deal with these two distinct cases

in this appendix.

The integration of a function y(x) with respect to x from

a to b is defined as

I ¼
Z b

a

yðxÞdx ðD:1Þ

where y(x) can be a known function or only its values at

some discrete points. The process of replacing an integral

with the sum of its parts is often referred to as “quadrature.”

D.1 BASIC IDEA OF NUMERICAL INTEGRATION

The basic idea of the numerical integration is to approxi-

mate the function y (x) by a polynomial of degree N, PN (x),

and then to perform the integration of this approximating

polynomial exactly since each term x j in the polynomial can

be analytically integrated. The accuracy of the numerical

integration depends on how well we choose our approximat-

ing polynomial.

If the function y (x) is known, we simply choose discrete

positions x (e.g., 2, 3, or 4 points) within the domain of

integration (a< x< b) and then cause an approximating

polynomial to pass through these points. We can then per-

form the integration of the approximating polynomial. If

the discrete points are unequally spaced, the Lagrange poly-

nomial developed in Chapter 8 can be used to fit the data; if

the points are equally spaced, the Newton forward differ-

ence presented in the next section will be particularly use-

ful. The Lagrange polynomial also works for equally

spaced points. If the N þ 1 points are chosen, the fitting

polynomial will be an Nth degree polynomial.

When the function y (x) is known, we have the flexibility

of choosing the discrete points. With this flexibility, we can

choose points such that the accuracy of the numerical inte-

gration can be enhanced.

If the function y (x) is described by a collection of dis-

crete points, then it is probably best to fit a polynomial to

these points. The Lagrangian polynomial can be used,

which can be fitted exactly. Alternatively, the method of

least squares could be used. For the latter method, the poly-

nomial may not pass through the discrete points. The

Lagrangian polynomial, described in Chapter 8, can be

used to exactly fit the discrete data for unequally spaced

data points. For equally spaced data, the Newton forward

difference polynomial will be very useful for the integration

procedure. The following section will deal with equally

spaced data.
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D.2 NEWTON FORWARD DIFFERENCE

POLYNOMIAL

Assume that we have a set of equally spaced data at equally

spaced points, x0; x1; . . . ; xn; xnþ1; . . . and let yj be the

values of y at the point xj . The forward difference is defined

as follows:

Dyn ¼ ynþ1 � yn ðD:2Þ

One can apply this forward difference operator to Dyn to

obtain D2yn, that is,

D2yn ¼ D Dynð Þ ¼ Dynþ1 � Dyn

¼ ynþ2 � ynþ1

� �� ynþ1 � yn
� �

D2yn ¼ ynþ2 � 2ynþ1 þ yn ðD:3Þ

Similarly, we can proceed to obtain D3yn:

D3yn ¼ D D2yn
� � ¼ D2ynþ1 � D2yn

¼ ynþ3 � 2ynþ2 þ ynþ1

� �� ynþ2 � 2ynþ1 þ yn
� �

D3yn ¼ ynþ3 � 3ynþ2 þ 3ynþ1 � yn

The same procedure can be applied to higher order

differences.

The Newton forward difference polynomial (Finlayson

1980) is defined as follows:

PnðxÞ ¼ y0 þ aDy0 þ
a a� 1ð Þ

2!
D2y0

þ � � � þ a a� 1ð Þ a� 2ð Þ � � � a� nþ 1ð Þ
n!

Dny0 þ e ðD:4Þ

where

e ¼ a

nþ 1

� �
hnþ1y nþ1ð Þ jð Þ; where x0 < j < xn ðD:5Þ

a

nþ 1

� �
¼ a!

nþ 1ð Þ! a� n� 1ð Þ! ; a ¼ x� x0

h
;

h ¼ Dx ¼ x1 � x0

ðD:6Þ

The Newton forward difference is derived by allowing the

nth degree polynomial to pass through the points y0 to yn.

Note that when x ¼ x1, the value of a ¼ 1; x ¼ x2, a ¼ 2;

and x ¼ xn, a ¼ n.

It is useful at this point to note that the Newton forward

difference formula is utilized here for the development

of the numerical integration formula, while the Newton

backward difference formula was previously used (in Chap-

ter 7) for the integration of ordinary differential equations

of the initial value type.

D.3 BASIC INTEGRATION PROCEDURE

Having found the Nth degree Newton forward difference

polynomial to approximate the integrand y ðxÞðy � PnðxÞÞ,
the integral of Eq. D.1 can be readily integrated analytically

after the integrand y ðxÞ has been replaced by PnðxÞ as

I ¼
Z b

a

yðxÞdx �
Z b

a

PnðxÞdx ¼ h

Z ab

aa

PnðaÞda ðD:7Þ

where aa and ab are values of a at x ¼ a and x ¼ b, respec-

tively. If we substitute the explicit form of the Newton for-

ward difference formula from Eq. D.4 into Eq. D.7 and

integrate analytically, we have the approximate numerical

integration of the integral I.

If x0 ¼ a and x1 ¼ b, the integration of Eq. D.7 will

become

I ¼
Z x1

x0

yðxÞdx � h

Z 1

0

Pn að Þda ðD:8Þ

that is,

I � h

Z 1

0

y0 þ a Dy0 þ
aða� 1Þ

2!
D2y0 þ � � �

� �
da ðD:9Þ

D.3.1 Trapezoid Rule

If two terms are retained in the approximating polynomial

of Eq. D.9, the integration will become

I � h y0aþ Dy0
a2

2

� �1
0

¼ h

2
y0 þ y1ð Þ ðD:10Þ

where we have defined Dy0 ¼ y1 � y0.

This is commonly called the trapezoid formula.

Figure D.1 graphically shows the trapezoid rule of integra-

tion, where shaded area is the integration value obtained by

the trapezoid formula.

To find the error arising from the trapezoid formula,

we start with the error of the approximating polynomial

(see Eqs. D.4 and D.5) when only two terms are retained

as

a a� 1ð Þ
2

h2y00 jð Þ; where x0 < j < x1 ðD:11Þ
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Integration of this error with respect to x will give the

error for the trapezoid formula, which is simply

Error ¼
Z x1

x0

a a� 1ð Þ
2

h2y00 jð Þdx

¼ h3y00 jð Þ
Z 1

0

a a� 1ð Þ
2

da ¼ � 1

12
h3y00 jð Þ ðD:12Þ

Thus, the error of integrating the integral from x0 to x1 is

on the order of h3, denoted as Oðh3Þ. The order notation is

discussed in Chapter 6.

We can apply this useful trapezoid rule over the range

from x0 to xn by carrying out the trapezoid formula over n

subintervals ðx0; x1Þ;ðx1; x2Þ; . . . ; ðxn�1; xnÞ as shown in

Fig. D.2, that is,

I ¼
Z xn

x0

yðxÞdx

¼
Z x1

x0

yðxÞdxþ
Z x2

x1

yðxÞdxþ � � � þ
Z xn

xn�1

yðxÞdx

ðD:13Þ

The integral of each subinterval is then evaluated using the

trapezoid formula, and the result is

I � h

2
y0 þ y1ð Þ

� �
þ h

2
y1 þ y2ð Þ

� �
þ � � � þ h

2
yn�1 þ ynð Þ

� �

; I � h

2
y0 þ 2y1 þ 2y2 þ � � � þ 2yn�1 þ ynð Þ ðD:14Þ

The error of this composite formula is the sum of all errors

contributed by each subintervals given in Eq. D.12:

Error ¼
Xn
j¼1

� 1

12

� �
h3y00 jð Þ ¼ � n

12
h3y00 jð Þ;

where x0 < j < xn ðD:15Þ
Here, n is the number of intervals and is related to the spac-

ing h as n ¼ ðxn � x0Þ=h. The error can be written explic-

itly in terms of the spacing h as

Error ¼ � 1
12

xn � x0ð Þh2y00 jð Þ ðD:16Þ
Thus, the global error of the trapezoid rule formula carried

out over n intervals is on the order of h2, while the local

error (which is the error of integration of one interval) is on

the order of h3.

D.3.2 Simpson’s Rule

Let us now integrate the integral I from x0 to x2; we then

have

I ¼
Z x2

x0

yðxÞdx

� h

Z 2

0

y0 þ aDy0 þ
a a� 1ð Þ

2!
D2y0

�

þ a a� 1ð Þ a� 2ð Þ
3!

D3y0 þ � � ��da ðD:17Þ

Keeping three terms in the approximating polynomial

expansion, the value of this approximating polynomial can

then be integrated analytically to give

I � h

3
y0 þ 4y1 þ y2ð Þ ðD:18Þ

This is Simpson’s formula, one of the most widely used

integration routines. The error for this formula is the

integration of the error of the approximating polynomial,

that is,

Error ¼
Z x2

x0

a a� 1ð Þ a� 2ð Þ
3!

h3y000 jð Þdx

¼ h

Z 2

0

a a� 1ð Þ a� 2ð Þ
3!

h3y000 jð Þda ¼ 0

ðD:19Þ

This null result does not simply mean that the error of theFIGURE D.2 Selection of subintervals for trapazoid rule.

FIGURE D.1 Graphical representation of the trapezoid rule

integration.
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Simpson rule formula is zero, but rather the integration of

the third term is zero. We need to go to the fourth term of

the approximate polynomial, which is

a a� 1ð Þ a� 2ð Þ a� 3ð Þ
4!

h4yð4ÞðjÞ; where x0 < j < x2

ðD:20Þ

to determine this error, which is simply the integration of

Eq. D.20:

Error ¼ h

Z 2

0

a a� 1ð Þ a� 2ð Þ a� 3ð Þ
4!

h4y 4ð Þ jð Þda

¼ � h5

90
y 4ð Þ jð Þ ðD:21Þ

The error for the one-step calculation of the Simpson’s rule

is on the order of h5, a significant advantage over the trape-

zoid rule, which has one-step error on the order of h3.

Now, we generalize the integration from xn to xnþ2 and

get

I ¼
Z xnþ2

xn

y xð Þ dx

� h

Z 2

0

yn þ aDyn þ
a a� 1ð Þ

2!
D2yn

�

þa a� 1ð Þ a� 2ð Þ
3!

D3yn þ � � �
�
da

ðD:22Þ
where the variable a is now defined as

a ¼ x� xn

h
ðD:23Þ

Integration of the RHS of Eq. D.22 term by term would

give

I � h

3
yn þ 4ynþ1 þ ynþ2

� �þ O h5
� � ðD:24Þ

Thus, when n ¼ 0, we recover the formula in Eq. D.18.

The formula (D.24) is sometimes called the Simpson’s

1/3 rule. This was obtained by using the second-order poly-

nomial to fit y (x) in Eq. D.17. If a third-order polynomial is

used (i.e., by keeping four terms in the approximating poly-

nomial expansion) (Eq. D.17), we will obtain the Simpson’s

3/8 formula (see Hoffman 1992 for more details on this

formula).

Simpson’s rule can now be extended to the range

x0; xnð Þ, which is divided into sets of two subintervals.

This means that the total number of intervals must be a mul-

tiple of two (i.e., even):

I ¼
Z x2

x0

y xð Þ dxþ
Z x4

x2

y ðxÞ dxþ � � � þ
Z xn

xn�2

y xð Þ dx

ðD:25Þ

Substituting Eq. D.24 into D.25 (i.e., n ¼ 0 for the first

integral, n ¼ 2 for the second integral, and so on until

n ¼ n� 2 for the last integral of Eq. D.25) yields

I ¼ h

3
y0 þ 4y1 þ 2y2 þ 4y3 þ � � � þ 2yn�2 þ 4yn�1 þ ynð Þ

ðD:26Þ

The global error of Eq. D.26 will be on the order of O h4
� �

.

The trapezoid and Simpson’s rule belong to a family

of integration formulas called the Newton–Cotes family.

Abramowitz and Stegun (1964) provide a family of 10

Newton–Cotes formulas. They also present six additional

Newton–Cotes formulas of the open type, that is, the

functional values at end points (y0 and yn) are not

included in the integration formula. These latter formulas

are particularly useful when the function values at the

end points are unbounded. The first two Newton–Cotes

formulas of the open type are as follows:

Z x3

x0

yðxÞdx ¼ 3h

2
y1 þ y2ð Þ þ h3

h
y00 jð Þ

Z x4

x0

yðxÞdx ¼ 4h

3
ð2y1 � y2 þ 2y3Þ þ

28h5

90
y 4ð Þ jð Þ

D.4 ERROR CONTROL AND EXTRAPOLATION

Knowledge of the magnitude of the error in the integration

formulas presented in Section D.3 is very useful in the esti-

mation of the error as well as in the improvement of the

calculated integral.

The integral I numerically calculated using the spacing h

is denoted as I(h), and if we denote the exact integral as

Iexact, we have

Iexact ¼ IðhÞ þ Ahn ðD:27Þ

where hn is on the order of magnitude of the integration

formula used.
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Applying the same integration formula but this time

using the spacing of h/P, where P P > 1ð Þ is some arbitrary

number (usually 2), we have the formula

Iexact ¼ I
h

P

� �
þ A

h

p

� �n

ðD:28Þ

If we equate Eqs. D.27 and D.28 and solve for Ahn, which

is the error of the integration result using the spacing h,

we obtain

Error ¼ Ahn ¼ Pn

Pn�1
I

h

P

� �
� IðhÞ

� �
ðD:29Þ

This formula provides the estimate of error incurred by the

approximation using the spacing of h. If this error is larger

than the prespecified error, the spacing has to be reduced

until the prespecified error is satisfied. When this is the

case, the better estimate of the approximate integral is sim-

ply Eq. D.27 with Ahn given by Eq. D.29. This process is

called extrapolation.

D.5 GAUSSIAN QUADRATURE

Gaussian quadrature is particularly useful in the case where

the integrand y(x) is known, that is, we have the flexibility

of choosing the discrete points xj (also called the quadra-

ture points). The Gaussian quadrature formula for N quad-

rature points is of the form

I ¼
Z b

a

yðxÞdx �
XN
j¼1

wjy xj
� � ðD:30Þ

where wj are called the quadrature weights and xj are called

the quadrature points.

The definition of the Gaussian quadrature formula in

Eq. D.30 implies that the recipe for this formula is deter-

mined by the selection of N quadrature points and N quadra-

ture weights, that is, we have 2N parameters to be found.

With these degrees of freedom (2N parameters), it is possible

to fit a polynomial of degree 2N � 1. This means that if xj
and wj are properly chosen, the Gaussian quadrature formula

can exactly integrate a polynomial of degree up to 2N � 1.

To demonstrate this point, consider this example of inte-

gration with respect to x from 0 to 1 using two quadrature

points:

I ¼
Z 1

0

yðxÞdx ¼
X2
j¼1

wjyðxjÞ ðD:31Þ

There are four parameters to be found in the above integral,

namely, two quadrature points x1 and x2, and two quadra-

ture weights w1 and w2. We shall choose these values such

that the integrals of the integrands 1, x, x2, and x3 are satis-

fied exactly. For the integrand of 1, we have

Z 1

0

1dx ¼ 1 ¼ w1 þ w2 ðD:32Þ

where yðx1Þ ¼ yðx2Þ ¼ 1 have been used in the above

equation.

Similarly, for the other integrands x, x2, and x3, we have

Z 1

0

x dx ¼ 1
2
¼ w1x1 þ w2x2 ðD:33Þ

Z 1

0

x2 dx ¼ 1
3
¼ w1x

2
1 þ w2x

2
2 ðD:34Þ

Z 1

0

x3 dx ¼ 1
4
¼ w1x

3
1 þ w2x

3
2 ðD:35Þ

Solving the above set of four equations (Eqs. D.32–D.35),

we obtain these values for the required four parameters:

x1 ¼ 1

2
� 1

2
ffiffiffi
3

p ; x2 ¼ 1

2
þ 1

2
ffiffiffi
3

p ; w1 ¼ w2 ¼ 1

2
ðD:36Þ

Note that these quadrature points x1 and x2 lie within the

domain of integration.

This set of four parameters for the Gaussian quadrature

formula can exactly integrate any polynomial up to degree

3, for only two quadrature points.

Equation D.31 considers the range of integration as

(0, 1). Any range, say (a, b) can be easily transformed to

the range (0, 1) by using the simple formula:

z ¼ x� a

b� a

where x lying in the domain (a, b) is linearly mapped to z,

which lies in the domain (0, 1).

Now if we use three quadrature points in the Gaussian

formula, we have six parameters in the quadrature equation:

I ¼
Z 1

0

y xð Þ dx ¼
X3
j¼1

wjy xj
� � ðD:37Þ

These six parameters x1; x2; x3;w1;w2;w3ð Þ are found by

forcing the above Gaussian quadrature equation to integrate

the integrands exactly, 1; x; x2; x3; x4, and x5, that is,Z 1

0

x jdx ¼ 1

j þ 1
¼ w1x

j
1 þ w2x

j
2 þ w3x

j
3;

for j ¼ 0; 1; 2; 3; 4; 5 ðD:38Þ
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Solving this set of six equations, we obtain these values for

the six parameters:

x1 ¼ 1

2
�

ffiffiffiffiffiffiffi
0:6

p

2
; x2 ¼ 1

2
; x3 ¼ 1

2
þ

ffiffiffiffiffiffiffi
0:6

p

2
ðD:39Þ

w1 ¼ 5

18
; w2 ¼ 4

9
; w3 ¼ 5

18

Again, it is noted that these quadrature points lie within the

domain of integration.

Thus, we see that the Gaussian quadrature formula using

N quadrature points

I ¼
Z 1

0

yðxÞdx ¼
XN
j¼1

wjyðxjÞ ðD:40Þ

can exactly integrate a polynomial of degree up to 2N � 1.

Abramowitz and Stegun (1964) tabulate values for xj and

wj for a number of quadrature points.

We can also apply the Gaussian quadrature formula to

the case when we have a weighting function in the inte-

grand as

I ¼
Z 1

0

xb 1� xð Þa	 

yðxÞdx ¼

XN
j¼1

wjyðxjÞ ðD:41Þ

where the weighting function is WðxÞ ¼ xbð1� xÞa. Using
the same procedure

we presented above to determine the quadrature points

and quadrature weights, we can list in Table D.1 those val-

ues for a number of combinations of a and b.
Integrals of the type

Z 1

0

e�xy xð Þdx and

Z 1

�1
e�x2y xð Þdx ðD:42Þ

can also be numerically obtained using respectively the

Laguerre and Hermite formulas:

Z 1

0

e�xy xð Þdx ¼
XN
j¼1

wjy xj
� � ðD:43Þ

and

Z 1

�1
e�x2yðxÞdx ¼

XN
j¼1

wjy xj
� � ðD:44Þ

Tables D.2 and D.3 list values of quadrature points

and weights for the Laguerre and Hermite formulas

(Abramowitz and Stegun 1964).

TABLE D.3 Quadrature Points and Weights for

Hermite Quadrature for N ¼ 5 and 9

N �xj wj

5 0.00000000 0.94530872

0.95857246 0.39361932

2.02018287 0.01995324

9 0.00000000 0.72023521

0.72355102 0.43265156

1.46855329 0:88474527� 10�1

2.26658058 0:49436243� 10�2

3.19099320 0:39606977� 10�4

TABLE D.1 Quadrature Points and Weights for

Gaussian Quadrature

a b N ¼ 1 N ¼ 2 N ¼ 3

0 0 x1 ¼ 0:5 x1 ¼ 0:211325 x1 ¼ 0:112702
w1 ¼ 1:0 x2 ¼ 0:788675 w2 ¼ 0:500000

w1 ¼ 0:500000 w3 ¼ 0:887298
w2 ¼ 0:500000 w1 ¼ 0:2777748

w2 ¼ 0:444444
w3 ¼ 0:277778

0 1 x1 ¼ 0:666667 x1 ¼ 0:355051 x1 ¼ 0:212340
w1 ¼ 0:500000 x2 ¼ 0:844949 x2 ¼ 0:590533

w1 ¼ 0:181959 x3 ¼ 0:911412
w2 ¼ 0:318041 w1 ¼ 0:069827

w2 ¼ 0:229241
w3 ¼ 0:200932

1 0 x1 ¼ 0:333333 x1 ¼ 0:155051 x1 ¼ 0:088588
w1 ¼ 0:500000 x2 ¼ 0:644949 x2 ¼ 0:409467

w1 ¼ 0:318042 w3 ¼ 0:787660
w2 ¼ 0:181958 w1 ¼ 0:200932

w2 ¼ 0:229241
w3 ¼ 0:069827

1 1 x1 ¼ 0:500000 x1 ¼ 0:276393 x1 ¼ 0:172673
w1 ¼ 0:166667 x2 ¼ 0:723607 x2 ¼ 0:500000

w1 ¼ 0:083333 x3 ¼ 0:827327
w2 ¼ 0:083333 w1 ¼ 0:038889

w2 ¼ 0:088889
w3 ¼ 0:038889

TABLE D.2 Quadrature Points and Weights for

Laguerre Quadrature for N ¼ 3 and 5

N xj wj

3 0.41577456 0.71109301

2.29428036 0.27851773

6.28994051 0.01038926

5 0.26356032 0.52175561

1.41340306 0.39866681

3.59642577 0.07594245

7.08581001 0:36117587� 10�2

12:64080084 0:23369972� 10�4
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D.6 RADAU QUADRATURE

The Gaussian quadrature presented in the previous section

involves the quadrature points that are within the domain

of integration (0, 1). If one point at the boundary, either at

x ¼ 0 or x ¼ 1, is included in the quadrature formula, the

resulting formula is called the Radau quadrature.

Let us start with the inclusion of the boundary value at

x ¼ 1 in the quadrature formula, and use the following

example of one interior quadrature point, that is, the total

number of quadrature points is two, one interior point and

the point at x ¼ 1.

I ¼
Z 1

0

yðxÞdx ¼ w1yðx1Þ þ w2yðx ¼ 1Þ ðD:45Þ

where w1 and w2 are quadrature weights at x1 and x ¼ 1,

respectively. Thus, there are three unknowns (w1, w2, and

x1) in this quadrature equation. To find them, we enforce

the previous requirement by integrating three polynomials

1, x, and x2 exactly. This meansZ 1

0

1 dx ¼ 1 ¼ w1 þ w2 ðD:46Þ

Z 1

0

x dx ¼ 1
2
¼ w1x1 þ w2 ðD:47Þ

Z 1

0

x2 dx ¼ 1
3
¼ w1x

2
1 þ w2 ðD:48Þ

Solving the above three equations, we obtain

x1 ¼ 1
3
; x2 ¼ 1; w1 ¼ 3

4
; w2 ¼ 1

4
ðD:49Þ

Thus, we see that the Radau quadrature formula using 1

interior quadrature point can integrate a polynomial of

degree up to 2 exactly. In general, a Radau quadrature for-

mula using N interior quadrature points and one point at the

boundary x ¼ 1 can integrate a polynomial of degree up to

2N exactly. We list in Table D.4 the values for the quadra-

ture weights and points for the Radau quadrature formula:

I ¼
Z 1

0

yðxÞdx ¼
XN
j¼1

wjyðxjÞ þ wNþ1y x ¼ 1ð Þ ðD:50Þ

Similarly, when the Radau quadrature formula is used with

the boundary point at x ¼ 0 included instead of x ¼ 1, the

Radau quadrature formula is

I ¼
Z 1

0

yðxÞdx ¼ w0yðx ¼ 0Þ þ
XN
j¼1

wjyðxjÞ ðD:51Þ

Table D.5 lists the quadrature points and weights for this

case.

Similar to inclusion of the boundary point at x ¼ 1, the

quadrature formula for including the boundary point at

x ¼ 0 (in addition to the N interior quadrature points) can

exactly integrate a polynomial of degree up to 2N.

Heretofore, we have considered the quadrature formula

for the integral of a function y (x) with a weighting function

WðxÞ ¼ 1. The Radau quadrature formula for the following

integral with the weighting functionWðxÞ ¼ xbð1� xÞa

I ¼
Z 1

0

xbð1� xÞa	 

yðxÞdx ðD:52Þ

is given by the following two formulas:

I ¼
Z 1

0

xbð1� xÞa	 

yðxÞdx

¼
XN
j¼1

wjyðxjÞ þ wNþ1yðx ¼ 1Þ ðD:53Þ

and

I ¼
Z 1

0

xb 1� xð Þa	 

y xð Þdx ¼ w0y x ¼ 0ð Þ þ

XN
j¼1

wjy xj
� �

ðD:54Þ

TABLE D.5 Quadrature Points and Weights for

Radau Quadrature with the First End Point Included:

Weighting FunctionW(x)¼ 1

N Quadrature Points Quadrature Weights

1 x0 ¼ 0:000000 w0 ¼ 0:250000
x1 ¼ 0:666667 w1 ¼ 0:750000

2 x0 ¼ 0:000000 w0 ¼ 0:111111
x1 ¼ 0:355051 w1 ¼ 0:512486
x2 ¼ 0:844949 w2 ¼ 0:376403

3 x0 ¼ 0:000000 w0 ¼ 0:062500
x1 ¼ 0:212341 w1 ¼ 0:328844
x2 ¼ 0:590533 w2 ¼ 0:388194
x3 ¼ 0:911412 w3 ¼ 0:220462

TABLE D.4 Quadrature Points and Weights for

Radau Quadrature with the Last End Point Included:

Weighting FunctionW(x) ¼ 1

N Quadrature Points Quadrature Weights

1 x1¼ 0.333333 w1¼ 0.750000

x2¼ 1.000000 w2¼ 0.250000

2 x1¼ 0.155051 w1¼ 0.376403

x2¼ 0.644949 w2¼ 0.512486

x3¼ 1.000000 w3¼ 0.111111

3 x1¼ 0.088588 w1¼ 0.220462

x2¼ 0.409467 w2¼ 0.388194

x3¼ 0.787660 w3¼ 0.328844

x4¼ 1.000000 w4¼ 0.062500
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When a ¼ b ¼ 0, we recover the Radau formula obtained

earlier.

Using the same procedure of determining quadrature

weights and quadrature points described earlier (i.e., we

force the quadrature formula to fit polynomials up to degree

2N), we will obtain the N interior quadrature points and the

N þ 1 quadrature weights. The other quadrature point will

be at the point x ¼ 0 or x ¼ 1. Tables D.6 and D.7 list these

values for a number of combinations of a and b.

D.7 LOBATTO QUADRATURE

The last section illustrated the Radau quadrature formula

when one of the quadrature points is on the boundary either

at x ¼ 0 or x ¼ 1. In this section, we present the Lobatto

quadrature formula, which includes both boundary points

in addition to the N interior quadrature points. The general

formula for the Lobatto quadrature is

I ¼
Z 1

0

yðxÞdx

¼ w0yðx ¼ 0Þ þ
XN
j¼1

wjyðxjÞ þ wNþ1yðx ¼ 1Þ ðD:55Þ

TABLE D.7 Quadrature Points and Weights for

Radau Quadrature with the First End Point Included:

Weighting FunctionWðxÞ ¼ xbð1� xÞa

a a N ¼ 1 N ¼ 2 N ¼ 3

1 0 x1 ¼ 0:000000 x1 ¼ 0:000000 x1 ¼ 0:000000
x2 ¼ 0:500000 x2 ¼ 0:276393 x2 ¼ 0:172673
w1 ¼ 0:166667 x3 ¼ 0:723607 x3 ¼ 0:500000
w2 ¼ 0:333333 w1 ¼ 0:083333 x4 ¼ 0:827327

w2 ¼ 0:301503 w1 ¼ 0:050000
w3 ¼ 0:115164 w2 ¼ 0:225217

w3 ¼ 0:177778
w4 ¼ 0:047006

0 1 x1 ¼ 0:000000 x1 ¼ 0:000000 x1 ¼ 0:000000
x2 ¼ 0:750000 x2 ¼ 0:455848 x2 ¼ 0:294998
w1 ¼ 0:055556 x3 ¼ 0:877485 x3 ¼ 0:652996
w2 ¼ 0:444444 w1 ¼ 0:013889 x4 ¼ 0:927006

w2 ¼ 0:221096 w1 ¼ 0:005000
w3 ¼ 0:265016 w2 ¼ 0:101528

w3 ¼ 0:223962
w4 ¼ 0:169509

1 1 x1 ¼ 0:000000 x1 ¼ 0:000000 x1 ¼ 0:000000
x2 ¼ 0:600000 x2 ¼ 0:369398 x2 ¼ 0:246106
w1 ¼ 0:027778 x3 ¼ 0:773459 x3 ¼ 0:566150
w2 ¼ 0:138889 w1 ¼ 0:008333 x4 ¼ 0:854410

w2 ¼ 0:096844 w1 ¼ 0:003333
w3 ¼ 0:061489 w2 ¼ 0:054593

w3 ¼ 0:079829
w4 ¼ 0:028912

TABLE D.6 Quadrature Points and Weights for

Radau Quadrature with the Last End Point Included:

Weighting FunctionWðxÞ ¼ xbð1� xÞa

a b N ¼ 1 N ¼ 2 N ¼ 3

1 0 x1 ¼ 0:250000 x1 ¼ 0:122515 x1 ¼ 0:072994
x2 ¼ 1:000000 x2 ¼ 0:544152 x2 ¼ 0:347004
w1 ¼ 0:444444 x3 ¼ 1:000000 x3 ¼ 0:705002
w1 ¼ 0:055556 w1 ¼ 0:265016 x4 ¼ 1:000000

w2 ¼ 0:221096 w1 ¼ 0:169509
w3 ¼ 0:013889 w2 ¼ 0:223962

w3 ¼ 0:101529
w4 ¼ 0:005000

0 1 x1 ¼ 0:500000 x1 ¼ 0:276393 x1 ¼ 0:172673
x2 ¼ 1:000000 x2 ¼ 0:723607 x2 ¼ 0:500000
w1 ¼ 0:333333 x3 ¼ 1:000000 x3 ¼ 0:827327
w2 ¼ 0:166667 w1 ¼ 0:115164 x4 ¼ 1:000000

w2 ¼ 0:301503 w1 ¼ 0:047006
w3 ¼ 0:083333 w2 ¼ 0:177778

w3 ¼ 0:225217
w4 ¼ 0:050000

1 1 x1 ¼ 0:400000 x1 ¼ 0:226541 x1 ¼ 0:145590
x2 ¼ 1:000000 x2 ¼ 0:630602 x2 ¼ 0:433850
w1 ¼ 0:138889 x3 ¼ 1:000000 x3 ¼ 0:753894
w2 ¼ 0:027778 w1 ¼ 0:061489 x4 ¼ 1:000000

w2 ¼ 0:096844 w1 ¼ 0:028912
w3 ¼ 0:008333 w2 ¼ 0:079829

w3 ¼ 0:054926
w4 ¼ 0:003333

TABLE D.8 Quadrature Points and Weights for

Lobatto Quadrature: Weighting FunctionWðxÞ ¼ 1

N Quadrature Points Quadrature Weights

1 x0 ¼ 0:000000 w0 ¼ 0:166667
x1 ¼ 0:500000 w1 ¼ 0:666667
x2 ¼ 1:000000 w2 ¼ 0:166667

2 x0 ¼ 0:000000 w0 ¼ 0:083333
x1 ¼ 0:276393 w1 ¼ 0:416667
x2 ¼ 0:723607 w2 ¼ 0:416667
x3 ¼ 1:000000 w3 ¼ 0:083333

3 x0 ¼ 0:000000 w0 ¼ 0:050000
x1 ¼ 0:172673 w1 ¼ 0:272222
x2 ¼ 0:500000 w2 ¼ 0:355556
x3 ¼ 0:827327 w3 ¼ 0:272222
x4 ¼ 1:000000 w4 ¼ 0:050000

4 x0 ¼ 0:000000 w0 ¼ 0:033333
x1 ¼ 0:117472 w1 ¼ 0:189238
x2 ¼ 0:357384 w2 ¼ 0:277429
x3 ¼ 0:642616 w3 ¼ 0:277429
x4 ¼ 0:882528 w4 ¼ 0:189238
x5 ¼ 1:000000 w5 ¼ 0:033333
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To demonstrate the Lobatto formula, we use the case

of one interior point, that is, N ¼ 1, and the quadrature

formula is

I ¼
Z 1

0

yðxÞdx ¼ w0yðx ¼ 0Þ þ w1yðx1Þ þ w2yðx ¼ 1Þ
ðD:56Þ

where x1 is the interior quadrature point.

There are four parameters to be found in Eq. D.56,

namely, w0; w1; w2, and x1. To find them, we stipulate that

the formula would exactly integrate four polynomials 1,

x; x2; x3; that is,

Z 1

0

1dx ¼ 1 ¼ w0 þ w1 þ w2 ðD:57aÞ

Z 1

0

xdx ¼ 1
2
¼ w0ð0Þ þ w1x1 þ w2 ðD:57bÞ

Z 1

0

x2dx ¼ 1
3
¼ w0ð0Þ þ w1x

2
1 þ w2 ðD:57cÞ

Z 1

0

x3dx ¼ 1
4
¼ w0ð0Þ þ w1x

3
1 þ w2 ðD:57dÞ

Solving these four equations, we obtain the following four

parameters:

x1 ¼ 0:5; w0 ¼ 1
6
; w1 ¼ 4

6
; w2 ¼ 1

6
ðD:58Þ

Table D.8 lists values of quadrature points and weights for

the Lobatto quadrature formula.

TABLE D.9 Quadrature Points and Weights for Lobatto Quadrature: Weighting FunctionWðxÞ ¼ xbð1� xÞa

a b N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4

1 0 x0 ¼ 0:000000 x0 ¼ 0:000000 x0 ¼ 0:000000 x0 ¼ 0:000000
x1 ¼ 0:400000 x1 ¼ 0:226541 x1 ¼ 0:145590 x1 ¼ 0:101352
x2 ¼ 1:000000 x2 ¼ 0:630602 x2 ¼ 0:433850 x2 ¼ 0:313255
w0 ¼ 0:125000 x3 ¼ 1:000000 x3 ¼ 0:753894 x3 ¼ 0:578185
w1 ¼ 0:347222 w0 ¼ 0:066667 x4 ¼ 1:000000 x4 ¼ 0:825389
w2 ¼ 0:027778 w1 ¼ 0:271425 w0 ¼ 0:041667 x5 ¼ 1:000000

w2 ¼ 0:153574 w1 ¼ 0:198585 w0 ¼ 0:028582
w3 ¼ 0:008333 w2 ¼ 0:184001 w1 ¼ 0:147730

w3 ¼ 0:072414 w2 ¼ 0:171455
w4 ¼ 0:003333 w3 ¼ 0:113073

w4 ¼ 0:037583
w5 ¼ 0:001587

0 1 x0 ¼ 0:000000 x0 ¼ 0:000000 x0 ¼ 0:000000 x0 ¼ 0:000000
x1 ¼ 0:600000 x1 ¼ 0:369398 x1 ¼ 0:246106 x1 ¼ 0:174611
x2 ¼ 1:000000 x2 ¼ 0:773459 x2 ¼ 0:566150 x2 ¼ 0:421815
w0 ¼ 0:027778 x3 ¼ 1:000000 x3 ¼ 0:854410 x3 ¼ 0:686745
w1 ¼ 0:347222 w0 ¼ 0:008333 x4 ¼ 1:000000 x4 ¼ 0:898648
w2 ¼ 0:125000 w1 ¼ 0:153574 w0 ¼ 0:003333 x5 ¼ 1:000000

w2 ¼ 0:271425 w1 ¼ 0:072414 w0 ¼ 0:001587
w3 ¼ 0:066667 w2 ¼ 0:184001 w1 ¼ 0:037582

w3 ¼ 0:198585 w2 ¼ 0:113073
x4 ¼ 0:041667 w3 ¼ 0:171455

w4 ¼ 0:147730
w5 ¼ 0:028571

1 1 x0 ¼ 0:000000 x0 ¼ 0:000000 x0 ¼ 0:000000 x0 ¼ 0:000000
x1 ¼ 0:500000 x1 ¼ 0:311018 x1 ¼ 0:211325 x1 ¼ 0:152627
x2 ¼ 1:000000 x2 ¼ 0:688982 x2 ¼ 0:500000 x2 ¼ 0:374719
w0 ¼ 0:016667 x3 ¼ 1:000000 x3 ¼ 0:788675 x3 ¼ 0:625281
w1 ¼ 0:133333 w0 ¼ 0:005556 x4 ¼ 1:000000 x4 ¼ 0:847373
w2 ¼ 0:016667 w1 ¼ 0:077778 w0 ¼ 0:002380 x5 ¼ 1:000000

w2 ¼ 0:077778 w1 ¼ 0:042857 w0 ¼ 0:001191
w3 ¼ 0:005556 w2 ¼ 0:076190 w1 ¼ 0:024576

w3 ¼ 0:042857 w2 ¼ 0:057567
w4 ¼ 0:002381 w3 ¼ 0:057567

w4 ¼ 0:024576
w5 ¼ 0:001190
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For the general integral of the type

I ¼
Z 1

0

xb 1� xð Þa	 

yðxÞdx ðD:59Þ

with the weighting function WðxÞ ¼ xbð1� xÞa, the

Lobatto quadrature equation is written as

I ¼
Z 1

0

xbð1� xÞa	 

yðxÞdx

¼ w0yðx ¼ 0Þ þ
XN
j¼1

wjyðxjÞ þ wNþ1yðx ¼ 1Þ ðD:60Þ

Table D.9 lists values for the quadrature points and weights

for a number of combinations of a and b.

D.8 CONCLUDING REMARKS

This appendix has illustrated the most valuable integration

formulas for engineering applications. The most popular

formulas are the trapezoid and Simpson rules, and they are

recommended for initial application of the integration for-

mula since they are so simple to use. Error control and

extrapolation could then be used to improve the estimation

of the integral. When the integrand has unbounded values at

the boundaries, the Newton–Cotes formula of the open type

will prove to be a suitable choice. The Gaussian, Laguerre,

Hermite, Radau, and Lobatto quadrature formulas are par-

ticularly useful when the function y(x) is known, since the

summation process is so simple and easily programmed.

They are also attractive in cases requiring the utilization of

the collocation method, explained in Chapter 8.
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APPENDIX E

NOMENCLATURE

an ¼ coefficient used in the Frobenius expansion,

Eq. 3.32

aij ¼ component of the matrix A

A¼ cross-sectional area (Chapter 1)

A¼ first derivative matrix, Eq. 8.102

AiðxÞ ¼Airy function, Eq. 3.75

bn ¼ coefficient used in the Frobenius expansion

bij ¼ component of the matrix B

B¼ parameter, Eq. 7.36

B¼ second derivative matrix, Eq. 8.102

B1 ¼ residue, Eq. 9.76

BN¼ coefficient in the Laurent expansion, Eq. 9.75

Bi¼ Biot number for heat transfer, Eq. 1.81b

Bi(x)¼Airy function, Eq. 3.76

c¼ variable index used in Frobenius expansion,

Eq. 3.32

c
ða;bÞ
N ¼ coefficient, Eq. 8.110

C¼ fluid concentration

C� ¼ fluid concentration in equilibrium with the

adsorbed phase

CA;B ¼ fluid concentration

Ci¼ cosine integral, Eq. 4.52

Cp¼ specific heat

d¼ inner pipe diameter, Example 2.25

D¼ diffusion coefficient

De¼ effective diffusivity in porous particle, Eq. 8.21

DE¼ diffusion coefficient along the bed length,

Eq. 2.215

E¼ activation energy

Ei¼ exponential integral, Eq. 4.50

erf¼ error function

f¼ functional

f(x)¼ forcing function in the RHS of ODEs

F¼ volumetric flow rate, Eq. 7.36

F¼ functional, Eq. 7.46

F(s)¼ Laplace transform of f(t), Eq. 9.1

gj¼ coefficient, Eq. 8.88

GN�k ¼ function, Eq. 8.86a

h¼ step size used in integration methods of

Chapter 7

h¼ heat transfer coefficient

hj¼ coefficient, Eq. 8.88

hG¼ heat transfer coefficient of gas phase, Eq. 1.52

hL¼ heat transfer coefficient of liquid phase, Eq. 1.52

Ha¼Hatta number, Eq. 2.242

i¼ counting index

i¼ imaginary number ¼ ffiffiffiffiffiffiffi�1
p

I(x)¼ integrating factor (Chapter 2)

In ¼ Bessel function

J¼ flux¼mass transfer per unit area

J¼ Jacobian matrix, Eq. 8.160d

Jn¼ Bessel function

J
ða;bÞ
N ¼ Jacobi polynomial, Eqs. 8.78 and 8.79

k¼ thermal conductivity

k1;2 ¼ reaction rate constant, Example 2.5

kc¼mass transfer coefficient per unit interfacial area,

Eq. 1.33

kca¼mass transfer coefficient per unit bed volume,

Eq. 1.33

K¼ affinity constant of adsorption equilibrium,

Eq. 1.32

K¼ equilibrium constant between two phases, Eq. 5.3

Kn¼ Bessel function, Eq. 3.162
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KnðxÞ ¼ kernel of the integral transform (Chapter 11)

ljðxÞ ¼ Lagrangian interpolation polynomial, Eq. 8.90

L¼ length

L¼ heavy phase flow rate, Eq. 5.4

L¼ differential operator, Eq. 8.1

m¼ parameter, Eq. 1.61

n¼ parameter, Eq. 1.73

Nu¼Nusselt number for heat transfer, Problem 1.1

p¼ dy/dx, Eq. 2.87

pNðxÞ ¼ rescaled polynomial of the Jacobi polynomial of

degree N, Eq. 8.86b

pNþ1ðxÞ ¼ node polynomial, Eq. 8.91

P(x)¼ function of x (Chapter 2)

Pj¼ coefficient, Eq. 3.30

Pe¼ Peclet number, Eq. 2.242

Pr¼ Prandt number, Problem 1.1

q¼ concentration in the adsorbed phase

q¼ heat flux¼ heat transfer per unit area

qr¼ heat flux in the r direction

qz¼ heat flux in the z direction

Q¼ heat transfer (Chapter 1)

Q(x)¼ function of x (Chapter 2)

Qj ¼ coefficient, Eq. 3.31

r¼ radial coordinate

R¼ residual, Eq. 8.3

Rb¼ boundary residual, Eq. 8.4

R¼ tube radius or particle radius

R¼ chemical reaction rate

R(x)¼ function of x (Chapter 2)

Re¼ Reynolds number

s¼ complex variable, Eq. 9.2

S¼ cross-sectional area of a tube, Example 7.3

Si¼ sine integral, Eq. 4.51

t¼ time

t� ¼ inner time variable, Eq. 6.98

T¼ temperature

Tw¼wall temperature (Chapter 1)

T0¼ inlet temperature (Chapter 1)

x¼ independent variable

x� ¼ inner variable, Eq. 6.62

xj ¼ jth interpolation point (Chapter 8)

X¼mass solute/mass carrier solvent, Eq. 5.2

X¼ reaction conversion, Eq. 7.38

X tð Þ ¼ penetration front (Chapter 12)

y¼ dependent variable

ya ¼ approximate dependent variable, Eq. 8.5

yj ¼ value of y at the interpolation point xj (Chapter 8)

yjðxÞ ¼ coefficient in the asymptotic expansion, Eq. 6.5

y
ðiÞ
j ðxÞ ¼ coefficient in the inner asymptotic expansion,

Eq. 6.64

y
ð0Þ
j ðxÞ ¼ coefficient in the outer asymptotic expansion,

Eq. 6.59

Y¼mass solute/mass extracting solvent, Eq. 5.1

u¼ independent variable ¼ x2 (Chapter 8 for sym-

metry; Eq. 8.117)

u¼ nondimensional temperature, Eq. 1.81a

u¼ superficial velocity, Example 7.3

U¼ overall heat transfer coefficient in heat

exchanger, Example 2.25

v ¼ y/x (Chapter 2)

v0 ¼mean velocity (Chapter 1)

vz ¼ parabolic velocity, Eq. 1.21

V¼ nondimensional variable, Eq. 2.73

V¼ light solvent mass flow rate, Eq. 5.4

V¼ reservoir volume, Example 7.1

Vp¼ particle volume, Eq. 8.28

wj ¼ quadrature weight, Eq. 8.107

wkðxÞ ¼ test function, Eq. 8.7

W¼Wronskian determinant, Eq. 2.359

WA¼mass transfer rate of the species A, Eq. 2.120

x¼ coordinate

z¼ axial coordinate

a¼ independent variable, Eqs. 7.79 and 7.81

a¼ parameter, Eq. 2.225

a¼ nondimensional parameter, Eq. 1.54

a¼ exponent in the weighting function of the Jacobi

polynomial, Eq. 8.83

b¼ exponent in the weighting function of the Jacobi

polynomial, Eq. 8.83

b¼ parameter, Eq. 2.225

b¼ parameter, Eq. 5.6

bn ¼ eigenvalue, Eq. 1.86b, Eq. 10.185

d¼ nondimensional parameter, Eq. 1.81b

dðxÞ ¼Dirac delta function

dn ¼ asymptotic sequence, Eq. 6.37

e¼ bed porosity, Eq. 1.34

e¼ particle porosity

e¼ small parameter (Chapter 6 for perturbation

analysis)

e¼ error, Eq. 7.21

gN;i ¼ coefficient of the Jacobi polynomial of degree N

g ¼ Euler constant, Eq. 3.153

r¼ density

l¼ parameter, Eq. 1.9

l¼ decay constant (Chapter 7 for ODEs, Eq. 7.20a)

li;0 ¼ parameter, Eqs. 2.387 and 2.388

m¼ viscosity

u¼ temperature, Eq. 1.11

C ¼ nondimensional parameter, Eq. 1.18

z¼ nondimensional parameter, Eq. 1.19

l¼ eigenvalue, used in coated wall reactor;

Eq. 10.182 and in Examples 10.3–10.5

z¼ nondimensional length, Eq. 1.81a

h¼ effectiveness factor

h¼ combined variable used in the combination of

variables method, Eq. 10.15

h¼ parameter, Eq. 1.63
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j¼ nondimensional coordinate, Eq. 1.81a

jn ¼ eigenvalue (Chapter 11)

f¼ Thiele modulus, Eq. 8.24

fiðxÞ ¼ trial functions, Eq. 8.5

w¼ exact function, Eq. 2.23

w¼ polar angle of a complex number

wðkÞ ¼ function, Eq. 3.112

wnðxÞ ¼ orthogonal polynomial, Eq. 10.184

s ¼ real part of a complex number

v¼ imaginary part of a complex number

V¼ vector, Eq. 11.187
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POSTFACE

No man is an island entire of itself; every man is a piece of the
continent, a part of the main; if a clod be washed away by the sea,
Europe is the less, as well as if a promontory were, as well as any
manor of thy friends or of thine own were; any man’s death
diminishes me, because I am involved in mankind. And therefore
never send to know for whom the bell tolls; it tolls for thee.

John Donne

(1572–1631)
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INDEX

A

Absorption:

gas–liquid mass transfer, 27, 262

with chemical reaction, 28, 38 113, 262

Activity, catalyst decay, 135

Adams–Bashforth method, 151

Adams–Moulton method, 152

Addition of matrices, 12

Addition of vectors, 12

Adsorption, packed bed, 7, 249

batch, 290

Airy equation, 80

function, 80

Aitkens method, 349

Algebra, complex, 193

Algebraic equations:

linear, matrix method solution, 17

numerical solution methods, 343

Ammonia–water distillation, 114

Analytic functions (of a complex

variable), 196

Argument of complex number, 194

Associated eigenproblem, 279

Associative law of algebra, 12, 50

Asymptotic expansions, 121

Asymptotic sequence, 121

Augmented matrix, 14

Axial dispersion, packed bed, 29

B

Batch reactor, 35

Benzoic acid, dissolution of, 26

Bernoulli equation, 34

Bessel functions:

first kind, 86

modified, 87

properties, 89

tables of values, 90

Bessel’s equation, 86

generalized, 88

modified, 87

Beta function, 99

relation to Gamma function, 99

Binomial power series, 51, 77

Binomial theorem, 51

Biot number, 24

Bisection algorithm, 343

Blood dialysis, modeling, 256

Boundary conditions:

homogeneous type, 9

in Laplace transforms, 215

in numerical solutions, 116

in Sturm–Liouville transforms,

279

time dependent, 286

Boundary value problem:

collocation methods for, 168

nonlinear, 179

Brain implant, 66

Branch cut, 216

Branch points, 216

Brinkman correction, 95

Bromwich path, 203, 215

Bubble coalesence, 39, 225

Bubble column, mass transfer

models, 27

Bubble rise, 63

C

Capillary tube diffusometer, 267

Catalyst pellet, 29

Catalytic reactor, modeling, 28

Cauchy:

integral formula (second integral

theorem), 222

theorem, 198, 199

Cauchy–Riemann conditions, 197

Chain rule, total differential, 31

Characteristic equation, 44, 59

Chebyshev polynomial, 86

Classification:

of ODE, 32

of PDE, 229

Coefficients, linear, first-order ODE, 36

Collocation methods, 162, 166

orthogonal collocation methods,

169, 172

Column matrix, 11

Combination of variables, 228, 231, 233

Commutative law of algebra, 12, 50

Complementary solution, 43

Complex conjugate, 194

Complex number:

amplitude or modulus of, 93

argument of, 194

imaginary part, 193

real part, 193

trigonometrical, exponential

identities, 195

Complex variables:

analytic functions of, 196

Cauchy’s integral formula, 200

Cauchy’s theorem, 198

derivatives of, 196

evaluation of residues, 200, 201, 202

integration of, 198

Laurent’s expansion, 200

multivalued functions of, 195

Applied Mathematics and Modeling for Chemical Engineers, Second Edition. Richard G. Rice and Duong D. Do.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

379



Complex variables (Continued )

singularities of, 198

branch points, 216

essential, 197

poles, 197

theory of residues, 200

Composite solutions, 124

Computer chip cooling, 71

Conformable matrices, 12

Consecutive reactions, 61

Conservation law, general, 4

Contour integration, inversion of Laplace

by, 202

Contour plots, 194

Convergence:

acceleration of, 349

radius of, 76

rate of, 348

Convergent series, 76

Convolution for Laplace, 210

Cosine integral, 101

Countercurrent extraction, 105

Crank–Nicolson equation, 319

Crank–Nicolson method, 320

CSTR, definition, 105

Cubic equation, asymptotic

expansion, 131

CVD reactor, 236

D

Danckwerts conditions, 28, 29, 46

Darcy’s law, 95

Demoivre’s theorem, 195

Derivative:

partial, 227

substitution method, 38

Dialysis, 256

Dielectric material, 269

Difference(s):

backward, 149, 319

forward, 149, 364

Difference equations:

characteristic equation, 106

finite:

degree and order, 106

linear finite:

complementary solution, 106

particular solution, 109

nonlinear finite:

analytical, 111

Riccati, 111

Difference formula, 149

Difference operator, 110

Differential equations, ordinary, 31

Airy’s equation, 80

Bessel’s equation, 86

Chebychev’s equation, 86

complementary solution of, 43

Duffing equation, 38

Frobenius solution method, 77

Kummer’s equation, 83

Lane–Emden equation, 37

matrix representation of, 60

nonlinear, 37

order and degree, 37

particular solution of, 47

solution by Laplace, 211

solution by matrix methods, 59

Van der Pol equation, 38

Differential equations, partial:

derivation of, 6

particular solutions by combination of

variables, 231, 233

solution by Laplace transforms,

248

solution by separation of variables,

238

solution by numerical methods, 318

solution by Sturm–Liouville

transforms, 273

superposition of solutions, 240

Differential equations,

simultaneous, 55

Differential operator, 50

Differential properties of Bessel

functions, 91

Dirac Delta function, 208, 218

Dimensional analysis, 30

Diffusion in human skin, 66

Dirichlet boundary conditions, 175, 179

Distillation column, 111, 114

Distributive law of algebra, 50

Draining tank, 61

Duffing equation, 38

E

Economic models, 115

Effectiveness factor, 22, 92

Efficiency, Murphree plate, 113

Eigenfunctions, 244

Eigenproblem, 59

Eigenvalues, 59

Elimination of independent variable, 56

Elimination of dependent variable, 56

Elliptic integrals:

first kind, 100

second kind, 100

Equidimensional equation, 41

Error function, 97

complementary, 98

properties of, 97

table of values, 98

Errors:

global, 151

local, 151

Euler equation, 41

Euler formula, complex

variables, 195

Exactness, 32, 33

Exponential function:

identities for, 194

series representation, 75

transform of, 205

Exponential integral, 101

Exponential power series, 75

Extraction, liquid–solid, 232, 264

Extraction cascade, 165

F

Factor, integrating, 32

Falling film, for gas absorption, 262

Fin, temperature profile, 93

Finite differences:

operators, 110, 149

solving differential equations,

142, 315

staged equations, 105

First Bromwich path, complex

variables, 203

Fixed bed catalytic reactor, 28, 45

Fluid flow:

packed bed, 95

transient start-up for tube flow, 258

Fourier–Mellon integral, 193

Fourier series approximation:

numerical inversion of Laplace, 220

Fourier’s law, 7

Frobenius method, 77

Functions, orthogonal, 241

Functions and definite integrals:

Beta, 99

elliptic, 99

error, 97

Gamma, 98

Fundamental lemma of calculus, 5

G

Gamma function, 98

in Laplace transforms, 205

relation to Beta function, 99

Gamma function, incomplete, 99

Gas absorption:

in bubble columns, 27, 62

in falling film, 262

with reaction, 28, 38, 113

Gaussian quadrature, 367

Gauss–Jacobi quadrature formula, 173

Gauss–Jordan elimination, 17

Generalized Bessel equation, 88

Generalized Sturm–Liouville

transform, 289

Graetz equation (heat transfer), 93, 244

H

Hankel transform, 277

Heat conduction equation:

boundary conditions, 9
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cylindrical coordinates, 9

spherical coodinates, 254

steady state, 247

unsteady state, 247

Heat conduction solutions:

Graetz problem, 244

Nusselt problem, 252

unsteady linear, 245, 254

Heat exchanger, double-pipe, 57

Heat loss:

from fins, 93, 94

from packed beds, 266

from pin promoters, 88

from rod bundles, 20

from rod promoters, 61

Heat transfer coefficient, 5, 9, 20, 57

Heaviside operator, 50

Hermite formulas, 368

Hierarchy of models, 19

Hilbert space, 276

Homogeneous equations, 9, 42

Homogeneous functions, 34

Honeycomb catalyst, 69

Hyperbolic function, 46

Human skin, diffusion, 56

I

Image (Sturm–Liouville transform), 275

Indicial equation, 77

Infinite series, 76

Inhomogeneous boundary conditions, 247

Inhomogeneous equations (PDE), 245

Initial value, problems:

numerical solution of, 139

Inner product, 162, 276

Inner variable, 313

Integral properties of Bessel function, 91

Integrals, line, 198

Integration, numerical procedure, 363

Integrating factor, 32

Interpolation formula, 149

Lagrange, 172

Inverse operator, 50

Inverse transform:

by contour integration for Laplace,

202

by convolution integral for Laplace,

210

for Heaviside operators, 51

by partial fractions for Laplace, 209

by Sturm–Liouville transform,

279, 296

Inversion theorem, Laplace, 193

J

Jacobian matrix, 347

Jacobi method, 18

Jacobi polynomials, 86

Jacobi’s equation, 86, 93

K

Kernel, Sturm–Liouville transform, 277

Kronecker delta function, 181, 319

Kummer’s equation, 83

L

Lagrange interpolation formula, 172

Lagrange polynomials, 184

Laguerre polynomial, 86

Lane–Emden equation, 37

Laplace operator, 193

Laplace transforms:

convolution theorem for, 210

of derivatives, 206

differentiation of, 206

of integral functions, 206

inverse transforms:

solution of ODE, 211

using partial fractions, 209

method of solving ODE, 211

method of solving PDE, 248

properties of, 204

shifting theorem for, 207

step functions, 208

unit impulse, 208

ramp function, 208

table of, 357

Laurent’s expansion, 200

Least square method, 166

Legendre’s equation, 86, 94

Legendre’s polynomial, 94

Leibnitz, rule for differentiating an

integral, 97

Lerch’s theorem, Laplace transforms,

205

Leveque solution, 237, 255

L’Hopital’s rule, 201, 208

Linear coefficients first-order

ODE, 36

Linearly independent, definition for

ODE, 43

Lobatto quadrature, 370

Log mean DT, 59
Loschmidt diffusion cell, 255

Lumped parameters, 5

M

Mass transfer:

mixed condition, 232

diffusion equation, 265

integro-differential boundary, 232, 265

by molecular diffusion

(Fick’s law), 10, 255

unsteady, to spheres, 264, 265, 270

Matched asymptotic expansion, 122

Matching, 124

Matrices:

addition, 12

application to sets of ODE, 59

augmented, 14

characteristic equations, 59

commutable, 12

conformable, 12

decomposition, 13

diagonally dominate, 11

diagonals, 11

elimination methods, 13, 14

inverse, 12

Jacobian, 34

matrix algebra, 12

multiplication, 12

operator, 292

pivoting, 13

solution of linear algebraic equations, 17

sparse, 11

square, 11

subtraction, 12

symmetric, 11

transpose, 11

triangular, 11

tridiagonal, 11

Mellin–Fourier theorem, 193

Membrane transport, 133, 190, 260

Moment method, 207

Multivalued function, 215

N

Nanotubes, 67

Newton, method of solving algebraic

equations, 346

Newton backward interpolation formula,

149

Newton forward difference polynomial,

364

Numbers:

Biot, 24

complex, 193

conjugate, 194

imaginary, 194

Nusselt, 25

Numerical methods:

algebraic equations, 343

bisection method, 343

Newton–Raphson method, 346

secant method, 347

successive substitution, 344

Crank–Nicolson method, 152

derivative boundary conditions, 141

Euler method:

explicit, 142

implicit, 142

first order, ODE, 140, 150

higher order ODE:

boundary value problems, 161

initial value problems, 140

Newton–Raphson method, 346

partial differential equations:

collocation method, 324
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Numerical methods (Continued )

finite difference, 315

finite element, 330

polynomial approximation, 303

Nusselt problem, heat transfer

in tube flow, 252

O

One point collocation method, 166,

181, 309

Operator:

boundary, 279

differential, 50

finite difference, 110

general, 42, 50

Laplace, 193

Ordering concept, gauge function, 120

Order symbols, 120

Orthogonal functions, 241, 276, 279

Orthogonality property, 241, 276, 279

P

Parameter estimation in Laplace domain,

207

Partial differential equations:

boundary conditions, 231

combination of variables, 233

formulation, 6

Fourier transform (Sturm–Liouville

transform), 277

inhomogeneous, 245

initial value type:

Laplace transform, 248

Slurm–Liouville transform, 273

numerical methods, 303

orthogonal function, 241

Sturm–Liouville equation, 241

particular solution, 231

separation of variables, 238

coated wall reactor, 238

steady-state heat transfer, 252

superposition of solutions, 240

unsteady heat transfer, 245

Partial differentiation, changing

independent variables, 228

Partial fractions for Laplace

transforms, 209

Particular solution, 147, 231

Pendulum equation, 100

Perturbation method, 117, 310

Piston, dynamic of movement, 27, 223

Poles:

in complex variables, 197

first order, 199

inversion of Laplace transforms, 204

second order, 204

Polynomial approximation, 303

Polynomials:

Graetz, 93

Jacobi, 86, 170, 171

Lagrange, 184

Laguerre, 86

Legendre, 86

Power series, 75

Plug flow model, 3

Predictor–corrector method, 152

Propagation of errors, 365

Q

Quadrature, definition, 173

formulas, Gauss–Jacobi, 174

R

Radau–Lobatto quadrature formula,

175

Radau quadrature, 369

Radius of convergence, 76

Range of convergence, 76

Ratio test, 76

Reactor batch, 35

Reactor, coated wall, 238

Reactors, tanks in series, 112

transient response, 224

Reactors, tubular:

coated wall, 238

packed bed, 28, 45

Recurrence relation, for Bessel

functions, 91

Regular behavior, 93

Regular perturbation, 119

Relative volatility, 112

Residual, weighted residuals, 161

Residues:

evaluation of, 201

evaluation for multiple poles, 202

theory of, 200

Reynolds number, 6

Riccati difference equation, 111

Riccati ODE, 35

Robin boundary condition, 177

Rodrigues formula, 94, 170

Row matrix, 11

Runge–Kutta formula, 154

Runge–Kutta–Gill formula, 154

Runge–Kutta method, 153

S

Secant method, 347

Self-adjoint operator, 280, 287, 295

Separation constant, 239

Series:

Bessel’s equation, 86

modified, 87

properties, 89

convergent, 76

indicial equation, 77

infinite, properties of, 76

power, 76

solution by Frobenius method, 77

Shifting theorem, 207

Shooting method, 159

Sign conventions, 8

Simpson’s rule for integration, 365

Simultaneous ODE, 55

Sine integral, 101

Singularities:

branch points, 216

of complex variables, 197

essential, 198

pole type, 197

Singular perturbation solution, 310

Singular solutions, ODE, 37, 42, 225

Solvent extraction cascade, 105

Spheres:

adsorption onto, 257

dissolution of gas within bubble, 63

Stability of numerical methods, 142

Step function:

unit impulse, 208

unit step, 208

Stiffness, numerical methods, 147

Stirling formula, 103

Strained coordinates, 133

Sturm–Liouville equation, 241

Sturm–Liouville transforms, 273, 277

Subdomain method, 166

Successive substitution method, 344

T

Tank draining, 61

Tanks in series, 112

Taylor series expansion, 93

Temperature, surface variation, 236

Temperature distribution:

in semi-infinite slab, 233

in circular fins, 93

in flowing fluid, 9, 243, 255

Test function, 162

Thermocouple, model of, 26

Total differential, 31

Transformation of matrices, 11

Transforms:

Fourier, 277

Hankel, 277

Laplace, 210

Laplace, table of, 357

Sturm–Liouville, 273, 277

Transpose of a matrix, 11

Trapezoid rule for numerical

integration, 364

Trial functions, 162

Trigonometric functions:

inverse operator on, 53

Laplace transforms of, 205

U

Undetermined coefficients,

method for ODE, 48
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Unsteady state operations, 7, 211, 233, 245,

247, 249

V

Variables:

complex, 193

dependent, 56

dummy, 97

independent, 56

combination of, 228, 231, 233

method of separation, 238

Variation of parameters, 54

Vectors, 11

Velocity profile, tube flow, 6

Vibration of drumhead, 258

Volterra integral, 223

W

Weighted residuals, method of,

161

Wronskian, definition, 55

Z

Zakian method, inverting Laplace

transforms, 218
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