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Abstract— In this paper, optimization techniques used in the
chemical processes are explored. Chemical processes comprise of
several multi-variable, non-linear and constrained blocks. The
overall system performance depends on operating each block
optimally. So every element has to be optimized in order to get
an overall best possible outcome. This makes the choice of a good
optimization algorithm very crucial. This survey includes the
study of research done and implemented in the industry, perusing
the variety of the optimization technique adopted, the details of
the optimization algorithm, its advantages and shortcomings.

Index Terms— Optimization, Chemical Processes.

I. INTRODUCTION

THE chemical engineering has undergone significant
changes during recent years due to the increased cost

of energy, increasingly stringent environmental regulations,
and global competition in product pricing and quality. One of
the most important engineering tool addressing these issues
is optimization. Modification in plant design and procedures
have been implemented to reduce the cost and meet con-
straints. Various algorithms and methods have been developed
to tackle the optimization problem that can be classified in
three main categories: heuristics, mathematical programming
and metaheuristic algorithms. euristics(of the classical kind)
do not actually solve the optimization problem, but aim at
finding good solutions by following a set of rules. In the
chemical process design field, Douglas [1] and Siirola [2]
have developed a method for hierarchical process synthesis
that relies on sets of rules at different stages during process
development. The computer-oriented implementation of such
systems usually takes the form of an Expert System, as for
example presented by Kirkwood et.al. [3]. Such methods are
good in finding quickly and reliably a good solution that can
be used for example as starting point for more advanced meta-
heuristic algorithms. The mathematical programming methods
(sometimes called exact methods) are optimization techniques
aimed at solving the Linear, Nonlinear, Mixed Integer Non-
Linear Problem (MINLP), constrained formulation of the
design problem [4]. These techniques use usually algorithms
derived from Branch and Bound or Outer Approximation, as
discussed by [5]. A recent review of these methods has been
published by [6].

The last category, the metaheuristic algorithms, are based on
one (or several)initial solution(s) and a progressive (though
not necessarily uniform) improvement of their quality. A
popular example of metaheuristic is the genetic algorithm
(GA) approach.
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The survey is focused on the use of mathematical and
metaheuristic approaches used in the industry. The next section
presents the mathematical programming followed by survey on
metaheuristics.

II. MATHEMATICAL PROGRAMMING

A. Integer Programming:
Mixed Integer Programming (Linear and Nonlinear)

Many problems in plant operation, design, location and
scheduling involve variables that are not continuous but instead
have integer values. Decision variables for which the levels are
dichotomy - to install or not install a new piece of equipment,
for example termed “0 or 1” or binary variable. Other integer
variables might be real numbers 0,1,2,3 and so on. Sometimes
we can treat integer variables as if they were continuous,
especially when the range of a variable contains a large number
of integers, such as 100 trays in distillation column, and round
the optimal solution to nearest integer value.

A problem only involving the integers is classified as integer
programming(IP). The most general case is the mixed integer
programming (MIP) problem, in which the objective function
depends on two sets of variables x and y; x is a vector of
continuous variables and y is a vector of integer variables.
A special case of IP is binary integer programming where
all the variables are either 0 or 1. Many MIP problems are
linear in the objective function and constraints and hence are
subject to solution by linear programming. These problems are
called mixed integer linear programming problems. Problems
involving discrete variables in which some of the functions
are nonlinear are called mixed integer nonlinear programming
problems. Some classical formulation of typical integer pro-
gramming are:

• The knapsack problem
• The traveling salesman problem
• Blending problem
• Location of oil wells etc.

1) Boiler/Turbo-Generator System Optimization: Linear
programming is often used in the design and operation of
steam systems in the chemical industry. For instance the steam
and power system for a small power house. The characteristics
are mainly different flow rates of steam pressure in different
valves. The system may be modeled as linear constraints and
combined with a linear objective function. The objective is to
minimize the operating cost of the system by choice of steam
flow rates and power generated or purchased, subject to the
demands and restrictions on the system.

2) Optimization of a Thermal Cracker via Linear Program-
ming: Reactor systems that can be described by a “yield
matrix” are potential candidates for the application of linear
programing. In these situations, each reactant is known to
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produce a certain distribution of products. When multiple
reactants are employed, it is desirable to optimize the amounts
of each reactant so that the products satisfy flow demand
constraints. Linear programming has become widely adopted
in scheduling production in olefin units and catalytic crack-
ers. The “yield matrix” is structured on various feeds and
corresponding product distribution for a thermal cracker that
produces olefins. The possible feeds include ethane, propane,
debutanized natural gasoline and gas oil, some of which may
be fed simultaneously [7].

3) Optimal Design of a Gas Transmission Network: A
gas-gathering and transmission system consists of sources of
gas, arcs composed of pipeline segments, compressor stations
and delivery sites. The design or expansion of a gas pipeline
transmission systems involves capital expenditures as well as
the continuous operating cost of operation and maintenance.
Many factors have to be considered. This include the optimum
number, locations and initial construction dates of compressor
stations. Different optimal dimensions of the compressors and
pipes and optimal pressures.

The criterion for the design is the minimum total cost of
operation including capital, operation and maintenance costs.
This problem is solved using the MINLP technique in [8].

4) Optimal Design and Operation of Distillation Column:
Distillation is probably the most widely used separation pro-
cess in industry. Various classes of optimization problems for
steady-state distillation are, in increasing order of complexity.

• Determine the optimal operating conditions for an exist-
ing column to achieve specific performance at minimum
cost (or minimum energy usage) given the feed(s). Usu-
ally, the manipulated (independent) variables are indirect
heat inputs, cooling steam inputs, and product flow rates.
The number of degrees of freedom is most likely equal to
the number of product streams. Specific performance is
measured by specific components concentrations or frac-
tional recoveries from the feed (specification leading to
equality constraints) or minimum (or maximum) concen-
trations and recoveries (specification leading to inequality
constraints). The optimization problem is a nonlinear
programming problem often with implicit nested loops
for calculation of physical properties. If the number of
degrees of freedom is reduced to zero by specifica-
tions placed on the controlled variables, the optimization
problem reduces to the classical problem of distillation
design that requires just the solution of a set of nonlinear
equations.

• A more complex problem is to determine not only the
values of the operating conditions as outlined in the last
case but also the minimum number of stages required
for the separation. because the stages are discrete, the
problem becomes nonlinear mixed integer programming
problem. In this form of the design problem, the costs
include both capital costs and operating costs. Capital
costs increase with the number of stages and internal
column flow rates, whereas operating cost decrease up
to a certain point.

• An even more difficult problem is to determine the
number of stages and the optimal locations for the feed(s)

withdrawal. Fortunately, the range of candidates for the
stage locations for feed and withdrawals is usually small,
and from a practical viewpoint the objective function is
usually not particularly sensitive to a specific location
within the appropriate range.

Optimization of distillation columns using mathematical
programming, as opposed to other methods, has been carried
out using many techniques, including search methods such as
Hooke and Jeeves [9], MINLP [10], GAs [11] and successive
quadratic programming [12].

5) Robust MILP: In a recent paper Lin et.al. [13] presented
a robust optimization methodology, which when applied to
MILP problem produces “robust” solutions which are in a
sense immune against bounded uncertainty. The robustness is
considered for all the coefficients of the objective function,
equalities and inequalities. By introducing a small number
of auxiliary variables and constraints, a deterministic robust
counterpart problem is formulated to determine the optimal
solution given the relative magnitude of uncertain data, fea-
sibility tolerance and reliability level when a probabilistic
measurement is applied. For each inequality constraint that
involves uncertain coefficients and/or right hand side param-
eters, an additional constraint is introduced to incorporate the
uncertainty and maintain the relationships among the relevant
binary and continuous variables under the uncertainty level
and the given infeasibility tolerance.

B. Quadratic and Sequential Quadratic Programming

A quadratic programming (QP) problem is an optimization
problem in which a quadratic objective function is minimized
subject to linear inequality or equality constraints. A convex
QP is the simplest form of a nonlinear programming problem
with inequality constraints. A number of practical optimiza-
tion problems, such as constrained least squares and optimal
control of linear systems with quadratic cost functions and
linear constraints, are naturally posed as QP problems.

Successive or sequential quadratic programming (SQP)
methods solve a sequence of quadratic programming approxi-
mations to a nonlinear programming problem. The constraints
are linearizations of the actual nonlinear constraints about the
selected point. The objective is a quadratic approximation of
the Lagrangian function of the original objective augmented
with the weighted difference of violation of the constraints.

1) Optimization of Sulfolane Extraction Plant: The sul-
folane extraction process is widely used in benzene-toulene-
xylene (BTX) plants to separate aromatics from hydrotreated
feedstocks. The optimization of the extraction plant is by
far the most important aspect to improve the economics
of the BTX plant. In [14], optimal operating conditions of
the sulfolane plant were identified based on modeling and
simulation of the actual plant. From the results of simulations
based on rigorous plant models, parametric models for each
plant unit were developed, which, in turn, were employed in
the SQP method to optimize the operation of the extraction
plant.
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C. Gradient Descent Approach

The gradient descent approach is also used in the opti-
mization of chemical process. This approach is based on
minimizing a cost function that is some kind of a performance
index for the system and a function of system parameters. The
parameters are updated iteratively in the negative direction
of the gradients of the performance index, such that the
performance index is optimized.

1) Heat Transfer in Glass Forming Process: This paper
[15] addresses a method for estimating a number of unknown
heat transfer coefficients in solving the heat conduction prob-
lem of the glass forming process. These coefficients can be
found if there are proper data measured from the process in the
operation. A sum of normalized squared errors is used as the
objective function that is a function of values depending upon
the estimated coefficients and the measure values, subject to
an equality constraint that is itself a function of the coefficients
and measured values. This objective function is minimized if
the coefficients represent the true or near true values of the
system.

III. METAHEURISTIC APPROACHES

Recently, SA, GA and TS have been designated by the Com-
mittee of Next Decade of Operations Research as “extremely
promising” for the future treatment of practical applications.
The most recent papers show this clear trend in using the
metaheuristic approaches for the optimization in chemical
processes.

A. Simulated Annealing

Simulated Annealing (SA) developed by Kirkpatrick et. al.
[16], is a general adaptive heuristic approach which belongs to
the class of nondeterministic iterative algorithms [17]. SA is
also a non-deterministic algorithm that accepts bad moves in
the search space with certain probability. This feature enables
SA to escape from local minima. The probability of accepting
bad moves depends on a parameter named temperature, that
is initialized to a high value, then gradually decreased with
a rate specified by another parameter called cooling rate.
The lower the temperature, the lesser is the probability of
accepting bad moves. The algorithm starts with initial solution.
A neighbor solution is generated in each iteration, if the cost
of neighbor solution is better than the cost of the current
solution then it is accepted, otherwise it is selected with some
probability. This probability depends upon the temperature
(T). Initially probability of selecting bad solution is high, that
gradually decreases with some predetermined strategy. After
considerable number of iterations, probability of selecting bad
solution is very near to zero.

1) Applying SA to Separation Sequence Synthesis: Floquet
et.al. [18] applied SA to problems of separating a mixture of
n components into pure products at minimal annual investment
plus operating costs. The assumptions were:

• Each component of the feed stream exits in ex-
actly one output stream of a separator. This is called
sharpseparation.

• Only one input/two output (simple) or one input/three
output (complex) sharp separators are used.

Under these assumptions, the problem is to select the
separators to be connected and the way they will be connected.
Floquet show how to encode the possible separation sequences
as vectors containing the entries -1, 0, 1, which satisfy
appropriate restrictions, and how to transform such vectors into
neighboring sequences. For example, some transformations
correspond to the insertion or deletion of a complex separator.
Given this definition of a solution x and its neighborhood
N (x), and given fixed and operating costs for each type of
separator that defines the objective function f (x), the author
applied simulated annealing to find the cheapest separation
sequence. In solving problems with 5, 10 and 16 components
with known optimal solutions, their SA algorithm found
optimal solutions for all cases and less than 2% of the feasible
sequences were evaluated when the best solution was found.

2) Simulated annealing for the optimization of batch distil-
lation processes: Batch distillation processes are widely used
in the chemical industry. The interest on the simulation and op-
timization of batch processes is growing since such processes
have a number of advantages over continuous processes: they
are useful for the simultaneous separation of different species
with a single column, they are more flexible, and they are
necessary for the production of very pure chemicals.

In [19], an investigation is done on the applicability and
the limitations of the simulated annealing method for solving
the optimal operation problems of batch distillation processes.
Considering that the algorithm uses only the values of the cost
functional, the simulation package that are now well developed
for these industrial cases, can be used as a black box. In
addition, the method converges towards a global minimum (in
probability), though due to the stochastic nature of the method
the speed of convergence can be very slow.

B. Genetic Algorithm

GA is an elegant search technique that emulates the process
of natural evolution as a means of progressing towards the op-
timal solution. GA uses an encoded representation of solution
in the form of a string made up of symbols called genes. The
string of genes is called chromosome. The algorithm starts
with a set of initial solutions called population that may be
generated randomly or taken from the results of a constructive
algorithm. Then, in each iteration (known as generation in GA
terminology), all the individual chromosomes in the population
are evaluated using a fitness function. Then, in the selection
step, two of these chromosomes at a time are selected from the
population and different operators namely crossover, mutation,
and inversion act on the selected individuals for evolving new
individuals called offsprings. One important genetic operator
is crossover. It is applied on two individuals to generate an
offspring. The generated offspring inherits some characteristics
from both its parents in a way similar to natural evolution.
There are different crossover operators namely simple, order,
partially mapped, and cycle. The simple crossover operation
for instance, works by choosing a random cut point in both
parent chromosomes (the cut point should be the same in both
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parents) and generating the offspring by combining the seg-
ment of one parent to the left of the cut point with the segment
of the other parent to the right of the cut [17]. (For description
of other crossover operators see [17], [20], [21]). The Mutation
operator is used to introduce new random information in the
population. It is usually applied after the crossover operator. It
helps in producing some variations in the solutions so that the
search does not get trapped in local minima. An example of
mutation operation is the swapping of two randomly selected
genes of a chromosome. The importance of this operation is
that it can introduce a desired characteristic in the solution that
could not be introduced by the application of the crossover
operator alone. However, mutation is applied with a low rate.
The quality of the solution obtained from GA is dependent
on the choice of certain parameters such as population size,
crossover and mutation rates and also the type of crossover
used. The selection of values for these parameters is problem
specific and is left to the conception and intuition of the person
applying GA to a specific problem.

1) Optimization of fed-batch bioreactors using genetic al-
gorithm: multiple control variables: The usual objective in
optimal control of a fed-batch bioreactor is to maximize the
biomass and/or the metabolite production. The optimization
has been traditionally sought with respect to substrate feed
rate. Determination of optimal substrate feed rate is a problem
in singular control since the control variable appears linearly
both in the dynamic equations describing the process and/or
in the performance index which is to be optimized. The opti-
mization in this paper [22] is the maximization of the product
quantity. Taking into account all the limits the chromosome
appears to be in three parts. The pattern (feeding sequence), the
coefficients for the correction term, and the switching times.
Each part indicating the maximum feed, the singular feed by
2, and the minimum feed by 3. The constraints are handled
by penalizing them in the objective function.

2) Optimization of shape and process parameters in metal
forging using GAs: In this paper [23], an evolutionary GA is
proposed to calculate the optimal work-piece shape geometry
and work-piece temperature. The authors have optimized two
objectives at a time that are the total energy of the system
and the difference between the current and desired shape.
These functionals are dependent on the parameters subject to
upper and lower bounds alongwith the temperature constraint
limiting current temperature not exceeding the maximum
allowed. The ease of using the GA can be seen in the fact
that all the parameters in this process are not similar quantities
with similar units. The other governing equations are the heat
content equation, and the pressure and velocities.

3) Use of genetic algorithms and gradient based opti-
mization techniques for calcium phosphate precipitation:
Phase equilibirium calculations constitute an important class
of problems in chemical engineering applications. The calcium
phosphate precipitation is dealt in [24]. Calcium phosphate
precipitation involves many parameters: calcium and phos-
phate ion concentrations, supersaturation, ionic strength, tem-
perature, ion types, pH and also time. The process studied in
this paper is based on calcium phosphate solution with calcium
ions and a base. During this precipitation, the aqueous species

considered are different calcium and phosphate ions with
corresponding calcium salts. The concentrations of calcium
and phosphate ions are subject to mass balance constraints for
calcium and phosphates. The function to be optimized is the
minimization of Gibbs free energy of the system expressed
as a linear combination of the chemical potential of each
component. Formulation of GA is based on encoding the
concentrations of calcium and phosphate ions in a binary
string.

4) Environmentally Conscious Chemical Process Design:
This paper presents a systematic and hierarchical approach
for incorporating environmental considerations into all stages
of chemical process design [25]. The complexity of the
environmental and economic assessments increases as the
design proceeds. Changing some continuous variables while
keeping others constant can cause structural changes to the
design. Examples of structural changes would be repositioning
of a heat exchanger network or changing the size of some
pieces of equipment. Structural optimization is performed
manually in this study on those variables having substantial
influences on the structure of the process. The next step is
to set up a multiobjective function including economic and
environmental indicators and perform optimization using the
reduced set of key design variables. These key design variables
are considered manipulated variables prior to the performance
of parametric optimization. The objective function combines
two different types of performance measures, an economic
index, net present value (NPV), and an environmental index,
process composite environmental index.

Genetic algorithm is used in this work to perform the opti-
mization because it provides a flexible, relatively efficient, and
effective method for handling the black-box, discontinuous,
and nondifferentiable objective functions and can often find
the global optimum.

C. Tabu Search

A third metaheuristic method is the Tabu Search (TS),
developed by Glover [26]. Tabu search is an iterative heuristic
that has been applied for solving a range of combinatorial
optimization problems in different fields [17]. Tabu search
starts from an initial feasible solution and carries out its search
by making a sequence of random moves or perturbations. A
Tabu list is maintained that stores the attributes of a number
of previous moves. In each iteration, a subset of neighbor
solutions is generated by making a certain number of moves
and the best move is accepted, provided it is not in the
Tabu list. Otherwise, if the said move is in the Tabu list,
the best solution is checked against an aspiration criterion
and if satisfied, the move is accepted. Thus, the aspiration
criterion can override the Tabu list restrictions. It is desirable
in certain conditions to accept a move even it is in the Tabu
list, because it may take the search into a new region due to
the effect of intermediate moves. The behavior of Tabu search
heavily depends on the size of Tabu list as well as on the
chosen aspiration criterion. The aspiration criterion determines
the extent to which the Tabu list can restrict the possible
moves. The detailed description of Tabu search can be found
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in [17][45]. In contrast with GA, TS uses single solution and
tries to optimize it with iterations. The unique feature of TS is
its memory element, that is used to record some characteristics
of a certain number of previous moves. The number of moves
whose characteristics can be recorded depends on the size of
this list. This feature prevents the search process from cycling
(i.e. revisiting a point) in the search space.

1) Multi-objective process design: To our knowledge TS
has been used only twice in the field of batch process design.
Wang, Quan, and Xu [27] used TS for the problem of the
grassroot design of multiproduct batch processes. Cavin et.al.

[28] used TS with a multi objective process design in multi
purpose batch plants.

For the latter one, the goal was to enable the use of external
batch simulation programs (black-box optimization). Black-
box models are exceedingly difficult to handle in conjunction
with mathematical programming approaches, therefore making
it attractive to employ a metaheuristic algorithm. Gross and
Roosen (1998) have tackled a similar problem (continuous
process design with a black-box external simulation package)
and have chosen a genetic algorithm. However, GA approaches
have encountered significant difficulties when confronted with
problems that contain complex constraints, which are a pre-
dominant feature in the problems faced. The limitation of
GAs in these settings arises from the inability to implement
crossover operations that generate valid designs. Recourse to
penalty approaches and ad hoc repair operators as an attempted
remedy entails a risk of spending most of the computational
effort in handling invalid solutions, making GAs unsuitable
for this application.

D. Other Metaheuristic Approaches

Recently Swarm Intelligence (SI) techniques, Particle
Swarm optimization (PSO) and Ant Colony Optimization
(ACO) techniques are gaining more importance. They are used
to solve the combinatorial optimization problems, due to its
simplicity in coding and consistency in performance. These
techniques use swarm behavior to solve the problem, (i.e.) they
use the concept of group intelligence along with individual
intelligence. PSO technique is used to solve continuous com-
binatorial optimization problems [29], [30]. PSO is developed
through simulation of bird flocking in two-dimensional space.
The position of each agent is represented in XY plane with
position (sx, sy), vx (velocity along X-axis), and vy (velocity
along Y-axis). Modification of the agent position is realized
by the position and velocity information.

Bird flocking optimizes a certain objective function. Each
agent knows its best value so far, called Pbest, which contains
the information on position and velocities. This information is
the analogy of personal experience of each agent. Moreover,
each agent knows the best value so far, in the group Gbest
among Pbests. This information is the analogy of knowledge,
how the other neighboring agents have performed. Each agent
tries to modify its position by considering current positions
(sx, sy), current velocities (vx, vy), the individual intelligence
(Pbest), and the group intelligence (Gbest)[31].

Another evolutionary approach, path relinking, offers a
greater capability for handling constraints. This approach is

often coupled with TS and in fact emerged from the same
origin as TS [28].

IV. MISCELLANEOUS TECHNIQUES

A. Combination of global and local search

A combination of direct global and local search optimization
technique is presented in [32]. The authors have presented this
method as a replacement to other meta-heuristic techniques
like GA and TS for the case of expensive evaluation of the
cost function.

The natural complex and apparently unsolvable problem is
subdivided into smaller problems, which can be solved by
already existing solution methods. This well-known principle
of divide and conquer is also applicable to solve np-hard
problem of global optimization, which can be sub-divided
into two phases: pre- and fine optimization. The task of pre-
optimization is to explore the search space in order to find
regions comprising global optimum points. These regions are
called promising regions. To keep the computational effort
low, this task should be performed as roughly as possible.
Outgoing from the results of the pre-optimization, the task
of fine-optimization is to efficiently nd exactly localize the
optimum point of a promising region.

B. SUPRA

In this paper [33], the authors have proposed a new query
optimization method named SUPRA (sampling unit preser-
vation method) which preserves he sampling unit during
the optimization of the sampling operations. This method
enables preservation of the sampling unit by adopting a
special sampling operation in which all the records specified
as included in the same sampling unit and he randomness
of data extraction through is query optimization. When the
cube-creating sampling queries are issued to the database, the
query optimized module of the database system automatically
identifies the sampling units of the queries and transforms
them into equivalent ones in the application point of the
sampling operations have been moved forward.

C. Optimization of Gas-Sensitive Polymer Arrays

A very simple technique for optimizing an array of con-
ducting polymer gas sensors for sensing one of five analytes
in the presence of up to four interferents is presented [34]. The
optimized array consists of subarrays of homogeneous (like)
sensors contributing to a larger heterogeneous array of up to
ten points (unlike sensors) in multidimensional sensor space.
The optimization techniques presented are linear, since the
polymer sensors in their useful (low concentration) operating
range exhibit linear and additive response characteristics.

Optimization is performed using a metric depending upon
the average multidimensional distance from the cluster mean.
Since the clusters are linearly separable, this technique is
intuitive.
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V. CONCLUSIONS

Optimization in chemical processes is a critical step to
get the best results. The choice of optimization technique is
equally crucial to best match the actual process and objective.
A number of different optimization techniques adapted in
the chemical engineering are discussed mainly focusing the
mathematical and metaheuristic approaches. A strong bias
towards the heuristic approaches is observed in the recent
literature due to the fact that they are simple, unstraining the
mathematical hassle.

REFERENCES

[1] J. M. Douglas, “A hierarchical decision procedure for process sythesis,”
American Industrial and Chemical Engineering Journal, vol. 31-33,
pp. 239–251, 1985.

[2] J. J. Siirola, “Strategic process synthesis: Advances in the hierarchical
approach,” Computers and Chemical Engineering, vol. 20, pp. 1637–
1643, 1996.

[3] R. L. Kirkwood, L. M. H., and J. M. Douglas, “A prototype expert
system for synthesizing chemical process flowsheets,” Computers and
Chemical Engineering, vol. 12-14, pp. 329–343, 1988.

[4] I. E. Grossmann, “Mixed-integer programming approach for the synthe-
sis of integrated process flowsheets,” Computers and Chemical Engi-
neering, vol. 9, p. 463, 1985.

[5] I. E. Grossmann and Z. Kravanja, “Mixed-integer nonlinear program-
ming techniques for process systems-engineering,” Computers and
Chemical Engineering, vol. 19, pp. 189–204, 1995.

[6] I. E. Grossmann and Z. Kravanja, “Mathematical programming ap-
proaches to the synthesis of chemical process systems,” Korean Journal
of Chemical Engineering, vol. 16, pp. 407–426, 1999.

[7] D. Geddes and T. Kubera, “Intergration of planning and real-time
opitmization of olefin products,” Computer and chemical engineering,,
vol. 24, pp. 1645–1649, 2000.

[8] N. Nishikiori, R. A. Render, and D. R. Doty, “An improved method
for gas lift allocation optimization,” J Energy Resource Tech., vol. 219,
pp. 47–52, 1998.

[9] J. M. Srygley and C. D. Holland, “Optimal design of conventional
and complex columns,” American Industrial and Chemical Engineering
Journal, vol. 11, pp. 695–701, 1965.

[10] T. Frey, M. H. Bauer, and J. Stichlmair, “Minlp optimization of complex
columns for azeotropic mixtures,” Computer and Chemical Engineering
Journal, vol. 21(suppl), pp. S217–S222, 1997.

[11] E. S. Fraga and T. R. Matias, “Synthesis and optimization of a non-
ideal distillation systems using parallel genetic algorithm,” Computers
and Chemical Engineering, vol. 20, p. 79, 1996.

[12] C. Schmid and L. T. Biegler, “Reduced hessian successive quadratic
programming for real time optimization,” in Adv Control Chemical
Processes, vol. 1, pp. 177–217, IFAC, March 1994.

[13] X. Lin, S. L. Janak, and A. C. Floudas, “A new robust optimization
approach for scheduling under uncertainty: I. bounded uncertainty,”
Computer and Chemical Engineering Journal, vol. 28, pp. 1069–1085,
2004.

[14] Y. J. Choi, K. W. Cho, B. W. Cho, and Y. Yeo, “Optimization of
sulfolane extraction plant based on modeling and simulation,” Industrial
Engineering and Chemical Research, vol. 41, pp. 5504–5509, 2002.

[15] J. Choi, D. Ha, J. Kim, and R. V. Grandhi, “Inverse design of glass
forming process simulation using an optimization technique and dis-
tributed computing,” Journal of Material processing technology, vol. x,
p. In press, 2004.

[16] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, pp. 671–680, 1983.

[17] S. M. Sait and H. Youssef, Iterrative Computer Algorithms with Appli-
cations in Engineering: Solving Combinatorial Optimization Problems.
IEEE Computer Society Press, 1999.

[18] P. Floquet, L. Pibouleau, and S. Domenech, “Separation sequence
sythesis: How to use simulated annealing procedure?,” Computers and
Chemical Engineering, vol. 18, p. 1141, 1994.

[19] M. Hanke and P. Li, “Simulated annealing for the optimization of batch
distillation processes,” Computers and Chemical Engineering, vol. 24,
pp. 1–8, 2000.

[20] K. Shahookar and P. Mazumder, “Genetic placement,” ACM Computing
Surveys, vol. 23, pp. 143–220, 1991.

[21] J. P. Cohoon and W. D. Paris, “Genetic placement,” IEEE Transactions
on Computer Aided Design, vol. 1, pp. 956–964, 1987.

[22] S. Debasis and M. M. Jayant, “Optimization of fed-batch bioreactors
using genetic algorithm: multiple control variables,” Computers and
Chemical Engineering, vol. 28, pp. 789–798, 2004.

[23] C. F. Castro, C. A. C. António, and L. C. Sousa, “Optimization of
shape and process parameters in metal forging using genetic algorithms,”
Journal of materials processing technology, vol. 146, pp. 356–364, 2004.

[24] C. Wang, H. Quan, and X. Xu, “Use of genetic algorithms and gradient
based optimization techniques for calcium phosphate precipitation,”
Science (article in press), vol. -, pp. –, 2003.

[25] H. Chen and D. R. Shonnard, “Systematic framework for environ-
mentally conscious chemical process design: Early and detailed design
stages,” Industrial Electronics, Control and Instrumentation,, vol. 43,
pp. 535–552, 2004.

[26] F. Glover and M. Laguna, Tabu Search. Kluwer Academic Press, 1977.
[27] C. Wang, H. Quan, and X. Xu, “Optimal design of multiproduct

batch chemical processes using tabu search,” Computers and Chemical
Engineering, vol. 23, p. 427, 1999.

[28] L. Cavin, U. Fischer, F. Glover, and K. Hungerbühler, “Multi-objective
process design in multi-purpose batch plants using a tabu search op-
timization algorithm,” Computers and Chemical Journal Engineering,
vol. 28, pp. 459–478, 2004.

[29] K. E. Parsopoulos and M. Vrahatis, “Recent approaches to global
optimization problems through particle swarm optimization,” Kluwer
Academic Publishers, vol. 1, pp. 235–306, 2002.

[30] H. H. Yoshida, K. Kawata, Y. Y. Fukuyama, S. Takayama, and Y. Nakan-
ishi, “A particle swarm optimization for reactive power and voltage
control considering voltage security assessment,” IEEE Transactions on
Power Systems, vol. 15(4), pp. 1232–1239, 2000.

[31] S. Kannana, S. R. S. Mary, P. Subbaraj, and N. P. Padhy, “Application
of particle swarm optimization technique and its variants to generation
expansion planning problem,” Electric Power Systems Research, vol. 70,
pp. 203–210, 2004.

[32] M. Syrjakow and H. Szczerbicka, “Combination of direct global and
local optimization methods,” IEEE International Conference on Evolu-
tionary Computation, vol. 1, pp. 326–333, 1995.

[33] U. Kazutomo, F. Shinji, N. Itaru, and S. Nobutoshi, “Supra: A sampling-
query optimization method for large-scale olap,” 9th International Work-
shop on Database and Expert Systems Applications, vol. 1, pp. 232–237,
1998.

[34] D. M. Wilson and G. S. D., “Optimization of gas-sensitive polymer ar-
rays using combinations of heterogeneous and homogeneous subarrays,”
IEEE Sensors Journal, vol. 2, pp. 169–178, 2002.

[35] P. Chaudhuri and M. Diwekar, “Process synthesis under uncertainty: A
penalty function approach,” American Industrial and chemical engineer-
ing, vol. 42-43, pp. 742–752, 1994.

[36] S. Isotani, A. R. P. L. de Albuquerque, C. R. Brito, and A. M. A.
Massola, “A robust grid adaptive based optimization method applied to
dynamical systems,” Industrial Electronics, Control and Instrumenta-
tion,, vol. 3, pp. 1733–1735, 1994.

[37] R. Fourer, D. Gay, and B. Kernighan, AMPL: A Mathematical Program-
ming Language. Scienti
c Press, San Francisco, CA, 1990.

ASIAN JOURNAL OF ENGINEERING, SCIENCES & TECHNOLOGY VOL. 1, ISSUE 2. SEPTEMBER 2011

78




