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PREFACE

This book is result of many conversations with peptide scientists at a variety of
meetings, including American Peptide Society Symposia, meetings of the European
Peptide Society, the Japanese Peptide Society, and the Australian Peptide Society.
Some of these conversations were with the authors of the chapters in this book.
One additional influence was a meeting in Dubai, where I had an excellent dinner
with Waleed Danho, then with Roche Nutley. Waleed had given an excellent talk
about the value of peptide chemistry and peptides as elements in the drug-discovery
process. Over a delicious dinner of baked fish and many other courses, we discussed
the history of drug discovery and the role that peptides have played in the past.
Waleed made the strong point that peptides still have great value in the discovery
process and, with appropriate methods to deal with delivery and metabolism issues,
can provide excellent drugs for the future.

At around this time, I was contacted by Jonathan Rose of John Wiley & Sons
who asked if I would be interested in editing a book on peptides and drug discovery.
Sometimes life provides a nice juxtaposition of ideas and I immediately accepted
the invitation. Over the following years, I spoke with many scientists, emailed some
more, and worked on putting together the chapters for this book. I want to thank
Jonathan as well as Kari Capone of John Wiley for their patience and advice over the
years it took to bring this together.

The book starts with a chapter provided by Nader Fatouhi, discussing the current
state of peptides in drug discovery. I heard Nader speak at the 23rd American Peptide
Symposium in the Kona region of the Big Island of Hawaii. As I felt that his pre-
sentation provided an update on the thoughts first revealed to me by Waleed Danho,
I asked Nader to contribute the opening chapter of the book, as this sets the stage
for what follows. In his chapter, Nader discusses the rising importance of peptides as
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xii PREFACE

molecules for drug development as well as the issues facing scientists in this field,
including cell penetration, stability, and targeting. Tools and techniques are available
to address each of these limitations at this time.

Chapter 2 was contributed by Fernando Albericio and colleagues. This presents
modern methods of peptide synthesis in a very readable format. Included are sections
on solid supports for solid-phase peptide synthesis, which dominates most research
level approaches, linkers, protecting groups, methods for peptide-bond formation,
and a variety of methods to modify peptides to limit metabolism. In all cases the latest
reagents and techniques are featured, thus making this chapter a great starting point
for scientists starting out in the peptide field. The authors go on to discuss synthesis
of peptides in solution, which still has great value in certain applications, includ-
ing production of peptides in bulk. In addition, the combination of both solution-
and solid-phase methods is discussed for cases where fragment condensation is used
to prepare ever larger peptides. This discussion includes native chemical ligation,
which permits selectively linking N-termini and C-termini of fragments, and which
has several variations with more coming each year. The chapter concludes with a
very valuable discussion of separation methods and methods for the analysis of the
products of peptide synthesis. Again, this chapter is recommended as a great starting
place for new scientists.

Anamika Singh and Carrie Haskell-Luevano have provided Chapter 3 that dis-
cusses the important topic of membrane receptors as targets for drug discovery. Due
to the vital role of membrane receptors in cell signaling and control of metabolic
events, a significant percentage of drugs in current use exert their function by inter-
fering or stimulating binding and signaling events at membrane receptors, also known
as G-protein coupled receptors (GPRCs). This chapter provides a catalog of systems
where peptides are known to be involved and where it has been shown that synthetic
peptides can modulate function. The Haskell-Luevano lab has provided outstanding
research on the melanocortin receptors, but this chapter takes a broader approach and
discusses a wide variety of these systems, including structural information as known
and as modeled by other labs. Anyone involved in aspects of membrane signaling will
find this chapter a highly valuable resource for methods, approaches, and strategies
for attacking this important area of biology.

Gregg Fields and colleagues present Chapter 4 to introduce the use of peptides
as inhibitors of enzymes. In the first part, the authors introduce enzymes and their
classification and present several classical examples of the use of peptides to come
up with compounds that provide the desired change in enzyme function to overcome
a metabolic defect. In a second section, the area of HIV-1 infection and progression
to AIDS is described, with emphasis on the value of peptides as modulators of growth
and infection. As the human immunodeficiency virus goes through a complicated life
cycle, the authors point out that there are multiple targets for approaching therapy and
a combination strategy, known as HAART (highly active antiretroviral therapy) has
provided the optimal approach to treatment of affected individuals. The Fields lab
has made major contributions to discoveries in the area of matrix metalloproteinases
and this chapter presents a thorough discussion of this system. The enzymes in this
family provide a great example of the development of inhibitors through a process of
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discovery of aspects of structure and function that can guide the process. The chapter
continues with nice discussions of several other systems where peptide chemistry has
been key in new discoveries that have driven the drug-development process.

Jeffrey-Tri Nguyen and Yoshiaki Kiso have provided Chapter 5, which continues
the discussion of enzyme inhibitors from the aspect of peptides. The highly productive
Kiso lab has led the way in creating a very large catalog of peptide derivatives for
use in drug discovery in several systems. They begin this chapter by discussing the
advantages and disadvantages of peptides as potential drugs and come down on the
side of the beneficial role that peptides play. In particular, they make the important
point that the use of peptides can frequently define the pharmacophore, or structural
model, which can then be transformed into a small molecule of non-peptide nature for
further development as a potential drug. This chapter further focuses on the process
of the design of potential inhibitors and reviews the history of discovery from natural
sources as well as through ab initio design. They discuss the advantages of learning
from the natural substrates of an enzyme and introduce the important concept of the
transition state analog; the critical role that structural information on the target protein
can provide. This chapter provides an excellent discussion of systems where targeting
with peptide molecules may provide opportunities for further drug discovery.

Sónia T. Henriques and David J. Craik describe many peptide inhibitors from nat-
ural sources in Chapter 6. The introduction to their chapter discusses the value of
finding compounds from nature and describes a number of sources, including the
antimicrobial peptides from many bacteria. In both bacterial and plant worlds, there
is a continual war between competing systems, and this has led to the development
through evolution of many natural peptides that serve as defensive molecules. The
authors discuss the cyclotides, peptides that are connected end to end and that have
multiple disulfide bonds. This arrangement is very stable and the molecules are found
in venoms of several species as well as in plants. After this introduction, the authors
turn to a discussion of the drug discovery process from their perspective. The chapter
continues with an in depth discussion of a variety of systems where many methods
are used to modify molecules isolated from nature and where the activity against
many targets is tested. The wide diversity of structures and targets is featured in this
chapter and the many discoveries have pushed research and drug discovery forward
significantly.

Isuru R. Kumarasinghe and Victor J. Hruby have taken on the task of describing
methods to limit the metabolism of peptide molecules in humans. This leads to a
very detailed discussion of the chemistry of peptide modification. As Victor Hruby
is the world leader in this aspect of peptides, the chapter is thoroughly exciting and
interesting. A main concern is the digestion of peptides by proteolytic enzymes
present in both the digestive tract and the circulation. The first step is to define the
pharmacophore residues of a naturally occurring and effective peptide. This will
show the absolutely critical functional groups and their stereochemical relationships
that must be maintained. Then replacement of some nonessential amino acids
by non-natural amino acids, with the d-amino acid isomer, or with peptide-bond
isosteres may be sufficient to block degradation by proteases. In addition, cyclization
can sometimes provide more stability and also enhance passage of peptides through
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xiv PREFACE

the blood–brain-barrier. Other strategies include replacement of specific the amino
acids with the N-methyl derivatives, with topographically constrained derivatives,
or with the halogenated derivatives of aromatic amino acids. Finally, the use of
the “multiple-antigenic-peptide” approach where many molecules are attached
to a carrier with multiple attachment points can produce molecules that, due to
their size, are not recognized by proteases. This chapter emphasizes the role of
creative synthetic chemistry is the modification of peptides to achieve stability and
bioavailability.

The book concludes with Chapter 8, provided by Jeffrey-Tri Nguyen Yoshiaki
Kiso, that discusses the important area of peptide delivery. While progress in the past
50 years has permitted peptide chemists to make almost any sequence of amino acids
that is desired in high yield and purity, getting those molecules into humans and into
the specific area in the body where they can exert a therapeutic effect is a problem
that has not progressed as rapidly. Thus, this chapter is very important for future
advances in drug discovery based on peptides. Many of the readers may already be
familiar with the Lipinski’s Rule of Five that includes recommendations for the size
of a molecule, the number of hydrogen bonding atoms, and the lipophilicity. These
rules are discussed in this chapter, but much more information is provided regarding
solubility, membrane transport, and metabolic stability.

In conclusion, this book provides a primer for anyone in the field of drug discovery
and specifically in the area of the use of peptides as molecules for both the discovery
phase and, in favorable cases, the final phase of the creation of new molecular entities
that can be moved into further studies to evaluate their potential as therapeutic drugs.
I want to thank the authors of the chapters for their friendship, for many discussions,
and for their excellent writing for this book.

Ben M. Dunn, Ph.D.
September 3, 2014
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1
PEPTIDE THERAPEUTICS

Nader Fotouhi
Global Alliance for TB Drug Development, Research and Development, New York, NY, USA

1.1 HISTORY OF PEPTIDES AS DRUGS

The advent of molecular biology and our understanding of the physiological and
pathological functions of peptides, coupled with advances in synthetic methodolo-
gies and peptidomimetics, marked the beginning of a new era in peptide and protein
therapeutics, with the vision that there should be no limit to what can be produced as
therapeutics. During that period a number of great peptide drugs such as Sandostatin,
Lupron, Copaxone, and Zoladex were developed with great therapeutic benefit. The
number of approved peptide drugs, however, remains low.

It was not until the last decade that we have seen a significant surge in the number
of peptide therapeutics on the market (Figure 1.1). While 10 peptides were approved
between 2001 and 2010, the current decade has thus far witnessed the approval of
six new peptide therapeutics – a remarkable yearly increase [1, 2]. The number
of peptides in development is also steadily growing roughly doubling every decade
(Figures 1.2 and 1.3), and there are 400–600 peptides in preclinical studies. This
is due to the advances made in our understanding of peptide stability, peptide syn-
thesis, and formulation over the last three decades. Although the market share of
peptide drugs is still relatively small (about 2% of the global market for all drugs),
the approval rate for peptide drugs is twice as fast as the rate for small molecules, and
the market is growing similarly at a rate that is twice the global drug market [3, 4].

Peptide Chemistry and Drug Design, First Edition. Edited by Ben M. Dunn.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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2 PEPTIDE THERAPEUTICS

Forteo

Fuzeon

Prialt

Byetta

Symlin

Somatuline

Nplate

Egrifta

Victoza

Bydureon

Surfaxin

Omontys

Kyprolis

Linzess

Gattex

Slgnifor

Trade name Generic name

Enfuvirtide

Aiconotide

Exenatide

Pramlintide

Lanreotide

Romiplostim

Tesamorelin

Liraglutide

Exenatide LAR

Lucinactant

Peginesatide

Pasireotide

Carfilzomib

Linaclotide

Teduglutide

PTH1R agonist

Protein–protein inh.

Ca2+ channel inh.

GLP-1 R agonist

Calcitonin agonist

SST agonist

Thrombopoietin agonist

GHRF agonist

GLP-1 R agonist

GLP-1 R agonist

Erithropoeitin analog.

Somatostatin analog

Proteasome inhibitor

Guanidyl cyclase 2C agonist

Gluc-like peptide analog

Osteoarthritis

HIV

Pain

T2 diabetes

T2 diabetes

T1/T2 diabetes

Acromegaly

Haematology

Lipodystrophy

T2D

IRDS

Anemia

Cushing’s disease

Multiple myeloma

IBS-C and CIC

SBS

2002

2003

2004

2005

2005

2007

2008

2010

2010

2011

2012

2012

2012

2012

2012

2012

Target Indication Year

Teriparatide

Figure 1.1 Peptide therapeutics marketed since 2002. (See insert for color representation of
this figure.)
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Figure 1.2 Peptides in development over the last three decades. (See insert for color repre-
sentation of this figure.)

While encouraging, the potential for peptide therapeutics is far greater than what it is
today.

1.2 FACTORS LIMITING THE USE OF PEPTIDES IN THE CLINIC

A number of factors have thus far limited the explosion that needs to happen in the
peptide field. With the exception of a few peptides, the approved drugs so far tar-
get the extracellular compartment, and thus have to compete with biologics. Of the
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extracellular targets, GPCRs represent the major class, and in most cases, the pep-
tides are agonist. GLP-1 represents one-third of these GPCR targets. We have seen
a great advance in extending the circulating half-life of the peptides through the use
of unnatural amino acids and formulation technologies, but have not yet reached the
half-life achieved by antibodies. The delivery of peptides is still in the great majority
of cases limited to i.v. (intravenous), s.c. (subcutaneous), or intranasal. Finally, safety
is still a concern as better tissue selectivity is required.

To dramatically heighten their impact, peptides need to access the intracellular
space to target protein–protein interactions. These interactions represent a vast source
of potential targets with significant biological impact (there are estimated 300,000
such interactions in the cell), and will not in the majority of cases be modulated by
small molecules. Peptides and biologics, given their relative size and ability to bind to
extended surface areas, are the perfect candidates to inhibit protein–protein interac-
tions. The duration of action of peptides needs to be extended, and while peptides are
inherently selective against their targets, they need to more selectively distribute to
the desired tissue. Finally, the route of administration needs to be expanded to include
oral delivery.

1.3 ADVANCES THAT HAVE STIMULATED THE USE OF
PEPTIDES AS DRUGS

The many great technological advances that started over a decade ago in drug delivery,
peptide design, and synthesis are now maturing, and will undoubtedly address these
key challenges and revolutionize the field over the next decades. Many of the techno-
logical advances are already proving that it is possible to make peptides permeable
to cells, target tissues, have longer half-lives, and be orally bioavailable.

The discovery that certain peptides can penetrate cells and can, therefore, be an
effective therapeutic on their own or alternatively bring other drugs into cells allowed
for the first time to imagine targeting the intracellular compartment (Figures 1.4
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Figure 1.4 HIV Tat.

and 1.5) [5]. HIV-enveloped protein tat was one of the first to be recognized for its
cell-penetrating ability and, therefore, its potential use to carry bioactive cargo into
the cell [6]. Since 2004, more than 200 peptides carried into cells by tat or other
naturally occurring cell-penetrating peptides (CPPs) have been in various phases of
development [7]. However, the more recent advances in the understanding of how
these peptides cross the cell membrane through endocytosis and/or macropinocyto-
sis [8] has allowed the generation of CPPs with intrinsic biological activity [9–12].
It is now possible to take a CPP sequence and synthetically modify it to introduce
the key amino acids of an effector peptide into its sequence and create potent peptide
antagonists of an intracellular protein–protein interaction with good pharmacokinetic
properties [13].

1.4 DEVELOPMENT OF PEPTIDE LIBRARIES

By looking at the list of CPPs in development, one realizes that they are single cases
and have to be synthetically prepared and modified to impart some of the desired
stability to be a useful therapeutic. It is hard to compete with the screening of the mil-
lions of small molecule compounds in various pharmaceutical companies and more
recently in many academic centers.

Until now, the available technologies to screen large libraries of peptides of signif-
icant length (possessing secondary structure) would only allow us to generate large
libraries of natural amino acid sequences through phage display, and if unnatural
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Kalata B.

amino acids were to be introduced, it had to be done with conventional synthetic
methodology, and thus be limited to very low numbers of peptides that can be pre-
pared and screened.

Indeed, over the last decade, there has been an explosion of very elegant tech-
nologies that now allow the generation of large to extremely large libraries of linear
and macrocyclic peptides with unnatural amino acids and unnatural linkers. For the
first time, it is possible to engineer stability, cell permeability, and possibly oral
bioavailability at once and screen for the desired properties very rapidly. These major
advancements have resulted in the generation of a number of companies that are
pushing the limits of these technologies to rapidly screen and identify novel peptide
therapeutics against protein–protein interaction targets (Figure 1.5).

Ensemble therapeutics utilizing their DNA-programmed chemistry can generate
million-member libraries of small macrocycles with MW of 500–1500. On screen-
ing these libraries, they have identified potent and orally bioavailable small molecule
inhibitors of IL17 [14]. Through medicinal chemistry optimization, they have now
identified picomolar inhibitors with good properties [15]. PeptiDream utilizing Pro-
fessor Suga’s mRNA display technology [16] are generating up to trillion-member
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libraries of larger macrocycles mimicking cyclosporin. These peptides contain a com-
bination of natural, unnatural, and N-methyl amino acids and exhibit good physico-
chemical properties and membrane permeability [17]. Ra Pharmaceuticals also uses a
mRNA display technology developed by Jack Shoztac to generate very large libraries
of macrocycles containing unnatural amino acids. They recently presented on their
discovery of potent antagonists of mcl-1 and Ras with good cell permeability [18].

1.5 MODIFICATION OF PEPTIDES TO PROMOTE STABILITY
AND CELL ENTRY

The recent focus on another class of macrocycles, containing multiple disulfides, has
generated a lot of excitement in maintaining the stability and membrane permeability
of the cyclotide kalata B1, or the knottins (the uncyclized version of cyclotides), in
order to create potent peptide drugs. David Craik and colleagues at Cyclotide are
systematically exchanging the various loops present on cyclotides with sequences
that have important biological function [19]. Recently, the introduction of a myelin
oligodendrocyte glycoprotein sequence into a cyclotide resulted in a potent peptide
in preventing disease progression in a mouse model of MS [20]. Protagonist is taking
advantage of the oral stability of the disulfide-rich peptides for local gut delivery
of IL6R antagonists for the treatment of irritable bowel disease (IBD). Moreover,
novel technologies developed for the rapid generation and screening of extremely
large libraries of knottins and cyclotides will undoubtedly have a major impact on
this class of peptide therapeutics. Of note is the Intein-based technology from Julio
Camarero capable of introducing unnatural amino acids to facilitate screening [21].
Sutro and MitiBio also have very sophisticated and efficient biosynthetic methods to
generate very large libraries.

Finally, Verdine and Wollensky and colleagues [22, 23] as well as the investiga-
tors at Aileron Therapeutics have developed a novel stapling technology that imparts
stability and membrane permeability to alpha helical structure. Using this technol-
ogy, Aileron Therapeutics were able to discover very potent dual MDM2/MDMx
antagonists with low nanomolar activity in cells and excellent pharmacokinetic prop-
erties, resulting in excellent antitumor activity in a mouse xenograft model [24].
Even more interesting is the extended efficacy ATSP-7041 exhibits in cells. While
the small molecule MDM2 antagonist showed activity over 24 h, ATSP-7041 was
still active beyond 48 hours in the same experiment. This is due to the fact that
once the peptide enters the cell, the major elimination pathway is through enzymatic
catabolism. Not only can stability be tuned for circulating half-life, it can also be
tuned to withstand cellular catabolism to lengthen the desired efficacy. This could
offer a significant advantage over (small) molecules that passively diffuse through
the cell membrane. Additionally, using the same technology, a GHRH antagonist
with much extended half-life was discovered and is currently in Phase I clinical
trial [25].
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1.6 TARGETING PEPTIDES TO SPECIFIC CELLS

One of the greatest challenges in drug discovery is the safety of therapeutics.
Main reasons for diminished safety are selectivity against the target and tissue/cell
specificity. If one could direct a therapeutic to only the site of pathology, then the
therapeutic window of the agent increases and correspondingly decreases the side
effects. Peptides, due to their specificity against receptors, are perfect candidates to
be able to home into one type of cell/tissue versus another. There has been a tremen-
dous amount of progress in identifying homing peptides (cell-penetrating as well
as nonpenetrating) that can then be conjugated to a cargo to deliver it to a specific
organ [26].

In vivo phage display by Pasqualini and colleagues marked the discovery of the
first homing peptide that was able to selectively target the blood vessel of brain
and kidney [27]. Since then a number of peptides have been identified that target
many other tissues [28]. Arap and colleagues were then the first to perform phage
display in humans and discovered a homing peptide to IL11Ra that expresses over
100-fold more on prostate cancer cells versus normal cells [29, 30]. Arrowhead
Research is currently in Phase I proof of targeting with a peptide drug conjugate
utilizing this homing peptide. Recently, Wen et al., at the Dana Farber, published
their first Phase I study result on GRN1005, a peptide drug conjugate that targets
the low-density lipoprotein-related protein-1, which mediates blood brain barrier
transcytosis. GRN1005 successfully crosses the BBB and delivers its cargo [31].

1.7 FORMULATIONS TO IMPROVE PROPERTIES

While the above advances have and will have significant impact, the ability to
administer peptides by the oral route will truly allow them to compete with small
molecules and biologics as first line therapies. The majority of advances in this
area have been the result of very interesting formulation strategies. A number of
companies, including ArisGen, Axcess, Chiasma, Emisphere Tech., Enteris Pharma-
ceuticals, Lipocine, and Merlion Pharmaceuticals, have had successes in enhancing
the oral bioavailability of some peptide therapeutics. They employ a combination
of stabilizers, absorption enhancers, and carriers to achieve this. The main mode
of absorption is through the paracellular space. However, the bioavailability of the
peptides formulated remains relatively low.

While significant, cyclosporin remains the only marketed peptide drug that is
administered orally and absorbed into the systemic environment. Learning from
nature and systematic studies on macrocyclic peptides will have a tremendous
impact in discovering peptide drugs with inherent oral bioavailability that could then
be enhanced through formulation to achieve bioavailabilities, which would compete
with small molecules. As mentioned earlier, PeptiDream and Ra Pharmaceuticals
are generating large libraries of macrocyclic peptides mimicking the core structure
of cyclosporin. Ensemble therapeutics are generating small macrocylic structures
with molecular weights between 500 and 1500 and have already identified an orally
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bioavailable IL17 R antagonist. Professors Horst Kessler and Locky are doing the
first systematic studies on small cyclic peptides to understand the effect of hydrogen
bonding and structure on bioavailability [32, 33]. Their work will undoubtedly form
the basis of rational designs of orally active peptide drugs.

In conclusion, the great technological advances over the last two decades are well
poised to have a major impact on revolutionizing the field of peptide therapeutics.
For the first time, tools are available to create stable, cell permeable, long lasting, and
orally bioavailable peptides, allowing them to compete with small molecule drugs and
biologics, and thus become first line therapies for many diseases with unmet medical
needs.
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2.1 INTRODUCTION

Peptides as drugs show unique characteristics (high biological activity, high speci-
ficity, and low toxicity) thereby making them particularly attractive therapeutic
agents [1]. However, the role of peptides in drug discovery has suffered ups and
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Figure 2.1 Distribution by chemical structure of the new drugs approved by the FDA in 2008.
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downs during the last four decades. A first analysis of the new chemical entities
(NCEs) accepted by the Food and Drug Administration (FDA) indicated that while
53 NCEs were introduced as drugs in 1996, only 17 were introduced in 2002. This
number increased to 31 in 2004, but decreased again in 2005 with just 18 new drugs,
17 in 2007, and a slight increase to 21 in 2008 (Figure 2.1) [2, 3]. An analysis of
these 21 drugs approved in 2008 indicated that almost 50% of the new drugs can be
considered nonclassical, in the sense that they are nonclassical small molecules.

Interestingly, peptides represent approximately 20% of the total number of drugs
approved by the FDA in 2008 [3]. Thus, Romiplostim from Amgen, which is a
thrombopoietin receptor agonist, is a fusion protein conjugated with a 41 amino
acid peptide, containing two disulfide bridges. Degarelix from Ferring, which is a
gonadotropin-releasing hormone receptor antagonist, is a 10 amino acid peptide.
Alvimopan from Adolor, which is a peripherally acting μ-opioid receptor antagonist,
is an N-terminal blocked dipeptide. Lacosamide from Schwarz, which selectively
enhances slow inactivation of voltage-gated sodium channels and binds to collapsin
response mediator protein 2, is a protected O-methylserine [3].

Even more important than the number of peptides accepted by the FDA is the
number of peptides that are in clinical phases. In 2008, 39 were in clinical phase I,
77 in phase II, 39 in phase III, and 4 in preregistration [4].

There are several reasons for this renaissance of peptides. The first one is the fact
that the number of classical small molecules is not increasing enormously. Further-
more, several comparisons with small molecules are favorable to peptides. Thus, the
well-defined peptide chemistry allows an easier way to prepare analogs. Pharmaceu-
tical companies have also detected a better manpower/milestone ratio. Peptides reach
clinical phases more easily. In parallel, advances in the fields of formulation and drug
delivery technology, and the fact that these technologies are accepted for the introduc-
tion of a peptide into the market for the first time, have fueled this field into the drug
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market. And last but not least, the great developments in peptide synthetic methods
over the past few years have improved accessibility of a wider variety of peptides.
This translates into the fact that in 2008 more than 90% of peptide production was by
chemical synthesis. Another important supporting fact is that while in the 1980s most
pharmaceutical peptides contained less than 10 amino acids, nowadays over 50% of
peptides in clinical phase have more than 10 amino acids [4].

The purpose of this chapter is to review the latest advances in peptide chemistry
that have boosted the peptide field. Even though, and from a synthetic viewpoint,
peptides can be prepared in solid phase or in solution; nowadays, it is possible to say
that in almost all peptide syntheses a solid-phase step is involved. Thus, the synthesis
of small-to-medium-sized peptides is carried out in the solid phase, and the synthesis
of large peptides and/or proteins is performed using a convergent approach. In this
case, one of the last steps is carried out in solution, but the fragments either protected
for a classical strategy or unprotected for a chemical ligation one are prepared in solid
phase. Therefore, the solid-phase approach will be covered in detail.

2.2 SOLID SUPPORTS

In solid-phase peptide synthesis (SPPS), the most important choice becomes the solid
support, which needs to accomplish certain features: (i) stability to mechanic stir-
ring, to a range of temperatures, and to different solvents and reagent conditions;
(ii) high swelling, so that reagents can access the active sites; (iii) homogeneity: a
narrow range of bead sizes, and (iv) biocompatibility: swelling in aqueous buffers if
used in biochemical assays. Solid supports for SPPS can be classified into three types
[5]: polystyrene (PS), polyethylene glycol–polystyrene (PEG–PS®), and hydrophilic
PEG-based resins (Figure 2.2).∗

1. PS resins. PS is the most widely used solid support for the synthesis of
peptides in solid phase because of its good swelling properties and good
level of substitution [6, 7]. PS used nowadays contains 1% cross-linked
hydrophobic resins obtained by suspension polymerization from styrene
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Figure 2.2 (a) PS supports; (b) PEG-PS supports; and (c) totally PEG based supports.

∗Peptide libraries can be prepared on paper membranes as in the SPOT technology [300].
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and divinylbenzene. PS swells well in nonpolar solvents such as toluene or
CH2Cl2, but can be used in combination with other more polar solvents such
as N,N-dimethylformamide (DMF), dioxane, and tetrahydrofuran. Although it
is the polymer of choice for the synthesis of small-to-medium-sized peptides,
also from an economic viewpoint, it does present certain limitations in some
cases, such as in the synthesis of highly hydrophobic or in the aggregation of
peptides. In case of difficult sequences, more hydrophilic supports and resins
show better performance.

2. PEG-PS resins. Due to its amphiphilic properties, which allow solvation in
both polar and nonpolar solvents, the addition of PEG was investigated. Thus,
based on the early work of Mutter [8], PEG-PS supports, which bear both a
hydrophobic PS core and hydrophilic PEG chains, were developed indepen-
dently by Zalipsky, Albericio, and Barany [9] (PEG-PS) and Bayer and Rapp
[10] (Tentagel®). The benefits of these resins for the assembly of long pep-
tides prompted the appearance of other supports, such as Champion® I and II
(NovaGel®) [11] and ArgoGel® [12]. PEG-PS resins are compatible with both
nonpolar and polar solvents.

3. Hydrophilic PEG-based resins. Searching to enhance the beneficial swelling
properties of PEG’s, more hydrophilic PEG resins with a small amount
of PS or polyamide (poly(ethylene glycol)-poly(acrylamide) copolymer,
PEGA) [13] or acrylate with polymerizable vinyl groups (cross-linked
ethoxylate acrylate resin, CLEAR) [14], were developed. While PEGA
resin was obtained by inverse suspension radical polymerization of various
sizes of linear bis- and branched-tris-2-aminopropyl-PEG samples with
acryloyl chloride, CLEAR supports were obtained by copolymerization of
branched PEG-containing cross-linkers such as trimethylolpropane ethoxy-
late triacrylate with amino-functionalized monomers such as allylamine or
2-aminoethylmethacrylate. In the search for more stable and hydrophilic
resins, a step forward came with the PEG-based resins developed by Meldal
[15], which focused on resins containing only ether bonds, such as poly-
oxyethylene cross-linked polyoxypropylene (POEPOP), developed from a
polymerization of PEG that was partially derivatized with chloromethyloxirane
[16]. Although the POEPOP resin is mechanically robust, shows relatively
high loading (primary and secondary alcohols), and good performance for
organic transformations, the presence of secondary ether bonds implies that
this solid support is not totally stable to strong Lewis acids [17]. To overcome
this problem, the poly-oxyethylene-poly(3-methylene-3-methyloxethane)
copolymer (SPOCC) resin, in which all ether bonds and functional alcohol
groups are primary, was developed [18, 19].

At the same time, Côté developed the ChemMatrix (CM) resin [20], a total
PEG-based resin comprised of primary ether bonds. Because of its highly
cross-linked matrix, CM has surpassed the mechanical stability of other PEG resins.
This resin swells well in all of the most common solvents and is, therefore, useful for
a broad range of organic chemistries. CM resin performs extremely well compared
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to PS resins in the solid-phase synthesis of hydrophobic, highly structured peptides
such as poly-Arg peptide and β-amyloid (1-42) [21, 22], showing that the presence
of PEG chains impairs the aggregation of the growing peptide chain, facilitating the
solid-phase synthesis of complex peptides. Furthermore, CM is convenient for the
synthesis of oligonucleotides and oligonucleotide peptide conjugates [23].

Compared to earlier PEG-containing resins, these supports are 100% formed by
primary ether bonds and thus show improved chemical stability and can reach higher
loadings, comparable to those of PS resins. In comparative studies among several
resins on the synthesis of human stromal cell-derived factor (SDF)-1α [24] and the
acyl carrier protein (ACP 65-74) [25], higher purities were obtained with CM than
with PS supports when using similar loadings. Compatibility of all these PEG-based
resins with aqueous buffers allows their use for biochemical applications such as
on-resin screening of chemical libraries and the development of affinity chromatog-
raphy [26–29].

2.3 LINKERS

A linker is a bifunctional molecule that facilitates the attachment of the growing
peptide as well as the final cleavage step. Linkers or handles can be classified
into two types: integral and nonintegral [30]. In the first type, the solid support
forms part of, or constitutes, the entire linker/handle, as is the case of, for example,
2-chlorotritylchloride resin (6). On the contrary, nonintegral linkers/handles are
independent and bifunctional molecules that are attached to the solid support
through an ether (e.g., Wang resin, 8) or more commonly, through an amide bond,
and they are more recommended because they provide control and flexibility for
the synthetic process [31]. Linkage to the solid support should be totally stable
to all synthetic processes, including the final treatment that will detach the target
compound from the solid support. Sometimes this bond is not totally stable and
the carbocation-containing linker is detached from the solid support, causing
further heterogeneity of the crude peptide or causing back-alkylation of the target
compound [32, 33]. This is the case of linkers attached to p-methylbenzhydrylamine
(MBHA) resin when using a tert-butyloxycarbonyl (Boc) (13)/benzyl (Bzl) (20)
strategy for preparing peptide amides. To overcome this side reaction, the use of
aminobenzyl PS or aminoalkyl resins, which form a more acid-stable bond, is
recommended [33]. Similar problems arise with (poly)alkoxybenzyl [34] (Wang
(8), backbone amide linker (BAL), Rink (11))-type resins. Incorporation of the
p-hydroxybenzyl moiety cleaved from the Wang resin (8) into the N of the
C-terminal amide of a peptide during trifluoroacetic acid (TFA) cleavage [35],
alkylation of the indol ring of Trp-containing peptides by the p-hydroxybenzyl
moiety [36], and formation of O-(4-hydroxy)benzyl derivatives [37], are some
of the side reactions encountered. Use of the Wang resin (8) for the solid-phase
preparation of small molecules has also led to the introduction of impurities due
to the undesired cleavage from the resin (no cleavage at the Bzl position) or from
a back-alkylation of the p-hydroxybenzyl cation in the case of furopyridine and
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16 METHODS FOR THE PEPTIDE SYNTHESIS AND ANALYSIS

furoquinoline target derivatives [38]. To overcome these problems, two resins have
been developed based on the activation of the Bzl position by a MeO group, a
noncleavable electron-donating group, in either ortho or para position. Thus, Gu
and Silverman [39] incorporated the precursor of their backbone linker to the resin
through a metal-catalyzed coupling reaction and Colombo et al. [34] the precursor
of their Wang-type resin through an amide bond. Linkers generally used in SPPS
are those labile to acid, (Figure 2.3) although base and photolabile handles are also
used in certain applications. High acid-sensitive linkers (Figure 2.3a) can be used to
release side-chain protected fragments that are later used to access cyclic peptides
or larger peptides by convergent approaches. On the contrary, C-terminal amide
peptides can be constructed using Sieber, which is cleavable with low concentration
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Figure 2.3 (a) Low and (b) high acid-labile linkers and resins.
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of TFA (3–5%), 5-(4-aminomethyl-3,4-dimethoxyphenoxy)valeric acid (PAL) (10),
and rink linkers (11),† which release the amide function on TFA treatment.

2.4 PROTECTING GROUPS

Temporary N𝛼 protection. Since in SPPS the peptides are built on the C to N direction,
the temporary α-amino protecting group plays a very important role in the over-
all strategy. The N𝛼-protected amino acid should be a solid that is easy to handle,
soluble in the solvents used in SPPS, to prevent or minimize epimerization during
coupling, and the protecting group should allow a fast and clean removal [40]. Two
main strategies dominate the synthesis of peptides in solid-phase. The first one relies
on using Boc (13) [41–43] as a temporary protecting group for the N𝛼-amino func-
tion and Bzl-type protecting groups as permanent protecting groups for side chains.
The main drawback of the Boc (13)/Bzl (20) strategy is the use of HF (hydrogen flu-
oride) for the final cleavage step, which hampers the application of this methodology
to large-scale synthesis. The second strategy and the most employed nowadays uses
the 9-fluorenylmethyloxcarbonyl (Fmoc) (14) [44] group as a temporary protecting
group and t-butyl (tBu) (19)-type groups for side-chain protection. Fmoc (14)/tBu
(19) strategy allows the use of the milder TFA for the final detachment of the peptide
from the resin. Several other N𝛼-amino protecting groups have since appeared, such
as the trityl group (Trt) (15), which is removed by very mild acidic treatment (1%
TFA), p-nitrobenzyloxycarbonyl (pNZ) (16) [45], also removed by acid (6 M SnCl2,
1 mM HCl), the allyloxycarbonyl (Alloc) (17) group [46, 47], which can be removed
under neutral conditions (PhSiH3 (10 equiv), Pd(PPh3)4 (0.1 equiv)), and the photo-
labile 6-nitroveratryloxycarbonyl (Nvoc) (18) [48], all of which are orthogonal to the
Boc (13) and Fmoc (14) groups, and allow for the synthesis of cyclic and branched
peptides (Figure 2.4). Trt (15), pNZ (16), and Alloc (17) groups have also found an
important application in minimizing diketopiperazine (DKP) in sequences prone to
the formation of this side product [49, 45, 50].

Permanent side-chain protection. These protecting groups need to be stable
during the entire elongation of the peptide and are usually removed concomitantly
with the cleavage of the peptide from the resin (Figure 2.5). As mentioned earlier,
the Fmoc strategy uses mainly tBu (19) and Boc-type protecting groups. For
Asp/Glu/Ser/Thr/Tyr, tBu (19) is usually used, whereas the Boc (13) group is
applied to Lys. For His/Asn/Gln the Trt (15) group is employed, and for Arg, the
bulky pentamethyl-2,3-dihydrobenzofuran-5-sulfonyl (Pbf) (24) group is used. In
the Boc (13) strategy, the Bzl (20) group is usually used for Asp/Glu/Ser/Thr/Tyr,
although lately the cyclohexyl (cHx) (21) group is replacing the Bzl (20) group
in Asp/Glu, as it better prevents aspartimide formation. Asn and Gln are usually
being used without protection. The Lys side-chain is usually protected with the
benzyloxycarbonyl (Cbz, Z) (23) or the 2-chlorobenzyloxycarbonyl (2-Cl-Z)
group and for His/Arg, the p-toluenesulfonyl (Tos) (22) group is used. As for

†Rink resin is also found in the market.
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Figure 2.4 N𝛼-amino protecting groups in peptide synthesis.

Bzl, 20

S

O

O

cHx, 21 Tos, 22

O

O

O2N

NO2

Dde, 26Dnp, 25

O

S
O

O

Pbf, 24

tBu, 19

O

O

Z, 23

Figure 2.5 Side-chain protecting groups.

His, another option is to employ the 2,4-dinitrophenyl group (Dnp) (25), which
is removed by thiolysis prior to the HF cleavage step. The Alloc (17) and
(1-(4,4-dimethyl-2,6-dioxocylohex-1-ylidene)-3-ethyl) (Dde) (26) group, which is
removed by hydrazine, introduce an extra degree of orthogonality, and are used as
side-chain protecting groups for Lys to access cyclic and branched peptides.

2.4.1 The Special Case of Cysteine

An important number of peptides and proteins possess disulfide bridges, which main-
tain the structure and biological activity of the molecule [51, 52]. Thus, cysteine
residues need special side-chain protecting groups that will allow a postelongation
transformation to the corresponding disulfide bridges either in solid phase or in solu-
tion. Developing groups for the side-chain of Cys and studying the optimal cou-
pling conditions for these derivatives (Cys residues are very prone to racemization)
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Figure 2.6 Protecting groups for the thiol function of cysteine.

[53], and deprotection (to prevent back alkylation of the carbocation) has been an
active field of research (Figure 2.6) [54, 55]. The most versatile group is maybe
S-Trt (27a), which allows both a mild acidic cleavage (∼10% TFA is needed) to
later oxidize the thiol moieties, and also the direct formation of disulfide bridges by
iodine treatment from the protected Cys. An even milder acid protecting group is the
S-methyltrityl (S-Mmt) (27b), which can be removed with less than 1% of a TFA solu-
tion. Other groups that form disulfide bridges through iodine-mediated oxidation are
S-4-methoxybenzyl (S-Mob) (28), S-2,4,6-trimethoxybenzyl (S-Tmob) (29) [56], and
S-acetamidomethyl (S-Acm) (30) [57], for example, the latter having the advantage of
being totally stable to strong acidic conditions. This protecting group has been widely
used in the formation of disulfide bridges in solid-phase [58]. S-tert-butyl (StBu) (31)
[59] and S-3-nitro-2-pyridine-sulfenyl (S-Npys) (32) [60] groups can be removed by
thiolysis. S-Npys group is not stable toward piperidine treatment and thus needs to be
used in Boc chemistry strategies or introduced as Boc-Cys(Npys)-OH residue at the
N-terminal position when using Fmoc approaches. Combination of an acidic-labile
S-protecting group (e.g., S-Trt (27a), S-Mmt (27b)), which is removed upon cleavage,
and S-Npys allows the construction of totally regioselective disulfide bridges and has
been applied to the cyclization of peptide in solid phase using microwave-assisted
heating synthesis [61] and to the synthesis of peptide-protein conjugates [62].

When acidic-labile protecting groups are used, the final cleavage renders the
thiol-free peptide, which is usually oxidized in solution using dimethyl sulfox-
ide (DMSO) conditions [63] or other mild oxidizing conditions such as air or
oxidized/reduced glutathione mixtures (Figure 2.6) [55].

In small peptides bearing more than one disulfide bridge, regioselective strategies
are usually sought [64, 65], although usually various strategies needs to be tested to
know the most favorable arrangement of Cys protecting groups. In bigger peptides
and proteins, the kinetics of folding dominate the process and usually the concomitant
oxidation of all Cys gives the correct folded molecule [66].
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2.5 METHODS FOR PEPTIDE BOND FORMATION

Procedures used to combine two amino acid residues to form a peptide are referred
as coupling methods. This reaction requires a previous activation of the carboxyl
component to allow the efficient attack of the amino component (Scheme 2.1).

Even though a large letter soup corresponding to the different reagents and
additives used for constructing the peptide bond is described in the literature, this
chapter covers the most commonly used ones to perform the coupling between
N-alkoxycarbonylamino acid (Fmoc, Boc, Alloc) and a peptide-resin in a stepwise
synthesis mode.

2.5.1 Peptide-Bond Formation from Carbodiimide-Mediated Reactions

The most popular method of forming peptide bonds is the carbodiimide method, using
dicyclohexylcarbodiimide (DCC, 33). Carbodiimides contain two nitrogen atoms that
are slightly basic; this is sufficient to trigger a reaction between the carbodiimide and
an acid generating the O-acylisourea (34) (Scheme 2.2) [67–74].

The O-acylisourea from an N-alkoxycarbonylamino acid or peptide undergoes
aminolysis to give the peptide (path A, Scheme 2.2). However, under certain con-
ditions, some of the O-acylisourea undergoes an attack by a second molecule of the
acid to give the symmetrical anhydride (35) (path B, Scheme 2.2). The latter is then
aminolyzed to give the peptide. A third option is that some O-acylisourea cyclizes
to the oxazolone (36) [75, 76] (path C, Scheme 2.2) which, although less reactive,
also gives peptide by aminolysis, but can lead to a loss of chirality. However, a fourth
and undesirable course of action is possible due to the nature of the O-acylisourea,
which rearranges to produce the N-acylurea (37) that is a stable inert form of the acid
(path D, Scheme 2.2). This reaction is irreversible and consumes the starting acid
without generating peptide. A copious precipitate of N,N′-dicyclohexylurea sepa-
rates within a few minutes in any reaction using N,N′-dicyclohexylcarbodiimide (33),
which poses a problem in solid-phase synthesis because it cannot be removed by fil-
tration. This has led to its replacement by N,N′-diisopropylcarbodiimide (DIC, 39),
or N-ethyl-N′-(3-dimethylaminopropyl)carbodimide (EDC, 40), which gives an urea
that is soluble in organic solvents. EDC, which is also referred to under the general
term of water soluble carbodiimide, is most commonly used in solution chemistry,
due its actual name and the fact that the urea formed is soluble in aqueous solvents.

Additives such as HOXt (41–44) increase the efficiency of carbodiimide-mediated
reactions. Even though they render an active ester that is less reactive than the
O-acylisourea, its formation prevents N-acylurea formation. This beneficial effect

R
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R

O

Y

NH2R1

R

O

NHR1

Scheme 2.1 Peptide-bond formation process.
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Scheme 2.2 Mechanism of peptide-bond formation from carbodiimide-mediated reaction.
Most commonly used carbodiimides and additives.

is attributed to its role as an acid that protonates the O-acylisourea, thus prevent-
ing the intramolecular reaction from occurring and shifting the reaction to form
the corresponding active esters (38) (path F, Scheme 2.2), and decreasing the
degree of racemization in numerous cases [76, 77]. Compared to other additives,
1-hydroxy-7-azabenzotriazole (HOAt) (42) forms superior active esters in terms of
yield and degree (less) of racemization in both solution and solid-phase synthesis
[78]. The key behind the outstanding behavior of HOAt is the nitrogen atom
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Figure 2.7 Neighboring group effect for HOAt.

located at position 7 of the benzotriazole, which provides a double effect. First,
the electron-withdrawing influence of a nitrogen atom (regardless of its position)
improves the quality of the leaving group, thereby leading to greater reactivity.
Second, the placement of this nitrogen atom specifically at position 7 makes it
feasible to achieve a classic neighboring group effect (Figure 2.7), which can both
increase reactivity and reduce the loss of configurational integrity [77].

A decade ago, 6-chloro-1-hydroxybenzotriazole (6-Cl-HOBt) (43) had been intro-
duced into solid-phase synthesis. This additive is a good compromise between HOAt
(42) and HOBt (1-hydroxybenzotriazole) (41) in terms of reactivity and price [79].

Very recently, El-Faham and Albericio [80] reported a safe and highly efficient
additive, ethyl 2-cyano-2-(hydroxyimino)acetate (Oxyma, 44) that is used mainly
in the carbodiimide approach for forming the peptide bond. Oxyma 44 displays a
remarkable capacity to suppress racemization and impressive coupling efficiency in
both automated and manual synthesis. These effects are superior to those shown by
HOBt (41) and comparable to HOAt (42). Stability assays show that there is no
risk of capping the resin in standard coupling conditions. Finally, calorimetry assays
Differential scanning calorimetry and Accelerated rate calorimetry (DSC and ARC)
confirm the explosive potential of the benzotriazole-based additives and demonstrate
the lower risk of explosion induced by Oxyma [80]. This point is highly relevant
because all benzotriazole derivatives, such as HOBt (41) and HOAt (42), exhibit
explosive properties [81].

2.5.2 Peptide-Bond Formation from Preformed Symmetric Anhydrides

An alternative to the classical method of synthesis using carbodiimides is symmetric
anhydride mediated reaction, in which the carbodiimide and acid are first allowed to
react together in the absence of N-nucleophile. One-half of an equivalent of carbodi-
imide is employed. This generates half an equivalent of symmetrical anhydride (35)
(Scheme 2.2, path B), the formation of which can be rationalized in the same way
that the reaction of acid with carbodiimide is rationalized, namely, protonation at the
basic nitrogen of the O-acylisourea by the acid, followed by attack at the activated
carbonyl of the acyl group by the carboxylate anion. Aminolysis at either carbonyl
of the anhydride gives the peptide bond. The symmetrical anhydride is less reactive
and consequently more selective in its reactions than the O-acylisourea, but more
reactive that the OBt ester. When the reagent is DCC (33), the reaction is carried out
in CH2Cl2, the N,N′-dicyclohexylurea is removed by filtration after 15–30 min, the
solvent is sometimes replaced by DMF, and the solution is then added to the second
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amino acid. The anhydrides are particularly effective for acylating secondary amines
[82–84].

2.5.3 Peptide-Bond Formation from Acid Halides

The most obvious method for activating the carboxyl group of an amino acid for
peptide bond formation at room temperature or below would appear to be through
a simple acid chloride [85]. Acid chloride method was first introduced to peptide
chemistry by Fisher [86] in 1903. Fmoc-amino-acid chlorides are generated by reac-
tion of the parent acid with thionyl chloride in hot CH2Cl2. Fmoc-amino-acid chloride
acylates the amino group in the presence of a base that is required to neutralize the
hydrogen chloride that is liberated. The base is necessary, but its presence compli-
cates the issue, converting the acid chloride to the 2-alkoxy-5(4H)-oxazolone (36),
which is aminolyzed at a slower rate and can lead to a loss of chirality. One deficiency
of these systems is that acid-sensitive side chains, such as those derived from t-butyl
residues, cannot be accommodated.

Gilon has reported the use of BTC (bis(trichloromethyl)carbonate, triphosgene)
as a chlorinating reagent in SPPS for the acylation of N-alkylresidues [87]. Cou-
pling reactions mediated by BTC gave good results for Fmoc-amino acids containing
acid-labile side-chains.

Acid fluorides, on the contrary, are known to be more stable to hydrolysis than
acid chlorides and in addition are not subject to the limitation mentioned with regard
to t-butyl-based side-chain protection. Thus, Fmoc-based SPPS can be easily carried
out through Fmoc amino acid fluorides [88–94].

2.5.4 Peptide-Bond Formation from Phosphonium Salt-Mediated Reactions

Kenner and coworkers [95] were the first to describe the use of acylphosphonium salts
as coupling reagents. After HOBt (41) was discovered as a racemization suppressant,
a new coupling reagent, known as BOP (benzotriazol-1-yloxytris(dimethylamino)-
phosphonium hexafluorophosphate) (47), was introduced in 1975 [95, 96]. Later,
chlorotri(pyrrolidino)phosphonium hexafluorophosphate (PyCloP) (48), bromotri
(pyrrolidino)phosphonium hexafluorophosphate (PyBroP) (49), and benzotriazol-1-
yloxytri(pyrrolidino)-phosphonium hexafluorophosphate (PyBOP) (50) (Figure 2.8)
were introduced. In these compounds, the dimethylamine moiety is replaced by
pyrrolidine (Figure 2.8) [95, 97, 98]. Pyrrolidine reagents prevent the generation
of poisonous hexamethylphosphoramide (HMPA, 51) by-product [99]. In a further
study, Coste [100, 101] reported that halogenophosphonium reagents often give bet-
ter results than other phosphonium-HOBt reagents for the coupling of N-methylated
amino acids.

Practically speaking, the active species is the OBt ester, whose formation is
achieved in the presence of 1 equiv of a tertiary base such as diisopropylethylamine
(DIEA), N-methylmorpholine (NMM) [102–104], or collidine (TMP) [105].
Presence of an extra equivalent of HOBt accelerates the coupling and also reduces
the loss of configuration [99].
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Figure 2.8 Structure of phosphonium salts.

Phosphonium salts derived from HOAt (42), (7-azabenzotriazol-1-yl)oxytris-
(dimethylamino) phosphonium hexafluorophosphate (AOP, 52) and (7-azabenzotria
zol-1-yloxy)tris-(pyrrolidino)phosphonium hexafluorophosphate (PyAOP, 53), have
also been prepared and are generally more efficient than BOP (47) and PyBOP (50)
as coupling reagents [78, 106–110].

Recently, El-Faham et al. [111] introduced a new family of phosphonium salt of
Oxyma (44), O-[(cyano-(ethoxycarbonyl)methyliden)-amino]yloxytripyrrolidinopho
sphonium hexafluorophosphate (PyOxm; 54), which has been demonstrated to be
an efficient racemization suppressing coupling reagent for the assembly of hindered
peptides, performing better than classical benzotriazole derivatives BOP (47) and
PyBOP (50). Cyclization models revealed the advantages on the use of PyOxm (54),
which rendered a higher percentage of cyclic peptide than other known phosphonium
salts [111].

2.5.5 Peptide-Bond Formation from Aminium/Uronium Salt-Mediated
Reactions

Initially, the product obtained by reaction of HOBt (41) with tetramethylchlorouro-
nium salt (TMUCl) was assigned to a uronium-type structure, presumably by analogy
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with the corresponding phosphonium salts, which bear a positive carbon instead of
the phosphonium residue [112].

Several years ago [113–115], an X-ray analysis showed that salts crystallize as
aminium salts (guanidinium N-oxides), rather than the corresponding uronium salts.
This occurs for N-[(1H-benzotriazol-1-yl)(dimethylamino)methylene]-N-methyl
methanaminium hexafluorophosphate N-oxide (N-HBTU, 55), N-[(dimethylamino)-1
H-1,2,3-triazolo[4,5-b]pyridin-1-ylmethylene]-N-methylmethanaminium hexafluo-
rophosphate N-oxide (N-HATU, 56), and 1-(1-pyrrolidinyl-1H-1,2,3-triazolo[4,5-b]
pyridin-1-ylmethylene) pyrrolidinium hexafluorophosphate N-oxide (HAPyU, 57)
[116–122]. NMR studies in the case of HAPyU show that the same structure is
found in solution [113, 116] (Figure 2.9).

El-Faham and Albericio described a new family of immonium-type cou-
pling reagents based on the differences in the carbocation skeletons of coupling
reagents (Figure 2.10), which correlated with differences in stability and reac-
tivity [123–126]. Dihydroimidazole derivatives are highly unstable to air,
whereas the salts derived from dimethyl morpholino are the most stable, and
the pyrrolidino derivatives are of intermediate stability. Regarding both, cou-
pling yield and retention of configuration, derivatives of Oxyma (1-[(1-(cyano-
2-ethoxy-2-oxoethylideneaminooxy)-dimethylamino-morpholinomethylene)] metha
naminium hexafluorophosphate, COMU, 61) have been confirmed to show superior
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Figure 2.10 Structure of aminium/uronium salts derived from morpholinium skeleton.
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performance to those of HOBt in all cases and the same or sometimes better
performance as HOAt [125].

Mechanistically, aminium/uronium salts are thought to function in a manner sim-
ilar to phosphonium analogs. Formation of carboxyl uronium salts that generate an
active ester is achieved in the presence of one equivalent of a tertiary base such as
DIEA, NMM [102–104], or TMP [105]. The presence of an extra equivalent of HOXt
could accelerate coupling and reduces the loss of configuration [105].

2.6 SOLID-PHASE STEPWISE SYNTHESIS

Regardless of the chemistry used (Boc (13) or Fmoc (14)), the synthetic scheme for
the synthesis in solid-phase is identical (Scheme 2.3). If a nonintegral linker is used,
the first step will be its attachment to the resin, usually through the formation of an
amide bond. Next will follow the coupling of the first amino acid through an ether
or an amide bond. Removal of the protecting group is carried out with 25–50% TFA
in CH2Cl2 in Boc chemistry, whereas piperidine–DMF (1:4) is used for cleaving the
Fmoc (14) group. Collection of the filtrate enables the quantification of the loading of
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1. Coupling of linker to the resin

2. Coupling of first amino acid

3. Deprotection step
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X = functional group

PG = protecting group
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Scheme 2.3 Schematic representation of solid-phase peptide synthesis.
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the resin by ultraviolet (UV) measurement of the Fmoc (14) decomposition product
dibenzofulvene. Successive coupling and deprotection cycles are carried out until the
desired length is reached, and the final release from the resin is performed by HF (Boc
(13) chemistry) or by a TFA cocktail (Fmoc (14) chemistry). If a low acid-containing
cocktail is used for the detachment from the resin, then a second TFA treatment is
needed to free the protected side-chains. In either case, the crude peptide is treated
by cold ether, precipitated, centrifuged, and finally lyophilized.

2.6.1 Long Peptides

Synthesis of long peptides faces additional challenges, the most important being the
aggregation of the growing chain. Therefore, the use of potent coupling reagents,
even if recouplings are performed, becomes insufficient to obtain a crude peptide
of good quality when hydrophobic interactions are present, and additional tools are
required. To maximize coupling and deprotection yields, the use of DMSO [127],
magic mixtures [128], the addition of chaotropic salts [129], or the introduction of Pro
residues [130], have been applied. However, a more general approach has been the
application of PEG (3) resins, backbone amide protection, pseudoprolines (ψPros),
and the O-acyl isopeptide or depsipeptide methodology, all of which are discussed
below.

2.6.1.1 PEG (3) Resins As previously explained, hydrophobic resins such as
2-chlorotrityl chloride resin (2-CTC) are not well suited for the synthesis of long
peptides. In contrast, the amphiphilic nature of PEG allows the aggregation of the
growing chain to be minimized. Thus, totally PEG-based (3) resins such as SPOCC
[18] and CM [20] have been successfully applied to the synthesis of complex
peptides. Striking examples are the synthesis of the highly aggregating β-amyloid
(1-42) peptide, where a crude of 91% purity was achieved [21], the synthesis of
regulated on activation, normal T cell expressed and secreted (RANTES) [131], a
complex aggregated chemokine, where a combination of CM resin and ψPros at key
positions rendered the final crude peptide, otherwise unfeasible to assemble, and the
99-residue HIV-protease [132].

2.6.1.2 Backbone Amide Protection Sheppard and coworkers [133] introduced
the N-(-2-hydroxy-4-methoxybenzyl) (Hmb) group as reversible backbone protection
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O

O
Peptide

O

O

R

Peptide
O

O
O

R

N
OH

O

O
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(a) (b)
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Figure 2.11 Incorporation of (a) Hmb auxiliary and (b) pseudoproline, into a growing pep-
tide.
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(Figure 2.11a). The idea was to break the amide pattern, which promotes hydrogen
bonding and ultimately leads to β-sheet structures and aggregation of the growing
peptide chain. Final global deprotection also cleaves the Hmb auxiliary. The Hmb
auxiliary has a long-range effect and only needs to be introduced at about every sixth
residue to inhibit aggregation. This strategy has been successfully applied to the syn-
thesis of the influenza peptide [134] and the human 𝛼1E-3 calcium channel subunit
fragment 985–1004 [135], among others. The main problem of this approach is the
difficulty in the coupling of the residue following the Hmb auxiliary. In this sense,
efforts have been directed to synthesizing less sterically hindered auxiliaries, such
as the 2,4-dimethoybenzyl (Dmb)Gly [136] and the dicyclopropylmethyl (Dmcp)
groups [137].

2.6.1.3 Pseudoprolines Pseudoprolines are also structure-disrupting sec-
ondary amino acids that in this case are introduced as ψPro dipeptides
(Figure 2.11b) [138–140]. In ψPro dipeptides, the C-terminal amino acid is
an oxazolidine-protected Ser, Thr, or Cys. In elongating a peptide, ψPros prevent
the aggregation of the growing chain in a similar way as Pro. ψPros are introduced
as Fmoc-protected dipeptides to prevent incomplete couplings over the oxazolidine
moiety. Once the peptide elongation is completed, TFA treatment results in cleavage
of the oxazolidine moiety, thereby recovering the natural amino acids. As with
Hmb protection, they also have a long-range effect, the proline motif provides
a deliberate change of native structure usually in the region of 6–10 residues
after its incorporation. When comparing this strategy with Hmb protection, the
introduction of ψPros has been proven to be superior [141]. In our laboratory, the
synthesis of the highly complex chemokine RANTES was accomplished using a
combination of ψPros and a PEG resin [131]. The RANTES sequence contains nine
replaceable residues: Ser68, Ser64, Thr43, Ser35, Thr30, Thr8, Thr7, Ser5, and Ser4.
After careful examination of the secondary structure of the peptide, four of these
residues were replaced by ψPros: Ser64 (to initially alter chain conformation into the
C-terminal part); Thr30 and Thr43 (which are crucial during folding due to hydrogen
bonding formation, and located in distinct β-sheets); and Thr7 (positioned in the
N-terminal region). Using ψPros, other otherwise inaccessible peptides have also
been assembled [140, 142–144]. The main limitation of this approach is that a Ser,
Thr, or Cys residue needs to be present in the sequence.

2.6.1.4 O-acyl Isopeptide This method, also named the depsipeptide method, has
been successfully applied in the synthesis of difficult sequences [145–148]. Based on
previous work on the synthesis of the more soluble o-acyl prodrug analogs [149, 150],
this technique involves the assembly of the O-acyl isopeptide and its later conversion
to its peptide counterpart under physiological conditions (Scheme 2.4). Due to the
better solubility of the O-acyl isoform, this is obtained in better yields and purities.
Presence of the ester is believed to change the secondary structure of the peptide.
In fact, in circular dichroism (CD) studies of O-acyl isopeptides or switch peptides,
transitions to their peptide counterparts, controlled induction or reversal of secondary
structure, and self-assembly of small peptides have been observed [148, 151, 152].
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Scheme 2.4 Conversion of the O-acyl isopeptide to the N-peptide at pH 7.4 on a Ser residue.
Source: Adapted from Reference 145.

These studies have provided a tool to disrupt amyloid-derived peptide assemblies
[153] and to identify antiamyloid agents [154].

To prove the concept, Sohma et al. synthesized the highly hydrophobic peptide
Ac-Val-Val-Pns-Val-Val-NH2 (Pns, phenylnorstatine) on a Rink resin (11), obtaining
only a 6.9% yield after purification. Analysis of side-products indicated incomplete
Fmoc deprotection and incomplete acetylation arising from aggregation. In contrast,
when O-acyl isopeptide was constructed on the same resin and then converted to the
parent peptide in phosphate buffered saline (PBS) at pH 7.4, the yield increased to
54% although a small amount of racemized product (3.2%) was observed.

To further the scope of this methodology, the application to the synthesis of longer
peptides, such as Aβ(1-42), on a 2-CTC resin (6) was undertaken [155, 156].

To prevent racemization, which was one of the limitations of the method (in
some cases levels around 20% were reached), preformed isodipeptide units, such as
Boc-Thr(Fmoc-Val)-OH, were introduced [157]. Based on these previous results,
a completely convergent approach to suppress racemization was also developed
[158]. Thus, for a given peptide, an N-terminal fragment, bearing a C-terminal
O-acyl isopeptide, was coupled to a C-terminal fragment. Owing to the presence
of the urethane-protected Ser/Thr residue, oxazolone formation, and, therefore,
racemization, is avoided.

Coin et al. [159] have also used this methodology to assemble the highly
β-structured sequence Valine-Threonine (VT)10-NH2 by constructing a depsi bond
at each Thr, and to synthesize an analog of the rsp5-domain (WW) domain FBP28,
[Asn15]FBP28-NH2. In this case, extensive DKP formation was found depending
on the nature of the two amino acids following the depsi bond. To overcome this
side reaction, the Bsmoc group, which can only be removed using 2% piperidine,
was used [160, 161]. This methodology has been recently used to synthesize a
peptide–polymer conjugate [162], which self-assembles with the formation of
microstructures on the recovery of the native peptide backbone by O–N acyl
migration.

2.7 SYNTHESIS IN SOLUTION

As mentioned in the introduction, and although peptide synthesis nowadays is com-
monly performed in solid phase, classical peptide synthesis in solution remains one

Universal Free E-Book Store



30 METHODS FOR THE PEPTIDE SYNTHESIS AND ANALYSIS

of the major chemical approaches especially used by pharmaceutical companies to
prepare peptides introduced into the market in the 1970s and 1980s. For these small
peptides, the market price of which is moderate, the solution method dramatically
reduces production costs, thanks to the starting materials needed and reagents-related
expenses, and most importantly due to the low cost of the isolation and purification
techniques this method requires.

The main advantage of this approach compared to the SPPS is the isolation and
characterization of each intermediate of the synthesis in solution. This is of great
importance due to the fact that during the process every step can be relatively easily
controlled and due to the less laborious final purification process. Particularly, purifi-
cation at each step is usually performed by simple crystallization and/or simple chro-
matography in a silica gel column that provides the intermediates in reasonable purity,
avoiding the laborious and expensive isolation methods, such as high performance liq-
uid chromatography (HPLC). Thus, the purification and isolation of the final product
is the major benefit of solution peptide synthesis. As a potential drawback, the purifi-
cation of the intermediates requires extended time compared to SPPS for every cycle
of the process. This disadvantage is somehow reduced if several segments of the pep-
tide are synthesized in parallel and a convergent strategy is applied, instead of linear
step-by-step synthesis in solution. Another important advantage of solution peptide
synthesis is the reduced cost compared to SPPS. In solution peptide synthesis, amino
acids derivatives reactants and coupling reagents are commonly used in a 1:1 ratio
but not in excess as in SPPS. Furthermore, the use of the relatively expensive solid
supports and linkers is avoided. Finally, in solution it is possible and always desirable
to keep the use of side protecting groups to a minimum. Unprotected amino acids can
be successfully used in solution without side-reactions during the process [163].

In solution synthesis (step-by-step or convergent), except for the reversible
masking of the N-amino group of the first amino acid or fragment, orthogonal pro-
tection of the carboxyl group of the second amino acid or fragment that participates
in the reaction is required (Scheme 2.5). The carboxy terminal protecting group is
essentially a replacement for the solid support of SPPS.

2.7.1 N𝜶 Protection of the N-Terminal Amino Acid Derivative or Fragment

The preferred groups for N𝛼-amino protection are the Boc (13) [41–43] and the
Cbz (Z, 23) [164, 165] because of the volatile by-products formed during the
deprotection step. Alternative Fmoc group (14) [44] is commonly avoided due to
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N-terminal derivative C-terminal derivative Protected dipeptide

Scheme 2.5 Basic principles of dipeptide synthesis. The N𝛼-amino function of the N-terminal
residue should be protected (X-group) and the carboxyl group activated (OY-group represents
an active ester). Instead, the C-terminal derivative has to be protected to the carboxy terminal
(Z-group).
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Figure 2.12 N𝛼-protecting groups for peptide synthesis in solution.

the formation of nonvolatile by-products (dibenzofulvene) [166]. Boc group can
be commonly removed at each step using TFA acid or HCl in acetic acid (HOAc)
[42, 43], whereas the Z (23) group is removed under mild conditions by catalytic
hydrogenolysis [167]. The Z (23) group can also be removed by acidolysis, but
strong acids, such as HBr in HOAc, are required, [168]. Substituted derivatives of
the Z (23) group are also used in solution synthesis as N𝛼-protecting groups that
are more acid labile such as the 2-(4-biphenylyl)isopropoxycarbonyl (Bpoc, 62)
[169]; the 4-methoxy-benzyloxycarbonyl (Moz, 63) [170], which can be removed
by TFA; and the α,α-dimethyl-3,5-dimethoxybenzyloxy (Ddz, 64) group [171],
which can be removed by photolysis [172]. A less common N𝛼-protecting group in
solution peptide synthesis is the 2,2,2-trichloroethoxycarbonyl (Troc, 65)-groups
[173], which is removed under treatment with Zn in HOAc [174]. The most
known nonurethane type N𝛼-protecting group is the o-nitrophenylsulfenyl (Nps, 66)
group [175]. The advantage of the Nps-group, except for the cleavage with acids
[176], is that it can be selectively removed by nucleophilic reagents [177, 178].
These reagents avoid the problems encountered with protecting groups requiring
acids for their cleavage. Thiolytic cleavage of the Nps group with a number of
reagents has been described, and has been shown to enable rapid deprotection
(Figure 2.12) [179].

2.7.2 Carboxy-Group Protection of the C-terminal Amino-acid Derivative or
Fragment

The carboxylic group of the C-terminal amino acid or fragment is commonly
masked as an alkyl or aryl ester. Alternatively, the C-terminal protecting group can
be hydrazides or protected hydrazides. Regarding peptides with amide function
at the C-terminal, protection is commonly not essential. Choice of the C-terminal
protecting group always depends on the selection of the temporary N-terminal
N𝛼-protecting group, as it should be stable to the removal conditions of the tempo-
rary protection of N𝛼-amine, such as with the linker in SPPS (Figure 2.13). The most
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Figure 2.13 Carboxy C-terminal protecting groups.

frequently used C-terminal protecting groups in solution synthesis are tBu (19) and
Bzl (20) esters. Other alternative esters of the C-terminal are methyl, phenacyl (Pac,
67), phenyl and their substituted derivatives.

Orthogonal protection of the carboxylic acid with the Bzl (20) group is preferred,
whereas the N𝛼-fragment or amino-acid group is masked with the Boc (13) group.
Bzl ester is stable to the acidic conditions required for the removal of the Boc (13)
group. In SPPS, the Bzl (20) group is removed by acidolysis with strong acids, while
in solution synthesis, the most frequently used milder method is catalytic hydrogenol-
ysis [166] after elongation of the peptide chain. Bzl (20) group can also be removed
by saponification [180].

Use of the tBu (19) ester as a protecting group is particularly effective when the Z
(23) group is used as N𝛼-protecting group. Alternatively, the tBu (19) ester provides
orthogonal protection with the use of the Bpoc group as N𝛼-protecting group. OtBu
ester is probably the most useful C-terminal protecting group and can be removed by
acidic hydrolysis using moderately strong acids, such as TFA or HCl solution [181].
However, it is a sufficiently stable group to weak acids, allowing the washing steps
in standard workup procedures in solution peptide synthesis.

Among other protecting groups used, the Me (methyl ester) group is a reasonable
choice when the target compound is a C-terminal amide peptide, since the treatment
of the ester with ammonia provides the elongated peptide in good yields. Me ester
can also be used for the protection of the C-terminal carboxylic group, but unmasking
is problematic, since its removal by saponification can lead to unacceptable amounts
of epimerization [182]. However, Me esters, as many alkyl or aryl esters, are quite
useful, as they can be easily converted into acyl azides through the formation of
hydrazides by hydrazynolysis (Scheme 2.6) [183]. Formation of acyl azides was
frequently used in classical convergent strategy solution synthesis. Thus, the Me
group is commonly preferred for protection of the C-terminal of a peptide in two
cases: (i) when the targeted peptide should be permanently protected at the C-terminal
and (ii) when, after peptide chain elongation, the modification of the C-terminal is
required using the azide method. Alternatively, the use of Et (ethyl ester) ester instead
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Scheme 2.6 Coupling of an amino acid to the C-terminal of a peptide by the azide method
starting from a hydrazide protected (Y= hydrazide protecting group, e.g., Bzl, tBu, Boc etc.)
peptide or from an aryl /alkyl ester (X=H, Me, Et, Bzl, etc.).

of Me is used, but the side-products of saponification are more difficult to manage.
Several substituted Me and Et esters have also been used in solution peptide syn-
thesis such as the trichloroethyl (Tce, 68) ester that is removed by hydrolysis under
mild conditions or by elimination reaction induced by Zn in HOAc [184], and is
compatible with Boc N𝛼-protecting group. Carboxyamidomethyl (Cam, 69) [185],
N-benzydrylglycolamide (Bg, 70) [186] and 2-trimethylsilylethyl (Tmse, 71) [187]
esters have also been used, with the later presenting a labile to fluoride ion proper-
ties [188]. Phenyl ester has also been used as C-terminal carboxy terminal protecting
group [189], as it is stable to acidolysis and catalytic hydrogenolysis and can be used
while the N-terminal is protected with Boc (13) and Z (23) group. Ph ester can be
removed either by saponification or, under mild conditions, by peroxide ion and alkali
in the presence of dimethyl sulfide in order to avoid the oxidation of sensitive residues
(Met, Cys, etc.) [190].

And last but not least, hydrazide and substituted hydrazide derivatives can be used
as carboxy C-terminal protecting groups [191]. Although hydrazide (72) is reactive
to acylation by the activated amino-acid derivatives, and cannot provide sufficient
protection to carboxy C-terminal, it is quite useful for segment coupling into a conver-
gent strategy because it can be easily converted into acyl azide. Thus, only protected
hydrazides can be used as protecting groups of C-carboxy terminal for peptide chain
elongation at the N-terminal (Figure 2.14). Protecting groups of hydrazide derivatives
are then removed, releasing the hydrazine that can be converted into the azide for fur-
ther coupling of an amino acid derivative or a peptide segment at the C-terminal by
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Figure 2.14 Hydrazide and protected hydrazides that provide protection to the C-terminal
carboxy group.
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nucleophilic attack (Scheme 2.6) [192, 193]. This method has found extensive use in
the synthesis of long peptides using the fragment conversation strategy.

2.7.3 Peptide Bond Formation

Basic methods and a few examples of the coupling reagents that are used in pep-
tide synthesis are discussed in depth in Chapter 4. Reagents that are used in SPPS are
also frequently used in solution peptide synthesis. Thus, all the coupling methods out-
lined earlier can be used in solution synthesis, such as symmetric or mixed anhydrides
(using carbodiimides) or the formation of active esters by the use of either carbodi-
imides (DCC (33), DIC (39), and EDC (40)) in the presence of additive reagents
(HOBt (41), HOAt (42), 6-Cl-HOBt (43), Oxyma (44)), acid halides (acid chlorides or
acid fluorides), or phosphonium (BOP (47), PyCloP (48), PyBroP (49), PyBOP (50))
or aminium/uronium (HBTU (55), HATU (56), COMU (61)) salts in the presence of
a base. The most preferred coupling mixtures among them are the EDC (40)/HOBt
(41), or HOAt (42) and the use of phosphonium or uronium salts in the presence of
additives (HOBt (41), HOAt (42), or Oxyma (44)). The EDC (40) is a water soluble
carbodiimide and the corresponding urea that is formed during reaction can be easily
removed by washing of the organic phase with acidic water [194].

2.8 HYBRID SYNTHESIS–COMBINATION OF SOLID AND SOLUTION
SYNTHESIS

Pharmaceutical companies prefer the manufacturing of medium-large-sized peptides
(<25 amino acids) and proteins by means of a hybrid strategy. Hybrid synthesis is the
combination of the well-established methods of solution and SPPS. Specifically, in
this approach, the desired peptide is obtained after condensation in solution of two or
more appropriate peptide fragments prepared mainly through solid phase synthesis.
Assembling of two fragments can be performed either by the classical condensation
method using coupling reagents or by the most modern technique of native chem-
ical ligation. In the first approach, the coupling of protected peptide fragments is
assembled in typical organic solvents, followed by global deprotection of side chain
protected groups (Figure 2.15).

In the native chemical ligation method, the condensation of the fragments is carried
out in water after their full deprotection, where the N-fragment is modified as thioester
at the C-terminal and the C-fragment to include a Cys residue at the N-terminal. Both
approaches are valuable for the preparation of complex and long peptides and proteins
and combine the benefits of both solid- and solution-phase strategies. The number
and time of reactions are decreased when compared to the step-by-step solution syn-
thesis. The yields and the purities of the intermediate fragments are often higher as
they are commonly prepared by SPPS with the use of reagent excess during coupling
reactions. Intermediate protected fragments can be purified if required. Furthermore,
benefiting from one of the advantages of solution phase synthesis, the fragments can
be fully characterized before condensation, leading to easier control and optimization
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Figure 2.15 General procedure representation of a hybrid approach using the classical seg-
ment condensation method.

of the coupling reaction of the fragments. Even if coupling of peptide fragments is not
completed, this kind of impurities is usually easily separated. Therefore, the purifi-
cation step in the hybrid approach can be more efficient when compared to SPPS for
the projected peptide.

2.8.1 Classical Segment Condensation

The hybrid method using classical segment condensation became available when new
solid supports and resin handles provided peptide chemists with the armory to syn-
thesize fully protected peptide fragments, such as 2-CTC (6) and Sieber amide (7)
resins. An important consideration during the development of the segment condensa-
tion approach is the evaluation and design of the appropriate fragments, taking into
account their preparation first and second, their condensation. Thus, the solubility of
the fragments in condensation reactions has to be taken into account (an estimation
or a prediction can be made but it is of no assurance without actual preparation). Fur-
thermore, the potential epimerization during the condensation reaction is a common
risk that should be avoided or reduced. Thus, Gly or Pro as C-terminal residues of
the fragments is the priority if possible, in order to totally avoid racemization. If this
is not possible, then Ala or Leu should be the preferred option as they are less prone
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to racemization [195]. Evaluation of the linker and the solid support is another cru-
cial point to take into consideration. Side-chain-protecting groups have to be stable
into the cleavage conditions of the peptide fragments of the projected peptide. Thus,
Fmoc/tBu chemistry is commonly preferred, in combination with super acid-sensitive
linkers/resins. Their development and commercial availability has allowed synthetic
access to even longer peptide sequences. In the hybrid approach, the condensation
of the protected fragments is carried out using the classical coupling reagents, which
are described in Chapter 4 and Section 6.3.

2.8.2 Native Chemical Ligation

An alternative modern approach that can be applied to the assembly of peptide or
protein fragments is native chemical ligation [196]. Two peptide fragments, one
containing a C-terminal thioester and the other containing an N-terminal cysteine
residue, are assembled by chemoselective coupling. Native chemical ligation is
a reversible transthioesterification, followed by amide formation. Intramolecular
nucleophilic attack of an α-amino group on the initial thioester product occurs only
when the thiol is on the side chain of an N-terminal Cys, thus regenerating the thiol
functional group of the Cys side chain and giving a final ligation product containing
a native peptide bond at the site of ligation (Scheme 2.7). Initial thiol–thioester
exchange step is fully reversible, whereas the second amide-forming step is irre-
versible under the reaction conditions. Because of this, eventually, only the desired
amide-containing product is formed, even in the presence of internal Cys residues in
either peptide segment. This reversible-irreversible two step reaction mechanism is
the essence of the native chemical ligation method.

The main benefits of the native ligation strategy are the reduced solubility
problems that commonly appear in the fragment-condensation strategy, and the
absence of reagents that should be purified. In this approach the side chain protecting
groups of the fragments are removed before fragment ligation. The reaction takes
place in an aqueous environment in neutral pH, in order to give a native peptide
bond at the ligation point. Limitation of this hybrid technology is the mandatory
use of a Cys residue at the N-terminal of the first fragment, and the synthesis of
an appropriate C-terminal thioester in the second fragment, which in some cases
provides poor yields [197]. Advances in the field include, for example, the use of con-
formationally assisted ligation [198], removable auxiliaries [199, 200], Staudinger

HS

H3N

O

S

H2N

O

N
H

R

SR′

O

N
H

R

O

H2O

pH 7

SH

H
N

O

N
H

R

O

Scheme 2.7 Principles of chemical native ligation. Side chain protection of the fragments is
not essential, but favors the reaction in aqueous media.

Universal Free E-Book Store



CYCLIC PEPTIDES 37

ligation [201–203], thiolalkylation [204], desulfurization methods [205–208], and
sugar-assisted ligation (SAL) [209, 210]. More interestingly, a side-chain-assisted
chemical ligation has been reported lately, with no limits to the assembled amino
acids [211]. Continuous improvement of ligation strategies provides an additional
tool to peptide chemists to overcome more immediate challenges in view of the
significantly increased demand for larger peptides.

2.9 CYCLIC PEPTIDES

Synthesis of cyclic peptides has been the subject of numerous studies since the
introduction of SPPS due to their potential as therapeutic agents [212–214].
Cyclization offers many advantages, including increased proteolytic resistance
and also enhanced biological activity, when compared to their linear counter-
parts in some cases [215, 216]. Cyclic peptides can be classified depending on
their linkage: (a) head-to-tail type, when the N- and C-terminus are joined; (b)
side-chain-to-C-terminal or N-terminal-to-side-chain, when a side-chain is linked
to the C- or N-terminus; and (c) side-chain-to-side-chain, when two side-chains are
joined. Linkage is usually an amide bond but can also be a disulfide or another type
of functionality (Figure 2.16).

Cyclization can be performed either in solution or in solid-phase [214, 217–219].
Cyclizations in solution have the limitation that they must be carried out under high
dilution conditions because of the risk of dimerization and oligomerization, and thus,
high volumes of solvents are consumed. In contrast, in solid phase, and due to site iso-
lation, intramolecular cyclization is favored. Furthermore, work-ups can be avoided
since coupling reagents can be washed away, thereby releasing the final cyclized pep-
tide in good purity.

To obtain the most common head-to-tail cyclic peptides in the solid-phase, the
N- and C-terminus must be free and not anchored to the resin. The following two
strategies are commonly used: (i) the side-chain anchoring approach and (ii) the BAL.

Side-chain anchoring approach: Here, the amino acid side-chain is linked to the
solid support and the C- and N-terminus are orthogonally protected. Once chain
elongation is finished, the deprotection of both ends and subsequent cyclization and
cleavage delivers the final cyclized product. Numerous amino acids have been used
for side-chain anchoring, including Asx/Glx [220–226], Lys/Orn [220, 227], Ser/Thr
[220, 228], Tyr [220, 224, 229], His [230, 231], and Cys [232, 233], on the usual
supports and linkers for peptide synthesis.

NH2

COOH

H2N H2N H2NCOOH

R

COOH

R

COOH

R2 R1

(a) (b) (c)

Figure 2.16 (a) Head-to-tail cyclic peptides; (b) side-chain-to-C-terminal and N-terminal-
to-side-chain cyclic peptides; and (c) side-chain-to-side-chain cyclic peptides.
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Scheme 2.8 Synthesis of the preformed BAL linker derivative. Source: Adapted from Ref-
erence 234.

BAL anchoring: The original concept of the BAL linker [234, 235] involves the
attachment of a backbone amide nitrogen to an appropriate handle. Since linkage
does not rely on the C-terminal carboxyl, the BAL linker allows the preparation of
a large variety of C-terminal modified peptides [236], including cyclic peptides. The
starting point is the 5-(4-formyl-3,5-dimethoxyphenoxy)valeric acid (PALdehyde)
(Scheme 2.4), an intermediate in the synthesis of the PAL linker. Reductive amination
of the PALdehyde with the amine of the C-terminal residue or a salt of it, with sodium
cyanoborohydride provided the corresponding secondary amine intermediate, which
could be protected as Fmoc derivative and later coupled to the resin (Scheme 2.8).

In a more general approach, the preformed handle can be coupled first to the solid
phase, and the C-terminal protected amino acid introduced by reductive amination.
For the synthesis of cyclic peptides, the allyl ester of the corresponding amino acid
is commonly used. After elongation of the peptide chain by standard Fmoc chem-
istry, the cyclic peptide is constructed as described above for the side-chain anchoring
approach.

Recently, other linkers based on the same concept have been developed [237].

2.10 DEPSIPEPTIDES

Natural depsipeptides of marine and terrestrial origin have been frequently found
to be potential leads for the pharmaceutical industry [238]. Over the past decade
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Figure 2.17 Structures of (a) Kahalalide F and (b) Oxathiocoraline.

solid-phase methodology has been applied to the synthesis of depsipeptides [239].
A major milestone was the synthesis of the antitumoral depsipeptide Kahalalide
F [240] (Figure 2.17a), which is active against a wide range of tumor types and
currently in clinical trials. Assembly of Kahalalide F was performed on 2-CTC
resin (6) with Fmoc-d-Val-OH as a first amino acid. After synthesizing the linear
tetrapeptide Fmoc-d-aIle-d-aThr(OH)-d-aIle-d-Val-O-CTC, the Thr side-chain
was esterified with Alloc-Val-OH. The linear chain was then elongated until the
introduction of 5-methylhexanoic acid and then the branch finished by introducing
dipeptide Alloc-Phe-Z-didehydroaminobutyric acid (Dhb), previously prepared in
solution. After releasing the branched peptide from the resin, the final cyclization
was performed in solution, giving the depsipeptide in good yields. Using this strategy
a large number of analogs could be obtained [241]. The most important limitation
in the synthesis of depsipeptides by the Fmoc/tBu strategy is the potential liability
of the ester bond in response to piperidine exposure, and to the formation of DKP
after the deprotection of the second amino acid after the ester bond. Oxathiocoraline
[242, 243] (Figure 2.17b), for example, presented a severe case of DKP formation
due to the sequence NMe-Cys(Acm)-NMe-Cys(Me), which follows the ester bond.
NMe increases the presence of cis-configuration in the dipeptide, thereby making
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it prone to DKP formation. This DKP formed so rapidly that it could not be
overcome by regular means. By taking advantage of the symmetry of the molecule,
an intermolecular dimer was constructed in solid phase, restricting the mobility of
the peptide chain and thereby effectively preventing DKP formation by making the
amino function of the NMe-Cys unable to reach the carboxyl of the NMe-Val. The
same strategy was also successfully applied to the synthesis of the natural product
Triostin A [244]. In the synthesis of cotransin [245], DKP formation could be
reduced by a flash treatment using the stronger 1,8-Diazabicyclo[5.4.0]undec-7-ene
(DBU) bases (10% DBU solution in DMF) or tetrabutyl ammonium fluoride (TBAF)
(0.15 M in DMF).

For depsipeptides with simpler architectures, a protocol that allows automatic syn-
thesis of the linear chain by Boc chemistry was developed [246]. The following modi-
fications are introduced in the preprogrammed modules for Boc chemistry of a regular
automatic peptide synthesizer: (i) The α-hydroxy acid is coupled unprotected by pre-
activation with HOBt (41). (ii) The O-acylation is performed with DCC (33) and
4-(N,N-dimethylamino)pyridine (DMAP), without the presence of HOBt (41); when
two α-hydroxy acids are introduced consecutively, and the second is tetrahydropy-
ranyl (THP)-protected. (iii) Following O-acylation, a capping step (Ac2O/DIEA) is
not performed in order to prevent acyl transfer. (iv) the THP-protecting group is
removed under the same conditions used for the Boc group. The remaining couplings
are performed using in situ neutralization protocols and capping steps.

2.11 SEPARATION AND PURIFICATION OF PEPTIDES

The great variability of peptides in terms of size, shape/conformation and charge
makes it impossible to use one standard procedure for peptide purification, mostly
when looking at an optimized method. Additionally, potential impurities can
occur during peptide assembly in SPPS even though great improvements have
been achieved in peptide chemistry. The nature of impurities, apart from chemical
failures, may be generated to diastereomers, hydrolysis products of labile amide
bonds, deletion sequences formed predominantly during SPPS and insertion pep-
tides, and by-products formed during the removal of protection groups in the final
step of the synthesis. Polymeric forms of the desired peptide, especially in cyclic
peptides, are also known. Much of what applies to the purification of synthetic
peptides from synthetic procedure is also relevant to peptide isolation from complex
biological material. Consequently, in any case, the purification of a crude peptide
to homogeneity can hold great challenges; however it is an absolute prerequisite
for successful and meaningful structural and functional analyses. In this context, it
should be mentioned that all potential impurities probably could not be removed by
a single chromatographic method, but rather by a combination of methods.

This section will deal with separation and purification of peptides. The most
commonly used chromatographic methods for separation and purification of pep-
tides are gel-filtration chromatography, ion-exchange chromatography (IEC), and
reverse-phase high performance liquid chromatography (RP-HPLC), and will be
further discussed.
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2.11.1 Gel-Filtration Chromatography

Gel-filtration chromatography is a method for separating peptides and proteins based
on their size [247]. This method is also known as gel permeation, molecular sieve,
gel-exclusion, and size-exclusion chromatography. In this method, the chromato-
graphic matrix consists of porous beads, and their size defines the size of macro-
molecules that may be fractionated. Proteins and/or peptides that are too large to enter
the bead pores have less volume to pass through, and consequently elute first from the
column. Sequentially, smaller macromolecules that can insert some, but not all, of the
pores are retained slightly longer in the matrix and exit the column next. Finally, small
molecules filter through most of the pores, and they emerge from the column with an
even larger elution volume. The main advantage of this method is that no binding of
the sample is required, no harsh elution conditions are used, and thus, it rarely inacti-
vates enzymes, and often is used as a significant step in peptide or protein purification.
In practice, the method is simple and no sophisticated equipment is required. A limi-
tation of the method is the slow separation of the macromolecules, mainly because the
column should be narrow and long in order to achieve sufficient component separa-
tion. The whole process can be accelerated by the use of pumps or more sophisticated
high pressure chromatography equipment and/or matrices allowing faster flow rates,
whereas this can hold higher risk for sufficient separation. Another crucial limitation
is poor resolution given that in this method the peptide/protein does not bind to the
matrix. Thus, it is important to select the proper matrix in terms of pore size. For
that reason, gel-filtration chromatography is used mainly as a separation tool when
only a small amount of contaminants is present. In many cases, it is used for sample
desalting or for changing the buffer of the sample [248].

2.11.2 Ion-Exchange Chromatography

Separation of peptides and proteins in IEC is based on the net charge of the macro-
molecule [249]. In this method, selecting the appropriate ion exchange matrix is
significant for sample separation. An anion-exchange matrix is derivatized with pos-
itively charged groups, whereas cation exchange contains negatively charged groups.
Generally, weekly acidic or weekly basic groups are preferred to achieve binding of
peptides with low affinity and thus, interactions can be disrupted without the use of
harsh conditions. Most anion-exchange matrices are substituted with a diethylamino
ethyl (DEAE) group or a quaternary amine (Mono-Q) while cation-exchange con-
tains a carboxymethyl (CM) group or usually a sulfomethyl group (Mono-S). In an
anion exchange procedure, the anion-exchange matrix is initially positively charged
in equilibrium with the negatively charged counterion. For DEAE-matrix the coun-
terion is normally Cl− and for CM-matrix the counterion is usually Na+. The pH of
the starting buffer is crucial because it determines the charge on the peptides that are
to be separated. The starting buffer pH should be at least one pH unit above or below
the pI of the peptide that is to be bound to the matrix to ensure adequate binding.
Peptides that are oppositely charged to the matrix at the starting pH will bind to it,
so displacing the counterions, whereas peptides with the same charge as the matrix
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or with no net charge will not bind and consequently elute first. To elute the peptide
of interest a higher concentration of counterion is added to the column. The different
peptides bound to the matrix have different affinities for the ion exchanger due to dif-
ferences in their net charge. These affinities can be altered by varying either the pH
or the ionic strength of the column buffer and can provide a very sensitive method for
peptide/protein separation on the basis of charge. A high level of purification could
be achieved with minimal loss of sample if the matrix and column buffer are carefully
selected.

2.11.3 Reverse-Phase High Performance Liquid Chromatography

The reasons why reverse-phase (RP) HPLC became such a widely used and
well-established tool in separation and purification of peptides are resolution,
exquisite sensitivity, and speed of process [250]. In terms of resolution, RP-HPLC
is able to separate peptides of nearly identical sequences of small and/or even larger
proteins. Separation mechanism of small molecules involves continuous partitioning
of the molecules between the mobile phase and the hydrophobic stationary phase.
However, peptides that are too large to partition to the hydrophobic phase are
absorbed into the hydrophobic surface and remain there until the concentration
of organic modifier reaches the critical concentration needed to cause desorption
and elution from the column [251]. The sensitivity of peptide/protein desorption to
specific concentrations of the organic modifier accounts for the high selectivity of
RP-HPLC method in separation of peptides.

The most favored solvent used as an organic modifier to elute peptides is acetoni-
trile (ACN), since it is volatile and easily removed from collected fractions, has low
viscosity and hence minimizes column back – pressure, is totally miscible with water
and has low UV absorption at low wavelengths (UV cutoff: 188 nm). Other possi-
ble solvents are isopropyl alcohol and methanol and mixtures of these solvents with
ACN. Besides the requirement for an organic solvent to be used as a surface ten-
sion modifier, ion-pair reagents [252] (trifluoroacitc acid, TFA; heptafluorobutyric
acid, HFBA) are utilized at low pH (e.g., pH 2.1) to suppress interactions between
free silanol groups on the silica surface and basic amino-acid residues. In some cases
and in order to achieve sharper peaks, triethylamine is added to suppress those inter-
actions. Presence of ion-pair reagents greatly influences the retention time of pep-
tides [253, 254]. In RP-HPLC, isocratic elution, step elution, or gradient elution
modes can be utilized to purify peptides and proteins. The ideal gradient system
should be easy to operate, provide consistent retention times, sharp peaks, and a
rapid turnaround time to initial eluent conditions for fast throughput from analysis to
analysis [255]. The most preferable for separation of peptides is the gradient elution.
Increasing the concentration of the organic solvent as peptides elutes results in sharper
peaks and better resolution. Typical changes in organic solvent concentration (gradi-
ent slope) are on the order of 0.5–2% change/min. However, shallow gradients with
slopes of <0.5% have proven to be very effective in separating complex mixtures of
peptides [256].
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Regarding the chromatographic stationary phase, there are several chemical and
physical factors (ligand composition, ligand density, surface heterogeneity, surface
area, pore diameter, pore diameter distribution, particle size, particle size distribu-
tion, and particle compressibility) that contribute to the variation in the resolution and
the recovery of peptides and proteins in HPLC systems, and thus by means of care-
ful selection of stationary phase a high level of purification could be possible [257].
Stationary phases typically used in RP-HPLC for peptide separation are silica-based
packing materials of 3–10 μm average particle diameter and ≥300 Å pore size, with
n-butyl, n-octyl, or n-octadecyl ligands.

Other factors that can influence separation of polypeptides in RP-HPLC are pH,
temperature and flow rate of mobile phase. Eluent pH can be a useful tool in opti-
mizing peptide separations as protonation or deprotonation of acidic or basic side
chains of peptides influence their retention times. Changes of temperature strongly
affect separation of peptides and for that reason should be optimized in any method
for best separation [258]. The temperature of the stationary phase and eluents should
be constant (±0.1 ∘C) using a thermostatically controlled system in order to ensure
reproducibility in the resolution [259]. The flow rate of the mobile phase slightly
affects peptide separation because, as previously mentioned, peptide desorption is
the result of reaching a precise organic modifier concentration. However, it should
be noted that when refining a separation process of small peptides where resolution
is limited, slight improvements may be gained with minor changes in the flow rate
of the mobile phase. Flow rate affects other aspects in separation such as detector
sensitivity and column back pressure.

The peptide bond absorbs strongly in the far-UV region of the spectrum
(𝜆= 205–215 nm). Therefore, UV detection (in this wavelength range) is the most
widely used method for detection of peptides and proteins in HPLC. Furthermore,
in some cases, it is possible to use longer wavelengths to detect the presence of Phe
(257 nm), Trp (280), and Tyr (274 nm) and also to some extent cysteine absorbs light
above 250 nm [260].

All these important factors ultimately determine the selection of the optimal sep-
aration conditions or the resolution of peptide and protein mixtures.

2.12 CHARACTERIZATION OF PEPTIDES THROUGH MASS
SPECTROMETRY

Mass spectrometry (MS) is a technology used to measure the molecular mass (MM)
(M) of a molecule. Actually, MS measures the mass-to-charge ratio of molecules,
(m/z; (M+ z)/z, where M is the uncharged mass of analyte). MS is also a tool used to
perform structural elucidation in tandem (MS/MS) experiments, in which molecules
are fragmented inside of the instrument and the products formed are analyzed. Molec-
ular structure can also be evaluated by ion mobility, which is a quite recent improve-
ment in MS. Ions having the same MM, but different conformational structures, can
be separated by collisions with a bath gas in a uniform electric field [261]. MS can
also be a useful tool to quantify molecules. However, it is not the main application

Universal Free E-Book Store



44 METHODS FOR THE PEPTIDE SYNTHESIS AND ANALYSIS

of this technology and some particular methodology has to be used depending on
the type of quantification and the type of molecules one wants to analyze, as we will
explain below.

To carry out any type of MS analysis, the first requirement is to transfer the
molecules to a gas-phase and ionize them with a positive or negative charge. Once
ionized, all ions are submitted to electrical or magnetic fields that guide them to
the mass analyser, where separation between the different ions occurs. Thus, ions
reach the detector according to their mass-to-charge ratios. In general, a mass
spectrometer consists of a sample inlet, an ionization source, one or more mass
analysers, a detector (the two or three last ones are under high vacuum, depending
on the ion source, which can be under vacuum or at atmospheric pressure) and
one data system (Figure 2.18). The ionization source and the analyser are the main
parts of the equipment, and they define the characteristics of the mass spectrometer.
We discuss below some of the different MS/MS instrument configurations (with
different capabilities in terms of ionization method, mass-to-charge range, resolution
and sensitivity) that have been developed in the last years.

2.12.1 Ionization Source

For peptides and proteins studies, ionization can be done in a matrix-assisted laser
desorption/ionization (MALDI) source [262] or in an electrospray ionization (ESI)
[263] source. Both are soft ionization techniques allowing observation of intact
molecules. Introduction of soft ionization techniques to volatilize biomolecules,
such as ESI and MALDI was the main improvement that enabled analysis of protein
and peptide structure by MS and MS/MS [264]. Ionization in electrospray sources
occur by passing a solubilized sample through a high voltage needle at atmospheric
pressure [265]. In this step very small charged droplets are produced and are
immediately evaporated helped by high temperature in the sample cone. Desolvation
and ionization processes occur prior to the entrance into the high vacuum of the mass
spectrometer. ESI typically induces a range of charge states and the resulting spectra
can have many ions for each analyte. ESI is the most commonly used approach to
couple a liquid chromatography system to a mass spectrometer allowing analysis of
complex samples.

In MALDI, samples are co-crystallized, typically onto a metallic sample plate,
with an organic matrix compound that usually has a conjugated aromatic ring
structure. It is thought that laser energy is absorbed by the matrix molecules that

Sample 
inlet 

Ionization
source

Mass 
analyser

Ions 
detector

Data
system

Vacuum

Figure 2.18 Schematic representation of a mass spectrometer.
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transfer the charge to the analyte [266–268]. Although multiple charged ions can be
produced, mostly single-charged ions are observed in MALDI spectra. The matrix
is chosen according to the analyte. Peptides usually co-crystallize efficiently with
α-cyano-4-hydroxycinnamic acid (CHCA) matrix; most of the ions observed are
600–3500 Da. For bigger peptides, the matrix used is sinapinic acid (SA), larger ions
give better signals with this matrix, although the efficiency of ionization depends on
the laser. 2,5-dihydroxybenzoic acid (DHB) is a matrix of choice when analyzing
small molecules, although the background or the signals of matrix are still a problem
not solved in the MS analysis of small molecules. Use of more than one matrix is
recommended to confirm the results when the MM of the analyte match the matrix
signals. Moreover, the improvement of peptide signals has been observed by the
combination of two matrixes in the same MS assay [269].

2.12.2 Mass Analysers

Analyser is the component that defines some aspects of the mass equipment such as
the accuracy to measure the molecular weight of the analyte. Moreover, the anal-
yser defines the mass-to-charge ratio that can be measured and the ability to run
tandem mass experiments (MS/MS), that is, fragment peptides to obtain information
about their amino-acid sequence. The choice of the best mass instrument to achieve
expected results depends on the analyte and the experiment one wants to perform.
One point to take into account is the resolution needed to separate neighbor mass.
The higher the resolution the better separation between close m/z. Measurement of
exact MM is an analytical example of the need for a very high resolution mass instru-
ment. High resolution and mass accuracy are closely related concepts because the
achievement of an accurate mass depends on the ability of the mass instrument to
resolve close neighboring masses. Nevertheless, they should not be confused because
a high resolution mass measurement alone does not imply an accurate mass measure.
Resolution can be measured by different ways, although peak width definition is one
of the most widely used. Resolution (R) is defined as the ratio of the mass (m) to the
difference in mass (Δm) (R=m/Δm), defined by the width of a signal at 50% of the
peak height (full width at half maximum, FWHM) [270] (Figure 2.19).

Amino acids are mainly composed of four elements, carbon, hydrogen, nitrogen,
and oxygen, which exist naturally as a mixture of isotopes. For instance, carbon is a
mixture of 12C and 13C isotopes in an abundance of 98.9% and 1.1%, respectively.
Abundance of the isotopes is reflected in the composition and MM of the molecules.
It is reflected in the mass spectrum by the combination of an isotopic mixture of the
compound. There are two types of mass measurement for a given compound: average
mass and monoisotopic mass. Average mass reflects the contribution of all isotopes in
the compound. In the mass spectrum, it is taken at the centroid of the isotope mixture
(Figure 2.20a). Monoisotopic mass is the mass of the first peak in the isotope mixture
(Figure 2.20b). Monoisotopic mass can only be measured if the 12C and 13C isotopes
of the peptide mixture can be sufficiently resolved, that is, if the mass analyser has
enough resolution to separate the isotopes, that is, the 1 Da of difference in mass
between them.
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Figure 2.19 Scheme of resolution mass calculation based on the FWHM.

The most commonly used analysers in biomolecule studies are quadrupoles (Q),
time-of-flight (TOF), and quadrupole ion traps (ITs). Fourier transform ion cyclotron
resonance (FTICR) is not very common, but deserves mention because of its high
resolution (for reviews, see References 271, 272).

Quadrupole mass analysers are one of the most common mass analysers. Sepa-
ration of ions is efficiently done by applying radio frequency (RF) and DC voltages;
only a narrow mass-to-charge range is allowed to cross the quadrupole (four paral-
lel metal rods) to reach the detector [273]. On the contrary, quadrupole resolution
and mass range are usually limited. Most of the commercially available instruments
usually have a range of 0–4000 m/z; however, there is already a commercial mass
instrument with amplified mass range to 32,000 m/z [274]. ESI ionization provides
multiple charge ion formation, thus enabling quadrupole mass measurement of intact
proteins.

TOF is one of the simplest mass analysers. It measures the m/z ratio of an ion
by measuring the time required for such ion to cross the length of a field free tube.
Ions are accelerated to the tube entrance using a short-voltage gradient. Flight time
is proportional to the square root of the m/z. TOF resolution can be improved by
ion manipulations (delayed extraction of ions from the source, two stage sources
with complex voltage gradients, and reflector technology). This last one consists of
including an ion mirror at the end of the flight tube, which reflects ions back through
the flight tube to the detector. The ion mirror increases the length of the flight tube
and also corrects for small energy differences among ions [268]. Commercial TOF
instruments can achieve a resolution of 10,000 or greater.

Ion traps are the mass analysers allowing MS/MS experiments. Ion separation
occurs by focusing ions into a small volume with an oscillating electric field; ions
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Figure 2.20 MALDI-TOF spectra of Adrenocorticotropic Hormone (ACTH) (7-38) peptide
acquired in a 4700 Proteomics Analyser (applied biosystems). (a) Average mass in linear posi-
tive acquisition mode at resolution 650. (b) Monoisotopic mass in reflector positive acquisition
mode at resolution of 10,700 (FWHM). Theoretical average mass: M+H+ = 3660.19 and the-
oretical monoisotopic mass: M+H+ = 3657.93.

are resonantly activated and ejected by electronic manipulation of this field [275,
276]. Ion traps are very sensitive, because they can concentrate ions in the trapping
field for varying lengths of time. Resolution limitation was recently improved by the
development of linear ion traps (LITs) [277, 278].

The highest resolution mass analyser is the FTICR. It is an instrument that can
determine exact mass of small molecules. Ion separation is done using high magnetic
fields to trap the ions and cyclotron resonance to detect and excite the ions. Resolu-
tion is around 1,000,000; that is, m/z 1000.000 can be separated from m/z 1000.001
[279, 280].
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Tandem mass spectrometry (MS/MS or MS2) is the tool applied for structural
determinations of organic compounds, peptides, and oligonucleotides. A tandem
mass spectrometer configuration is necessary to perform MS/MS experiments
because specific ions have to be selected first in the MS or MS1 step. Once selected,
such specific ions are fragmented and the mass of the product ions has to be
measured in a second step (MS/MS or MS2). Selected ions are named parent ions
and the fragments or product ions are named daughter ions. Some tandem instrument
configuration examples are

Triple quadrupole mass spectrometers, QqQ. In the first stage of analysis, the
machine is operated in MS scan mode and all ions within a determined m/z
ratio are transmitted to the third quadrupole for mass analysis. In the second
stage, the mass spectrometer is operated in MS/MS mode and a particular pep-
tide ion is selectively passed into the collision chamber (quadrupole 2, q). Inside
the collision chamber, peptide ions are fragmented by interactions with an inert
gas by a process known as collision-induced dissociation (CID) or collisionally
activated dissociation (CAD). The peptide ion fragments are then resolved on
the basis of their m/z ratio by the third quadrupole [265, 281].

Quadrupole-TOF, QqTOF. In the last years, several hybrid mass spectrometers
have emerged from the combination of different ionization sources with dif-
ferent mass analysers. One example is the quadrupole-TOF mass spectrometer
[282–285]. In this machine, the first quadrupole (Q1) and the quadrupole col-
lision cell (q) of a triple-quadrupole machine have been combined with a TOF
analyser. The main applications of a QqTOF mass spectrometer are protein
identification by amino-acid sequencing and the characterization of protein
modifications [286].

MALDI-TOF/TOF. The principal application of a MALDI-TOF is the determi-
nation of MM. Nevertheless, the improvement of MALDI-TOF machines by
combining two TOF tubes, TOF/TOF, enabled this mass instrument to be used
in structural elucidation [287]. The collision cell is located between the two
TOF tubes. Similar to fragmentations in triple-quadrupoles, in a first step of
analysis all the ions are transmitted to the second TOF in a scan mode mass
analysis (MS). In the MS/MS mode, a determined m/z ion is selected by a
time-ion-selector that allows only a narrow range of m/z ions to enter in the
collision-cell where they are fragmented. Product ions are transmitted to the
second TOF where they are resolved according to their m/z ratio [288].

Ion traps are the only mass spectrometer allowing MSn experiments without any
other mass analyser. Different electronic modes are applied to trap, to select, to frag-
ment, and to measure mass of product ions, all this analysis taking place in the same
IT. Moreover, in an alternative scan mode (MS3), the ion trap has the additional func-
tionality of selecting one specific product ion and then inducing a subfragmentation
spectrum. This approach can be extended to multiple isolation and fragmentation
stages (MSn).
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Fourier transform ion cyclotron resonance-ion trap, IT-FTICR. This machine
combines the advantage of ion traps, such as the good sensitivity and ability to
perform experiments of MSn, with the high resolution of FTICR mass analysers and
the possibility of analysis of entire proteins, since the FTICR solve the limitation
in mass range of ion traps [280]. More recently, the incorporation of high energy
alternative fragmentation methods, such as electron capture dissociation (ECD)
[289], has made this mass instrument the best alternative to analyze and fragment
intact proteins [290].

2.12.3 Peptide Fragmentation

Peptide sequencing by MS involves the fragmentation of a peptide to produce smaller
products. Fragmentation of the peptide backbone mainly occurs at the peptide amide
bound. Nevertheless, peptides can fragment in different sites, multiple fragmentation
of backbone and/or side chain can occur at the same time. Because of this, a nomen-
clature was created to indicate what type of ions are generated during the MS/MS
analysis [291, 292]. Low energy collision activation method (CID) fragments peptide
bonds and produces b/y ion pairs for single- and multiple-charged parent ions. Ions
are named b-ions if the amino terminal fragment retains the charge, or y-ions, if the
carboxy-terminal fragment retains the charge (Figure 2.21). On the contrary, ECD
or electron transfer dissociation (ETD) are higher energy activation methods, pro-
ducing c/z ion pairs with cleavage along the peptide backbone for multiple-charged
precursor ions (>2 charges). Combination of these two types of peptide fragmenta-
tion improves the quality of peptide sequencing [293]. Mass values of fragment ions
can be assembled to produce the original amino-acidic sequence, that is, differences
in mass between two adjacent b- or y-ions should correspond to that of an amino
acid (Figure 2.22). Identification of the amino acid and the peptide sequence can be
done using MS/MS, with the exception of isoleucine and leucine, which are identical
in mass, and then indistinguishable. Additional fragmentation along amino-acid side
chains can be used to distinguish isoleucine and leucine [294]. Both y- and b-ions can
suffer neutral loss of NH3 (−17 Da), H2O (−18 Da), and CO (−28 Da), resulting in
pairs of signals observed in the mass spectrum.

Immonium ions (a1 ion in Figure 2.22) or fragments of immonium ions from indi-
vidual amino acid residues in a peptide can also be detected. They are more frequently

NH2-CH-CO-NH-CH-CO-NH-CH-CO-NH-CH-CO2H
R4R1 R2 R3

y1

b3b2
b1

y3 y2

z1

a1

x1

c1

Figure 2.21 Peptide fragmentation pattern and fragments nomenclature.
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Figure 2.22 Amino-acid sequence assigned to MSMS spectrum of Glu-fibrinogen peptide (theoretical amino acid sequence: EGVNDNEEGFFSAR;
theoretical monoisotopic mass, M+H+ = 1570.677 Da; acquired in a nano-ESI-Q-TOF ultima (waters/micromass). (See insert for color representation
of this figure.)
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TABLE 2.1 Immonium Ions Mass.

Amino Acid (Symbols) Immonium Ion Mass (Related Ions)

Alanine (A) 44
Arginine (R) 129 (112a, 100, 87a, 73, 70a, 59)
Asparagine (N) 87a (70)
Aspartic acid (D) 88a

Cysteine (C) 76
Glutamic acid (E) 102a

Glutamine (Q) 101a (84a, 129)
Glycine (G) 30
Histidine (H) 110a (166, 138, 123, 121, 82)
Isoleucine (I) 86a (72)
Leucine (L) 86a (72)
Lysine (K) 101a (129, 112, 84a, 70)
Methionine (M) 104a (61)
Phenylalanine (F) 120a (91)
Proline (P) 70a

Serine (S) 60a

Threonine (T) 74a

Tryptophan (W) 159a

Tyrosine (Y) 136a

Valine (V) 72a

aMajor peaks according to Reference 63.

observed in some amino acid residues (His, Leu/Ile, Trp, Pro, Phe) than others. Detec-
tion of immonium ions depends on the mass range of the mass spectrometer. The
characteristic m/z values of the immonium ions (Table 2.1) are useful for detecting and
confirming some of the amino-acid residues in a peptide sequence, although no infor-
mation regarding the position of these amino-acid residues in the peptide sequence
can be inferred.

2.12.4 Quantification by MS

Pharmaceutical companies and proteomics are the most common fields that use MS
as a quantitation tool. Quantification is done either by measuring the intensity (peak
height) of a signal or by measuring the integrated area of the peak. In both cases,
signal intensity is related to ion concentration, that is, mass intensity is proportional
to the ion concentration. Signal intensity of different type of molecules cannot be
compared as each type of molecules has different ionization capacity. Because of
that, each type of ion has to be analyzed separately. Stable isotope labeling has been
used in recent years in quantification experiments [295]. Analogs of the analyte to
be tested are synthesized using stable isotopes 13C, 15N, or 2H and known concentra-
tions of the synthetic molecule are spiked into the solution being analyzed. Because
the isotope analogs have the same ionization efficiency, intensities of mass signals
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can be compared. An example can be found in the recent publication of Nilsson et al.
[296], where a lipophilic analyte was quantified in the blood plasma using an inter-
nal calibration through analyte/isotope standard ratio. The only difference between
the pair of analogs is the difference in mass introduced by the stable or heavy iso-
topes. Proteomics MS-based quantitation uses different methods for protein labeling
with stable isotopes resulting in peptide pairs of identical amino acid sequence with
a characteristic mass difference (at least 4 Da). Peptides/proteins are quantified by
measuring in MS mode the relative signal intensities for the pairs of peptide ions of
identical sequence tagged with light and heavy isotope forms. Stable isotope label can
be introduced into proteins or at peptide level using chemical, enzymatic, or metabolic
methodologies (for a good review, see Reference 297). The methodology introduced
in 2003 by Gerber et al. [298] named absolute quantification (AQUA) to perform
absolute mass quantification consists of synthesizing stable isotopes labeled peptides
in order to quantify proteins in complex mixtures. Isotopically labeled synthetic pep-
tides that are used as internal standards have an amino-acid sequence identical to that
of peptides formed by enzymatic digestion and are used to give an absolute quantita-
tion of a protein in a complex sample.

2.13 CONCLUSIONS

This chapter illustrates the importance of recent developments in peptide chemistry,
purification, and analysis, which have fueled research in both biomedicine and bio-
material areas using peptides as bricks. These developments have boosted the entry
of peptides into clinical phases and therefore their appearance in the market.

Peptide science developed is causing a clear impact on the nature of peptides
in drug discovery. As mentioned in the introduction, the oldest peptides described,
which were evaluated for their therapeutic activities, contained natural sequences
and had relatively low molecular weight. Nowadays, they show more sophisticated
structures with longer amino-acid chains; sequences with aggregation tendency;
cyclic peptides; containing nonnatural amino acids; presence of the nonpeptide
moieties (pegylated, glycosylated, fatty acids, and chromophores); and hybrids with
cell-penetrating peptides.

This is the result of the progress made by peptide scientists in last half a cen-
tury, who have incessantly been developing novel strategies and chemical approaches.
Those innovations have provided the academic community and pharmaceutical com-
panies with significant tools to design and produce peptides as pharmaceutical ingre-
dients that were difficult to produce in the past. Indeed, the new generation of peptide
drugs launched recently to the pharmaceutical market, are more complex long pep-
tides (up to 65 aminoacids), including multi-disulfide bridges [299]. In looking to the
future, much remains to be accomplished since the requirements for peptide drugs
from pharmaceutical market and the development of genomics and proteomics will
continue demanding greater versatility of design and synthesis of target structures.
Peptide science and scientists have a number of cases that remain unresolved, yet
they are ready to find the right answers.
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ABBREVIATIONS

𝛙Pro pseudoproline

2-CTC 2-chlorotrityl chloride resin

6-Cl-HOBt 6-chloro-1-hydroxybenzotriazole

Acm acetamidomethyl

ACN acetonitrile

Alloc allyloxycarbonyl

AOP (7-azabenzotriazol-1-yl)oxytris-(dimethylamino) phosphonium
hexafluorophosphate

BAL backbone amide linker

Bg N-benzydrylglycolamide

Boc t-butyloxycarbonyl diazaphospholidinium hexafluorophosphate

BOP benzotriazol-1-yloxytris(dimethylamino)-phosphonium
hexafluorophosphate

Bpoc 2-(4-biphenyl)isopropyoxycarbonyl

tBu tert-butyl

Bzl benzyl

Cam carboxyamidomethyl

Cbz, Z benzyloxycarbonyl

CD circular dichroism

CHCA α-cyano-4-hydroxycinnamic acid

CID collision-induced dissociation

CM ChemMatrix

COMU 1-[(1-(cyano-2-ethoxy-2-oxoethylideneaminooxy)-
dimethylamino-morpholinomethylene)] methanaminium
hexafluorophosphate

DCC N,N’-dicyclohexylcarbodiimide

Dde (1-(4,4-dimethyl-2,6-dioxocylohex-1-ylidene)-3-ethyl)

Ddz α,α-dimethyl-3,5-dimethoxybezyloxy

DEAE diethylamino ethyl
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DEPB diethyl phosphorobromidate

DHB 2,5-dihydroxybenzoic acid

Dhb didehydroaminobutyric acid

DIC N,N′-diisopropylcarbodiimide

DIEA (DIPEA) diisopropylethylamine

DKP diketopiperazine

DMAP 4-(N,N-dimethylamino)pyridine

DMF N,N-dimethylformamide

ECD electron capture dissociation

EDC N-ethyl-N′-(3-dimethylaminopropyl)carbodimide

ESI electrospray ionization

Et ethyl ester

ETD electron transfer dissociation

FDA Food and Drug Administration

Fmoc 9-fluorenylmethyloxcarbonyl

FTICR fourier transform ion cyclotron resonance

FWHM full width at half maximum

HAPyU 1-(1-pyrrolidinyl-1H-1,2,3-triazolo[4,5-b]pyridin-1-
ylmethylene) pyrrolidinium hexafluoro phosphate N-oxide

HATU N-[(dimethylamino)-1H-1,2,3-triazolo[4,5-b]pyridin-1-
ylmethylene]-N-methylmethanaminium hexafluorophosphate
N-oxide

HBTU N-[(1H-benzotriazol-1-yl)(dimethylamino)methylene]-
N-methylmethanaminium hexafluorophosphate N-oxide

HDMB 1-((dimethylamino)-(morpholino)methylene)-1H-
benzotriazoliumhexafluorophosphate 3-oxide

HDMC 6-chloro-1-((dimethylamino)-(morpholino)methylene)-1H-
benzotriazolium hexafluorophosphate 3-oxide

HFBA heptafluorobutyric acid

Hmb N-(-2-hydroxy-4-methoxybenzyl)

HMPA hexamethylphosphoramide

HOAc acetic acid

HOAt 1-hydroxy-7-azabenzotriazole

HOBt 1-hydroxybenzotriazole

HPLC high performance liquid chromatography

cHx cyclohexyl

IEC ion-exchange chromatography

IT quadrupole ion trap

LIT linear ion trap
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MALDI matrix assisted laser desorption/ionization

MBHA p-methylbenzhydrylamine

Me methyl ester

MM molecular mass

Mob S-4-Methoxybenzyl

Moz 4-methoxy-benzyloxycarbonyl

MS mass spectrometry

MS/MS tandem mass spectrometry

NCEs new chemical entities

NMM N-methylmorpholine

Nps nitrophenylsulfenyl

Npys 3-nitro-2-pyridine-sulfenyl

pNZ p-nitrobenzyloxycarbonyl

Oxyma ethyl 2-cyano-2-(hydroxyimino)acetate

Pac phenacyl ester

PAL 5-(4-aminomethyl-3,4-dimethoxyphenoxy)valeric acid

PyAOP (7-azabenzotriazol-1-yloxy)tris-(pyrrolidino) phosphonium
hexafluorophosphate

PyBOP benzotriazol-1-yloxytri(pyrrolidino)-phosphonium
hexafluorophosphate

PyBroP bromotri(pyrrolidino)phosphonium hexafluorophosphate

PyCloP chlorotri(pyrrolidino)phosphonium hexafluorophosphate

Pbf pentamethyl-2,3-dihydrobenzofuran-5-sulfonyl

PBS phosphate buffered saline

Ph phenyl ester

PEGA poly(ethylene glycol)-poly(acrylamide) copolymer

PEG-PS polyethylene glycol-polystyrene

PyOxm O-[(cyano-(ethoxycarbonyl)methyliden)-amino]
yloxytripyrrolidinophosphonium hexafluorophosphate

Pns phenylnorstatine

POEPOP polyoxyethylene cross-linked polyoxypropylene

PS polystyrene

RP-HPLC reverse-phase high performance liquid chromatography

SA sinapinic acid

Q quadrupole

QqQ triple quadrupole

Q-TOF quadrupole-time of flight

SPOCC poly-oxyethylene-poly(3-methylene-3-methyloxethane)
copolymer
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SPPS solid-phase peptide synthesis

TBAF tetrabutyl ammonium fluoride

Tce trichloroethyl ester

TFA trifluoroacetic acid

THP tetrahydropyranyl

Tmob 2,4,6-trimethoxybenzyl

TMP collidine

Tmse 2-trimethylsilylethyl ester

TOF time of flight

Tos p-toluenesulfonyl

Troc 2,2,2-trichloroethoxycarbonyl

Trt trityl

Z benzyloxycabonyl
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3
PEPTIDE DESIGN STRATEGIES FOR
G-PROTEIN COUPLED RECEPTORS
(GPCRs)

Anamika Singh and Carrie Haskell-Luevano
Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA

3.1 INTRODUCTION

The plasma membrane of mammalian cells separates the extracellular and intracel-
lular environments and can function as a messenger to carry information across a
cell membrane to the interior of the cell, thus providing a mechanism of communica-
tion. Membrane proteins represent a large and versatile group of protein sensors that
are involved in diverse physiological processes, such as neurotransmission, cellular
metabolism, secretion, cellular differentiation, growth, inflammation, and immune
responses, and are thus primary targets for drug discovery [1]. Peptides act as a
primary source of intercellular communication in many diverse biological systems
by interacting with their corresponding receptors. A large subset of these receptors
couple with guanine-nucleotide binding proteins (G-proteins) to produce a signal
transduction cascade of cellular actions, hence called G-protein coupled receptors
(GPCRs).

GPCRs consist of seven α-helical transmembrane (TM) segments and represent
the largest family of membrane proteins in the human genome. Molecular cloning
studies and genome data analysis have revealed nearly 1000 members of the GPCR
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super family, which is the largest group of membrane-spanning surface receptors
on human cells [2, 3]. GPCRs respond to a diverse range of extracellular stimuli,
such as neurotransmitters, peptide hormones, amino acids, amines, lipids, sugars, and
even photons and cations, and thus assist in variety of different functions [1]. GPCRs
represent major targets for the development of novel drug candidates in all clinical
areas. It is estimated that 30% of clinically prescribed drugs function as either ago-
nists or antagonists at GPCRs, which highlights their immense therapeutic potential
[2, 4–6].

With the exception of the thyroid hormone receptor, the receptors for peptide
hormones are located in the plasma membrane. The vast majority of endogenous hor-
mones and neuroactive peptides utilize GPCRs to alter the physiology of their target
cells. Irrespective of the nature of ligand and receptor structure, the basic principle
that has been established is that the ligand–receptor interaction drives a conforma-
tional change of the GPCR, which transfers information to inside the cell through
guanine-nucleotide binding proteins (G-protein).

3.2 CLASSIFICATION OF GPCRs

GPCRs generally consist of a single polypeptide chain of 400–3000 residues that
form a variable extracellular N-terminus (7–3000 amino acids), seven TM spanning
segments consisting α-helices (20–27 residues each), an intracellular C-terminus
(12–400 amino acids), and three endoloops and three exoloops (5–250 amino acids
each). The TM segment is highly conserved structurally among the GPCRs but
they differ considerably in amino acid sequences. Peptide GPCRs proteins vary
especially in the size of the extracellular amino-terminal tails, cytoplasmic loops,
and carboxy-terminal tails, which account for their diverse structure and function
[1]. Based on the sequential similarity in the TM regions, GPCRs can be divided into
three main families: Class A receptors share sequence similar to rhodopsin and the
calcitonin receptor and are the largest group, which constitutes 90% of all GPCRs,
most of which have short N-terminal segments and highly conserved TM regions.
These GPCRs are structurally related to rhodopsin or adrenergic receptors, and bind
to many amine, purine, and peptide ligands [7]. Class B is the secretin/glucagon-like
receptors that share little structure similarity to the other classes of GPCRs. These
receptors tend to have six conserved cysteines and a hormone-binding domain in
their long N-terminus. These receptors bind large peptide ligands such as glucagon,
corticotropin-releasing hormone (CRH), parathyroid hormone, vasoactive intestinal
peptide (VIP), growth hormone releasing hormone, calcitonin, gastric inhibitory
polypeptide, and adenylate cyclase activating polypeptide receptor (PACAP) [8].
Class C GPCRs are related in structure to the metabotropic receptors and are the
neurotransmitter receptors with long N-terminal tails (500–600 residues), compris-
ing of a separately folded ligand-binding domain, and no TM homology with other
GPCR families [9]. This family includes the Ca2+ receptor, γ-aminobutyric acid
(GABA) receptors, and metabotropic glutamate receptors (mGluRs) [8]. Other than
these three families, there are classes such as adhesion and frizzled/TAS2-GPCRs,

Universal Free E-Book Store



STRUCTURE OF GPCRs: COMMON FEATURES 77

which are not classified with the above families [10]. Also, there are orphan receptors
in which the endogenous ligands remain to be identified.

3.3 CATALOG OF PEPTIDE-ACTIVATED G-PROTEIN COUPLED
RECEPTORS

Table 3.1 is a list of some GPCRs that bind to peptide ligands including class A
and B receptor subtypes. The table illustrates characteristic properties of these
receptors and enlists the number of amino acids in sequence, endogenous ligands,
primary signal transduction pathway, tissue expression and function, knockout
phenotype, if any, and disease relevance of specific receptor. Specialized databases
of GPCRs can be found at http://www.gpcr.org/7tm; http://www.iuphar-db.org and
http://www.ncbi.nlm.nih.gov/sites/entrez [12].

3.4 STRUCTURE OF GPCRs: COMMON FEATURES

Like other membrane proteins, GPCRs are partially buried in the nonpolar environ-
ment of the lipid bilayer, forming a compact bundle of TM helices. Before crystal
structures of GPCRs became available, attempts to identify the orientation of helices,
respectively, with each other in 3D space, chimeric receptors were generated.
Studies with chimeric muscarinic receptors provided evidence that TM1 and TM7
are oriented relative to each other [13]. Other studies, such as functional analysis
of engineered metal ion-binding sites [14], disulfide bonds [15], as well as spectro-
scopic approaches [16], aided in the identification of amino acids that are involved
in the TM helix–helix interactions and their respective orientations. Despite the
remarkable diversity in the structure of GPCR ligands, all GPCRs share some highly
conserved structural features (Figure 3.1a): (i) insertion into the plasma membrane of
the cell, (ii) the presence of seven α-helical TM segments, (iii) three extracellular and
three intracellular loops, (iv) extracellular amino terminus, (v) intracellular carboxyl
terminus. As described earlier, most conserved structural region among GPCRs
is the TM spanning segments and most variable are the carboxyl terminus, the
intracellular loop spanning TM5 and TM6, and the amino terminus. Some peptide
hormones and proteins bind to the N-terminus and extracellular loops joining the
TM segments (Figure 3.1b), whereas the others are postulated to bind to the TM
region of the GPCR [1].

3.4.1 Crystal Structures

General features of the GPCRs were defined after the successful X-ray structure of
bacteriorhodopsin, bovine rhodopsin, and a few other members of the super family.
The first insight came from the two-dimensional crystals of rhodopsin that revealed
the general arrangement of the TM helices [17]. The first three-dimensional crys-
tal structure of dark rhodopsin was reported in 2000 [18] at 2.8 Å, and subsequent
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TM1

TM2

TM3

TM4

TM5 TM7
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E1 E2 E3
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C2 C3

NH3

CO2

S S

G-proteins

(a)

(b)

Figure 3.1 (a) General structure of GPCR; E= exoloop; C=Cytoloop. (b) Schematic pre-
sentation of peptide hormone-receptor interaction for peptides of ≤40 amino acids.

structures have been refined at resolutions as high as 2.2 Å [19–21]. The structure of
an inactive form confirms the anticlockwise bundle of 7 TM α-helices, connected by
extracellular loops of varying lengths [18]. Also, the amino terminal ligand binding
segment of the Follicle-stimulating hormone (FSH) receptor was crystallized in com-
plex with its ligand to 2.9 Å, which shed light on the receptor–ligand interactions and
receptor activation [22].

Remarkable progress in the analysis of GPCR structures was published in
2007–2008. Crystal structures of a cephalopod rhodopsin showed structural dif-
ferences, suggesting its coupling to the G-protein Gq rather than for transducin
[23, 24]. Crystal structures of another class A GPCR, β-adrenergic receptor, which
was bound to the inverse agonist, represent the first structures of GPCRs bound to
diffusible ligands [25–29]. In addition, the crystal structure of bovine opsin has
provided interesting information about the ligand binding and activation pathway
[30, 31]. In another important study, native bovine opsin, an inactive form of
rhodopsin, was crystallized [30] by optimizing the selective extraction of rhodopsin
from rod cell disc membranes. This methodology enabled crystallization without
any modification of the protein that might cause structural distortions. Structural
examination of this opsin revealed only slight changes relative to rhodopsin for TM
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GPCR ACTIVATION 93

helices 1–4. The most obvious differences were found in the region of TM helices
5–7 and were especially prominent at the cytoplasmic ends of these helices and
cause rearrangement of the C-2 and C-3 loops [32].

Despite these remarkable findings, there are several obstacles to obtain decent
crystals for other GPCRs. For example, the lack of stability of purified GPCRs in
detergents compatible with crystallography can be a major limitation. Most of the
GPCRs are not stable in the detergents used to obtain rhodopsin crystals; instead,
they show stability in nonionic detergents with relatively long alkyl chains, which
are capable to form larger micelles that prevent the formation of crystals [33]. Also,
posttranslational modifications such as glycosylation, phosphorylation, palmitoyla-
tion, and conformational flexibility of the receptors generate structural heterogeneity.
Therefore, structural analysis of other GPCRs has largely been limited to the indirect
methods such as, the use of site-directed mutagenesis and cysteine scanning muta-
genesis [34] to detect receptor–ligand interactions and the use of engineered metal
ion binding sites to probe intramolecular interactions [35]. While these approaches
provide low resolution structural information, this information can be used to support
and improve the accuracy of homology models based on rhodopsin.

Initial rhodopsin structure and subsequent improvements in resolution have pro-
vided a template for the creation of homology models [36, 37]. There are various
similarities in the structure of the GPCRs but their primary sequences are significantly
different. Therefore, it is always been a good strategy to compare the amino acid
sequences with other members of the family in attempts to identify specific residues
that may be important for molecular recognition. With the year 2007 publications of
the crystal structures of the β1- and β2-adrenergic receptors, it is now possible to uti-
lize both these alternative templates for the creation of homology models as well as
to validate the previous rhodopsin-based homology models. Some homology mod-
eling studies suggest that in some cases the adrenergic receptor may better serve as
a basis for homology model generation [38, 39]. Structure–function studies, muta-
genesis studies, and affinity labeling studies have been used to validate and revise
the proposed models. Using this combined approach, the integration of a template
and experimental data, molecular models of GPCRs, and receptor–ligand complexes
have been generated, which have been reviewed [2, 40].

3.5 GPCR ACTIVATION

Activation of a GPCR by an extracellular agonist initiates G-protein-mediated sig-
nal transduction that results in the subsequent cascade of intracellular electrochem-
ical signals and release of second messengers. In response to ligand binding, the
ligand–receptor complex and cytoplasmic portion of the receptor undergoes con-
formational change(s), allowing interaction with the G-proteins (which are localized
in the cytoplasmic side of the membrane), thereby transmitting the signal across the
membrane. Significant advances in our understanding of the structure and function of
GPCRs have resulted from the identification of particular residues critical to cell sig-
naling and ligand binding. This has most often resulted from the analysis of in vitro
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94 PEPTIDE DESIGN STRATEGIES FOR G-PROTEIN COUPLED RECEPTORS (GPCRs)

mutated forms of the GPCRs. Generally, the event of receptor activation (in case
of peptidergic GPCRCs (pGPCRs)) may be divided into at least four steps: ligand
binding and signal generation, ligand induced GPCR structural changes, signal trans-
duction, and signal transfer to cytoplasmic signal molecules. Many issues regarding
the activation of GPCRs are under rigorous debate and the literature is rapidly expand-
ing in this area. Mechanisms of GPCR/G-protein interaction are reviewed extensively
elsewhere [41–45].

3.5.1 Ligand (Peptide) Binding and Receptor Activation

Numerous studies have been carried out to identify domains involved in ligand bind-
ing to various subclasses of GPCRs. Receptors targeted by bulky ligand molecules,
such as large peptides and hormones, have resulted in the generation of experimen-
tal data supporting the binding of ligands at the N-terminus, extracellular loops, as
well as at the TM segments, depending upon the specific receptors examined. For
example, peptides ≤40 amino acids have been reported to bind to both the GPCR
core and exoloops, whereas, polypeptides ≤90 amino acids bind to exoloops and
N-terminal segment (Figure 3.1b). For the majority of family A peptide receptors,
ligands have been postulated to interact with the receptor at the amino terminus
and extracellular loop regions. This includes the receptors for angiotensin [46], neu-
ropeptide Y [47], chemokines (interleukin-8, IL-8) [48], vasopressin/oxytocin [49],
Gonadotrophin-releasing hormone (GnRH) [50], formyl-Leu-Met-Phe [51], somato-
statin [52], bradykinins [53], and cholecystokinin (CCK)/gastrin [54, 55]. Signifi-
cance of extracellular loop region for peptide binding was demonstrated using affinity
cross-linking techniques in the GnRH receptor [50], the bradykinin B2 receptor [53],
and the CCK-A receptor [54, 55].

Some examples of peptide ligand binding to their receptors are briefly discussed.
Using spectroscopic and mutational studies, a small peptide ligand such as tripeptide
N-formyl-Met-Leu-Phe binds in the TM core around TMs 2 and 3, whereas the
C-terminal region of the ligands associates with the N-terminal segment and
exoloops 1 and 2 [51]. In another example, the hydrophobic C-terminal region of
angiotensin II (DRVYIHPF) appears to enter the TM core of the angiotensin receptor,
and the C-terminal carboxyl group pairs with TM 5 Lys199 [56] 7–14 Å from the
extracellular surface. On the contrary, the Asp-Arg of the DRVYIHPF sequence
seems to ion pair with exoloop 2 His183 and exoloop 3 Asp281 of the receptor,
respectively [46]. Ligand-binding of other receptors are extensively reviewed
elsewhere [42].

These receptors have poorly defined binding pockets that can accommodate lig-
ands in many orientations and at alternative binding domains. In addition, many
receptors have been found to assume different conformations with distinct signaling
functions. This is further complicated by the fact that single receptors may impinge
on multiple signaling pathways, whereas groups of receptors may all act on a single
intracellular signaling cascade [44]. In many cases the un-liganded receptor has some
basal (constitutive) activity. The term efficacy is used to describe the effect of a ligand
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on the functional properties of the receptor (i.e., maximal stimulation or partial ago-
nist pharmacology). Agonists are defined as ligands that fully activate the receptor.
Partial agonists induce a submaximal response at saturating concentrations. Inverse
agonists decrease the inherent basal activity in a dose-dependent manner. Antago-
nists have no effect on basal activity, but competitively block access of other ligands
that can distinguish between ligand binding and receptor activation by competitively
inhibiting agonist binding [57].

A number of kinetic models have been developed to explain GPCR activation
using indirect methods such as ligand binding affinity and the activation of G-proteins
or effector enzymes [58, 59]. The two-state model is the simplest of all proposals, in
which a receptor exists primarily in two states: the inactive state (R) and the active
state (R*). In the absence of ligands, the level of basal receptor activity is deter-
mined by the equilibrium between R and R*. Full agonists bind to and stabilize R*,
while antagonists bind to and stabilize R. Partial agonists have some affinity for both
R and R* and are, therefore, less effective in shifting the equilibrium toward R*.
The two-state model is very straightforward and describes the systems consisting
one receptor and one G-protein. However, there is experimental data to support the
concept that multiple conformational states of GPCRs exist in equilibrium and are
important for different physiological processes [57]. Within this framework, each lig-
and may induce or stabilize a unique conformational state that can be distinguished
by the activity of that state toward different signaling molecules (e.g., G-proteins,
kinases, and arrestins) [1].

3.5.2 Common Structural Changes among GPCRs

Agonists bind to a GPCR and induce a conformational change that leads to G-protein
activation. Regardless of the mode of ligand binding, the common result is a con-
formational change in the GPCR. Site-directed spin-labeling experiments of bovine
rhodopsin have shown that activation of this receptor primarily results in an outward
movement of helix 6, thereby opening a crevice within the intracellular surface of the
receptor [15]. This conformational change appears to be essential for transducin (Gt)
activation because cross-linking helices 3 and 6 of rhodopsin with artificial disul-
fide or metal-ion bonds prevents Gt activation [15, 60]. Biophysical and biochemi-
cal studies such as fluorescence and NMR have also supported the hypothesis that
the GPCRs undergo conformational changes within TM segments and cytoplasmic
domains. Spectroscopic studies of 𝛽2AR labeled with fluorescent probes demonstrate
movement in both TM3 and TM6 on activation [61, 62]. Another study of 𝛽2AR
labeled with fluorescent probes at the cytoplasmic end of TM6 provide data support-
ing the hypothesis that agonists induce a rotation or tilting movement of the cytoplas-
mic end of TM6 similar to that observed in rhodopsin [63]. Additional support for
movement of TM3 and TM6 in the 𝛽2AR comes from zinc cross-linking studies [64].
Cysteine cross-linking studies on the M3 muscarinic receptor provide evidence for
the movement of the cytoplasmic ends of TM5 and TM6 toward each other on agonist
activation [65, 66]. Similar findings have been reported for the thyrotropin-releasing
hormone receptor [67].
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3.5.3 G-Protein Coupled Intracellular Signaling Pathways

The majority of peptide-GPCRs transduce a signal through a series of membrane-
localized Guanosine diphosphate/Guanosine triphosphate (GDP/GTP) binding
proteins known as G-proteins. Classic interactions between receptors, G-protein, and
membrane-localized adenylate cyclase are illustrated using the pancreatic hormone
glucagon as an example (Figure 3.2). When G-proteins bind to receptors, GTP
exchanges with GDP bound to the 𝛼 subunit of the G-protein. The Gα-GTP complex
binds adenylate cyclase, activating the enzyme. Effectors are related to secondary
messengers to produce metabolic responses. Activation of adenylate cyclase leads
to cyclic adenosine monophosphate (cAMP) production in the cytosol and to the
activation of protein kinase A (PKA), followed by regulatory phosphorylation of

Gαs

Gαs

Gαs

GTP

Adenylyl
cyclase

cAMP

PKA
(active)

Cell response

GDP

Agonist

β

β
γ

β
γ

γ

Figure 3.2 Classical example of signal transduction in seven transmembrane receptor. (See
insert for color representation of this figure.)
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TABLE 3.2 Heterotrimeric G-Proteins and Their Effectors. Modified from ref. [3].

G-Protein Subunits Effectors References

G𝛼s ↑Adenylyl cyclase [68]
G𝛼olf RGS-PX1 (GAP, sorting nexin) [69]

Calcium channels
c-Src tyrosine kinases [70]

G𝛼T (transducin) ↑cGMP phosphodiesterase [71]
G𝛼gust (gustducin) Phosphodiesterase (bitter, sweet taste) [72]
G𝛼i 1,2,3 ↓ Adenylyl cyclase, ↑c-Src tyrosinase kinases [70, 73–75]
G𝛼o

G𝛼z Rap1Gap1
G𝛼q ,G11, G14, 15, 16 ↑Phospholipase C [76–78]

Leukemia associated RhoGEF (LARG) RhoGEF
G12, G13 p115 RhoGEF, PDZ-RhoGEF, LARG RhoGEF [76, 77, 79–81]

(Rho activation, stress-fiber formation)
E-candherin (β-catenin release)

G𝛽𝛾 KIR3. 1–3.4 (GIRK K+ channels) [82–87]
GRKs
↑Adenylyl cyclases (ACII, ACIV)
↑Phospholipase (PLC 𝛽1, 𝛽2, 𝛽3)
PI3K𝛾

cGMP, cyclic Guanosine monophosphate (GMP); GAP, GTPase-activating protein; GEF,
guanine-nucleotide exchange factor; GIRK, G-Protein-regulated inwardly rectifying potassium
channel; PI3K, phosphatidylinositol 3-kinase; RGS, regulator of G-protein signaling.

numerous enzymes. Hydrolysis of GTP to GDP leads to the reassociation of the
heterotrimer and the termination of the activation cycle [3].

Generally, GPCR’s signal through the major G-proteins (Table 3.2); however,
alternative and/or multiple signal transduction pathways are emerging as well
as homo and heterodimerization of GPCRs, which may modify a ligands signal
transduction pathways. These research areas are still in their infancy, primarily due
to technological limitations, and will provide an area of active research for years to
come. G-protein is heterotrimeric, comprising 𝛼, 𝛽, and 𝛾 subunits. The α-subunit is
responsible for GTP and GDP binding and for GTP hydrolysis, whereas the 𝛽 and
γ-subunits are associated in a tightly linked 𝛽𝛾 complex. G-proteins are generally
referred to by their α-subunits. Therefore, the Gs heterotrimeric complex contains
G𝛼s; Gq contains G𝛼q; Gi contains G𝛼i, and so on. Four distinct α-subunits are
recognized: Gs (stimulatory protein) proteins couple to stimulate adenylyl cyclase;
Gi (inhibitory protein) proteins couple to inhibition of adenylyl cyclase as well as
to activation of G-protein coupled inwardly rectifying potassium (GIRK) channels;
Gq proteins couple to activate phosholipase C𝛽; and G12 proteins. Both 𝛼 subunit
and 𝛽𝛾 dimer signal through the activation, or inhibition, of various effectors
(Table 3.2) [3].
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A second class of peptide hormones induces the transduction of two second mes-
sengers, namely, diacylglycerol (DAG) and IP3 (explained below for α-adrenergic
stimulation by epinephrine). Hormone binding is followed by an interaction with
a stimulatory G-protein, which in turn is followed by G-protein activation of
membrane-localized phospholipase C-𝛾 , (PLC-𝛾). PLC-𝛾 hydrolyzes phosphatidyli-
nositol 4,5-bisphosphate (PIP2) to produce the second messengers: IP3, which is
soluble in the cytosol, and DAG, which remains in the membrane phase. Cytosolic
IP3 binds to sites on the endoplasmic reticulum, opening Ca2+ channels and allowing
stored Ca2+ to flood the cytosol. There, it activates numerous enzymes, many by
activating their calmodulin or calmodulin-like subunits. DAG has two roles: (i) it
binds and activates protein kinase C (PKC) and (ii) it opens Ca2+ channels in the
plasma membrane, reinforcing the effect of IP3. Like PKA, PKC phosphorylates
serine and threonine residues of many proteins, thus modulating their catalytic
activity.

3.6 STRUCTURE AND FUNCTION OF PEPTIDE HORMONES

Peptide hormones play an essential role in many physiological systems. The nonco-
valent interaction with their membrane bound GPCRs is highly specific and results
in signal transduction from the external milieu to within the cell. Hormones, neuoro-
transmitters, antigens, cytokines, and growth factors represent key classes of such
peptide ligands. Endogenous peptide hormone synthesis originates at the genomic
DNA level by a unique nucleotide sequence. Three nucleotides make up a codon,
which then is translated into a specific amino acid residue. The nucleotide sequence
is contained on a gene that consists of a promoter domain that initiates and deter-
mines when the DNA is transcribed to mRNA and subsequently translated into an
amino acid sequence. This nascent peptide/protein chain is then transported into the
cisternae of the rough endoplasmic reticulum and then to the Golgi elements. Peptides
are then pinched off into secretory vesicles within the cellular cytoplasm for further
distribution depending upon the type of cell and function of the hormone. If a peptide
functions at a neurohormone, generally, then these vesicles are transported (sometime
up to relatively long distances) to the neuronal axon terminals awaiting release. Some
prohormone peptides are posttranslationally modified by endopeptidases, resulting
in one or more distinct peptide hormones. An example of this is the posttranslational
processing of the pro-opiomelanocortin (POMC) gene transcript into several peptide
hormones with distinct amino acid sequences (Figure 3.3) [88–90]. Once released,
hormones can reach their target cells by one or more mechanisms. Generally, peptide
hormones have a short half-life (2–60 min), depending on the presence of peptidases
(enzymes that cleave peptides), pH, and/or metabolic clearance. Peptidases fall into
two general classes. Exopeptidases (carboxy- and aminopeptidases) cleave the pep-
tide from the C- or N-terminal, respectively. Endopeptidases cleave the amide bonds
within the peptide as specific recognition sites. Common sites include dibasic amino
acids such as Lys and Arg.
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POMC

N-terminal fragment ACTH β-Lipotropin

γ-MSH α-MSH β-MSHCLIP β-Endorphin

ACTH (1-24) SYSMEHFRWGKPVGKKRRPVKVYP

Ac-SYSMEHFRWGKPV-NH2 

β-MSH AEKKDEGPYRMEHFRWGSPPKD-OH

γ-MSH YVMGHFRWDRFG-OH

α-MSH

Figure 3.3 POMC processing of the melanocortins and primary sequence of the
melanocortin peptides with core “His-Phe-Arg-Trp.”

3.7 DESIGN APPROACHES FOR GPCR SELECTIVE PEPTIDE
LIGANDS

Peptide hormones interact with their membrane bound receptors in highly specific
manner to transduce a cellular signal and play important role(s) in regulating various
physiological mechanisms. Structural determination of peptide hormone–receptor
complexes is still a challenge in structural biology, therefore, not much is known
about these complexes. From structural determination of isolated peptide hormones
in conjunction with biochemical and biophysical data, indirect information about
the ligand–receptor complex can be postulated. It is well established that the side
chain moieties of peptides are involved in the receptor molecular recognition pro-
cess. The peptide side chain topography and stereoelectronic properties provide the
critical information important for specific interactions and receptor stimulation. A
general strategy for attaining peptide-based information important for these receptor
mediated events is outlined in Figure 3.4. Structure and activity studies of peptide
hormones are an important tool to analyze ligand–receptor interaction; other meth-
ods are photo-affinity labeling, site-directed mutagenesis, the construction of receptor
chimeras, and molecular modeling. We will discuss some of the methods in the fol-
lowing sections by taking examples from peptidergic GPCR family, primarily the
melanocortin system, as that is the focus of our research.

3.7.1 Structure–Activity Relationship (SAR) Studies

With the ability to synthesize peptides, the concept of exploring the importance of
specific peptide amino acids as well as peptide structure became viable. Typical
strategies for understanding the importance of a particular amino acid at a particular
position in the peptide hormone include: Alanine (Ala) scans, N- and C-terminal
truncation peptides, and d-amino acid scans as the most common approaches.
Replacement of a desired peptide amino acid with Ala is utilized because this
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Biologically active peptide

Biophysical studies

• NMR

• X-ray 

• Computer  assisted modeling 

Structure–activity studies

• Truncation and deletion (define active core)
• Alanine and D-amino acid scans (critical side chain 
residue)

• Single and multiple substitutions

Indentification of: 1) message sequence
2) address sequence

3) stereochemistry feature of each amino
acid  residue

Receptor mutagenesis

• Functional assay
• Binding assay

Structure–activity studies
Conformational constrained peptide analogs

Cyclization, amide bond modification, turn mimetics
Chimeric and Unusual amino acids

Prediction of: 1) Local conforamtion parameters
2) Global conformation parameters

Bioactive conformation and 3D pharmacophore model

3D receptor modeling and 
pharmacophore docking 

Figure 3.4 Strategy to design receptor-selective peptide ligands.

residue contains a methyl group at the C𝛼 side chain position. This residue possesses
the smallest C𝛼 side chain of the 20 naturally occurring eukaryotic amino acids
besides glycine (Gly) residue. Gly residue contains a proton, which is smaller
than the methyl group; however, the amino acid Gly does not possess chirality at
the C𝛼 carbon, which can be important for the structure of the peptide. Thus, by
substituting the peptide side chain with a small relatively neutral amino acid such
as Ala, the importance of a particular amino acid side chain moiety interaction with
its corresponding target protein or receptor can be examined. If a particular side
chain is important for peptide structure or function, then on replacement with Ala,
decreased ligand affinity and/or potency is anticipated to result. If the residue is not
important for a particular hormone, then a very subtle, or no change, in ligand affinity
and/or potency might be observed. These data can allow for the identification of
the development of a peptide hormone pharmacophore model. This pharmacophore
portion of a peptide hormone is considered to be the positioning of key atoms in 3D
space important for the peptide to selectively recognize its cognate receptor. This
information is highly desirable as it can be used in the design process to generate
peptidomimetics and potential small molecule therapeutic ligands.

In the truncation approach, the peptide amino acid residues are deleted singly
(or in combination) from either the N- or C-terminal domain of a peptide. Infor-
mation obtained from these types of studies can narrow down a particular amino
acid sequence that might retain acceptable potency while decreasing the number of
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amino acids needed for molecular recognition, selectivity, and functionality at its cor-
responding receptor protein. For example, if a 13 amino acid peptide can be truncated
to three or four amino acids while retaining nM potency and efficacy, then that would
be easier and more cost-effective to perform further structure–activity relationship
(SAR) studies. Additionally, for some peptide hormones, both the N- and C-terminal
residues are important for the secondary structure important for the physiological
activity of the peptide. Thus, the removal of these residues would result in decreased
or no activity of the peptide and help determine the amino acids important for the
structure of the peptide as well as its function.

A third common approach has been the substitution of the naturally occurring
l-configured amino acid with the d-configuration, known as a d-amino acid scan.
Because peptides are recognized as being degraded by enzymes within a cell or the
body, the incorporation of a d-amino acid might increase enzymatic resistance and
increase peptide stability. Additionally, it has been found in several peptide hormones
that the incorporation of d-amino acids can increase peptide potency.

It is apparent that systematic structure–function studies provide information about
the specific amino acid residues and functional groups in a peptide that are important
to biological activity. For example, structure–function studies of α-MSH eventu-
ally resulted in a more potent and enzyme-resistant analog [Nle4, dPhe7]-α-MSH
(NDP-MSH) that contains the active core fragment of melanocortin peptides with
Nle substitution in position 4 instead of Met, which is prone to oxidation and dPhe at
position 7 in place of Phe [91]. Radiolabeled derivatives of NDP-MSH are extensively
used for melanocortin receptor studies. Truncation studies of α-MSH, which involves
selective removal of N- and/or C-terminal residues, followed by the evaluation of the
truncated analogs for binding and/or functional activity revealed that residues 4, 10,
and 12 contributes to the potency of the peptide. The minimum sequence identified
for the biological activity was Ac-His-Phe-Arg-Trp-NH2 (core message sequence)
for α-MSH in classical frog and lizard bioassay [92–94]. Positional Ala scan of
α-MSH revealed that positions 4, 6, 7, 8 and 9 are important for the receptor binding at
MC1R [95].

Once a peptide template has been identified that meets the investigators criteria
for potency and minimal length, a variety of other types of peptide SAR studies can
be performed in attempts to optimize receptor potency, selectivity, ligand structure,
and stability. Table 3.3 summarizes some of the standard types of SAR studies that
can be performed. Since the majority of peptide hormones are linear and highly flex-
ible in solution, they can adopt a plethora of different structural conformations and
global structures depending upon a local environment. For example, a linear peptide
in solution that contains a large component of hydrophilic amino acid side chains
may possess an extended conformation in an aqueous environment. However, this
same peptide when exposed to a hydrophobic environment, such as a lipid bilayer
or interior binding domain of its receptor protein, may form a constrained confor-
mation where the hydrophilic side chains are facing the interior of the peptide and
the hydrophobic portion of the peptide is interacting within the hydrophobic local
environment. Thus, the concept of identifying the biologically active peptide con-
formation reasons that by restraining a flexible peptide into this biologically active
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TABLE 3.3 General SAR Studies to Design Receptor Selective and Potent Ligands.

Study Feature

1 Substitution by d-amino acids Stereochemical requirement; secondary
structures (β-turns, a-helix, etc.)

2 Substitution of side chain moieties by a
methyl group

Stereoelectronic properties of the side
chain and its importance in
interaction

3 Substitution of peptide bonds Importance of specific amide bonds for
ligand–receptor interactions

4 Cyclization approaches Define topography of the amino acid
residues; secondary structure

5 Reduction or increase in ring size The optimum ring size for biological
activity

6 Backbone N𝛼-alkylation Conformational constraint; less prone
to enzymatic hydrolysis

7 Backbone C𝛼-alkylation Conformational constraint, generally to
α-helix

peptide, the energy associated with ligand structural conversion can be minimized
and, therefore, the ligand potency can be enhanced by decreasing the overall energy
required by the system. With that rationale, a common approach to restricting con-
formational freedom of a peptide is the incorporation of cyclization strategies. These
cyclization approaches can include side chain to side chain, backbone to backbone,
and side chain to backbone. A common cyclization strategy used by nature is the
disulfide bridge, but the synthetic opportunities to create different types of cycliza-
tions in peptides are only limited by the creativity of the investigator and the available
orthogonal synthetic strategies. One of the most common synthetic cyclization that
has historically been incorporated into peptides is the lactam bridge. This has been
primarily due to the same chemistry as the typical amide bond formation of a grow-
ing peptide chain. Backbone cyclization (BC) is one of the approaches that utilizes
atoms in the backbone (N and/or C) of a target linear peptide through a linker to
form a ring and shown to dramatically enhance the metabolic stability and pharma-
cological stability of peptides [96]. Advantage of BC over other peptide cyclization
methods is that they use the backbone atoms leaving the side chain intact, which are
essential for biological activity at the receptor. Utilizing this approach, Hess et al.
[96] have synthesized a library of backbone cyclic analogs where the bridge was
formed connecting the N-terminus to the N𝛼 of the C-terminal Gly building unit by
a dicarboxylic acid spacer. All the peptides in the library consist of the same par-
ent sequence, but differ in ring size. From this study, they found that the compound
BL3020-1, which was selective for the MC4R, had favorable metabolic and phar-
macokinetic properties. In another example of cyclization approach, Ahn et al. [97]
have used positional cyclization scanning approach to identify the bioactive confor-
mation of glucagon. Once hypotheses regarding a particular peptide pharmacophore
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TABLE 3.4 Amide Bond Replacements and Their Applications for Peptide
Ligands [98].

Amide Bond Replacement Application References

Ψ[CH2NH] Neurokinin antagonist [99]
Ψ[CH2O] Gastrin releasing peptide antagonist [100]
Ψ[CH2S] and Ψ[CH2SO] Reverse turn stabilizers [101]
Ψ[COCH2] Neurotensin analog [102]
Ψ[(E)-CH=CH] Determination of bioactive

conformation of cholecystokinin
terminal hexapeptide

[103]

Ψ[(E)-CF=CH] Opioid agonist [104]
Ψ[CN4] Somatostatin and bradykinin analogs [105]
Ψ[CH(CN)NH] Neurotensin analog [102]

and/or biologically active conformations are generated, a common approach is then
to incorporate unusual amino acids in attempts to increase ligand-binding interactions
as well as enhance desired receptor selectivity profiles by restricting the conforma-
tional flexibility of the peptide backbone. Constrained amino acids strategy has led to
the discovery of peptides that show increased binding affinity, potency, and selectivity
toward one or more of the receptors.

Peptide backbones consist of amide bonds that are most commonly found in a trans
configuration under normal conditions and are very susceptible to the biodegradation,
which limit the ability of peptides to act as therapeutic agents. However, the modifi-
cation of the amide backbone can help stabilize a postulated pharmacophore model,
add increased enzymatic and biological stability. Modifications of the peptide amide
bond with a bioisosteric group that resembles an amide without the drawbacks listed
above, result in the somewhat rigid or locked conformation of the ligand that may
have enhance binding affinity to specific target. Amide bond surrogates range from
simple olefinic groups to more sophisticated heterocycles. Table 3.4 lists some of the
common amide bond isosteres that have been reported to be applicable in the case of
peptide ligands [106].

3.7.2 Chimeric Peptide Analogs

Another approach is to place key structural moieties into novel templates or link
them together on alternate templates to produce chimeric analogs to examine
selectivity and/or potency. Recent examples in this context are the novel chimeric
melanotropin–deltorphin analogs by Han et al. [107]. Chimeric melanocortin-AGRP
(agouti-related protein) peptides were synthesized to test the hypothesis that the
Arg-Phe-Phe motif human agouti-related protein(hAGRP)(111–113) mimics the
dPhe-Arg-Trp of the melanocortin agonists in interactions with melanocortin
receptors [108–110].
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3.7.3 Combinatorial Libraries

Combinatorial chemistry was developed with peptide synthetic strategies in combi-
nation with high throughput bioassays. These approaches resulted in the emergence
of the privileged scaffold concept, which was proposed by Evans et al. [111]. The rea-
son behind choosing a common (privileged) structure was related to the G-proteins
that have evolved from the same ancestral gene and have similar structural features,
especially in the TM region, where ligands bind in most cases. Therefore, GPCRs that
act through G-proteins should respond to the certain privileged structures. Therefore,
the basic principle is that if molecular scaffold is able to bind and stimulate multiple
GPCR systems, it can be used to generate a library that can be successfully screened
against other GPCRs, particularly orphaned receptors. Benzodiazepine scaffold
utilized by Evans et al. [111], thought to mimic a reverse turn, has resulted in lead hits
against multiple peptide receptors such as neuropeptide Y receptor, [112] bradykinin
receptor [113], and melanocortin receptor [114]. Combinatorial chemistry has
shown that different chemical structures can interact with a given GPCR and yield
therapeutically useful analogs with nanomolar affinities on optimization. Parallel
synthesis and testing of multiple analogs with different conformational constraints,
d-amino acids, dehydroamino acids, amide and disulide cyclic constraint, and reverse
turn mimetics offer a rapid approach to the determination of the receptor-bound
conformation [115].

3.7.4 Three-Dimensional (3D) GPCR Homology Molecular Modeling

The overall goal of 3D homology molecular modeling is to aid structure-based
design strategy and provide further insight for rational drug design. Identification
of putative receptor residues important for ligand binding is a key component to
homology modeling goals. A desirable approach to identify peptide–receptor inter-
actions is to obtain an X-ray structure based on the formation of a protein complex
crystal. Since GPCRs are functional in the cellular lipid bilayer, the generation
of the desirable high resolution structures is lacking. As mentioned earlier, one
approach that has become a viable strategy is using homology molecular modeling
of GPCRs based on originally bacteriorhodopsin [116] and bovine rhodopsin [117]
templates. Subsequently, in 2000, the first high resolution GPCR crystal structure
of the rhodopsin and more recently in 2007, key studies of crystal structures of
the human β2-adrenergic receptor GPCR were reported [25, 26]. Thus, using these
structures of GPCRs in their various forms and atomic resolution, scientists have
been developing the concept of homology molecular modeling in attempts to identify
putative ligand–receptor interactions since the 1990s [118, 119]. In the absence of
3D structures of the other GPCRs, one approach is to construct model for the GPCR
and to refine the model based on experimental results [40]. Homology molecular
modeling has been traditionally utilized for decades by X-ray crystallographers,
and thus is a widely accepted and validated computational experimental approach.
Computer-generated models for many GPCRs have been constructed and available
at http://cssb.biology.gatech.edu/skolnick/files/gpcr/gpcr.html. There are a variety
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of tools and approaches currently available to align a desired GPCR of interest
using the available crystal structures (Protein data bank (PDB) Id: 1U19, 1GZM,
2I37, 3CAP, 2Z73, 2VT4, 2RH1, and 3D4S). These approaches range from manual
alignment to computer-assisted programs on a variety of different platforms. It is
important to examine the specific GPCR amino acid residues to identify residues that
are common to the majority of GPCRs, as they are most likely involved in structural
integrity important for general GPCR structure or function versus amino acids that
are unique for a particular peptide receptor class. These unique residues might be
postulated to be important for molecular recognition and peptide specificity for a
given GPCR. Computational modeling approaches for GPCRs were extensively
reviewed by Fanelli and Bandetti [120] in 2005.

The next common approach is to dock the peptide hormone into the refined GPCR
model and perform energy-minimization studies to ensure the steric and overlapping
side chains interactions are removed. Determining the putative structure of the ligand
and the conformation that will be used to dock into the receptor can occur using a
variety of approaches. Generally, peptide SAR (as described earlier) is performed, so
that key ligand atoms have been identified as important for pharmacological activity.
Biophysical studies such as NMR and computer-assisted molecular modeling are also
a strategy that can be used. Typically, the actual docking process is now performed
by a computer program, but oversight and chemical intuition by scientists is still an
important aspect for performing and monitoring these types of studies.

Once a 3D model of the peptide–receptor complex has been generated, puta-
tive key ligand–receptor interactions between side chains as well as backbones are
postulated. The side chain interactions can be experimentally tested by receptor muta-
genesis, peptide SAR, or both in a complementary fashion. In these experiments, it
is advantageous to have both binding as well as functional data, so that changes in
pharmacology can be associated as important for receptor structure–function, peptide
molecular recognition, and/or receptor activation.

3.8 CONCLUSIONS

Although classical drug-screening programs have been successful, more structural
knowledge is needed for rational-based drug design. Paucity of structural knowledge
about GPCRs has severely limited the application of structure-based drug design.
Even though >30% of all marketed therapeutics act on GPCRs, these drugs target
only∼30 members of this class so there is enormous potential to exploit the remaining
family members, including the >100 orphan receptors for which no existing ligands
have yet been identified.
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4.1 INTRODUCTION

Enzymes are responsible for catalyzing a great variety of critical biological reactions.
In turn, disease initiation and progression are often marked by aberrant enzyme activ-
ity. Peptide substrates have been utilized to study the mechanisms of action of many
enzymes of various classifications. Concurrently, information derived from peptide
substrate studies has been used to develop peptide-based inhibitors of enzymes. In this
chapter, we describe peptide-based inhibitors of enzymes representative of several
classifications.
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Enzymes are divided into six different classifications: according to their enzyme
commission (EC) number EC 1, oxidoreductases; EC 2, transferases; EC 3,
hydrolases; EC 4, lyases; EC 5, isomerases; and EC 6, ligases. The majority of
peptide-based studies have been performed with enzymes of the hydrolase clas-
sification (EC 3), primarily peptidases/proteases (EC 3.4), deacetylases (EC 3.5),
and phosphatases (EC 3.1.3). Proteolytic enzymes represent a significant portion
of the human genome (∼2%) and have been shown to be viable targets for drug
development [1–3]. Extensive reviews of clinical applications of protease inhibitors
are available elsewhere [2, 3], so this chapter focuses on a few select examples
of peptide-based inhibitors of proteases (angiotensin-converting enzyme (ACE),
human acquired immunodeficiency virus (HIV) protease, matrix metalloproteinases
(MMPs), and anthrax lethal factor (LF)).

Significant peptide-based studies have been performed with transferase enzymes
(EC 2), namely, kinases (EC 2.7). Kinases account for approximately 2% of the
human genome. Their strong implication in numerous diseases, particularly cancer,
led to the development of peptide and peptidomimetic inhibitors. Other transferases
targeted by peptide-based inhibitors are glycosyltransferases (EC 2.4), telomerase
(EC 2.7.7.49), and histone methyltransferase (EC 2.1.1.43). Peptide-based inhibitors
have also been developed for members of the oxidoreductase classification (EC 1),
such as tyrosinase (EC 1.14.18.1), and the isomerase classification (EC 5), such as
peptidyl-prolyl isomerase (EC 5.2).

4.2 ANGIOTENSIN-CONVERTING ENZYME AND
NEPRILYSIN/NEUTRAL ENDOPEPTIDASE

Active octapeptide angiotensin II was first isolated in 1934, and 20 years later ACE
was shown to be the enzyme responsible for cleaving the C-terminal dipeptide from
the inactive decapeptide angiotensin I [4].

If a popularity contest for peptide inhibitors of enzyme action were held today,
the inhibitors of ACE would be a clear front-runner. These peptide-derived drugs
are among the first doctors turn to in cases of congestive heart failure and hyperten-
sive disease [4]. In healthy systems, the hydrolase ACE cleaves angiotensin I into
active angiotensin II, a potent vasorepressor active in all tissues. This step is required
for angiotensin receptor activation [5]. Constriction of blood vessels results in a net
increase in blood pressure as the heart increases effort to transport blood throughout
the body.

Inhibitors for ACE were sought to artificially lower blood pressure in hypertensive
patients, and in the late 1960s Bristol Myers-Squibb took up the search. At that time,
the rennin-angiotensin system (RAS) for control of blood pressure was poorly under-
stood with no extant quantitative assays for ACE activity. Kineticist David Cushman
pioneered the structure-function approach by purifying rabbit lung ACE, then devel-
oping a spectrophotometric assay to quantify its activity [4]. After chelation and ion
deprivation analysis, ACE was determined to be a zinc metallopeptidase, and Cush-
man along with collaborator Miguel Ondretti theorized its catalytic center might be
similar to one of the few known protein crystal structures, carboxypeptidase A [4].
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Figure 4.1 Structure of captopril (a). Schematic of captopril bound to the active site of tACE
(testis ACE) (b). Source: Reprinted with permission from Reference 10.

Concurrently, Sergio Ferreia found peptides from pit viper venom that inhibited ACE
and receptors of the nonapeptide bradykinin [6, 7]. Tepretide, the venom-derived
peptide with the most ACE activity was tested in patients and showed significant
blood-pressure lowering effects [8]. Unfortunately, tepretide was costly to make, and
had low oral bioactivity and low solubility. In 1972, Byers and Wolfrenden [9] pub-
lished work on a biproduct analog inhibitor of carboxypeptidase A; its high affinity
was ascribed to its aromatic structure, which mimicked both products of the enzyme.
Cushman and Ondretti had, by this point, developed reliable guinea pig ileum assays
for ACE inhibition. Knowledge obtained from venom peptides that ACE preferred
Phe-Ala-Pro at the C-terminus, a model that ACE released a dipeptide rather than a
single amino acid, and the success of the guinea pig model system guided them to
the eventual synthesis of captopril, a dipeptide analog with high oral bioavailability
(Figure 4.1). More ACE inhibitors have been developed to avoid the side effects of
captopril, but the overall Phe-Ala-Pro analog structure remains. ACE inhibitors also
inhibit the inactivation of bradykinin and substance P. These peptides mediate some
of the side effects of ACE inhibitors, such as cough and angioedema [10].

In the year 2002, ACE inhibitors were the most commonly prescribed drugs for
the treatment of hypertension in the United States and are definitively the major pro-
tease inhibitor success story [3]. Current-generation ACE inhibitors are widely used
for cardiovascular diseases, including high blood pressure, heart failure, heart attack,
and kidney failure, and have combined annual sales in excess of US $6 billion [10].
Thirteen ACE inhibitors are currently approved for clinical use and several others
are in clinical trials. ACE inhibitors developed in the late 1970s and early 1980s
possess detrimental side effects, prompting further exploration. These side effects
could be explained by the fact that the first-generation ACE inhibitors were designed
based on the structure of carboxypeptidase A, which we now know is considerably
different from ACE. Once the crystal structure of ACE was solved, it revealed that
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Figure 4.2 Comparison of the X-ray crystallographic structures of ACE and neurolysin folds.
Active site zinc molecules are shown in green [11].

ACE consists of N- and C-domains that have different functions and specificities
(Figure 4.2) [11]. The C-terminal domain seems to be primarily responsible for the
conversion of angiotensin I to angiotensin II, with the major effect on blood-pressure
regulation. Early ACE inhibitors were relatively nonselective and inhibited both
domains with similar activities. Therefore, the design of domain-selective ACE
inhibitors is expected to produce safer and more effective drugs.

Based on large body of experimental evidence, it has become apparent that the
RAS, the kallikrein-kinin pathway, and the natriuretic peptides are important mod-
ulators of cardiovascular homeostasis. These findings have provided the impetus to
develop inhibitors that simultaneously block angiotensin II and increase atrial natri-
uretic peptide (ANP), which are regulated by endothelial, membrane-bound ACE,
and neural endopeptidase (NEP) [12].

NEP belongs to the family of zinc-dependent endopeptidases. Catalytic proper-
ties of NEP resemble thermolysin, a zinc-dependent bacterial endopeptidase. It is
located at the cell surface with the bulk of the protein, including the active site, facing
the extracellular space, and therefore functions as an ectoenzyme, catalyzing peptide
hydrolysis at the surface of the plasma membrane [13, 14]. NEP has been implicated
in the regulation of opioid peptide action through the degradation of endogenously
released enkephalins [15]. NEP is involved in the physiological degradation of the
peptides modulating blood pressure, such as the cardiac hormone ANP, bradykinin,
and endothelin [16]. More recently, NEP has been implicated in the degradation of
amyloid 𝛽 peptide (A𝛽1-42) [17, 18], the primary pathogenic agent in Alzheimer’s
disease, and has been shown to play a role in the degradation of the incretin hormone
glucagon-like peptide (GLP)-1, which is a potent stimulator of insulin secretion.
Potent inhibitors of NEP produce a pharmacological response through an increase
in opioid or vasoactive peptide levels, indicating their therapeutic potential as novel
analgesics or antihypertensive agents [19–21].

The concept of dual inhibition of the two enzymes by a single molecule has shown
major benefits and potential superiority versus other agents in various experimental
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models of hypertension, heart failure, and renal diseases. The underlying presumed
rationale for the combined inhibition of ACE and NEP is to block the vasocon-
strictor angiotensin II and simultaneously increase the vasodilator ANP by decreas-
ing its enzymatic degradation. However, it remains controversial as to whether dual
ACE/NEP inhibitors confer superior cardiovascular effects when compared to ACE
inhibition alone. A major impediment for routine use of these agents remains the
potentially life threatening side effect of angioedema, or excessive, painful swelling
beneath the skin. Omapatrilat (Bristol-Myers Squibb) [22], the most advanced dual
ACE/NEP inhibitor, although shown to be superior over existing agents in reducing
hypertension, was halted by the US Food and Drug Administration (FDA) in phase
III clinical trials because of increased side effects, such as severe angioedema [10].

4.3 PEPTIDE INHIBITORS OF THE HIV-1 VIRAL LIFE CYCLE

HIV-1 is the causative agent for acquired immune deficiency syndrome (AIDS).
AIDS was a great plague of the last century, and remains a significant public health
problem worldwide. Heroic public health and research efforts have been made to
counteract this disease, with research targeted at generating therapeutics at every
stage in the viral life cycle. Drug resistance is a great challenge in HIV-1 treatment
therapies, resulting in the development of combination therapies [23].

The major hurdle in HIV-1 immune response and drug resistance is its high
mutation rate. Since HIV-1 reverse transcriptase does not possess editing function-
ality, HIV-1 has highly error-prone replication [23, 24]. A patient infected with
HIV-1 undergoes constant reinfection by self-generated mutant virus, presenting an
ever-changing challenge to the immune system. Over time, the viral load increases
as immune reserves become depleted, and normally trivial secondary infections
by rhinovirus or fungus may prove lethal to the patient’s overloaded immune
system [24].

HIV-1 protease is an aspartic protease and an attractive secondary target for
peptide-based therapeutic intervention. The 17-protein viral mRNA is read out as
one long polypeptide [24]. HIV-1 protease autolyses itself from this polypeptide and
subsequently cleaves other viral proteins into active forms (Figure 4.3) [24]. The first
FDA-approved antiretroviral protease inhibitor was saquinivir (Table 4.1), developed
by Roche and approved in 1995 [25]. This 680 Da peptidomimetic compound had
excellent binding affinity but poor oral viability [24]. In the clinic, single protease
inhibitor treatments quickly resulted in drug resistance, so other protease inhibitors
were rushed to market (Table 4.1).

Because viral resistance is a complex, moving target, a recurring theme in HIV-1
treatment is combinatorial therapy. As a first example, a mixture of saquinavir
and ritonavir therapy in clinics preserved saquinavir serum levels, and ritonavir
was later shown to inhibit not only HIV-1 but also the breakdown of saquinavir
by cytochrome P450 peroxidase [24]. However, inhibiting HIV-1 protease alone
can result in side effects such as diabetes, cardiovascular events, and lipidystrophy
[26]. Simultaneously, utilizing nonscissile substrate mimics as inhibitors of HIV-1
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Figure 4.3 HIV-1 Viral Genome. Gag: group specific antigen codes for the Gag polyprotein,
processed by HIV-1 protease into structural proteins such as matrix protein (MA), capsid pro-
tein (CA), nucleocapsid Protein (NC) and spacer peptides. The Pol polyprotein is most often
targeted for drug therapies; it codes for the viral enzymes, including reverse transcriptase, viral
integrase, and HIV-1 protease. Env or “envelope” codes for gp160, which is a precursor to the
fusion proteins gp120 and gp41. Regulator of virion (Rev), negative regulatory factor (Nef),
and transcriptional AcTivator (Tat) are viral regulatory genes to augment and time expression.
Viral protein U (Vpu) is involved in virion budding, while viral protein R is critical to nuclear
import of the RNA genome.

protease typically produced resistance mutations to several drugs at once, caused by
heightened similarities of catalytic site and peptide inhibitor interaction [27–29].
In vivo cases have reported that as few as four amino-acid mutations in HIV-1
protease (M46I/L63P/V82T/I84V) were sufficient to confer viral resistance to early
drugs in clinical trials [30]. Current research strategies on inhibitor design for
HIV-1 protease have moved from blocking the catalytic site to binding inhibitory
peptides to conserved regions on the protein backbone [31, 32]. Furthermore, the
treatment of HIV infection has moved to a vertical system of inhibition known
as highly active antiretroviral therapy (HAART). HAART became standard care
following the Vancouver-based International AIDS Conference of 1996 [26]. This
strategy converts HIV from a bed-ridden death sentence to a treatable, chronic
health condition, provided the patient follows a strict dosing regimen. HAART is a
daily combination therapy; it comprises of a nucleoside analog reverse transcriptase
inhibitors, fusion inhibitors, and HIV protease inhibitors. This cocktail approach
is advantageous because it may be tailored to a given patient’s drug resistances,
resulting in viral loads low enough to significantly suppress (95%) disease transfer
between infected mother to prenatal child [26].

The successes of HAART and further advances in HIV-1 protease inhibition
secure peptide-based inhibitors as a predominant success story for computational
inhibitor design, from the initial development of saquinavir [25] to raltegravir [33]
and beyond.

4.4 MATRIX METALLOPROTEINASES

MMPs are a large family of zinc-dependent neutral endopeptidases involved in the
degradation of extracellular matrix (ECM) components, and thus MMPs play a cru-
cial role in the homeostasis of normal tissue remodeling [34, 35]. MMP activity is
controlled and finely balanced at many levels: RNA transcription, protein translation,
secretion, localization, activation of zymogen, inhibition by endogenous proteins,
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and degradation. MMPs are usually minimally expressed in normal adult physio-
logical conditions. Overexpression of MMPs results in an imbalance between the
activity of MMPs and endogenous inhibitors of MMPs, tissue inhibitors of metal-
loproteinases (TIMPs), leading to tissue degradation and consequently facilitating
a variety of pathological disorders, including arthritis and cancer [36–38]. Accord-
ingly, MMPs became important pharmaceutical targets for treatment of these diseases
[39, 40]. MMPs were the first proteases seriously considered as targets to combat can-
cer because of their role in ECM degradation. The compelling results of preclinical
studies on MMP inhibition in tumor models raised the idea that the development of
strategies to inhibit MMPs may prove to be a powerful tool to fight cancer. Unfor-
tunately, the results of MMP inhibitor clinical trials have been disappointing. MMP
inhibitors such as the hydroxamates batimastat (British Biotech), marimastat (British
Biotech), and prinomastat (Aguron) and the nonhydroxamates neovastat (Aeterna),
rebimastat (Bristol-Myers Squibb), and tanomastat (Beyer) have failed clinical trials
because of severe side effects and/or offering no significant therapeutic advantage.
The tetracycline analog periostat (CollaGenex), which inhibits both the activity and
synthesis of MMPs, is the only MMP inhibitor on the market. Periostat is prescribed
for treatment of adult periodontitis.

The failure of MMP inhibitors can be attributed to numerous factors, but a major
one is the lack of enzyme selectivity [41–43]. The critical examination of previ-
ous results has prompted serious reevaluation of MMP inhibition strategies focusing
attention on the identification of specific MMP targets at different stages of tumor
progression, both in order to improve efficacy and to reduce side effects. The most
attractive design strategies include the development of novel zinc-binding ligands and
to exploit alternative ways to increase inhibitory potency by exploring the differences
between the various enzyme subtypes [44, 45].

Identification of protease secondary binding sites (exosites), that is, nonactive site
regions that facilitate or modulate protease activity, could be utilized for the design of
selective inhibitors within protease families. Exosite identification has allowed for the
design of selective inhibitors for coagulation Factors VIIa, IXa, and Xa [46–48], cas-
pases [49, 50], pregnancy-associated plasma protein-A (PAPP-A) [51], and cathep-
sin K [52]. Exosite-binding, small molecule inhibitors have been described that are
highly selective for MMP-13 [53–59].

Exosite binding may also be combined with active site binding to create selec-
tive MMP inhibitors. One such approach has taken advantage of the unique abil-
ity of several MMPs to catalyze the hydrolysis of collagen triple-helical structure.
Metallo(zinc)-proteases use the nucleophilic attack of a water molecule as one of the
steps of amide bond hydrolysis [60]. The tetrahedral intermediate that results from
water addition to the amide carbonyl has been the focus of many protease inhibitor
designs. Phosphinic peptides/phosphinates have been shown to behave as transition
state analog inhibitors of MMPs [61]. Subsequently, phosphinate triple-helical MMP
inhibitors have several potential advantages over other inhibitor constructs. These
analogs allow the incorporation of specificity elements for both the S and S′ sub-
sites of the enzyme. Although binding to the nonprimed region of the active site is
generally weaker than the primed site to prevent product inhibition [60], it does add
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TABLE 4.2 Inhibition of MMP-2, MMP-9, and MMP-1 by Triple-Helical Peptide
Inhibitors (THPIs).

Enzyme Inhibitor Temperature (∘C) Ki
(app) (nM)

MMP-2 𝛼1(V)GlyΨ{PO2H-CH2}Val THPI 10 4.14 ± 0.47
37 19.2 ± 0.6

MMP inhibitor III 10 3.17 ± 0.23
37 0.83 ± 0.03

𝛼1(I-III)GlyΨ{PO2H-CH2}Leu THPI 10 0.18 ± 0.00
37 0.08 ± 0.01

MMP-9 𝛼1(V)GlyΨ{PO2H-CH2}Val THPI 10 1.76 ± 0.05
37 1.29 ± 0.00

𝛼1(I-III)GlyΨ{PO2H-CH2}Leu THPI 10 0.02 ± 0.01
37 0.09 ± 0.00

MMP-1 𝛼1(I-III)GlyΨ{PO2H-CH2}Leu THPI 10 7.83 ± 1.03
37 26.7 ± 5.2

MMP inhibitor III 10 2.48 ± 0.35
37 4.72 ± 0.38

sequence diversity and potential selectivity. The triple-helical structure allows for
interaction with both the active site and exosites [62]. Triple-helical conformation is
also less susceptible to general proteolysis than peptides and other folded proteins
[63, 64].

In order to create the desired phosphinate transition state analogs, our
laboratory prepared protected Fmoc-phosphinodipeptides [57, 65–67]. An
Fmoc-phosphinodipeptide was utilized to create C6-(Gly-Pro-Hyp)4-Gly-Pro-Pro
-GlyΨ{PO2H-CH2}(R,S)Val-Val-Gly-Glu-Gln-Gly-Glu-Gln-Gly-Pro-Pro-(Gly-Pro-
Hyp)4-NH2 [designated 𝛼1(V)GlyΨ{PO2H-CH2}Val THPI] [66], based on the
cleavage site in type V collagen by MMP-9 [68].

The 𝛼1(V)GlyΨ{PO2H-CH2}Val THPI (which contains the S configuration in the
P1
′ position, equivalent to an l-amino acid) was initially tested against MMP-2 and

MMP-9 (Table 4.2). Due to the low melting temperature of the potential inhibitor
(Tm ∼ 25 ∘C), Ki values were first determined at 10 ∘C. 𝛼1(V)GlyΨ{PO2H-CH2}Val
THPI was found to be a very effective inhibitor of MMP-2 and MMP-9, with Ki
values of 4 and 2 nM, respectively. When inhibition assays were repeated at 37 ∘C,
the Ki value increased for MMP-2 but not for MMP-9 (Table 4.2). Thus, triple-helical
structure modulated inhibition of MMP-2 but not MMP-9.

To determine if an increase in Ki as a function of temperature was a general trend
for inhibition of MMP-2, inhibition of MMP-2 by MMP inhibitor III (a hydroxamic
acid-Leu-homoPhe dipeptide) was examined. At 10 ∘C, the Ki value for MMP-2 inhi-
bition was 3 nM (Table 4.2). Increasing the temperature to 37 ∘C decreased the Ki to
0.8 nM (Table 4.2). Thus, for a small molecule inhibitor, an increase in temperature
slightly increased the affinity toward MMP-2, most likely due to enhanced hydropho-
bic interactions. This further suggested that the decreased inhibition of MMP-2 by
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𝛼1(V)GlyΨ{PO2H-CH2}Val THPI as a function of increasing temperature is due to
unfolding of the inhibitor triple-helical structure.

MMP-1, MMP-3, MMP-8, MMP-13, and MT1-MMP were tested for inhibition
by 𝛼1(V)GlyΨ{PO2H-CH2}Val THPI. No inhibition of MMP-1, MMP-3, or
MT1-MMP was observed up to an 𝛼1(V)GlyΨ{PO2H-CH2}Val THPI concentration
of 25 μM. MMP-8 and MMP-13 were inhibited weakly, with Ki values in the range
of 50 and 10 μM, respectively. Thus, this study utilized a GlyΨ{PO2H-CH2}Val
transition state analog to bind selectively at the S1-S1

′ site of MMP-2 and MMP-9.
Selective inhibition of these MMPs is desirable, as MMP-2 has been validated as
an anticancer drug target, whereas MMP-9 inhibition may be useful in treating
early-stage cancers [69].

Our second inhibitor design utilized a Triple helical peptide substrate
mimicking 𝛼1(II)769-783, which is hydrolyzed by MMP-1, MMP-2, MMP-8,
MMP-9, MMP-13, and MT1-MMP [70, 71]. The P1-P1

′ subsites of the triple-
helical peptide, which incorporate Gly-Leu in the substrate, were substituted
by a GlyΨ{PO2H-CH2}Leu transition state analog. Because the Tm value for
𝛼1(V)GlyΨ{PO2H-CH2}Val THPI was low (see above) [72], the 𝛼1(I-III)GlyΨ{PO2
H-CH2}Leu THPI incorporated (4R)-Flp to enhance triple-helicity [73–75].
Thus, the sequence of this inhibitor was C6-Gly-Pro-Flp-(Gly-Pro-Hyp)4-Gly-
Pro-Gln-GlyΨ{PO2H-CH2}(R,S)Leu-Ala-Gly-Gln-Arg-Gly-Ile-Arg-(Gly-Pro-Hyp)4
-Gly-Pro-Flp-NH2, and it exhibited a Tm value of 30 ∘C [76]. Studies revealed low
nanomolar Ki values for inhibition of MMP-1, MMP-2, and MMP-9 (Table 4.2).
Our second transition state analog inhibitor appears to be effective against a broader
range of collagenolytic MMPs than the first inhibitor. Interestingly, MMP-1 was
sensitive to the triple-helical structure of the inhibitor (Ki increased approximately
four times when the inhibitor was thermally unwound), but neither MMP-2 nor
MMP-9 was. This contrasts with the sensitivity of MMP-2 to the triple-helical
structure of 𝛼1(V)GlyΨ{PO2H-CH2}Val THPI (Table 4.2), and indicates that there
is a sequence-dependent sensitivity to triple-helical structure for some MMPs.

A single-stranded peptide model of the 𝛼1(I)715-721 collagen sequence has been
identified as a ligand for the MMP-2 fibronectin type II (FN II) insert and inhib-
ited MMP-2 gelatinolysis [77]. Our laboratory assembled a triple-helical version of
this ligand [𝛼1(I)715-721 THP], and evaluated it for the ability to inhibit MMP-2
and MMP-9 triple-helical peptidase and gelatinase activities [76]. 𝛼1(I)715-721 THP
inhibited type V collagen-model triple-helical peptidase activity but not interstitial
collagen-model triple-helical peptidase activity. To our knowledge, this demonstrated
the first use of an exosite binder to selectively inhibit one collagen-based MMP activ-
ity but not another.

4.5 ANTRAX LETHAL FACTOR INHIBITION BY DEFENSINS

Defensins are small peptides that display broad antibacterial, antifungal, and antiviral
properties and are believed to be the first responders to microbial and viral attacks
in primates and humans [78, 79]. The θ-defensins are the only animal-derived
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HNP3 dimer (α-defensin) HBD2 (β-defensin)

θ-DefensinInsect defensin A

Figure 4.4 Cartoon structures of representative mammalian defensins and an insect defensin.
β-Sheet structures are indicated by flat ribbons and arrows. Human neutrophil peptide 3 (HNP3,
α-defensin) forms a β-sheet rich dimer. Human β-defensin 2 (HBD2) in solution is a monomer
with the same general shape (defensin fold) despite the change of the disulfide-bond pattern.
In addition, there is a short α-helical segment at the N-terminus. The conformation of insect
defensins (132 from Ganz) is distinct, with a prominent α-helical segment that is linked by two
disulfide bonds to the C-terminal β-sheet. The θ-defensin structure is cyclic, forming a simple
β-sheet. Source: Adapted with permission from Reference 142.

head-to-tail cyclic octadecapeptides possessing three disulfide bonds [80–82]. These
cyclic peptides have been purified from nonhuman primates, and are encoded by
mutated α-defensin genes (Figure 4.4).

Retrocyclins are synthetic θ-defensin peptides designed based on the human
genome, lacking the premature stop codon present in their natural counterparts.
Human α-defensins, as well as θ-defensin peptides, have been found to be non-
competitive/uncompetitive inhibitors of Bacillus anthracis LF, a zinc-dependent
metalloprotease [83, 84]. Both defensins were recently shown to be active against
B. anthracis bacilli, their spores, and in the inactivation of the LF in vitro. Wang
et al. [84] demonstrated that low concentrations of θ-defensins not only killed
vegetative B. anthracis bacilli and rendered the germinating spores nonviable, but
also inactivated the enzymatic activity of the LF and protected murine macrophage
cells (RAW-264.7) from lethal toxin, which consists of LF and protective antigen.
Insight into the three-dimensional interactions revealed that the cyclic backbone,
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intramolecular tri-disulfide ladder, and Arg residues of θ-defensins are responsible
for those protective effects. Retrocyclin derivatives studied by the group also
displayed high affinity and rapid binding to the anthrax LF. Interestingly, preincu-
bation of the LF with retrocyclins increased inhibition of the enzyme and resulted
in a slowly progressive extent of enzyme inhibition. These findings suggest that
postbinding effects, such as in situ oligomerization, may contribute to the antitoxic
properties of retrocyclins [84].

In addition to the direct LF inhibition, θ-defensins were also shown to induce ori-
entational disorder of the anionic bacterial membrane as compared to a zwitterionic
mammalian membrane. Moreover, B. anthracis peptidoglycan cell wall contains a
myriad of pores called tesserae with the diameter of 41 Å, which are large enough
for a passage of a 25 kDa globular protein. The above effects improve the likelihood
of the θ-defensin delivery to bacterial intracellular destinations and are supported by
radial diffusion assays, in which θ-defensins were shown to be effective against B.
anthracis spores [84].

4.6 KINASES

Signal transduction regulates many cellular processes, such as metabolism, survival,
growth, division, and death. Phosphorylation is one of the most important signals
within the cell. Protein kinases catalyze the transfer of the terminal phosphoryl group
from Adenosine triphosphate to a protein or peptide substrate (Figure 4.5). There are
at least 500 kinases, and they account for approximately 2% of the human genome
[85]. Kinases play an important role in regulating many aspects of cellular func-
tion and their dysregulation has been implicated in numerous diseases. Kinases are
presently the second most popular drug target, behind G-protein-coupled receptors,
comprising 25% of the drug development effort in pharmaceutical companies [86].

Protein kinases share a high degree of structure similarity within conserved regions
that include a catalytic domain, an ATP-binding site, and an activation loop. Due to
this conservation, it has been difficult to develop small molecule inhibitors exhibiting
high selectivity. Although all kinases share these important domains, their substrate
specificity is highly diverse due to varying regulatory sequences outside of these
domains [85]. Most of the kinase inhibitors to date have exploited the ATP-binding
site. However, the drawback of this approach is that potential inhibitors have to com-
pete with very high intracellular ATP concentrations, as well as greater than 200 other
proteins that utilize ATP [86].

Protein–protein interactions are the major determinants of kinase specificity and
they have been intensely studied in order to develop effective inhibitors. Kinases
preferentially bind to specific recognition motifs within the substrate they phosphory-
late. Peptides mimicking these binding sites should have better specificity than small
molecules due to the larger binding surface, thus offering greater opportunity for the
development of effective inhibitors (Table 4.3 and Figure 4.6).

One of the first successful kinase inhibitors developed was a 20 amino-acid
peptide derived from the sequence of naturally occurring protein kinase A (PKA)
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(a) (b)

Figure 4.5 Protein kinase interactions with ATP-competitive and ATP-noncompetitive
inhibitors: c-Jun N-terminal kinase. (a) Structural analysis has shown that the ATP-binding
site of the protein kinase C-Jun N-terminal Kinase (JNK) is occupied by an ATP-competitive
inhibitor of JNKs, SP600125. (b) The structure of the complex between JNK1 and the peptide
inhibitor derived from the JNK pathway scaffold protein JNK-Interacting-Protein-1 showed the
interaction of the JNK1 protein with the peptide inhibitor at a site remote from the ATP-binding
pocket. (See insert for color representation of this figure.) Source: Reprinted with permission
from Reference 86.

inhibitor [87]. PKA is a Tyr kinase, catalyzing phosphorylation of the Tyr residue in
the substrate. PKA recognizes a RRNYL motif on proteins targeted for preferential
phosphorylation. The PKA-derived peptide contains an Ala substitution within
the regular PKA phosphorylation site and displays a high potency of inhibition
[88]. Aside from binding of the active site of PKA, the peptide also contributes
binding of amino acids located further upstream from the recognition motif [89, 90].
This underscores the importance of extensive protein–protein interactions for the
inhibition specificity.

Other peptides derived from the recognition motif of glycogen synthase kinase-3
(GSK-3) have also proven to be effective modulators of the kinase’s activity [85].
GSK-3 is a serine kinase, recognizing the already phosphorylated motif SXXXS(p),
where X denotes any amino acid. Mutated peptides in which Ala replaced the
pre-phosphorylated Ser have been shown to be effective inhibitors of GSK-3 activity
toward substrates such as cAMP Response Element-Binding protein and heat shock
factor-1 (HSF-1). In addition, the sequence upstream from the GSK-3 active site was
shown to exhibit a regulatory role, as the substitution of a key Glu residue improved
the inhibitory potency of the peptide [91].

In order to improve specificity of inhibitory peptides, inhibitors can be derived
from an autoinhibitory domain. This pseudosubstrate often contains an exact copy of
the kinase specific recognition motif. Protein kinase C (PKC) isoforms contain this
type of pseudosubstrate within their NH2-terminal region and the derived peptides
displayed high selectivity toward each isoform [92, 93]. Other kinases containing
this type of pseudosubstrate are Ca2+/CaM-dependent protein kinase II (CaMK-II),
myosin light chain kinase (MLCK), and phosphorylase kinase [85].
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TABLE 4.3 Synthetic Peptide Inhibitors of Kinases.

Peptide sequence
(NH2 →COOH)

Peptide Target
(Protein Kinase)

Derived from References

Substrate
TYADFIASGRTGRRNAI

PKI-(6-22)-amide
PKA PS site of PKA [87, 88]

KEAPPAPPQS(p)P
L803-mts

GSK-3 GSK-3 substrate
recognition site
of HSF-1

[91, 157,
158]

A: FARKGALRQ
B: RFARKGALRQ KNV

PKC𝛼/𝛽 PS site of
PKC𝛼/𝛽

[159, 160]

SIYRRGARRWRKL PKC𝜁 PS site of PKC𝜁 [161]
LKKFNARRKLKGAILTTMLA CAMII

kinase
PS site of CaMK

II
[162, 163]

Docking sites
1. D-site
MPKKKPTPIQLNPAPDG ERK2 D-site of MEK1 [95]
MQGKRKALKLNFANPP JNK1/2 D-site of MEK4 [94]
RPKRPTTLNLFPQVPRSQDT

(L)-JNKI 1 (Stress-Activated
Protein Kinase Inhibitor I)

JNK JNK-binding
domain (JIP-1)

[97–99]

2. FXFP docking motif
RRPRSPAKLSFQFPS ERK FQFP docking

site Elk1
[164]

3. HJ and 𝛼D regions
GGYNQNHQKLFQL

KRX-014H151

PKB HJ-𝛼G region of
PKB

[101]

GGRAGNQYL KRX-702H105 PDK1 HJ-𝛼G region of
PDK1

[101]

4. Other protein docking sites
HAKRRLIF p21WAF1 CDK2 COOH-terminal

cyclin-binding
domain of
p21WAF1

[165]

SQPETRTGDDDPHRLL
QQLVLS-GNLIKEAV
RRLHSRRLQ FRATide

GSK-3 COOH-terminus
of FRAT1

[166]

DIHVDPEKFAAELISR
LEGVLRDR GID

GSK-3 GSK-3β-
interacting
domain of axin

[167, 168]

Cellular targeting
EAVSLKPT 𝜀V1-2 PKC𝜀 V1 domain of

PKC𝜀
[169, 170]

SLNPEWNET 𝛽C2-4 PKC𝛽 C2 domain of
PKC𝛽

[171]

DLIEEAASRIVD
AVIEQVKAAGAY S-Ht31

PKA AKAP [102, 104,
172, 173]

PS, pseudosubstrate. Recognition or docking motives are marked in bold.
Source: Table adapted with permission from Reference 85.
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Another viable target for interruption of kinase activity is the docking interaction
site. Since protein kinases are usually a part of larger complexes involved in signaling
cascades, protein–protein interactions play a major role in substrate recognition and
processing. Many signaling pathways, such as the mitogen-activated protein kinase
(MAPK) family, involve docking and/or scaffold proteins, which bring together the
upstream regulators and downstream substrates. Peptides derived from the docking
sites of upstream MAPK kinases (MEKs) have been used to inhibit phosphorylation
of their dependent kinases such as ERK1/2, c-Jun N-terminal kinase (JNK1), JNK2,
as well as terminal substrates, such as S6 ribosomal protein kinase, p90 Ribosomal
S6 Kinase, and MAPK dual specific phosphatases [94–96].

Disruption of docking interactions has proven to be successful at the cellular and
animal model levels. Peptides derived from a JNK scaffold protein termed JIP1 dis-
played a high potency inhibition toward JNKs, leading to neuroprotection [97], block-
ing of pancreatic B-cell death [98], as well as antidiabetic effects in a diabetic animal
model [99]. Docking peptides derived from PDK-1 (3-phosphoinositide-dependent
protein kinase-1) and protein kinase B (PKB) were shown to disrupt the phosphory-
lation of their downstream targets, leading to prostate cancer cell growth inhibition
[100]. Other peptides of this type displayed favorable outcomes in diabetes and angio-
genesis [101].

Another way a docking site could be exploited is the inhibition of sites on pro-
teins that transport kinases between cellular compartments. Translocation of kinases
is isoform specific, thus designing peptides that mimic those sites should provide
very specific inhibitory effects. An example of successful application of this type of
inhibitory peptide can be found in the PKA pathway. A peptide derived from A-kinase

NH2-terminus

NH2-
lobe

Catalytic domain COOH-terminus

COOH-
lobe

P-loop Activation-loop

ATP
binding site

Substrate
binding site

DFG....APEGXGXY/FG

I II III IV V VI VII VIII IX X XI

(a)

Figure 4.6 Inhibitory mechanisms of peptides targeting protein kinases. (a) Schematic pre-
sentation of domain structure of protein kinase with conserved bilobal catalytic domain com-
posed of 11 conserved subdomains. Conserved domains including the P-loop involved in ATP
binding and the activation loop with the DFG…APE motif are marked. Red triangles mark
docking site position with proteins such as substrates, upstream regulators, and scaffold pro-
teins. (b) Inhibition of protein kinase by peptide (1) competition with substrate, (2) competition
with docking sites derived from substrates, (3) competition with docking sites derived from the
kinase, or (4) competition with cellular targeting anchor proteins. Peptides marked in yellow
indicate the position of derivation; peptides marked in pink indicate the interaction with the
target site; X describes disruption location; red chain represents the peptide inhibitor. Source:
Reprinted with permission from Reference 85. (See insert for color representation of this
figure.)
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Figure 4.6 (Continued)

anchor protein (AKAP) mimiced the role of PKA in synaptic transmission [102],
oocyte maturation, and sperm mobility [103, 104].

4.7 GLYCOSYLTRANSFERASES
(OLIGOSACCHARYLTRANSFERASES)

Aspargine-linked glycosylation (N-glycosylation) is a common co- and posttrans-
lational modification of membrane and secretory proteins. This process occurs
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in eukaryotes, archaea, and some bacteria and is catalyzed in the lumen of the
endoplasmic reticulum (ER) by the oligosaccharyltransferase (OSTase) complex.
OSTase is a membrane bound multimeric protein complex that binds to ribosomes
during active protein translation [105]. As a ternary complex, OSTase accommo-
dates simultaneously the polypeptide and oligosaccharide substrates [106]. OSTase
typically transfers the oligosaccharide (Glucose3Mannose9N-acetylglucosamine2)
from the dolichol-pyrophosphate donor (Dol-PP-oligosaccharide) to designated Asn
side-chains present in glycosylation sequons (Asn-Xaa-Thr/Ser, where Xaa≠Pro)
within the nascent polypeptide chains. N-glycans enhance proper protein folding
by providing a hydrophilic environment and stabilizing β-turns [107] as well as
by indirectly recruiting molecular chaperones. As new proteins are transported
through the Golgi, their N-glycan residues can be modified, resulting in highly
diverse structures that can dramatically alter their function [105]. Dysregulation of
glycosylation patterns can lead to aberrant immune, developmental, and oncogenic
events.

Since the early 1980s, it has been recognized that the presence of a hydroxyamino
acid in the Asn-Xaa-Thr(Ser) cognitive sequence is required for the catalysis of
transglycosylation and later it was shown that this hydroxyamino acid participates
actively in transglycosylation through hydrogen-bond interactions [108]. One of the
first inhibitors synthesized toward the OSTase enzyme complex was designed as a
consensus sequence hexapeptide motif Arg-Asn-Gly-Yaa-Ala-Val. The side chain of
the amino acid Yaa was replaced with epoxyethyl-, epoxypropyl-, allyl-, and vinyl-
functional groups and the hexapeptide was tested against N-glycosyltransferase
activity. Substitution of the Yaa amino acid with epoxyethylglycine produced irre-
versible inhibition of the membrane-bound enzyme complex, presumably through a
suicide mechanism, in which OSTase catalyzes its own inactivation [109, 110].

Owing to the challenges in the expression and purification of the OSTase com-
plex, little is known about how the complex coordinates binding to large substrates
and catalyzes transglycosylation [106]. In an effort to elucidate the mechanism of
the OSTase inhibition by the epoxy-inhibitor, Bause et al. undertook double labeling
studies. They incubated the OSTase with labeled Dol-PP-[14C]Oligosaccharides and
N-dinitrobenzoylated epoxy-inhibitor peptide after which they resolved the complex
by SDS-PAGE. Even though the gel displayed four OSTase subunits (40, 48, 63, and
66 kDa), only the 48 and 66 kDa polypeptides were radioactively labeled. The pres-
ence of other glycosyl receptors or an epoxy-inhibitor analog, in which the Asp was
substituted by Gln abolished this labeling (Figure 4.7). These findings imply that the
oligosaccharide transfer was not able to proceed with the inhibitor in place due to the
direct inactivation of the active site of the OSTase complex (Figure 4.8) [108].

To date, substrate and product-based probes remain the best tools for the
mechanistic studies of OSTase. Development of a potent peptide-based OSTase
inhibitor, c[Hex-Dab-Cys]Thr-Val-Thr-Nph-NH2 with Ki = 0.037 μM, led Peluso
et al. to hypothesize that the naphthyl group might be involved in π-stacking
interactions within the saccharide binding pocket. As aromatic amino acids are
often involved in carbohydrate–protein interactions, this hypothesis led them
to investigate neopeptides (glycopeptide mimetics) in an effort to identify more
potent OSTase inhibitors as well as to provide tools for structural studies. The
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Figure 4.7 Structure of the epoxy-inhibitor (a) and its glutamine analog (b). Source: Adapted
with permission from Reference 108.

strategy utilized alanine-β-hydroxylamine (A𝛽x), alanine-β-hydrazide (A𝛽z), and
1,3-diaminobutanoic acid (Dab) substitution of the Asn normally present in the
Xaa position within the Bz-Xaa-Ala-Thr-Val-Thr-Nph-NH2 glycosylation sequence.
N-acetylglucosamine conjugates of the above peptides were also prepared to test
the product inhibition potential. Interestingly, the unnatural glycopeptides displayed
similar binding affinity to those of the parent peptides, while the natural glycopeptide
had significantly diminished binding compared to its parent peptide (Figure 4.9).

It was speculated that the replacement of the naturally occurring glycosyl-amide
bond with glycosyl-hydrazide, glycosyl-oxime, glycosyl-hydroxylamine, or
glycosyl-amine contributes to low nanomolar to micromolar inhibition due the
improved flexibility of the newly formed linkage (Figure 4.10). This observation
suggested that conformational changes within the OSTase complex dictated substrate
binding and release. Most likely neopeptides are accommodated within the active
site only when the nitrogen carrying the glycosyl moiety is not locked into a
transorientation relative to the Asn. Based on these suppositions, it was proposed
that the OSTase active site may be represented with cis or twisted amide geometry.
The energetically favorable equilibration to the trans amide species may participate
in the release of the N-glycosylated peptide from the OSTase active site and in this
manner eliminate product inhibition through the reduced binding affinity for the
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Figure 4.8 Models describing (a) the suicide inactivation of OST leading to subunit
double-labeling, and (b) the catalytic mechanism of OST. N,N-acetylglucosamine; M, man-
nose; G, glucose. Source: Reprinted with permission from Reference 110.

trans amide isomer. This explanation reveals that inhibition of the OSTase active
site requires both the geometry and electronic interactions of the peptide–saccharide
linkage (Figure 4.11) [106].

4.8 TELOMERASE INHIBITORS

The number of cell divisions a cell can undertake is limited due to the loss of telom-
eres. Telomeres are noncoding DNA located at the end of the chromosomes and are
on average 10 kilobases (kb) in normal cells. They are responsible for maintaining
the integrity of the chromosomes and preventing the replication of defective genes
occurring during cell divisions [111]. On average 30–150 base-pairs (bp) are lost
during each division [112, 113] and senescence is observed after 50 divisions [114].

Telomerases are holoenzymes with a molecular weight of ∼650 kDa and are com-
posed of three main components (Figure 4.12): a well-conserved telomerase reverse
transcriptase (TERT), a telomerase RNA (TR), which constitutes the template to syn-
thesize new telomeric DNA at the end of the chromosomes, and dyskerin, a protein
that binds to TR or proteins that ensure the stabilization of the protein/RNA complex.
Human telomerase appears to form dimers, in contrast to other organisms such as
T. thermophilla. Ability of telomerases to extend the 3′ ends of linear chromosomes
preserves the length of telomeres.
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Figure 4.9 Peptides and glycopeptide conjugates for OSTase. Source: Reprinted with per-
mission from Reference 106.

The length of the telomere is an important factor in processes such as tumorigene-
sis, cell proliferation, and aging. Cancer cells possess shorter telomeres than healthy
cells (on average 5 kb). Their DNA shortens during the early phase of tumorigenesis
but then the length is maintained causing the immortalization of proliferating can-
cer cells. Maintenance of telomere length in cancer cells is due to the expression of
telomerase, allowing cells to divide indefinitely. There is no evidence of telomerase
expression in normal tissues (with the exception of stem cells) [115], whereas telom-
erases were detected in 85% of studied cancerous tissues [116–118]. The length of
telomeres is already used for the prognosis of metastasis in breast and prostate cancer
[119]. Telomerase could therefore be used as potential target for selectively induc-
ing cancer cell death. However, the loss of DNA on the telomeres is estimated at
30–150 bp per cell division, which implies that all inhibition requires a lag time to
cause toxicity. This depends on the initial length of the telomere before inhibition (on
average 555 cell divisions for a 5 kb telomere, for example). Limitation of a quick
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Figure 4.12 Telomerase components. Human telomerase is a cellular reverse transcriptase
with two essential components: telomerase reverse transcriptase catalytic subunit (hTERT)
and functional telomerase RNA (hTR), which serves as a template for the addition of telomeric
repeats (left side). Source: Figure adapted from Reference 143.

response to treatment suggests that telomerase inhibitors cannot be efficient solely
and will necessitate the use of complementary therapy.

Telomerase inhibitors are currently designed to target either the TERT catalytic
subunit or the TR component. Inhibition of TR involves the use of antisense oligonu-
cleotides complementary to the RNA associated with the telomerase. Inhibition of the
TERT can be obtained by targeting different subunits. Recent structural studies [120]
have unraveled key domains in order to design inhibitors with higher efficacy and
specificity. Inhibitors targeting the transcriptase subunit have already been designed
and tested in clinical trials. Along with gene therapy, immunotherapy, and the design
of small compounds such as BIBR1532, the development of small peptides in order to
inhibit telomerase activity has been initiated. However, peptides encounter specificity
problems and have not showed significant outcomes so far. Specificity issues have
so far been thought achievable by targeting the nucleic acid unit of the telomerase.
However, sequence selectivity remains poor. Design of second-generation inhibitors
combining the use of nucleic acid complementary to the telomeric RNA with the use
of synthesized peptides has been explored [121].

Peptide nucleic acid (PNA) has the property of mimicking the DNA or RNA back-
bone (Figure 4.13), achieved by utilizing N-(2-aminoethyl)-glycine units exhibit-
ing structural similarities to the sugar/phosphate backbone present in nucleic acids.
Unlike the native backbone of DNA or RNA, the internucleotide linkage is uncharged
as the phosphate group is replaced by an amine and is less prone to degradation by
nucleases, therefore stabilizing the oligomers. PNAs were reported to inhibit telom-
erases at nanomolar concentration in a cell-free environment. However, they do not
cross the cytoplasmic membrane. Addition of a cellular transporter peptide to the

Universal Free E-Book Store



138 PEPTIDE-BASED INHIBITORS OF ENZYMES

N

N

N

N N

N

C

C

N

N

N

N
H

O

O O
O

O O

O

O

O

OO

O

CO

HN

NH

HN

NH

NH

O

O

O

O

O

O

CH3

NO

HN

O

CH3

NH2

N

N

NH2

NH2

N

N N

NH

O

NH2

N

N N

N

NH2

N

N N

N

NH2

CH2

CH2

CH2

N

CO

CH2

PNA DNA

P

O

O

O O

O

O

OP

O

O

O

OP

Figure 4.13 PNA consists of repeating units of N-(2-aminoethyl)-glycine linked by amide
bonds. The nucleobases are attached to the backbone by ethylene carbonyl linkages. Source:
Reprinted with permission from Reference 144.

PNAs in order to improve cell internalization failed to induce telomerase shorten-
ing in human melanoma cell lines even after 20 days of treatment [121]. Although
PNAs were initially reported in the literature as a promising new class of telomerase
inhibitors in terms of selectivity and efficacy [122], the development of such inhibitors
was abandoned.

4.9 TYROSINASE

Tyrosinase is a copper-dependent phenol oxidase responsible for hydroxylation of
monophenol (such as Tyr) to o-diphenol (such as dihydroxyphenylalanine) and the
corresponding oxidation of o-diphenol to o-quinone [123]. The reactive quinones are
then involved in a cascade of oxidative condensation and addition reactions with phe-
nolic compounds, thiols, and primary or secondary amines, leading to the formation
of melanin (Figure 4.14).

Production of epidermal melanin is responsible for natural skin and hair color.
Melanogenesis can be stimulated by a multitude of factors, such as UV radiation,
and its dysregulation can lead to many cosmetic problems [124]. The expression
and activation of tyrosinase controls the production of melanins within mammalian
melanocytes, as well as causes browning that occurs upon bruising or long-term stor-
age of vegetables, fruits, and mushrooms. Tyrosinase is responsible for normal skin
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browning in response to UV exposure, but also participates in abnormal skin pigmen-
tation, such as vitiligo and freckles and brown spots. In addition, this enzyme may
play a role in some neurodegenerative diseases as well as cancer [125, 126].

Prevention of undesirable pigmentation has led the search for tyrosinase
inhibitors. Tyrosinase activation is accomplished through PKC-𝛽 on a phosphory-
lation site within a C-terminal sequence of 11 amino acids [127, 128]. An 11-mer
tyrosinase mimetic peptide has been shown to be an effective inhibitor of PKC-𝛽
binding, resulting in decreased tyrosinase phosphorylation [129]. Another effective
tyrosinase inhibitor is kojic acid, a fungal metabolite widely used as a cosmetic
skin-lightening agent or food additive for antibrowning effect. However, its use in
cosmetics has been limited because of short storage life as well as skin irritation
[130]. Although kojic acid alone is a potent inhibitor of tyrosinase, its derivatives
have been synthesized in an effort to reduce side effects and provide longer shelf
life. C-7 carboxyl group of kojic acid has been converted into esters, hydroxyphenyl
ethers, glycosides, and amino-acid derivatives [130]. Kojic acid conjugation to the
tripeptide FWY has been investigated and studies have shown that the tripeptide
decreases the acid’s toxicity, increases its storage stability, and most importantly,
increases the inhibitory effect by 100-fold [131].

Recently, Schurink et al. undertook two SPOT screens of an octapeptide library
from natural sources in an effort to identify novel tyrosinase inhibitors. One screen
utilized phenol oxidase inhibitor (POI)-derivatized peptide library consisting of
a scan of overlapping peptides with one amino acid shift ranging from 10 to 6
residues in length. The second library consisted of octameric peptides derived from
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industrial proteins from milk, egg, and wheat. Both libraries were spotted on a
polyvinylidene difluoride membrane and binding and activity of fluorescently
labeled tyrosinase was detected. Several novel peptide sequences with inhibitory
activities were identified, and it was noted that Arg was the most important residue
contributing to this inhibition [125, 126].

Another group led by Abu Ubeid has identified two competitive peptide tyrosi-
nase inhibitors from a screen of an internal peptide library. The inhibitors, termed P3
(RADSRADC) and P4 (YRSRKYSSWY), displayed Ki values of 123 and 40 μM,
respectively. Consistent with the findings of Schurink et al., both of these peptides
contain Arg residues, thus corroborating the importance of this residue in the tyrosi-
nase inhibitory mechanism. These findings show promise toward the identification of
potential novel antipigmenting agents without deleterious side effects. Unfortunately,
further studies with these peptides displayed no effect on melanocyte proliferation or
cytotoxicity up to 100 μM.

4.10 PEPTIDYL-PROLYL ISOMERASE

Peptidyl-prolyl isomerases (PPIases) are enzymes regulating cis and trans conforma-
tions in Xaa-Pro peptides (Figure 4.15) and play multiple roles in several biological
systems. Cyclophilin and FK506 Binding Protein were the first identified PPIases
due to their ability to bind and regulate immunosuppressant prodrugs cyclosporine
and FK506. Other PPIases possess chaperone activities, improving the rate and yield
of protein folding [132].

Pin1 belongs to a class of PPIases referred to as parvulins. It is a unique PPIase that
exhibits preferential activity toward phosphorylated substrates. Protein phosphoryla-
tion plays a critical role in cell cycle progression, as alterations in phosphorylation
levels of many proteins drives their turnover and leads to significant structural changes
[133]. Pin1 catalyzes isomerization of phosphoSer/phosphoThr-Pro amide bonds in
multiple cell cycle proteins (Figures 4.15 and 4.16). On the recognition of such a
bond Pin1 efficiently interconverts cis and trans amide isomers, leading to cell cycle
progression, transformation, and cellular proliferation. Pin1 is thought to play an
important role in oncogenesis, as its overexpression has been identified in numer-
ous cancers, including breast, prostate, oral squamous cell, lung, cervical, and colon
cancers. Furthermore, a study of 580 prostate cancer patients revealed a correlation
of Pin1 overexpression and highest levels of recurrence. Although the precise role of
Pin1 in oncogenesis is not known, Pin1 has been shown to target the tumor suppressor
p53 and the antiapoptotic protein Bcl-2, as well as influence signaling through Ras,
Neu, and Wnt pathways. The potential of Pin1 as a prospective anticancer target is
underscored by the studies showing that the reduction in Pin1 expression levels result
in the inhibition of cancer cell proliferation and reversion of Ras- and Neu-induced
transformation [133].

In addition to regulation of cell-cycle progression, Pin1 also controls the pro-
cessing ratio of the amyloid precursor protein (APP), producing excess of the
benign α-APP and reduced amounts of A𝛽42, which is thought to be a precursor of
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Figure 4.16 Pin1 catalyzes isomerization of the pThr668-Pro motif in APP as visualized
by NMR spectroscopy. Pin1-catalyzed isomerization between cis and trans conformations of
the pThr688-Pro peptide bond (red arrows). Structural models display local backbone con-
formations with associated hydrogen bonds. The size and direction of black arrows represent
the catalysis reaction accelerated by Pin1. (See insert for color representation of this figure.)
Source: Adapted with permission from Reference 135.

amyloid plaque formation [134]. Pin1 is thought to decrease the concentration of
pThr668-cis-Pro APP resulting in decreased levels of amyloidogenic A𝛽 peptides
secreted from cells overexpressing this protein. Conversely, Pin1 knockout mice
display increased levels of insoluble toxic peptide A𝛽42 in age-dependent manner,
leading to plaque formation in dorsal medial cortical neurons (Figures 4.16–4.18)
[135].

Owing to the potential importance of Pin1 as druggable target in anticancer and
Alzheimer’s disease therapy, there has been considerable effort placed in the devel-
opment of the inhibitors to this protein. Etzkorn et al. has demonstrated the design of
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a stereo-controlled synthesis of the cis and trans Ser-Pro dipeptide isosteres, which
were subsequently phosphorylated and fitted into a pentapeptide substrate analog.
This pentapeptide not only displayed competitive inhibition of Pin1 with Ki values
of 1.7 and 40 μM but also demonstrated antiproliferative activity in an ovarian cancer
cell line A2780 with Ki values of 8.3 and 140 μM (cis and trans forms, respectively)
[132].

The nonphosphorylated cyclic peptide CRYPEVEIC inhibits Pin1 with Ki of
0.5 μM [133]. Cyclic peptides inhibit cis–trans isomerization by placing confor-
mational constraints on the isomerase. A phage-display panning of cyclic peptides
provided an unbiased approach to inhibitor discovery and resulted in peptides with a
YP(E/D)V motif that interacted specifically with the PPIase domain of Pin1. Upon
further panning, the cyclic peptide CRYPEVEIC was found to be not only specific
for the active site but also displayed potent inhibition and caused chemical shift
changes that are localized to the residues in and immediately surrounding the active
site (Figure 4.19). Furthermore, binding analysis revealed a tight interface without
the requirement of interaction with the phosphate binding site of the enzyme. In an
effort to make the CRPEVEIC peptide cell membrane-permeable, two peptides were
synthesized, in which the terminal Cys residues were replaced either with Lys or Glu
residues. Unfortunately, these peptides lost their inhibitory properties with regards
to Pin1. This effort demonstrated that most likely Pin1 inhibition is based on the
sequence specificity and the geometry of the ring. Although cell-based studies with
this inhibitor could not be performed, it was demonstrated that the phosphate group
was not absolutely required for high affinity binding [133]. These findings could
be useful in determining inhibitors for other enzymes known for phosphate-guided
binding and possibly open new avenues of peptide-based inhibitor discovery.
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Liu et al. developed membrane-permeable phosphorylated cyclic inhibitors of
Pin1 from a peptide library. In general, the cyclization of a peptide renders it resistant
to proteolysis and it may improve its target binding affinity due to reduced confor-
mational freedom. The library of cyclic peptides was designed based on the linear
Pin1 inhibitor sequences. All of the isolated peptides contained phosphoThr-Pip-Nal
(where Pip is l-piperidine-2-carboxylic acid and Nal is l-2-napthylalanine) and
were rendered membrane-permeable by incorporating an Arg8 sequence onto a side
chain or into the peptide backbone. These cyclic peptides successfully entered cells
and slowed down cell proliferation, displaying the first example of macrocyclic Pin1
inhibitors active in vivo [136].

4.11 HISTONE MODIFYING ENZYMES

Epigenetic studies throughout the human genome revealed that gene sequences are
not solely responsible for different phenotypes. Organization of chromatin is also a
key player in gene regulation and can be passed on from one generation to another.
Structure of chromatin is regulated by factors including DNA methylation and histone
posttranslational modifications such as acetylation, methylation, and phosphoryla-
tion. Mapping of these features at key genes (involved in stem cell maintenance and
differentiation, cancer markers, oncogenes, etc.) in a variety of cells showed a charac-
teristic pattern of epigenetic marks. Alteration of these marks correlates with several
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diseases, suggesting that histone-modifying enzymes could be utilized as a new target
for anticancer agents.

4.11.1 Histone Deacetylase

The imbalance between acetylation and deacetylation at key genes has been corre-
lated to diseases such as cancer. It is assumed that the balance between acetylation and
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deacetylation regulates the compaction of DNA by neutralizing the negative charges
of the phosphates. As histone acetylation loosens up the DNA, it allows the binding
of proteins such as transcription factors, which will regulate gene expression. Histone
acetylation is regulated by acetyl transferases (HATs) and deacetylase (HDACs).

Efforts have been focused on HDAC inhibitors, which are categorized into four
classes. Cyclic peptides represent one of the four classes and include depsipeptides,
apicidin, and cyclic hydroxamic acid-containing peptides. Originally isolated from
Chromobaterium violaceum, depsipeptide FR901228 (Gloucester Pharmaceutical)
(Figure 4.20) was approved for commercialization in 2009. After investigation of
the toxicity of the drug on cell lines and mice, the compound was subject to a phase I
trial. A case study on a patient suffering from T-cell lymphoma reported that complete
remission was observed after treatment with depsipeptide FR901228 (also called
FK228) [137]. Three patients with cutaneous T-cell lymphoma (CTCL) showed par-
tial remission following treatment. However, as the drug entered phase II clinical trial,
adverse cardiac side effects were observed and the trial was suspended. It became
clear that a better understanding of mechanism of action of this compound was nec-
essary and its synthesis was published [138, 139].

4.11.2 Histone Methyl-Transferase

Like all histone posttranslational modifications, methylation is a reversible and is
controlled by histone methyl-transferase (HMT) and histone demethylase (HDM).
Methylation occurs on Lys and Arg residues of histone H3 and H4.

One of the most studied HDMs, LSD1 (also called BHC110), is an amine
oxidase and regulates the methylation status of histone H3 by removing one or
more methyl groups on Lys4. The inhibition of LSD1 may allow maintenance of
H3 in a methylated state and therefore reactivate gene expression of silenced genes,
whereas the repression of these genes may enhance diseases such as cancer. Owing
to its recent discovery and characterization, the development of LSD1 inhibitors
remains at early stages. However, Culhane et al. proposed the use of a synthesized
propargyl-Lys-derivatized peptide of H3 tail (Figure 4.21) as a promising inhibitor
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of LSD1. Peptides 8 and 9 (Figure 4.21) were initially synthesized and showed
inhibition of LSD1 in the range of micromolar in vitro [140]. Since then, a panel of
modifications was applied to the synthesized peptide in order to improve its potency
as an inhibitor (Figure 4.21) [141]. All inhibitors were tested using LSD1 bound to
glutatione S-transferase-tag and were not tested on cell lines as further modifications
are needed in order to improve on the cellular internalization of the compound.

4.12 PUTTING IT ALL TOGETHER: PEPTIDE INHIBITOR
APPLICATIONS IN SKIN CARE

Inhibition of many of the enzymes described in this chapter is being pursued in the
clinic. Since multiple enzymes are expressed in any given organ, several inhibitors
may be used to achieve a desired effect. Skin conditions are constantly at the forefront
of enzyme inhibitor discovery. Figure 4.22 summarizes novel peptide-based thera-
peutics currently approved for treatment of skin conditions, including several enzyme
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Figure 4.22 Summary of bioactive peptides currently marketed for inclusion as active ingre-
dients in skin care products. Source: Reprinted with permission from Reference 148.

inhibitors or modulators of enzyme inhibitors. These applications well illustrate the
importance of the development of alternative methods for enzyme inhibition, as to
date the focus has been primarily placed on small molecule-based drug discovery.

4.13 STRATEGIES FOR THE DISCOVERY OF NOVEL PEPTIDE
INHIBITORS

This chapter has described peptide-based inhibitors for the majority of enzyme clas-
sifications. Successful approaches for obtaining these inhibitors are varied and highly
creative. The most straightforward approach is the exploration of substrate analogs
(as observed for MMPs, HIV-1 protease, kinases, glycosyltransferases, telomerases,
PPIases, and HDM), including substrate-based transition-state or suicide inhibitors
(for MMPs, glycosyltransferases, and HDM). One can also screen with substrate frag-
ments/products as potential inhibitors [86]; captopril is a product-based inhibitor of
ACE. Peptidomimetics based on substrates and products have been developed as
HIV-1 protease and MMP inhibitors. Peptide-based inhibitors targeted outside of
the active site, such as those that disrupt interactions of enzyme binding partners or
docking sites, mimic autoinhibitory domains, or perturb allosteric/secondary binding
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sites, have proven effective for MMPs, anthrax LF, kinases, and tyrosinase. Novel
peptide inhibitors have been identified for tyrosinase, PPIase, and HDAC through
screening of peptide libraries. Libraries can be produced by chemical or phage dis-
play methodologies, or obtained from natural sources. Library screening may proceed
using the entire enzyme, catalytic subunits/domains, or regulatory subunits (docking
sites, anchoring sites, scaffold-interacting subunits). Overall, a plethora of options
exist for the identification and design of peptide-based enzyme inhibitors, and one is
likely to see continued growth in this area of probe and pharmaceutical development.
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5.1 INTRODUCTION

There are many reasons why peptides are not ideal drug candidates when compared
to small drug molecules. Most people’s general impression of peptides is that they
are large molecules that are easily digested by proteases. These two important draw-
backs mean that peptides are often considered as being less stable with low oral
bioavailability. Consequently, administration by injection is often required, and the
peptides are readily inactivated by peptidases and cleared from the body. Moreover,
they have a relatively higher risk of immunogenic effects when compared with small
drug molecules. Owing to their relatively larger size and often hydrophilic nature, sol-
ubilization, and the delivery of peptide drugs across membranes become challenges.
Cost-wise, the synthesis of peptide drugs is often considered more expensive if one
associates cost with molecular size.

Viewed from the opposite side, where a detriment is reinterpreted as a benefit, pep-
tide drugs hold several key advantages over small drug molecules. Peptide drugs are
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large molecules and thus would only be recognized by a targeted receptor or active
site. Therefore, peptide drugs are expected to be very potent because when compared
to small drug molecules, peptide drugs have high activity and high specificity due to
very few unspecific bindings to nontargeted sites. On the same line of reasoning, pep-
tide drugs would have fewer drug–drug interactions, although, as previously stated,
they have an increased risk of immunogenic effects. Considering that peptide drugs
are large molecules composed mainly of natural amino acids with high target speci-
ficity and are easily degraded by peptidases, peptide drugs would in theory exhibit
lower toxicity than small drug molecules. Likewise, considering that peptide drugs
have difficulty crossing membranes, they are less likely to accumulate in tissues and
thus have a lower risk of adverse drug reactions over time. The sheer largeness of
peptide drugs also means that they are more biologically and chemically diverse.

In actual practice, however, peptide drugs are often used to derive small nonpep-
tide drug molecules. Doing so offers the benefits from both classes and the fine
line that differentiates between a peptide drug and small drug molecule becomes
faded. Indeed, after a lengthy process of rational drug design where residues are
changed from natural amino acids to nonnatural amino acids then to nonamino acids,
it becomes rather challenging at times to classify if a drug is peptide or nonpeptide.
Although we would like to classify a nonpeptide drug as a compound that does not
possess any amino acid, out of respect for the developers of the drugs, in this chapter,
we will keep the nonpeptide or peptide assignments that the drug developers have
chosen, and will thus avoid any debate over semantics. We will focus on success-
ful stories of peptide-derived drugs that are processed by enzymes. To restrict our
scope, we will mainly narrow our discussion to drugs that have received marketing
approval by the US Food and Drug Administration (FDA), because it is one of the
larger agencies that are responsible for the safety regulation of drugs. We will try to
be as up-to-date as possible in the information that we provide at the time that this
chapter is being written.

It should be noted that, in this chapter, most comparisons done between differ-
ent drugs are restricted to our own personal viewpoint; because of legal reasons and
personal pride, the drug developers would claim originality to their own discoveries.
Hence, we would like the readers to read with an open mind and come up with their
own interpretations of the information that we provide.

5.1.1 Peptide Residue Nomenclature

Peptides are composed of amino acid residues. During the process of changing a
peptide drug to a peptide-like drug and eventually to a nonpeptide drug, the naming
of each residue becomes confusing because two or more residues may be merged
into one functional structure. We will be using the Schechter and Berger [1] nomen-
clature that assumes that the substrate binds to the active site of an enzyme in an
extended backbone conformation. Peptide substrates are proteins or peptides that are
cleaved by the enzyme. Within the active site, subsites, also referred to as pockets,
are denoted as Sn and S

′
n, where n represents the number of subsite away from the

catalytic S1 subsite, with the prime symbol denoting the opposite direction. Accord-
ingly, Pn and P

′
n residues in the substrates are accommodated by their respective Sn
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and S
′
n subsites. Often, N-terminal residues are referred as Pn, whereas C-terminal

residues are referred as P
′
n. The naming of peptide drugs follows the same rules as

that of peptide substrates. For example, P2 –P1 –P
′
1 –P

′
2 is a tetrapeptide drug with a

scissile bond between the P1 and P
′

1 residues. For peptide inhibitors, the inhibitory
unit, which is the unit that prevents enzyme cleavage, is assigned to the P1 residue.
One should keep in mind that because the numbering is based on the subsites of the
active site rather than the sequential order of the residues of the peptide drug, and
that the chemical structures of the enzyme and peptide drug are three-dimensional by
nature, that in some cases, the numbering of the residues of the peptide drug may not
follow a sequential order. In simpler words, there are cases where the peptide drug
does not bind to the active site in an extended backbone conformation. An example
of an irregular order numbering is argatroban, a direct thrombin inhibitor, which has
a P3 –P1 –P2 sequence (Section 5.4.3). For homodimeric enzymes such as the human
immunodeficiency virus (HIV) type 1 protease (Section 5.8), some authors may refer
to a residue of a nonpeptide drug as P1, whereas others may refer to the same residue
as P

′

1, which is completely acceptable due to the symmetrical nature of the enzyme.

5.1.2 Common Methods of Drug Design

As with most things in life, it is easier to either maintain the status quo or destroy,
than to create. Hence, it is often easier to commercialize natural enzymes or activators
of enzymes found in nature, and to develop inhibitors of enzymes, than to create
more potent enzyme activators. A philosophical reasoning for this observation could
be that nature has selected the best enzymes and their activators, whereas man can
only copy or destroy nature’s refinements. Despite the previous statement, researchers
have designed a few enzyme activators, such as α-methyldopa and droxidopa (Section
5.3.3). Here, we are loosely equating the term enzyme activator to substrate, because
as far as we are aware, there is no allosteric activator in the pharmaceutical market.

Peptide drugs have traditionally been discovered by natural product screening.
Most activators of enzymes, or the enzymes themselves, are developed via either
extraction of pharmacologically active natural substances from a crude inexpensive
natural source or by replicating the natural substances by synthetic means. On the
contrary, most potent inhibitors of enzymes are derived from natural lead compounds,
or from natural substrates that have been corrupted to become enzyme inhibitors.

From our own experience, the first step in substrate-based drug design of modula-
tors is to establish an assaying system for enzyme activity. A modulator is either an
activator or inhibitor, which in our case, applies to a substrate or its peptide inhibitor.
As the initial step, a reproducible enzyme activity assay system must be developed
from a substrate and enzyme that both must be stable and pure. It is noteworthy
that the enzyme often can process several different substrates and the choice of
substrate, especially in substrate-based design of enzyme inhibitors, will determine
the structural outcome of the derived modulators. For example, in designing
inhibitors against the HIV (Section 5.8) and human T-cell lymphotrophic/leukemia
virus type 1 (HTLV-I) (Section 5.9.6), we kept in mind that the general Xaa-Pro
cleavage sequence is more specific to retroviral than mammalian proteases [2],
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and specifically chose substrates that contained Xaa-Pro at the cleavage site.
Consequently, most of our inhibitors have Pro or one of its isostere at the P

′
1 position.

As discussed in Section 5.5.3, dipeptidyl peptidase-4 (DPP-IV) is an exception in
that it is a mammalian protease that recognizes the Xaa-Pro sequence. In an enzyme
inhibition assay, the substrate is used as a comparative control. In order to improve
the processing efficiency of the substrate by the enzyme, the substrate and enzyme
may be structurally altered by synthetic means to improve purity and stability, so
as to reduce variations between experiment results. Often, the final substrate used
in the assay is a shortened yet active version of a natural substrate, and the enzyme
is modified from its natural form to prevent self-digestion. For example, in our
research on HTLV-I protease inhibitors (Section 5.9.6), we used a more proteolytic
L40I mutant HTLV-I protease, where Leu40 was modified to an Ile, to cleave an
11-residue substrate [3]. Any drastic change from the natural substrate or enzyme
could be viewed by the scientific community as a huge leap from the substrate and
the natural form of the enzyme, and thereby negatively reflecting on the research as
a false image of nature.

A common method of substrate-based design of inhibitors entails the introduc-
tion of an inhibitory unit near the scissile bond, between the P1 and P

′

1 residues
of the substrate. The inhibitory unit is a modified version of the P1 residue of the
substrate such that the enzyme can recognize and bind to the inhibitory unit at the
catalytic site, but the enzyme cannot readily cleave the inhibitor. A common mech-
anistic feature of protease inhibitors is the presence of a transition state isostere, as
a part of the inhibitory unit, to simulate the transition state of amide bond hydrol-
ysis, as depicted in Figure 5.1. Using three-dimensional structure data from nuclear
magnetic resonance (NMR) and X-ray diffraction crystallography, our research group
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Figure 5.1 A hydroxymethylcarbonyl isostere, found in an aspartic protease inhibitor, acts
as a mimic of the intermediary tetrahedral transition state formed during peptide hydrolysis.
Dashed lines represent hydrogen bond interactions.
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was first to prove the hydrogen bond network formed by the inhibitory unit [4].
Our recent studies combined neutron diffraction crystallography to conclusively pro-
vide direct experimental evidence of the catalytic mechanism of the protease and
its inhibition by the inhibitory unit [5]. The actual positions of deuterated protons
can be observed. In the initial design of protease inhibitors, other than the central
inhibitory unit, the remaining residues of the inhibitor are kept similar to that of the
substrate. In simpler words, the inhibitor is a mimic of the substrate and cannot be
processed by the enzyme. Hence, the inhibitor competes against natural substrates
for the enzyme. If the enzyme can cleave the inhibitor, albeit at a slower rate, or if
the inhibitor can be washed out over time, the inhibition is considered reversible. If
the inhibitor forms strong interactions with the enzyme to the extent that the inhibitor
cannot be removed until the enzyme is degraded, then the inhibition is irreversible. If
an unforeseen adverse drug effect is observed with an inhibitor, the adverse effect is
expected to be more prolonged in an irreversible inhibitor than a reversible inhibitor.
Hence, due to safety concerns associated with mammalian enzymes, the design of
reversible inhibitors is often preferred over that of irreversible inhibitors. However,
when it comes to nonmammalian enzymes, such as those of viruses and parasites,
irreversible inhibitors may be favored over reversible inhibitors, in order to eliminate
completely and quickly the viral or parasitic threat, once it has been ascertained that
there is absolutely no chance of recognition by other mammalian host enzymes.

Following the introduction of the inhibitory unit in the design, several attempts
are performed to minimize the peptide nature of the molecule to avoid most
peptide-associated problems that we have discussed in the introduction (Section 5.1).
Of course, for the case of substrate-based design of activators, an inhibitory unit is
obviously not introduced. During the ensuing rational drug optimization process,
quantitative structure–activity relationship studies are performed to statistically
confirm and suggest any potency trend observed in modulatory activity. The peptide
drug is truncated to reduce size-related pharmacodynamic and pharmacokinetic
problems. In consideration that the enzyme can most likely be able to process several
different substrates, natural amino acid substitution studies are done on each amino
acid residue of the peptide drug to improve inhibitory activity against the enzyme.
Nonnatural amino acids are also substituted to avoid recognition and premature
degradation by other enzymes. Our work on HTLV-I protease inhibitors serves as
an elegant example of this rational drug optimization process (Section 5.9.6) [6].
Generally speaking, amino acids serve as simple units that can somewhat be readily
assembled, to probe the active site of the enzyme and obtain valuable information on
the nature of the subsites [7]. Further structural changes to the drug are performed to
improve several aspects, which may include balancing hydrophilicity and hydropho-
bicity so as to improve blood–brain barrier permeation, oral bioavailability, and
duration of action, or reducing adverse drug reactions and cost of synthesis. During
the process of drug optimization, these modifications progressively decrease the
peptide nature of the molecule. After the peptide bonds of the peptide drug are
altered, the final drug is then reclassified by its inventors as being a nonpeptide. Of
interest, we note that most FDA-approved peptide-derived drugs consist of three to
five residues, or to be more exact, the drugs are anchored to three to five subsites.
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Substrate-based drug design has been substantially improved with the availability
of three-dimensional structural information from such sources as X-ray diffraction
crystallography and NMR studies, that is, information from solid and liquid state
three-dimensional data, respectively. Three-dimensional structural information pro-
vides a computer image of a complex of an enzyme and its inhibitor. It is noteworthy
that the shape of the enzyme in complex with an inhibitor is completely different
from that of an unbound enzyme. Hence, examining a three-dimensional depiction
of an unbound enzyme is an exercise in futility. Moreover, it is obviously practi-
cally difficult to obtain a substrate-enzyme complex because peptide hydrolysis of
the substrate would occur before any data could be gathered. Inspecting the coordi-
nates of an inhibitor bound to an enzyme provides information about the nature of
the subsites including pocket shapes and sizes, presences of sub-pockets, hydrophilic
and hydrophobic surfaces, and potential sites for hydrogen bond, van der Waals, or
hydrophobic interactions. Moreover, because we believe that inhibitor-enzyme bind-
ing follows an induced-fit model, when several complexes of different inhibitors in the
same enzyme are available, the flexibility of the subsites to accommodate for differ-
ent residues can be deduced. From studies aimed at improving the cleavage efficiency
of a substrate, researchers can also obtain valuable information about the shape,
size, hydrophobicity, and accommodating nature of the subsites, although with less
details than three-dimensional structural data. Substrate optimization studies on HIV
(Section 5.8) and HTLV-I proteases (Section 5.9.6) serve as excellent examples of
probing the subsites for information [8]. It is noteworthy that because the final desired
drug is a small molecule, complexes of small inhibitors in the enzyme are preferred
over larger ones. Complexes of small inhibitors focus on the specific subsites that
are in close proximity to the catalytic subsite, whereas complexes of large inhibitors
may induce distortions in the enzyme and lead to misinterpretations on the nature
of the active site. Taken together what we have discussed, several three-dimensional
structural coordinates of the derived small and potent inhibitors in complex with the
enzyme are used to clarify the bound form of the active site of the enzyme. Knowing
the flexibility, shape, and electronic properties of the active site means that novel mod-
ulators, that is, inhibitors or substrates, can be designed without peptide drawbacks.

High throughput screening is often used to develop nonpeptide modulators. At this
stage of research, three-dimensional information of inhibitors bound to the enzyme
along with information pertaining to the flexibility of the active site have provided
sufficient data to search for potential nonpeptide lead compounds. From a generic
chemical library, compounds that can fit and favorably electronically interact with the
active site are searched through computer-assisted docking simulations, namely, vir-
tual high throughput screening. These potential lead compounds are then synthesized
and processed by high throughput assay screening to verify for activating or inhibitory
activity toward or against the enzyme. Essentially, high throughput assay screening
is an automated assaying method of a large library of potential lead compounds in
microtiter plates. Once lead compounds are identified, the compounds are structurally
refined under rational drug optimization to derive potent compounds with desired
pharmacodynamic and pharmacokinetic properties. Cellular and animal experiments
are performed to confirm the expected pharmacodynamics and pharmacokinetics, as
well as to examine for any unexpected adverse drug effects.
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5.1.3 Phases of Drug Development

Development of new medicines goes through five different phases. We have just
described the preclinical stage (Section 5.1.2), in which the drug is discovered, devel-
oped, and tested on nonhuman subjects, after which the drug can advance to clinical
testing. Clinical trials are divided into four phases in which the drug is administered
to volunteer trial participants. Because the tests are ethically conducted on living
humans, there are extensive rules and standards governing the trials and their evalua-
tions. Throughout the clinical phases, safety, effectiveness, adverse risks, and adverse
reactions associated with the investigational drug in human are continuously moni-
tored. In other words, the pharmacodynamic properties of the drug are diligently kept
under close watch.

In phase I clinical trials, low doses of the investigational new drug are given to
healthy individuals and gradually increased to investigate for the safety and tolerabil-
ity of the drug. In certain cases, the drug is given to patients with the targeted disease.
The investigators examine for pharmacokinetic properties in healthy individuals to
assess drug bioavailability and isolate potential drug distribution problems, so as to
determine safe and tolerable dosage levels.

Phase II clinical trials are usually restricted to patients with the targeted disease. Up
to several hundred patients are involved. The main focus of the trials is to determine
the most appropriate method of drug delivery and its associated therapeutic dosage.
Hence, this phase looks at the pharmaceutics of the drug in patients afflicted with the
targeted disease.

Phase III clinical trials test the results of the two previous phases in larger
populations from several hundred to several thousand patients. Investigators and
patients are randomized and double-blinded to provide the primary basis for the
benefit-versus-risk assessment for the new drug, while comparing the drug with
conventional treatments.

Following successful phase III clinical trials, the drug is registered to the national
agency that is responsible for the safety regulation of drugs, such as the FDA. Once the
manufacturing process and clinical trials are reviewed by the agency, the drug may be
approved for marketing. Phase IV clinical trials, commonly known as post-marketing
studies, are conducted for an indefinite length of time to evaluate for long-term risks,
benefits, and optimal use of the drug. It should be noted that even after a drug has
received marketing approval, the FDA is known to revoke its drug approval after
reviewing negative post-marketing reports.

In this chapter, we will primarily focus on peptide drugs that have been approved
by the FDA and are in post-marketing studies, that is, phase IV clinical trials. How-
ever, investigational peptide drugs that have not received FDA approval will be used
as illustrative examples, to explain rational drug designs and compare drug pharma-
cophores. Although different countries will have different phases of clinical trials
than the US system that we have described, the main stages of drug developments
remain as preclinical, clinical, and post-marketing.
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5.2 ENZYME TYPES THAT PROCESS PEPTIDES

Among all the different types of enzymes that process peptides, we will examine
protein kinases, protein phosphatases, and peptidases.

Phosphates are important in signal transduction because they regulate the proteins
to which they are attached. Protein kinases modify peptides or proteins by attach-
ing a phosphate group to one of the three amino acids that have a free hydroxyl
group, namely, serine, threonine, and tyrosine. Certain protein kinases, such as histi-
dine kinase, may phosphorylate other amino acids. Owing to their important effect on
cell growth, movement, and death, the activity of protein kinases is highly regulated
by several mechanisms. A deregulation of protein kinase activity often causes cell
proliferation diseases such as cancer. Several tyrosine kinase inhibitors are marketed
as anticancer agents. These inhibitors are either of monoclonal antibody or small
molecule class, and none of them seems to have been derived from peptides.

While protein kinases add a phosphate group to serine, threonine, tyrosine, or
histidine, protein phosphatases remove the phosphate group. Protein phosphatases
catalyze the removal of the phosphate thus reversing the regulatory effect of phos-
phates. As far as we are aware, there is currently no protein phosphatase modulating
drug on the pharmaceutical market.

Belonging to the hydrolase category, peptidases, as their names suggest, catalyze
the hydrolysis of a peptide bond. Most developed peptide drugs modulate the action
of peptidases. Semantically, considering that proteins are longer peptides, the terms
protease and peptidase are often used interchangeably to denote an enzyme that
breaks down a protein or peptide. Proteases are classified as serine, threonine, cys-
teine, aspartic acid, glutamic acid, and metalloprotease, to denote the participation of
the active site amino acid(s) within the enzyme or metal ion, during the hydrolysis of
a substrate.

5.2.1 Enzymes as Chemicals in Consumer and Medical Products

In consideration of the importance of proteases in the human body, it is not inconceiv-
able that the enzymes themselves are commercially and therapeutically useful. We
will examine a few of these enzymes that are used in common assay tests, commer-
cial products and as therapeutic agents. Use of serine protease as therapeutic agents
and their importance in blood coagulation will be discussed separately in Section 5.4.

Bromelain refers to two cysteine proteases, fruit and stem bromelain, found in the
respective parts of the pineapple, Ananas comosus. Bromelain is a popular digestive
aid and meat tenderizing agent. Classified as a herbal product with anti-inflammatory
activity by the FDA, bromelain is approved by the German Commission E panel,
the German herbal medicine regulatory body, to treat sinusitis caused by injury or
surgery.

Chymosin, also known as rennin (with two n’s), is an aspartic protease found in
rennet, a natural complex of enzymes produced in infant mammalian stomach to cur-
dle ingested mother’s milk thus allowing longer residence in the bowels, and thereby
improving absorption of the milk-product. Renin (with one n) is an aspartic protease
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that is involved with the regulation of blood pressure and body fluids (Section 5.6).
Chymosin catabolyses K-casein between Phe105 and Met106 to produce an insoluble
1–105 fragment, which forms a curd in the presence of calcium, and a soluble frag-
ment 106–169 fragment, which becomes a part of the whey. The catabolytic effects
of chymosin are exploited in the making of cheese, curd, and junket.

Collagenase, derived from Clostridium histolyticum bacteria, is a metalloprotease
that is approved by the FDA to be used as a sterile enzymatic debriding ointment to
digest collagen in necrotic tissue. In other words, collagenase is used to break down
the collagen that binds dead tissues together.

Papain is a cysteine protease found in papaya, Carica papaya, and mountain
papaya, Vasconcellea cundinamarcensis. In the laboratory, papain is used to dis-
sociate cells in the first step of cell culture preparation. For thousands of years in
South America, papain is used to break down tough meat fibers and is also currently
marketed as a meat tenderizer, digestive aid and used in breweries. Topically papain
is used as a home remedy treatment to digest protein toxins in the venom of jellyfish,
bee, wasp stings, and mosquito bites. Papain is also found as an ingredient in
various enzymatic debriding preparations to remove dead or contaminated skin
tissues for medical and cosmetic purposes, as shampoo, as enzyme cleaners for
soft contact lenses, as tooth whitener in much diluted form and as dental caries
removal in more concentrated form. In 2008, the FDA stated that no topical drug
product containing papain has been approved by them and urged consumers to cease
using papain-containing topical products following reports of allergic reactions,
hypotension, and tachycardia.

Pepsin is a major stomach enzyme that digests food proteins into peptides. Dis-
covered in 1836 by Theodor Schwann, the aspartic protease has found success as
a digestive aid [9]. The discovery of a potent inhibitor of pepsin, pepstatin, would
popularize substrate-based inhibitory peptide drug design (Section 5.2.2).

Pregnancy-associated plasma protein A, also known as pappalysin 1, is a metallo-
protease used as a biochemical marker for Down’s syndrome in prenatal screening.
Low plasma level of pregnancy-associated plasma protein A has been positively cor-
related with aneuploid fetuses that may develop to babies with Down’s syndrome.

Prostate specific antigen is also known as kallikrein III, seminin, semenogelase,
𝛾-seminoprotein and P-30 antigen. It is a serine protease that is often elevated in blood
in the presence of prostate-related disorders. Consequently, it has been approved by
the FDA as an effective marker for early detection of prostate cancer.

Subtilisin is a bacteria-derived serine protease that has found its use as a general
purpose peptidase in laundry and dishwashing detergents, skin-care ointments, and
contact lens cleaners to breakdown unwanted proteins. Subtilisin is also used in food
processing.

Trypsin is a serine protease found in the digestive system of many animals. It
is used for numerous biotechnological processes, including assays, to cleave many
peptide chains at the carboxyl side of Lys and Arg that are not followed by Pro. In
the consumer food industry, trypsin is used to predigest baby food by breaking down
large protein molecules, so that the developing babies’ stomach can easily absorb the
smaller nutrients. Serum trypsinogen, the precursor form of trypsin, is found at high
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levels in acute pancreatitis and cystic fibrosis. It should be noted that serum amylase
and/or lipase screening is more standard for the diagnosis of acute pancreatitis, and
that serum trypsinogen may return false positives for cystic fibrosis.

5.2.2 Nonspecific Enzyme Inhibitors

α1-Antitrypsin, the short name for α1-proteinase inhibitor, is a natural plasma glyco-
protein that inhibits a wide variety of proteases, such as trypsin (Section 5.2.1) and
elastase [10]. Elastase is divided in two subgroups, pancreatic and neutrophil elas-
tases. Emphysema is a result of an overt activity of neutrophil elastase that breaks
down elastin, resulting in a decrease in lung elasticity. As an inhibitor of neutrophil
elastase, α1-antitrypsin is approved by the FDA as an injectable in the management
of emphysema. Several other inhibitors of neutrophil elastase are under investigation
(Section 5.9.4).

Pepstatin is a potent aspartic protease inhibitor that was originally iso-
lated from Actinomyces bacteria and named after its ability to potently inhibit
pepsin (Section 5.2.1) [11]. Pepstatin is a hexapeptide with a statine moiety,
(3S,4S)-4-amino-3-hydroxy-6-methylheptanoic acid, also known as a hydroxyethyl-
carbonyl unit. Pepstatin inhibits nearly all acid proteases with high potency, due to
the statine inhibitory unit (Section 5.1.2). The mechanism of action of the statine
unit is similar to that of the hydroxymethylcarbonyl isostere that is illustrated in
Figure 5.1. Derivatives of the statine unit sparked interests in the development of
several aspartic protease inhibitors such as HIV (Section 5.8) and HTLV-I (Section
5.9.6) for proteases, plasmepsins (Section 5.9.6), β-secretase (Section 5.9.3), and
direct renin inhibitors (Section 5.6.2) used to combat acquired immunodeficiency
syndrome (AIDS), HTLV-associated diseases, malaria, Alzheimer’s disease, and
hypertension, respectively. Moreover, pepstatin is a common constituent of the
protease inhibitor combination therapy used to treat AIDS (Section 5.8).

5.3 AMINO ACID DRUGS

If one would loosely use the term peptide, the shortest peptide is an amino acid.
The single amino acid residue is then processed by enzymes to derive precursor and
active neurotransmitters, such as dopamine, norepinephrine, epinephrine, tryptophan,
5-hydroxytryptophan, serotonin, and 𝛾-aminobutyric acid (GABA). Many drugs have
been designed from such amino acids. Although a fair amount of amino acid drugs
target specific receptors, we will restrict our discussion to amino acid drugs that mod-
ulate the activity of enzymes. Blood coagulating amino acids, aminocaproic acid, and
tranexamic acid are examined in their own Section 5.4.1.

5.3.1 Thyroid Hormones

According to chemical nomenclature, the thyroid hormones thyroxine (T4) and
triiodothyronine (T3) are α-amino acids (Figure 5.2). T4 is the major prohormone
secreted by the follicular cells of the thyroid gland that is activated as the T3
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Figure 5.2 Amino acid-based drug design. Thyroid hormones, an ornithine decarboxylase
inhibitor, catecholamines and catecholamine modulators.

hormone. Although to a lesser extent than T4, T3 is also be secreted. As the most
powerful thyroid hormone, T3 affects almost every process in the body including
body temperature, growth, and heart rate. Indeed, T3 stimulates the production of
the enzyme RNA polymerase I and II, to increase the rate of protein synthesis.
Conversely, T3 can also increase the rate of protein degradation. Levothyroxine,
a synthetic L -T4, is widely marketed for the management of hypothyroidism and
enlarged thyroid gland [12]. Moreover, liothyronine sodium, a synthetic salt of
L -T3, being more potent than L -T4, is indicated for severe hypothyroidism as well
as the treatment of myxedema coma, a state of decompensated hypothyroidism.
Hence, levothyroxine and liothyronine are used in thyroid hormone supplementation
therapy as general activators of enzymes and regulators of biophysical processes.

5.3.2 An Ornithine Decarboxylase Inhibitor

Ornithine is a product of the action of the enzyme arginase on arginine (Figure 5.2).
Eflornithine is an α-difluoromethyl derivative of ornithine that acts as an irreversible
inhibitor of ornithine decarboxylase [13]. As its name suggests, ornithine decar-
boxylase removes the carboxylate function from α-amino acid ornithine to yield
putrescine. Cofactor pyridoxal phosphate, the activated form of vitamin B6, is
also involved. The reaction is the first and rate limiting step for the production of
polyamines that are required for cell division. In human, the drug eflornithine has a
very short half-life and is degraded much faster than in the parasite Trypanosoma
brucei gambiense. The parasite causes African trypanosomiasis, which is more
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commonly referred as sleeping sickness. Hence, due to the lower bioavailability
of eflornithine in humans than in the parasite, eflornithine pharmacokinetically
favors harming the parasite. However, because sleeping sickness mainly affects
Africa, a developing continent where patients cannot afford the drug, the original
manufacturer of eflornithine does not deem the inhibitor to be profitable and
have reduced its production. The WHO subsequently pressured the manufacturer
to resume production and to eventually transfer manufacturing to other willing
companies. Interestingly, eflornithine as a topical agent, manufactured by another
company, is approved by the FDA as an effective hair-growth retardant in women,
due to its inhibition of polyamine production.

5.3.3 Catecholamines

From tyrosine, mammals can synthesize several important catecholamine neuro-
transmitters, namely, dopamine, epinephrine, and norepinephrine. l-Tyrosine is
hydroxylated by the enzyme tyrosine hydroxylase to l-dihydroxyphenylalanine
(l-DOPA or levodopa) that is then processed to dopamine by DOPA decarboxylase
and cofactor pyridoxal phosphate (Figure 5.2). Dopamine can be further pro-
cessed by dopamine β-hydroxylase and cofactor ascorbate to form norepinephrine.
Epinephrine can be produced from norepinephrine following a methylation of the
distal amine by phenylethanolamine N-transferase in the cytosol of adrenergic
neurons and chromaffin cells of the adrenal medulla.

In the first step, the process from tyrosine to levodopa is catalyzed by tyrosine
hydroxylase. Metyrosine is an amino acid drug that inhibits the enzyme tyrosine
hydroxylase to deplete levels of catecholamines [14]. Although metyrosine is rarely
used in clinical settings, the drug was approved by the FDA in 1979 for the treat-
ment of pheochromocytoma, a neuroendocrine tumor that induces excessive secretion
of catecholamines. From its chemical structure, it is apparent that metyrosine is an
α-methyl derivative of tyrosine that competes against tyrosine for tyrosine hydroxy-
lase.

Tyrosine hydroxylase adds an extra hydroxyl function to the aromatic ring of tyro-
sine to form levodopa, which is then decarboxylated by DOPA decarboxylase to yield
dopamine, which is subsequently 𝛽-hydroxylated to norepinephrine. Levodopa, tech-
nically an α-amino acid, can cross the blood–brain barrier whereas dopamine cannot
[15]. In 1957, Nobel Prize winner Arvid Carlsson discovered that the administration
of levodopa to animals with Parkinsonian symptoms would reduce the symptoms.
Eventually, levodopa, as a drug, was approved by the FDA for the management of
Parkinson’s disease.

In consideration that levodopa can be converted to dopamine both inside and
outside of the brain, and the inability of dopamine to cross the blood–brain barrier,
DOPA decarboxylase inhibitors are used as an adjunct to levodopa treatment
to slow down peripheral conversion of levodopa to dopamine. A retardation of
peripheral levodopa conversion raises central nervous system levels of dopamine
to manage Parkinsonian symptoms, and decreases peripheral nervous system levels
of dopamine, which would result in fewer and less severe adverse drug effects.

Universal Free E-Book Store



SERINE PROTEASES AND BLOOD CLOTTING 169

Carbidopa is a DOPA decarboxylase inhibitor that is approved by the FDA as a
levodopa mimic that competes for the enzyme [16]. Carbidopa is an α-methyl and
hydrazinyl derivative of levodopa. Carbidopa and levodopa are often combined in
a single tablet for the management of Parkinsonism. Benserazide, a dopamine-Ser
derivative, is a DOPA decarboxylase inhibitor that is approved as a combination
with levodopa in the United Kingdom and Canada, but not in the United States
where carbidopa is used for the same purpose [17]. When compared, both peripheral
DOPA decarboxylase inhibitors, carbidopa and benserazide, contain a hydrazinyl
function. Vitamin B6, usually provided in the form of pyridoxine, is often included
in the combination therapy, so that it can be activated to cofactor pyridoxal phos-
phate and assist in the conversion of levodopa to dopamine in the brain by DOPA
decarboxylase.

Interestingly, α-methyldopa, is an α-methyl derivative of levodopa without the
hydrazinyl function found in carbidopa [18]. α-Methyldopa is readily metabolized in
the intestines and liver to α-methylnorepinephrine that acts as a central α2-receptor
agonist. Similar to norepinephrine and epinephrine, α-methylnorepinephrine exerts
α2-receptor negative feedback that results in antihypertensive effects. Consequently,
the FDA has approved α-methyldopa for the treatment of hypertension. Its use is
now deprecated following introduction of alternative safer classes of antihyperten-
sive agents. It should be noted that, although α-methyldopa was originally designed
to be a DOPA decarboxylase inhibitor, the actual pharmacological effects suggest
that α-methyldopa may worsen Parkinsonism. In a broad sense, α-methyldopa is a
substrate, that is, enzyme activator, of several enzymes and can be considered as a
precursor of α-methylnorepinephrine, an agonist analog of norepinephrine. Of inter-
est, from a drug design perspective, whereas metyrosine is an α-methyl derivative of
tyrosine, carbidopa and α-methyldopa are α-methyl derivatives of levodopa.

Droxidopa is an analog of both levodopa and norepinephrine that was approved
since 1989 in Japan for the treatment of neurogenic hypotension associated with
Parkinson’s disease [19]. As of 2008, the drug is under clinical trials in Australia,
Europe, Canada, and the United States. Contrary to α-methyldopa, which is metab-
olized to a norepinephrine analog, droxidopa is a prodrug of norepinephrine. In a
sense, droxidopa, as a substrate of DOPA decarboxylase, can be considered as an
activator of the enzyme, because the removal of the carboxylate function in drox-
idopa by the enzyme would by-pass the formation of dopamine and directly form
norepinephrine. Droxidopa can either cross the blood–brain barrier or remain in the
periphery where it is converted to norepinephrine. Moreover, droxidopa can be used
in combination with a DOPA decarboxylase inhibitor, such as carbidopa, to increase
brain norepinephrine levels while maintaining peripheral levels.

5.4 SERINE PROTEASES AND BLOOD CLOTTING

Coagulation is a complex process by which blood forms clots. The primary pathway
to initiate blood coagulation is defined by a series of reactions, in which an inac-
tive serine protease precursor, that is, a zymogen, and its cofactor become activated
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components that then catalyze the next reaction in the cascade, eventually resulting
in cross-linked fibrin. In this section, we will touch on serine proteases and serine
protease inhibitors that modulate blood coagulation.

5.4.1 Blood Coagulating Agents

Peptide drug aprotinin is a naturally occurring broad-spectrum serine protease
inhibitor isolated from bovine lung tissue [20]. The monomeric globular 58 residue
polypeptide is known to inhibit several serine proteases, namely, trypsin, chy-
motrypsin, plasmin, and kallikrein. Although aprotinin action on plasmin slows
fibrinolysis, its effect on kallikrein leads to the inhibition of the formation of factor
XIIa, and consequently stops coagulation and fibrinolysis. Hence, as an injectable
drug, aprotinin was used since 1964 to reduce bleeding during complex surgery.
However, in 2008, the FDA pressured the manufacturer to discontinue marketing the
drug due to an increase risk of complications or death.

As an alternative to aprotinin, aminocaproic acid, and tranexamic acid were devel-
oped from lysine (Figure 5.3) [21]. These drugs are 𝜀-amino acids. Both drugs inhibit
zymogens and enzymes that particularly bind to lysine. In particular, both drugs bind
reversibly to zymogen plasminogen, so that it cannot be activated to plasmin. With-
out plasmin, fibrinolysis does not occur. Orally administered aminocaproic acid, is
FDA-approved to treat excessive postoperative bleeding, in such situations such as
dental surgery. Injectable tranexamic acid has roughly eight times the antifibrinolytic
activity of its older analog, aminocaproic acid. Tranexamic also inhibits serine pro-
teases known as plasminogen activators, which activates plasminogen to plasmin,
as their names suggest (Section 5.4.2). Approved by the FDA, tranexamic acid is
the drug of choice as a nonhormonal treatment of menstrual bleeding, namely, dys-
functional bleeding and heavy bleeding associated with uterine fibroids. The drug is
also commonly used in cardiac, dental, obstetric, and orthopedic surgery. Of interest,
although both aminocaproic acid and tranexamic acid were available in both oral and
injectable forms, the manufacturers decided to only support one dosage form.

Several serine proteases, namely, blood clotting factors II, VII, IX, and X, are com-
bined as a prothrombin complex concentrate. Fresh frozen plasma and the prothrom-
bin complex concentrate are used to medically correct for prothrombin deficiencies.
When the factors are activated, blood coagulates. Hence, the prothrombin complex
concentrate is often used to resolve intractable bleeding caused by the anticoagulant
drug warfarin.

Interestingly, the knowledge of the sequence of activated factor II, also known as
factor IIa or thrombin, is valuable in constructing recombinant fusion proteins. The

H2N H2N
OH OH

O O

Aminocaproic acid Tranexamic acid

Figure 5.3 Fibrinolytic amino acid drugs.
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thrombin cleavage site sequence of Leu-Val-Pro-Arg//Gly-Ser is commonly included
as a linker region between recombinant fusion protein constructs for ease of purifica-
tion. Once purified, thrombin is used to specifically cleave between Pro-Arg and Gly
of the cleavage site sequence, thereby removing the purification tag from the protein
of interest.

5.4.2 Enzymes as Blood Anticoagulants

Plasminogen activators are serine proteases that catalyze the conversion of plasmino-
gen to plasmin, a major anticoagulant serine protease [22]. In general, plasminogen
activators are injected enzymes that are indicated for clotting-related conditions
including pulmonary embolism, myocardial infarction and stroke. The activators
are classified according to the source where the enzyme drugs are obtained, such
as recombinant tissue plasminogen activators, alteplase, monteplase, reteplase,
and tenecteplase, from endothelial cells; urokinase from urine; streptokinase and
anistreplase from Streptococcus bacteria. As previously discussed (Section 5.4.1),
tranexamic acid is an amino acid drug that inhibits plasminogen activators to prevent
excessive bleeding.

Protein C is a vitamin K-dependent serine protease that is activated by thrombin
into activated protein C. Once activated, the enzyme is a major physiological anti-
coagulant and exhibits both anti-inflammatory and antiapoptotic activities. Activated
drotrecogin alfa is an injectable recombinant activated protein C that is approved by
the FDA to be used in intensive care medicine as a treatment for severe sepsis [23].

5.4.3 Direct Thrombin Inhibitors as Blood Anticoagulants

Current anticoagulation therapies often involve antiplatelet agents such as aspirin,
clopidogrel, dipyridamole, and ticlopidine and anticoagulants such as heparin and
warfarin. In particular, although coumarin derivatives such as warfarin are very use-
ful and powerful anticoagulant drugs, they are plagued with problems associated with
drug–drug and drug–disease interactions, and a very narrow therapeutic window that
requires very careful therapeutic drug monitoring. To resolve these unspecific ther-
apeutic interactions, direct thrombin inhibitors were developed as anticoagulants to
bind at the active site of thrombin and inhibit its blood coagulating activity. There are
two classes of direct thrombin inhibitors: bivalent and univalent [24]. Although the
bivalent inhibitors bind at both the active site and exosite 1 of thrombin, the univa-
lent inhibitors bind more specifically to the active site. Although few direct thrombin
inhibitors are available to patients, further development and market accessibility to
direct thrombin inhibitors would provide very excellent and most likely safer alter-
natives to coumarin derivatives.

In 1884, John Haycraft demonstrated that medicinal leeches, Hirudo medicinalis,
secreted a substance, hirudin, with potent anticoagulant properties [25]. Until the
discovery of heparin, these leeches were the only mean of preventing blood from
clotting. Hirudin is a bivalent direct thrombin inhibitor. Structurally, hirudin is a
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65-amino acid residue protein with a compact N-terminal domain with three disul-
fide bonds and a disordered C-terminal domain [26]. Unfortunately, natural hirudin
exists in various isoforms and is difficult to extract in sufficient therapeutic amount
from natural sources, that is, leeches. However, homogeneous hirudin can be pro-
duced using recombinant techniques [27]. Lepirudin and desirudin are marketed as
recombinant hirudins to be used when heparin is contraindicated, such as in unstable
angina or for patients with a risk of developing heparin-induced thrombocytopenia
(HIT). Bivalirudin is a synthetic 20-amino acid peptide derivative of hirudin, con-
taining a tripeptide active direct thrombin inhibitor (d-Phe)-Pro-Arg attached to Pro
and a tetrapeptide Gly linker, followed by a dodecapeptide analog of the C-terminus
of hirudin, that is (d-Phe)-Pro-Arg//Pro-Gly-Gly-Gly-Gly-(hirudin C-terminus) [28].
Of interest, the Pro-Arg sequence is shared between bivalirudin and the aforemen-
tioned linker chain used in recombinant fusion protein construct, so that thrombin
can recognize and process the respective peptide (Section 5.4.1). Although hirudin
is an irreversible inhibitor of thrombin, bivalirudin is a reversible inhibitor that is
slowly processed by thrombin between the Pro-Arg and Pro sequences of the drug.
As a result of bivalirudin reversibility, there is a low risk of severe bleeding asso-
ciated with bivalirudin when compared with standard combination heparin therapy.
Unfortunately, due to their large sizes, bivalent direct thrombin inhibitors, lepirudin,
desirudin, and bivalirudin, need to be administered by injection, and thereby limiting
their use for long-term treatment.

Univalent direct thrombin inhibitors are considerably much smaller than bivalent
inhibitors. The (d-Phe)-Pro-Arg sequence represents the P3 –P2 –P1 residues of biva-
lent thrombin inhibitor bivalirudin. The (d-Phe)-Pro-Arg motif was heavily modified
in the design of univalent inhibitor melagatran [29]. The drug was marketed outside
of the FDA’s jurisdiction as an oral prodrug, ximelagatran, to increase oral bioavail-
ability (Figure 5.4). In the body, the ethyl ester moiety in ximelagatran is hydrolyzed,
whereas the hydroxyl group is removed to uncover the main binding portion of the
inhibitor. Unfortunately, due to liver toxicity in a subpopulation of patients found
during clinical trials, the FDA rejected the drug’s application and the manufacturer
discontinued developing the drug.

Argatroban is an extensively modified derivative of the (d-Phe)-Pro-Arg motif
[30]. It is noteworthy that argatroban does not fit in the active site of thrombin
in an extended backbone conformation, resulting in a nonsequential numbering
of the residues as P3 –P1 –P2. Argatroban was approved by the FDA for patients
with HIT undergoing prophylaxis or treatment for thrombosis or percutaneous
coronary intervention. However, the univalent direct thrombin inhibitor must be
administered intravenously because of the highly basic P1 Arg side-chain that
interferes with gastrointestinal absorption [31]. To partially alleviate the alkalinity of
the P1 residue and improve drug tolerability, the carboxylic acid at the 2-position of
the P2 piperidine amide acts as an internal counter-ion for the P1 guanidine function.

Dabigatran etexilate is an orally administered prodrug that is metabolized to uni-
valent direct thrombin inhibitor dabigatran through ethyl de-esterification and the
removal of a long hexyloxycarbonyl function from a benzamidine moiety [32]. Using
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Figure 5.4 Univalent direct thrombin inhibitors. The leaving groups of prodrugs ximelaga-
tran and dabigatran etexilate are drawn in gray.

X-ray crystallography and computer-assisted docking experiments, dabigatran etex-
ilate was derived from NAPAP (Nα-(2-naphthylsulfonylglycyl)-4-amidinophenylala
nine piperidide), a powerful nonpeptide inhibitor of various serine proteases, specifi-
cally thrombin and trypsin [33]. Despite its strong activity, NAPAP is not intestinally
absorbed and rapidly eliminated from the circulation by hepatic uptake. Much like
argatroban, NAPAP and dabigatran etexilate have a nonsequential P3 –P1 –P2 num-
bering convention. Heavily modified from NAPAP, dabigatran etexilate has a benz-
imidazole central core that holds the P1 benzamidine function found in NAPAP and
an aromatic P3 residue. In contrast to NAPAP and argatroban, dabigatran etexilate
is an excellent oral candidate and could serve as a replacement for the often prob-
lematic anticoagulant drug, warfarin. Interestingly, dabigatran etexilate does not take
advantage of potential interactions with the S2 subsite because it lacks a P2 residue.
Considering that dabigatran etexilate has received market authorization by the Euro-
pean Medicines Agency, National Health Services in Britain and Health Canada in
2008, it is expected that the FDA too would soon approve the drug.

Common structural features are present in the (d-Phe)-Pro-Arg motif found
in bivalent thrombin inhibitor bivalirudin and the univalent thrombin inhibitors
ximelagatran, argatroban, NAPAP, and dabigatran etexilate. As mentioned, the
motif and ximelagatran have a conventional sequential P3 –P2 –P1 numbering
whereas the residues of argatroban, NAPAP and dabigatran etexilate are laid out as
P3 –P1 –P2, because subsite numbering takes precedence over residue numbering
(Section 5.1.1). As a part of the critical P1 residue, all motif and inhibitors share
a similar amidine or guanidine functional group that interacts with thrombin
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Asp189B. Benzamidine function in ximelagatran, NAPAP, and dabigatran etexilate
is an isostere of the guanidine side-chain of arginine in the motif and argatroban.
Interestingly, the molecule benzamidine itself is a reversible competitive inhibitor of
trypsin, trypsin-like enzymes and serine proteases. The P2 residue, which is absent in
dabigatran etexilate, exists as a nonaromatic cyclic 4-, 5-, or 6-member ring system
in the motif or other univalent thrombin inhibitors, respectively. According to X-ray
diffraction crystallography data, the lipophilic region of the P2 residue provides the
majority of the binding energy through favorable van der Waals contact with the
largely lipophilic S2 subsite. Any P2 polar groups were merely tolerated by the S2
subsite. The S3 subsite of thrombin is unconventional in that it is only accessible
by a compound with a P3 d-configuration, such as d-phenylalanine of the motif
and d-α-cyclohexylglycine of ximelagatran. In the natural fibrinogen substrate, the
pocket is accessible when P8-Leu and P9-Phe loops around to make the interactions.
This loop suggests that the S3 subsite can accommodate for large cyclic functions,
such as those found in the motif and univalent thrombin inhibitors. In the design
of dabigatran etexilate, following a report that highly lipophilic thrombin inhibitors
would exhibit less activity in the blood plasma due to protein binding [34], a butyric
acid function was attached to the P3 amide nitrogen to increase hydrophilicity. X-ray
diffraction crystallography data of dabigatran in complex with thrombin reveal that
this attachment did not greatly interfere with drug-enzyme binding because the P3
amide nitrogen projected into bulk solvent without forming further interaction with
the enzyme. Interestingly, ximelagatran similarly possessed an acetic function that is
attached to the P3 nitrogen. Moreover, both ximelagatran and dabigatran etexilate are
orally bioavailable prodrugs of melagatran and dabigatran, respectively. Both drugs
have similar protection points that are needed to improve their oral bioavailability,
namely, a protected P1 amidine or guanidine function, and a protective P3 ethyl ester
function. Bivalirudin, argatroban, and NAPAP are not orally bioavailable.

5.5 DIABETES MELLITUS

Diabetes mellitus is a syndrome of a metabolic disorder that results in abnormally
high blood–sugar levels. Blood glucose levels are controlled by a complex interaction
of multiple chemicals and hormones, including the peptide hormone insulin. Defects
in either insulin secretion or insulin action lead to diabetes mellitus. When food is
present in the lumen of the small intestine, the gastrointestinal hormone incretins are
released to enhance insulin secretion, even before blood glucose levels become ele-
vated. We will touch on peptide drug strategies in the management of diabetes melli-
tus that entail the administration of incretin derivatives and inhibition of DPP-IV, an
enzyme that breaks down incretins.

5.5.1 Peptide Hormones and Blood Glucose Regulation

Insulin is a 51-amino acid peptide hormone with extensive effects on metabolism and
several other body systems, such as vascular compliance. Insulin is known to mod-
ify the activity of numerous enzymes. It is released from the β-cells of the islets of
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Langerhans in the pancreas to cause most of the body’s cells to take up glucose from
the blood, storing it as glycogen in the liver and muscle, and stops the use of fat as
an energy source. Patients with type 1 diabetes mellitus depend on subcutaneously
injected insulin for their survival because their bodies cannot produce insulin. Most
synthetic human insulins for therapeutic use are manufactured as recombinant pro-
teins, and exist as insulin analogs with different absorption and duration of action
profiles. To meet the patient’s varying insulin requirements, the derivatives are clas-
sified as rapid-, short-, intermediate-, and long-acting insulin analogs.

Glucagon is a 29-amino acid peptide hormone that is involved in carbohydrate
metabolism. The binding of glucagon to glucagon receptors leads to a cascade of
enzyme activations. When blood glucose level is low, glucagon, which is produced
from the pancreas, is released to cause the liver to convert stored glycogen into glu-
cose that is subsequently released into the bloodstream. The action of glucagon is
opposite to that of insulin. In severe hypoglycemia when the victim cannot take
glucose orally, glucagon is used as a peptide drug that is given intramuscularly, intra-
venously, or subcutaneously by injection to quickly raise blood glucose levels.

Secretin is the first hormone to be identified [35]. Discovered by William Bayliss
and Ernest Starling in 1902, secretin is a 27-amino acid peptide hormone that has
some sequence similarity with glucagon. Its primary effect is to regulate the pH of
the duodenal contents through the control of gastric acid secretion and buffering with
bicarbonate, by several means, including modulating digestive enzyme activity such
as the inhibition of gastrin and stimulation of pepsin. Secretin also regulates blood
glucose levels by triggering increase insulin release from the pancreas, or conversely
by stimulating the release of glucagon [36]. Secretin is used in the medical field in
pancreatic function tests to detect abnormalities in the pancreas such as gastrinoma,
pancreatitis, or pancreatic cancer.

5.5.2 Glucagon-like Peptide-1 and Analogs

Glucagon-like peptide-1 (GLP-1) functions as a gastrointestinal hormone incretin
that enhances insulin secretion prior to blood glucose levels elevation. GLP-1 also
decreases glucagon secretion from pancreatic α-cells, and increases β-cell mass and
insulin gene expression. Moreover, GLP-1 inhibits acid secretion and gastric empty-
ing of the stomach, and increases satiety resulting in decrease food intake. Although
these characteristics suggest that GLP-1 is a good agent to combat diabetes melli-
tus, GLP-1 must be administered by continuous subcutaneous infusion. The reason
behind such a tedious administration method is because GLP-1 is a large peptide
hormone with a half-life of less than 2 min due to a rapid degradation by DPP-IV.

Exenatide is the only analog of GLP-1 that is currently approved by the FDA for
the treatment of diabetes mellitus type 2. Exenatide was discovered from the venom
of a lizard, the Gila monster, Heloderma suspectum [37]. As an analog of GLP-1 with
53% homology and longer half-life, exenatide is a 39-residue peptide and therefore
must be administered by subcutaneous injection twice daily. Although several other
long acting GLP-1 analogs such as albiglutide and liraglutide are currently in clinical
trials, they too must be administered by subcutaneous injection.
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5.5.3 Dipeptidyl Peptidase-4 Inhibitors

Another approach to promote the actions of GLP-1 is to inhibit DPP-IV, the enzyme
that inactivates GLP-1. DPP-IV also degrades another incretin, glucose-dependent
insulinotropic peptide (GIP). Hence, inhibition of DPP-IV would prevent the degra-
dation of two incretins that induce insulin secretion. The major advantage of DPP-IV
inhibitors is that they can be designed to be orally bioavailable, due to their smaller
sizes. Since its discovery in 1967, DPP-IV was known to cleave two amino acids
from the N-terminus of a substrate after an alanine residue or, more importantly, a
proline residue using a catalytic serine residue on the enzyme [38]. The active site of
DPP-IV is fairly indiscriminant with at least 62 known substrates and thus permitted
for the discovery of diverse inhibitors [39]. This lack of discrimination also means
that the inhibitors could also have affinity for other DPPs, such as DPP-II, DPP-VIII,
and DPP-IX, and thereby could result in drug-induced toxicity [40].

Substrate mimic inhibitors were designed from a general Xaa-Pro substrate
sequence where cleavage occurs after Pro. Cyanopyrrolidine inhibitors, as the
name suggests, contain a nitrile function that forms a reversible covalent bond
with the catalytic serine residue and a pyrrolidine moiety of DPP-IV to mimic
the proline residue of the substrate. The interaction of the nitrile function with
the catalytic serine is critical for both potent inhibitory activity against DPP-IV,
and selectivity over other DPPs [40, 41]. However, the cyanopyrrolidine moiety
can undergo intramolecular cyclization that deactivates the inhibitor (Figure 5.5).
The trans-rotamer of the drug, which is the binding rotamer at the active site, can
convert to the cis-rotamer that then undergoes intramolecular cyclization to form a
structurally different compound.

DPP-IV inhibitor vildagliptin introduced a steric bulk as the P2 residue’s
capping moiety (the R function in Figure 5.5) to slow intramolecular cyclization
(Figure 5.6) [42]. The bulky hydroxyl adamantyl ring of the inhibitor relatively
slowed intramolecular cyclization by 30 times, resulting in an orally bioavailable
drug with long-lasting pharmacodynamics and higher inhibitory potency against
DPP-IV. In 2008, vildagliptin was approved by the European Medicines Agency
for use within the EU as a single pharmaceutical ingredient, or in combination with
metformin, an antidiabetic drug. However, within the same year, the manufacturer
withdrew its application to the FDA because the agency had requested that further
clinical studies be made.
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Figure 5.5 Intramolecular cyclization of cyanopyrrolidine dipeptidyl peptidase-4 inhibitors.
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Developed by a competing pharmaceutical company, saxagliptin is another
DPP-IV inhibitor with a bulky hydroxyl adamantyl ring at the P2 position [43].
However, the bulk was placed as a side-chain instead of a capping group as found
in vildagliptin. To further stabilize saxagliptin against intramolecular cyclization, a
cis-4,5-methylene function was appended to the P1 pyrrolidine ring so as to reduce
molecular flexibility. Saxagliptin is in phase III clinical trials.

From X-ray diffraction crystallography studies of substrate-based DPP-IV
inhibitors in complex with the enzyme, three-dimensional information pertaining
to the flexibility, shape, and electronic properties of the active site of the enzyme
were elucidated (Section 5.1.2). From such information, high throughput screening
was performed to discover lead compounds that were followed-up by rational
drug optimization to improve on inhibitory activity and selectivity against DPP-IV.
As a result, several nonsubstrate-based inhibitors such as sitagliptin, alogliptin,
and linagliptin were obtained [44]. Considering that the lead compounds were
semirandomly screened and that the enzyme itself is fairly indiscriminant toward
substrates, the mode of interactions of these nonsubstrate-based DPP-IV inhibitors
are, as expected, different from one drug to another. For example, when the
mode of binding of nonsubstrate-based inhibitor sitagliptin is compared to that
of substrate-based inhibitors vildagliptin and saxagliptin, one realizes that the
N-terminus of the β-amino acid of sitagliptin occupies the S1 subsite instead of the
S2 (Figure 5.6). Sitagliptin is currently the only FDA-approved DPP-IV inhibitor
for type 2 diabetes mellitus, while alogliptin and linagliptin are under phase III
clinical trials. While sitagliptin is a β-amino acid, it would take quite a stretch
of the imagination to describe alogliptin and linagliptin as peptide drugs since
they either have a dihydropyrimidine or dihydropurinedione, respectively, as the
central core.
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5.6 RENIN–ANGIOTENSIN–ALDOSTERONE SYSTEM

The renin–angiotensin–aldosterone system is a complex regulator of blood pressure,
renal hemodynamics and volume homeostasis in normal physiology. Simply put,
the system aims at increasing blood pressure in response to hypotension, decrease
sodium concentration in the distal tubule of the kidney, renal sympathetic nerve
stimulation and decrease blood volume. When the system is activated, the kidneys
release renin (with one n) that cleaves the liver-derived peptide angiotensinogen into
angiotensin I. Angiotensin-converting enzyme (ACE), found in the pulmonary cir-
culation and the endothelium of blood vessels, converts angiotensin I to angiotensin
II by removing two residues from the C-terminus of angiotensin I. In consideration
that angiotensin II is a potent vasoconstrictor and that ACE is also involved in the
inactivation of bradykinin, a potent vasodilator, ACE, essentially increases blood
pressure. Angiotensin II also stimulates aldosterone production that causes the
tubules of the kidneys to increase re-uptake of sodium and water, increasing the
plasma volume and blood pressure. Hence, ACE regulates fluid volume homeostasis.
We will discuss two classes of enzyme-targeting peptide-derived drugs, namely,
ACE inhibitors and renin inhibitors.

5.6.1 ACE Inhibitors

ACE is a metalloprotease. ACE inhibitors antagonize the actions of ACE. Conse-
quently, they are primarily indicated for the management of hypertension and con-
gestive heart failure. ACE inhibitors are also indicated for left ventricular dysfunction,
the prevention of cardiovascular disorders, and the prevention of nephropathy in dia-
betes mellitus. Development of ACE inhibitors is of historical significance because
the research demonstrated early on that peptides could be developed as oral bioavail-
able drugs.

In 1965, the research team of Sérgio H. Ferreira [45] discovered bradykinin
potentiating factor, a family of peptides that were isolated from the venom of
the Brazilian pit viper, Bothrops jararaca. The team elucidated a small pen-
tapeptide, Glu-Lys-Trp-Ala-Pro [46], that, although had little to no hypotensive
effect, potentiated the hypotensive effects evoked by bradykinin [47]. From the
bradykinin-potentiating factor family of peptides, Ondetti and colleagues isolated
a more potent nonapeptide named teprotide, Glu-Trp-Pro-Arg-Pro-Glu-Ile-Pro-Pro
[48], that, however, had limited clinical value because it lacked oral activity [49].
Although further studies on the sequences did not lead to a marketed drug, the
discoveries highlighted the importance of ACE in hypertension.

In 1973, Larry D. Byers and Richard Wolfenden [50] discovered that carboxypep-
tidase A, a bovine pancreatic enzyme similar to ACE, was potently inhibited by
l-benzylsuccinic acid (Figure 5.7). The carboxylate moiety of the compound binds
to the catalytic zinc ion that is present at the active site. The active site encompasses
to the C-terminal region of a peptide substrate. Both carboxypeptidase A and ACE
are zinc metalloexopeptidases. In contrast to carboxypeptidase A, ACE removes two
residues instead of one residue from a peptide substrate. Having considered that
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ACE removes a dipeptide and teprotide contained proline at the C-terminus, David
Cushman and Miguel Ondetti [51] derived a weak ACE inhibitor, succinyl l-proline.
Methyl branching and chain elongation studies on the succinyl moiety, followed by a
replacement of the carboxylate moiety by sulfhydryl as a zinc-chelating group with
greater affinity, eventually led to the first marketed ACE inhibitor, captopril.

The most common adverse effects of captopril are skin rash and loss of taste, which
are believed to be caused by the sulfhydryl moiety [52]. Designers of captopril opted
to switch back to a less potent carboxylate moiety as the zinc-chelating group found
in succinyl l-proline, while improving binding to the active site in other sections
of the drug to compensate for the expected reduction in inhibitory potency against
ACE. The results from the studies were peptide drugs enalaprilat and lisinopril. The
researchers adopted a three-residue model. Proline was kept as the P

′

2 end anchor. In
enalaprilat, a P

′
1 alanine residue was adopted to mimic the methyl functional found in

captopril. Alternatively, in lisinopril, an adjacent basic amino acid P
′

1 lysine residue
improved potency as a result of a hydrogen bond network formed with several inter-
mediary water molecules, as suggested by X-ray diffraction crystallography data [53].
As for the P1 residue containing the chelating group, a hydrophobic residue could
be accommodated by the S1 pocket. Interestingly, we would like to point out that
the chemical structures for enalaprilat and lisinopril are similar to the sequences for
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Phe-Ala-Pro and Phe-Lys-Pro, where the P1 l-homophenylalanine residue is similar
to the P1 l-phenylalanine found in angiotensin I near the scissile bond. Moreover, the
removed dipeptide sequence of angiotensin I is composed of a basic and a nonpolar
amino acid, His-Leu, that corresponds to the polarity pattern of the P

′
1 –P

′
2 residues

of lisinopril, namely, Lys-Pro.
Enalaprilat is only suitable for intravenous administration because, being dicar-

boxylated, it exhibits unfavorable ionization characteristics to allow sufficient sta-
bility for oral administration. Consequently, enalapril was developed as a prodrug
of enalaprilat, in which the chelating carboxylate moiety was converted to the ethyl
ester. The prodrug is metabolized in the body by various esterases to afford the parent
compound, enalaprilat. As previously mentioned, ximelagatran and dabigatran etex-
ilate, two univalent direct thrombin inhibitor prodrugs, also used ethyl esterification
to improve oral bioavailability (Section 5.4.3). Since the introduction of enalapril, at
least six other ethyl ester ACE inhibitor prodrugs with a carboxylate chelating moiety,
namely, benazepril, moexipril, perindopril, quinapril, ramipril, and trandolapril, were
approved by the FDA for the US market. Of interest, benazepril has a benzodiazepine
core moiety that encompasses the P

′

1 –P
′

2 Ala-Pro sequence in enalapril. Hence, one
could infer that the S

′
1 –S

′
2 subsites form a wide cavity. Fosinopril is a prodrug that is

metabolized in vivo to fosinoprilat, in order to overcome similar oral bioavailability
problems associated with enalaprilat. Contrary to enalaprilat, fosinoprilat has a phos-
phonate functional group as the zinc-chelating moiety. Fosinoprilat has a chemical
structure similar to a Phe-Gly-Pro sequence.

The hot bed of ACE inhibitor research now lies in selective domain inhibition.
ACE has two active sites [52]. Although the C-domain is mainly responsible for the
regulation of blood pressure by converting angiotensin I, the N-domain is principal for
the processing of Ac-Ser-Asp-Lys-Pro, a natural hemoregulatory peptide hormone.
Bradykinin is hydrolyzed at both domains. Current ACE inhibitors are nonselective
toward the two active sites, which means that bradykinin degradation is also inhibited,
resulting in vasodilator-related adverse effects such as angioedema. Researchers are
currently attempting to develop C-domain selective ACE inhibitors that would permit
some degradation of bradykinin at the N-domain, thereby reducing the chance of
angioedemic attacks.

5.6.2 Renin Inhibitors

After chronic use of drugs that interfere with angiotensin, for example, ACE
inhibitors, and aldosterone, the body compensates by increasing renin production. In
order to overcome the negative feedback mechanism, researchers have focused on
renin inhibitors as antihypertensive agents.

Renin is a highly specific aspartic protease that selectively cleaves angiotensino-
gen to generate angiotensin I, using two aspartic acids at the active site of the enzyme.
An important sequence of angiotensinogen is Pro-Phe-His-Leu//Val within which
the scissile bond is between P1 Leu and P

′
Val (Figure 5.8). From the sequence

and after several studies, in 1990, our research group derived a potent and orally
bioactive renin inhibitor, KRI-1314 [54]. In the compound, the P4 Pro residue was
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enlarged and optimized to a morpholinyl moiety. A succinic acid residue, having
a P3 –P4 retro-inverso amide bond, was introduced to reduce the risk of premature
degradation by other proteases [55]. The P3 Phe side-chain was replaced by a
1-methylnaphthyl moiety to avoid recognition and degradation by chymotrypsin,
a digestive enzyme that particularly cleaves at Phe-His amide bonds. Moreover,
a larger bicyclic aromatic P3 moiety is better accommodated by the S3 pocket
than the P3 Phe residue of the angiotensinogen. P2 His residue was kept as
in angiotensinogen to maintain hydrogen bond interactions with Ser233 of the
renin. As for the critical P1 inhibitory residue, a cyclohexylnorstatine moiety,
(2R,3S)-3-amino-4-cyclohexyl-2-hydroxybutyric acid could more efficiently inhibit
renin than several other hydroxymethylcarbonyl isosteric inhibitory units that
we have substituted. Hydroxymethylcarbonyl structure may also be referred as a
norstatine unit. As briefly mentioned in Section 5.1.2, the design of the hydrox-
ymethylcarbonyl isosteres as inhibitory units is based on a tetrahedral transition
state formed during the general acid–base hydrolysis mechanism of a substrate
(Figure 5.1). Indeed, as proven by X-ray diffraction crystallography, the hydroxyl
group and, to a lesser extent, the carbonyl oxygen, participate in hydrogen bond
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interactions with the two catalytic aspartic acids at the active site, and thereby
anchoring the inhibitor inside the active site [4a]. In KRI-1314, the P

′

1 moiety
was set as an isopropyl ester to resemble angiotensinogen’s P

′
1 Val residue [54].

Oral administration of KRI-1314 to salt-depleted monkeys resulted in a fall of
10–20 mm Hg of mean blood pressure and reduction of the plasma-renin activity for
a 5-h period. Thus, renin inhibitor KRI-1314 is an oral bioavailable, effective and
long-lasting antihypertensive agent.

Remikiren is a renin inhibitor with a dihydroxyethylene isostere as the inhibitory
transition state mimic [56]. Comparisons between KRI-1314 and remikiren reveal
that, in the case of remikiren, the large S4 subsite is accommodated by a P4 tert-butyl
sulfonyl moiety, the P3 residue is structurally similar to the P3 Phe residue of
angiotensinogen, while the P2 residue is kept as the histidine in angiotensinogen.
The side-chain of the P1 transition state mimic residue shares a common cyclohexyl-
methyl function between the two compounds. The P

′
1 residues in both peptide drugs

were designed to resemble angiotensinogen’s P
′

1 Val residue. The proton acceptor
carbonyl group of KRI-1314’s P

′
1 residue was replaced by a weaker proton acceptor

hydroxyl group in remikiren. Although remikiren is a potent orally active inhibitor,
its overall oral bioavailability was low due to hepatic clearance.

Another research group developed peptide inhibitor CGP 38′560 that shares
several features with KRI-1314 and remikiren [57]. The P4 –P1 residues in CGP
38′560 are similar to remikiren. The P1 inhibitory unit of CGP 38′560 is a
hydroxyethylene isostere. As with the other peptide renin inhibitors, the P

′

1 residue
resembles angiotensinogen’s P

′
1 Val residue. As a longer molecule than KRI-1314

and remikiren, CGP 38′560 has a butyl retroamide as the P
′

2 residue. Although
CGP 38′560 is a potent and specific inhibitor of human renin, it exhibits weak
blood-pressure lowering effect in salt-depleted monkeys after oral dosing, due to
mainly very limited overall bioavailability [58].

From CGP 38′560, aliskiren, a nonpeptide renin inhibitor, was developed [59].
After analyzing the shape and chemical properties of the active site, the developers
of CGP 38′560 came to realize that the S1 and S3 pockets essentially form a
contiguous and large hydrophobic cavity [60]. They went on to design through
computer-assisted molecular modeling methods several hydroxyethylene transition
state mimetic inhibitors with a directly linked P1 –P3 moiety that is large. Doing
so, the P1 –P4 spanning backbone of the aforementioned peptide inhibitors was
eliminated. Although not directly mentioned by the researchers in their reports,
we believe these computer-assisted modeling methods also involved virtual high
throughput screening that we have briefly touched on (Section 5.1.2). In a similar
manner as KRI-1314, remikiren and CGP 38′560, a phenyl ring is present within
the P1 –P3 moiety of aliskiren to mimic the P3 Phe residue of angiotensinogen.
Interestingly, the P1 cyclohexylmethyl function found in the aforementioned peptide
inhibitors is replaced by an isopropyl function in aliskiren that occupies the same
S1 subsite. We believe that this computer-assisted design was possible because
the S1 –S3 cavity is a large hydrophobic area in which improving fit (e.g., van
der Waals contacts and hydrophobic interactions) is a stronger determinant of
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renin inhibitory activity in the S1 –S3 region than hydrogen bond interactions.
Moreover, the researchers had the resources to perform several X-ray diffraction
crystallography studies that greatly accelerated their discoveries. Indeed, X-ray
diffraction crystallography data permitted the team to exploit a 9 Å deep, narrow, and
well-defined hydrophobic S3 subpocket by implementing a long hydrophobic ether
side-chain to the P1 –P3 moiety of aliskiren. Neither substrates nor peptide inhibitors
bind to this subpocket. In nonpeptide aliskiren, the S3 subpocket interactions, along
with improved interactions at the S

′
2 pocket, could sufficiently compensate for the

lack of S2 and S4 subsites interactions.
Aliskiren is currently the only marketed renin inhibitor. It was approved in 2007

by the FDA for the treatment of primary hypertension [61]. Orally active aliskiren,
designed through molecular modeling techniques, is an octanamide transition state
renin inhibitor with good water solubility and low lipophilicity. It exhibits potent
and specific in vitro inhibition of human renin (IC50 in the nanomolar range) with a
plasma half-life of around 24 h. Despite an amide bond, aliskiren is resistant to pro-
tease biodegradation. As with ACE inhibitors, angioedema may occur with aliskiren,
although the risk is theoretically lower. We expect that future renin inhibitors will
have several structural features that are similar to aliskiren so as to take advantage of
its nonpeptide benefits.

5.7 PENICILLIN AND CEPHALOSPORIN ANTIBIOTICS

The discovery of antibiotic benzylpenicillin, commonly known as penicillin G, from
Penicillium notatum is attributed to by Nobel laureate Alexander Fleming in 1928,
while its medicinal development is attributed to Nobel laureate Howard Walter
Florey [62]. The discovery of cephalosporin compounds from Cephalosporium
acremonium is attributed to Giuseppe Brotzu in 1948, and cephalosporin C was
subsequently isolated at the University of Oxford [63]. In consideration that the
biosynthesis of penicillin G and cephalosporin C begin from a tripeptide comprising
of l-α-aminoadipic acid, l-cysteine, and d-valine, in a sense, most antibiotics in
the penicillin and cephalosporin classes are peptide drugs (Figure 5.9). Penicillin
antibiotics are known to inhibit a bacterial enzyme, dd-transpeptidase, also known
as penicillin-binding protein and serine-type d-Ala d-Ala carboxypeptidase, and
interfere with the cross-linking of peptidoglycan chains of the enzyme to form rigid
bacterial cell walls. Cephalosporin antibiotics share the same mode of action as
penicillin.

Bacteria that are resistant to penicillins secrete an enzyme, 𝛽-lactamase, which
breaks the drug’s 𝛽-lactam ring, and thereby inactivating the drug. Using a boosting
peptide inhibitor to prevent 𝛽-lactamase from metabolizing 𝛽-lactam antibiotics is
common practice. Clavulanic acid is a biosynthetic product of amino acid arginine
and sugar glyceraldehyde-3-phosphate isolated from Streptomyces clavuligerus
[64]. Potassium clavulanate is available as combination penicillin products of
amoxicillin-clavulanate and ticarcillin-clavulanate, to inhibit bacterial 𝛽-lactamase
and subsequently overcome bacterial resistance. Likewise, sulbactam and tazobactam
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are found in ampicillin-sulbactam and piperacillin-tazobactam penicillin antibiotics
combinations [65]. Although clavulanate, sulbactam and tazobactam share the
𝛽-lactam ring that is characteristic of 𝛽-lactam antibiotics, for example, penicillins
and cephalosporins, these compounds are not exploited for their antibacterial
properties but more for their activity as competitive inhibitors of 𝛽-lactamase.
In a similar manner, cilastatin protects 𝛽-lactam antibiotic imipenem from being
degraded by human renal enzyme dehydropeptidase, and prolongs the antibacterial
effect of imipenem [66]. Lacking a 𝛽-lactam ring, cilastatin is a cysteine analog that
does not itself have any antibacterial activity.

5.8 HIV PROTEASE

HIV causes AIDS. In their weakened state, HIV-infected immunodeficient patients
are susceptible to opportunistic infections and cancers from which they eventually
pass away. Considering the severity of AIDS and high mutation rate of the virus,
an aggressive combination of several antiretroviral drugs, referred as highly active
antiretroviral therapy (HAART), is strongly recommended for symptomatic patients.
The drug cocktail contains several different classes of antiretroviral drugs that act at
different stages of the HIV life cycle. Pepstatin, a general aspartic protease inhibitor
(Section 5.2.2), and aspartic protease inhibitors that are more specific to HIV are
included in the cocktail to target viral assembly. A role that HIV protease plays in
the life cycle of the virus is to cleave precursor polyproteins into proteins that are
subsequently used to assemble and form new virions. Inhibiting HIV protease would
essentially stop the propagation of the virus.
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Physically, HIV-1 protease is a small homodimeric enzyme composed of two
identical peptide chains that form into a pincer shape, where the tip of the pincer is
referred as the flap region, and the central tunnel-like cavity as the active site region.
A protein is introduced within the active site, where its cleavage is coordinated by a
water molecule and two aspartic acid residues found at the base of the active site of
the protease. For several cases of aspartic protease inhibitors, another water molecule
anchors the inhibitor to the flap. As previously mentioned in Sections 5.2.2 and 5.6.2,
pepstatin and renin inhibitors are aspartic protease inhibitors with a central inhibitory
unit that form hydrogen bonds with the two catalytic aspartic acid residues of the
enzyme as described in Section 5.1.2. In the design of HIV-1 protease inhibitors, the
participation of the water molecules and symmetrical nature of the enzyme are also
exploited in the design of HIV-1 protease inhibitors.

5.8.1 HIV-Specific Protease Inhibitors

The protease of HIV and other retroviruses recognize the Xaa-Pro sequence as
the cleavage site, whereas most mammalian aspartic proteases do not [2]. Taking
advantage of this selectivity toward retroviruses, our research group based several
of our inhibitor studies on the MA/CA (matrix/capsid, also known as p17/p24)
and TF/PR (transframe/protease) cleavage regions of HIV-1 polyproteins that
have Phe-Pro as the scissile residues (Figure 5.10). One of our more potent
HIV-1 protease inhibitor, KNI-227, possessed a 5-isoquinolinyloxyacetyl moiety
as the P3 moiety that was optimized from the P3 Phe of the TF/PR sequence
[67]. As the P2 residue, a methylcysteine was preferred by the S2 subsite over
the asparagine of the substrate. The P1 inhibitory unit of KNI-227 contained an
allophenylnorstatine, (2S,3S)-3-amino-2-hydroxy-4-phenylbutyric acid, as a hydrox-
ymethylcarbonyl isostere. The TF/PR sequence’s P

′
1 Pro moiety was improved to a

bulkier l-5,5-dimethylthiazolidine-4-carboxylic acid moiety and was simply capped
as a tert-butyl amide. In our design, we attempted to increase steric bulk in order to
balance hydrophilicity and hydrophobicity, in order to increase desolvation entropy
[68]. In other words, a more hydrophobic drug would be more entropically favored
to release water molecules as the drug and active site undergo complete or partial
desolvation upon binding. Moreover, the increase steric bulk would also reduce
flexibility to the drug molecule. Indeed, our engineered conformation constraints
were designed to make the free conformation of the inhibitor similar to its bound
conformation, so as to minimize loss of conformation entropy. Although a certain
level of hydrophilicity is required for water solubilization in body fluids, polar
functions can be strategically placed in noninteracting sections of the inhibitor, as
exemplified by the design of direct thrombin inhibitor dabigatran (Section 5.4.3).
KNI-227 is superpotent and highly selective toward HIV-1 protease with excellent
antiviral activity in cells [69].

Saquinavir is the first HIV-1 protease inhibitor approved by the FDA in 1996.
Although our KNI-227 has a P3 5-isoquinoline structure, saquinavir has a similar
quinoline structure at the P3 position. In saquinavir, asparagine was kept as the P2
residue found in the MA/CA and TF/PR substrates, and introduced an inhibitory unit,
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a hydroxyethylamine isostere, that was similar to the allophenylnorstatine found in
KNI-227. Moreover, similar to KNI-227, saquinavir’s P

′
1 residue was also bulkier than

the P
′

1 Pro found in the polyprotein sequences, and was also capped as a tert-butyl
amide. However, due to its low oral bioavailability as a result of poor absorption and
extensive hepatic metabolism, the efficacy of saquinavir must be boosted with the
second FDA-approved protease inhibitor, ritonavir. It should be noted that ritonavir
is hardly used for its antiviral activity, and more for its ability to inhibit a liver enzyme,
cytochrome P450 3A4 (CYP3A4), that normally metabolizes protease inhibitors [70].
Hence, ritonavir-boosting elevates plasma drug levels of saquinavir. We have pre-
viously described this strategy of using a boosting peptide inhibitor to prevent an
enzyme from prematurely metabolizing the main drug in combination antibiotics
therapy (Section 5.7).

FDA-approved lopinavir was developed to improve on the HIV resistance and
serum protein-binding properties of ritonavir [71]. Resistance to monotherapy with
HIV-1 protease inhibitor is attributed to amino acid substitutions in the protease.
Much like saquinavir, lopinavir is marketed as a mixture with ritonavir as a booster
to enhance oral bioavailability. Lopinavir is an improved derivative that retained
the P1 –P

′
2 residues of ritonavir. The P1 –P

′
1 residues in ritonavir and lopinavir were

designed while keeping in mind the symmetrical nature of the homodimeric HIV-1
protease. Structurally, the P1 and P

′

1 residues in lopinavir are nearly symmetrical
to each other with two Phe-like moieties and symmetrical peptide chain directions.
This inhibitory unit is commonly referred as a hydroxyethylene dipeptide isostere.
Compared with KNI-227 and saquinavir, the large P2 and P3 moieties were replaced
by a smaller six-member ring structure that symmetrically flanked both sides of the
P1 –P

′
1 region of lopinavir.

Our own study suggested that the P2 to P
′

2 residues form the pharmacophore of
potent inhibitors [72]. Consequently, we adapted the 2,6-dimethylphenoxyacetyl
moiety found in lopinavir as the P2 residue in our KNI-727 inhibitor design [73].
Although KNI-727 exhibited very high HIV-1 protease inhibitory activity, its cellular
antiviral activity was less than desirable.

On the other hand, when a 3-hydroxy-2-methylbenzoyl group was used as the
P2 residue in our inhibitor KNI-577, the drug exhibited both potent HIV-1 protease
inhibition and cellular antiviral activity [73]. The P2 residue was borrowed from nel-
finavir, an HIV protease inhibitor that boasted of inhibiting both HIV-1 and HIV-2
proteases [74]. Nelfinavir was approved by the FDA as a mesylate ester prodrug.
Structurally, the P2 residues of lopinavir and nelfinavir are substituted phenyl moi-
eties. The P1 –P

′
1 sequence of nelfinavir is similar to that of saquinavir with the excep-

tion of a longer sulfanyl P1 side-chain.
In consideration of the symmetrical nature of the enzyme and the design of

lopinavir, inhibitor KNI-577 was improved at the P
′

2 position with a methylphenyl
moiety to uncover inhibitor KNI-764 [75]. In other words, the P2 and P

′
2 residues of

the inhibitor contain phenyl rings that reside in the respective symmetrical S2 and S
′

2
subsites. KNI-764 is a highly potent inhibitor of HIV-1 protease that exerts potent
cellular antiviral activity with moderate oral bioavailability and low cytotoxicity
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profiles. Moreover, the inhibitor is effective against both HIV-1 and HIV-2 proteases
along with HIV-1 resistant strains.

High throughput screening of a large library of compounds afforded a lead
compound that was optimized to derive a nonpeptide HIV protease inhibitor,
tipranavir [76]. As described with DPP-IV inhibitor sitagliptin (Section 5.5.3)
and renin inhibitor aliskiren (Section 5.6.2), lead compounds discovered by high
throughput screening and assay, and followed by rational drug optimization often
result in drugs with fascinating structural features. Tipranavir has an interesting
structure with several symmetrical pharmacophoric features that are recognize by
the symmetrical HIV protease dimer. As previously described (Section 5.1.2), a
water molecule is involved in the hydrolysis of a substrate through the catalytic
amino acid residues of the enzyme. Most substrate-based HIV protease inhibitors
interact with the leucine flap residues through another water molecule. In tipranavir,
the main inhibitory unit, a 5,6-dihydro-4-hydroxy-2-pyrone ring system, interacts
with both the catalytic aspartic acid residues and the leucine flap residues of the
enzyme directly without the mediation of a water molecule. Moreover, the inhibitory
unit could potentially undergo keto–enol tautomerism. Other symmetrical features
include the ethyl and n-propyl structures that are accommodated by the respective
S1 and S

′

1 subsites, and phenyl rings that fit in the S2 and S
′

2 subsites, respectively.
The presence of the P3 trifluoromethylpyridinylsulfonamide moiety is necessary to
enhance inhibitory potency against HIV protease. Approved by the FDA in 2005,
tipranavir is administered with ritonavir to treat patients who are resistant to other
treatments. However, side effects of tipranavir can be more severe than other HIV
protease inhibitors.

Other FDA-approved peptide HIV protease inhibitors include amprenavir,
atazanavir, darunavir, and indinavir sulfate. Fosamprenavir calcium is marketed as a
slow-release P1 phosphate ester prodrug that undergoes cleavage by phosphatase in
the body to provide the parent drug, amprenavir.

5.9 PEPTIDE DRUGS UNDER DEVELOPMENT

Many protease inhibitors are currently under development. Being in development,
the inhibitors are either in the preclinical or clinical testing phases. We will provide
a brief overview of enzymes that are being investigated as drug targets. Readers are
encouraged to seek further details in the literature.

5.9.1 Cathepsins

Cathepsins form a family of enzymes that are activated at the low pH found in
lysosomes. The enzymes play a vital role in mammalian cellular turnover, such as
bone resorption, and thus are implicated in diseases, in which biological structures
are destroyed and formed, such as cancer, stroke, Alzheimer’s disease, arthritis,
and chronic obstructive pulmonary disease.

Cathepsin B is a cysteine protease that when overexpressed is associated
with tumor metastasis, inflammation, bone resorption, and myocardial infarction.
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Cathepsin B inhibitor CA-074 was shown to delay death in the monkey neurons
after an ischemic insult, whereas its methyl ester prodrug prevented bone resorption
in rat osteoclast, as reported in preclinical studies [77].

Cathepsin D is an intracellular aspartic protease that is overexpressed in breast
cancer cells and associated with an increased risk of metastasis due to enhanced cell
growth. Moreover, the enzyme may be involved in the formation of 𝛽-amyloid pep-
tides in Alzheimer’s disease. However, it is uncertain whether inhibition of cathepsin
D would be beneficial, because the roles of cathepsin D in the disease states are not yet
well defined. Consequently, no attempt at discovering cathepsin D-specific inhibitors
has been reported.

Cathepsin K is a cysteine protease that is highly expressed in osteoclasts,
and catabolizes elastin, collagen, and gelatin to break down bone and cartilage.
Odanacatib is in phase III clinical trials as a cathepsin K inhibitor to prevent bone
resorption [78]. Odanacatib is a nonpeptide drug, originally derived from a peptide
origin, being developed for the treatment of postmenopausal osteoporosis.

Cathepsin L is a cysteine protease that has similar bone resorption roles as cathep-
sin K, and like cathepsin B, is implicated in tumor metastasis. Several cathepsin L
inhibitors are under preclinical development for osteoporosis and cancer [79].

5.9.2 Cysteine Proteases

Calpains comprise a family of at least six distinct members, whose precise func-
tions are unclear. Nevertheless, calpains are believed to be involved in the pathology
of stroke, Alzheimer’s disease, muscular dystrophy, cataracts, and arthritis. Calpain
inhibitors, such as calpeptin, were synthesized to determine the roles of calpains [80].
Owing to limited information that is available on the enzyme, the development of
calpain inhibitors is still in its infancy.

Caspase-1, formerly known as interleukin-1 (IL-1) converting enzyme, processes
pro-IL-1 to IL-1𝛽, a key inflammatory mediator. Inhibition of caspase-1 would slow
the inflammatory response. In a mouse and rat models with an inflammatory disease,
an inhibitor of caspase-1, VE-13045, was reported to delay the onset as well as reduce
the severity of the respective disease [81]. Caspase-3, also known as apopain, is a key
executioner in apoptosis and has been implicated in neurodegenerative diseases such
as Alzheimer’s disease. Peptide inhibitors that are selective for either caspase-1 or
caspase-3 have been reported [82].

5.9.3 Secretases in Alzheimer’s Disease

The amyloid hypothesis suggests that the etiology of Alzheimer’s disease begins
with a transmembrane glycoprotein, 𝛽-amyloid precursor protein (APP). In the
normal nonpathogenic pathway, APP is processed by two enzymes, α-secretase
and 𝛾-secretase. In the pathogenic pathway, APP is cleaved by 𝛽-secretase and
𝛾-secretase, while α-secretase is not involved. The products of the pathogenic path
are amyloid 𝛽 peptides (A𝛽) ranging from 38 to 43 residues that readily form
oligomers due to their hydrophobic nature in an aqueous cerebral environment.
A𝛽42 is the more aggregenic species.
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In the development of secretases in Alzheimer’s disease, there has been very
little progress in α-secretase activators [83]. More research has been focused on
the inhibition of 𝛽-secretase due to the principal pathogenic role of the enzyme in
Alzheimer’s disease. One of our peptidomimetic inhibitor, KMI-429, was found to
reduce A𝛽 production in both APP-transgenic and wild-type mice [84]. Another
more advanced peptidomimetic inhibitor from our research, KMI-574, was shown to
change the conformation of 𝛽-secretase, thereby shifting the enzyme from lipid raft
membranes to nonraft membranes, resulting in a disruption of protein transport [85].
Along with other research groups, we have expanded our research to nonpeptide
𝛽-secretase inhibitors [86]. Considering that several pharmaceutical companies
have expressed much interest in nonpeptide 𝛽-secretase inhibitors, we expect that
𝛽-secretase inhibitors will soon be in clinical trials. Pharmaceutical companies have
also invested much research in 𝛾-secretase inhibition, resulting in a 𝛾-secretase
inhibitor, LY-450139, arriving at phase III clinical trials [87].

5.9.4 Trypsin-Like Serine Proteases

Activated factor X, namely, factor Xa, cleaves prothrombin to form thrombin that
would in its turn activate several reaction cascades to build blood clots (Section
5.4.2). A number of natural product inhibitors have been reported such as antistatin,
ecotin, and tick anticoagulant peptide. However, there is very little report on factor
Xa inhibitors being developed for medicinal purpose.

Human neutrophil elastase belongs to the same family as chymotrypsin. The elas-
tase breaks down connective tissues such as collagen, elastin, laminin, fibronectin,
and progeoglycan in lung structures and thereby increases airspaces. The damag-
ing effects lead to inflammation of the lungs and causes pulmonary diseases such as
adult respiratory distress syndrome (ARDS), chronic bronchitis, pulmonary emphy-
sema, along with cystic fibrosis and rheumatoid arthritis. Several inhibitors against
neutrophil elastase are in clinical evaluation [88].

Tryptase is found in mast cells that are involved with inflammatory and allergic
responses. Inhibition of tryptase could alleviate the symptoms of asthma, conjunc-
tivitis and rhinitis. Peptide inhibitor APC-366 is undergoing clinical trials for the
treatment of asthma [89].

5.9.5 Zinc Metalloproteases

As discussed in Section 5.6.1, ACE is a zinc metalloprotease. Numerous ACE
inhibitors are approved by the FDA to manage hypertension. Inhibitors of several
others zinc metalloproteases are being investigated as therapeutic agents on their
own terms.

Matrix metalloproteases (MMPs) are responsible for the reconstruction of the
extracellular matrix by remodeling structural proteins such as membrane collagens,
aggrecan, fibronectin, and laminin. An over-expression of the proteases leads to
inflammatory diseases, cancer, and muscular dystrophy. At least 10 MMP inhibitors,
such as marimastat, are being assessed in clinical trials as agents against arthritis,
cancer, and multiple sclerosis [90].
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Neprilysin, also known as neutral endoprotease, degrades atrial natriuretic peptide,
a protein hormone secreted by atrial myocytes in response to high blood pressure.
Inhibition of neprilysin would elevate levels of atrial natriuretic peptides and reduce
blood pressure. Candoxatril is the orally active ester prodrug of candoxatrilat, an
inhibitor of neprilysin [91]. Candoxatril has a potential therapeutic role in the man-
agement of hypertension, especially in congestive heart failure patients, and is in
clinical trials. During the development of neprilysin selective inhibitors, compounds
that are active against both neprilysin and ACE (Section 5.6.1) were discovered.
Among these dual-acting inhibitors, fasidotril, mixanpril, and sampatrilat are in clin-
ical trials [92]. Omapatrilat, a dual-inhibitor, was not approved by the FDA due to
angioedema safety concerns [93].

A disintegrin and metalloprotease domain 17 (ADAM17), also known as tumor
necrosis factor-α (TNF-α) converting enzyme (TACE), is involved in the processing
of TNF-α at the surface of cells. Because TNF-α is a potent and pivotal mediator in the
inflammatory process, inhibition of TACE would reduce the severity of inflammatory
responses in several disease states such as arthritis and multiple sclerosis. Research
on TACE inhibition is in preclinical phase [94].

5.9.6 Non-mammalian Proteases

The Candida yeast strains Candida albicans, Candida tropicalis, and Candida para-
psilosis exist in small colonies in a healthy intestinal tract. In immunocompromised
patients, C. albicans is the cause of opportunistic oral and genital infections, whereas
C. tropicalis is the predominant cause of fungal infections in neutropenic cancer
patients, and C. parapsilosis is associated with sepsis along with wound and tissue
infections. These yeasts release secreted aspartic proteases of broad specificity that is
linked with the virulence of the strains. HIV-1 protease inhibitor indinavir was found
to be a weak inhibitor of secreted aspartyl proteinases and could reduce the viability
and growth of C. albicans [95]. Very little inhibitor designs have been reported [96].

Hepatitis C is a blood-borne infectious liver disease that is caused by the hepatitis
C flavivirus. Hepatitis C NS3/4A serine protease, encoded by the nonstructural 3
and 4A regions of the viral genome, is essential for viral replication. Boceprevir and
telaprevir are two prospective inhibitors of the protease that are undergoing clinical
trials [97].

HTLV-I causes adult T-cell lymphoma/leukemia that may worsen to
HTLV-associated myelopathy (HAM)/tropical spastic paraparesis (TSP) along
with other inflammatory diseases and opportunistic infections. Despite the fact that
HTLV-I belongs to the same Retroviridae family as HIV, HTLV-I protease inhibition
by HIV protease inhibitors has been unsuccessful in managing the infection in the
clinics. Using the rational drug design method that we have described in this chapter
(Section 5.1.2), we are developing several small and potent peptide HTLV-I protease
inhibitors [6].

Among malarial parasites, the Plasmodium falciparum species contributes to the
highest incidence of death. Plasmepsins form a group of at least nine aspartic pro-
teases and a histo-aspartic protease, plasmepsin III, found in malarial parasites. While
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cleavage by aspartic proteases involves the aspartic acid residues of the respective
enzymes, cleavage by the histo-aspartic protease is coordinated by a histidine and
aspartic acid residue at the catalytic site. Plasmepsins I to IV are essential for diges-
tion of the protozoan parasite’s major food source, human hemoglobin. Our research
group has designed and synthesized potent peptide inhibitors that are active against
all plasmepsins I–IV, and will continue to refine and vary our inhibitor designs [98].

Rhinovirus 3C protease is responsible for viral replication in the common cold
virus. Inhibition of the protease would stop the propagation of the virus. A pep-
tidomimetic inhibitor, AG7008, against the protease is in clinical trials [99].

In 2003, severe acute respiratory syndrome (SARS) became a global crisis that
was eventually resolved by isolating the infected from the general populace. A
coronavirus (CoV) was found to be the causative agent. SARS-CoV 3CLpro is the
chymotrypsin-like cysteine protease that plays a pivotal role in the replication of the
virus. Several SARS-CoV 3CLpro inhibitors are currently under development by our
research group [100].

5.10 DISCUSSION

In this chapter, we hope to have provided some insights on peptide drugs that affect
proteases. A peptide drug can be as small as a single amino acid residue or as large
as an enzyme. Enzymes, activating peptide substrates, and peptide inhibitors can all
be considered as peptide drugs when they are used for commercial or therapeutic
purposes. Most enzymes are exploited for their ability to break down proteins, and
are thus used as digestive and debridement agents. Not many activator peptide drugs
have reached the pharmaceutical market, and of those, most are used in supplemen-
tation therapy. Indeed, although there are far fewer examples of synthetic peptide
enzyme activators than enzymes or peptide inhibitors that are used as drugs, these
activating substrates are nonetheless important for researchers to study the nature of
the enzymes. Such studies would provide further elaborations on the specificity of
the enzyme, as well as its roles in the healthy and disease processes. Once the nature
of the enzyme is clarified, inhibitory peptide drugs can be more easily designed.

From a peptide substrate, especially a small one, a substrate mimic that competes
for the enzyme can be designed, by replacing the scissile residue of the substrate
with an inhibitory unit that cannot be cleaved by the enzyme. The derivation of
substrate-based peptide inhibitors is aided by the likelihood that substrates interact
with the active site in an extended backbone conformation. The substrate mimick-
ing inhibitors are further refined by truncation and natural amino acid substitution
studies, followed by nonnatural amino acid studies and an eventual replacement of
the peptide bonds by nonpeptide bonds. Indeed throughout the rational drug design
process, researchers use peptide inhibitors to probe the active site of the enzyme to
understand the flexibility, topology, and charge distribution of the individual bind-
ing subsites. Of interest, most inhibitors that have reached the pharmaceutical market
interact with three to five subsites. In other words, most peptide-derived inhibitors
are composed of three to five residues. Once multiple three-dimensional images of
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the active site are obtained to illustrate the dynamics of the inhibitor-bound enzyme,
these four-dimensional data are used to virtually screen for potential nonpeptide lead
compounds that can fit and form favorable hydrogen bond interactions with the active
site. The potential leads are synthesized and assayed for inhibitory activity against the
enzyme. The active leads are then structurally refined for desired pharmacodynamic
and pharmacokinetic properties. Ideally, the resulting drug should be specific for the
targeted enzyme, should have high overall bioavailability, and could be conveniently
administered, preferably by oral route.

One must not forget that the pharmaceutical market is a business that relies on
potential monetary profit to fuel drug development. A drug would not be marketed if
there is insufficient profit. A pharmaceutical company is not likely to venture against
a competing company that has established a clear dominancy with an unsurpassable
drug. A pharmaceutical company would not be interested in developing drugs for
consumers who cannot afford the drug, for example, diseases affecting developing
countries. A pharmaceutical company may even stop a drug development when the
drug approval agency, being pressured by current socioeconomic situations and the
media, places too many demands on the company. Although we have mainly restricted
our scope of discussion to peptide drugs that have been approved by the FDA, it
is evident that we have also left out a fair number of peptide drugs that have been
approved by various drug approval agencies throughout the world. In consideration
that we, the authors, are also restricted by our personal resources to explore the many
assortments of peptide drugs, we strongly encourage the readers to further expand
their learning through literature and their own research, and share their discoveries
with the international scientific community.
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6.1 INTRODUCTION

Drug discovery strategies are remarkably guided by nature. All organisms screen their
environment and produce compounds that provide them with an evolutionary advan-
tage [1, 2]. Thus, natural compounds are often the starting point for the design of
drugs with high selectivity and potency [1–4]. Peptides are expressed in all living
species and display a large diversity of structures and biological effects. Therefore it
is not surprising that natural occurring peptides are attractive drug leads and are mak-
ing their way into clinical applications [5–15]. A vast number of active peptides have
been isolated and characterized from a broad variety of biological sources. Peptides
involved in host defense and prey capture are among the best drug candidates, due to
their fast-acting protection/capture mechanism. Organisms that produce host-defense
peptides with potential applications in drug development include prokaryotes, plants,
and animals, and we begin this article with brief descriptions of a few examples.

Bacteria are a rich source of peptides with potential pharmaceutical appli-
cations. Both Gram-negative and Gram-positive bacteria produce antimicrobial

Peptide Chemistry and Drug Design, First Edition. Edited by Ben M. Dunn.
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peptides (AMPs), with one particularly important class being bacteriocins [16],
which target closely related bacteria and are nontoxic to mammals. Bacteriocins are
attractive candidates both as antimicrobial agents for the treatment of human and
animal infections, and as food preservatives [16–18]. Nisin is the only bacteriocin
approved by the FDA, and with activity against food-borne pathogens, has been
applied in a broad range of commercial products, including dairy products, bakery
products, vegetables, meat, and fish [19]. Nisin also has promising applications for
the treatment of Helicobacter infections, ulcers [20] and intestinal colonization by
Enterococci [21] and more recently has been suggested to have potential therapeutic
anti-tumorigenic properties [22]. The emergence of vancomycin-resistant Entero-
cocci has led to the need for alternative therapies to traditional antibiotics, and nisin
has entered preclinical trials [23]. Other bacteriocins have attracted attention for the
treatment of diarrheagenic bacterial contamination [24] and as spermicidal agents
[25].

Plants also produce peptides to defend themselves against pathogen attack
[26–28]. We focus here on a group of plant peptides that, as well as having defense
properties [29, 30], have topological properties that make them particularly stable
and hence suitable as framework in drug design [31–34]. These peptides have
a head-to-tail cyclised peptidic backbone and are referred to as cyclotides [35].
Cyclotide-containing plants were first used for medicinal purposes in the Congo
region of Africa [36, 37]. It was later determined that they incorporate a unique
knotted macrocyclic structure that confers them with great stability relative to
conventional linear proteins [35]. Cyclotides have various biological activities
with pharmacological relevance, including toxicity against cancer cells [38] and
anti-HIV properties [39–41]. Overall, cyclotides are fascinating peptides that have
the chemical constitution of proteins but the stability properties of organic chemicals,
thus making them useful drug leads. Cyclotides will be explored in more detail later
in this chapter, revealing what plants have to offer to the drug design field.

Venomous organisms are spread throughout the animal kingdom and include rep-
tiles, fishes, amphibians, mammals, mollusks, arachnids, and insects. In any niche
there is a competition for resources, and the use of venom for prey capturing, or
as a defense mechanism, represents a successful adaptative trait [42]. Venoms are
typically produced as deadly cocktails, comprising mixtures of peptides adapted by
natural selection. These toxins disrupt cardiovascular and neuromuscular systems by
disturbing the activity of critical enzymes, receptors, and ion channels. Venom tox-
ins have a high degree of target specificity and they have been used increasingly as
pharmacological tools and leads in drug development [42–45].

Amphibians secrete peptides with antimicrobial properties from their skin as part
of their defense system [46–48]. The magainins are of particular interest as they
have potent antimicrobial activity, with little or no hemolytic activity [49], and they
represent early examples of peptides that were considered to have great potential as
drugs due to their specificity and broad antibacterial spectrum. Indeed, pexiganan
(MSI-78), a 22-residues magainin analog, entered clinical trials as a topical agent
for the treatment of foot ulcers [50]. Phase III trials revealed that it was efficacious,
but the judgment was made that it was no more effective than existing treatments
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for diabetic foot ulcers and thus the FDA required more tests [51]. Nevertheless, the
interest in magainin stimulated searches for other antibiotics, and peptides with a
range of antimicrobial [46, 52, 53], anticancer [54], and antiviral activities [55–57]
have now been isolated from amphibian skin.

Peptides with potential therapeutic applications have been found in the venom of
a range of other animals, including cone snails, spiders, scorpions, and snakes [58].
Such peptides are particularly abundant in cone snails and due to their small size and
suitability for synthesis these peptides, called conotoxins, are valuable drug leads
[45, 58]. The genus Conus is a large group of carnivorous predators found in tropical
marine habitats, and although each Conus species is a highly specialized predator,
collectively, cone snails have a remarkably broad spectrum of prey. All members of
this genus use their venom, which contains numerous (100–1000) toxic peptides, for
prey capture [59]. They bind to a diverse range of sodium, calcium and potassium
channels, membrane receptors and transporters, leading to efficient immobilization
of the prey [60, 61].

Conotoxins have great diversity and specificity, and each peptide targets a spe-
cific receptor protein. With their ability to discriminate between different isoforms
of the same receptor, these peptides are valuable pharmacological probes as well
as potential leads in drug design [62]. In fact, a conotoxin extracted from Conus
magus, is an example of the development of a toxin into an approved drug. Cono-
toxin MVIIA, which has the generic name ziconotide [63], and the trade name of
Prialt®, was approved by the FDA in 2004 and is used as a treatment for chronic pain
[64, 65]. This is a relatively rare example of a peptide used without further modifica-
tion. Several other conotoxins are currently being evaluated in clinical and preclinical
trials (e.g., ω-conotoxin CVID (AM336) and a derivative of the χ-conotoxin MrIA
(Xen 2174)) [66]. Overall, cone snail venoms contain a huge reservoir of compounds
that can be regarded as a combinatorial library of drug leads.

Having introduced a few examples of peptide drug leads, we briefly overview the
drug development process before examining particular classes of peptides in more
detail. There are a number of key steps in the development of a drug, as shown in
Figure 6.1. The first consideration is to satisfy an unmet medical need [3] and so
selection of a drug target is usually the starting point for drug development [67]. Other
steps include the choice of natural sources containing promising active compounds;
the screening of large numbers of compounds [68]; identification and isolation of the
most active peptides; characterization of primary structure using sequencing tech-
niques or genomics for gene determination; and three-dimensional (3D) structure
determination [9].

Knowledge obtained from peptide structure characterization allows leads to be
optimized via medicinal chemistry. Substitution analysis and chemical modification
are used to improve stability and activity. Cost of production, stability, selectivity,
delivery, and mechanism of action need to be considered [58]. Peptides are particu-
larly amenable to modifications to confer improved selectivity, potency, and stability
[51], while maintaining bioactivity [69]. In addition, for a drug candidate to be suit-
able for clinical testing, it must have sufficient bioavailability and distribution within
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HPLC
Mass spectroscopy
Database search

Figure 6.1 Overview of the drug-development pathway for peptide-based drug design. (See
insert for color representation of this figure.)

the body to reach the target [67]. Drug candidates must also pass toxicity evaluation
in animal models [67].

The aim of this chapter is to illustrate that peptides isolated from natural sources
have exciting potential as drugs. Examples from various bacterial, plant and ani-
mal sources will be described to highlight the large diversity of chemical structures,
modes of action and biological applications of peptide. Strategies to overcome possi-
ble drawbacks associated with the application of peptides as drugs will be discussed.

6.2 PEPTIDES ARE INVOLVED IN THE HOST DEFENSE
MECHANISM OF LIVING ORGANISMS

Living organisms are constantly exposed to multiple harmful microbes and their
capacity to overcome infection is essential for survival [70]. AMPs are products of
the long-term evolution of host defense mechanisms [71], and virtually all organ-
isms, including plants [27], animals [46, 72], and bacteria [73] produce AMPs as a
component of their innate immune system [74–77]. They act as endogenous antibi-
otics, inducing the direct destruction of microorganisms. Owing to their ability to
attack different microorganisms, including bacteria, fungi [78], viruses [10, 79], and
even tumor cells [8], together with the growing problem of resistance to conven-
tional antibiotics, AMPs are of much interest for the development of novel human
therapeutics.
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On the basis of structural homology, two main families of eukaryotic AMPs can be
described: cationic AMPs and anionic AMPs [80]. The cationic group is the largest
and is discussed in more detail in this chapter, as the anionic group is considered to
have lower activity [81]. Prokaryotic AMPs, commonly referred to as bacteriocins,
can be broadly divided into two groups: bacteriocins produced by Gram-negative
bacteria and bacteriocins produced by Gram-positive bacteria [16]. To highlight the
diversity of these peptides, we have chosen examples based not only on their thera-
peutic value, but also on the novelty of their structures and modes of action.

6.2.1 Cationic AMPs from Eukaryotes, Peptides that Target the Membrane

The diversity and number of cationic AMPs discovered is very large. Online databases
dedicated to the rapidly increasing number of peptides of class are available; for
instance, the Antimicrobial Peptide Database (APD) (http://aps.unmc.edu/AP/main.
php), which categorizes AMPs according to their biological activities (e.g., anti-
cancer, antiviral, antifungal, and antibacterial) [82] and the Antimicrobial Sequences
Database (AMSDb) (http://www.bbcm.univ.trieste.it/∼tossi/amsdb.html), which cat-
egorizes AMPs on basis of their secondary structure, are both excellent resources.

6.2.1.1 Diversity of Structure Cationic AMPs have both highly heterogeneous
amino acid sequences and substantial variation in their secondary structure [83].
The group includes peptides having linear (noncross-linked) structures and forming
α-helical structures as well as Cys-rich peptides with disulfide bonds and β-sheet
structures [23]. The α-helical peptides are particularly abundant in the extracellular
fluids of insects and amphibians and frequently exist as unstructured monomers in
solution, becoming helical upon interaction with phospholipid membranes [84–86].
The β-sheet peptides have a diverse range of primary structures and often possess
Cys residues in disulfide bonds, as is demonstrated for example by the defensin
family [87].

Cationic AMPs have many potential clinical applications and some examples are
given in Table 6.1, which shows the diversity of sequences, structures, and source
organisms. For instance, LL-37, an α-helical AMP belonging to cathelicin family
and expressed in humans [88], has applications for the treatment of lung microbial
infections [89], which are common in cystic fibrosis patients. With high stability
and activity under a variety of conditions [90–92], this peptide is more resistant
to proteolytic degradation than other α-helical AMPs [93]. Conventional antibiotics
are largely ineffective against cystic fibrosis due to elevated salt concentrations that
inhibit the usual antibacterial defenses in the lung [89].

As mentioned earlier, magainin 2 is among the most extensively studied AMPs.
However, the use of amphibian skin as a source of antibiotics is not restricted to this
example, and several other peptide families with antimicrobial activity have been
identified, including temporins [94], bombinins [95], and bombinins H [96]. In con-
trast to the majority of natural AMPs, which contain high numbers of positively
charged amino acids, temporins, and bombinins are short and mildly cationic pep-
tides. Because of their small size and potent activities, they are of particular interest
for drug design.
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Bombinins and bombinins H are isolated from the skin secretions of frogs from the
genus Bombina. The bombinin family comprises 20–27 residues peptides with activ-
ity against both Gram-negative bacteria and Gram-positive bacteria [95, 97]. These
peptides generally adopt a random coil structure an aqueous environments whereas
in an apolar environment they have an amphipathic α-helix structure [97]. Although
these peptides are antimicrobial, they show no cytolytic activity against mammalian
cells [95, 97]. In contrast, bombinins H have both hemolytic and antimicrobial activ-
ities. They are termed bombinins H as they are more hydrophobic than bombinins.
Peptides belonging to this family contain 17–20 residues, and d-amino acids are
found in some peptides in this class, increasing their stability [96]. Like bombinins,
these peptides typically adopt a random coil structure in an aqueous environment and
an amphipathic α-helix in apolar environments [98, 99]. The presence of d-amino
acids results from a post-translational modification involving a l–d isomerization
[100], with these peptides displaying better antimicrobial activity against some bac-
terial strains than the pure l-isomer [98]. d-amino acid substitution thus represents
an approach developed by nature to modulate not only the solubility of a peptide
[101], but also biostability by protection from proteolytic degradation [98]. These
peptides have potent activity against Leishmania by rapid perturbation of the plasma
membrane, and are of interest for the development of new drugs against this global
infectious disease [102].

Temporins were first identified in the frog Rana temporaria [94] and are the
shortest α-helical peptides isolated from amphibians (10–14 residues). They tend to
form an amphipathic α-helical structure in hydrophobic environments, and have a net
charge of 0 to +3 [103]. They are active against a wide range of pathogens (bacteria,
viruses, fungi, yeasts, and protozoa) [94, 104–106] and are not toxic to mammalian
cells at concentrations that kill microbes [94]. An exception is temporin L, which is
highly active on bacteria, erythrocytes, and cancer cells [107]. Their mode of action
seems to involve perturbation of the cytoplasmic membrane. However, this occurs
in a different way to that proposed for the majority of cationic α-helical AMPs, as
temporins bind and permeate both zwitterionic and anionic phospholipid bilayers
[108]. Peptides belonging to temporin family have attractive properties, such as
high activity in physiological conditions, high stability in serum [106], and low
cost synthesis due to their short amino acid sequence [108], making them exciting
peptides for drug design applications.

Defensins are cysteine-rich peptides that participate in the host defense of mam-
mals [109], insects [110], and plants [111]. They are characterized by intramolecular
disulfide bonds that stabilize the structures, and frequently contain small β-sheet
structures [87]. Some members have an N-terminal α-helical structure [109].
Although defensins have been isolated from many species, the α- and β-defensins of
human origin are the best studied. In the α-defensins, the cysteines are paired with
a 1–6, 2–4, and 3–5 configuration, whereas in the β-defensins the pairing is 1–5,
2–4, and 3–6 [72]. Many potential therapeutic applications have been suggested for
defensins due to their activity against Gram-positive and Gram-negative bacteria,
fungi, viruses, and cancer cells [109]. Recently, another group of defensins, namely
the θ-defensins, which has an unusual intramolecular head-to-tail ligation has been
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discovered [112, 113], and their potent activity against HIV-1 has attracted much
interest [114, 115].

6.2.1.2 Cell Membranes, the Main Target of AMPs Positively charged amino
acids, hydrophobic residues [83], and the potential to adopt amphipathic structures
(e.g., structures with separate hydrophobic and hydrophilic faces) are properties com-
monly found in cationic AMPs [116]. Cationic and amphiphilic features of AMPs
are crucial for their insertion into the membrane [116], as their ability to inacti-
vate microbes is intimately related to membrane targeting [117–119]. Fundamental
differences exist between microbial and mammalian cells, including membrane com-
position and architecture, transmembrane potential and polarization, and structural
features, including the presence of a cell wall [83]. Bacterial membranes contain sub-
stantial amounts of negatively charged phospholipids, such as phosphatidylgercerol
and cardiolipin, on the external leaflet. Furthermore, the microbial wall is enriched
with either the anionic lipopolyschacaride (LPS) or the anionic peptidoglycan in
Gram-negative bacteria or Gram-positive bacteria, respectively. In contrast, the outer
membrane layer of eukaryotic cells is composed mainly of phosphatidylcholine, sph-
ingomyelin and cholesterol, all of which are neutral at physiological pH [83].

Because of their cationic nature, AMPs favor negatively charged bacterial mem-
branes over neutral eukaryotic membranes [120], explaining the varying degrees of
selective toxicity among distinct AMPs [83]. Generally, a net positive charge enables
the accumulation of peptides at anionic microbial surfaces, enriched with anionic LPS
in Gram-negative bacteria or with peptidoglycan in Gram-positive bacteria. These
peptides make contact with the anionic outer layer of bacterial cytoplasmic mem-
branes, while the hydrophobic domain favors insertion in the membrane [121]. AMPs
exert their activity by either membrane permeabilization through pore formation, or
translocation across the membrane to gain access to cell’s interior to attack internal
targets [118, 122]. Several disruption models have been proposed, including pore for-
mation by a barrel-stave pore [123], a toroidal pore [124], or a carpet model [125].
Each of these mechanisms depends on the electrostatic and hydrophobic properties
of both the peptide and membrane [80, 126]. When the activity is associated with a
cytoplasmic target, the peptide might translocate without membrane permeabilization
[127, 128].

6.2.1.3 Applications of Cationic AMPs as Alternatives to Conventional
Antibiotics The effectiveness of antibiotics has become limited due to an increase
in bacterial resistance [129], and the lack of discovery of new molecules with low
host toxicity and a broad spectrum of pathogen activity [68, 130]. Thus, AMPs or
their derivatives are being increasingly evaluated as a new generation of antibiotics.
They are considered in some cases to have the possibility of synergistic effects
with conventional antibiotics [131]. Cationic AMPs mainly target bacterial cell
membranes leading to cell lysis and death without affecting host cells, whereas
traditional antibiotics specifically target protein receptors. Because AMPs can
disrupt membranes in a nonspecific way, they are potentially less susceptible to the
development of bacterial resistance than conventional antibiotics [83].
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Some cationic AMPs are potent against cancer cells as well as bacteria [132], but
not toward normal mammalian cells [133]. The altered membrane composition of
cancer cells appears to be a major factor in this selectivity [133]. Typically, cancer
cells have a greater negative charge due to higher expression of anionic phospholipids
such as phosphatidylgercerol [134], and have a more negative transmembrane poten-
tial [135] and greater membrane fluidity [136]. These factors increase the potential
applications of AMPs and emphasize the importance of membrane composition for
their activity.

Several structural features have been identified as important for the antimicrobial
activity of peptides. These include size, amino acid sequence, net charge, hydropho-
bicity, and amphipathicity [137, 138]. However, an unambiguous identification
of how AMPs distinguish between pathogen and host cells and indeed between
Gram-positive and Gram-negative bacteria, and among different bacterial strains,
holds the promise of designing novel anti-infective agents with greater selective
toxicity [83]. Although electrostatic attraction increases peptide concentrations
at the membrane surface, disruption of the membrane depends on hydrophobic
interactions between peptide and membrane [137–139]. Therefore, subtle properties
of peptides are crucial in determining the extent of insertion and disruption of
membrane integrity [126, 138, 140]. Neither the role of membrane composition nor
the structural features of peptides required for specificity are, as yet, fully understood
[107] and predicting antimicrobial or cytotoxic activity from a given amino acid
sequence is not an easy task.

Interestingly, many plants and animals synthesize a large number of peptides with
relatively minor differences in sequence and structure between them. Combinations
of structurally related peptides can increase the spectrum of antimicrobial activity by
inducing changes in the biophysical properties of the peptides [141]. A single muta-
tion can dramatically alter the biological activity of a peptide, and the large diversity
of AMPs reflects the adaptation of each species to the unique microbial environments
that characterize their niches [51].

With diverse modes of action, structures, sequences and sources (see Table 6.1),
AMPs have significant advantages over traditional antibiotics and bacteria find it hard
to circumvent their action [142]. Therefore, natural AMPs are likely to contribute to
the future development of new peptide-based anti-infective therapeutics to overcome
resistance of microbes to commonly used drugs [141, 143]. They provide good tem-
plates for rational drug improvement, putting into practice the information on protein
structure and protein–lipid interactions gathered over natural evolution and labora-
tory research [83].

6.2.2 Peptides and the Host defense in bacteria – Bacteriocins

The production of antimicrobial compounds is a strategy employed by bacteria to
survive competitive conditions. Bacteriocins thus typically target closely related bac-
teria found in the same nutritional niche as the producer organism [144]. Bacteri-
ocins of Gram-negative bacteria are either smaller than 10 kDa (microcins) or larger
than 20 kDa (colicins). They are usually released through cell lysis and are often
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dependent on host regulatory pathways [16, 145]. Gram-positive bacteria usually
produce bacteriocins smaller than 8 kDa, which resemble many of the AMPs pro-
duced by eukaryotes, such as defensins. They are generally cationic, amphiphilic,
and membrane-permeabilizing peptides [146]. Due to the large number and diver-
sity in structure and function of Gram-positive bacteriocins, they have been further
subdivided and although different classification systems have been proposed [5, 16,
147–151], a consensus has not yet been reached. Two bacteriocins, microcin J25 and
subtilosin A, from Gram-negative bacteria and Gram-positive bacteria, respectively,
were chosen here to illustrate applications (Table 6.2).

6.2.2.1 Microcin J25, a Lariat Peptide Found in Bacteria Microcins are small
peptides produced by diverse strains of Enterobacteriaceae, mostly Escherichia coli
[152]. Their production is stimulated in nutritionally limited media and they are
actively secreted into the extracellular medium [145]. They are thermostable, resis-
tant to extreme pH and some proteases, and are relatively hydrophobic [145]. Their
structures are diverse and range from linear, unmodified peptides, to structures having
extensive post-translational modifications [153]. Like their chemical structures, their
biological applications vary widely [154] and this diversity has encouraged their use
in the design of new-generation drugs for cancer [155, 156] and for infectious diseases
[156, 157].

Microcin J25 (MccJ25) is plasmid-encoded, ribosomally synthesized and was
first isolated from E. coli AY25 [158]. It is active against some pathogenic E. coli,
Salmonella and Shigella species [158] and has been studied extensively due to its
unusual structural features. MccJ25 is active at extremes of pH (from pH 2 to 12) and
also after exposure to temperatures as high as 120 ∘C [158]. Initially MccJ25 was
thought to be a macrocyclic peptide with a head-to-tail cyclization [159]. However,
further inspection showed that it instead incorporates a sidechain-to-backbone cycle
that sequesters the N terminus, but also protects the C-terminus via a threading mech-
anism. It contains an eight-residues cyclic segment, resulting from the formation
of an internal lactam bond between the α-amino group of Gly1 and the γ-carboxyl
group of Glu8, followed by a 13-residues linear segment that loops back and threads
through the cyclic segment [160–162]. The tail is sterically entrapped within the
ring due to the bulky side chains of Phe19 and Tyr20 (see Table 6.2), making this
peptide resistant to denaturing conditions [162, 163]. Despite this unusual structure,
only a small number of residues are essential for MccJ25 function and many residues
can be substituted [164]. MccJ25 production and release increases when cells
reach stationary phase and nutrients become limiting [158, 165] and occurs both
under aerobic and anaerobic conditions [158], independently of pH [165], giving
MccJ25-producing cells an advantage over non-producers.

MccJ25 appears to have two intracellular targets: (i) RNA polymerase (RNAP)
[166, 167] and (ii) the respiratory chain [168, 169]. Bacterial RNAP is the central
enzyme of gene expression [170] and is an attractive target for drug design [171]. The
observation that RNA synthesis is inhibited by MccJ25 in a dose-dependent manner
first prompted the suggestion that RNAP was the cellular target of MccJ25 [166].
Yuzenkova et al. [170] hypothesized that MccJ25 inhibits transcription by binding to
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RNAP, thus blocking the access to RNAP catalytic center. This hypothesis was sup-
ported by molecular modeling [172] and kinetic analysis of the transcription process
in the presence of MccJ25 [173].

MccJ25 also apparently targets the respiratory chain, as shown from a study of E.
coli MccJ25-resistant-RNAP strains [168]. The growth of this E. coli strain is inhib-
ited in the presence of MccJ25 in aerobic conditions, but not in anaerobic conditions.
A significant inhibition of oxygen consumption and increase in reactive oxygen
species when MccJ25 is present seems to be the reason, while in anaerobic condi-
tions MccJ25 lost the antibiotic effect [168]. In this alternative mechanism MccJ25
uptake is required to attack intracellular targets affecting oxygen consumption,
suggesting that peptide-membrane interactions and MccJ25 uptake are determinants
for the mechanism [168]. This suggestion is supported by the fact that MccJ25 can
interact with artificial model membranes, leading to permeabilization of the bilayer
structure [174]. The ability to modulate cytoplasmic membrane permeability, and
subsequent depolarization was further confirmed in vivo with Salmonella newport
with a consequent inhibition of oxygen consumption [175] and also on rat heart
mitochondria [176]. Peptide insertion, permeability, electrical potential dissipa-
tion, and inhibition of the respiratory chain was reported [176]. In addition, the
outer-membrane receptor FhuA-dependent TonB-pathway and the inner-membrane
SbmA transporter seem to be responsible for the uptake of the MccJ25 into the
cytoplasm [177]. Overall, the dual independent mechanisms of action of MccJ25
help explain the successful action of the intriguing antibiotic peptide.

MccJ25 has several advantageous properties over other peptides from a drug
design perspective. It is resistant to extreme pH and to high temperatures [158]; it
is resistant to most endoproteases [159]; it is active against E. coli, Salmonella and
Shigella strains with clinical relevance [158]; it is active in blood, even after 24 h
of incubation [157]; it has no hemolytic activity [157]; and it displays a prolonged
systemic antimicrobial activity [157]. Together, these properties suggest that MccJ25
has potential applications not only as a food preservative [24], but also as a human
therapeutic agent [171] and further encourages the potential application of this
molecule for systemic administration and treatment of otherwise antibiotic-resistant
infections [157].

The fact that MccJ25 has a relatively narrow antimicrobial spectrum, affecting
only Gram-negative bacteria, might limit broader application. Its inability to attack
a broad range of strains seems to be related to an inability to cross membranes in a
nonspecific way [171]. Therefore, modulation of its molecular properties to overcome
bacterial membrane impermeability could improve its antimicrobial spectrum. The
observation that only a few residues of MccJ25 are essential for its structure and
activity [164] suggests that it should be possible to construct MccJ25 derivatives with
a higher potency and/or broader specificities.

6.2.2.2 Subtilosin A, a Lantibiotic with Unusual Post-translational Modifications
Lantibiotics are small, gene-encoded and post-translationally modified antibiotic pep-
tides that possess thioether cross-links called lanthionine and/or β-methyllanthionine
linkages [178]. They are generally active against most Gram-positive bacteria and
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often target lipid II, the precursor of peptidoglycan in the bacterial cell wall. Nisin
is the most widely used example, and its mode of action and applications have been
reviewed [179–181], so we focus here on another lantibiotic that has attracted much
attention recently.

Subtilosin A is a cyclic lantibiotic, originally identified in the soil bacterium
Bacillus subtillus, which shows activity against a diverse range of Gram-negative
[182] and Gram-positive bacteria [183]. It is ribosomally generated and highly
post-translationally modified [182, 184]. Subtilosin A was first reported to have
a cyclic structure [182] but it soon became evident that it also had several other
post-translational modifications [185]. The initially proposed sequence [182] and
structure [184] were revised and three unusual linkages involving Cys4, Cys7,
and Cys13 with Phe31, Thr28, and Phe22, respectively, were identified [185].
Specifically, thioether linkages were found between the sulfur of each Cys and
the α-carbon of Phe or Thr [186] (Table 6.2). Presumably, these features and the
head-to-tail cyclic backbone give subtilosin A significant rigidity, which could
restrict significant conformational changes upon target binding.

Although originally identified in B. subtillus [182] subtilosin A production has
been confirmed in a range of related subspecies as well as the closely related species
Bacillus atrophaeus [187] and Bacillus amyloliquefaciens [188]. It is expressed at the
end of exponential growth, particularly under conditions of stress [182]. The sulfide
bridges are necessary for the antimicrobial activity of subtilosin A [189]. In contrast
with many antibacterial peptides, subtilosin A is nearly insoluble in aqueous solu-
tion, due to a high content of hydrophobic amino acids and a net anionic charge.
This suggests that a surface receptor is probably the main target [189], as the anionic
charge does not favor electrostatic interaction with bacterial membranes, whereas the
sulfide bridges might have a role in holding the conformation to target the receptor
[189]. Heat stress increases the effectiveness of subtilosin A against Gram-negative
bacteria [183] and its unusual bridged and cyclic structure makes it stable up to
100 ∘C [185].

Thennarasu et al. [190] reported that subtilosin A is capable of binding to lipid
bilayers, adopting an orientation where the Trp-containing domain becomes buried
in the hydrophobic core of the membrane. However, NMR studies suggested that,
neither nonlamellar lipid phase formation, or micellization of lipid bilayers were evi-
dent at concentrations at which other antimicrobial permeabilizer peptides showed
membrane destabilization [190]. Thus, interaction with membranes might only be a
supplementary role to enhance the interaction with a receptor, rather than a mecha-
nism of action per se [190]. These findings support a receptor-dependent mechanism
for subtilosin A.

Subtilosin A has potent activity against Listeria monocytogenes [184, 187], mak-
ing it an attractive preservative in the food industry. It also has activity against vaginal
pathogens such as Gardnerella vaginalis and Sterptococcus agalactiae [188], and
also has spermicidal activity against boar, bovine, horse, rat [191], and human sper-
matozoa [25], with no cytotoxicity to human tissues or healthy human microbiota
[25]. These results suggest that subtilosin A has potential application as a general
spermicidal agent [25].
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6.2.2.3 Applications of Bacteriocins Bacteriocins are considered ideal candidates
for food preservation and personal care applications because the range of their activ-
ity is limited only to species closely related to the producing species. Therefore, while
they might target a specific pathogen, they theoretically have no harmful effects on
humans. The fact that bacteriocins are active against food-borne pathogens (e.g., Lis-
teria monocytigenes, Staphylococcus aureus, and Bacillus cereus), together with the
approval of nisin as food preservative [19], has stimulated the use of bacteriocins for
various applications in animal and human health [192, 193]. However, it is necessary
to fully understand the biology of bacteriocins to elucidate their structure-function
relationships, production, immunity, regulation and mode of action [5]. Attempts to
create improved bioengineered derivatives of bacteriocins have been successful and
increased solubility, stability [194, 195] and/or improvement of antimicrobial activity
against some bacterial strains [196, 197] have been reported.

6.2.3 Cyclotides, Ultra-Stable Peptides that are Part of Plant Defense
Mechanism

Cyclotides were first isolated from the African plant Oldenlandia affinis after they
were recognized as an active component of an indigenous medicinal tea [198] used
to accelerate childbirth. This use highlighted the fact that cyclotides are resistant
to high temperatures and are apparently orally available [198]. Subsequently, it
was found that cyclotides possess a knotted macrocyclic structure that confers
exceptional stability on them [35], and additional members of the cyclotide family
were identified. A complete list of cyclotides reported so far can be found in
CyBase (www.cybase.org.au), an online database dedicated to circular peptides
[199]. Cyclotides are approximately 30 residues in size, and occur in plants from
the Rubiaceae (coffee), Violaceae (violet) Cucurbitaceae (squash), Solanaceae
(nightshade), and Fabaceae (legume) families [32].

6.2.3.1 Structure The structure of the prototypic cyclotide, kalata B1 (kB1) was
first reported in 1995 [200] and is shown in Table 6.3. Three-dimensional structures
have been determined using NMR spectroscopy for approximately 2 dozen cyclotides
and reveal a consensus structural motif termed the cyclic cystine knot (CCK) [35].
More than 300 cyclotides are now known [199] and it has been estimated that the
family could grow to 50,000 members [201]. Although the six Cys residues that make
up the cystine knot are completely conserved, there is a significant degree of variation
in the rest of the sequence. The cyclotides have six loops between the six Cys residues,
with loops 1 and 4 having more sequence conservation than the others [202]. They
typically contain a surface-exposed patch of hydrophobic residues which is believed
to promote their ability to bind to membranes [203, 204].

Originally, cyclotides were subdivided in two major subfamilies, namely the
Möbius and bracelet subfamilies (see Table 6.3), so called because of the presence
or absence of a 180∘ twist in the circular backbone, respectively. Cyclotides
belonging to the Möbius subfamily have a Pro residue in loop 5 that is preceded
by a cis-peptide bond, which is responsible for the conceptual backbone twist.
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218 DISCOVERY OF PEPTIDE DRUGS FROM NATURAL SOURCES

In the bracelet subfamily, all backbone peptide bonds are in the trans configuration
[35]. More recently, a third subfamily, the trypsin inhibitor cyclotides, has been
described [205], which currently contains only a handful of members found in
seeds of Momordica cochinchinensis from the Cucurbitaceae family [206, 207].
Related, but acyclic cystine knot peptides are also found in Momordica charantia
[208]. Apart from a similar 3D structure and the six Cys residues, the Momordica
peptides show very little similarity to the Möbius and bracelet subfamilies [206, 209]
(e.g., see MCoTI-II sequence and structure in Table 6.3).

6.2.3.2 Biological Activity and Mode of Action The natural biological role of
cyclotides has not been unequivocably elucidated, but their high level of expression
in leaves [37], together with the presence of a large number of different cyclotides in
any given plant [210, 211], suggest that they probably have a role in plant defense.
This is supported by their insecticidal activity [29]. Kalata peptides dramatically
affect development of larvae from Lepidopteran species, Helicoverpa punctigera [29]
and Helicoverpa armigera [212] and damage to microvilli cells in their midguts by
membrane disruption was observed after cyclotide ingestion [213]. In addition to the
defense function, many other activities have been identified for cyclotides, including
uterotonic [198], anticancer [38], hemolytic [214, 215], anti-fouling [216], anti-HIV
[39–41], and molluscicidal [217] activities.

Subtle changes in sequence have been shown to have a significant influence on
biological activity and on the ability of cyclotides to bind to model membranes.
For instance, Ala- [218] and Lys-scans [219] of kB1 have shown that specific point
mutations abolish insecticidal, anti-HIV and hemolytic activities. Interestingly,
the residues that seem to be important for these activities are surface-exposed and
colocalize on one side of the molecule [218, 219]. Recently, these residues have
also been shown to be important to specifically target phosphatidylethanolamine
(PE)-phospholipids and/or facilitate insertion into the hydrophobic core of the lipid
bilayer. A strong correlation between bioactivity and affinity for cell membranes
with PE-phospholipids was found [220]. A mechanism in which kB1 targets cell
membranes through specific interaction with PE-headgroups, followed by insertion
into the membrane hydrophobic core and disruption of the cell membrane was
proposed [203, 220].

Similar membrane binding properties have also been observed for other native
cyclotides belonging to the Möbius and bracelet subfamilies [204]. In summary,
despite considerable sequence diversity, all the tested native cyclotides have a
conserved bioactive face and hydrophobic patch. The bioactive patch is believed to
be involved in specifically recognizing PE-phospholipids, whereas the hydrophobic
patch is required for insertion into the hydrophobic region of the cell membrane and
cell permeabilization [203, 204].

6.2.3.3 Applications in Drug Design In general, the utility of conventional pep-
tides in pharmaceutical and biotechnological applications is limited by their poor
stability and bioavailability but cyclotides have chemical and structural properties
that make them capable of overcoming these disadvantages. In particular, cyclotides
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are exceptionally resistant to thermal and chemical denaturation and to enzymatic
degradation [221], making them a valuable scaffold for drug design applications [31,
32, 34]. The discovery and characterization of an increasing number of cyclotide
sequences has highlighted the plasticity of the CCK framework (i.e., its tolerance to
sequence substitutions) [202], and thus its amenability to molecular grafting studies.
More than a dozen different peptide sequences have been successfully grafted into
the CCK scaffold and shown to retain full biological activity [32]. Some examples
include angiogenic epitopes with potential cardiovascular and wound healing appli-
cations [222], a melanocortin antagonist sequence with the potential to treat obesity
[223], and a bradykinin receptor antagonist for the treatment of inflammatory pain
[224]. In these examples the engineered cyclotides target extracellular/membrane
proteins. Significantly, in the case of the bradykinin antagonist, the grafted peptide
was orally active, marking a major milestone in the development of cyclotide-based
drug leads.

Importantly from a drug design perspective, MCoTI-I/II [225, 226], and kB1
[227] have recently been shown to be able to internalize into cells. The amenabil-
ity of cyclotides toward grafting, together with their remarkable stability and
cell-penetrating properties make them a very attractive framework for the delivery
of peptide epitopes to intracellular targets. Indeed, the potential of engineered
cyclotides to specifically inhibit an intracellular target was recently demonstrated
by Camarero and coworkers [228]. In that study, PMI, a 12-amino acid sequence
known to block the interaction of p53 with the oncoprotein Hdm2, was engineered
into MCoTI-I and shown to modulate the p53 tumor suppressor pathway in vivo,
while retaining the stability of the scaffold [228].

In conclusion, cyclotides have a range of drug design applications, including their
use as a template for the insertion (e.g., “grafting”) of biologically active epitopes into
their stable molecular framework to prolong the biological half-life of the epitopes
that target either extracellular or intracellular targets.

6.3 ANIMAL VENOMS, A RICH SOURCE OF PEPTIDES WITH
THERAPEUTIC POTENTIAL

Venomous animals, including snakes, scorpions, spiders, and cone snails contain a
wealth of highly selective and potent toxins in their venoms. These venoms have
evolved for rapid prey immobilization and target vital physiological processes. Of the
venom peptides characterized to date, a significant number are also highly selective
for mammalian receptors associated with pain [58]. Peptides extracted from ven-
oms are thus excellent sources of lead compounds for the development of therapeutic
agents. Cone snail toxins have been particularly extensively studied for pharmaceu-
tical applications [7].

6.3.1 Conotoxins, a Naturally Occurring Combinatorial Peptide Library

Peptides from cone snail venom, referred to as conopeptides, are divided into two
classes: those with one or no disulfide bonds, and those with two or more disulfide
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220 DISCOVERY OF PEPTIDE DRUGS FROM NATURAL SOURCES

bonds, with the latter commonly called conotoxins [43, 61, 66, 229, 230]. Conotoxins
are small (10–30 residues) peptides and specifically target various components of
neural transmission pathways. Examples are shown in Table 6.4.

Conotoxin genes encode precursor proteins, from which the mature conotoxins
are processed. Conotoxins are frequently post-translationally modified [231],
with the modifications including C-terminal amidation, proline hydroxylation,
O-glycosylation, glutamine γ-carboxylation, and N-terminal glutaminyl ring closure
to pyroglutamate [232], further enhancing the sequence diversity of these peptides.
The precise role of post-translational modifications is not yet known, but the large
chemical diversity resulting from these modifications enlarges both the variability of
conotoxins and their biological specificity and/or functional efficacy [233].

The nomenclature employed for conotoxin classification, as originally proposed
by Cruz et al. [234], categorizes them into superfamilies based on signal sequence and
framework homology and then into pharmacological families based on the targets
they interact with. With the increasing number of sequences reported, this classifi-
cation is constantly expanding [61, 235, 236], and the latest update has been pub-
lished recently [237]. An online database dedicated to conopeptides, ConoServer
(www.conoserver.org), is also available [238].

The most extensively studied pharmacological families of conotoxins are
the α-conotoxins, which target nicotinic acetylcholine receptors (nAChRs) [59];
the ω-conotoxins, which target presynaptic calcium channels [239, 240]; the
μ-conotoxins, which target muscle sodium channels [241]; the δ-conotoxins, which
delay inactivation of sodium channels [242] and the κ-conotoxins, which target
Shaker potassium channels [243]. Table 6.4 shows examples of these conotoxins and
their pharmacological applications.

6.3.1.1 Structure Because of their small size, NMR has been particularly valuable
for determination of the 3D structures of conotoxins [244]. NMR not only has the abil-
ity to study the structure and dynamics of peptides under varying conditions of tem-
perature and pH, but is also suitable for determining structures of post-translationally
modified peptides [245]. So far, more than 120 NMR structures of conotoxins have
been solved [238], with most having rigid conformations stabilized by multiple disul-
fide cross-links [13, 246–250] (see Table 6.4).

The sequence variability of conotoxins is reflected in their 3D diversity, with their
structures including a range of well-defined secondary structural elements, such as
β-sheets, α-helices, and β-turn motifs. Besides these classical secondary structure
motifs, more complex motifs, such as the cystine-stabilized 𝛼𝛽 (CS𝛼𝛽) motif occur.
This motif comprises an α-helix and a β-structure connected by two or three disulfide
bridges [251] and is seen for example in the μ-conotoxin GIIIB [252]. We mention
it specifically because this motif contains most of the secondary structural elements
found in protein structures and it has been proposed as a scaffold for protein engi-
neering [253], not only due to its suitability for chemical synthesis, but also due to
its high stability and tolerance to sequence mutations [253]. Another important motif
identified in conotoxins is the cystine knot, similar to that observed for cyclotides.
This motif occurs in conotoxins belonging to the ω-conotoxin family, such as MVIIA

Universal Free E-Book Store

http://www.conoserver.org


T
A

B
L

E
6.

4
So

ur
ce

s,
Se

qu
en

ce
s,

St
ru

ct
ur

es
,a

nd
P

os
si

bl
e

A
pp

lic
at

io
ns

of
C

on
ot

ox
in

s
B

el
on

gi
ng

to
D

if
fe

re
nt

P
ha

rm
ac

ol
og

ic
al

F
am

ili
es

.

Pe
pt

id
e

(S
ou

rc
e)

Se
qu

en
ce

a
St

ru
ct

ur
eb,

c
Po

te
nt

ia
lA

pp
lic

at
io

ns

α-
C

on
ot

ox
in

V
c1

.1
.

(C
on

us
vi

ct
or

ia
e)

*
G

C
C

S
D

P
R

C
N

Y
D

H
P

E
I

C

N

C
A

na
lg

es
ic

fo
r

ne
ur

op
at

hi
c

pa
in

m
-C

on
ot

ox
in

G
II

IB
(C

on
us

ge
og

ra
ph

us
)

*
R

D
C

C
T

O
O

R
K

C
K

D
R

R
C

K
O

M
K

C
C

A

N

C
Sc

af
fo

ld
fo

r
pr

ot
ei

n
en

gi
ne

er
in

g

w
-C

on
ot

ox
in

M
V

IA
(C

on
us

m
ag

us
)

*
C

K
G

K
G

A
K

C
S

R
L

M
Y

C
C

T
G

S
C

R
S

K
G

C
D

N

C

A
na

lg
es

ic
fo

r
ne

ur
op

at
hi

c
pa

in

(c
on

ti
nu

ed
)

221

Universal Free E-Book Store



T
A

B
L

E
6.

4
(C

on
tin

ue
d)

Pe
pt

id
e

(S
ou

rc
e)

Se
qu

en
ce

a
St

ru
ct

ur
eb,

c
Po

te
nt

ia
lA

pp
lic

at
io

ns

k-
C

on
ot

ox
in

PV
II

A
(C

on
us

pu
rp

ur
as

ce
ns

)
C

R
I

O
N

Q
C

F
Q

H
L

D
D

C
C

S
R

K
K

C
N

R
F

N
K

C
V

N

C

C
ar

di
op

ro
te

ct
iv

e
ac

tiv
ity

d-
C

on
ot

ox
in

T
xV

IA
(C

on
us

te
xt

il
e)

W
C

K
Q

S
G

E
M

C
N

L
L

D
Q

N
C

C
D

G
Y

C
I

V
L

V
C

T
N

C

Ph
ar

m
ac

ol
og

ic
al

pr
ob

e

a
T

he
di

su
lfi

de
co

nn
ec

tiv
ity

be
tw

ee
n

cy
st

ei
ne

re
si

du
es

is
in

di
ca

te
d

by
th

e
so

lid
bl

ac
k

lin
es

in
th

e
se

qu
en

ce
s.

*
D

en
ot

es
am

id
at

ed
C

te
rm

in
us

an
d

O
de

no
te

s
hy

dr
ox

yp
ro

lin
e.

b
T

he
N

an
d

C
te

rm
in

ia
re

in
di

ca
te

d
in

ea
ch

st
ru

ct
ur

e
an

d
th

e
di

su
lfi

de
bo

nd
s

ar
e

sh
ow

n
in

bl
ac

k.
c P

D
B

ID
co

de
s:

V
C

1.
1

(2
h8

s)
;G

II
IB

(1
gi

b)
;M

V
IA

(1
m

vi
);

PV
II

A
(1

av
3)

;T
xV

IA
(1

fu
3)

.

222

Universal Free E-Book Store



ANIMAL VENOMS 223

[254, 255], TxVII [256], and GVIA [248, 257–259], conferring great stability to
these peptides.

6.3.1.2 Mode of Action The many conotoxins expressed in a single cone snail
species are thought to act in a synergistic fashion to immobilize prey [61]. Their
targets include voltage-sensitive potassium, calcium and sodium channels and
N-methyl-d-aspartate, glutamate, vasoperessin, serotonin, and acetylcholine recep-
tors [60]. An assembly of conotoxins acting together to a specific end point has
been termed a “toxin cabal” [61]. The lightning strike cabal is responsible for the
instantaneous immobilization of the prey, causing a massive depolarization of the
axons near the venom injection site and includes peptides that inhibit voltage-gated
sodium channels and peptides that block potassium channels. The motor cabal
induces a block of neuromuscular transmission, an effect more slowly achieved
because it acts at sites far from the venom injection site [236, 260]; this cabal
includes peptides that target nAChRs and block skeletal muscle sodium channels and
peptides that target presynaptic calcium channels, which control neurotransmitter
release [61, 260].

To further illustrate the specificity of conotoxins, the mechanism of action of
α-conotoxins is described here in more detail. The α-conotoxins interact with neu-
ronal and muscle type nAChRs [235]. These receptors are pentameric ligand-gated
ion channels, which have varying subunit compositions and this combinatorial
diversity results in receptor subtypes with distinct pharmacological and physiolog-
ical properties [261]. The high selectivity of the α-conotoxins for different nAChR
subtypes arises from subtle differences in the sequences of α-conotoxins [262, 263].
They can be regarded as essentially rigid frameworks that bind to their receptors
without significant variation of their conformations [264], but variations in amino
acids displayed on their surface determine their receptor selectivity [262].

The α-conotoxins are divided into different subfamilies: 𝛼3/5; 𝛼4/3; 𝛼4/6; and
𝛼4/7, depending on the number of amino acids between the second and third Cys
residues (loop 1) and the third and fourth Cys residus (loop 2) (see Table 6.4), respec-
tively [265]. Besides the four Cys residues, the α-conotoxins have a Ser and a Pro
conserved in loop 1, which are thought to have a role in maintenance of secondary
structure [266]. A significant degree of sequence variation occurs in the remaining
residues, particularly in loop 2, which seems to confer the selectivity and potency of
different α-conotoxins for different nAChRs subtypes [261, 266].

6.3.1.3 Applications in Drug Design One of the most exciting aspects of
conotoxins is their pharmacological potential; every conotoxin can be regarded as
a specialist, optimized for a particular target, showing extraordinary potency and
an ability to differentiate between related synaptic components [267]. Due to their
small size, conotoxins are convenient for chemical synthesis [12, 43], making them
attractive leads in drug design programs. Furthermore, the diversity of conotoxins
arising from hypermutation can be compared with combinatory libraries used by
pharmaceutical companies when searching for new drug leads. The introduction of
modified functional groups in conotoxins, accomplished through post-translational
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224 DISCOVERY OF PEPTIDE DRUGS FROM NATURAL SOURCES

modifications, parallels medicinal chemistry approaches used to optimize initial lead
compounds [236].

An example that illustrates the pharmacological value of conotoxins is the clinical
use of ω-conotoxin MVIIA, Prialt, for the treatment of chronic pain [64, 65]. Besides
applications as pain killers, conotoxins have other pharmacological applications
[267]. For instance, κ-conotoxin PVIIA, has been evaluated for its cardioprotec-
tive effects [268]. The role of nAChRs in the pathophysiology of schizophrenia
[269], Alzheimer’s disease [270], and Parkinson’s disease [271] suggests that
α-conotoxins might have potential for the treatment of these neuropsychiatric
disorders [60].

Notwithstanding these favorable features, the application of conotoxins as drugs
potentially suffers from the generic drawbacks of other peptides in vivo, including
poor absorption, susceptibility to proteolysis and a short half-life. Therefore, stabi-
lizing conotoxins for therapeutic or diagnostic applications and for improving their
route of delivery are of interest [272]. The ω-conotoxin MVIIA is delivered intrathe-
cally, (e.g., direct injection into the spinal cord) for example, and next generation
therapeutics would benefit from a less invasive delivery route, ideally via the oral
route. The stabilization of peptides to achieve broader therapeutic value is addressed
in the following section.

6.4 OPTIMIZATION OF PEPTIDES FOR DRUG DEVELOPMENT

Although purified natural peptides can become the final drug without modification
(e.g., ω-conotoxin MVIIA sold as Prialt), the initial lead is often subject to extensive
modification via medicinal chemistry before entering clinical trials. Natural prod-
uct leads often suffer from deficiencies, such as low stability and poor bioavailabil-
ity, which compromise their broader application. They can potentially be further
improved, in terms of efficacy and selectivity for the target, or achieving optimal
pharmacokinetic and pharmacodynamic properties [3].

6.4.1 Chemical Modifications to Improve Activity

Many factors have to be taken in consideration during the drug development
process, including the chemical properties (e.g., the molecule should be stable and
easy to synthesize), the pharmacological properties (e.g., selective high-affinity
binding and potent functional effects at the target receptor), the pharmacokinetics
(adequate bioavailability for the selected route of administration and adequate
half-life of biodistribution), and the safety and toxicity of the compound [67]. As we
described for natural conotoxins, the post-translational modification of peptides is
an efficient strategy for regulating peptide localization, function and turnover, and
influences physicochemical properties, solubility, stability, aggregation, propensity
to be degraded by protease activity, and specificity of peptides [273]. In a similar
way, pharmaceutical companies modify drug leads as a strategy to improve their
properties. Some examples of chemical modifications to improve peptide properties
and their value as therapeutics are discussed below.

6.4.1.1 Amino Acid Substitution One of the first methods adopted to improve the
specificity and stability of peptides is amino acid substitution. Some amino acids are
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more susceptible to degradation than others and replacement of these amino acids
can increase the stability of peptides [272]. For instance, Met is sensitive to oxi-
dation [274], Asn is susceptible to deamination, and Asp is prone to isomerisation
[275]. Trypsin and chymotrypsin in the human gastrointestinal tract have the potential
to decrease the bioavailability of peptide-based therapeutics by causing proteolysis.
Peptide bonds following Lys or Arg are cleaved by trypsin [276, 277], whereas chy-
motrypsin cleaves at hydrophobic residues such as Phe, Tyr, and Trp [277]. Therefore,
modification of the primary structure of peptide drug lead to minimize reactivity is
an important consideration in the design of peptide therapeutics.

Alternatively, amino acid substitution is frequently employed to enhance affinity
for receptors by alteration of amino acids involved in binding interactions [278]. The
introduction of positively charged amino acids in AMPs can lead to more active pep-
tides by improving affinity for membranes [68, 279], whereas substitutions with less
hydrophobic residues, frequently decreases their hemolytic activity [279].

The cost of production is important in pharmaceutical development and a residue
modification strategy is one way that can be used to reduce the cost of synthesis. For
example, substitution of γ-carboxyl glutamic acid, common in conotoxins, with an
unmodified glutamic acid, often does not induce a loss of activity but substantially
decreases production costs [272]. However, it is important to consider that altering
amino acids can sometimes influence the conformation of peptides, which can impact
on their stability and binding properties. Thus, substitutions should be done to ensure
that no loss of biological activity or undesirable side effects occurs.

6.4.1.2 Nonnatural Amino Acids Analogs The use of nonnatural amino acids is
a strategy to provide favorable biophysical properties, such as protease resistance
and improved stability. d-amino acids occur naturally in some peptides, including
for example the bombinins H. These peptides have better stability [96] and higher
antimicrobial activity against some bacterial strains [98] than their all l-analogs.
In this case a single d-amino acid substitution was an approach developed by nature
to modulate not only the solubility [101] but also the biostability of a peptide [98].
The use of d-amino acids has also been adapted by the pharmaceutical industry and
is now common in peptide-based drug design [83, 280]. Another possible strategy
is the incorporation of β-amino acids, which also generally increases resistance to
enzymatic degradation [281] while maintaining a stable secondary structure [282],
and the functional properties of the natural peptide [281].

Modification of peptide termini by N-acetylation, C-amidation and PEGylation
(polyethylene-glycol modification at C-terminus) are other strategies used to sta-
bilize peptides. Capping by N-acetylation or C-amidation reduces susceptibility to
carboxy-peptidases, improving the stability of natural peptides [283, 284]. PEGy-
lation has been used as a modification technology to improve pharmacokinetic and
pharmacodynamic properties [285].

6.4.1.3 Cyclization The large diversity of naturally occurring circular peptides
suggests that cyclization has evolved independently in a wide range of organisms,
from bacteria to plants, to animals. Cyclic peptides are particularly important due
to their resistance to enzymatic degradation, pH and temperature [286]. Linear
peptides are often less stable, and more flexible, leading to reduced binding affinity
and lower biological activity than their cyclic counterparts. Joining the ends of
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peptides removes susceptibility to exopeptidases and increases thermodynamic
stability [286]. The exceptional stability of cyclic structures and their use as a
framework in drug design has been explored for conotoxins [202], and a successful
proof-of-concept example is the cyclization of α-conotoxin MII [287], a potent
inhibitor of the nAChR [288] that has been implicated as a possible treatment in
Parkinson’s disease therapy [289]. A cyclic version of α-conotoxin MII retained
the activity of the native form but had greatly improved resistance to proteolytic
degradation [287]. This pathfinder study has been followed up with a number of
other examples of the cyclization of conotoxins [290–293], the most successful of
which resulted in the development of a cyclic analog of conotoxin Vc1.1 that was
orally active in a rat model of neuropathic pain [293]. Thus in this case cyclization
not only improved stability but led to oral activity that was not present in the parent
linear conotoxin.

Not all examples of cyclization will lead to improved peptides, as seen with cyclic
versions of some AMPs. A cyclic melittin analog exhibited increased antibacterial
activity, with reduced hemolytic propensity, whereas a cyclic magainin 2 derivative
was not so successful and had reduced antibacterial activity and increased hemolytic
propensity [294]. The proper design of bioactive cyclic peptides requires detailed
knowledge of the role of each amino acid residue, so that for example, cyclization
should be designed to not affect residues that are crucial for activity [278]. Another
consideration is the selection of a correctly sized linker, which must span the
distance between the N and C termini. The adverse effects of removing stabilizing
charge-charge interactions between the termini have to be overcome with linkers of
correct length [287]. Nevertheless, with due consideration of these potential caveats
peptide cyclization is a widely applied technique in the pharmaceutical industry,
which decreases proteolytic degradation, prolongs half-life and stability and can
improve binding efficiency [278].

6.4.1.4 Disulfide Bond Engineering Disulfide bonds are a prerequisite for the
proper biological function of many proteins [295]. They are very important for the
folding and stability of proteins, and in peptides they introduce conformational con-
straints that confer a bioactive and thermodynamically stable conformation [296].
Disulfide-rich peptides can be used as stable scaffolds to graft exogenous peptide
epitopes onto their stable structure, giving them new, and desired properties. Such
scaffolds include the cyclotides [202], the defensins [297, 298], and the conotoxins
[299] already described in this article. Because of their various disulfide connectiv-
ities and a wide range of activities, these natural peptides offer a large diversity of
stable molecular scaffolds. To supplement this natural set of scaffolds, the engineering
of new intramolecular disulfide bonds into peptide structures is a valuable strategy for
the design of peptidic compounds with desired structural and active properties [300].
For example, nonnative disulfide bonds have been used to induce a constrained and
stable structure in peptides, such as an amphipathic α-helix [301–303] or β-hairpin
[279, 300]. Peptides with potential antimicrobial activity were shown to possess bet-
ter membrane binding, and enhanced antimicrobial potency, when a nonnative bond
was introduced [279, 303, 304]. A variety of alternative chemical linkers have also
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been used recently as more stable surrogates for disulfide bonds [305]. The use of
diselenide bonds in place of disulfide bonds has been a particularly popular approach
as the surrogate is almost isosteric but is more resistant to reduction [306–308].

6.5 CONCLUSIONS

Organisms are exquisitely adapted to their niche and possess an arsenal of compounds
that give them evolutionary advantages. The potency and selectivity of these natural
compounds, including peptides, has made them of interest in the field of drug design.
In some cases, natural peptides have already been approved and are used as drugs or
as food preservatives, while many others are in the pipeline of pharmaceutical com-
panies. In this review, some examples of peptides isolated from different organisms
with potential as therapeutic compounds have been illustrated. Such applications are
facilitated by chemical modifications and peptide engineering to improve drug-like
properties of peptides. Although only limited examples have been described, the
future appears to be bright for applications of natural peptides as drug leads.
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7
MODIFICATION OF PEPTIDES
TO LIMIT METABOLISM

Isuru R. Kumarasinghe and Victor J. Hruby
Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA

7.1 INTRODUCTION

A common property associated with many naturally occurring peptides is that they
have a short effective half-life in vivo due to proteolytic degradation. The effective
dose of peptide required to maintain in vivo concentrations often requires administra-
tion of large amounts of peptide which can lead to side effects [1]. On the other hand,
in the body large arrays of peptides are constantly synthesized and used as hormones,
neurotransmitters, and for other functions which are targeted toward receptors, accep-
tors, enzymes, and other activities needed to maintain life and homeostasis. They
exist either folded, or posttranslationally modified, or attached to carrier transport
molecules which often mask them from being recognized by the proteolytic enzymes.
Furthermore, proteolytic processing comes into action and plays a vital role in the
body when there is misfolding, for degradation of undesired proteins, or for produc-
ing biologically active peptides from larger precursor proteins, or for responding to
a foreign host, or for decreasing the amount of neurotransmitters to avoid receptor
over-activation, or for performing actions in a particular disease state.

In this chapter, we will focus on approaches that can be used to limit peptide
metabolism. For developing peptides as potential drugs for treatment of disease,
questions related to the peptides mode of action need to be addressed, so that the
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designed peptides will have the desired biological activity profile. At the same time,
it is possible to design strategic modifications of the peptide structure, which will
also address issues of stability to proteolysis and biodistribution. The literature in
this area is vast so our discussion will be limited to a few examples, which exemplify
the approach(es), and thus many aspects will not be discussed.

The design process first requires identification of the pharmacophore residues
important for bioactivity [2]. This will be different depending upon whether agonists
or antagonists are needed. Structure–activity studies with truncations, deletions of
amino acid residues, alanine scans, d-amino acid scans, and so on, are often needed
at this stage. In addition it may be possible to identify secondary structure elements
important for the desired bioactivity profile using a combination of various cyclic
scans, molecular modeling using different force fields and solvent models, and bio-
physical studies including CD, NMR, and X-ray crystallography [2]. All of these
steps provide opportunities to improve peptide stability and bioavailability.

The key considerations in all of these approaches are related to various aspects of
structure. In this regard, though we will not explicitly discuss it here (because it is
not the topic of this chapter), structural consideration that lead to improved stability
of peptides against biodegradation also often improve the chemical–physical prop-
erties that render peptides and peptidomimetics more bioavailable and more likely to
cross membrane barriers such as the blood–brain-barrier (BBB). This is particularly
true when certain secondary structural features are enhanced such as stabilization of
α-helical and β-turn structures. Additionally, when certain inherent chemical features
such as enhanced lipophilicity, amphipathic properties, pegylation, and so on, are
“built into” the structures by design, properties such as interactions with bloodborne
proteins or bypassing the liver or kidney elimination routes are obtained. The point
to be made is that there are many known approaches that work, and because these
generally are only recently exploited in drug design and development, there is much
to learn and much to investigate that will provide not only important new scientific
principles and knowledge, but also will open up new chemical space for intellectual
property enhancement.

We now will systematically, though not comprehensively, examine a number of
strategies that can be used to enhance peptide stability in vivo.

7.2 INTRODUCTION OF UNNATURAL AMINO ACIDS

Naturally occurring amino acids in the native peptide can be replaced by nonnatural
amino acids in order to provide a peptide with a side-chain not as easily recognized
by proteolytic enzymes, but still compatible with bioactivity. For example, valine
can be replaced by the cyclohexylglycine to mimic the side chain of the valine.
Likewise, for basic amino acids ornithine can replace lysine. Other possibilities such
as 4-hydroxyproline for proline, norleucine instead of the leucine or methionine,
cyclohexylalanine or phenylglycine(Phg), 3-pyridylalanine(3Pal), homopheny-
lalanine(HomoPhe), or 2′-naphthylalanine (2′-Nal) instead of phenylalanine [3]
(Figure 7.1), or thienylalanine for histidine, and so on.
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Figure 7.1 Some examples of nonnatural amino used as substitutes to minimize protease
degradation of peptides.

A good example of obtaining a proteolytic resistant peptide is the work of
Schmiedeberg et al. [4] who found, in the process of developing an antagonist that
can disrupt interactions between the endogenous serine protease urokinase type
plasminogen activator (uPA) that substitution of a key Lys residue with unnatural
amino acids such as Nle, Dab, Orn, and Dap gave potent uPAR antagonists which
were highly resistant to proteolytic degradation.

A more recent example includes substitutions such as 4-amino-3-(benzyloxy)
benzoic acid, 3-(2-(1H-indol-3-yl)ethoxy)-4-aminobenzoic acid, and 4-amino-3-
isobutoxybenzoic acid for phenylalanine, tryptophan, and leucine, respectively [5].
Such modifications can be used to fine-tune the native peptides to be lipophilic, make
them less prone to enzymatic degradation, and increase their uptake into the brain.

7.3 CYCLIZATION OF LINEAR PEPTIDES TO IMPROVE STABILITY
TOWARD BLOOD AND BRAIN PROTEASE DEGRADATION

It has been known for many years that cyclization of a linear peptide usually stabilizes
the peptide to proteolytic enzymes compared with the linear counterpart. Moreover,
cyclization of a peptide often results in greater selectivity and potency of a peptide for
its target. For side-chain-to-side-chain cyclization [6], the identification of the tolerant
positions for substitution by amino acids, which can be cyclized without significant
loss of activity and affinity is a key step in this process. Cyclization can be done
(Figure 7.2) through peptide-bond formation between the amino and carboxyl groups
of the N- and C-terminal (e.g., head to tail cyclization), or amide bond formation
between the amino group of the N-terminal and a side-chain carboxy group, or amide
bond formation of between the C-terminal and a carboxyl side-chain amino group
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Figure 7.2 Different types of peptide cyclization [2].

(e.g., C-terminal of any amino acid with the 𝜀-amino group of a lysine), or amide
bond formation between the side chain amino and carboxy groups (e.g., carboxylic
group of the glutamic acid or aspartic acid side-chain with amino group of the lysine
side chain). Of course, disulfide bond formation between thiol groups of cysteine
residues is widely used in nature and in peptide design. In addition other types of
cyclization have been reported using other functional groups, for example, thioethers,
ethers, amides, di-carba bonds, esters, or heterocyclic type cyclizations [2, 7].

Many years ago it was shown that cyclization of linear peptides related to
α-MSH around the key pharmacophore His-DPhe-Arg-Trp- via a disulfide structure
Ac-Ser-Tyr-Ser-Nle-c[Cys-His-DPhe-Arg-Trp-Cys]-Lys-Pro-Val-NH2, or through a
lactam bridge Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]NH2 gave enzymatically stable
ligands, the latter of which also crossed the BBB [8–10]. More recently in search for
α-MSH derivatives that would be melanocortin-4 receptor selective ligands and that
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would be orally active [11, 12] made backbone to backbone cyclic peptides around
the pharmacophore Phe-DPhe-Arg-Trp-Gly-NH2, which have high metabolic stabil-
ity to intestinal brush border enzymes compared to linear counterparts (Figure 7.3a
and b illustrates the structure and stability of these structures).

In the process of making a selective agonist and antagonist ligands for the
neurokinin (NK) receptor subtypes NK1, NK2, and NK3 based on a common
C-terminal parent tachykinin peptide Phe-Xaa-Gly-Leu-Met-NH2, Byk et al. [13]
found that the linear analogs are less metabolically stable to proteases present in
slices or homogenates of liver and of the parotid gland compared to backbone cyclic
analogs.

Cyclic peptides are generally metabolically stable comparable to their linear coun-
terparts because they assume conformations that are not compatible with the enzy-
matic cleave site of proteases. In addition, the bulkiness and rigidity of cyclic peptides
may not allow them to enter into the catalytic pocket that is required for proteolysis
[14].

Cyclization of linear peptides often results in improved metabolic stability
against proteolytic enzymes, and it also can enhance the selectivity and potency
of peptides. Leu enkephalin (H-Tyr-Gly-Gly-Phe-Leu-OH) and Met enkephalin
(H-Tyr-Gly-Gly-Phe-Met-OH) are endogenous peptides for opioid receptors. These
peptides are rapidly degraded in vivo. Cyclization of these peptides by substitution
the Gly2 and Leu5/Met5 with cysteine did not improve receptor selectivity signifi-
cantly. However, with 𝛽,β-dimethylcysteine (penicillamine) the receptor selectivity
was enhanced to give delta opioid receptor ligands, and also greatly improved the
metabolic stability against the wide variety of enzymes and to the BBB [2, 15–17]
(Figure 7.4).

Cyclization can be used even with highly active linear peptides that are somewhat
stable to proteases (e.g., biphalin is a mu and delta agonist for the opioid receptor).
Cyclization of biphalin with d-cysteine-2 and d-cysteine-2′ improved the potency
five times in second messenger assays (Figure 7.5 and Table 7.1) [18].

Cyclization of endogenous neurotransmitters often results in molecules with
prolonged activity in vivo. Prolong activity in vivo presumably occurs, at least in
part, when peptides have higher metabolic stability against proteolytic enzymes.
For instance cyclic α-MSH neurotransmitter analogs have prolonged activity in vivo
compared to their linear counterparts [9, 10, 19, 20].

TABLE 7.1 Binding Affinity, GTP𝜸S Binding Assay, and Bioassay Results [18] of
Biphalin and a Cyclic Analog.

Drugs Binding IC50(nM) GTP𝛾S Binding IC50 (nM) Bioassay IC50(nM)
𝛿 𝜇 𝛿 Emax (%) 𝜇 Emax (%) MVD GPI

Biphalin 2.6 1.4 2.5 27 6 25 27 8.8
Cyclized biphalin 0.87 0.60 0.87 100 0.2 47 9.9 25

Emax % (net total bound/basal binding× 100) for in vitro tissue activities.
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Figure 7.3 (a) Structure of biostable peptides 1 and 2 and the related linear peptide [11].
(b) Metabolic stabilies of cyclic peptides 1 and 2 and the linear analog [11]. Tested molecules
were mixed with purified brush border membrane vesicles (BBM Vs) and incubated at 37 ∘C
for 90 min. Duplicate samples were taken at time 0 and after 15, 30, 45, 60, and 90 min. The
samples were diluted 1:1 with ice cooled acetonitrile, centrifuged (7500 g, 10 min, 4 ∘C) and
transfereed to analysis, SD< 15% (peptide 1 •, peptide 2 ▾, linear peptide analog ○).
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7.4 INTRODUCTION OF D-AMINO ACIDS INTO PEPTIDES IMPROVES
STABILITY TOWARD BLOOD AND BRAIN PROTEASE DEGRADATION

Incorporation of d-amino acids into a peptide sequence often can retain the same or
improve bioactivity of the original native peptide, but generally also improves sta-
bility against proteolytic enzymes, and has been used often as a general approach in
peptide ligand design. For example, Hamamoto et al. [21] have made antimicrobial
peptides substituted with d-amino acids. Overall the d-amino substituted peptides had
much higher stability toward enzymatic degradation. Sawyer et al. [22] have shown
that incorporation of a d-amino acid into a central residue in α-MSH increases the
stability of the peptide against serum enzymes.
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In the process of developing of an antagonist to the bombesin (Bn) receptor
with prolonged in vivo inhibitory activity Coy et al. found that modification of
the linear peptide encompassing bombesin residues 6 or 7–14 (Asn-Gln-Trp-
Ala-Val-Gly-His-Leu-Met-NH2) with d-amino acid substitution at positions 6
and 11, along with C-terminal methyl ester modification resulted in an analog,
[d-pentaflouro-Phe6,d-Ala11]Bn(6-13)-OMe which had very prolonged activity in
vivo [23].

Often, d-amino acid substitution requires identification of the tolerant positions of
the bioactive peptide, so that it will not lose significant bioactivity. Toke et al. [24]
studied the antigenic properties and enzymatic stability of several MUC2 peptides
partially substituted with d-amino acids in the flanking regions and found out that par-
tial d-amino acid substitution was well tolerated, and that the peptides showed high
resistance against proteolytic degradation in human serum and lysosomal prepara-
tions. Moreover, the results indicated that the stability against proteolytic degradation
increases proportionally with the number of d-amino acids that were substituted.

7.5 INTRODUCTION OF 𝛃-AMINO ACIDS INCREASES THE
STABILITY TOWARD BLOOD AND BRAIN PROTEASE DEGRADATION

β-Amino acids are alpha peptide analogs, in which a CH2 group is inserted to the
backbone of the proteogenic amino acids. Depending on the position of the R groups,
β-amino acids can be divided into two types, 𝛽2 or 𝛽

3. Type 𝛽
1 is when R is a

hydrogen (Figure 7.6). A few β-amino acids are naturally occurring, for example,
β-alanine [25].
β-Amino acid incorporation into a peptide backbone can induce secondary struc-

tural changes, but also can increase the degree of conformational flexibility of the
native peptide [26]. In general, alpha peptides are more rapidly degraded by proteases
than their β-peptide counterparts.

Incorporation of β-amino acid in normal peptides often can reduce affinity and
activity toward their receptors/acceptors. Therefore, it is important to identify the
tolerant residues of the native peptide, which can be substituted and still retain the
same level of bioactivity.

As an alternative, alpha hydrazine type β-amino acids, where a carbon is replaced
with a nitrogen atom in the amino acid have been synthesized, and they provide
a different hydrogen bond network when substituted into the peptide to give
Aza-β3-peptide [31].
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H2N H2N
H2N
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OH OH OH
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α-Amino acids β1-type amino acids β2-type amino acids β3-type amino acid

Figure 7.6 Types of β-amino acids.
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Figure 7.7 Structure of EP24.15 inhibitor cpp-Ala-Tyr-pAB (CFP) [32].

TABLE 7.2 Amino Acid Sequence and EP24.15 Inhibitory Activity, and Extent of
Degradation of CFP – Peptide [32].

Code Sequence Cal Obs IC50 Extent of Degradation

Mr Mr (μM) 30 min 6 h 24 h

CFP-1 cfp-A-A-Y-pAB 604 604.3 0.06 xx — —
CFP-2 cfp-A-A-Y-𝛽G 556 556.2 0.12 xx — —
CFP-3 cfp-A-𝛽G-Y-𝛽G 556 556.3 5.6 0 0 0
CFP-4 cfp-A-𝛽2A-Y-𝛽G 570 570.2 6.3 0 0 0
CFP-5 cfp-A-𝛽3A-Y-𝛽G 570 570.3 >300 0 0 0

0 – No degradation; xx – 80–100% degradation. Cal - Calculated; Obs - Observed; Mr - Molecular weight.

β-Amino acids incorporation increases stability against proteolytic degradation.
Until recently, there have been no stable and selective inhibitors for the endopeptidase
EC 3.4.24.15 (EP 24.15) to investigate its biological precise role in vivo, For example,
inhibitors such as N-[1,(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-amino ben-
zoate CFP (Figure 7.7) underwent proteolysis between the alanine and tyrosine
residues. In order to stabilize the peptide bond to proteolytic degradation, Steer et al.
[32] replaced the Ala adjacent to the scissile bond with a racemic mixture of the 𝛽,
𝛽

2, and 𝛽
3 types of alanine. Studies revealed that the β-amino acid incorporation

increased the stability of the CFP inhibitor (Table 7.2).
Ahamed and Kaur have investigated the stability of four different hexapeptides

derived from 𝛽
3 type l-Asp monomers(𝛽3 hexapeptide 1), 𝛽2 l-Dap monomers (𝛽2

hexapeptides 2 and 3), both 𝛼 and 𝛽
3 acid monomers (𝛼/𝛽3 hexapeptide 4), compared

to the 𝛼 only type hexapeptide 5. It was found that the peptide containing 𝛽 link-
ages are totally resistant to proteolytic enzymes in serum. However, both 𝛼/𝛽3 mixed
peptides exhibited some proteolysis [33] (Figure 7.8 and Table 7.3).

Finally peptides with substituted β-amino acids have been used to understand the
mechanism of proteolytic enzymatic action. For example, it was found that peptides
containing substituted β-amino acids have the same level of stability against prote-
olytic enzymes no matter what type of substitution it has at the alpha position [25].

7.6 INTRODUCTION OF PEPTIDE BOND ISOSTERES

Peptidases range from narrow to broad specificity. Specific peptide bond hydroly-
sis can be avoided by replacing the peptide bond with isosteres or surrogates [34].
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Recognition of the site of peptide bond proteolysis is possible by studying the prod-
ucts after incubation with the known peptidases using mass spectrometry and other
bioanalytical techniques.

There is huge literature in this area of research that goes back many years. We will
use Kisspeptin, a peptide inhibitor for cancer metathesis, as an example to demon-
strate how peptide bond isostere substitution can prevent enzymatic cleavage [35].

Endogenous Kisspeptins can couple to GPR54, which is a Gq protein coupled
receptor and signal to suppress cancer metathesis. Kisspeptin stability in vivo is
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TABLE 7.3 Treatment of Peptides 1–5 with Three Proteolytic Enzymes or Human
Serum [33].

Enzyme or Serum Enzyme Origin 1 2 3 4 5
(𝛽3) (𝛽2) (𝛽2) (𝛼/𝛽3) (𝛼)

Pronase Streptomyces griseus — — — + +
Trypsin Porcine pancreas — — — + +
Elastase Hog pancreas — — — — +
Human serum — — n.t n.t +

+ Degradation; — no detectable degradation under the experiment conditions; n.t. not tested.

markedly affected due to cleavage of the Gly-Leu bond by metalloproteinases.
Peptide-bond-modified isosteres containing GPR54 agonist (Figure 7.9A and B),
which are kisspeptin analogs, and wild type GPR54 agonist have been used to
analyze stability against the proteolytic enzymes. (E)-alkene and its hydroxylated
dipeptide isosteres of the GPR45 agonist such as 19 and 25b are more stable
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4-Fluorobenzoyl-Phe-Gly-Leu-Arg-Trp-NH2 (peptide 1)

H-Tyr-Asn-Trp-Asn-Ser-Phe-Gly-Leu-Arg-Phe-NH2 (Kisspeptin-10)

4-Fluorobenzoyl-Phe-GlyΨLeu-Arg-Trp NH2 (peptide 19)

4-Fluorobenzoyl-Phe-GlyΨLeu-Arg-Trp NH2 (peptide 25b)

(GlyΨLeu  segment of peptide 25b)

(GlyΨLeu  segment of peptide 19)

(a) (b)

(A)

(B)

Figure 7.9 (A) Structure of kisspeptin analogs [35]. (B) Stability evaluation of GPR54 ago-
nists 1, 19, and 25b by treatment with (a) matrix metalloproteinase (MMP)-9 and (b) murine
serum: 1 (•), 19 (◽), 25b ( ), kisspeptin-10 (▴). Kisspeptin-10 was completely digested in
murine serum within 1 h [35].
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Figure 7.10 Peptide bond isosters.

compared to the wild type GPR42 agonist 1 or kissapeptine-10 in the presence of
the metalloproteinase and murine serum [35]. In addition, many other peptide-bond
isosteres have been investigated (e.g., [36–47]) some of which are shown in
Figure 7.10.

7.7 INTRODUCTION OF A N-METHYLATION OF THE AMIDE BOND
OF PEPTIDES CAN IMPROVE THE STABILITY TOWARD BLOOD AND
BRAIN PROTEASE DEGRADATION

N-methylation of native peptides increases stability against proteolytic degradation
and can result in prolonged activity in vivo [48, 49]. Generally N-methylation
improves lipophilicity [48], bioavailability [50, 51], and permeability to membranes.
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Figure 7.11 (a) Structure of 33–824 [51]. (b) Mean analgesic index versus time for morphine
and compound 33-824 [51]. Mean analgesic index (±s.e.) recorded in the paw pressure test in
the rat following s.c. administration of the morphine (7.5 mg kg−1, •) and 33–824 (3.2 mg kg−1,

) twice daily for 4 d. On day 5, 33–824 (3.2 mg kg−1 s.c.) was given to the morphine pretreated
rats and morphine (7.5 mg kg−1 s.c.) to the 33–824 pretreated animals. Twenty rats were in
each group. The reaction thresholds were recorded immediately before and 30 min after each
injection (0815 and 1545 h).

For example, the compound 33–825 (Figure 7.11a and b), a Met-enkephalin
analog, was modified by N-alkylation at the methionine-4 residue, d-amino acid
substitutions at the second residue, along with a C-terminal alcohol to provide an
analog with prolonged activity similar to morphine in vivo [52].

For neurotensin (NT) (7–13), Pro-Arg-Arg-Pro-Tyr-Ile-Leu, the peptide bonds
at Arg8-Arg9, Pro10-Tyr11, and Tyr11-Ile12 are vulnerable to hydrolysis by met-
alloendopeptidase, neutral endopeptidase and angiotensin converting enzyme,
respectively. N-methylation modification at the position 8 has improved stability
with a 20-day-half-life in plasma compared to the native radio labeled NT [53]. An
excellent review regarding N-methylation and C-methylation of peptides has been
published [54].
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TABLE 7.4 Biological Activities of 𝛃-Me-Trp Analogs of MTII in Frog Skin
Bioassays [55].

Compound Frog Skin
Bioassay IC50 (nM)

Prolongeda

Activity
Preferred 𝜒1b

Side Chain
Conformation (NMR)

α-MSH 0.1 — — —
MTIIc 0.1 +++ H-t f-t

R-t W-t
[(2S,3S)β-MeTrp9]MTII 0.44 — H-t f-t

R-t W-g(−)
[(2S,3R)β-MeTrp9]MTII 28.6 + H-t f-t

R-t W-g(+)
[(2R,3S)β-MeTrp9]MTII 0.06 ++ H-t f-g(+)

R-t W-(g+)
[(2R,3R)β-MeTrp9]MTII 0.33 +++ H-g(+) f-t

R-t W-g(+)

aProlong activity: — not prolonged; +++ highly prolonged (irreversible); + modestly pro-
longed (minutes); ++ quite prolonged (hours).
bH=His6; f=DPhe7; R=Arg8; W=Trp9 or β-Me-Trp9 isomer; t=trans (180∘);
g(−)= gauche (−) (−60∘);g(+)= gauche(+) (+60∘) for an l-amino acid.
cMTII=Ac-Nle4-c[Asp5,DPhe7,Lys10]α-MSH(4–10)-NH2.

7.8 USE OF UNNATURAL AMINO ACIDS – USE OF
TOPOGRAPHICALLY CONSTRAINED AMINO ACID

Topography of side chains defined by the 𝜒1 and 𝜒2 angles plays a central role in the
identification of peptides by peptidases for hydrolysis of peptide bonds. The correct
topography of side-chain in chi space is important for peptidase recognition. By
maintaining undesired topography of side-chain group to peptidases, we can improve
resistance to the peptidase action and enhance peptide biological activity in vivo
[55]. For example, Ac-Nle4-c[Asp5,DPhe7,Lys10]α-MSH-(4–10)-NH2(MTII),
which is a potent melanocortin receptor ligand8 was substituted with topographically
constrained 4 diasteromers of β-MeTrp (2S,3S;2S,3R;2R,3R;2R,3S) to position 9 of
MTII (Table 7.4). Biological analysis revealed that the [(2R,3R) β-MeTrp9]MTII has
the highest prolong activity in vivo compared the other MTII analogs [55], which
provided a topographical explanation for highly prolonged activity of certain DPhe7

analogs of α-MSH.
In addition to the constrained β-position-modified amino acids, alpha carbon

dialkyl substitution of amino acid can lead to conformational preference for
particular phi and psi angles in the Ramachandran plot and may be useful for
increasing the stability of peptides to enzymatic degradation. For example, Aib,
Ac-DΦg-NHMe, Ac-Aib-NHMe, Ac-(2S,3S)c3diPhe-NHMe, Ac-(S)c3Dip-NHMe
and many other 𝛼,α-disubstituted amino acids promote specific backbone conforma-
tions (Figure 7.12) [56]. Indeed Aib is long known to promote strong helix induce
properties due to the reduction of the entropic penalty of helix formation on protein
folding [57, 58].
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7.9 USING GLYCOSYLATED AMINO ACIDS TO INCREASE THE
RESISTANCE OF THE PROTEOLYTIC DEGRADATION

Modifying proteolytic enzymes’ specific sites of cleavage by glycosylation of amino
acids near the scissile site can make peptides more stable in vivo. For example,
Dangoor et al. have reduced peptide-bond degradation between the Arg12-Leu13 of
vasoactive intestinal peptide (VIP) by the enzyme trypsin through glycosylation at
the Thr11 residue of VIP [59] (Figure 7.13).

Identification of potential sites for glycosylation should be carefully planned,
as modification at the wrong site can lead to loss of activity of the peptide. From
structure–activity relationship (SAR) studies of mu and delta receptors using
opioid ligands such as dermorphin, deltorphin, and enkephalins, we have known
for many years that N-terminal modification results in loss of the activity toward
those receptors. In addition it is imperative that one retains all the pharmacophoric
residues at the C-terminal (message sequence for the opioid receptor) for optimum
mu and delta opioid activity (e.g., [60]).

Polt and coworkers [61] have extensively studied opioid glycopeptides. Some of
their early work involved the design and synthesis of l-serinyl β-d-glucoside analogs
of [Met5] enkephalins. They found that these glycopeptides can transport across the
BBB to bind to the mu and delta receptors of the mouse brain. Moreover, highly
desired long lasting analgesia was observed in mice using the tail flick assays and hot
plate assays when these glycopeptides were administered intraperitoneally [61].

More recently, Rocchi and coworkers have done similar work using the modified
neuropeptides at the C-terminal residues of dermorphins and deltorphins and found
that these glycopeptides also retained good activity for mu and delta receptors. Fur-
ther, they demonstrated that glycosylation increases half-life to the enzymatic break-
down of dermorphin and deltorphin analogs using mouse brain and liver homogenates
[62] (Table 7.5).
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Figure 7.13 Enzymatic digestion of the native VIP and of the glycosylated VIP analog
[11Gly]VIP by trypsin [59]. At the indicated period, the relative quantity of the intact native
VIP and of undigested the VIP analog [11Gly]VIP in the reaction mixture was determined
by HPLC analysis. Each point represents the percentage (mean ± SD, n= 4) of undigested
peptide.

TABLE 7.5 Half Time for Enzymatic Breakdown of Glycosylated Dermorphin
and Deltorphin Analogs in Mouse Brain and Liver Homogenates [62].

Peptides Brain t1/2 (min) Liver t1/2 (min)

Dermorphin 20± 5 10± 4
[(𝛽Glc)Ser7]Dermorphin 38± 6 30± 5
[𝛽Glc(Ac)4-Ser7]Dermorphin 90± 10 60± 8
[Hyp,6Lys7]Dermorphin 30± 5 20± 4
Deltorphin I 240± 15 110± 20
[(𝛽Glc)Ser7]Deltorphin >240 (70%)a 180± 25
[𝛽Glc(Ac)4-Ser7]Deltorphin >240 (87%)a

>240 (70%)a

aNumbers in parentheses are the residual biological activity after a 240 min incubation.

7.10 CREATION OF PEPTIDES AS MULTIPLE ANTIGEN PEPTIDE
(MAP) DENDRIMERIC FORMS INCREASES THE STABILITY TOWARD
BLOOD AND BRAIN PROTEASE DEGRADATION

It has been reported that multibranched (e.g., two-branched, tetrabranched, etc.)
multiple antigen peptides (MAP) are more stable toward proteolytic degradation
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TABLE 7.6 Proteolytic Stability of Monomeric, Dimeric, and Tetrameric
l-Enk as Detected by HPLC.

Plasma Serum

2 h 5 h 24 h 2 h 5 h 24 h

YGGFL + — — — — —
YGGFL)2 + + + + — —
YGGFL)4K2K + + + + + —

The absence (—) and the presence (+) of peptide substrates after the incubation times [64].

when compared to their monomeric forms. Moreover, this approach can increase
peptide affinity and activity toward their respective receptors (e.g., [63]).

Met-enkephalin (YGGFM) and Leu-enkephalin (YGGFL) are endogenous
neuropeptides for opioid receptor and are rapidly degraded in the presence of human
plasma and serum. However, in its branched form (MAP), (YGGFL)2K is not
degraded after 24 h incubation in plasma or after 2 h incubation in serum, and the
tetrabranched peptide (MAP), (YGGFL)4K2K is not degraded after 24 h incubation
in plasma and 5 h in serum (Table 7.6). In addition, tetrabranched MAP forms of Met
and Leu enkephanin shows 10-fold enhancement of their IC50 values compared with
that of their monomeric counterparts. In the presence of the proteases, monomeric
and tetrameric forms show equal IC50s [64].

7.11 HALOGENATIONS OF AROMATIC RESIDUES IN PEPTIDES CAN
REDUCE THE ENZYMATIC RECOGNITION REQUIRED FOR PEPTIDE
HYDROLYSIS

Halogenations such as chlorination or fluorination of the aromatic side-chain group in
peptides can reduce proteolytic enzyme recognition [65] required for hydrolysis, and
increases brain uptake. Some peptides, for example, the enkephalins, are somewhat
limited in their access to the CNS due to the presence of peptidases in the blood and
at the BBB. Bioavailability is reduced due to the enzymatic hydrolysis [66].

As an example we have focused on biphalin (Figure 7.14a and b), which is a potent
analgesic, 257 and 6 times more potent compared to morphine and etorphine after
intracerebroventricular administration, respectively [67]. Biphalin uptake to the brain
has been observed after interperitoneal (i.p) and subcutaneous (s.c) administration
[67]. To increase biphalin BBB uptake and reduce the enzymatic hydrolysis, Biphalin
has been halogenated at the 4 and 4′ positions of the phenylalanine residues.

Both biphalin and halogenated biphalin analogs were examined for in vitro
brain-stability studies. Half time (t1/2) disappearance of the enkephalin analogs
was calculated by high pressure liquid chromatography (HPLC) analysis. Results
revealed that the metabolic half-lives (t1/2) of the ρ-[Cl-Phe4,4′] biphalin increased
two fold compared that of the biphalin [68].
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Figure 7.14 (a) Biphalin [68]. (b) The percentage of recovery of intact biphalin and
ρ-[Cl-Phe4,4′ ] biphalin over 360 min time course in brain homogenate [68].

7.12 CONCLUDING DISCUSSION

In this chapter, we have briefly discussed several approaches that can be used to
stabilize peptides against proteolytic degradation of peptides, which is a major way
in which bioactive peptides are metabolized into biologically inactive forms. As we
have seen, there are many approaches that have been successfully developed toward
this goal. The method or methods chosen for any individual case will depend to
a considerable extent on key structural elements of the structure of the bioactive
peptide that must be retained for potent biological activity (the pharmacophore).
Once that has been established, preferably in three-dimensional space, the utiliza-
tion of the strategies briefly discussed here can be rapidly implemented, often using
molecular modeling and computational chemistry to evaluate the consequence of
structural modification on the three-dimensional structure of the modified peptide
ligand. From our experience this can be done quite early in SAR studies that are
critical for peptide and peptidomimetic design, and thus design for the stability of
the peptide against proteolytic degradation in circulation and at membrane barriers
can and should be an important aspect of SAR studies from the beginning of pep-
tide and peptidomimetic ligand design. These considerations apply to both smaller
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(3–10 residues) and to larger (10–50 residues) peptides. Some knowledge of both
primary structure and especially secondary structure can be critical in the design con-
siderations. For example, stable α-helical and β-turn structures generally are not well
recognized by proteolytic enzymes and hence one can design stable secondary struc-
tures of this kind that are compatible with biological activity, and this can be sufficient
to greatly enhance peptide stability to proteolysis in vivo. In our experience we have
always been able to design bioactive peptides with very significant enhancement of
stability against proteolytic enzymes, and retained the desired biological potency and
biological activity both in vitro and in vivo. Of course, biodistribution, membrane bar-
rier permeability, and so on require further considerations, which are not discussed
here. Nonetheless, generally enhancing the biostability of peptides is an important
component of enhancing biodistribution properties as well.
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DELIVERY OF PEPTIDE DRUGS

Jeffrey-Tri Nguyen and Yoshiaki Kiso
Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan

8.1 INTRODUCTION

In Chapter 5, we have discussed methods used to predict and enhance the pharmaco-
dynamic properties of a lead drug. That is, the chapter emphasized on improving the
pharmacological activity, that is, potency of peptide drugs. We urge the unfamiliar
readers to read our disclaimers and about peptide nomenclature in Sections 5.1 and
5.1.1 in the aforementioned chapter, before proceeding further. In this chapter, we
will concentrate our discussion on enhancing the pharmacokinetic properties of
peptide drugs with an emphasis on membrane permeability.

8.2 LIPINSKI’S RULE OF FIVE

Without a doubt, the most convenient route of drug administration is the oral route.
To enhance the oral bioavailability of an active lead drug, one must realize that oral
bioavailability involves several factors, such as gastrointestinal transit and absorption,
chemical stability in the gastrointestinal tract, and the first-pass effect of gut wall and
liver metabolism.

In 1997, Christopher A. Lipinski formulated a rule of thumb to evaluate if a drug
has properties that would make it a likely orally active drug in humans [1]. “Lipinski’s
Rule of Five” described the physicochemical features for the pharmacokinetics of

Peptide Chemistry and Drug Design, First Edition. Edited by Ben M. Dunn.
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a drug in the human body, including its absorption, distribution, metabolism, and
excretion (ADME). The rule states that, in general, an orally bioavailable drug should
have no more than one violation of the following criteria.

• A molecular weight under 500 g/mol

• A calculated log P of less than 5

• Low hydrogen bond potential

• Not more than 10 hydrogen bond acceptors

• Not more than five hydrogen bond donors

8.2.1 Molecular Size

When relying solely on passive diffusion to cross membranes, large molecules are
poor candidates for good oral bioavailability. Peptide drugs are generally perceived
as large molecules and would have difficulty crossing membranes. Most researchers
correlate molecular size with molecular weight, and have set out the general rule of
thumb that orally bioavailable drugs should be less than 500 g/mol. This description
has been further refined by others to orally bioavailable drugs with a molecular weight
between 160 to 480 g/mol [2]. As we have described in Chapter 5 we noticed that most
orally bioavailable peptide drugs are comprised of three to five residues that fits into
three to five subsites of the active site.

An aspect of our work on β-secretase inhibitors and Alzheimer’s disease will
be used to illustrate methods of reducing the molecular size of a peptide design.
Amyloid precursor protein (APP) is normally cleaved by α-secretase and γ-secretase
leading to fragments that undergo a cascade of events that lead to neuroprotective pro-
cesses (Figure 8.1). In Alzheimer’s disease patients, APP is cleaved by β-secretase
instead of α-secretase, resulting in amyloid β-peptides being produced. The subse-
quent aggregation of these peptide amyloid β-peptide fragments leads to the pathol-
ogy of the disease. Based on the sequence of the four amino acids preceding and
following the cleavage site of the pathology-proned Swedish-type mutant APP, we
optimized the natural amino acid residues of the octapeptide inhibitor design for
inhibitory activity against β-secretase and derived a potent inhibitor, KMI-008 [3].
We used two methods to reduce the size of the octapeptide inhibitor [4]. In the first
method, we synthesized compounds in which one amino acid was systematically
removed at a time from the N-terminal, then from the C-terminal. As we would
expect, the shorter analogs exhibited lower β-secretase inhibition. A nearly complete
loss of inhibitory activity on the removal of a residue indicated that the position of the
residue was important for active site recognition. In the second method, we synthe-
sized analogs compounds in which only one natural amino acid in the model drug,
KMI-008, was substituted to glycine. Because glycine does not have a side-chain,
any near loss of β-secretase inhibition suggested that the interactions between the
side-chain of the residue and its associated subsite were important at the affected
position. Both methods suggested that a smaller analog of inhibitor KMI-008 was
a pentapeptide. The resulting pentapeptide was optimized at the two end-terminals
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to derive a potent β-secretase inhibitor, KMI-570 [5]. A wonderful discovery of a
potent non-peptide inhibitor of β-secretase by another research group [6] inspired
us to shift our focus on non-peptides. From our inhibitor KMI-570, we derived a
potent non-peptide β-secretase inhibitor, KMI-1023, which was considerably smaller
in size [7].

8.2.2 Lipophilicity

Lipophilicity of a compound plays a significant role in its absorption in the gastroin-
testinal tract and subsequent metabolism in the gut wall and liver [8]. As an overall
measure of lipophilicity, the log P value can be experimentally determined or esti-
mated by calculations, where the partition coefficient, P, is a ratio of concentrations
of an unionized compound between n-octanol and water [9]. As it pertains to passive
diffusion across membranes, only the unionized form of the compound will traverse
the membrane. Lipinski’s calculated log P rule, in which a drug would most likely
be orally bioavailable, was elaborated to a range of −0.4 to +5.6 by other research
groups [2]. This range suggests that lipophilic compounds are expected to exhibit
improved membrane permeability when compared to hydrophilic compounds. One
should note that there are several methods of estimating log P, and Lipinski’s rule
relies on the calculated log P method.

There is a method of estimating lipophilicity that an improvement over log P. As
a characteristic that is needed for oral bioavailability, the most relevant measure of
lipophilicity with regard to oral absorption by passive diffusion is the compound’s
log D value [10]. The distribution coefficient, D, is the ratio of the sum of the con-
centrations of all forms of the compound between n-octanol and water. Thus, while
log P only considers the unionized form of the compounds, log D takes into account
both ionized and unionized forms of the compound. log D values can be estimated
from calculations using the compound’s log P and pKa values [11]. It is noteworthy
that, as with log P values [9], pKa values [12] can also be mathematically predicted.
log D is pH dependent, and the organ where absorption mostly takes place is the
small intestine. Considering that the pH in the small intestine is about 6.5, log D at
pH 6.5 is relevant to passive drug diffusion across the small intestine to the blood
circulatory system. Once the drug enters the bloodstream, it encounters a differ-
ent pH environment of about 7.4. To account for acidic and basic compounds, the
difference between the fractions of the neutral form at pH 6.5 (small intestine pH)
and pH 7.4 (blood pH) is described as Δlog D= log D6.5 − log D7.4 and would thus
account for two different biological environments [13]. Compounds with positive
Δlog D values are acidic, whereas compounds with negative values are basic. Acidic
compounds tend to have better bioavailability characteristics, because in the acidic
pH 6.5 environment of the small intestine, acidic compounds have a higher fraction
in the unionized form that can be absorbed. Moreover, once absorbed, in the more
basic pH 7.4 environment of blood, the acidic compounds have a lower fraction in
the unionized form that can enter the liver where the compounds are degraded. In
other words, acidic compounds have a lower risk than basic compounds of entering
the liver and being degraded. The optimum range for log D6.5 is estimated to be values
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between −0.3 and +0.7, and takes into account both absorption and first-pass effect
[10]. As another benefit for slightly acidic drugs, highly ionized drugs, either acidic
or basic, may also cause patient discomfort due to direct irritation of the gastrointesti-
nal lining. Taken together what we have discussed, slightly acidic drugs are favored
for improved gastrointestinal absorption, less first-pass metabolism, and less mucosal
irritation.

In general, hydrophobic compounds are often favored for pharmacological activity
over hydrophilic compounds due to desolvation entropy [14]. Simply put, a hydropho-
bic compound is more entropically favored to release water molecules before binding
to the often hydrophobic active site of the target biological substance. Hydrophobic
compounds need to spend less energy to part with water because they have fewer
interactions with water. Interestingly, compounds with high hydrogen bond poten-
tials can interact with water and would thus exhibit unfavored desolvation entropy.
Thus, hydrogen bond potential is related to hydrophilicity. Hence, lipophilicity is pre-
ferred in both pharmacodynamics and pharmacokinetics. One of the goals of rational
drug design is to optimize lipid solubility for membrane permeation while retaining a
significant pharmacological activity. However, simply increasing the lipid solubility
of a drug may have undesired effects such as decreasing water solubility and bioavail-
ability, increasing plasma protein binding with a high affinity, and increasing uptake
by the liver and spleen macrophages.

8.2.2.1 Plasma Protein Binding Lipophilic drugs have a higher risk of unwanted
binding with untargeted biological substances, such as plasma proteins. Such inad-
vertent binding delays and prevents the drug from reaching its target site of action.
Hence, the less bound a drug is, the more efficiently it can traverse cell membranes.
Acidic and neutral drugs will primarily bind to albumin, which is basic, or to lipopro-
tein when albumin becomes saturated. Basic drugs bind to α1-glycoprotein, which is
acidic. Only the unbound drug exhibits pharmacologic effects, is metabolized and is
excreted. Generally speaking, protein binding should be minimized to reduce unpre-
dictable pharmacokinetic factors.

The activity of a thrombin inhibitor is lower if it has high plasma protein bind-
ing [15]. Dabigatran is a univalent direct thrombin inhibitor that was derived from a
peptide drug. In the design of dabigatran, a carboxylate function was purposely imple-
mented to increase hydrophilicity, which would decrease plasma protein binding and
increase inhibitory activity (Figure 8.2) [16]. The carboxylate function was attached
such that it would not greatly affect the interactions between the drug and the target
enzyme, thrombin. Dabigatran etexilate is the prodrug form of dabigatran. Indeed, for
certain cases, a fine tuning of a drug design could potentially reduce plasma protein
binding.

In the case of inhibitors of the human immunodeficiency virus (HIV) protease,
hepatic metabolism becomes another factor to consider along with plasma protein
binding. Most HIV protease inhibitors are peptide drugs that are often quite lipophilic
as a consequence of rational drug design to improve pharmacodynamic effects.
Although the lipophilic character is desired for the drug to enter the infected cell
and reach the target HIV protease, lipophilicity increases plasma protein binding.
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All commonly used Food and Drug Administration (FDA)-approved HIV protease
inhibitors are over 85% bound to plasma protein. This high protein binding decrease
drug efficacy, and a larger quantity of the drug would need to be given to compensate.
This increase in pill burden subsequently introduces risks of adverse drug reactions,
compliance, and cost issues. Unlike most protease inhibitors, indinavir only has 60%
plasma protein binding. However, as previously mentioned, unbound drugs are more
susceptible to metabolism, and HIV protease inhibitors are readily metabolized by
the liver. Hence, despite its lower plasma protein binding profile, hepatic metabolism
of indinavir greatly reduces its biological half-life to an impractical 2 h. The fine
balance between plasma protein binding and hepatic metabolism has yet to be
resolved.
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8.2.2.2 Water Solubility It is noteworthy that a drug may be poorly absorbed if
its water solubility is very low, and this effect is often dose dependent. However,
one should recall that a hydrophilic drug also tends to have higher clearance than a
lipophilic drug, which has higher membrane permeability (Section 8.2.2). Ionized or
polar compounds are deemed more likely to be water soluble. Of course, the choice
of salt form for ionized compounds would affect the extent of solubilization. It should
be noted that the water solubility factor has already been taken into account by the
distribution coefficient, because water solubility correlates well with log D6.5, a deter-
minant of lipophilicity (Section 8.2.2). Moreover, one should not forget that from a
very simplistic viewpoint, the word “hydrophilic” suggests that the compound would
“love to be in water.” As we will discuss in Section 8.3.2, permeation enhancers are
often implemented in the formulation of a drug to improve its solubility in extra and
intracellular fluids.

A way of improving water solubility in a peptide drug is to introduce a water
solubilization moiety. Phospholipids are a major component of cell membranes by
forming a lipid bilayer within the membrane. Generally speaking, phospholipids have
an amphipathic character where the “head” of the molecule is a hydrophilic phos-
phate group, while the “tail” is lipophilic. Amprenavir is an HIV protease inhibitor
with over 90% plasma protein binding and requires a standard twice-a-day dose of
1200 mg or eight capsules. Fosamprenavir is a phosphate ester prodrug of amprenavir
(Figure 8.2). Much like a phospholipid, the structure of amprenavir can be considered
as the lipophilic “tail” and the phosphate group as the hydrophilic “head.” As the pro-
drug is incorporated inside the gastrointestinal tract’s epithelium, the phosphate group
prevents the prodrug from fully crossing into the bloodstream, because fosamprenavir
is too hydrophilic, until the body’s alkaline phosphatase slowly metabolizes the pro-
drug to the more lipophilic parent drug, amprenavir. Consequently, fosamprenavir is
a slow-release version of amprenavir that reduces the “pill burden” of the standard
regimen of amprenavir. It is noteworthy that plasma protein binding for fosampre-
navir is still theoretically 90% because conversion to the parent drug, amprenavir, is
needed before reaching the bloodstream.

As discovered by our research group, other available methods of improving
oral bioavailability by increasing water solubility of HIV protease inhibitors
revolve around an oxygen-to-nitrogen acyl migration reaction, with or without a
water-solubility-promoting cleavable spacer [17]. Figure 8.2 illustrates two examples
of the oxygen-to-nitrogen acyl migration strategy for the parent drug KNI-727, a
potent HIV protease inhibitor. The depicted spacer demonstrated an improvement
in water solubility from less than 0.01 mg/mL in the parent drug to 92 mg/mL in
the prodrug with a conversion half-life of 35 min at 37 ∘C in pH 7.4 phosphate
buffered saline. Different spacers would produce different prodrugs with different
water solubility and conversion time values. This means that the water solubility
and conversion time of the prodrug can be controlled by the structural features of
the spacer. In the exemplified cleaner strategy that does not require a spacer, water
solubility was 13 mg/mL with a conversion half-life of less than 1 min. Thus, we
have shown that prodrugs of drugs with little water solubility could exhibit much
improved water solubility profiles and modifiable conversion time.
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8.2.3 Chemical Stability

Inside the body, the drug can have diverse type of metabolic reactions that deactivate
the drug and assist in the removal of the drug from the body. Lipinski’s rule attempts
to associate the drug’s susceptibility to metabolic reactions with its ability to form
hydrogen bonds. Hydrogen bond potential is characterized as hydrogen bond accep-
tors and donors. A hydrogen atom attached to a relatively electronegative atom is a
hydrogen bond donor. An electronegative atom is a hydrogen bond acceptor, regard-
less of whether it is bonded to a hydrogen atom or not. This electronegative atom
is usually fluorine, oxygen, or nitrogen. Drugs with a high hydrogen-bond potential
have a higher risk of undergoing acid–base reactions or reactions that are catalyzed
by enzymes. These reactions often change the chemical structure of the drug, thereby
deactivating the drug and increase the hydrophilicity of the drug thus facilitating
clearance of the drug from the body.

In contrast to Lipinski’s oversimplified rule on hydrogen bond acceptors and
donors, several structural characteristics, that is, chemical functional groups have
been strongly correlated with oral bioavailability. Certain functional groups are more
susceptible to transformations in the gut wall, liver, or conjugated in several ways.
For a functional group, the significance in reducing bioavailability is related to the
metabolic reactivity of the function. Structural functions that can undergo metabolic
reactions have been parameterized into quantitative structure–activity relationship
equations to predict oral bioavailability [13]. One should note that functionally
reactive groups and hydrogen bond potential contribute to hydrophilicity.

Readily oxidized entities, thiols and dihydropyridines, have the most pronounced
effect on oral bioavailability. The reactions are rapid and produce hydrophilic metabo-
lites that are readily cleared from the body. Peptide drugs containing thiol containing
amino acid cysteine are often promptly deactivated. Biotransformations that have
highly significant effects on reducing oral bioavailability include phenolic hydroxy
groups (Ar-OH), sulfonamide groups (SO2NH2) and groups that are susceptible to
hydrolytic cleavage by acid–base or enzymatic conditions. Phenolic hydroxy groups
are prone to various transformations and conjugation. The formation of a glucuronide
metabolite is an example of a sugar-conjugated phenol group. Natural amino acid
tyrosine contains a phenolic hydroxy function. Sulfonamide groups (SO2NH2) can
be N-acetylated by N-acetyltransferase and conjugated. Functional groups that are
known to easily undergo hydrolysis include esters, lactones, β-lactams, and alkyl
carbamates.

Metabolic carbon oxidative processes play a significant role in reducing bioavail-
ability, where para-hydroxylation of an activated aromatic ring has the largest effect,
followed by aryl methyl and allylic groups contributing to a lesser extent. Reduc-
tion of ketones may contribute to the same extent as aromatic para-hydroxylation
on decreasing bioavailability. Alcoholic hydroxy groups (R-OH) can undergo conju-
gation and oxidation, although their effects in reducing oral bioavailability are con-
sidered moderate. As examples, amino acids serine and threonine each possesses an
alcoholic hydroxy group.
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N-dealkylation does not greatly affect bioavailability because the process is usu-
ally rate-limiting. However, certain compounds, such as lidocaine and ketamine, may
undergo rapid dealkylation. Reduction of aromatic nitro groups slightly decreases
oral bioavailability.

The reactivity of aromatic and heterocyclic amines, hydrazines, hydrazones, and
amidines to metabolic acetylation and oxidation seems to be proportional to their pKa
values. In other words, their significance in metabolic deactivation is related to their
pKa values.

Issues with metabolic transformations and conjugations can be addressed by
further improving on the structure of the peptide drug. As an example of dealing
with metabolism, the design of an HIV protease inhibitor from our research group,
KNI-764, was inspired by the symmetrical design of HIV-1 protease inhibitor
lopinavir and the dual activity of nelfinavir against HIV-1 and HIV-2 proteases
(Figure 8.3) [18]. KNI-764 is a highly potent HIV-1 protease inhibitor with
excellent antiviral activity in infected cells, moderate oral bioavailability, low
cytotoxicity, and effectiveness against HIV-2 protease and several HIV-1 resistant
strains. In spite of these promising traits, during early clinical trials, KNI-764
was found to be metabolized by not only the cytochrome P450-3A4 cytochrome
P450 (CYP3A4) mixed-function oxidase system but also processed by uridine
5′-diphospho-glucuronosyltransferase (UDP-glucuronosyltransferase or UGT) 2B7
at the P2 phenol function [19]. Although the family of CYP3A enzymes is primarily
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found in the liver, it is also located in the epithelial lining of the intestine and
contributes significantly to the first-pass metabolism of many drugs. To deal with
CYP3A4, it is common practice to coadminister ritonavir, an HIV protease inhibitor
that acts as a competitive inhibitor for CYP3A4, in order to maintain elevated
plasma levels of the primary HIV protease inhibitor, that is, KNI-764 [20]. However,
conjugation by UGT results in a glucuronide metabolite that is more hydrophilic
and, therefore, more easily excreted than the original inhibitor [19]. Ritonavir
cannot inhibit UGT activity. While conjugation occurs for inhibitor KNI-764, on
the other hand, in the case of nelfinavir, which also possessed a P2 phenol function,
glucuronidation at the P2 residue was not observed. Speculating that the steric
hindrance of the extended P1 aromatic ring system in nelfinavir might be effective
to prevent glucuronidation of the P2 phenol function, a slightly bulkier P1 aromatic
function was substituted for compound KNI-764. To further greatly reduce the
risk of glucuronidation at the P2 position, the P2 phenol moiety was replaced by a
3-amino-2-chlorobenzoate moiety. It was also found that a slight bulk increase by a
P
′
2 2,6-dimethylbenzyl moiety could improve stability against glucuronidation. It is

noteworthy that considering the symmetry of the dimeric HIV protease, the new P
′

2
moiety is very similar to the P2 moiety of lopinavir. On top of glucuronidation by
UGT, human liver microsomes, such as CYP, can oxidize the P2 thiazolidine residue
to a thiazolidine sulfoxide moiety. Replacement of the P2 sulfur atom by a methylene
function to avoid oxidation by microsomes, unfortunately, led to compounds
with considerably lower inhibitory activity against HIV protease, and this change
was not adopted. Nonetheless, the resulting structural modifications afforded orally
bioavailable inhibitor SM-309515 that is more resistant to glucuronidation, oxidation
and overall metabolism than inhibitor KNI-764, especially when coadministered
with ritonavir. Moreover, inhibitor SM-309515 is also more potent than inhibitor
KNI-764 due to superior permeation across cell membranes, because it is more
lipophilic. Hence, several slight structural modifications led to an inhibitor that
displays a desirable pharmacokinetic profile and strong antiviral activity, when
boosted with ritonavir, an inhibitor of HIV protease that also blocks the activity of
drug-degrading CYP34A.

Peptide drugs are more susceptible to degradation by peptidases than other classes
of drugs. In order to avoid recognition and premature degradation of the peptide drug
by peptidases in the body, our research group often exchange the natural amino acids
found in the peptide drug with their isosteres. These isosteres have similar physi-
cal or chemical properties that hopefully impart similar or higher biological activity
to the parent drug. These replacements are intended to lower the risk of unexpected
metabolism by peptidases without lowering the potency of the peptide drug. During
the drug-optimization process of our β-secretase inhibitors, isosteres of the carboxy-
late function were evaluated of which the 1H-tetrazol-5-yl isostere is depicted in
Figure 8.1 [5, 21]. Other illustrated examples from our peptide drugs include the
P1 norstatine inhibitory unit that resembles leucine, as well as P1 isosteres of pheny-
lalanine such as the phenylnorstatine inhibitory unit found in inhibitors KMI-008
and KMI-570, and the allophenylnorstatine unit in inhibitors KMI-1023, KNI-727,
KNI-764, KNI-10166, and KNI-10635 (Figures 8.1–8.4). P

′

1 isosteres of proline,
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such as (R)-5,5-dimethyl-1,3- thiazolidine-4-carboxylate, can also be found in our
designs (Figures 8.2–8.4). In our study on the human T-cell lymphotrophic/leukemia
virus type 1 (HTLV-I), using similar rational drug design strategies that we have pre-
viously described with β-secretase inhibitors (Section 8.2.1), we derived an HTLV-I
protease inhibitor, KNI-10166, which was laden with isoleucine residues (Figure 8.4)
[22]. To replace these isoleucine residues, l-(+)-α-phenylglycine, tert-leucine and
2,2-dimethylpropylamine were exchanged as isosteres to derive a potent HTLV-I pro-
tease inhibitor, KNI-10635 [23]. To sum up, natural amino acid residues in a peptide
drug can be exchanged for their respective isosteres to reduce the risk of premature
digestion by peptidases.

Other than modifying the peptide drug to reduce its risk of enzymatic degrada-
tion, enzyme inhibitors can be added to the formulation. These enzyme inhibitors
can either directly inhibit the peptidases, or indirectly remove ions that are needed
for peptidase hydrolysis. We have already mentioned HIV protease inhibitor, riton-
avir, as an enzyme inhibitor of CYP3A4, and will expand the list to other enzyme
inhibitors in Section 8.3.1.

8.2.4 Routes of Administration

Lipinski’s rule of five essentially describes the three requirements that are needed for
good bioavailability, regardless if the drug is given by mouth or not. The rules can be
generalized in the following statements.

• Lipophilic drugs are more likely to cross membranes.

• Large drugs cannot squeeze themselves across membranes.

• Drugs should reach their target sites of action without being prematurely deac-
tivated by side-reactions.

Keeping these key points in mind, other routes of administration can also be exam-
ined. There are many routes of drug administration. For example, the US FDA recog-
nizes 111 distinct routes of administration. For simplicity, we will refer to the routes
of administration as parenteral, topical, and enteral. The parenteral route involves
piercing the skin or mucous membrane for the drug to reach the bloodstream, mean-
ing injectable drugs. The topical route refers to ear, eye, hair, nail, rectal, skin, and
vaginal products. The enteral route would include all medications that would pass by
the throat including orally inhaled, nebulized, oral, and sublingal medications.

8.3 APPROACHES TO DELIVERING PEPTIDE DRUGS

Solubilization and internalization of drugs into cells is a fairly broad topic. Our dis-
cussion on solubilizing agents is applicable to all routes of administration, namely,
parenteral, topical, and enteral. Even with the parenteral routes where several physi-
cal barriers have been bypassed, the peptide drug may need to be internalized into the
target cells. Improvement in solubilization can be as simple as creating a salt form of
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the peptide drug, or as complicated as using a masking carrier agent to solubilize and
transport the peptide drug across membranes.

Several drugs are currently available on the pharmaceutical market as transder-
mal patches as a noninvasive entry of drugs into the systemic circulation through
the skin. Such drugs include estrogen in hormone replacement therapy, nicotine as a
smoking cessation aid, and antimuscarinic scopolamine for the management of nau-
sea and motion sickness. However, because normal skin is permeable only to small
lipophilic molecules, peptide drugs, being hydrophilic and macromolecular, do not
readily penetrate the skin. To facilitate the permeation of peptide drugs into the skin,
chemical permeation enhancers and enzyme inhibitors, which are meant to prevent
hydrolysis of the peptide drug, are under investigation. Phonophoresis or sonophore-
sis may assist the transport of peptide drugs under the influence of ultrasound. A
promising technique is iontophoresis, in which a constant low level electric current
is used to push a charged peptide drug through the skin. A combination of the above
techniques may one day be able to reliably deliver peptide drugs across the skin to
the systemic blood circulation in human. Until that day comes, we will examine a
series of transendothelial routes that has been proven to be effective and approved by
the FDA: mucosal peptide drug delivery.

In mucosal drug delivery, it can be generalized that the intrinsic membrane perme-
ability for a hydrophilic peptide drug follows the order of intestinal, nasal, bronchial,
tracheal, vaginal, rectal, corneal, buccal, sublingual, and skin, ranked from highest
to lowest permeability where absorptions through the intestinal and nasal surface
are comparable. Enzymatic degradation seems to be less rapid in nasal than rectal
mucosa. The two most favored mucosal surfaces for nonoral peptide drug delivery
are the nasal and bronchial mucosa. The pharmacokinetic profiles of the same drug
delivered through different routes are different and adjustments to therapeutic levels
are definitively needed. As with all route of drug delivery, intersubject variability, that
is, physiological differences from one person to the other will play a key factor and
dosage regimens will need to be tailored to the patient.

8.3.1 Enzyme Inhibitors

There are two major barriers to mucosal administration. The first is an enzymatic
barrier that degrades the peptide drug. To lessen the risk of enzymatic degradation,
enzyme inhibitors are incorporated in the formulation. These broad-spectrum pepti-
dase inhibitors competitively bind to the active sites of proteolytic enzymes to prevent
enzymatic hydrolysis of the peptide drug. Mucosal proteolytic enzymes are com-
posed of exopeptidases, such as mono and diaminopeptidases, and endopeptidases,
such as serine, cysteine, and aspartic peptidases. Examples of common peptidase
inhibitors include amastatin, aprotinin, bestatin, boroleucine, borovaline, leupeptin,
pepstatin, and trypsin inhibitors. As previously mentioned (Section 8.2.3), HIV pro-
tease inhibitor ritonavir is often coadministered with a primary HIV protease inhibitor
to competitively inhibit the degradation of CYP3A4. Antibacterial agents, such as
azelaic acid, fusidic acid, and puromycin, exhibit activity against peptidases. Other
enzyme inhibitors, such as p-chloromercuribenzoate, phenylmethylsulfonyl fluoride,
thiomersal, and chelate metal ions, are essential for proteolytic activity.
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8.3.2 Permeation Enhancers

The second barrier is the physical mucosal and endothelial layers. The bioavailabil-
ity of mucosal delivered peptide drugs can be dramatically improved by solubilizing
the drug with permeation enhancers that improve solubility, enhance membrane flu-
idity, or open tight junctions [24]. Tight junctions are the gaps between the margins
of adjacent endothelial cells with several transmembrane proteins that project into
and seal the gaps. The need for an adjuvant to enhance the penetration of peptide
drugs in order to obtain adequate absorption for practical use is especially true for
larger molecules and those having relatively high water solubility. However, most
absorption enhancers can potentially damage the mucosa, especially when used con-
tinuously or chronically, because the increase in membrane permeability may cause
unpleasant sensations or local irritation [25].

There are many different types of permeation enhancers. Mucolytic agents, such as
amino acid N-acetyl-l-cysteine, reduce the viscosity and tenacity of mucus, the first
layer, to allow surfactant molecules to diffuse more efficiently onto the endothelial
membrane, the second layer, to increase membrane fluidity and mucosal permeability.
Interestingly, dornase alfa is a highly purified recombinant human deoxyribonucle-
ase I that acts as a mucolytic agent by hydrolyzing the DNA present in the sputum
and mucus of cystic fibrosis patients and thereby reducing the viscosity of the lungs
to promote improved clearance of secretions. This mucolytic peptide drug is admin-
istered to the lungs of cystic fibrosis patients through a nebulizer. Bile salts are fat
emulsifying agents that cause lysis of membranes. Certain bile salts, such as sodium
glycocholate, also act as enzyme inhibitors. Fatty acids, such as palmitic acid and
oleic acid, as well as lipids are used to moisturize and soften the cell layers, thereby
increasing membrane fluidity. Signal transduction substances, such as enzyme pro-
tein kinase C, regulates the tight junctions, as junction modulating peptides to permit
the entry of the drug into the bloodstream.

The use of a mixed solvent system, that is, cosolvent, could facilitate drug sol-
ubilization but has not shown any clear advantage when one considers the higher
risk of mucosal irritability [26]. Evaluated solvents include gelatin, glycerol, ethanol,
propylene glycol, and polyethylene glycol (PEG).

8.3.2.1 Peptide Drug Transporters The general concept of conjugated dissolution
agents has been previously glanced upon, when we discussed methods of improving
the solubility of a drug by deriving a more water soluble salt or prodrug (Section
8.2.2.2). In developing a salt form, one should ascertain that the salt form of the
peptide drug would not cause intolerable mucosal irritation. In the unfortunate event
that mucosal irritation does occur, protecting the ionizable functional group with a
readily cleavable protective group could circumvent the problem.

Inert polysaccharides can be intentionally conjugated to the drug to form a more
hydrophilic and solubilizable prodrug. It should be noted that if the drug is still conju-
gated when it is in the bloodstream, it is more readily cleared from the body. Ideally,
the prodrug should convert to the parent drug once it reaches the bloodstream. This
glucuronidation issue has been touched on when we discussed the metabolism of
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HIV protease inhibitor KNI-764 (Section 8.2.3). Polysaccharides have a fair number
of hydroxy groups that can conjugate to carboxylate drugs by esterification. More
often, oxidation of a hydroxy group is performed to obtain a reactive aldehyde, which
then can be more readily conjugated to the parent drug. Polysaccharides such as algi-
nate, cellulose, chitosan, pectin, cyclodextrin, dextrans, and inulin are biodegradable
carriers that can release the parent drug [27]. In particular to peptides, chitosan dis-
played an improved paracellular route of absorption, that is, transport between cells,
of peptide drugs [28]. Moreover, analogs of chitosan can be derived and evaluated.
Interestingly, cyclodextrins form dynamic molecular inclusion complexes, in which
the lipophilic part of the peptide drug can be incorporated into the lipophilic cavity of
cyclodextrin. In simpler words, cyclodextrin hides the drug inside of its funnel-like
structure.

While polysaccharides are conjugated to improve hydrophilicity, liposaccharides
can be used to increase the lipophilicity of peptide drugs and thereby improve their
membrane permeability. Lipidic α-amino acids possessing a long alkyl side-chain
have been used to provide protection for peptide drugs from enzymatic attack
and improve oral absorption [29]. To balance out the high lipophilicity, lipoamino
acids can be conjugated to mono and polysaccharides, resulting in amphipathic
liposaccharides. Other than being conjugated to the parent drug, liposaccharides
can form particulate structures and used as colloidal carriers for oral administered
drugs. From a similar viewpoint as lipopolysaccharides, conjugating a fatty acid to
a peptide drug could enhance the bioavailability and membrane permeability of the
drug [30]. A common way of linking the fatty acyl group to the peptide drug is to
use 2-amino-2-hydroxymethyl-1,3-propanediol (Tris) [31] while other methods such
as chemoselective ligation [32] have been investigated.

Liposomes are phospholipids vesicles that act as drug carriers. Liposomes usually
contain an aqueous core that stores the hydrophilic drug. Lipid spheres that do not
contain aqueous materials are called micelles. Liposomes are biodegradable and offer
possibilities for structural modifications to induce specific cell targeting. Targeting is
achieved by placing a marker on the surface of the liposome and the peptide drug
is hidden within the phospholipid vesicle. Interestingly, some studies have identified
certain peptides as markers.

As an alternative to liposomes, a peptide drug can be encapsulated within a syn-
thetic or semisynthetic polymeric sphere. These PEG conjugated systems are named
according to the molecular size of the end product, such as microspheres or nanopar-
ticles. As with liposomes, marker molecules can also be used.

Instead of dissolving peptide drugs in PEG, peptide drugs can be directly conju-
gated to PEG. Conjugation of a drug to PEG often increases the circulation half-life of
the drug to over 50-fold. As for larger complexes, systemically injected colloidal par-
ticles, such as liposomes and nanoparticles are usually rapidly cleared by the liver and
spleen macrophages. However, the half-life of the particle in the circulation can be
substantially lengthened when PEG is introduced in the colloidal formulation. Con-
sidering that nanoparticles are condensed complexes of PEG, the addition of flexible
PEG chains would reduce clearance of the drug complex. Penetration can be further
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enhanced by coating the colloidal particles with a surfactant. However, one should be
careful about the potential toxic effect that surface active agents may exert.

As an interesting use of peptides as a drug carrier, our research group has been
investigating poly-l-arginine as an oligoarginine-based cargo-transporter system
to carry a drug across membranes [33]. HIV-1 transactivator of transcription
(Tat) protein derived Tat(48–60), penetratin, and other arginine-rich peptides
have cell-penetrating capabilities [34, 35]. Cell-penetrating peptides consist of an
amphipathic α-helix and contain alternating and discrete hydrophobic domains
and, most peculiarly, positively charged domains [36]. The structure is created by
repeating sequences of a charged amino acid such as arginine or lysine followed
by a series of hydrophobic residues. High cell membrane permeability of these
cell-penetrating peptides is mostly attributed to clusters of consecutive basic amino
acids, especially the oligoarginine residues with their highly cationic guanidine
clusters that can interact with the negative charges on the surface of cells, and
thereby promoting membrane permeation [35, 37]. A sequence of seven consecutive
residues of arginine seems to exhibit higher cell penetration. Although the precise
internalization mechanism of cell-penetrating peptides has not been clarified, a
mechanism by macropinocytosis has been proposed where the peptides are able to
“worm” their way directly through the cell membrane [38]. Hence, peptide drugs
that are conjugated to a self-cleavable oligoarginine carrier can be transported across
membranes, and once crossed, the parent drug is released. However, guanidine
function may potentially cause mucosal irritation leading to drug intolerability. It
has yet to be demonstrated that drugs conjugated to oligoarginines does not cause
significant mucosal irritation due to the cationic clusters.

Once drugs are internalized into cells, the overall drug absorption can be
diminished by efflux transporters such as large glycosylated membrane proteins,
P-glycoproteins (P-gps), located primarily in the apical membrane of epithelial cells
of the small intestine and in various other tissues throughout the body. These efflux
transporter systems actively pump drugs and other compounds from cells back out.
The P-gp efflux transporter system does not seem to select drugs by size, although
most basic or uncharged drugs are more effectively transported. Once again, acidic
drugs are favored for bioavailability (Section 8.2.2). P-gp efflux inhibitors include
the drugs cyclosporin A, pluronic acid, quinidine, rifampin, and verapamil, and
metabolic inhibitors ouabain and 2,4-dinitrophenol. Rifampin is the more popular
drug used to modulate efflux by P-gps. Of special interest, pluronic acid is commonly
used in a formulation of pluronic lecithin organogel to improve the skin penetration
of nonsteroidal anti-inflammatory agents, ibuprofen, and diclofenac acid.

8.3.3 Delivery of Peptide Drugs across the Blood–Brain Barrier

The targeting of peptide drugs to the central nervous system (CNS) is a formidable
obstacle. The delivery of peptide-based drugs to the brain is limited not only by the
general bioavailability issues, which we have thus far discussed, but also by the pres-
ence of the blood–brain barrier (BBB). BBB is located at the level of the endothelial
layer of the brain microvascular capillaries [39]. Structurally, the BBB has higher
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transendothelial electrical resistance in its blood vessels than peripheral vessels, has
reduced vesicular transport, and is well encased. As with the other membranes, an
enzymatic barrier is present in the BBB, along with higher number of certain types
of enzymes in brain microvessels than peripheral vessels.

Substances move in and out of the brain through influx (blood-to-brain) or efflux
(brain-to-blood) systems. Substances move from blood to brain either by paracellu-
lar or transcellular transport. In the paracellular pathway, substances leak between
endothelial cells by paracellular diffusion. As an example of cell migration, white
blood cells may cross the BBB adjacent to, or by modifying, the tight junctions. Very
small amounts of water-soluble compounds may also traverse, on a partial or full
opening of the aqueous diffusional paracellular pathway when the tight junctions are
modulated. In certain neurodegenerative disorders such as stroke, HIV encephalitis,
Alzheimer’s disease, multiple sclerosis, and bacterial meningitis, the tight junctions
are disrupted leading to additional symptoms and accelerated disease progression
[40]. Moreover, opportunistic bacterial and viral pathogens, such as Streptococcus
pneumoniae and HIV type 1, may take advantage of the inflamed BBB to enter the
brain [41]. Hypoxia and the generation of reactive oxygen species, that is, oxygen
radicals could open the tight junctions, resulting in an excessive penetration of white
blood cells that release proteases, such as metalloproteases, to induce cytotoxic and
vasogenic edema [42]. Nevertheless, the entry of substances by unregulated pathways
or by leakage is limited, when it concerns the BBB of healthy individuals.

The transcellular pathway entails that substances enter the endothelial cells on the
blood side and exit the cells on the brain side. Certain lipid soluble substances may
pass through by transcellular passive diffusion. Saturable transport of essential polar
solutes such as amines, amino acids, glucose, monocarboxylates, nucleosides, and
small peptides cross by the solute carrier-mediated pathway, which may be passive
or secondarily active, and unidirectional, bidirectional, or cotransport/exchanger.
Viruses and essential proteins such as cytokines, insulin, leptin, and transferrin
are transported through specific receptor-mediated transcytosis. Positively charged
macromolecules such as avidin, cationized albumin, and histone may nonspecifically
induce adsorptive-mediated transcytosis by electrostatic interactions with the
negatively charged plasma membrane surface. This adsorptive-mediated transcytosis
entry may be a reasonable explanation for the properties of cationic cell-penetrating
peptides that we have previously mentioned (Section 8.3.2.1).

Active efflux carriers, also known as adenosine triphosphate (ATP) binding cas-
sette (ABC) transporters, may pump out a wide range of passively penetrating sub-
stances from the endothelial cells to blood or brain. Amphiphilic, basic, and lipid
soluble drugs seem to have a higher risk of efflux. We have briefly touched on the
P-gp carrier-mediated efflux system that pumps from the endothelial cells into blood
(Section 8.3.2.1). Most HIV protease inhibitors fall victim to the P-gp efflux trans-
porter, possibly due to their high lipophilicity [43]. Other transporters include mul-
tidrug resistance-associated proteins (MRPs) that are known to efflux glucuronide,
glutathione, and sulfate drugs along with HIV protease inhibitors saquinavir, riton-
avir, and lopinavir. The breast cancer resistance protein (BCRP) is also an efflux
transporter.

Universal Free E-Book Store



288 DELIVERY OF PEPTIDE DRUGS

8.3.3.1 Strategies for Peptide Drug Transport into the Brain One strategy of
keeping high therapeutic levels of a neuropeptide drug in the brain is to prevent
the metabolism of the drug in the periphery. Levodopa is a precursor of dopamine
and is used in the management of Parkinson’s disease. Levodopa is an endogeneous
substance that crosses the BBB through the large neutral amino acid transporter,
also known as the L-system [44]. A common strategy to increase brain levels of
levodopa is to inhibit peripheral enzymes that either degrade levodopa or convert
levodopa to dopamine in the periphery. Preventing the peripheral conversion and
degradation would leave more levodopa for cerebral conversion. The L-system
is selective to amino-acid-like compounds with a bulky hydrophobic side-chain
[45]. Several amino acid drugs or drugs that are structurally similar to amino acids
that are transported by the L-system include α-methyldopa, another derivative
from dopamine biosynthesis; analogs of γ-aminobutyric acid (GABA) biosynthesis
such as baclofen and gabapentin; as well as anticancer agents such as melphalan
and d,l-2-amino-7-bis[(2-chloroethyl)amino]-1,2,3,4-tetrahydro-2-naphthoic acid
(d,l-NAM). Various amino acid drugs such as acivicin, phosphonoformate-tyrosine
conjugates, and nitrosoarginine derivatives are also carried by the L-system.

Conjugation of polysaccharides was briefly discussed in Section 8.3.2.1. As it per-
tains to the brain, glycosylation of peptide drugs has been shown to enhance BBB
permeability [46]. Indeed, glycosylation seems to be useful in enhancing biodistribu-
tion to the brain, through increased stability, reduced clearance, and improved BBB
transport. This enhanced transport is believed to be due to adsorptive endocytosis
[47]. However, due to the restrictive nature of the BBB, the extent of glycosylation is
usually restricted from one to three glucose moieties.

The lipophilicity of drugs correlates strongly with CNS permeability [48]. Struc-
turally modifying a peptide drug to be more lipophilic would increase its passive
diffusion across the BBB [49]. Halogenation of peptide drugs can enhance lipophilic-
ity and the subsequent BBB permeability [50]. However, rendering a peptide more
lipophilic would mean that the resulting analog tends to be more extensively plasma
protein bound and may have an increase affinity for efflux transporters at the BBB.
There is also a risk that the more lipophilic analog or prodrug may have a higher
uptake into other tissues, that is, low target selectivity. The characteristics needed to
improve peptide drug bioavailability that we have previously described in Section 8.2
are definitively relevant to BBB permeability. Additional physicochemical properties
that are disfavored for BBB penetration include significantly high polarity, a polar
surface in excess of 80 Å2, a high Lewis bond strength, a high potential for hydrogen
bond formation, numerous rotatable bonds, and highly branched compounds [51].
As another thermodynamic benefit of compounds with fewer rotatable bonds, there
is less flexibility in the drug [14]. Because the drug was designed to make the free
conformation of the inhibitor similar to its bound conformation, there is a minimal
loss of conformation entropy.

Numerous successful applications of liposome formulations to transport peptide
drugs across the BBB have been reported [52]. As liposomes are highly lipophilic,
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they are favored for traversing the BBB. Although the exact mechanism for lipo-
somes to cross the BBB is yet to be determined, a reasonable assumption is tran-
scellular passive diffusion. Often, a combination of techniques is employed such
as surfactant-coated PEGylated immunoliposomes. Similar to liposomes, polymeric
nanoparticles have been investigated as a multicomponent BBB delivery system with
some success [53]. Of interest, cell-penetrating Tat-peptide may also be attached to
the surface of either liposomes or nanoparticles [54]. This attachment appears to
greatly facilitate the internalization by cells, despite the relatively complex and large
structures of the colloidal particles. With the use of cell-penetrating peptides, the per-
meation of the lipophilic particles may be attributed to both adsorptive-mediated and
passive diffusinal transcytosis.

Nanogels are made from a network of cross-linked hydrophilic nonionic PEG
chains and cationic polyethyleneimine chains [55]. Hence, this emulsion system
exhibits combined properties of a hydrophilic nonionic network and a swollen
polyelectrolyte network. Further refinement of this system could lead to a delivery
of drugs and biomacromolecules to the brain.

Another strategy of maintaining high peptide drug levels in the brain is to synthe-
size novel analogs of BBB-permeable neuropeptides. Met-enkephalin is an endoge-
nous opioid analgesic (Tyr-Gly-Gly-Phe-Met) that is prone to enzyme degradation
in both brain and plasma [56]. A derivative was reported as being more enzymati-
cally stable, more bioavailable, and more BBB permeable [57]. PEGylation of the
derivative led to an overall higher brain uptake over time due to reduction of plasma
clearance, reduction of hepatic metabolism, and reduction of P-gp binding leading
to decrease in brain efflux [58]. PEG may induce inhibition of P-gp. Indeed, this
improved overall bioavailability outweighs the decrease in blood-to-brain transport
due to structural modifications.

An alternative BBB transporter system entails the conjugation of a peptide drug
with a marker that has high affinity for characteristics or receptors in the brain.
We have briefly mentioned the use of markers with liposomes and nanoparticles in
Section 8.3.2.1. Transferrin receptor is involved in the transport of iron into the brain
and is constituently expressed at the BBB at higher levels than other capillary beds.
A murine monoclonal antibody to rat transferrin was conjugated with peptides, and
it was demonstrated that the conjugation increased brain uptake of the peptides [59].
A main concern with this strategy is that the antibody is not inert and has effects
on iron-transferrin delivery across the BBB [60]. Of course, there is always the
possibility of taking advantage of surface active agents, liposome, PEG, and marker
in a single formulation of surfactant-coated PEGylated immunoliposomes. The use
of a viral vector (virosome) with inherent capability of penetrating endothelial cells
of brain capillaries has been demonstrated [61]. Cell-penetrating peptide Tat has
been shown to carry heterologous proteins across the BBB [62]. Another approach is
to use cell-mediated delivery [63]. White blood cells are recruited during an inflam-
matory response to a pathogen. HIV protease inhibitor indinavir nanosuspensions
were internalized into bone marrow-derived macrophage lysosomes and the drug
was subsequently carried by white blood cells and released in tissue. Although still
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preliminary, this strategy has a potential application for peptide drug delivery to the
brain.

Rather than modifying peptide drugs to allow them to penetrate the BBB, an alter-
native strategy would be to modify the permeability of the BBB. Modulating efflux
transporters, such as P-gp, MRPs, and BCRP, and their signaling mechanism is one
method by which drug delivery into the brain could be improved [64]. For example,
inhibition of P-gp has been investigated [65] and some P-gp inhibitors were brought
up in Section 8.3.2.1. Inhibitors of MRPs include uricosuric drugs such as benzbro-
marone, probenecid, and sulfinpyrazone. Alternatively, osmotic opening of the BBB
can be performed by a hypertonic solution aimed to initiate cell shrinkage and thereby
opening the tight junctions [53]. Other methods include biochemical opening of the
BBB, and ultrasound and electromagnetic radiation as modulators of the BBB. One
should, however, note that modifying the permeability of the BBB also carries the
inherent risk that physical damage to the BBB may incur, and that malicious agents
and toxins may cross into the brain, such as opportunistic bacteria and viruses.

Of course, one obvious method for circumventing the BBB is invasive peptide
drug delivery using neurosurgery-based infusion of drugs using catheters, pumps, and
reservoirs [66]. The drug is directly injected into the brain parenchyma or cerebral
spinal fluid (CSF). Needless to say, this method would most likely damage brain
tissues and raises the risk for infections.

Intranasal delivery of peptide drugs has been proposed as a potential strategy. The
olfactory epithelium is located in the upper posterior part of the human nasal cavity
with its nerve cells directly projected into the olfactory bulb of the brain. These nerve
cells provide a direct connection between the external environment and the brain
without the hindrance from the BBB. Thus, if a peptide drug could be transferred
along the olfactory nerve cells, it can bypass the BBB and directly enter the brain.
Although studies have suggested that this feat is achievable [67], actual delivery of
peptide drugs or any drug by this mean has yet to be fully demonstrated. Three neu-
ropeptides, melanocortin (4–10), vasopressin, and insulin, have been administered
intranasally to 36 healthy volunteers, resulting in the accumulation of each peptide
in the CSF within 30 min [68]. Other than vasopressin, there was no increase in
peripheral blood concentrations of the peptides over the observed 30-min period. The
delivery of peptide-derived antibiotic cephalexin, and permeability enhancer enzyme
hyaluronidase have also been achieved by intranasal application [69]. However, it is
likely that transnasal delivery would not be able to deliver the peptides deep into the
brain parenchyma, because peptides that are delivered to the CSF would be cleared
out into the peripheral blood before there is time for the peptides to be carried to brain
tissues.

8.4 PARENTERAL PEPTIDE DRUGS

Many peptide and protein drugs cannot be delivered using the topical or enteral routes
of administration. Most peptide and protein drugs are restricted to the parenteral route
because they are susceptible to enzymatic degradation during absorption or cannot be
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efficiently absorbed into the systemic circulation, due to their large molecular sizes
and charge issues. These charge issues encompass cases in which these drugs are
either readily ionized, too polar or hydrophilic to cross membranes to reach the cir-
culatory system. Immunization exemplifies the delivery of protein drugs that must
be administered by injection. Although the parenteral route is the most direct route
into the main circulatory system and the onset of action is rapid, it is also the most
dangerous because it bypasses most of the body’s natural barriers and defenses, and
exposes the user to health problems such as hepatitis, abscesses, infections, and insol-
uble particles. As a painful and inconvenient route that requires extreme care during
injection, the parenteral route is laden with compliance and adherence problems.

Some problems associated with the needle-and-syringe form of injection have
been partially relieved by jet injectors. These gas- or air-powered medical injector
devices use a high pressure narrow jet of the injection liquid instead of a hypodermic
needle to penetrate the upper layers of the skin. Because the pressure is provided by
either a portable air cartridge or a gas tank, the lack of compactness in the device
and potential risk of explosion make jet injectors unlikely to be used for patient
self-administration. Moreover, patients may still feel pain in the form of burning and
stinging sensations because of the drug formulation. These devices are mainly used
in vaccination.

Most FDA-approved injectable peptide drugs often share a common character-
istic: the peptide is too large to be efficiently absorbed. Large peptide drugs also
tend to have a fair number of functional groups that can be metabolically processed,
resulting in deactivation or increase clearance of the drugs. Exenatide is an analog
of glucagon-like peptide-1, a gastrointestinal hormone incretin that enhances insulin
secretion [70]. The 39-residue peptide drug (4187 g/mol) is approved for the treat-
ment of diabetes mellitus type 2 as a twice-daily subcutaneous injection. Another
example of an injectable peptide drug is 𝛼1-antitrypsin (44,325 g/mol), a human
plasma-derived glycoprotein, which is injected once-a-week to manage emphysema
[71]. Plasminogen activators (30,000–60,000 g/mol) are serine proteases with blood
anticoagulating effects [72]. The class of plasminogen activators includes alteplase,
monteplase, reteplase, tenecteplase, urokinase, streptokinase, and anistreplase.
Because plasminogen activators are injected, their rapid onset of action fits their
role in emergency medicine to treat such acute cases as pulmonary embolism,
myocardial infarction, and stroke. Similarly, activated drotrecogin alfa (55,000
g/mol), a recombinant of activated serine protease protein C, is injected in intensive
care medicine to treat sepsis by exerting anticoagulating effects [73]. Desirudin and
lepirudin (∼7000 g/mol) are recombinant hirudins, which is a 65-residue protein
[74]. The recombinants are bivalent direct thrombin inhibitors injected as blood
anticoagulants in cases where heparin is contraindicated. In common with desirudin
and lepirudin, bivaluridin is a synthetic 20-residue peptide analog (2180 g/mol) of
hirudin that must be injected [75].

Large peptides used as antibiotic and antiviral agents must also be administered
by the parenteral route. Enfuvitide is the only FDA-approved HIV entry or fusion
inhibitor in 2003, which disrupts the fusion of virus and the target cell to keep the
virus out of the cell [76]. The peptide drug is used as a reserve for “salvage” therapy
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in patients with multidrug resistant HIV. Being a 36-residue peptide (4492 g/mol),
enfurvitide must be injected to be effective. Actinomycin D is an antibiotic that is not
exploited for its antibiotic properties due to its high toxicity toward genetic material
[77]. Consequently, it is commonly used to treat a variety of cancers. As a large
bicyclic polypeptide, actinomycin D (1256 g/mol) is administered intravenously.
Bleomycin (1416 g/mol) is a glycopeptides antiobiotic that, similar to actinomycin
D, is exploited for its toxic effects against DNA, and is thus not used as an antibiotic
but as an injectable anticancer agent [78]. Large size antibiotics that are approved
by the FDA and used for their antibiotic effects include glycopeptide vancomycin
(1449 g/mol), lipopeptide daptomycin (1620 g/mol) and lipoglycopeptide telavancin
(1756 g/mol) [79, 80]. Of interest, although vancomycin is a large hydrophilic
molecule that poorly crosses the gastrointestinal mucosa, it is given orally for the
treatment of pseudomembranous colitis caused by Clostridium difficile to reach the
site of infection in the colon [79]. In this case, the low oral bioavailability, namely,
the lack of intestinal absorption and lack of systemic effect of oral vancomycin, is
actually beneficial in the therapy against the Gram-positive bacteria in the colon.
From the same line of thought, inhaled vancomycin, administered through nebulizer,
has been used off-label to target infections in the upper and lower respiratory tract.

As discussed in Section 8.2.2, although acidic drugs are favored for intestinal
absorption and against first-pass metabolism, when the drug is too ionized or polar,
gastrointestinal absorption of the drug is most likely low. Argatroban (509 g/mol) is
a moderately small univalent direct thrombin inhibitor consisting of three residues
(Figure 8.5) [81]. The peptide drug is indicated as a blood anticoagulant when hep-
arin cannot be used. Despite its size, argatroban must be administered intravenously
because of charge issues. As previously explained (Section 8.2.2), ionized basic
drugs have very low oral bioavailability. Indeed, the highly basic side-chain of the
key anchoring arginine residue in argatroban greatly interferes with gastrointestinal
absorption and contributes to drug intolerability, in spite of the presence of the
carboxylate function as a counter-ion [82]. Interestingly, dabigatran (472 g/mol) is
also a small univalent direct thrombin inhibitor with a carboxylate function and a
highly basic benzamidine isostere of the guanidine side-chain of arginine, and would
presumably have similar gastrointestinal absorption issues as argatroban (Figure 8.2)
[16]. However, dabigatran is administered as an etexilate prodrug where the acidic
function is ethyl esterified and the basic function is protected by a hexyloxycar-
bonyl moiety. Consequently, prodrug dabigatran etexilate is an orally bioavailable
prodrug that is metabolized in the circulatory system to the active anticoagulant
univalent direct thrombin inhibitor, dabigatran. Although dabigatran is non-peptide,
it was derived from peptide studies. Similar to dabigatran etexilate, peptide drug
melagatran (429 g/mol) is a univalent direct thrombin peptide that becomes orally
bioavailable after its benzamidine and carboxylate functions are protected, resulting
in prodrug ximelagatran (Figure 8.5) [83]. Unfortunately, ximelagatran has been
removed from the pharmaceutical market due to hepatotoxicity in a subpopulation
of patients. The concept of using ethyl ester as protective groups of carboxylate
functions is also applicable for the antihypertensive agents, angiotensin converting
enzyme (ACE) inhibitors. As a dicarboxylate ACE inhibitor, enalaprilat must be
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Figure 8.5 Univalent direct thrombin inhibitors, angiotensin converting enzyme inhibitors,
penicillin antibiotics, and blood coagulating agents used to discuss injectable drugs. The pro-
tective groups are drawn in gray.

administered intravenously to be therapeutically effective, whereas its ethyl ester
prodrug, enalapril (376 g/mol), is orally bioavailable. It is noteworthy that only one
of the two carboxylate functions is protected, so that the prodrug is slightly acidic
and therefore exhibits improved intestinal absorption. Several FDA-approved ACE
inhibitors (368–499 g/mol), namely, benazepril, moexipril, perindopril, quinapril,
ramipril, and trandolapril, are marketed as single ethyl ester prodrugs. Similar to
dicarboxylate ACE inhibitors, phosphonate-containing fosinoprilat also exhibits
low oral bioavailability unless a hydrophobic side-chain was added to modulate
its ionization characteristics. Fosinopril, its oral prodrug (564 g/mol), is converted
in vivo to the active form, fosinoprilat. Of interest, lisinopril (405 g/mol) is an ACE
inhibitor with two carboxylate functions and one lysine residue that does not require
protective groups to improve its oral bioavailability. Similar to the aforementioned
argatroban, the lysine moiety in lisinopril acts as an internal counter-ion to one of
the carboxylate function. Unlike argatroban, lysine residue of lisinopril is less basic
than arginine residue of argatroban, and consequently, would not greatly interfere
with gastrointestinal absorption or discomfort. The classical ACE inhibitor, captopril
(217 g/mol), only has one carboxylate function. All in all, ionization problems may
be resolved with protective groups.
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From three amino acids, l-α-aminoadipic acid, cysteine, and valine, the antibiotic
penicillin G (334 g/mol) can be biosynthesized [84]. Penicillin G, also known as
benzylpenicillin, is typically given by a parenteral route of administration because it is
decayed by hydrochloric acid in the stomach (Figure 8.5) [85]. A slight modification
of the benzyl moiety in penicillin G by a phenoxymethyl moiety afforded a less potent
yet orally active and orally bioavailable penicillin V (350 g/mol), also referred to as
phenoxymethylpenicillin. Thus, stability issues in acid labile drugs are sometimes
manageable.

When a drug is only available in an injectable form does not necessarily mean that
it is not orally bioavailable. Aminocaproic acid and tranexamic acid are blood coag-
ulating agents by inhibiting fibrinolysis in the treatment of excessive bleeding [86].
Both lysine-derived amino acid drugs were initially available in oral and injectable
dosage forms. However, due to economic and patient compliance reasons, the respec-
tive drug’s manufacturer decided to only one market one dosage form, namely oral
form for aminocaproic acid and injectable form for tranexamic acid. The small size
(131 and 157 g/mol) and counter-ion characteristics of the drugs would favor their
oral bioavailability.

8.5 TOPICAL PEPTIDE DRUGS FOR LOCAL EFFECTS

A peptide drug that is meant to act at the site of application has much fewer fac-
tors that can reduce its potency and residence time at the target site. Considering
that localized effects are desired, topical application of peptide drugs to the skin
or eye often only have pharmaceutical issues to address patient’s comfort such as
local discoloration, irritation, odor, oiliness, and pain. While ophthalmic products
are administered directly at the target site, skin products often contain fatty acids,
white petroleum jelly or an alcohol to assist in the permeation of the peptide drug
across the epidermal layer of the skin.

Many cyclic polypeptide antibiotics such as gramicidin S (gramicidin Soviet), bac-
itracin, and polymyxin B can be found in topical antibiotics preparations [87]. These
large peptides of 1141–1423 g/mol act by disrupting the cellular membranes of bac-
teria. Being fairly large, their oral bioavailability would most likely be quite low.

Of course, there are products that are more therapeutically effective in the topi-
cal formulation. For example, collagenase from Clostridium histolyticum bacteria is
approved by the FDA as a sterile enzymatic debridment ointment to remove colla-
gen from dead tissue and aerate the healing wound. Eflornithine (182 g/mol) is an
ornithine decarboxylase inhibitor that was originally developed to treat trypanosomi-
asis, commonly known as sleeping sickness [88]. However, it was discovered that the
amino acid drug is effective in retarding hair-growth, and the drug was subsequently
marketed as a dermatological cream to reduce unwanted facial hair in women.

8.5.1 Cosmeceutical Peptides

In 1984, Albert Kligman invented the term “cosmeceutical” to describe products
that have the characteristics of “cosmetics” for cleansing, beautifying, promoting
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attractiveness, or altering the appearance, and “pharmaceutics” for mitigating or
preventing diseases [89]. In general, cosmeceuticals are topical creams and lotions
designed to fight the effects of aging skin and rejuvenate its appearance. In the United
States, cosmetics are not regulated by the FDA, and cosmeceutical manufacturers
have no incentive to make drug claims that would result in scrutiny by the FDA.
Although cosmeceuticals are not officially listed as “drugs” due to marketing
reasons, they exhibit drug effects. Cosmeceutical peptides are classified as signal
peptides, neurotransmitter-affecting peptides and carrier peptides.

Signal peptides increase dermal remodeling by directly stimulating human dermal
skin fibroblast production of collagen, inhibiting collagenase, and increasing ground
substance production. Most cosmeceutical signal peptides such as biopeptide-CL
(Gly-His-Lys), biopeptide-EL (Val-Gly-Val-Val-Ala-Pro-Gly), palmitoyl oligopep-
tide (Val-Gly-Val-Ala-Pro-Gly), palmitoyl pentapeptide-3 (Lys-Thr-Thr-Lys-Ser),
and palmitoyl tripeptides-3/5 (Lys-Val-Lys) are linked with palmitic acid, a fatty
acid, to enhance delivery through the epidermal layer of the skin to reach the target
dermal layer [90]. Signal peptide lipospondin (Lys-Phe-Lys) is linked with elaidic
acid, the trans isomer of oleic acid, a fatty acid [91]. In general, signal peptides are
moderately small in size of less than eight residues, and are often coupled with a
fatty acid to facilitate permeation through the skin’s epidermis.

Neurotransmitter-affecting peptides decrease muscle contraction by inhibiting
acetylcholine release at the muscular function. These peptides are mimics of the
botulinum neurotoxins. Only botulinum neurotoxin type A is approved by the FDA
for subcutaneous, intradermal, and intramuscular injection for facial wrinkles [92].
Botulinum neurotoxin type B share a similar therapeutic goal through a different
mechanism of action [93]. Permeation of the single-chain neurotoxic botulinum
polypeptide depends on cleavage by proteases to a heavy and light chain. The
heavy chain binds to a high affinity receptor on the presynaptic nerve terminal to
enable internalization of the bound toxin into the cell, where the activated light
chain functions as a zinc-dependent endopeptidase. In other words, the heavy chain
is a carrier while the light chain is the active agent. Although there are claims of
effectiveness from several topical neurotransmitter-affecting peptides, whether these
superficially applied products can penetrate deep enough to reach the target site is
highly questionable, especially when one considers that manufacturers’ reports are
usually not peer-reviewed and may lack important scientific information.

Carrier peptides stabilize and deliver important trace elements, such as copper, that
are required for wound healing, angiogenesis, and various other enzyme processes
that are necessary for maintaining the dermis. The aforementioned signal peptide,
biopeptide-CL (Gly-His-Lys), acts mainly as a copper carrier peptide to improve the
appearance of fine lines as well as increase skin density and thickness [94].

8.6 INTRANASAL PEPTIDE DRUG DELIVERY

The nasal cavity is covered by a well-vascularized thin mucosa that would permit a
peptide drug to quickly be transferred across the single epithelial cell layer directly to
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the systemic blood circulation without first-pass hepatic and intestinal metabolism. In
consideration that peptides are extensively degraded in the gastrointestinal tract and
liver, intranasal administration of peptide drugs offer an attractive route of delivery.
However, this is a relative improvement over the oral route, because peptide problems
associated with high polarity and susceptibility to enzyme degradation would still
need to be addressed [95].

There are limitations to the nasal route. There is a limited volume of drug that
can be sprayed into the nasal cavity, and thus only potent drugs are good candidates
for this route. Continuous or frequent administration could cause harmful long-term
effects on the nasal epithelium. In the past, there were concerns that the amount of
drug absorbed could vary greatly from one person to another because of upper airway
infections, sensory irritation of the nasal mucosa, nasal inflammation, amount drug
that gets swallowed instead of being retained in the nasal cavity, and the method of
spraying [96]. However, it came to a general understanding that the variability in
the amount absorbed after nasal administration should be similar to that after oral
administration [97].

Vaccine delivery has been achieved via the nasal route. FluMist is the trade name
of the first and only live attenuated vaccine for influenza that has been approved by the
FDA. This cold-adapted temperature-sensitive influenza virus product is given once
or twice over the influenza season through a syringe sprayer. The attenuated vaccine
viruses replicate in the nasopharynx to induce protective immunity.

Most peptide drugs that are delivered through the nasal route are peptide hor-
mones. Buserelin (1300 g/mol) is a gondadotropin-releasing hormone agonist used
for the treatment of hormone-responsive cancers such as prostate or breast cancer,
estrogen-dependent conditions, and in assisted reproduction. Although a nasal spray
formulation of buserelin is available in countries such as Canada, nasal buserelin
has not been approved by the FDA for its use in the United States. Approved by
the FDA, nafarelin (1322 g/mol) is a gonadotropin-releasing hormone agonist much
like the aforementioned buserelin. Nasal nafarelin is indicated for the treatment of
estrogen-dependent conditions and central precocious puberty, and in assisted repro-
duction.

Calcitonin is a 32-residue linear polypeptide hormone that reduces blood calcium
and thereby opposes the effects of the parathyroid hormone (PTH). The nasal spray of
salmon-derived calcitonin (3432 g/mol) is indicated in postmenopausal osteoporosis.

Desmopressin is a moderate size (1069 g/mol) nonapeptide synthetic d-arginine
analog of the natural pituitary hormone 8-arginine vasopressin , an antidiuretic hor-
mone (ADH) affecting renal water conservation (Figure 8.6). Desmopressin may be
taken through the nasal route for treating coagulation disorders and replacement of
ADH in central diabetes insipidus patients. The former use of the nasal desmopressin
in bedwetting has been banned by the FDA following reports of hyponatrial death.
Although a similar substance, lypressin (lysine vasopressin), was available for nasal
administration, it was discontinued by the manufacturer.

Oxytocin is a nonapeptide hormone (1007 g/mol) that acts as a neurotransmitter in
the brain (Figure 8.6). As a drug, oxytocin has a half-life of 3 min in blood, and can
be administered nasally to stimulate breastfeeding, although its efficacy is dubious
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[98]. Consequently, the production of nasal oxytocin has been discontinued in the
US pharmaceutical market.

Glucagon is a 29-residue peptide hormone (3483 g/mol), whose action is oppo-
site to that of insulin. Glucagon is administered by injection to treat hypoglycemia,
such as insulin-induced hypoglycemia, in emergency cases when the victim cannot
take glucose orally. As an unapproved method, systemic administration of glucagon
through the nasal cavity has been proposed. Several human studies suggest that nasal
glucagon, especially when it is solubilized with an absorptive enhancer such as bile
salt glycocholate, is effective to treat insulin-induced hypoglycemia as a safer and
faster method than oral glucose in an unconscious patient [99]. Obviously, no one
would claim that intranasal glucagon is more efficacious than its injectable form.

8.7 ENTERAL PEPTIDE DRUGS

The pharmaceutical market is consumer driven. Patients demand affordable and
hassle-free dosage forms. Their dosage form of choice is the oral dose. They prefer
to avoid fiddling with cumbersome devices. In fact, these finicky patients prefer
solid dosage forms over liquids, and among the solid oral dosage forms, smaller
pills are favored. The liquid dosage form is best suited for children. The lay person
is sometimes more interested on whether a drug is easier to carry around than its
effectiveness. To meet the needs of its consumers and promote drug utilization
compliance, pharmaceutical companies drive to reduce the size of peptide drugs
while maintaining acceptable therapeutic effects and drug tolerability. Indeed, the
pursuit of a small solid dosage formulation is the ultimate goal of most endeavors in
pharmaceutics.

As a result of trying to meet the needs of the consumers, most orally bioavail-
able peptide drugs are fairly small and are mostly comprised of three to five residues
to anchor in their respective pockets at the active site of the enzyme or receptor.
Most amino acid drugs have a higher chance for oral bioavailability, mainly because
of their very small sizes. As we have previously described (Sections 8.4 and 8.5),
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aminocaproic acid, eflornithine, and tranexamic acid are orally bioavailable, despite
the fact that manufacturers may not market them in oral form. Other FDA-approved
amino acid drugs that can be administered by mouth include synthetic thyroid hor-
mones, and drugs derived from the biosynthesis of epinephrine such as levodopa,
carbidopa, and α-methyldopa, and those that are derived from the biosynthesis of
GABA such as baclofen, gabapentin, γ-hydroxybutyric acid (GHB or sodium oxy-
bate) and pregabalin. orally bioavailable tripeptide drugs include those that we have
already discussed, namely, ACE inhibitors and HIV protease inhibitors (Sections
8.2.2.1, 8.2.2.2, 8.2.3, and 8.4). Most derivatives of penicillin and cephalosporin
antibiotics, in other words β-lactam analogs (Section 8.4), are semipeptide drugs that
have been rationally modified to be orally bioavailable.

Interestingly, desmopressin acetate (Section 8.6), a synthetic nonapeptide of
ADH, is available as an injection, nasal spray and oral tablet (Figure 8.6). This
peptide drug is therapeutically effective in the oral formulation due to its exceptional
potency, small cyclic structure (a sulfur bridge is formed between the two cysteine
residues), nonnatural d-arginine residue and/or acetate salt form. Comparisons
between the different dosage forms affirm the drug’s relative low oral bioavailability,
in that the bioavailability of desmopressin oral tablets is about 5% compared to that
of the intranasal spray, and approximately 0.16% compared to that of its intravenous
formulation. Intranasal desmopressin has about 10% of the potency of the injectable
form. These low relative bioavailability values suggest that the effectiveness of oral
desmopressin, despite its low oral bioavailability, is attributed to its inherent potency.
Desmopressin is natural ADH with a change in the arginine configuration. Indeed
the d-configuration has resulted in less vasopressor activity and decreased action
on visceral smooth muscle relative to enhanced antidiuretic effect. Consequently,
clinically effective antidiuretic doses are usually below the threshold effects on
vascular or visceral smooth muscle. In simpler words, desmopressin has a lower
undesired risk of increasing blood pressure when compared with ADH, and exhibits
a relatively more potent antidiuretic effect.

Another exceptional peptide drug that is orally bioavailable is cyclosporine.
Cyclosporine is a cyclic undecapeptide (1203 g/mol) with immunosuppressive
properties. The drug is available in injectable, topical, and oral forms (Figure 8.6).
The topical route is for local effects while the injectable and oral forms are for
systemic effects. Because the peptide drug has very low water solubility, suspension,
and emulsion forms of the drug were developed. Unfortunately, blood–drug level
monitoring is recommended because absorption by the gastrointestinal tract is
variable from one person to another. A key property of the drug that may contribute
to its feasible oral bioavailability is that it is mainly distributed outside of blood.
Moreover, even when the drug is in blood, 90% of the drug is protein bound, and
bound mainly to lipoproteins. An explanation that ties the extravascular distribution
and high protein-binding properties of cyclosporine is its high lipophilicity. Inter-
estingly, because of the cyclic structure of cyclosporine and the fact that 7 out of
11nitrogens of cyclosporine’s peptide amide bond are methylated, the peptide drug
is more resistant to peptidase metabolism.
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8.8 DIFFERENT ROUTES OF ADMINISTRATION FOR INSULIN

Diabetes mellitus is one of the more common contemporary diseases in these modern
ages. This chronic disease is yet not curable, and type 1 diabetic patients are required
to supplement their bodies with analogs of a 51-residue peptide hormone, insulin
(5808 g/mol), in order to lower their blood–glucose levels.

Most type 1 diabetes mellitus patients have to subcutaneously inject insulin multi-
ple times each day while changing their sites of administration, that is, site rotation, to
keep the skin healthy. As an alternative, insulin pumps are “electrical injectors” that
are attached to a temporarily implanted catheter or cannula. This injectable method
of insulin delivery requires care and effort to use correctly. Another choice for dia-
betic patients is the use of jet injectors (Section 8.4) that would offer the possibility
of pulsatile insulin where insulin is injected in pulses instead continuous infusion.

The lungs offer a large surface for the absorption of therapeutic peptides or pro-
teins. Being able to move sufficient amount of drug from the mouth to the lower res-
piratory tract has been a major setback for most research. In 2006, the FDA approved
an inhalable powdered form of insulin, Exubera [100]. The product is most likely
formulated as a PEG complexed insulin, so that it can effectively reach beyond the
upper respiratory system to the lung lining and be absorbed into the capillaries. PEGy-
lation would provide sufficient kinetics to allow the droplets to go beyond the upper
respiratory system because PEG is thick and flexible. PEGylation of insulin as a phys-
ical barrier allows a slow clearance of insulin from blood, resulting in a longer acting
medicinal effect and potentially reduces toxicity while permitting longer dosing inter-
vals. However, in reality, the inhalable insulin is short-acting and an injection of
long-acting insulin is still required at night. The product was not cost-effective when
compared with injected short-acting insulin [101]. Accurate dosing with inhalable
insulin is a concern [102]. Following its commercial launch in the United Kingdom,
the National Institute of Health and Clinical Excellence does not recommend the
product for routine use except when there is “proven injection phobia diagnosed by a
psychiatrist or psychologist.” Due to bad publicity resulting in low sale figures, Exe-
bura was withdrawn from the US pharmaceutical market in year following its North
American release. This end-turn suggests that although delivery of peptide drugs
through the lungs is applicable, it is currently not an economically viable approach.

Intranasally or rectally administered insulin is under investigation [103].
Although the stratified epithelium of the oral cavity is much less permeable than

that of the nasal mucosa, the buccal and sublingual mucosae are more accessible and
robust. Moreover, the oral cavity would most likely be favored over the nasal cavity
for peptide drugs that need to be delivered continuously or chronically. A method of
administration of insulin by the buccal route is in Phase III clinical trials. Oral-lyn is
a device that sprays a high velocity fine-particle aerosol of insulin into the mouth to
widely deposit particles of insulin over the oral mucosa. Since the particles are very
fine and move very fast, the insulin molecules delivered through this system cross the
top-most layers of the epithelial membrane, passing though the other layers and are
absorbed into the bloodstream with the assistance of permeation enhancers. Current
trial results suggest that oral spray insulin produces rapid absorption and metabolic
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control that are comparable to that of subcutaneously injected insulin [104]. Another
company is developing a sublingually administered rapid-acting oral formulation of
insulin, VIAtab, is in Phase II clinical trials. The charged surface of insulin is tem-
porarily masked by an undisclosed excipient to improve sublingual absorption. The
same company is using the same technology to develop sublingual salmon calcitonin
and sublingual PTH 1–34 to treat osteoporosis.

The strategy of masking insulin is also used to develop orally swallowed insulin.
Oradel nanoparticle insulin incorporates insulin in protective polysaccharides coated
with vitamin B12 molecules. Delivery across the walls of the small intestine is based
on the body’s natural transport system for vitamin B12, and the nanoparticles are
broken down in the bloodstream to release insulin. Oradel nanoparticle insulin is in
Phase I clinical trials. Another company, Oramed Pharmaceuticals, is developing an
enteric coated formulation of insulin that would prevent breakdown of insulin until
the pill reaches the intestines. The enteric coated insulin is in Phase II clinical trials.

8.9 DISCUSSION

As pharmacists and pharmaceutical scientists, we, the authors, have tried to cover the
different aspects of peptide drug delivery from its structural and formulation designs
to patient compliance. Three key factors determine drug bioavailability: molecular
size, lipophilicity, and side-reactivity.

Large peptide drugs have a lower chance for passive transport from one side of the
membrane to the other. Despite this lower risk, the scientific community has demon-
strated that transporters, such as liposomes, can successfully carry large drugs into
membrane cells and out on the other side. Of course, there is a limit as to how large
a drug can be, so that it can efficiently be loaded onto a transporter.

Lipophilicity is a major determinant for membrane permeability. Hydrophilic and
charged drugs can only squeeze in the tight junctions between cells during paracellu-
lar transport. Considering that the paracellular pathway does not occur as often as the
transcellular pathway, much research has focused on improving the lipophilicity of
a drug. Charged functions on a drug can be neutralized by a salt or protected with a
readily cleavable moiety. Often, acidic drugs are favored over basic drugs in terms of
membrane permeability and mucosal irritation. Although, generally speaking, high
lipophilicity favors transcellular transport, too much lipophilic character could lead to
complications such as low water solubility in body fluids, high plasma protein bind-
ing, high uptake by the liver and spleen macrophages, and high efflux from the brain.
Lipophilic drugs can be glycosylated, or polar groups can be added in nonessential
regions of the drug to increase its hydrophilicity. When all are taken into considera-
tions, finding an appropriate balance between hydrophilicity and lipophilicity would
greatly improve drug bioavailability.

Peptide drugs with high side-reactivity are readily metabolized by peptidases and
other enzymes. The difficulty in reducing the premature metabolic processing by
masking or eliminating highly reactive functions is that these functions are often
needed for high pharmacological activity. Hence, as with hydrophilic and lipophilic
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balancing, increasing pharmacodynamic effects could be offset by an undesired phar-
macokinetics profile.

Other than enhancing drug design to optimize bioavailability, additives can be
incorporated in the dosage formulation. Hydrophilic drugs can be hidden in lipophilic
carrier complexes. The transient time of a drug in the body can be improved by PEGy-
lation of the carrier. One strategy of decreasing premature degradation of the drug by
peptidases is to add peptidase inhibitors. The surface of the body’s membrane can
be rendered more receptive for permeation with fat emulsifiers, mucolytic agents,
membrane moisturizers, membrane softeners, and surface active agents. An appeal-
ing method for membrane penetration is to implement self-cleavable cell-penetrating
peptides that would carry an attached drug across the cell. Alternatively, the drug can
be conjugated to an endogeneous substance that is naturally transported across the
membrane. Somewhat risky methods for membrane penetration across the BBBs are
to either inhibit the body’s efflux transporters, or to rely on neurosurgical administra-
tion.

In the current US pharmaceutical market, several peptide drugs are available for
different routes of administration. When one looks beyond topical applications to the
skin or eyes, peptide drugs are available as injectables for large drugs, intranasal for-
mulations for several classes of peptide hormones, and oral forms for smaller drugs.
Some large peptide drugs with peculiar biophysicochemical characteristics, such as
desmopressin and cyclosporine, have therapeutically effect through the oral route,
despite the fact that they may not have high or reliable oral bioavailability. The most
promising route of administration for peptide drugs seems to be the intranasal route.

The delivery of insulin exemplifies the relentless effort to deliver the peptide hor-
mone via different routes. Although insulin is commonly injected subcutaneously
using needle and syringe, alternative injection devices are available. Inhalable insulin
was available at one time. Other routes of administration currently under evaluation
include the buccal, intranasal, oral, rectal, and sublingual routes for insulin.
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