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Unconstrained local necessary conditions

In the unconstrained case f is de�ned on an open set. Use the
"variations" g (t) $ f (x0 + th) and chain rule.

Theorem
If x0 is a local minimum then

1 0 = f 0x (x0) = (∂f /∂x1 (x0) , . . . , ∂f /∂xn (x0)) .
2 0 � hT f 00xx (x0) h = ∑

i
∑
j

∂2f /∂xi∂xj (x0) hihj

Observe that one needs just twice di¤erentiability at x0.
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Unconstrained local su¢ cient conditions

Theorem
If f is twice di¤erentiable at x0 and

f 0x (x0) = 0

and the second derivative is

1 positive de�nite then x0 is a local minimum of f ,
2 negative de�nite then x0 is a local minimum of f .

Observe that one needs just twice di¤erentiability at x0.
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Unconstrained local su¢ cient conditions

Lemma

If xTHx is a positive de�nite quadratic form on Rn then there is an α > 0
such that

xTHx � α kxk2 .

Let α > 0 be the minimum of xTHx over the compact set kxk = 1.
Obviously

x
kxk

T
H
x
kxk � α > 0

which implies the lemma.
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Unconstrained local su¢ cient conditions

As f is twice di¤erentiable at x0

f (x0 + h)� f (x0) =


f 0x (x0) , h

�
+
1
2
hT f 00xx (x0) h+ o

�
khk2

�
.

Let H = f 00xx (x0) and let α > 0 be the constant above. For any ε < α/2
one has that ���o �khk2���� � ε khk2

for h small enough. Hence as f 0x (x0) = 0

f (x0 + h)� f (x0) �
�α

2
� ε
�
khk2 � 0.
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Constrained local necessary conditions

Theorem
Assume that ϕk k = 0, 1, 2, . . . , p are di¤erentiable and assume that ϕ0
has a local minimum at x0 on the set

X $ fx j ϕk (x) = 0, k = 1, . . . , pg .

Then there are multipliers

l = (λ0,λ1, . . . ,λp) 2 Rp+1

such that
p

∑
k=0

λk ϕ0k (x0) = 0.

If ϕ0k (x0) , k = 1, . . . , p are linearly independent then λ0 = 1 is possible.
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Constrained local necessary conditions

Theorem
Assume that we are in the regular case and ϕk , k = 0, 1, . . . , p are twice
di¤erentiable at x0, where x0 is a local minimum of the constrained
optimization problem then


ϕ0k (x0) , h
�
= 0, k = 1, 2, . . . , p =) hT L00xx (x0,λ) h � 0.

For local maximums one has

ϕ0k (x0) , h

�
= 0, k = 1, 2, . . . , p =) hT L00xx (x0,λ) h � 0.

Recall that L00xx (x0,λ) is the second derivative of the Lagrange function
with respect to x at x0.
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Constrained local su¢ cient conditions

Theorem
Assume L0x (x0,λ) = 0, that is let x0 be a stationary point of the
Lagrangian. Assume that we are in the regular case and
ϕk , k = 0, 1, . . . , p are twice di¤erentiable at x0. If

hT L00xx (x0,λ) h > 0, h 6= 0

whenever hϕ0k (x0) , hi = 0, k = 1, 2, . . . , p then x0 is a local minimum of
the constrained optimization problem. If

hT L00xx (x0,λ) h < 0, h 6= 0

whenever hϕ0k (x0) , hi = 0, k = 1, 2, . . . , p then x0 is a local maximum of
the constrained optimization problem.
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Constrained local su¢ cient conditions

Let F be the vector function of the constraints and let
C $ fx j F (x) = 0g . It is su¢ cient to show that there is a function K
such that K has a local minimum on C at x0 with U and K (x0) = ϕ0 (x0)
and K (x) � ϕ0 (x) , x 2 U. In this case if x 2 U \ C then

ϕ0 (x) � K (x) � K (x0) = ϕ0 (x0)

so x0 is a local minimum of ϕ0 on C . Let

K (x) $ ϕ0 (x0)� hλ,F (x)i � γ kF (x)k2

where γ is a large enough constant. Obviously if x 2 C then F (x) = 0
therefore K (x0) = ϕ0 (x0) as x0 2 C .
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Constrained local su¢ cient conditions

One must show that

ϕ0 (x) � K (x) = ϕ0 (x0)� hλ,F (x)i � γ kF (x)k2

That is

0 � ϕ0 (x0)� (ϕ0 (x) + hλ,F (x)i)� γ kF (x)k2 =
= ϕ0 (x0)� L (x ,λ)� γ kF (x)k2 .

Using the condition on the existence of the second derivative and the
stationarity condition L0x (x0,λ) = 0 and that as x0 is a feasible solution
L (x0,λ) = ϕ0 (x0) one must show that

0 � � (x � x0)T L00xx (x0,λ) (x � x0) + o
�
kx � x0k2

�
�

�γ
F 0 (x0) (x � x0) + o (kx � x0k)2 .
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Constrained local su¢ cient conditions

Obviously F 0 (x0) (x � x0) + o (kx � x0k)2 =F 0 (x0) (x � x0)2 +
+ ko (kx � x0k)k2 +

+2


F 0 (x0) (x � x0) , o (kx � x0k)

�
=

=
F 0 (x0) (x � x0)2 + o �kx � x0k2� .
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Constrained local su¢ cient conditions

By the conditions that

F 0 (x0) h = 0) hT L00xx (x0,λ) h > 0

if γ is large enough and h 6= 0 the quadratic form

Q (h) $ hT L00xx (x0,λ) h+ γ
F 0 (x0) h2 > 0.

Hence for some U around x0

�Q (x � x0) + o
�
kx � x0k2

�
� 0.
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Constrained positive de�nite matrixes

Problem

Let A be symmetric. When does xTAx � 0 for every Bx = 0? Or when
does xTAx > 0 for every Bx = 0, x 6= 0?

We can assume that B is fat and full rank. Solving the homogeneous
equation x2 = �Dx1 where x1 is the vector of free variables. If the
number of the equations is p then the dimension of x1 is n� p. Hence

ker (B) =
�
x = Py j y 2 Rn�p	 = �� x1

x2

�
=

�
I
�D

�
y j y 2 Rn�p

�
.

Hence one should study

xTAx = yTPTAPy $ yTCy , dim
�
PTAP

�
= dim (C) = n� p

as size (P) = n� (n� p) .
Medvegyev (CEU) Mathematics for Economists 2013 13 / 252



Constrained positive de�nite matrixes

One can use the Jacobi�Sylvester criteria on C. To solve the su¢ ciency
problem one should check the determinants of the n� p leading principal
minors of C.
But to do this one should solve the equation Bx = 0 and construct matrix
C. We want to avoid this and we will calculate the LAST n� p leading
principal determinant of the bordered matrix

H $
�

0 B
BT A

�
.

The size of H is (n+ p)� (n+ p) . (It is not obvious why does it work.
The proof is in the reader.)
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Constrained positive de�nite matrixes

After some calculation one gets that:

1 Write the basis vectors of B �rst. B = (B1,B2) = (B1,B1U) , where
B1 forms a basis for the column space of B and U are the coordinates
of the other columns in B2.

2 Form the bordered Hessian0BB@
0

p � p
B

(p � n)
BT

(n� p)
A

(n� n)

1CCA
3 Check the determinants of the last n� p leading principal minors.
4 The sign of these determinants must be (�1)p in the constrained
positive de�nite(minimum) case. In the negative de�nite (maximum)
case the signs must alter staring with (�1)n for the largest minor.
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Constrained positive de�nite matrixes

Example

Solve x21 + x
2
2 ! min, x1 + x2 = 1.

The Lagrangian is L (x1, x2,λ) = x21 + x
2
2 + λ (x1 + x2 � 1) .

The necessary condition

2x1 + λ = 0, 2x2 + λ = 0) x1 = x2,) x1 = x2 =
1
2
.

A =

�
2 0
0 2

�
,B =

�
1 1

�
,H =

0@ 0 1 1
1 2 0
1 0 2

1A
det (H) = �4. One should check 2� 1 determinants and for minimum the
sign must be �1 = (�1)p as there is just one constraint, p = 1. Hence
we have a local minimum.
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Constrained positive de�nite matrixes

Example

Solve x21 + x
2
2 ! min, x1 + x2 = 1, 2x1 + 3x2 = 4.

The only solution is

x1 =

���� 1 1
4 3

�������� 1 1
2 3

���� = �1, x2 =
���� 1 1
2 4

�������� 1 1
2 3

���� = 2.
But as one should check n� p = 0 determinants there is nothing to
check. In this case the theorem formally does not applicable.
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Constrained positive de�nite matrixes

Example

Solve x1 + x2 ! min, x21 + x
2
2 = 1.

The Lagrangian is

L (x1, x2,λ) = x1 + x2 + λ
�
x21 + x

2
2 � 1

�
.

The necessary conditions

1+ 2λx1 = 0, 1+ 2λx2 = 0,) x1 = x2, 2x21 = 1, x1 = �1/
p
2.
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Constrained positive de�nite matrixes

If x1 = x2 = 1/
p
2 then λ = �1/

p
2

A =
�
�
p
2 0

0 �
p
2

�
,B =

�
2/
p
2, 2/

p
2
�
,H =

0@ 0
p
2

p
2p

2 �
p
2 0p

2 0 �
p
2

1A
det (H) = 4

p
2. As there are two variables this is the condition for local

maximum, so
�
1p
2
, 1p

2

�
is a local maximum.
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Constrained positive de�nite matrixes

If x1 = x2 = �1/
p
2 then λ = 1/

p
2

A =
� p

2 0
0

p
2

�
,B =

�
�
p
2,�

p
2
�
,H =

0@ 0 �
p
2 �

p
2

�
p
2

p
2 0

�
p
2 0

p
2

1A
determinant: �4

p
2. As p = 1 this is the condition for the minimum so�

� 1p
2
,� 1p

2

�
is a local minimum.
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Constrained positive de�nite matrixes

Example

Solve x1x2 ! min, x21 + x
2
2 = 1.

The Lagrangian is

L (x1, x2,λ) = x1x2 + λ
�
x21 + x

2
2 � 1

�
.

The necessary conditions

x2 + 2λx1 = 0, x1 + 2λx2 = 0.

If x1 = 0 then x2 = 0 which is not a solution. So x1 6= 0, x2 6= 0.
x2
x1
= �2λ,

x1
x2
= �2λ,

x2
x1
=
x1
x2
, x21 = x

2
2

Hence the four solutions are�
1p
2
,
1p
2

�
,

�
� 1p

2
,� 1p

2

�
,

�
� 1p

2
,
1p
2

��
1p
2
,� 1p

2

�
.

Medvegyev (CEU) Mathematics for Economists 2013 21 / 252



Constrained positive de�nite matrixes

The Hessian of the Lagrangian is

A =
�
2λ 1
1 2λ

�
,B = (2x1, 2x2) .

For the �rst root
�
1p
2
, 1p

2

�
,λ = �1/2

H =

0@ 0 2/
p
2 2/

p
2

2/
p
2 �1 1

2/
p
2 1 �1

1A
det (H) = 8 so as n = 2 the sign for maximum is (�1)n = 1, hence�
1p
2
, 1p

2

�
is a local maximum.
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Constrained positive de�nite matrixes

For the third root
�
� 1p

2
, 1p

2

�
,λ = 1/2

H =

0@ 0 �2/
p
2 2/

p
2

�2/
p
2 1 1

2/
p
2 1 1

1A
det (H) = �8. As p = 1 the sign for minimum must be �1 = (�1)p , so�
� 1p

2
, 1p

2

�
is a local minimum.

Medvegyev (CEU) Mathematics for Economists 2013 23 / 252



Constrained positive de�nite matrixes

Example

Solve the problem x21 + x
2
2 + x

2
3 ! min, x1 + x2 + x3 = 1.

The Lagrangian is

L (x1, x2, x3,λ) = x21 + x
2
2 + x

2
3 + λ (x1 + x2 + x3 � 1) .

Obviously x1 = x2 = x3 = 1/3 is the solution.

A =

0@ 2 0 0
0 2 0
0 0 2

1A ,B = � 1 1 1
�
,H =

0BB@
0 1 1 1
1 2 0 0
1 0 2 0
1 0 0 2

1CCA
The determinant of H is �12.
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Constrained positive de�nite matrixes

But we must calculate 3� 1 = 2 determinants: Deleting the last row and
the last column

det

0@ 0 1 1
1 2 0
1 0 2

1A = �4.

As both determinants are negative, p = 1, so the sign for the minimum is
(�1)p = �1 this is a local minimum.
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Constrained positive de�nite matrixes

Example

Solve the problem x1x2x3 ! max, x21 + x
2
2 + x

2
3 = 1

The Lagrangian x1x2x3 + λ
�
x21 + x

2
2 + x

2
3 � 1

�
. The �rst order conditions

x1x2
2x3

=
x2x3
2x1

=
x1x3
2x2

= �λ,

Obviously the solutions of the �rst order conditions are

x21 = x22 = x
2
3 =

1
3
.

A =

0@ 2λ x3 x2
x3 2λ x1
x2 x1 2λ

1A ,B = � 2x1 2x2 2x1
�
.
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Constrained positive de�nite matrixes

A maximal solution is when x1 = x2 = x3 = 1/
p
3 in this case

λ = �x1x2
2x3

= � 1

2
p
3

H =

0BB@
0 2/

p
3 2/

p
3 2/

p
3

2/
p
3 �1/

p
3 1/

p
3 1/

p
3

2/
p
3 1/

p
3 �1/

p
3 1/

p
3

2/
p
3 1/

p
3 1/

p
3 �1/

p
3

1CCA
The determinant is � 16

3 . As there are three variables this is the right sign
condition for the maximum as �1 = (�1)3
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Constrained positive de�nite matrixes

But we should also check another determinant as n� p = 2. Deleting the
last row and column

det

0@ 0 2/
p
3 2/

p
3

2/
p
3 .� 1/

p
3 1/

p
3

2/
p
3 1/

p
3 �1/

p
3

1A =
16
9

p
3

Which is still good for the maximum as the sign is alternating.
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Constrained positive de�nite matrixes

Now check the x1 = x2 = x3 = �1/
p
3 which is the minimal solution.

λ = �x1x2
2x3

=
1

2
p
3

H =

0BB@
0 �2/

p
3 �2/

p
3 �2/

p
3

�2/
p
3 1/

p
3 �1/

p
3 �1/

p
3

�2/
p
3 �1/

p
3 1/

p
3 �1/

p
3

�2/
p
3 �1/

p
3 �1/

p
3 1/

p
3

1CCA .
In this case the determinant is still � 16

3 , which is also compatible with the
minimum rule as p = 1. (Observe that sign is compatible with maximum
criteria as well.)
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Constrained positive de�nite matrixes

But we should also check another determinant as n� p = 2. Deleting the
last row and last column

det

0@ 0 �2/
p
3 �2/

p
3

�2/
p
3 1/

p
3 �1/

p
3

�2/
p
3 �1/

p
3 1/

p
3

1A = �16
9

p
3

Which is the right sign for the minimum condition as p = 1 and in the
minimum case there is no alternation.
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Constrained positive de�nite matrixes

Observe that x2 = x3 = 0, x1 = 1,λ = 0 is also a solution of the equations

x2x3 + 2λx1 = 0

x1x3 + 2λx2 = 0

x1x2 + 2λx3 = 0

H =

0BB@
0 2 0 0
2 0 0 0
0 0 0 1
0 0 1 0

1CCA
The determinant is 4 which is not compatible with the max or the min rule.
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Constrained positive de�nite matrixes

Example

Solve x21 � x22 � x23 ! max, x21 + x
2
2 + x

2
3 = 1.

The Lagrangian

x21 � x22 � x23 + λ
�
x21 + x

2
2 + x

2
3 � 1

�
.

The necessary condition is

2x1 + λ2x1 = 2x1 (1+ λ) = 0

�2x2 + λ2x2 = 2x2 (�1+ λ) = 0

�2x3 + 2λx3 = 2x3 (�1+ λ) = 0.

The relevant solution for the maximum is x1 = �1, x2 = x3 = 0.

Medvegyev (CEU) Mathematics for Economists 2013 32 / 252



Constrained positive de�nite matrixes

The Hessian

A =

0@ 2+ 2λ 0 0
0 �2+ 2λ 0
0 0 �2+ 2λ

1A ,B = � 2x1 2x2 2x3
�
.

If x1 = 1, x2 = 0, x3 = 0, then λ = �1

H =

0BB@
0 2 0 0
2 0 0 0
0 0 �4 0
0 0 0 �4

1CCA
The determinant is �64. As there are three variables for maximum the
sign must be (�1)3 .
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Constrained positive de�nite matrixes

But we must also check ������
0 2 0
2 0 0
0 0 �4

������ = 16
:Hence the determinants of the leading principal minors alternate, hence
(1, 0, 0) is a local maximum.
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Constrained positive de�nite matrixes

Now let x1 = 0, x2 = 1, x3 = 0 and λ = 1, which solves the equations.

H =

0BB@
0 0 2 0
0 4 0 0
2 0 0 0
0 0 0 0

1CCA .
The determinant is 0. The problem comes from the fact that (0, 1, 0) is not
a isolated local minimum as x1 = 0, x22 + x

2
3 = 1 are all minimal solutions.
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Constrained positive de�nite matrixes

Example

Solve x23 � x21 � x22 ! max, x21 + x
2
2 + x

2
3 = 1.

The solution is x3 = 1, x1 = x2 = 0. The (wrong) bordered Hessian is

H =

0BB@
0 0 0 2
0 �4 0 0
0 0 �4 0
2 0 0 0

1CCA .

The determinant is �64 which is �ne. But

������
0 0 0
0 �4 0
0 0 �4

������ = 0. (The
problem is that the basis is at a wrong place.)
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Dynamic programming

Example
Consumer saving problem:

1 The planning period is �nite t = 1, 2, . . . ,T .
2 At every period t the consumer has wealth wt � 0 and consumption
ct � 0. The utility function for the consumer is u (c) =

p
c .

3 At every t the set of feasible decisions are Φ (wt�1) = [0,wt�1] .
4 There is a production function
f (w , c) = (w � c) � (1+ r) $ k � (w � c) with r � 0.

5 The consumer is maximizing the aggregate utility ∑T
t=0 u (ct ) .
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Dynamic programming

Problem
We want to maximize the aggregate reward

T

∑
t=1
rt (st , at )! max,

under the conditions that

s1 2 S

st = ft�1 (st�1, at�1) , t = 2, . . . ,T
at 2 Φ (st ) � A, t = 1, 2, . . . ,T

where at is the action one can choose and st is the state of the system.
Obviously the objects in the problem are given before the optimization and
are parameters of the problem.
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Dynamic programming

De�nition
1 S is called the state space.
2 A is called the action space.
3 rt (s, a) is the reward function at time period t.
4 ft (s, a) is the transition function at time period t.
5 Φt (s)! 2A is the correspondence of feasible actions at time period
t.
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Dynamic programming

De�nition
1 The history ht at time t is the sequence ht = (s1, a1, . . . at�1, st ) .
(Observe that there is no at but there is an st in the de�nition of the
history.)

2 Strategy σ is a sequence of mappings σt .which gives the next action
at 2 Φ (st ) . The σt can depend on the whole actual history.ht .

3 Σ denotes the set of strategies.
4 The value function is

V (s) $ max
σ2Σ,σ0=s

W (σ) $ max
σ2Σ,σ0=s

T

∑
t=1
rt (σt ) .

if the maximum is attained otherwise we write sup instead of max.
5 One can also de�ne Vt (s) as V (s) above just we start the
optimization at time period t.
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Dynamic programming

De�nition
A strategy is a Markovian strategy if the strategy is dependent only on the
present state, that is independent of the history of path how we have got
to the present state s.

Theorem (Bellman�s principle)
Under some conditions on the model there is an optimal Markovian
strategy and the sequence of value functions Vt satis�es the Bellman
equation

Vt (s) = max
a2Φt (s)

frt (s, a) + Vt+1 (ft (s, a))g .
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Dynamic programming

The conditions of the above theorem are quite reasonable. They are (just)
guaranteeing the existence of the optimum.

1 rt (s, a) is continuous on S � A for every t.
2 ft (s, a) is continuous on S � A for every t.
3 Φt is a continuous, non-empty and compact valued correspondence.
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Dynamic programming

De�nition
A set-valued mapping, that is a correspondence, Φ is called

1 upper semi continuous if for every xn ! x , yn ! y and yn 2 Φ (xn)
one gets that y 2 Φ (x) . This says that the

Graph (Φ) $ f(x , y) j y 2 Φ (x)g

is a closed set;
2 lower semi continuous if for every xn ! x and y 2 Φ (x) there is a
sequence yn 2 Φ (xn) such that yn ! y ;

3 it is continuous if both upper- and lower semi continuous.

Medvegyev (CEU) Mathematics for Economists 2013 43 / 252



Dynamic programming

The main advantage of the compact valued and continuous
correspondences is that the parametric optimization problem

g (s) $ max fU (s, x) j x 2 Φ (s)g

is a continuous function of the parameter s assuming that U and Φ are
continuous and Φ is compact valued. In this case the correspondence

Ψ (s) $ fx j x 2 Φ (s) ,U (s, x) = g (s)g

is upper semi continuous.
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Dynamic programming

1. First let us �nd the solution of the problem at t = T . In this case the
state variable is the wealth w the correspondence

Φ (w) = [0,w ] .

As u (c) =
p
c the value function at time T is

VT (w) = max fu (c) j c 2 Φ (T )g =
p
w .

The optimal strategy is
σT (w) = w .
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Dynamic programming

2. Now we move to time period T � 1. By Bellman�s principle one should
solve the problem

VT�1 (w) = max
c2[0,w ]

�p
c + VT (k (w � c))

	
=

= max
c2[0,w ]

�p
c +

q
k (w � c)

�
.

Obviously the goal function is concave as
p
c is concave, k (w � c) is

linear hence concave and the x 7!
p
x is concave and increasing. So it is a

convex KT-problem.

d
dc

�p
c +

q
k (w � c)

�
=

1
2
p
c
+

1

2
p
k (w � c)

(�k) = 0

1p
c
=

p
kp

w � c
, ck = w � c

σT�1 (w) = c =
w

1+ k
.
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Dynamic programming

In this case the value of the goal function isr
w

k + 1
+

s
k
�
w � w

k + 1

�
=

r
w

k + 1
+

s
k
�
w (k + 1)� w

k + 1

�
=

=

r
w

k + 1
+

s
k2w
k + 1

= (1+ k)
r

w
k + 1

=
p
1+ k

p
w .

But we should also check c = 0 and c = w . If c = 0 then
p
kw <

p
1+ k

p
w ,

if c = w then p
w <

p
1+ k

p
w

so
VT�1 (w) =

p
1+ k

p
w
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Dynamic programming

3. It gives us the induction hypothesis:

VT�t =
p
1+ k + k2 + . . .+ k t

p
w

σT�t =
w

1+ k + k2 + . . .+ k t

The only thing we should show is to prove this hypothesis:

VT�(t+1) (w) = max
c2[0,w ]

�p
c + VT�t (k (w � c))

	
=

= max
c2[0,w ]

�p
c +

p
1+ k + k2 + . . .+ k t

q
k (w � c)

�
.
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Dynamic programming

Calculating the derivatives

1
2
p
c
=
p
1+ k + k2 + . . .+ k t

k

2
p
k (w � c)

p
c =

1p
1+ k + k2 + . . .+ k t

p
w � cp
k

kc =
1

1+ k + k2 + . . .+ k t
(w � c)

c
�
k +

1
1+ k + k2 + . . .+ k t

�
=

w
1+ k + k2 + . . .+ k t

c
k + . . .+ k t+1 + 1
1+ k + k2 + . . .+ k t

=
w

1+ k + k2 + . . .+ k t

c =
w

1+ k + k2 + . . .+ k t + k t+1
.
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Dynamic programming

The value of the goal function is

VT�(t+1) (w) =
r

w

∑t+1
n=0 kn

+

s
t

∑
n=0

kn

s
k
�
w � w

∑t+1
n=0 kn

�
=

=
p
w(

1q
∑t+1
n=0 kn

+

s
t

∑
n=0

kn

s
k

∑t+1
n=0 kn � 1
∑t+1
n=0 kn

) =

=
p
w(

1q
∑t+1
n=0 kn

+

s
t

∑
n=0

kn

s
k

∑t+1
n=1 kn

∑t+1
n=0 kn

) =

=
p
w(

1q
∑t+1
n=0 kn

+

s
t+1

∑
n=1

kn

s
∑t+1
n=1 kn

∑t+1
n=0 kn

) =

p
w

1q
∑t+1
n=0 kn

(1+
t+1

∑
n=1

kn) =
p
w

s
t+1

∑
n=0

kn.
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Cake eating problem

We have a cake of size w1. We want to eat it in T periods. Our utility for
the consumption plan (ct )

T
t=1 is

T

∑
t=1

βt�1u (ct ) .

The constraints are

T

∑
t=1
ct + wT+1 = w1

wT+1 � 0, ct � 0.
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Cake eating problem

1 The utility function is twice continuously di¤erentiable on x > 0.
2 u0 (c) > 0. Increasing utility.
3 u00 (c) < 0. Strictly concave utility.
4 limc&0 u0 (c) = ∞. Excludes corner solutions. ( Inada condition.)
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Cake eating problem

As the set of feasible solutions is compact and the utility function is
strictly concave there is a unique solution to the cake eating problem. We
want to apply the cake eating problem for logarithmic type utility functions
as well. Strictly speaking we cannot use this function as it is unde�ned at
x = 0. One can observe that in this case the result still holds. One can use
the de�nition ln 0 $ �∞.
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Cake eating problem

As the constraints are linear Slater�s condition holds. The Lagrange
function is

L = �
T

∑
t=1

βt�1u (ct ) + λ

 
w1 �

T

∑
t=1
ct + wT+1

!
�

T

∑
t=1

µtct � ϕwT+1.

Di¤erentiating

∂L
∂ct

= λ� βt�1u0 (ct )� µt = 0

∂L
∂wT+1

= λ� ϕ = 0.

If ϕ = 0 then λ = 0, but in this case βt�1u0 (ct ) = 0 which is impossible
as u0 > 0. Hence ϕ > 0 which implies that wT+1 = 0. By the Inada
condition ct > 0 hence µt = 0. So

βt1�1u0 (ct1) = λ = βt2�1u0 (ct2) .
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Cake eating problem

De�nition
The relation

u0 (ct ) = βu0 (ct+1)

is called Euler equation.
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Cake eating problem

Example

Solve the cake eating problem for the u (x) $ ln x function.

Observe that in this formulation one can use the logarithmic function as it
is perfectly legitimate in the Kuhn-Tucker theory as in this case one has a
convex open set U over which the whole story of optimization is
considered. The Euler equation is

1
ct
= β

1
ct+1

, t = 1, 2, . . . ,T � 1.

and we also have λ > 0 and wT+1 = 0 that is

T

∑
t=1
ct = w1.
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Cake eating problem

It is easy to see that

c1 =
w1

1+ β+ . . .+ βT�1
,

c2 =
βw1

1+ β+ . . .+ βT�1
,

...

cT =
βT�1w1

1+ β+ . . .+ βT�1

is a stationary point. As the problem is convex, it is the optimal solution.
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Cake eating problem

We can solve the problem as a dynamic programming problem. With
utility function rt (ct ) $ βt�1u (ct ) and transition function
f (w , c) $ w � c . The Bellman equation is

Vt (w) = max
c2[0,w ]

�
βt�1u (c) + Vt+1 (w � c)

�
.

VT (w) = βT�1u (w) .

Let t = T � 1. By the Inada condition we always have an interior solution
so derivative of the function behind the maximum is zero:
(cT = w � cT�1)

βT�2u0 (c)� V 0T (w � c) = 0.
βT�2u0 (c)� βT�1u0 (w � c) = 0

βT�2u0 (cT�1) = βT�1u0 (w � cT�1) = βT�1u0 (cT )

u0 (cT�1) = βu0 (cT )
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Cake eating problem

With backwards iteration for time t = T � 2

βT�3u0 (ct )� V 0T�1 (wt � ct ) = βT�3u0 (ct )� V 0T�1 (wT�1) = 0
βT�3u0 (cT�2) = V 0T�1 (wT�1) .

But how do we calculate
V 0T�1 (wT�1)?
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Cake eating problem

VT�1 (w) = max
c2[0,w ]

�
βT�2u (c) + VT (w � c)

�
=

= max
c2[0,w ]

�
βT�2u (c) + βT�1u (w � c)

�
=

= βT�2u (c (w)) + βT�1u (w � c (w)) .

By the envelope theorem if

f (p) $ max
x
g (p, x) = g (p, x (p))

then

df (p)
dp

=
∂g
∂p
(p, x (p)) +

∂g
∂x
(p, x (p))

dx (p)
dp

=
∂g
∂p
(p, x (p)) ,
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Cake eating problem

Observe that the partial derivative is by the parameter of the goal function
so with

g (p, x) = βT�2u (x) + βT�1u (p � x)
∂g
∂p
(p, x (p)) = βT�1u0 (p � x (p))

that is
dVT�1 (w)

dw
(w) = βT�1u0 (w � c (w)) .

Which gives the Euler equation.
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Cake eating problem

In the general case using the Fermat principle for the max

βT�t�1u0 (cT�t ) = V
0
T�t+1 (wT�t+1)

By the Bellman equation

VT�t+1 (w) = max
c2[0,w ]

�
βT�tu (c) + VT�t+2 (w � c)

�
=

= max
u2[0,w ]

�
βT�tu (w � u) + VT�t+2 (u)

�
.

By the Envelope Theorem

V 0T�t+1 (w) = βT�tu0 (w � u (w)) = βT�tu0 (cT�t+1)

hence
βT�t�1u0 (cT�t ) = βT�tu0 (cT�t+1)
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Cake eating problem

Example

Solve the cake eating problem for the u (x) $ ln x function.

If T = 2 then the Euler equation is

1
c1
= β

1
c2
.

By the constraint
c1 + c2 = w1.

Solving the equation

c1 =
1

1+ β
w1, c2 =

β

1+ β
w1.
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Cake eating problem

The value function is

V1 (w1) = ln c1 + β ln c2 = ln
1

1+ β
w1 + β ln

β

1+ β
w1 =

= ln
1

1+ β
+ lnw1 + β lnw1 + β ln

β

1+ β
$

$ A2 + B2 lnw1.
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Cake eating problem

If T = 3 then by the Euler equations

1
c1
= β

1
c2
= β2

1
c3

and the resource equation is

c1 + c2 + c3 = w1

This implies that

c1 =
w1

1+ β+ β2
, c2

βw1
1+ β+ β2

, c3 =
β2w1

1+ β+ β2

The value function is

V1 = ln c1 + β ln c2 + β2 ln c3 = A3 + B3 lnw1.
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Production saving model

Example
Solve the problem

T

∑
t=0

βtU (ct ) ! max

ct + kt+1 = f (kt ) .

where k0 is given.
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Production saving model

The simplest way is to turn it to an unconstrained optimization problem
that is

T

∑
t=0

βtU (f (kt )� kt+1)! max
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Production saving model

Consider the terms with kt+1 with t < T . It is in two terms of the sum

βtU (f (kt )� kt+1) + βt+1U (f (kt+1)� kt+2)

Di¤erentiating with respect to kt+1 and assuming that there is an internal
solution

βtU 0 (f (kt )� kt+1) (�1) = βt+1U 0 (f (kt+1)� kt+2) f 0 (kt+1) = 0

De�nition
The second order di¤erence equation

U 0 (f (kt )� kt+1) = βU 0 (f (kt+1)� kt+2) f 0 (kt+1)
k0 = a, kT+1 = 0

is the Euler equation for the production saving model.
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Production saving model

We can get the same equation with dynamic programing. By the Bellman
equation

Vt (kt ) = max
ct2[0,kt ]

�
βtU (ct ) + Vt+1 (kt+1)

�
=

= max
ct2[0,kt ]

�
βtU (ct ) + Vt+1 (f (kt )� ct )

�
VT+1 = 0.

Assuming that no corner solution appears derivation by the control
parameter ct by Fermat�s principle

βtU 0 (ct ) + V 0t+1 (f (kt )� ct ) (�1) = 0,
βtU 0 (ct ) = V 0t+1 (f (kt )� ct ) = V 0t+1 (kt+1) .

Medvegyev (CEU) Mathematics for Economists 2013 69 / 252



Production saving model

To calculate V 0t+1 (kt+1) we want to use the envelope theorem. The
parametric goal function is

g (kt+1, ct+1) = βt+1U (ct+1) + Vt+2 (kt+2) =

= βt+1U (ct+1) + Vt+2 (f (kt+1)� ct+1) .

In the second case di¤erentiating by the state parameter kt+1

V 0t+2 (f (kt+1)� ct+1) f 0 (kt+1)

which is again hopeless as it expresses V 0t+1 with V
0
t+2, in the �rst case

kt+1 is not in the formula.
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Production saving model

Again we rewrite the value function and introduce a new control
parameter kt+2 = f (kt+1)� ct+1

Vt+1 (kt+1) = max
ct+12[0,kt+1 ]

�
βt+1U (ct+1) + Vt+2 (kt+2)

�
=

= max
kt+22[0,f (kt+1)]

�
βt+1U (f (kt+1)� kt+2) + Vt+2 (kt+2)

�
Di¤erentiating the parametric goal function by the parameter kt+1 the
second term�s derivative is zero

V 0t+1 (kt+1) = βt+1U 0 (f (kt+1)� kt+2) f 0 (kt+1) .
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Production saving model

Hence

βtU 0 (f (kt )� kt+1) = βtU 0 (ct ) = V 0t+1 (kt+1) = βt+1U 0 (f (kt+1)� kt+2) f 0 (kt+1) .

Hence

U 0 (f (kt )� kt+1) = βU 0 (f (kt+1)� kt+2) f 0 (kt+1) .

which is the same Euler equation for the production saving model.
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Production saving model

We can also consider the problem as a Kuhn�Tucker problem

T

∑
t=0

βtU (ct ) ! max

ct + kt+1 � f (kt ) � 0,

ct , kt � 0

If we assume that if x > 0 then f (x) > 0 then Slater�s condition holds
The Lagrange function is

L = �
T

∑
t=0

βtU (ct ) +∑
t

λt (ct + kt+1 � f (kt ))�

�∑
t

µtct �∑
t

νtkt .
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Production saving model

∂L
∂ct

= �βtU 0 (ct ) + λt � µt = 0.

By the Inada condition λt > 0. hence

ct + kt+1 � f (kt ) = 0.
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Production saving model

∂L
∂kt

= λt�1 � λt f 0 (kt )� νtkt = 0.

If we exclude corner solutions then νt = µt = 0 and then

λt�1 = λt f 0 (kt )

λt = βtU 0 (ct )
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Production saving model

βt�1U 0 (ct�1) = βtU 0 (ct ) f 0 (kt )

U 0 (ct�1) = βU 0 (ct ) f 0 (kt )

U 0 (f (kt�1)� kt ) = βU 0 (f (kt )� kt+1) f 0 (kt )
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Production saving model

The Euler equation of the production saving model is

U 0 (ct ) = βU 0 (ct+1) f 0 (kt+1) ,

for the cake eating model the Euler equation is

U 0 (ct ) = βU 0 (ct+1) .

In the cake eating model there is no production so f (kt ) = kt . From this
it is clear that the production saving model is a generalization of the cake
eating model. The cake eating model is a �rst order equation, but as the
production saving model contains kt+1 it is a second order di¤erence
equation. with boundary conditions k0 = a, kT+1 = 0 which is not easy to
solve.
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Production saving model

Example

Solve the production saving model with U (c) = ln c , f (k) = kα.

As f should be concave hence α � 1. Of course β � 1. The Euler equation
is

1
ct
= β

1
ct+1

f 0 (kt+1) = βα
kα�1
t+1

ct+1

Multiplying by kt+1

kt+1
ct

= βα
kα
t+1

ct+1
= βα

f (kt+1)
ct+1

.
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Production saving model

Let st $ kt+1/kα
t = kt+1/f (kt ) be the saving rate.

ct = f (kt )� kt+1

hence
kt+1
ct

=
kt+1

f (kt )� kt+1
=

kt+1/f (kt )
1� kt+1/f (kt )

=
st

1� st
.

Also

st+1 =
kt+2

f (kt+1)
=
f (kt+1)� ct+1

f (kt+1)
= 1� ct+1

f (kt+1)
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Production saving model

Hence the Euler equation is

st
1� st

= αβ
1

1� st+1
1� st
st

=
1

αβ
(1� st+1)

αβ

�
1
st
� 1
�

= 1� st+1

st+1 = 1+ αβ� αβ

st
.
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Production saving model

Or for backward iteration

1
st
� 1 =

1� st+1
αβ

1
st

=
1+ αβ� st+1

αβ

st =
αβ

1+ αβ� st+1
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Production saving model

As sT = kT+1/f (kT ) = 0,

sT�1 =
αβ

1+ αβ

which implies with backward induction that

sT�2 =
αβ

1+ αβ� αβ
1+αβ

=
αβ (1+ αβ)

1+ αβ+ αβ (1+ αβ)� αβ
=

=
αβ+ (αβ)2

1+ αβ+ (αβ)2

sT�t =

t

∑
s=1
(αβ)s

1+
t

∑
s=1
(αβ)s
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Optimal stopping

Example
Optimal selling of a stock with independent o¤ers.

Assume that we have ξ1, ξ2, . . . , ξT independent random o¤ers for a
stock. If we sell it in period t then we will get ξt (1+ r)

T�t at the �nal
period T . What is the optimal strategy?
One can think about this type of problems as a speci�c stochastic dynamic
programing problem. At every time period we have just one possible
action set: sell it or not. After we have sold the stock our set of strategies
is already empty. Our goal is to maximize the expected payout.
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Optimal stopping

Let r = 0 and let ξ uniformly distributed on [0, 1] and let T = 3.
1. If you are in period t = T = 3, you have no choice, so your expected
payout is E (ξ3) = 1/2.
2. If you are in period t = T � 1 = 2, then you should not take the
variable if ξ2 < E (ξ3) = 1/2 because if you wait one period more your
expected payout is 1/2, which is better. Your expected payout is

E
�
max

�
1
2
, ξ2

��
=

Z 1/2

0

1
2
dx +

Z 1

1/2
xdx =

=
1
4
+

�
x2

2

�1
1/2

=
1
4
+
1
2
� 1
8
=
5
8
= 0, 625.
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Optimal stopping

3. If ξ1 < 5/8 then you should not take ξ1. Then you expected payout in
this period

E
�
max

�
5
8
, ξ1

��
=

Z 5/8

0

5
8
dx +

Z 1

5/8
xdx =

=
25
64
+

�
x2

2

�1
5/8

=
25
64
+
1
2
� 1
2
25
64
=

=
1
2
+
1
2
25
64
=
64+ 25
128

=
89
128

= 0, 695 31.
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Optimal stopping

The general iteration is αT = 0.

αt = E (max (αt+1, ξt )) =
Z αt+1

0
αt+1dx +

Z 1

αt+1
xdx =

= α2t+1 +
1
2

�
1� α2t+1

�
=
1
2

�
1+ α2t+1

�
.

Obviously from the construction αt > αt+1 as we are always increasing
the integrand.
Is this the optimal strategy?
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Optimal stopping

Now assume that r = 100% and let ξ uniformly distributed on [0, 1] and
let T = 3.
1. t = T = 3.you have no choice, so your expected payout is
E (ξ3) = 1/2.
2. t = T � 1 = 2. If

ξ2 <
E (ξ3)
1+ r

=
1
4

you should continue as in this case your payout is
ξ2 (1+ r) = 2ξ2 < E (ξ3) = 1/2.
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Optimal stopping

The expected gain with this strategy

(1+ r)E
�
max

�
1
4
, ξ2

��
= 2

�Z 1/4

0

1
4
dx +

Z 1

1/4
xdx
�
=

=
1
8
+ 2

�
x2

2

�1
1/4

=
1
8
+ 1� 1

16
=
17
16
=

=
1
4
� 1
2
+
3
4
� 2 � 5

8
=

=
1
4
� E (ξ3) +

3
4
� (1+ r) � 5

8
.

Where 5/8 is the expected value of the uniform distribution on [1/4, 1] .
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Optimal stopping

3. If (1+ r)2 ξ1 < 17/16, that is if ξ1 < 17/64 you should continue.
Your expected gain is

(1+ r)2 E
�
max

�
17
64
, ξ1

��
= 4

�Z 17/64

0

17
64
dx +

Z 1

17/64
xdx
�
=

= 4

 �
17
64

�2
+
1
2

 
1�

�
17
64

�2!!
=

=
17
64
� 17
16
+ 2

 
1�

�
17
64

�2!
=
4385
2048
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Optimal stopping

The optimal exercise boundary is

α3 = 0, α2 =
1
4
, α1 =

17
64

The gains from these periods

1
2
,
17
16
= 1, 0625,

4385
2048

= 2, 1411
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Optimal stopping

Let ξt be exponential λ = 1. The backward iteration is with αT = 0

αt = E (max (αt+1, ξt )) =
Z αt+1

0
αt+1 exp (�x) dx +

Z ∞

αt+1
x exp (�x) dx =

= αt+1

Z αt+1

0
exp (�x) dx +

�
x exp (�x)

�1

�∞

αt+1

+
Z ∞

αt+1
exp (�x) dx =

= αt+1 (1� exp (�αt+1)) + αt+1 exp (�αt+1) + exp (�αt+1) =

= αt+1 + exp (�αt+1) .
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Optimal stopping

αT = 0.

αt = E (max (αt+1, ξt )) =
Z αt+1

0
αt+1dF (x) +

Z ∞

αt+1
xdF (x) =

= αt+1F (αt+1) +
Z ∞

αt+1
xdF (x) .
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Optimal stopping

De�nition
Let Ht � 0 be a set of random payouts. The optimal stopping problem is
to �nd

sup
τ
E (H (τ))

where τ is an arbitrary stopping time. (A discrete random variable τ is a
stopping time if fτ = tg 2 Ft for every t where Ft is the set of
observable events at time t. This means that at every moment of time t
the condition of stopping is known at that moment. We want to exclude
referring for the future in the conditions of stopping.)
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Optimal stopping

With backward iteration one should formulate the variables

Xt $ max (Ht ,E (Xt+1 j Ft )) ,

where E (Xt+1 j Ft ) is the conditional expectation of Xt+1 given
information available at time t.
It is not di¢ cult to show that

Xt = sup
τ�t

E (H (τ) j Ft )

That is Xt is the best what one can get starting at time t. Xt is the same
as the value function in DP.

De�nition
Xt is called the Snell envelope.
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Optimal stopping

Theorem
The optimal strategy is

τ� = min (t j Ht = Xt ) = min (t j Ht � Xt ) =
= min (t j Ht � E (Xt+1 j Ft )) .

The interpretation is quite simple. One must stop (in our case sell) when
one sees that the present payout is better then the expected future payout
given our knowledge at that moment.

Medvegyev (CEU) Mathematics for Economists 2013 95 / 252



Optimal stopping

In our case as the o¤ers are independent so

E (Xt+1 j Ft ) = E (Xt+1)

and the Snell envelope is

Xt = max (Ht ,E (Xt+1)) = max
�

ξt (1+ r)
T�t ,E (Xt+1)

�
=

= max

 
ξt (1+ r)

T�t ,
(1+ r)T�t E (Xt+1)

(1+ r)T�t

!
$

$ (1+ r)T�t max (ξt , αt )

αT $ 0, αt $
E (Xt+1)

(1+ r)T�t
.
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Optimal stopping

Xt
(1+ r)T�t

= max (ξt , αt ) .

Vt (ξt ) $ Xt
(1+ r)T�t

=
(1+ r)T�t max (ξt , αt )

(1+ r)T�t
= max (ξt , αt ) ,

αt $ E (Xt+1)

(1+ r)T�t
=

1
1+ r

E (Xt+1)

(1+ r)T�(t+1)
=
E (Vt+1 (ξ))

1+ r
.

Hence

Vt (ξt ) = max (ξt , αt ) = max
�

ξt ,
E (Vt+1 (ξt ))

1+ r

�
.
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Optimal stopping

Obviously

VT (ξ) = ξ � max
�

ξ,
E (VT�1 (ξ))

1+ r

�
= VT�1 (ξ) ,

With induction

Vt+1 (ξ) = max
�

ξ,
E (Vt+2 (ξ))

1+ r

�
� max

�
ξ,
E (Vt+1 (ξ))

1+ r

�
= Vt (ξ) ,

hence

αt+1 =
E (Vt+2 (ξ))

1+ r
� E (Vt+1 (ξ))

1+ r
= αt .

De�nition
(αn) is the optimal exercise boundary.
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Optimal stopping

If F (x) is the distribution function of (ξn) then the optimal exercise
boundary is

αT = 0,

αt =
E (Vk+1 (ξt ))

1+ r
=
E (max (ξt+1, αt+1))

1+ r
=

=
1

1+ r

�Z αt+1

0
αk+1dF +

Z ∞

αt+1
xdF (x)

�
=

=
1

1+ r

�
αt+1F (αt+1) +

Z ∞

αt+1
xdF (x)

�
.

which is a backward induction for (αt ) .
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Optimal stopping

If (ξn) are uniform on [0.1] then

αT = 0,

αn =
1

1+ r

 
α2n+1 +

�
x2

2

�1
αn+1

!
=

1
1+ r

�
α2n+1 +

1
2
� α2n+1

2

�
=

=
1

2 (1+ r)

�
α2n+1 + 1

�
.

If T = 3 and r = 100% then

α3 = 0, α2 =
1
4
, α1 =

1
4

�
1
16
+ 1
�
=
17
64
.
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Optimal stopping

Example
Buying a stock with independent o¤ers.

The Snell envelope is

XT = HT $ ξT
Xn = min (ξn,E (Xn+1 j Fn))

As the future is independent from the present E (Xn+1 j Fn) = E (Xn+1) .

Xn = min (ξn,E (Xn+1)) ,

hence if αn $ E (Xn+1) then the optimal strategy is

τ� = min fn � 0 j ξn � αng ^ T .

At time T one must buy the stock.. At time T � 1 one must buy it if
ξT�1 is smaller than the expected value. etc.
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Optimal stopping

αT = E (ξT )

αn = αn+1 (1� F (αn+1)) +
Z αn+1

0
xdF (x)

If (ξn) is uniform on [0, 1], then

αT =
1
2

αn = αn+1 (1� αn+1) +
α2n+1
2

= αn+1 �
α2n+1
2
.
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Optimal stopping

Example
Selling stock with recalling prices.

One should solve the problem

Hn $ (1+ r)T�n max
k�n

ξk

XT = HT = max
n�T

ξn = (1+ r)
T�T max

n�T
ξn,

Xn = max (Hn,E (Xn+1 j Fn)) =

= max
�
(1+ r)T�n max

k�n
ξk ,E (Xn+1 j Fn)

�
.
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Optimal stopping

Let

Vn $
Xn

(1+ r)T�n

then

VT = max
n�T

ξn,

Vn = max
�
max
k�n

ξk ,
E (Vn+1 j Fn)

1+ r

�
.
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Optimal stopping

Theorem
If variables ξ and η are independent then one can use the relation

E (f (ξ, η) j ξ = x) = E (f (x , η))

which is the same as

E (f (ξ, η) j ξ) = E (f (x , η))jx=ξ .
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Optimal stopping

As (ξk ) are independent

VT�1 = max
�
max
k�T�1

ξk ,
E (maxn�T ξn j FT�1)

1+ r

�
=

= max
�
max
k�T�1

ξk ,
E (max (maxn�T�1 ξn, ξT ) j FT�1)

1+ r

�
=

= max
�
max
k�T�1

ξk , h
�
max
k�T�1

ξk

��
where

h (x) $ E (max (x , ξT ))
1+ r

.
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Optimal stopping

Let

S $ fx j x � h (x)g $
�
x j x � E (max (x , ξT ))

1+ r

�
Obviously

E (max (x , ξT )) = xF (x) +
Z ∞

x
wdF (w) .

Medvegyev (CEU) Mathematics for Economists 2013 107 / 252



Optimal stopping

S =

�
x j (1+ r) x � xF (x) +

Z ∞

x
wdF (w)

�
=

=

�
x j rx � x (F (x)� 1) +

Z ∞

x
wdF (w)

�
=

=

�
x j rx �

Z ∞

x
(w � x) dF (w)

�
.
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Optimal stopping

The left side is increasing the right side decrasing so S = fx � ag , where
a is the solution of the equation

(1+ r) a = aF (a) +
Z ∞

a
xdF (x) .

One should sell at T � 1 if�
max
n�T�1

ξn 2 S
�
=

�
max
n�T�1

ξn � a
�
,

otherwise one should continue. We show that

τ� = min
�
n j max

k�n
ξk 2 S

�
^ T = min

�
n j max

k�n
ξk � a

�
^ T ,

Medvegyev (CEU) Mathematics for Economists 2013 109 / 252



Optimal stopping

The reason is the one step ahead strategy. We work by induction on T . Let

S (T )n $
n
H (T )n � X (T )n

o
$
n
Hn � X (T )n

o
.

As H (T )n = maxk�n ξk is not changing.with T , but if we increase T then

as HT+1T+1 � HTT therefore obviously X (T )n � X (T+1)n . Therefore

S (T+1)n $
n
H (T+1)n � X (T+1)n

o
=

=
n
H (T )n � X (T+1)n

o
�
n
H (T )n � X (T )n

o
= S (T )n

One must prove that S (T )n � S (T+1)n .
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Optimal stopping

As we have already seen if T = n+ 1, then S (T )n = fmaxk�n ξk � ag .
Now let T = n+ 2 that is two periods are still ahead. We must show that

Sn = S
(T )
n � S (T+1)n .

Vn $ max
�
max
k�n

ξk ,
E (Vn+1 j Fn)

1+ r

�
=

= max

0@max
k�n

ξk ,
E
�
max

�
maxk�n+1 ξk ,

E(Vn+2 jFn+1)
1+r

�
j Fn

�
1+ r

1A .
As

max
k�n+1

ξk � maxk�n
ξk � a

using the induction hypothesis that if one periods left then the
fx j x � ag is the stopping region

max
�
max
k�n+1

ξk ,
E (Vn+2 j Fn+1)

1+ r

�
= max

k�n+1
ξk .
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Optimal stopping

Substituting back and recalling that

h (x) $ E (max (x , ξT ))
1+ r

=
E (max (η, ξT ) j η =x)

1+ r

On the set
Sn = S

(T )
n = fmaxk�n ξk � ag = fmaxk�n ξk � h (maxk�n ξk )g

Vn = max
�
max
k�n

ξk ,
E (maxk�n+1 ξk j Fn)

1+ r

�
=

= max
�
max
k�n

ξk ,
E (max (maxk�n ξk , ξn+1) j Fn)

1+ r

�
$

$ max
�
max
k�n

ξk , h
�
max
k�n

ξk

��
= max

k�n
ξk ,

So S (T )n � S (T+1)n hence the set fHn � Xng is independent of the number
of periods left.
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Homework

1 Calculate the optimal strategy for stock selling if T = 4, r = 0 and
the distribution of the price is the uniform distribution on [0, 1] .

2 Calculate the optimal strategy for stock selling if T = 4, r = 0 and
the distribution of the price is the uniform distribution on [0, 2] .

3 Calculate the optimal strategy for stock selling if T = 3, r = 1 and
the distribution of the price is the distribution of the dice rolling.

4 Calculate the optimal strategy for buying a stock if T = 4 and the
distribution of the price is the uniform distribution on [0, 1] .
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Stochastic dynamic programming

De�nition
Stochastic dynamic programming problem on �nite time horizon is

E

 
g (xT ) +

T�1
∑
k=0

uk (xk , uk , ξk )

!
! max

xk+1 = fk (xk , uk , ξk ) , uk 2 Uk (xk ) , k = 0, 1, . . . ,T � 1
x0 = a;

The value of the optimum is J (x0) .
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Stochastic dynamic programming

The dynamic programming algorithm is

JN = g (xT )

Jk (xk ) = max
uk2Uk

E (uk (xk , uk , ξk ) + Jk+1 (xk+1) j Fk )

= max
uk2Uk

E (uk (xk , uk , ξk ) + Jk+1 (f (xk , uk , ξk )) j Fk ) .

This is a principle and not a general theorem. The usual interpretation of
the conditional expectation is that we know the value of ξ0, ξ1, . . . , ξk and
consider their values s0, s1, . . . , sk as a parameter of the optimization in
stage k + 1. To simplify the problem one generally assumes that to solve
the k-th problem it is su¢ cient to know xk , including the determination of
the distribution of ξk+1, that is the distribution of ξk+1 depends only on
xk . This is the Markovian assumption about the random factor.
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Stochastic dynamic programming

In the �rst optimal stopping problem above introduce a special state x�

fk (xk , uk , ξk ) $

8<:
x� if xk = x�

x� if xk 6= x�, uk = stop
ξk otherwise

g (xT ) $
�
xT if xT 6= x�
0 otherwise

uk (xk , uk , ξk ) $
�

ξk (1+ r)
T�k if xk 6= x�, uk = stop

0 otherwise

U (xk ) $
�

∅ if xk = x�

fstop,continueg otherwise
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Stochastic dynamic programming

In the optimal stopping problem

JT = HT

Jn�1 = max
�

Hn�1 if uk = stop
E (Jn (f (xk , uk , ξk )) j Fn�1) otherwise

.
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Liquidity modelling

There is a demand D for liquid resources, cash or euro in a bank or in a
teller machine, with distribution function F . There are two costs: h is the
holding cost and p is the penalty for not satisfying the demand. What is
the level of optimal supply S�? Our goal function is

J (S) = h � E
�
(S �D)+

�
+ p � E

�
(D � S)+

�
.

If there is a density function then

E
�
(D � S)+

�
=
Z ∞

S
(x � S) f (x) dx

E
�
(S �D)+

�
=

Z
R
(S � x)+ dF (x) =

Z
R
(S � x)+ f (x) dx =

=
Z S

0
(S � x) f (x) dx .
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Liquidity modelling

Hence

J (S) = h
Z S

0
(S � x) f (x) dx + p

Z ∞

S
(x � S) f (x) dx .

Using the formula

d
dx

Z ϕ2(x )

ϕ1(x )
f (x , y) dy = f (x , ϕ2 (x)) ϕ02 (x)�

�f (x , ϕ1 (x)) ϕ01 (x) +

+
Z ϕ2(x )

ϕ1(x )

∂

∂x
f (x , y) dy

dJ
dS

= h (S � S) + h
Z S

0
1 � f (x) dx +

�p (S � S) + p
Z ∞

S
�1 � f (x) dx .
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Liquidity modelling

Setting the derivative to zero

0 = h
Z S

0
1 � f (x) dx � p

Z ∞

S
1 � f (x) dx =

= hF (S)� p (1� F (S)) .

Solving it for S

(h+ p) F (S) = p, F (S�) =
p

h+ p
.
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Liquidity modelling

Assume that there is some ordering cost c . In this case

J (S) = cS + h � E
�
(S �D)+

�
+ p � E

�
(D � S)+

�
.

Calculating the derivative

c + hF (S)� p (1� F (S)) = 0.

Solving the equation

c � p + F (S) (h+ p) = 0, F (S�) =
p � c
p + h

.
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Liquidity modelling

If the distribution of D is discrete, D = 0, 1, . . . . then one must change
the argument.

E (D � S)+ =
∞

∑
k=S

P (D > k) ,

E (S �D)+ =
S�1
∑
k=0

P (D � k) .

Let

∆J (S) = J (S + 1)� J (S) =

= h
S

∑
k=0

P (D � k) + p
∞

∑
k=S+1

P (D > k)�

�h
S�1
∑
k=0

P (D � k)� p
∞

∑
k=S

P (D > k) .
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Liquidity modelling

∆J (S) = hP (D � S)� pP (D > S) =
= h (1�P (D > S))� pP (D > S) =
= h� (h+ p)P (D > S) .

Obviously if S = 0 then ∆J (S) = h� (h+ p)P (D > 0) . Also
limS%∞ ∆ (J (S)) = h > 0, and the expression is not decreasing when S is
increasing. So the optimal, minimum, solution is

S� = min (S j ∆J (S) � 0) = min (S j J (S + 1) � J (S)) ,
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Liquidity modelling

S� = min fS j h� (h+ p)P (D > S) � 0g =

= min
�
S j P (D > S) � h

h+ p

�
=

= min
�
S j 1�P (D � S) � h

h+ p

�
=

= min
�
S j P (D � S) � p

h+ p

�
=

= min fS j P (D � S) � αg .

Observe that one must cumulate until we �rst time hit the level α.
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Liquidity modelling

What does happen in a dynamic environment? The state equation is

yt+1 = (yt + v �Dt )+ , y0 = x ,

where v is the control variable giving the amount of liquid resources
ordered at time t and Dn is the random demand at time t and x is the
starting value of the liquid resource.

l (x , v) $ cv + hx + p � E
�
(D � (x + v))+

�
=

= cv + hx + p
�Z ∞

x+v
(z � (x + v)) dF (z)

�
.

J (x ,V ) =
∞

∑
n=0

βn l (yn, vn) .
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Liquidity modelling

Theorem
If p > c , then there is an optimal strategy v � such that

v � (x) =
�
S� � x if x � S�
0 if x > S�

.

The optimal value of S� satis�es:

F (S�) = 1� F (S�) = c (1� β) + βh
p � βc + βh

.

That is
F (S�) =

p � c
p + β (h� c) .

Compare with the static solution

F (S�) =
p � c
p + h

.
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Liquidity modelling

Example
Let the distribution of D exponential with λ = 2. Let the penalty p = 3
and the holding cost h = 5 and let c = 1. In the static model

F (S�) = 1� exp (�2S�) = 3� 1
3+ 5

=
2
8
=
1
4
.

exp (�2S�) =
3
4
,S� = �1

2
log
�
3
4

�
= 0, 143 84.

Now let β = 1/2. In this case

F (S�) = 1� exp (�2S�) = 3� 1
3+ 1

2 (5� 1)
=
2
5
.

exp (�2S�) =
3
5
,S� = �1

2
log
�
3
5

�
= 0, 255 41
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In�nite dynamic programming

Problem
The problem

∞

∑
t=1

βt�1r (st , at )! max

st+1 = f (st , at ) , t = 1, 2, . . .
at 2 Φ (st ) , t = 1, 2, . . .

is called stationary dynamic programming.
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In�nite dynamic programming

1 r (s, a) is bounded and continuous.
2 f (s, a) is continuous.
3 Φ is continuous and compact valued.
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In�nite dynamic programming

Theorem
Under the above conditions there is a stationary optimal strategy π. The
value function solves the Bellman equation:

V (s) = max
a2Φ(s)

(r (s, a) + βV (f (s, a))) .

As r is bounded the value function is also bounded and if a bounded
function solves the equation then it is the value function of the problem.

De�nition
A Markovian strategy is stationary if it is independent of the time
parameter t.
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In�nite dynamic programming

Sometimes the assumption that r is bounded too strong.

Theorem
If V is an optimal solution then it satis�es the Bellman equation. If V is a
solution of the Bellman equation and for any feasible path βnV (xn)! 0
then V is the optimal solution.
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In�nite cake eating problem

The in�nite cake eating problem is

∞

∑
t=0

βtu (ct )! max

wt+1 = wt � ct , t = 0, 1, . . .
ct 2 [0,wt ] , t = 0, 1, . . .

w0 is given.
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In�nite cake eating problem

By the Bellman equation

V (w) = max
c2[0,w ]

(u (c) + βV (w � c)) =

= max
s2[0,w ]

(u (w � s) + βV (s)) .

The condition on optimality is

u0 (c�) = βV 0 (w � c�)

or
u0 (w � s�) = βV 0 (s�) .

How we can calculate V 0 (u)?
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In�nite cake eating problem

Again we will use the Envelope Theorem. We use the second formulation

V 0 (w) = u0 (w � s�) = u0 (c (w)) .
V 0 (w � c (w)) = u0 (c (w � c (w))) ,

where c (w) is the optimal consumption at w . Hence the Euler equation

u0 (c (w)) = βu0 (c (w � c (w))) .

If π is the stationary policy function which gives the consumption at cake
size w then

u0 (π (w)) = βu0 (π (w � π (w))) .
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In�nite cake eating problem

Example

Solve the problem with u (c) = c1�σ

1�σ

We guess that V (x) = α x
1�σ

1�σ and the optimal policy is π (x) = λx , with
0 < λ < 1.

α
w1�σ

1� σ
= max

c2[0,w ]

�
c1�σ

1� σ
+

βα

1� σ
(w � c)1�σ

�
.

Di¤erentiating

c�σ + βα (w � c)�σ (�1) = 0, (βα)�1/σ (w � c) = c

(βα)�1/σ w = c
�
1+ (βα)�1/σ

�
c =

(βα)�1/σ

1+ (βα)�1/σ
w =

w

1+ (βα)1/σ
= λw
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In�nite cake eating problem

Substituting back

α
w1�σ

1� σ
=

(λw)1�σ

1� σ
+

βα

1� σ
((1� λ)w)1�σ

α = λ1�σ + βα (1� λ)1�σ
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In�nite cake eating problem

If

α =
�
1� β1/σ

��σ

λ = 1� β1/σ

then�
1� β1/σ

��σ
=

�
1� β1/σ

�(1�σ)
+ β

�
1� β1/σ

��σ
β(1�σ)/σ =

=
�
1� β1/σ

�(1�σ)
+
�
1� β1/σ

��σ
β1/σ =

=
�
1� β1/σ

��σ �
1� β1/σ + β1/σ

�
hence (α,λ) solves the equation.
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In�nite cake eating problem

Obviously
lim
n!∞

βnV (cn) = 0

so this is the optimal solution.
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In�nite cake eating problem

Example

Solve the problem if u (c) = ln c .

In this case we guess that V (w) = A+ B lnw . Hence

A+ B lnw = max
s2[0,w ]

(ln (w � s) + β (A+ B ln (s))) .

The �rst order condition

1
w � s� (�1) + βB

1
s�
= 0

�s� + βB (w � s�)
(w � s�) s� = 0

βB (w � s�) = s�

s� =
βB

1+ Bβ
w ,) c (w) =

w
1+ Bβ
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In�nite cake eating problem

A+ B lnw = ln
�
w � βB

1+ Bβ
w
�
+ β

�
A+ B ln

βB
1+ Bβ

w
�

A+ B lnw = ln
�

w
1+ Bβ

�
+ β

�
A+ B ln

βB
1+ Bβ

w
�

A+ B lnw = lnw � ln (1+ Bβ) + βA+ βB ln
βB

1+ Bβ
+ βB lnw

A+ B lnw = � ln (1+ Bβ) + βA+ βB ln
βB

1+ Bβ
+ (1+ βB) lnw
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In�nite cake eating problem

As it holds for any w

B = 1+ βB, ) B =
1

1� β
.

π (w) = c (w) =
w

1+ β
1�β

=
w (1� β)

1� β+ β
= w (1� β) .

For

A = � ln (1+ Bβ) + βA+ βB ln
βB

1+ Bβ

Medvegyev (CEU) Mathematics for Economists 2013 141 / 252



In�nite cake eating problem

βn ln (cn) � βn ln (w)! 0.

hence we can just prove that

lim sup
n!∞

βnV (cn) = 0
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In�nite cake eating problem

One can generalize the problem like we want to calculate

T

∑
t=0

βtF (t, xt , xt+1)! max

where x0 is given and T � ∞. If it is maximal and the optimum is at an
interior point then using that the same variable xt+1 appears in two terms

βt
∂F

∂xt+1
(t, xt , xt+1) + βt+1

∂F
∂xt

(t, xt+1, xt+2) = 0.

This is a second order di¤erential equation called Euler equation. If
T < ∞ then we also have that

FxT+1 (t, xT , xT+1) = 0.

In this case one can solve this equation with backward induction.
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In�nite cake eating problem

In the cake eating problem with u (x) = ln x

T

∑
t=0

βt ln (xt+1 � xt )! max, x0 = w .

Di¤erentiating with respect to xt+1

βt
1

xt+1 � xt
+ βt+1

1
xt+2 � xt+1

(�1) = 0

1
ct
= β

1
ct+1

.
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Homework

1 Solve the consumption optimization problem with u (c) = cα, α > 0.
Consider the cases α < 1, α = 1, α > 1.

2 Solve the following problem with constrained optimization and with
dynamic programming where st > 0 and c > 0 are constants:

T

∑
t=1
sta2t ! max .

T

∑
t=1
at = c , at � 0.

3 Solve the following problems with constrained optimization and with
dynamic programming where δt > 0 and c > 0 are constants:

T

∑
t=1
aδt
t ! max,

T

∑
t=1
at = c , at � 0.

4 Solve the following problems with constrained optimization and with
dynamic programming

T

∏
t=1
at ! max .

T

∑
t=1
at = c , at � 0.
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A typical example

Z T

0
exp (�rt)U (C (t)) dt ! max

K 0 (t) = F (K (t))� C (t)� bK (t)
K (0) = K0,K (T ) � 0,C (t) � 0

is an optimal control problem. First two lines are always there the third
line, the boundary conditions, has many variations. The boundary
conditions are very important!
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A typical example

One should be careful asZ T

0
exp (�rt)U (C (t)) dt ! max

K 0 (t) = F (K (t))� C (t)� bK (t)
K (0) = K0,K (t) � 0,C (t) � 0.

is more di¢ cult. It is an optimal control problem with path restrictions.
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A typical example

One should be careful asZ T

0
exp (�rt)U (C (t)) dt ! max

K 0 (t) = F (K (t))� C (t)� bK (t)
K (0) = K0,C (t) � 0.

is much easier. This is the simplest optimal control problem.
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Calculus of variations

If we drop C (t) � 0 and reformulate asZ T

0
exp (�rt)U

�
F (K (t))� bK (t)�K 0 (t)

�
dt

K (0) = K0

we get a calculus of variation problem.
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Calculus of variations

Z b

a
F
�
t, x ,

�
x
�
dt ! max

min

x (a) = xa, x (b) = xb

Let y be an arbitrary function, called variation, with y (a) = y (b) = 0. Let

ψ (λ) $
Z b

a
F
�
t, x (t) + λy (t) ,

�
x (t) + λ

�
y (t)

�
dt

If x is an optimal function then by Fermat�s principle ψ0 (0) = 0.
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Calculus of variations

0 = ψ0 (0) $ d
dλ

Z b

a
F
�
t, x (t) + λy (t) ,

�
x (t) + λ

�
y (t)

�
dt =

=
Z b

a

d
dλ
F
�
t, x (t) + λy (t) ,

�
x (t) + λ

�
y (t)

�
dt =

=
Z b

a
F 0xy + F

0
�
x

�
ydt $

$
Z b

a
q (t) y (t) + p (t)

�
y (t) dt.
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Calculus of variations

Integrating by parts and using that y (a) = y (b) = 0

0 =
Z b

a
q (t) y (t) + p (t) y 0 (t) dt =

=
Z b

a
q (t) y (t) dt +

Z b

a
p (t) y 0 (t) dt =

=
Z b

a
q (t) y (t) dt + [p (t) y (t)]ba �

Z b

a
p0 (t) y (t) dt =

=
Z b

a
q (t) y (t) dt �

Z b

a
p0 (t) y (t) dt =

=
Z b

a

�
q (t)� p0 (t)

�
y (t) dt.
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Calculus of variations

As it is true for any variation y one has that

q (t)� p0 (t) = 0,

that is

F 0x
�
t, x (t) ,

�
x (t)

�
� d
dt
F 0�
x

�
t, x (t) ,

�
x (t)

�
= 0,

where F 0x and F
0
�
x
are the partial derivative of F

De�nition
This is the so-called the Euler�Lagrange di¤erential equation.
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Calculus of variations

ϕa (x (a)) + ϕb (x (b)) +
Z b

a
F
�
t, x ,

�
x
�
dt ! max

min

The argument is very similar. Now let y be an arbitrary (di¤erentiable)
function and let

ψ (λ) $ ϕa (x (a) + λy (a)) + ϕb (x (b) + λy (b)) +

+
Z b

a
F
�
t, x (t) + λy (t) ,

�
x (t) + λ

�
y (t)

�
dt.

If the function x is optimal then by Fermat�s principle ψ0 (0) = 0.

Medvegyev (CEU) Mathematics for Economists 2013 154 / 252



Calculus of variations

0 = ψ0 (0) = ϕ0a (x (a)) y (a) + ϕ0b (x (b)) y (b) +
Z b

a
F 0xy + F

0
�
x

�
ydt.

Again integrating by partsZ b

a
F 0�
x

�
ydt =

h
F 0�
x
y
ib
a
�
Z b

a

d
dt
F 0�
x
ydt =

= F 0�
x
y (b)� F 0�

x
y (a)�

Z b

a

d
dt
F 0�
x
ydt.

Hence

0 =
Z b

a

�
F 0x �

d
dt
F 0�
x

�
ydt+

+
�

ϕ0b (x (b)) + F
0
�
x

�
b, x (b) ,

�
x (b)

��
y (b) +

+
�

ϕ0a (x (a))� F 0�x
�
a, x (a) ,

�
x (a)

��
y (a) .
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Calculus of variations

As y is an arbitrary function, hence y (b) and y (a) is also arbitrary, so if x
is an optimal solution then

F 0x
�
t, x (t) ,

�
x (t)

�
=

d
dt
F 0�
x

�
t, x (t) ,

�
x (t)

�
ϕ0b (x (b)) = �F 0�

x

�
b, x (b) ,

�
x (b)

�
ϕ0a (x (a)) = F 0�

x

�
a, x (a) ,

�
x (a)

�
De�nition
The last two conditions are called the transversality conditions.
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Calculus of variations

Example
Solve the problem

Z 2

0
(4� 3x2 � 16

.
�
x � 4�x

2
)e�tdt ! max

x (0) = �8/3, x (2) = 1/3

In this case
F (t, x ,

.
x) = (4� 3x2 � 16�x � 4�x

2
)e�t

F 0x = �6xe�t ,F 0�x =
�
�16� 8�x

�
e�t .
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Calculus of variations

The Euler�Lagrange equation is

�6xe�t =
d
dt

�
�16� 8�x

�
e�t =

= e�t (�1)
�
�16� 8�x

�
+ e�t

�
�8��x

�
Simplifying

��
x �

.
�
x � 3

4
x = 2.

x (0) = �8/3, x (2) = 1/3.
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Calculus of variations

The characteristic equation is λ2 � λ� 3/4 = 0. The roots are
λ1 = �1/2,λ2 = 3/2. The x � �8/3 is a particular solution so the
general solution is

C1 exp
�
�1
2
t
�
+ C2 exp

�
3
2
t
�
� 8
3
.

Using the boundary conditions

C1 = �
3

e3 � e�1 ,C2 =
3

e3 � e�1
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Calculus of variations

Example
On what curve can the functionalZ 2

1

��
x
�2
� 2txdt, x (1) = 0, x (2) = �1

attain an extremum.

The kernel function is F
�
t, x ,

�
x
�
=
��
x
�2
� 2tx . The partial derivatives

F 0x = �2t, F 0�
x
= 2

�
x

The Euler�Lagrange equation is

�2t = d
dt
2
�
x = 2

��
x ,

��
x = �t

The solution is
�
x (t) = �t2/2+ c1, x (t) = �

t3

6
+ c1t + c2.
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Calculus of variations

The boundary conditions are

0 = �1
6
+ c1 + c2

�1 = �8
3
+ 2c1 + c2

that is
c1 + c2 =

1
6
, 2c1 + c2 =

2
6���� 1 1

2 1

���� = �1, ���� 1/6 1
2/6 1

���� = �1/6,
���� 1 1/6
2 2/6

���� = 0
hence c1 = 1/6, c2 = 0. The kernel is convex in

�
x ,
�
x
�
so it is a minimum.
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Calculus of variations

Example
Find the extremal of the functionalZ 3

1
(3t � x) xdt, x (1) = 1, x (3) = 4

1
2
.

The kernel function is

F
�
t, x ,

�
x
�
= (3t � x) x .

F 0x = 3t � 2x ,F 0�x = 0.

The Euler�Lagrange equation is 3t � 2x = 0, so x = 3/2t. But at t = 1
x (1) = 3/2 the �rst boundary condition is not valid. Hence there is no
extremal solution.
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Calculus of variations

Example
Find the extremal solutions ofZ 1

0
exp (x) + t

�
xdt, x (0) = 0, x (1) = α.

The Euler�Lagrange equation is

exp (x) =
d
dt
t = 1.

If α = 0 then x (t) = 0 is a solution, otherwise there is no solution. As the
kernel is a convex function, if there is an extremal solution then it is a
minimum.
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Calculus of variations

Example
Find the extremal of the functionalZ 2π

0

�
x
2
(t)� x2 (t) dt, x (0) = x (2π) = 1.

The kernel function is

F
�
t, x ,

�
x
�
=

�
x
2
� x2.

F 0x
�
t, x ,

�
x
�
= �2x ,F 0�

x

�
t, x ,

�
x
�
= 2

�
x .

The Euler�Lagrange equation is

�2x = d
dt
2
�
x ,) ��

x + x = 0.

which has the general solution x (t) = c1 cos t + c2 sin t. Putting the
boundary conditions the extremal solutions are of the form

x (t) = cos t + c sin t.
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Calculus of variations

Example
Find Z 1

0

r
1+

��
x
�2
dt ! min

x (0) = 0, x (1) = 1.

The kernel function is

F
�
t, x ,

�
x
�
=

r
1+

��
x
�2

The Euler�Lagrange equation is

0 =
d
dt
1
2

1r
1+

��
x
�2 2�x
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Calculus of variations

c =
�
xr

1+
��
x
�2

c2
�
1+

��
x
�2�

=
��
x
�2

�
1� c2

� ��
x
�2
= c2

�
x = C ) x = Ct + B.

Using the initial conditions x (t) = t.
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Calculus of variations

We show that the kernel is convex.

d
dx

p
1+ x2 =

xp
x2 + 1

d2

dx2
p
1+ x2 =

p
x2 + 1� x xp

x 2+1

x2 + 1
=

x 2+1�x 2p
x 2+1

x2 + 1
=

=
1

(x2 + 1)
p
1+ x2

> 0.

Hence the solution is a minimum.
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Calculus of variations

Example
Find the extremal Z 1

0
y
�
y 0
�2 dx , y (0) = 1, y (1) = 3

p
4

The Euler-Lagrange equation is�
y 0
�2

= 2
d
dx

�
yy 0
�
= 2

�
y 0
�2
+ 2yy 00

2yy 00 +
�
y 0
�2

= 0.
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Calculus of variations

It is a second order non-linear equation. In this case one can try to
substitute u = y 0 and assume that y 0 depends on x just via y . Then

y 00 (x) =
d
dx
y 0 (x) =

d
dx
u (y (x)) =

d
dy
u (y (x))

d
dx
y (x)

=
d
dy
u (y (x)) u (y (x)) .
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Calculus of variations

Using this

2yy 00 +
�
y 0
�2

= 0

2y
du
dx
+
�
y 0
�2

= 0

2y (x)
d
dy
u (y (x))

d
dx
y (x) + u2 (x) = 0

2y (x)
d
dy
u (y (x)) u (y (x)) + u2 (y (x)) = 0.
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Calculus of variations

First we solve the equation

2yu (y)
d
dy
u (y) + u2 (y) = 0.

If u (y) = 0 then y 0 (x) = 0 then y (x) is a constant which is not a
solution. We can simplify by u

2y
du
dy
+ u = 0,

1
u
du = � 1

2y
dy

ln u =
�1
2
ln y + c

u = c
1p
jy j
, y 0 = c

1p
jy j
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Calculus of variations

This is again an equation with separable variables

c
q
jy jdy = dx

c1 jy j3/2 = x + c2

y = c3
3
q
(x + c2)

2, y (0) = 1, y (1) = 3
p
4

1 = c3
3
q
c22 ,

3
p
4 = c3

3
q
(1+ c2)

2

There are two solutions

c3 = c2 = 1, y =
3
q
(x + 1)2

c3 = 3
p
9,c2 = �

1
3
, y = 3

p
9 3

s�
x � 1

3

�2
=

3
q
(3x � 1)2.
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Calculus of variations

Example
Find the extremal ofZ e

1
x
�
y 0
�2
+ yy 0dx , y (1) = 0, y (e) = 1.

The Euler�Lagrange equation is

y 0 =
d
dx

�
x2y 0 + y

�
= 2y 0 + x2y 00 + y 0

0 = y 0 + xy 00.
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Calculus of variations

Again introduce u = y 0. (It is always working when y is missing.) Then

0 = u + xu0.

�1
x
dx =

1
u
du

� ln jx j = ln juj+ c
c
x

= u = y 0

y = c1 ln x + c2

Using the initial conditions the extremal solution is y = ln x .
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Calculus of variations

Example
Find the extremal solution ofZ b

a
y +

(y 0)3

3
dx

The Euler�Lagrange equation is

1 =
d
dx

�
y 0
�2
, x + c =

�
y 0
�2
,

y 0 = �
p
x + c .

As there are no boundary conditions

0 = �F 0y 0
�
b, y (b) , y 0 (b)

�
=
�
y 0
�2
= b+ c

0 = F 0y 0
�
a, y (a) , y 0 (a)

�
=
�
y 0
�2
= a+ c

Which has no solution, hence there are no extremal solutions.
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Calculus of variations

Example

2π
Z T

0
x (t)

r
1+

��
x
�2
dt ! min

x (0) = a, x (T ) = b

The kernel is

F
�
t, x ,

�
x
�
= x

r
1+

��
x
�2

The Euler�Lagrange isr
1+

��
x
�2
=
d
dt

x
�
xr

1+
��
x
�2
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Calculus of variations

r
1+

��
x
�2

=

r
1+

��
x
�2 �

x
�
x
�0
�
 r

1+
��
x
�2!0

x
�
x

1+
��
x
�2

r
1+

��
x
�2

=

r
1+

��
x
�2 ���

x
�2
+ x

��
x
�
� 2

�
x
��
x

2

r
1+
��
x
�2 x �x

1+
��
x
�2

1+
��
x
�2

=

�
1+

��
x
�2����

x
�2
+ x

��
x
�
� x

��
x
�2 ��
x

1+
��
x
�2 =
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Calculus of variations

1+
��
x
�2

=

��
x
�2
+ x

��
x +

��
x
�4
+ x

��
x
��
x
�2
� x

��
x
�2 ��
x

1+
��
x
�2 =

1+
��
x
�4
+ 2

��
x
�2

=
��
x
�2
+ x

��
x +

��
x
�4

Which simpli�es to

1 = x
��
x �

��
x
�2
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Calculus of variations

It is a non-linear equation. Assume that x 0 depends only on x and not on
t. Let u = x 0, x 00 = d

dt u
0 = du/dx � dx/dt = du/dx � u

1 = xu
du
dx
� u2

1+ u2

u
= x

du
dx

1
2

2u
u2 + 1

du =
1
x
dx

ln
p
1+ u2 = ln [x j+ C ,

p
1+ u2 = Cx

xq
1+

�
x
2
= C
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Calculus of variations

��
x
�2
=
x2

C 2
� 1

Writing back to the Euler�Lagrange

x
��
x �

�
x2

C 2
� 1
�
� 1 = 0

x
��
x =

x2

C 2
��
x =

x
C 2
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Calculus of variations

The general solution is

x (t) = A exp (�t/C ) + B exp (+t/C )

Writing back again to Euler-Lagrange

4AB = C 2

x = α � ch
�
t � β

α

�
where ch (t) = (exp (t) + exp (�t)) /2.
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Calculus of variations

2π
Z T

0
x (t)

r
1+

��
x
�2
dt ! min

x (0) = a

The solution of the Euler�Lagrange equation is still of the form

x (t) = α � ch
�
t � β

α

�
but we should also have the condition x (0) = a and the transversality

0 = ϕ0b (x (b)) = �F 0�x
�
b, x (b) ,

�
x (b)

�
=

� x (T )
�
x (T )r

1+
��
x (T )

�2 .
That is x (T ) or

�
x (T ) is zero which is impossible for function ch (t) ..
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Calculus of variations

Example
Solve the problem Z 1

0
t
�
x +

��
x
�2
dt ! min, x (0) = 1.

The Euler�Lagrange is

0 = F 0x =
d
dt
F 0�
x
=
d
dt

�
t + 2

�
x
�
= 1+ 2

��
x .

C = t + 2 � �x , x (0) = 1

�
x =

C
2
� t
2
, x (0) = 1

x (t)� 1 = C
2
t � t

2

4
.

x (t) = � t
2

4
+
C
2
t + 1
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Calculus of variations

The transversality condition is

0 = �F 0�
x

�
1, x (1) ,

�
x (1)

�
= �

�
t + 2

�
x
�
(1) =

= �
�
1+ 2

�
� t
2
+
C
2

��
(1) = �

�
1� 2

�
1
2
+
C
2

��
that is C = 0.
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Calculus of variations

Theorem

If the kernel function F
�
t, x ,

�
x
�
is convex in

�
x ,
�
x
�
then every solution of

the Euler�Lagrange equation is a global minimum.

Let x� be a solution of the equation. Let Ψ (y) be the value of the
functional at y . For every y the variation

ψ (λ) = Ψ (x� + λ (y � x�)) = Ψ ((1� λ) x� + λy) =

=
Z b

a
L
�
t, (1� λ) x� + λy , (1� λ)

�
x
�
+ λ

�
y
�
�

� (1� λ)
Z b

a
L
�
t, x�,

�
x
��
+ λ

Z b

a
L
�
t, y ,

�
y
�
=

= (1� λ)ψ (0) + λψ (1) .
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Calculus of variations

Hence ψ is convex. on the real line. As x� satis�es the Euler-Lagrange
equation ψ0 (0) = 0 and as ψ is convex ψ has a minimum at λ = 0, so

Ψ (x�) = ψ (0) � ψ (1) = Ψ (y)

for every y , which proves the theorem.
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Calculus of variations

Example

Study the problem with kernel F
�
t, x ,

�
x
�
=

r
1+

��
x
�2
.

This is a convex function as

d
du

p
1+ u2 =

up
1+ u2

d2

du2
p
1+ u2 =

1
p
1+ u2 � u up

1+u2

1+ u2
=

=

1+u2�u2p
1+u2

1+ u2
=

1

(1+ u2)3/2 > 0.
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Calculus of variations

Example
Study the problem with kernel

F
�
t, x ,

�
x
�
= x

r
1+

��
x
�2

This a product of two convex functions.

det (H � λI ) =

��������
�λ

�
x/

r
1+

��
x
�2

�
x/

r
1+

��
x
�2

x/
�
1+

��
x
�2�3/2

� λ

��������
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Calculus of variations

λ2 � λx�
1+

��
x
�2�3/2 �

��
x
�2

1+
��
x
�2

x�
1+

��
x
�2�3/2 �

vuuuuut x2�
1+

��
x
�2�3 + 4

��
x
�2

1+
��
x
�2

so the roots are positive and negative, so the function F
�
t, x ,

�
x
�
is not

convex in
�
x ,
�
x
�
.
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Homework

Analyze the problemsZ 1

0
x2 +

��
x
�2
dt ! min

max
, x (0) = x (1) = 0.

Analyze the problemsZ T

0
U
�
c � �

xert
�
dt, x (0) = x0, x (T ) = 0

where c and r and x0 are positive constants, U is a continuously
di¤erentiable function.

Solve the above problem if U (z) = �ezv/v where v is a positive
constant.
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Homework

Solve the problemZ T

0
e�t/4 ln

�
2K �

�
K
�
dt ! max, K (0) = K0,K (T ) = KT .

Solve the problemZ T

0
e�t/10

 
1
100

tK �
� �
K
�2!

dt ! max, K (0) = 0,K (T ) = S .

Solve the problemZ 1

0
1� x2 �

��
x
�2
dt ! max, x (0) = 1.

Solve the problemZ 1

0
1� x2 �

��
x
�2
dt ! max, x (1) = 1.
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Homework

Find the general solution of the Euler�Lagrange equation of the
functional Z b

a

��
x
�2
t3

dt

where a > 0.
Find the general solution of the Euler�Lagrange equation of the
functionals Z b

a

p
t

r
1+

��
x
�2
dtZ b

a
t

r
1+

��
x
�2
dt

Find the extremal solutionsZ 3

2
x2
�
1� �

x
�2
dx , x (2) = 1, x (3) =

p
3.
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Homework

Find the extremal solutionsZ b

a
xy 0 +

�
y 0
�2 dx

Find the extremal solutionsZ π

0
4x cos t +

�
x
2
� x2dt, x (0) = x (π) = 0.

Show that the linear functionalZ b

a
a (t)

�
x (t) + b (t) x (t) + c (t) dt,

where b and c are continuous and a 6= 0 is continuously di¤erentiable
has no extremal solution.
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Optimal control

De�nition
The problem Z t1

t0
f (t, x (t) , u (t)) dt ! max

�
x (t) = g (t, x (t) , u (t)) , x (t0) = x0

u (t) 2 U,

is called the optimal control problem. The variable x (t1) can be �xed or
free. The set U is called the control region.
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Optimal control

Example
The problem Z t1

t0
f (t, x (t) , u (t)) dt ! max

�
x (t) = u (t) , x (t0) = x0, x (t1) = x1, u (t) 2 [0, 1]

is an optimal control problem. Observe that in this case there is a
restriction on

�
x . The control region is U = [0, 1] .
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Optimal control

De�nition
The expression

H (t, x , u, p) = f (t, x , u) + p � g (t, x , u)

is called the Hamiltonian. The variable p is called the adjoint or co-state
variable. In some problems

H (t, x , u, p) = p0 � f (t, x , u) + p � g (t, x , u)

and it is possible that p0 = 0.
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Optimal control

Theorem (Maximum principle)

If an (x� (t) , u� (t)) is an optimal solution of the problem then there is
some adjoint function p (t) such that u� (t) is maximizes the Hamiltonian
at x� (t)

u 7! H (t, x� (t) , u, p (t)) , u 2 U.
The adjoint function solves the di¤erential equation

d
dt
p (t) = �H 0x (t, x� (t) , u� (t) , p (t))

with some further conditions on the values of p at the time t1 depending
on the boundary conditions on x (t1) . This further conditions on p are
called the transversality conditions:

1 x (t1) = x1 �xed then there is no restriction on p (t1) ,
2 x (t1) is free, in this case p (t1) = 0.
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Optimal control

Theorem (Mangasarian)

If U is a convex set and H (t, x , u, p (t)) is concave in (x , u) then the
solution of the Maximum Principle above (x� (t) , u� (t)) is an optimal
solution of the problem.

Theorem (Arrow)
Let bH (t, x , p) $ max fH (t, x , u, p) j u 2 Ug
assuming that the maximum is attained. If bH (t, x , p (t)) is concave in x
then if (x� (t) , u� (t)) is a solution of the Maximum Principle above then
(x� (t) , u� (t)) solves the optimization problem.
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Optimal control, regularity

Example
Solve the problem Z T

0
udt ! max

�
x = u2, x (0) = x (T ) = 0.

As
�
x � 0 and x (0) = x (T ) = 0 the only feasible solution is u = 0, so

there is an optimal solution. If p0 6= 0 then the Hamiltonian is
H = u + pu2. As there is no restriction on u at the maximum

0 = Hu = 1+ 2pu,

which is not satis�ed by u = 0. If H = p0 � u + p � u2 then

Hu = p0 + 2pu

is satis�ed by u = 0 if p0 = 0 and p is arbitrary.
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Optimal control, regularity

Assume that x (T ) is free. In this case p (T ) = 0 and if p0 = 0 then

d
dt
p (t) = �H 0x (t, x� (t) , u� (t) , p (t)) =

= 0� p (t) gx (t, x� (t) , u� (t)) .

This is a linear di¤erential equation with "initial condition" p (T ) = 0. As
p (t) � 0 is a solution and as it is a linear equation so it has a unique
solution (p0, p (t)) � 0 which is impossible.
We will ignore the regularity problem and we will always assume that
p0 = 1.
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Optimal control, explanation, interpretation

One can interpret p (t) as the shadow price for the state variable x (t) . At
every moment of time the in�nitesimal contribution is

dW (t)
dt

= f (t, x (t) , u (t)) + (x (t) p (t))0 =

= f (t, x (t) , u (t)) + x 0 (t) p (t) + x (t) p0 (t) =

= f (t, x (t) , u (t)) + p (t) g (t, x (t) , u (t)) + x (t) p0 (t) =

= H (t, x (t) , u (t)) + x (t) p0 (t) .

the direct in�ow and the indirect change of the wealth. (Direct cash in�ow
and change of the value of the stocks.)
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Optimal control, explanation, interpretation

If (x (t) , u (t)) is optimal then they must be optimal at every moment of
time. If not change the path accordingly. (May be not true as sometimes
one must undertake some short term sacri�ces. There are local and global
criteria for optimality.) So if you are greedy then you must choose x as

∂

∂x

�
H (t, x , u, p) + xp0

�
= Hx + p0 = 0) p0 = �Hx .

Observe that there are no constraints on the state variable. Now if x (t)
and therefore its price p (t) is already given then x (t) p0 (t) is also given
and one should directly maximize H with respect to u.(There are
constraints on u so we cannot simply calculate the stationary points.)
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Optimal control and calculus of variation

Let F
�
t, x ,

�
x
�
be a kernel for a calculus of variation problem. In this case

H = F (t, x , u) + pu.

By the optimality condition Hu = 0 = F 0u + p that is

F 0u = F
0
�
x
= �p, �

p = �H 0x = �F 0x

That is
d
dt
F 0�
x
= � d

dt
p = H 0x = F

0
x .
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Optimal control and calculus of variation

Also by the condition on maximality by u at the optimal solution for every
t

0 � H 00u,u = F 00u,u = F 00�x ,�u
�
t, x (t) ,

�
x (t)

�
.

This is the so-called Legrende condition. One should remark that
unfortunately the condition F 00�

x ,
�
u
< 0 is also just a necessary and not a

su¢ cient condition.
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Optimal control

Example
Solve the problem Z T

0
1� tx (t)� u (t)2 dt ! max

�
x (t) = u (t) , x (0) = x0.

There is no boundary condition on x (T ) that is x (T ) is free. In this case
the transversality condition is p (T ) = 0. The Hamiltonian is

H (t, x , u, p) = 1� tx � u2 + pu.
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Optimal control

If there is no restriction on u 2 U then to optimize the Hamiltonian with
respect to u it is necessary that Hu = 0.

H 0u = �2u + p = 0, ) u� = p/2.

The adjoint equation is

d
dt
p (t) = �H 0x = t, p (T ) = 0.

From this
p (t) =

1
2
t2 + C =

1
2

�
t2 � T 2

�
.

This implies that

u� (t) =
1
4

�
t2 � T 2

�
.
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Optimal control

Writing it back to the equation
�
x = u

x� (t)� x (0) =
Z t

0
u (s) ds =

Z t

0

1
4

�
s2 � T 2

�
ds =

1
12
t3 � 1

4
T 2t.

As the Hamiltonian is concave in (x , u) it is a real maximum.
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Optimal control

Example
Solve the problemZ T

0
x2 (t) + u2 (t) dt ! min,

�
x (t) = u (t)

x (0) = x0.

The Hamiltonian is

H (t, x , u, p) = �x2 � u2 + pu.
H 0x = �2x , H 0u = �2u + p.

That is

dp
dt
= 2x (t) , p (T ) = 0, u� (t) = p (t) /2) dx

dt
= p (t) /2.
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Optimal control

So
d2p
dt2

= 2
dx
dt
= 2p (t) /2 = p (t) .

It is a second order linear equation with characteristic polynomial
λ2 � 1 = 0. Using the general solution

p (t) = c1 exp (t) + c2 exp (�t) , p (T ) = 0

On the other hand
dp
dt
(0) = 2x (0) = 2x0

c1 = 2x0e�T /
�
eT + e�T

�
, c2 = �2x0eT /

�
eT + e�T

�
x� (t) =

1
2
dp
dt
= x0

eT�t + et�T

eT + e�T
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Optimal control

As there was no restriction on u this problem is in fact the same as the
problem Z T

0
x2 (t) +

��
x
�2
(t) dt ! min, x (0) = x0.

The Euler�Lagrange equation is

2x = F 0x =
d
dt
F 0�
x
=
d
dt
2
�
x = 2

��
x .

As x (T ) is free we need the transversality condition

0 = �F 0�
x

�
t, x (T ) ,

�
x (T )

�
= �2�x (T ) .

The characteristic polynomial of the second order linear equation is
λ2 � 1 = 0, so the general solution of the Euler�Lagrange equation is

x (t) = c1et + c2e�t .
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Optimal control

Using the initial condition and the transversality condition

x0 = c1 + c2,

0 = c1eT � c2e�T , c1 = c2e�2T

x0 = c2
�
1+ e�2T

�
, c2 = x0/

�
1+ e�2T

�
=

x0eT

eT + e�T

Hence

x (t) =
x0et�T

eT + e�T
+ x0

eT�t

eT + e�T
.
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Optimal control

Example
Solve the problem

2π
Z T

0
x
p
1+ u2dt ! min,

�
x = u, x (0) = x0, x (T ) = xT .

The Hamiltonian is H (t, x , u, p) = �x
p
1+ u2 + pu.

dp
dt
=
p
1+ u2

Obviously
�
p 6= 0.

0 = H 0u =
�xup
1+ u2

+ p,

p =
xup
1+ u2

=
xu
�
p
=
x
�
x
�
p

�
pp =

�
xx .
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Optimal control

d
dt
p2 =

d
dt
x2, x2 = p2 + C .

x2 = p2 + C =
(xu)2

1+ u2
+ C

x2 + x2u2 = (xu)2 + C
�
1+ u2

�
x2 = C

�
1+ u2

�
= C

�
1+

��
x
�2�
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Optimal control

If C = 0 then x � 0 which generally does not satisfy the boundary
conditions. If C 6= 0 then C > 0 hence x2 > 0

x2 � C
��
x
�2
= C

2x
�
x = 2C

�
x
��
x ,

��
x � x

C
= 0.

From here the solution is the same as above.
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Optimal control

Example
Let us consider the problem and try to apply Arrow�s condition.

2π
Z b

a
x

r
1+

��
x
�2
dt ! min .

The Hamiltonian is H (t, x , u, p) = �x
p
1+ u2 + pu. This is a concave

function in u. So for the maximization

0 = H 0u = p � x
up
1+ u2

.

At p (t) it is

p (t) = x
up
1+ u2

which is not solvable for every x , in u so the problem has no solution for
every x so Arrow�s condition is not applicable.
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Optimal control, minimum problems

One can handle a minimum problem by changing the sign of the goal
function. The Hamiltonian is

H = �f + p � g , dp
dt
= �H 0x = � (�fx + p � gx ) .

Multiplying by �1 and introducing ep = �p
�dp
dt
= (�fx + pgx ) ,

dep
dt
= � (fx + epgx ) = �eH 0x .

That is ep is an solution of the adjoint equation of the maximum problem.Z t1

t0
fdt ! max,

�
x = g .

u� (t) is maximizing H = �f + p � g = � (f + ep � g) and therefore there
is solution ep of the adjoint equation for which u� (t) is minimizing the
Hamiltonian H = f + epg . In this case one can talk about a minimum
principle.
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Optimal control

Example
Solve the problem Z 1

0
x (t) dt ! max

�
x (t) = x (t) + u (t) , x (0) = 0, u (t) 2 [�1, 1] .

The Hamiltonian is

H (t, x , u, p) = x + p (x + u) .

H is concave in (x , u) so every solution is a maximum. As there is no
restriction on x (1) the adjoint equation is

�
p = �H 0x = � (1+ p) , p (1) = 0
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Optimal control

The adjoint equation
d
dt
p + p = �1

is linear �
etp
�0

= �et

etp = �et + C

p = �1+ C
et

C = e as by the transversality condition p (1) = 0, hence

p (t) = e1�t � 1.
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Optimal control

As p (t) > 0 for every t 2 (0, 1) the max of the
H (t, x , u, p) = x + p (x + u) over u 2 [�1, 1] is u� (t) � 1. As

�
x (t) = x (t) + u (t) = x (t) + 1.

It is again linear the general solution is

x (t) = Cet � 1.

Using the initial condition x (0) = 0 C = 1, so the optimal solution is

x (t) = exp (t)� 1.
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Optimal control

Example
Study the problemZ 2

0
u2 � xdt ! max,

�
x = u, x (0) = 0, 0 � u � 1.

The Hamiltonian is H (t, x , u, p) = u2 � x + pu. One cannot use the
Mangasarian theorem as u2 is convex and not concave.

dp
dt
= �H 0x = 1. ) p (t) = t + C .

As x (2) is free p (2) = 0 that is 2+ C = 0 so C = �2,

p (t) = t � 2.
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Optimal control

By the maximum principle u� (t) is maximizes

H (t, x , u, p (t)) = u2 � x + (t � 2) u, u 2 [0, 1] .

The optimization in u is independent of x . As H is convex in u the
maximum is attained at the extremal points of [0, 1]. Hence u� (t) is zero
or one. If u� (t) = 0 then H0 = �x . If u� (t) = 1 then
H1 = 1� x + (t � 2) and in this case

H0 � H1 , 0 � 1+ t � 2 = t � 1.

So
�
x (t) = u� (t) =

�
0 if t 2 (0, 1)
1 if t 2 (1, 2)

Hence the optimal solution is

x� (t) =
�

0 if t 2 [0, 1]
t � 1 if t 2 (1, 2] .
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Optimal control

The partially optimized Hamiltonian is

bH (t, x , p (t)) = max
u2[0,1]

�
u2 � x + (t � 2) u

�
=

=

�
�x if t 2 [0, 1]

�x + t � 1 if t 2 (1, 2]

which is concave for every t. Hence we can use Arrow�s theorem.
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Optimal control

Example
Solve the problem Z 1

0
2x (t)� x2 (t) dt ! max

�
x (t) = u (t) , x (0) = 0, x (1) = 0, u (t) 2 [�1, 1] .

The Hamiltonian is

H (t, x , u, p) = 2x � x2 + pu.
d
dt
p = �H 0x = 2x � 2.

As there is a terminal condition on x there is no transversality condition on
p.
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Optimal control

The optimal u� is maximizes the Hamiltonian 2x � x2 + pu over
U = [�1, 1] so

u� (t) =
�

1 if p (t) > 0
�1 if p (t) < 0

.

As
�
x = u and u � 1 and x (0) = 0 x (t) < 1 for t 2 (0, 1) . From the

adjoint equation

d
dt
p = �H 0x = 2x � 2 = 2 (x � 1) < 0

so p is strictly decreasing.
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Optimal control

If p (1) > 0 then as p is decreasing p (t) > 0 for every 0 < t < 1,

which implies that u� � 1. In this case �x = u� = 1. Using that
x (0) = 0 x (t) = t, which is not feasible as the boundary condition
x (1) = 0 is not valid. Hence p (1) < 0.

If p (0) < 0 then as p is decreasing p (t) < 0 for every t. Hence one

has that u� � �1 and therefore as �x = u� = �1. Using that
x (0) = 0 one has that x (t) = �t and hence the boundary condition
x (1) = 0 is not valid again. Hence p (0) > 0.
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Optimal control

As p is continuous there is a point t� 2 (0, 1) where p (t�) = 0.
p (t) > 0 on (0, t�) hence on this interval u� = 1 so as x (0) = 0
x (t) = t. On the interval (t�, 1) p (t) < 0 so u� = �1 and
x (t) = �t + C on this interval. As x is continuous

x (t��) = t� = �t� + C = x (t�+) , 2t� = C

As x (1) = 0

C � t = 2t� � t = 2t� � 1 = 0, t� = 1/2.

Hence x (t) = 1� t if t � 1/2.

x (t) =
�

t if t < 1/2
1� t if t � 1/2
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Optimal control

As
dp
dt
= 2 (x � 1) =

�
2 (t � 1) if t < 1/2

2 (1� t � 1) if t � 1/2

p (t) =
Z t

0
2 (s � 1) ds = t2 � 2t + C , t < 1/2

0 = p
�
1
2

�
=
1
4
� 1+ C ,) C = 3/4

p (t) =
Z t

1/2
�2sds = �t2 + 1

4
, t � 1/2.
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Optimal control, Bolza problem

Z T

0
f (t, x (t) , u (t)) dt + φ (x (T ))! max

�
x (t) = g (t, x (t) , u (t)) , x (0) = x0

By the fundamental theorem of the calculus

φ (x (T )) = φ (x (0)) +
Z T

0
φ0 (x (t))

�
x (t) dt =

= φ (x0) +
Z T

0
φ0 (x (t)) g (t, x (t) , u (t)) dt.

As x0 is �xed one can write the goal function asZ T

0
f (t, x (t) , u (t)) + φ0 (x (t)) g (t, x (t) , u (t)) dt ! max .
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Optimal control, Bolza problem

Hence

H = f (t, x (t) , u (t)) + φ0 (x (t)) g (t, x (t) , u (t)) +

+p (t) g (t, x (t) , u (t)) =

= f (t, x (t) , u (t)) +
�
p (t) + φ0 (x (t))

�
g (t, x (t) , u (t)) =

= f (t, x (t) , u (t)) + ep (t) g (t, x (t) , u (t)) .
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Optimal control, Bolza problem

The adjoint equation with the transversality condition

�
p = �H 0x = �

�
f 0x + φ00g + φ0g 0x + pg

0
x

�
=

= �
�
f 0x + φ00

�
x + epg 0x� , p (T ) = 0
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Optimal control, Bolza problem

d
dt
ep (t) = d

dt
p (t) + φ00 (x (t))

�
x (t) .

Hence
d
dt
ep (t) = � �f 0x + epg 0x � , p (T ) = 0.

If eH = f + epg then
d
dt
ep (t) = �eH 0x , ep = φ0 (x (T )) .
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Optimal control, Bolza problem

Example
Solve Z 1

0

�
x
2
� xdt + x2 (1)! min, x (0) = 0

as an optimal control problem.

Z 1

0
u2 � xdt + x2 (1)

�
x = u, x (0) = 0.
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Optimal control, Bolza problem

H = u2 � x + pu, �p = �Hx = 1, p = t + C
p (1) = 1+ C = 2x (1) ,C = 2x (1)� 1, p (t) = t + 2x (1)� 1

0 = H 0u = 2u + p = 2u + t + 2x (1)� 1,
u = �x (1) + 1/2� t/2.
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Optimal control, Bolza problem

x (t) = x (0) +
Z t

0
�x (1) + 1/2� t/2dt =

= �x (1) t + 1/2t � t2/4.

2x (1) =
1
2
� 1� 1

4
� 12 = 1

4
, x (1) =

1
8
,

x (t) =
3
8
t � t

2

4
.
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Optimal control, Bolza problem

Example
Solve the problem Z 1

0
u2dt + x2 (1)! min

�
x = x + u, x (0) = 1
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Optimal control, Bolza problem

H = u2 + p (x + u) ,
�
p = �H 0x = �p,
p = C exp (�t)

p (1) = 2x (1) =
C
e
,

C = 2e � x (1) , p = 2x (1) exp (�t + 1) ,
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Optimal control, Bolza problem

0 = H 0u = 2u + p = 2u + 2x (1) exp (�t + 1) ,
u = �x (1) exp (�t + 1)
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Optimal control, Bolza problem

�
x = x � x (1) exp (�t + 1) , x (0) = 1
�
x � x = �x (1) exp (�t + 1) , x (0) = 1,

�
xe�t � xe�t = �x (1) e�2t+1

xe�t = �x (1)
Z
e�2t+1dt + C =

= x (1)
e�2t+1

2
+ C ,

x (t) =
x (1)
2
e�t+1 + Cet
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Optimal control, Bolza problem

x (1) =
x (1)
2

+ Ce, 1 = x (0) =
x (1)
2
e + C ,

x (1)
2

= Ce,C = 1� x (1)
2
e,C = 1� Ce2,C = 1

1+ e2

x (1) =
2e

1+ e2

x (t) =
e2

1+ e2
e�t +

1
1+ e2

et .
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Optimal control, Bolza problem

We can also write asZ 1

0

��
x � x

�2
+ 2x

�
xdt =

Z 1

0

�
x
2
+ x2dt ! min, x (0) = 1.

The Euler�Lagrange equation is

d
dt
2
�
x = 2

��
x = 2x ,

��
x � x = 0.

The characteristic equation is λ2 � 1 = 0 and the roots are �1. The
general solution is

x (t) = C1 exp (�t) + C2 exp (t) .
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Optimal control, Bolza problem

As x (0) = 1 C1 + C2 = 1. By the transversality condition

0 = F 0�
x
(1) = 2

�
x (1) ,

�
x (1) = 0,

0 = �C1
1
e
+ C2e,C1 = C2e2

so C1 = e2/
�
1+ e2

�
and C2 = 1/

�
1+ e2

�
.
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Homework

1 Solve the problems in calculus of variations with the method of
optimal control.

2 Show with the method of optimal control that the problemR 1
0

r
1+

��
x
�2
dt ! max x (0) = 0, x (1) = 1 has no solution.

3 Show with the method of optimal control that the problemR 1
0 t

α

r
1+

��
x
�2
dt ! min x (0) = 0, x (1) = 1 has no solution if

α > 0.
4 Let U be a concave increasing utility function and let x be a
continuously di¤erentiable consumption strategy. Show that there is
no such strategy x� which maximizes the cumulated utilityR 1
0 U (x (t)) dt with x (0) = 0 and x (1) = 1. What can we say if we

introduce the restriction
����x ��� � 1?
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Stability

De�nition
An equilibrium point x� of a dynamic system X is called attractive if for
any initial value x0 the solution X (t, x0) is convergent to x� that is

lim
t!∞

X (t, x0) = x�, 8x0.

If it is true only for some neighborhood of x� then x� is called locally
attractive.

De�nition
An equilibrium point x� of a dynamic system is (Lyapunov) stable if for
any ε > 0 there is a δ > 0 such that for any kx0 � x�k < δ
kX (t, x0)� x�k < ε. The system is (Lyapunov) asymptotically stable if it
is stable and it is attractive. If it is true only for some neighborhood of x�

then x� is called locally asymptotically stable.
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Stability

Example
The solution y � = 0 of the system

ay 00 + by 0 + cy = 0

is asymptotically stable if the real part of the characteristic roots is
negative. If the real part of the characteristic roots are non positive and
characteristic roots are unique then the system is stable.

The only case worth considering is when λ = 0 is a double root. That is
when λ2 = 0, that is y 00 = 0. In this case the general solution is
y (t) = c1 + tc2 which is not stable. The general solution

x (t) = c1 cos θt + c2 sin θt

is stable but not asymptotically stable.
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Stability

Example
The solution y � = 0 of the system

yt+2 + ayt+1 + byt = 0

is asymptotically stable if the absolute value of the characteristic roots is
smaller than one. If the absolute value of the characteristic roots are not
bigger than one and the characteristic roots are unique then the system is
stable.

When λ = �1 is a double root, then yt+2 � 2yt+1 + yt = 0. In this case
the general solution is yt = (�1)t (c1 + tc2) which is not stable. The
general solution

yt = c1 cos θt + c2 sin θt

is stable but not asymptotically stable.

Medvegyev (CEU) Mathematics for Economists 2013 245 / 252



Stability

Example
There is an example of a non-linear system which is attractive but not
locally stable.

�
x1
�
x2

=

x 21 (x2�x1)+x 52
(x 21+x 22 )

�
1+(x 21+x 22 )

2
�

x 21 (x2�x1)
(x 21+x 22 )

�
1+(x 21+x 22 )

2
�
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Phase diagram in on dimension.

Let
x 0 = x � (1� x) .

1.510.500.5

0.25

0

0.25

0.5

0.75

x

y

x

y

It has two equilibrium x = 0 and x = 1. x = 0 is instable, x = 1 is stable.
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Phase diagram in two dimension

A saddle point.

x 0 =
�
1 1
4 1

�
x

x  ' = A x  + B y
y  ' = C  x  + D  y

B = 1
D  = 1

A = 1
C  = 4

5 4 3 2 1 0 1 2 3 4 5

5

4

3

2

1

0

1

2

3

4

5

x

y
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Phase diagram

A node

x 0 =
�
�3 1
1 �2

�
x

x  ' =  A x  +  B y
y  ' =  C  x  +  D  y

B = 1
D  =   2

A =   3
C  = 1

5 4 3 2 1 0 1 2 3 4 5

5

4

3

2

1
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3

4

5

x

y
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Phase diagram

An improper node

x 0 =
�
1 �1
1 2

�
x

x ' = A x  + B y
y ' = C x + D y

B =  1
D = 3

A = 1
C = 1

5 4 3 2 1 0 1 2 3 4 5

5
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Phase diagram

A focus

x 0 =
�
�1/2 1
�1 �1/2

�
x

x ' = A x + B y
y ' = C x + D y

B = 1
D =  1/2

A =  1/2
C =  1
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Phase diagram

1 Identify the four regions given by x 01 = 0 and x
0
2 = 0. This curves are

called nullclines or demarcation lines.
2 Identify the directions of increase in all four regions.
3 We have a node when both eigenvalues are real and of the same sign.
The node is stable when the eigenvalues are negative and unstable
when they are positive.

4 When eigenvalues are real and of opposite signs we have a saddle
point. The saddle is always unstable.

5 Focus (sometimes called spiral point) when eigenvalues are
complex-conjugate. The focus is stable when the eigenvalues have
negative real part and unstable when they have positive real part.

6 The center equilibrium occurs when a system has eigenvalues on the
imaginary axis, namely, one pair of pure-imaginary eigenvalues.
Centers in linear systems have concentric periodic orbits.
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