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PREFACE

My purpose in writing this book was to provide a clear, accessible treatment of discrete
mathematics for students majoring or minoring in computer science, mathematics, math-
ematics education, and engineering. The goal of the book is to lay the mathematical
foundation for computer science courses such as data structures, algorithms, relational
database theory, automata theory and formal languages, compiler design, and cryptog-
raphy, and for mathematics courses such as linear and abstract algebra, combinatorics,
probability, logic and set theory, and number theory. By combining discussion of theory
and practice, I have tried to show that mathematics has engaging and important applica-
tions as well as being interesting and beautiful in its own right.

A good background in algebra is the only prerequisite; the course may be taken by
students either before or after a course in calculus. Previous editions of the book have
been used successfully by students at hundreds of institutions in North and South Amer-
ica, Europe, the Middle East, Asia, and Australia.

Recent curricular recommendations from the Institute for Electrical and Electronic
Engineers Computer Society (IEEE-CS) and the Association for Computing Machinery
(ACM) include discrete mathematics as the largest portion of “core knowledge” for com-
puter science students and state that students should take at least a one-semester course in
the subject as part of their first-year studies, with a two-semester course preferred when
possible. This book includes the topics recommended by those organizations and can be
used effectively for either a one-semester or a two-semester course.

At one time, most of the topics in discrete mathematics were taught only to upper-
level undergraduates. Discovering how to present these topics in ways that can be under-
stood by first- and second-year students was the major and most interesting challenge of
writing this book. The presentation was developed over a long period of experimentation
during which my students were in many ways my teachers. Their questions, comments,
and written work showed me what concepts and techniques caused them difficulty, and
their reaction to my exposition showed me what worked to build their understanding and
to encourage their interest. Many of the changes in this edition have resulted from con-
tinuing interaction with students.

Themes of a Discrete Mathematics Course

Discrete mathematics describes processes that consist of a sequence of individual steps.
This contrasts with calculus, which describes processes that change in a continuous fash-
ion. Whereas the ideas of calculus were fundamental to the science and technology of the
industrial revolution, the ideas of discrete mathematics underlie the science and technol-
ogy of the computer age. The main themes of a first course in discrete mathematics are
logic and proof, induction and recursion, discrete structures, combinatorics and discrete
probability, algorithms and their analysis, and applications and modeling.

Logic and Proof Probably the most important goal of a first course in discrete math-
ematics is to help students develop the ability to think abstractly. This means learning
to use logically valid forms of argument and avoid common logical errors, appreciating
what it means to reason from definitions, knowing how to use both direct and indirect

Xiv
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argument to derive new results from those already known to be true, and being able to
work with symbolic representations as if they were concrete objects.

Induction and Recursion An exciting development of recent years has been the
increased appreciation for the power and beauty of “recursive thinking.” To think recur-
sively means to address a problem by assuming that similar problems of a smaller nature
have already been solved and figuring out how to put those solutions together to solve
the larger problem. Such thinking is widely used in the analysis of algorithms, where
recurrence relations that result from recursive thinking often give rise to formulas that are
verified by mathematical induction.

Discrete Structures Discrete mathematical structures are the abstract structures that
describe, categorize, and reveal the underlying relationships among discrete mathemat-
ical objects. Those studied in this book are the sets of integers and rational numbers,
general sets, Boolean algebras, functions, relations, graphs and trees, formal languages
and regular expressions, and finite-state automata.

Combinatorics and Discrete Probability Combinatorics is the mathematics of count-
ing and arranging objects, and probability is the study of laws concerning the measure-
ment of random or chance events. Discrete probability focuses on situations involving
discrete sets of objects, such as finding the likelihood of obtaining a certain number of
heads when an unbiased coin is tossed a certain number of times. Skill in using combina-
torics and probability is needed in almost every discipline where mathematics is applied,
from economics to biology, to computer science, to chemistry and physics, to business
management.

Algorithms and Their Analysis The word algorithm was largely unknown in the mid-
dle of the twentieth century, yet now it is one of the first words encountered in the study
of computer science. To solve a problem on a computer, it is necessary to find an algo-
rithm or step-by-step sequence of instructions for the computer to follow. Designing an
algorithm requires an understanding of the mathematics underlying the problem to be
solved. Determining whether or not an algorithm is correct requires a sophisticated use
of mathematical induction. Calculating the amount of time or memory space the algo-
rithm will need in order to compare it to other algorithms that produce the same output
requires knowledge of combinatorics, recurrence relations, functions, and O-, -, and
®-notations.

Applications and Modeling Mathematical topics are best understood when they are
seen in a variety of contexts and used to solve problems in a broad range of applied
situations. One of the profound lessons of mathematics is that the same mathematical
model can be used to solve problems in situations that appear superficially to be totally
dissimilar. A goal of this book is to show students the extraordinary practical utility of
some very abstract mathematical ideas.

Special Features of This Book

Mathematical Reasoning The feature that most distinguishes this book from other
discrete mathematics texts is that it teaches—explicitly but in a way that is accessible to
first- and second-year college and university students—the unspoken logic and reasoning
that underlie mathematical thought. For many years I taught an intensively interactive
transition-to-abstract-mathematics course to mathematics and computer science majors.
This experience showed me that while it is possible to teach the majority of students to
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understand and construct straightforward mathematical arguments, the obstacles to doing
so cannot be passed over lightly. To be successful, a text for such a course must address
students’ difficulties with logic and language directly and at some length. It must also
include enough concrete examples and exercises to enable students to develop the mental
models needed to conceptualize more abstract problems. The treatment of logic and proof
in this book blends common sense and rigor in a way that explains the essentials, yet
avoids overloading students with formal detail.

Spiral Approach to Concept Development A number of concepts in this book appear
in increasingly more sophisticated forms in successive chapters to help students develop
the ability to deal effectively with increasing levels of abstraction. For example, by the
time students encounter the relatively advanced mathematics of Fermat’s little theorem
in Section 8.4, they have been introduced to the logic of mathematical discourse in
Chapters 1, 2, and 3, learned the basic methods of proof and the concepts of mod and
div in Chapter 4, explored mod and div as functions in Chapter 7, and become familiar
with equivalence relations in Sections 8.2 and 8.3. This approach builds in useful review
and develops mathematical maturity in natural stages.

Support for the Student  Students at colleges and universities inevitably have to learn
a great deal on their own. Though it is often frustrating, learning to learn through self-
study is a crucial step toward eventual success in a professional career. This book has a
number of features to facilitate students’ transition to independent learning.

Worked Examples

The book contains over 500 worked examples, which are written using a problem-
solution format and are keyed in type and in difficulty to the exercises. Many solutions
for the proof problems are developed in two stages: first a discussion of how one
might come to think of the proof or disproof and then a summary of the solution,
which is enclosed in a box. This format allows students to read the problem and skip
immediately to the summary, if they wish, only going back to the discussion if they
have trouble understanding the summary. The format also saves time for students who
are rereading the text in preparation for an examination.

Marginal Notes and Test Yourself Questions

Notes about issues of particular importance and cautionary comments to help students
avoid common mistakes are included in the margins throughout the book. Questions
designed to focus attention on the main ideas of each section are located between the
text and the exercises. For convenience, the questions use a fill-in-the-blank format,
and the answers are found immediately after the exercises.

Exercises

The book contains almost 2600 exercises. The sets at the end of each section have
been designed so that students with widely varying backgrounds and ability levels
will find some exercises they can be sure to do successfully and also some exercises
that will challenge them.

Solutions for Exercises

To provide adequate feedback for students between class sessions, Appendix B con-
tains a large number of complete solutions to exercises. Students are strongly urged
not to consult solutions until they have tried their best to answer the questions on
their own. Once they have done so, however, comparing their answers with those
given can lead to significantly improved understanding. In addition, many problems,
including some of the most challenging, have partial solutions or hints so that students
can determine whether they are on the right track and make adjustments if necessary.
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There are also plenty of exercises without solutions to help students learn to grapple
with mathematical problems in a realistic environment.

Reference Features

Many students have written me to say that the book helped them succeed in their
advanced courses. One even wrote that he had used one edition so extensively that
it had fallen apart, and he actually went out and bought a copy of the next edition,
which he was continuing to use in a master’s program. Figures and tables are included
where doing so would help readers to a better understanding. In most, a second color
is used to highlight meaning. My rationale for screening statements of definitions and
theorems, for putting titles on exercises, and for giving the meanings of symbols and
a list of reference formulas in the endpapers is to make it easier for students to use
this book for review in a current course and as a reference in later ones.

Support for the Instructor T have received a great deal of valuable feedback from
instructors who have used previous editions of this book. Many aspects of the book have
been improved through their suggestions. In addition to the following items, there is
additional instructor support on the book’s website, described later in the preface.

Exercises

The large variety of exercises at all levels of difficulty allows instructors great free-
dom to tailor a course to the abilities of their students. Exercises with solutions in
the back of the book have numbers in blue, and those whose solutions are given in a
separate Student Solutions Manual and Study Guide have numbers that are a multi-
ple of three. There are exercises of every type that are represented in this book that
have no answer in either location to enable instructors to assign whatever mixture
they prefer of exercises with and without answers. The ample number of exercises of
all kinds gives instructors a significant choice of problems to use for review assign-
ments and exams. Instructors are invited to use the many exercises stated as questions
rather than in “prove that” form to stimulate class discussion on the role of proof and
counterexample in problem solving.

Flexible Sections

Most sections are divided into subsections so that an instructor who is pressed for time
can choose to cover certain subsections only and either omit the rest or leave them for
the students to study on their own. The division into subsections also makes it easier
for instructors to break up sections if they wish to spend more then one day on them.

Presentation of Proof Methods

It is inevitable that the proofs and disproofs in this book will seem easy to instructors.
Many students, however, find them difficult. In showing students how to discover and
construct proofs and disproofs, I have tried to describe the kinds of approaches that
mathematicians use when confronting challenging problems in their own research.

Instructor Solutions

Complete instructor solutions to all exercises are available to anyone teaching a course
from this book via Cengage’s Solution Builder service. Instructors can sign up for
access at www.cengage.com/solutionbuilder.

Highlights of the Fourth Edition

The changes made for this edition are based on suggestions from colleagues and other
long-time users of previous editions, on continuing interactions with my students, and on
developments within the evolving fields of computer science and mathematics.
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Reorganization

A new Chapter 1 introduces students to some of the precise language that is a foun-
dation for much mathematical thought: the language of variables, sets, relations, and
functions. In response to requests from some instructors, core material is now placed
together in Chapter 1-8, with the chapter on recursion now joined to the chapter on
induction. Chapters 9-12 were placed together at the end because, although many
instructors cover one or more of them, there is considerable diversity in their choices,
with some of the topics from these chapters being included in other courses.

Improved Pedagogy
e The number of exercises has been increased to almost 2600. Approximately 300
new exercises have been added.

e Exercises have been added for topics where students seemed to need additional
practice, and they have been modified, as needed, to address student difficulties.

e Additional full answers have been incorporated into Appendix B to give students
more help for difficult topics.

¢ The exposition has been reexamined throughout and revised where needed.

¢ Discussion of historical background and recent results has been expanded and the
number of photographs of mathematicians and computer scientists whose contribu-
tions are discussed in the book has been increased.

Logic and Set theory

e The definition of sound argument is now included, and there is additional clarifica-
tion of the difference between a valid argument and a true conclusion.

e Examples and exercises about trailing quantifiers have been added.

¢ Definitions for infinite unions and intersections have been incorporated.

Introduction to Proof

e The directions for writing proofs and the discussion of common mistakes have been
expanded.

e The descriptions of methods of proof have been made clearer.

e Exercises have been revised and/or relocated to promote the development of student
understanding.

Induction and Recursion

¢ The format for outlining proofs by mathematical induction has been improved.
¢ The subsections in the section on sequences have been reorganized.

e The sets of exercises for the sections on strong mathematical induction and the
well-ordering principle and on recursive definitions have been expanded.

¢ Increased attention has been given to structural induction.

Number Theory

¢ A subsection on open problems in number theory has been expanded and includes
additional discussion of recent mathematical discoveries in number theory.

e The presentation in the section on modular arithmetic and cryptography has been
streamlined.

e The discussion of testing for primality has been clarified.
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Combinatorics and Discrete Probability
e The discussion of the pigeonhole principle has been moved to this chapter.
Functions

¢ There is increased coverage of functions of more than one variable and of functions
acting on sets.

Graph Theory

¢ The terminology about traveling in a graph has been updated.
 Dijkstra’s shortest path algorithm is now included.

e Exercises were added to introduce students to graph coloring.

Companion Website
www.cengage.com/math/epp

A website has been developed for this book that contains information and materials for
both students and instructors. It includes:

e descriptions and links to many sites on the Internet with accessible information
about discrete mathematical topics,

e links to applets that illustrate or provide practice in the concepts of discrete mathe-
matics,
e additional examples and exercises with solutions,

e review guides for the chapters of the book.
A special section for instructors contains:

e suggestions about how to approach the material of each chapter,
e solutions for all exercises not fully solved in Appendix B,

e ideas for projects and writing assignments,

e PowerPoint slides,

¢ review sheets and additional exercises for quizzes and exams.

Student Solutions Manual and Study Guide
(ISBN-10: 0-495-82613-8; ISBN-13: 978-0-495-82613-2)

In writing this book, I strove to give sufficient help to students through the exposition in
the text, the worked examples, and the exercise solutions, so that the book itself would
provide all that a student would need to successfully master the material of the course. |
believe that students who finish the study of this book with the ability to solve, on their
own, all the exercises with full solutions in Appendix B will have developed an excellent
command of the subject. Nonetheless, I became aware that some students wanted the
opportunity to obtain additional helpful materials. In response, I developed a Student
Solutions Manual and Study Guide, available separately from this book, which contains
complete solutions to every exercise that is not completely answered in Appendix B and
whose number is divisible by 3. The guide also includes alternative explanations for some
of the concepts and review questions for each chapter.
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Organization

This book may be used effectively for a one- or two-semester course. Chapters contain
core sections, sections covering optional mathematical material, and sections covering
optional applications. Instructors have the flexibility to choose whatever mixture will best
serve the needs of their students. The following table shows a division of the sections into

categories.
Sections Containing Optional Sections Containing Optional
Chapter Core Sections Mathematical Material Computer Science Applications
1 1.1-1.3
2 2.1-23 2.5 24,25
3 3.1-34 33 33
4 4.1-44,4.6 45,47 4.8
5 5.1,52,5.6,5.7 53,54,5.8 5.1,55,59
6 6.1 6.2-6.4 6.1,6.4
7 7.1,7.2 73,74 7.1,72,74
8 8.1-8.3 8.4,8.5 8.4,8.5
9 9.1-9.4 9.5-9.9 9.3
10 10.1, 10.5 10.2-10.4, 10.6 10.1, 10.2, 10.5-10.7
11 11.1,11.2 114 11.3,11.5
12 12.1,12.2 12.3 12.1-12.3

The following tree diagram shows, approximately, how the chapters of this book
depend on each other. Chapters on different branches of the tree are sufficiently inde-
pendent that instructors need to make at most minor adjustments if they skip chapters but
follow paths along branches of the tree.

In most cases, covering only the core sections of the chapters is adequate preparation
for moving down the tree.

*Section 8.3 is needed for Section 12.3 but not for Sections 12.1 and 12.2.
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CHAPTER ].

SPEAKING MATHEMATICALLY

Therefore O students study mathematics and do not build without
foundations. —Leonardo da Vinci (1452-1519)

The aim of this book is to introduce you to a mathematical way of thinking that can
serve you in a wide variety of situations. Often when you start work on a mathematical
problem, you may have only a vague sense of how to proceed. You may begin by looking
at examples, drawing pictures, playing around with notation, rereading the problem to
focus on more of its details, and so forth. The closer you get to a solution, however, the
more your thinking has to crystallize. And the more you need to understand, the more you
need language that expresses mathematical ideas clearly, precisely, and unambiguously.

This chapter will introduce you to some of the special language that is a foundation
for much mathematical thought, the language of variables, sets, relations, and functions.
Think of the chapter like the exercises you would do before an important sporting event.
Its goal is to warm up your mental muscles so that you can do your best.

1.1 Variables

A variable is sometimes thought of as a mathematical “John Doe” because you can use it
as a placeholder when you want to talk about something but either (1) you imagine that it
has one or more values but you don’t know what they are, or (2) you want whatever you
say about it to be equally true for all elements in a given set, and so you don’t want to be
restricted to considering only a particular, concrete value for it. To illustrate the first use,
consider asking

Is there a number with the following property: doubling it and adding 3
gives the same result as squaring it?

In this sentence you can introduce a variable to replace the potentially ambiguous word “it”:
Is there a number x with the property that 2x + 3 = x2?

The advantage of using a variable is that it allows you to give a temporary name to what
you are seeking so that you can perform concrete computations with it to help discover its
possible values. To emphasize the role of the variable as a placeholder, you might write
the following:

Is there a number ] with the property that 2.0 + 3 = (1?2

The emptiness of the box can help you imagine filling it in with a variety of different
values, some of which might make the two sides equal and others of which might not.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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To illustrate the second use of variables, consider the statement:

No matter what number might be chosen, if it is greater than 2,
then its square is greater than 4.

In this case introducing a variable to give a temporary name to the (arbitrary) number you
might choose enables you to maintain the generality of the statement, and replacing all
instances of the word “it” by the name of the variable ensures that possible ambiguity is
avoided:

No matter what number n might be chosen, if n is greater than 2,
then n? is greater than 4.

Example 1.1.1 Writing Sentences Using Variables
Use variables to rewrite the following sentences more formally.

a. Are there numbers with the property that the sum of their squares equals the square of
their sum?

b. Given any real number, its square is nonnegative.

Solution
Note In part (a) the a. Are there numbers a and b with the property that a> + b*> = (a + b)>?
answer is yes. For Or: Are there numbers a and b such that a® + b = (a + b)*?
instance, @ = land b = 0 Or: Do there exist any numbers a and b such that a® + b*> = (a + b)*?
would work. Can you
think of other numbers b. Given any real number r, 2 is nonnegative.
that would also work? Or: For any real number r, ) > 0.

Or: For all real numbers r, 72 > 0. [ |

Some Important Kinds of Mathematical Statements

Three of the most important kinds of sentences in mathematics are universal statements,
conditional statements, and existential statements:

A universal statement says that a certain property is true for all elements in a set.
(For example: All positive numbers are greater than zero.)

A conditional statement says that if one thing is true then some other thing also has
to be true. (For example: If 378 is divisible by 18, then 378 is divisible by 6.)

Given a property that may or may not be true, an existential statement says that
there is at least one thing for which the property is true. (For example: There is a
prime number that is even.)

In later sections we will define each kind of statement carefully and discuss all of them
in detail. The aim here is for you to realize that combinations of these statements can be
expressed in a variety of different ways. One way uses ordinary, everyday language and
another expresses the statement using one or more variables. The exercises are designed
to help you start becoming comfortable in translating from one way to another.
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Universal Conditional Statements

Universal statements contain some variation of the words “for all” and conditional state-
ments contain versions of the words “if-then.” A universal conditional statement is a
statement that is both universal and conditional. Here is an example:

For all animals a, if a is a dog, then a is a mammal.

One of the most important facts about universal conditional statements is that they can
be rewritten in ways that make them appear to be purely universal or purely conditional.
For example, the previous statement can be rewritten in a way that makes its conditional
nature explicit but its universal nature implicit:

If a is a dog, then a is a mammal.
Or: If an animal is a dog, then the animal is a mammal.

The statement can also be expressed so as to make its universal nature explicit and its
conditional nature implicit:

For all dogs a, a is a mammal.
Or: All dogs are mammals.

The crucial point is that the ability to translate among various ways of expressing univer-
sal conditional statements is enormously useful for doing mathematics and many parts of
computer science.

Example 1.1.2 Rewriting a Universal Conditional Statement
Fill in the blanks to rewrite the following statement:
For all real numbers x, if x is nonzero then x? is positive.

a. If a real number is nonzero, then its square .

Note If you introduce x b. For all nonzero real numbers X,
in the first part of the
sentence, be sure to c. Ifx__ ,then__ .

include it in the second .
e . d. The square of any nonzero real number is .
part of the sentence. —

e. All nonzero real numbers have
Solution
. is positive

a
b. x? is positive

o

. is a nonzero real number; x?2 is positive

o

. positive
e. positive squares (or: squares that are positive) |

Universal Existential Statements

A universal existential statement is a statement that is universal because its first part says
that a certain property is true for all objects of a given type, and it is existential because
Note  For a number b to its second part asserts the existence of something. For example:
be an additive inverse for
a number a means that
a+b=0. Every real number has an additive inverse.
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In this statement the property “has an additive inverse” applies universally to all real num-
bers. “Has an additive inverse” asserts the existence of something—an additive inverse—
for each real number. However, the nature of the additive inverse depends on the real
number; different real numbers have different additive inverses. Knowing that an additive
inverse is a real number, you can rewrite this statement in several ways, some less formal
and some more formal*:

All real numbers have additive inverses.

Or: For all real numbers r, there is an additive inverse for r.

Or: For all real numbers r, there is a real number s such that s is an additive inverse
for r.

Introducing names for the variables simplifies references in further discussion. For
instance, after the third version of the statement you might go on to write: When r is
positive, s is negative, when r is negative, s is positive, and when r is zero, s is also zero.

One of the most important reasons for using variables in mathematics is that it gives
you the ability to refer to quantities unambiguously throughout a lengthy mathematical
argument, while not restricting you to consider only specific values for them.

Example 1.1.3 Rewriting a Universal Existential Statement
Fill in the blanks to rewrite the following statement: Every pot has a lid.
a. Allpots .
b. For all pots P, thereis .
c. For all pots P, thereis alid L such that .
Solution
a. have lids
b. alid for P
c. Lisalid for P |

Existential Universal Statements

An existential universal statement is a statement that is existential because its first part
asserts that a certain object exists and is universal because its second part says that the
object satisfies a certain property for all things of a certain kind. For example:

There is a positive integer that is less than or equal to every positive integer:

This statement is true because the number one is a positive integer, and it satisfies the
property of being less than or equal to every positive integer. We can rewrite the statement
in several ways, some less formal and some more formal:

Some positive integer is less than or equal to every positive integer.

Or: There is a positive integer m that is less than or equal to every positive integer.

Or: There is a positive integer m such that every positive integer is greater than or
equal to m.

Or: There is a positive integer m with the property that for all positive integers
n,m<n.

*A conditional could be used to help express this statement, but we postpone the additional com-
plexity to a later chapter.
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1.1 Variables 5

Example 1.1.4 Rewriting an Existential Universal Statement
Fill in the blanks to rewrite the following statement in three different ways:
There is a person in my class who is at least as old as every person in my class.
a. Some  isatleastasoldas
b. There is a person p in my class such that pis .

c. There is a person p in my class with the property that for every person ¢ in my class,
pis .
Solution

a. person in my class; every person in my class
b. atleast as old as every person in my class

c. atleast as old as ¢ |

Some of the most important mathematical concepts, such as the definition of limit of
a sequence, can only be defined using phrases that are universal, existential, and condi-
tional, and they require the use of all three phrases “for all,” “there is,” and “if-then.” For
example, if aj, a», a3, . . . is a sequence of real numbers, saying that

the limit of a, as n approaches infinity is L

means that

for all positive real numbers ¢, there is an integer N such that
for all integers n, ifn > N then —¢ <a, — L < ¢.

Test Yourself

Answers to Test Yourself questions are located at the end of each section.

1. A universal statement asserts that a certain property is 3. Given a property that may or may not be true, an existential
for . statement asserts that for which the property is true.
2. A conditional statement asserts that if one thing then

some other thing .

Exercise Set 1.1

Appendix B contains either full or partial solutions to all exercises with blue numbers. When the solution is not complete, the exercise
number has an H next to it. A * next to an exercise number signals that the exercise is more challenging than usual. Be careful not
to get into the habit of turning to the solutions too quickly. Make every effort to work exercises on your own before checking your
answers. See the Preface for additional sources of assistance and further study.

In each of 1-6, fill in the blanks using a variable or variables to 2. Is there an integer that has a remainder of 2 when it is divided
rewrite the given statement. by 5 and a remainder of 3 when it is divided by 6?
. a. Is there an integer n such that n has ?
1. s there a real number whose square is —17 b. Does there exist such that if » is divided by 5 the
a. Is there a real .number x such thatzi? remainder is 2 andif 7
b. Does there exist____ such that x* = —17 Note: There are integers with this property. Can you think of one?
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6 Chapter 1 Speaking Mathematically

[)

. Given any two real numbers, there is a real number in
between.
a. Given any two real numbers a and b, there is a real num-
ber ¢ such thatcis .

b. For any two s such thata < ¢ < b.

4. Given any real number, there is a real number that is greater.
a. Given any real number r, there is s such that s is

b. For any s such that s > r.

9]

. The reciprocal of any positive real number is positive.
a. Given any positive real number r, the reciprocal of .
b. For any real number r,ifris __ ,then .
c. Ifareal numberr  ,then .

6. The cube root of any negative real number is negative.
a. Given any negative real number s, the cube root of .
b. For any real number s, if sis___ ,then .
c. Ifarealnumbers _ ,then .

7. Rewrite the following statements less formally, without
using variables. Determine, as best as you can, whether the
statements are true or false.

a. There are real numbers u and v with the property that
Uu+v<u-—v.

b. There is a real number x such that x> < x.

c. For all positive integers n, n*> > n.

d. For all real numbers a and b, |a + b| < |a| + |b|.

In each of 813, fill in the blanks to rewrite the given statement.

8. For all objects J, if J is a square then J has four sides.
a. All squares .
b. Every square .
c. If an object is a square, thenit .

Answers for Test Yourself

d IfJ , then J .
e. For all squares J,

9. For all equations E, if E is quadratic then E has at most two
real solutions.
a. All quadratic equations .

. Every quadratic equation .

. If an equation is quadratic, thenit ___.

IftE  ,thenE .

. For all quadratic equations E,

o a0 o

10. Every nonzero real number has a reciprocal.
a. All nonzero real numbers .

b. For all nonzero real numbers r, there is forr.
c. For all nonzero real numbers r, there is a real number s
such that .

11. Every positive number has a positive square root.
a. All positive numbers .

b. For any positive number e, there is for e.
c. For all positive numbers e, there is a positive number r
such that .

12. There is a real number whose product with every number
leaves the number unchanged.
a. Some __ has the property thatits .
b. There is a real number r such that the productof r .
c. There is a real number r with the property that for every
real number s,

13. There is a real number whose product with every real number
equals zero.
a. Some ___ has the property thatits .
b. There is a real number a such that the productofa .
c. There is a real number a with the property that for every
real number b,

1. true; all elements of a set 2. is true; also has to be true 3. there is at least one thing

1.2 The Language of Sets

... when we attempt to express in mathematical symbols a condition proposed in words.

First, we must understand thoroughly the condition. Second, we must be familiar with

the forms of mathematical expression. —George Polyd (1887-1985)

Use of the word set as a formal mathematical term was introduced in 1879 by Georg
Cantor (1845-1918). For most mathematical purposes we can think of a set intuitively, as
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1.2 The Language of Sets 7

Cantor did, simply as a collection of elements. For instance, if C is the set of all countries
that are currently in the United Nations, then the United States is an element of C, and if
I is the set of all integers from 1 to 100, then the number 57 is an element of /.

If S is a set, the notation x € S means that x is an element of S. The notation x ¢ S
means that x is not an element of S. A set may be specified using the set-roster
notation by writing all of its elements between braces. For example, {1, 2, 3} denotes
the set whose elements are 1, 2, and 3. A variation of the notation is sometimes used
to describe a very large set, as when we write {1, 2, 3, . .., 100} to refer to the set
of all integers from 1 to 100. A similar notation can also describe an infinite set, as
when we write {1, 2, 3, ...} to refer to the set of all positive integers. (The symbol
... is called an ellipsis and is read “and so forth.”)

The axiom of extension says that a set is completely determined by what its elements
are—not the order in which they might be listed or the fact that some elements might be
listed more than once.

Example 1.2.1 Using the Set-Roster Notation

a. Let A=1{1,2,3}, B={3,1,2}, and C = {1, 1, 2, 3, 3, 3}. What are the elements of
A, B, and C? How are A, B, and C related?

b. Is {0} = 0?
c. How many elements are in the set {1, {1}}?

d. For each nonnegative integer n, let U, = {n, —n}. Find U;, U,, and Uj.

Solution

a. A, B, and C have exactly the same three elements: 1, 2, and 3. Therefore, A, B, and
C are simply different ways to represent the same set.

b. {0} # O because {0} is a set with one element, namely 0, whereas 0 is just the symbol
that represents the number zero.

c. The set {1, {1}} has two elements: 1 and the set whose only element is 1.

d. Uy ={1,-1}, U, ={2, -2}, Uy = {0, -0} = {0, 0} = {0}.

Certain sets of numbers are so frequently referred to that they are given special
symbolic names. These are summarized in the table on the next page.
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8 Chapter 1 Speaking Mathematically

Symbol Set
R set of all real numbers
Note <Thc Z is the first 7Z set of all integers
letter of the German word
for integers, Zahlen. Tt Q set of all rational numbers, or quotients of integers

stands for the set of all

integers and should not be

used as a shorthand for

the word integer. Addition of a superscript + or — or the letters nonneg indicates that only the positive
or negative or nonnegative elements of the set, respectively, are to be included. Thus
R™ denotes the set of positive real numbers, and Z"”"*¢ refers to the set of nonnegative
integers: 0, 1, 2, 3, 4, and so forth. Some authors refer to the set of nonnegative integers
as the set of natural numbers and denote it as N. Other authors call only the positive
integers natural numbers. To prevent confusion, we simply avoid using the phrase natural
numbers in this book.

The set of real numbers is usually pictured as the set of all points on a line, as shown
below. The number O corresponds to a middle point, called the origin. A unit of dis-
tance is marked off, and each point to the right of the origin corresponds to a positive
real number found by computing its distance from the origin. Each point to the left of
the origin corresponds to a negative real number, which is denoted by computing its dis-
tance from the origin and putting a minus sign in front of the resulting number. The set
of real numbers is therefore divided into three parts: the set of positive real numbers, the
set of negative real numbers, and the number 0. Note that O is neither positive nor neg-
ative Labels are given for a few real numbers corresponding to points on the line shown
below.

_g 3 -0.8 % \2 26 13

The real number line is called continuous because it is imagined to have no holes.
The set of integers corresponds to a collection of points located at fixed intervals along
the real number line. Thus every integer is a real number, and because the integers are
all separated from each other, the set of integers is called discrete. The name discrete
mathematics comes from the distinction between continuous and discrete mathematical
objects.

Another way to specify a set uses what is called the set-builder notation.

Note We read the . .
left-hand brace as “the set e Set-Builder Notation

of all” and the vertical

line as “such that”* Tn all Let S denote a set and let P(x) be a property that elements of S may or may not
other mathematical satisfy. We may define a new set to be the set of all elements x in S such that P(x)
contexts, however, we do is true. We denote this set as follows:

not use a vertical line to

denote the words “such {x e S| P(x)}

that”; we abbreviate / \

“such that” as “s. t.” or the set of all such that

“s.th”or*“.>.”

Occasionally we will write {x | P(x)} without being specific about where the ele-
ment x comes from. It turns out that unrestricted use of this notation can lead to genuine
contradictions in set theory. We will discuss one of these in Section 6.4 and will be careful
to use this notation purely as a convenience in cases where the set S could be specified if
necessary.
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1.2 The Language of Sets 9

Example 1.2.2 Using the Set-Builder Notation

Given that R denotes the set of all real numbers, Z the set of all integers, and 7" the set
of all positive integers, describe each of the following sets.

a. {xeR|-2<x<5}
b. {xeZ|-2<x<5}

c. fxeZ"|-2<x <5}

Solution

a. {x e R|—2 < x < 5} is the open interval of real numbers (strictly) between —2 and
5. Itis pictured as follows:

-3 -2 -1 0 1 2 3 4
1 e " I I L
T g T T T T T T

Foav)

b. {x € Z | -2 < x < 5} is the set of all integers (strictly) between —2 and 5. It is equal
to the set {—1,0, 1, 2, 3, 4}.

c. Since all the integers in Z are positive, {x € ZT| =2 < x < 5} = {1,2, 3, 4}. [ |

Subsets

A basic relation between sets is that of subset.

If A and B are sets, then A is called a subset of B, written A C B, if, and only if,
every element of A is also an element of B.
Symbolically:

ACB means that For all elements x, if x € A then x € B.

The phrases A is contained in B and B contains A are alternative ways of saying that
A is a subset of B.

It follows from the definition of subset that for a set A not to be a subset of a set B
means that there is at least one element of A that is not an element of B.
Symbolically:

A ¢ B meansthat There is at least one element x such that x € A and x ¢ B.

Let A and B be sets. A is a proper subset of B if, and only if, every element of A is
in B but there is at least one element of B that is not in A.
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10 Chapter 1 Speaking Mathematically

Example 1.2.3 Subsets

Let A=Z% B={neZ|0<n <100}, and C = {100, 200, 300, 400, 500}. Evaluate
the truth and falsity of each of the following statements.

a. BCA

b. C is a proper subset of A

¢. C and B have at least one element in common
d CCB e. CCC

Solution

a. False. Zero is not a positive integer. Thus zero is in B but zero is not in A, and so
B¢ A.

b. True. Each element in C is a positive integer and, hence, is in A, but there are elements
in A that are not in C. For instance, 1 is in A and not in C.

c. True. For example, 100 is in both C and B.
d. False. For example, 200 is in C but not in B.

e. True. Every element in C is in C. In general, the definition of subset implies that all
sets are subsets of themselves.

Example 1.2.4 Distinction between € and C
Which of the following are true statements?

a. 2€({1,2,3}) b. {2} € {1,2,3} c.2¢{1,2,3}
d {21 {1,2,3) e {2} {1}, {2} f. {2} € ({1}, {2}}

Solution  Only (a), (d), and (f) are true.

For (b) to be true, the set {1, 2, 3} would have to contain the element {2}. But the only
elements of {1, 2, 3} are 1, 2, and 3, and 2 is not equal to {2}. Hence (b) is false.

For (c) to be true, the number 2 would have to be a set and every element in the set 2
would have to be an element of {1, 2, 3}. This is not the case, so (c) is false.

For (e) to be true, every element in the set containing only the number 2 would have
to be an element of the set whose elements are {1} and {2}. But 2 is not equal to either
{1} or {2}, and so (e) is false. [ |

Cartesian Products

With the introduction of Georg Cantor’s set theory in the late nineteenth century, it began
to seem possible to put mathematics on a firm logical foundation by developing all of
its various branches from set theory and logic alone. A major stumbling block was
how to use sets to define an ordered pair because the definition of a set is unaffected
by the order in which its elements are listed. For example, {a, b} and {b, a} represent
the same set, whereas in an ordered pair we want to be able to indicate which element
comes first.

In 1914 crucial breakthroughs were made by Norbert Wiener (1894-1964), a young
American who had recently received his Ph.D. from Harvard and the German mathe-
matician Felix Hausdorff (1868—1942). Both gave definitions showing that an ordered
Kazimierz Kuratowski pair can be defined as a certain type of set, but both definitions were somewhat awkward.
(1896-1980) Finally, in 1921, the Polish mathematician Kazimierz Kuratowski (1896—1980) published

Problemy monthly, July 1959
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1.2 The Language of Sets 11

the following definition, which has since become standard. It says that an ordered pair is
a set of the form

{{a}. {a. b}}.

This set has elements, {a} and {a, b}. If a # b, then the two sets are distinct and a is
in both sets whereas b is not. This allows us to distinguish between a and b and say
that a is the first element of the ordered pair and b is the second element of the pair.
If a = b, then we can simply say that a is both the first and the second element of
the pair. In this case the set that defines the ordered pair becomes {{a}, {a, a}}, which
equals {{a}}.

However, it was only long after ordered pairs had been used extensively in mathemat-
ics that mathematicians realized that it was possible to define them entirely in terms of
sets, and, in any case, the set notation would be cumbersome to use on a regular basis.
The usual notation for ordered pairs refers to {{a}, {a, b}} more simply as (a, b).

Given elements a and b, the symbol (a, b) denotes the ordered pair consisting of a
and b together with the specification that a is the first element of the pair and b is the
second element. Two ordered pairs (a, b) and (c, d) are equal if, and only if, a = ¢
and b = d. Symbolically:

(a,b) = (c,d) meansthat a =candb =d.

Example 1.2.5 Ordered Pairs
a. Is (1,2) = (2, 1)?
b 1s (3. 55) = (V0. 3)?
c. What is the first element of (1, 1)?
Solution
a. No. By definition of equality of ordered pairs,
(1,2) = (2.1) if, and only if, ] =2 and 2 = 1.
But 1 # 2, and so the ordered pairs are not equal.

b. Yes. By definition of equality of ordered pairs,
5 1\ . ) 5
(3, m) = (\/5’ E) lf’ and Only lf’ 3= \/gal'ld E =

Because these equations are both true, the ordered pairs are equal.

1
5

c. In the ordered pair (1, 1), the first and the second elements are both 1.

o Definition

Given sets A and B, the Cartesian product of A and B, denoted A x B and read
“A cross B,” is the set of all ordered pairs (a, b), where a is in A and b is in B.
Symbolically:

A XxB=1{(a,b)|acAand b € B}.
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12 Chapter 1 Speaking Mathematically

Example 1.2.6 Cartesian Products
Let A ={1,2,3}and B = {u, v}.
a. Find A x B
b. Find B x A
c. Find B x B
d. How many elements arein A x B, B x A,and B x B?
e. Let R denote the set of all real numbers. Describe R x R.
Solution
a. Ax B={(l,u),(2,u), 3,u), (1,v), (2,v), 3,v)}
b. B x A ={(u,l), (u,?2), ,3), v,1), (v,2), (v,3)}
c. Bx B={(u,u), u,v), (v,u), (v,v)}

Note  This is why it d. A x B has six elements. Note that this is the number of elements in A times the num-
makes sense to call a ber of elements in B. B x A has six elements, the number of elements in B times
C‘“’(‘f““‘“ product a the number of elements in A. B x B has four elements, the number of elements in B
product!

times the number of elements in B.

e. R x R is the set of all ordered pairs (x, y) where both x and y are real numbers. If
horizontal and vertical axes are drawn on a plane and a unit length is marked off, then
each ordered pair in R x R corresponds to a unique point in the plane, with the first
and second elements of the pair indicating, respectively, the horizontal and vertical
positions of the point. The term Cartesian plane is often used to refer to a plane with
this coordinate system, as illustrated in Figure 1.2.1.

y
3 .
-3,2
( .) sl
14+ o (2,1)
} } } } } } } }
4 3 2 - 1 2 3 4 *
14
(=2,-2) ¢ 24 e(1,-2)
,3 =+

Figure 1.2.1: A Cartesian Plane

Test Yourself

1. When the elements of a set are given using the set-roster 5. The notation {x | P(x)} is read

notation, the order in which they are listed .
Y 6. For a set A to be a subset of a set B means that,

2. The symbol R denotes .

3. The symbol Z denotes . 7. Given sets A and B, the Cartesian product A x B is .
4. The symbol Q denotes .
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1.3 The Language of Relations and Functions 13

Exercise Set 1.2

1. Which of the following sets are equal? c. U={reZ|2<r<-2}
Aswhed  B=idead R AT
C={d,b,a,c} D={a,a,d, e,c,e} f. B

X=weZlu<doru=>1}
2. Write in words how to read each of the following out loud.

a xeRT|0<x <1} 8. Let A={c.d, f.g}, B={fj}, and C={d, g}

b {x eR|x <Oorx > 1} Answer each of the following questions. Give reasons
c. {n € Z|nisafactor of 6} for your answers.
d. {n eZ" |nisa factor of 6} a.IsBSA? b IsCcA?

b. IsC C C? d. Is C a proper subset of A?

3. a Is4=1{4}?
b. How many elements are in the set {3, 4, 3, 5}? 9.a Is3€({l,2,3}? b. Is 1 € {1}?
c. How many elements are in the set {1, {1}, {1, {1}}}? c. Is {2} € {1,2}? d. Is {3} e {1, {2}, {3}}?
e. Isle{l1}? f. Is {2} € {1, {2}, {3}}?
4. a. Is2e€{2)? , g Is {1} C {1,2)? ho Ts 1 e {{1},2)?
b. How many elements are in the set {2, 2, 2, 2}? i Is{1) C {1, {2))? i Is{1) € {1)?
c. How many elements are in the set {0, {0} }? ’ = ’ ' =
d. Is {0} (S {{0}, {1}}‘7 10. a. Is ((_2)2’ _22) — (_22’ (_2)2)()
e. Is0 e {{0}, {1}}? b. Is (5, —5) = (=5, 5)?
H 5. Which of the following sets are equal? e Is (8 =9, /1) = (=1, -1)?
=2 3\ _ (3 _
A=1{0.1.2) d. Is(74,(—2))_(6, 8)?
B={xeR|-1=x<3} 11. Let A ={w, x,y, z} and B = {a, b}. Use the set-roster
C={reR|-1<x <3} notation to write each of the following sets, and indicate
D={xeZ|-1<x <3} the number of elements that are in each set:
E={kxeZ"|-1<x<3} zﬁii 3%1‘2
H 6. For each integer n, let T, = {n, n*}. How many elements 12. Let S=1{2,4,6} and T = {1,3,5}. Use the set-roster

are in each of T», T_3, T and Ty? Justify your answers. notation to write each of the following sets, and indicate

the number of elements that are in each set:
a. SxT b. T xS
c. §x8§ d T'xT

7. Use the set-roster notation to indicate the elements in each
of the following sets.
a. S ={n e Z|n= (=1, for some integer k}.
b. T ={meZ|m=1+ (—1)', for some integer i}.

Answers for Test Yourself

1. does not matter 2. the set of all real numbers 3. the set of all integers 4. the set of all rational numbers 5. the set of all x such
that P(x) 6. every elementin A is an elementin B 7. the set of all ordered pairs (a, b) where a isin A and b is in B

1.3 The Language of Relations and Functions
Mathematics is a language. — Josiah Willard Gibbs (1839-1903)

There are many kinds of relationships in the world. For instance, we say that two people
are related by blood if they share a common ancestor and that they are related by marriage
if one shares a common ancestor with the spouse of the other. We also speak of the rela-
tionship between student and teacher, between people who work for the same employer,
and between people who share a common ethnic background.

Similarly, the objects of mathematics may be related in various ways. A set A may
be said to be related to a set B if A is a subset of B, or if A is not a subset of B, or if A
and B have at least one element in common. A number x may be said to be related to a
number y if x < y, orif x is a factor of y, or if x> + y> = 1. Two identifiers in a computer
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14 Chapter 1 Speaking Mathematically

program may be said to be related if they have the same first eight characters, or if the
same memory location is used to store their values when the program is executed. And
the list could go on!

Let A ={0,1,2} and B = {1, 2, 3} and let us say that an element x in A is related to an
element y in B if, and only if, x is less than y. Let us use the notation x R y as a shorthand
for the sentence “x is related to y.” Then

ORI since 0<1,
OR2 since 0 <2,
OR3 since 0 < 3,
1R2 since 1 <2,
1R3 since 1 <3, and
2R3 since 2 < 3.

On the other hand, if the notation x R y represents the sentence “x is not related to y,”
then

1R1 since 1+#£1,
2R1 since 2 £1, and
2R2 since 2 £2.

Recall that the Cartesian product of A and B, A x B, consists of all ordered pairs
whose first element is in A and whose second element is in B:

AxB={(x,y)|lx€Aandy € B}.
In this case,
AXx B = {(O, 1),(0,2),(0,3), (1, 1), (1,2),(1,3), (2, 1), (2,2), (2, 3)}.

The elements of some ordered pairs in A x B are related, whereas the elements of other
ordered pairs are not. Consider the set of all ordered pairs in A x B whose elements are
related

{(0,1),(0,2),(0,3),(1,2), (1,3), (2, 3)}.

Observe that knowing which ordered pairs lie in this set is equivalent to knowing which
elements are related to which. The relation itself can therefore be thought of as the totality
of ordered pairs whose elements are related by the given condition. The formal mathe-
matical definition of relation, based on this idea, was introduced by the American math-
ematician and logician C. S. Peirce in the nineteenth century.

o Definition

Let A and B be sets. A relation R from A to B is a subset of A x B. Given an
ordered pair (x, y) in A X B, x is related to y by R, written x R y, if, and only
if, (x, y) is in R. The set A is called the domain of R and the set B is called its
co-domain.

The notation for a relation R may be written symbolically as follows:
x Ry meansthat (x,y) € R.
The notation x R y means that x is not related to y by R:

xRy meansthat (x,y) ¢ R.
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1.3 The Language of Relations and Functions 15

Example 1.3.1 A Relation as a Subset

Let A ={1,2} and B = {1, 2, 3} and define a relation R from A to B as follows: Given
any (x,y) € A x B,

- ). .
18 an Integer.

(x,y) € R means that

a. State explicitly which ordered pairs are in A x B and which are in R.
b. Is1 R3?Is2R3?1s2 R2?
c. What are the domain and co-domain of R?

Solution

a. Ax B={1,1),(1,2),(1,3),(2,1), (2,2), (2, 3)}. To determine explicitly the com-
position of R, examine each ordered pairin A x B to see whether its elements satisfy
the defining condition for R.

(1, 1) € R because 1_;1 = g = 0, which is an integer.
(1,2) ¢ R because 1—;2 = %1, which is not an integer.
(1, 3) € R because 1—;3 = _72 = —1, which is an integer.
(2,1) ¢ R because 2—;1 = %, which is not an integer.
(2,2) € R because 2—;2 = g = 0, which is an integer.
(2,3) ¢ R because 2—53 = %1, which is an integer.

Thus
R={(,1),(L,3),(2,2)}

b. Yes, 1 R 3 because (1, 3) € R.
No, 2 R 3 because (2, 3) ¢ R.
Yes, 2 R 2 because (2, 2) € R.

c. The domain of R is {1, 2} and the co-domain is {1, 2, 3}. |

Example 1.3.2 The Circle Relation
Define a relation C from R to R as follows: For any (x, y) € R x R,
(x,y) € C meansthat x>+ y>=1.
a. Is(1,0) e C?71Is (0,0) e C? Is (—% “/75) eC?Is-2C0?Is0C (—1)?Is1C 1?
b. What are the domain and co-domain of C?
c. Draw a graph for C by plotting the points of C in the Cartesian plane.
Solution
a. Yes, (1,0) € C because 12 + 0% = 1.

No, (0, 0) ¢ C because 0> +0> =0 # 1.

L o3 1V L (BY 21,3
Yes, (—5, 7) € C because (_E) + (7) =;+3;=1L
No, —2 ¢ 0 because (—2)> 4+ 0> =4 # 1.

Yes, 0 C (—1) because 0> + (—1)* = 1.

No, 1 ¢ 1 because 1> 4+ 12 =2 # 1.

b. The domain and co-domain of C are both R, the set of all real numbers.
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16 Chapter 1 Speaking Mathematically

Arrow Diagram of a Relation

Suppose R is a relation from a set A to a set B. The arrow diagram for R is obtained as
follows:

1. Represent the elements of A as points in one region and the elements of B as points
in another region.

2. For each x in A and y in B, draw an arrow from x to y if, and only if, x is related to y
by R. Symbolically:
Draw an arrow from x to y
if,and only if, x Ry
if, and only if, (x, y) € R.

Example 1.3.3 Arrow Diagrams of Relations

Let A ={1,2,3}and B = {1, 3, 5} and define relations S and 7 from A to B as follows:
Forall (x,y) € A x B,

(x,y) €S meansthat x <y Sisa“less than” relation.

T ={2,1),(2,5)}.

Draw arrow diagrams for S and 7.
T
—
' '

9
—

These example relations illustrate that it is possible to have several arrows coming
out of the same element of A pointing in different directions. Also, it is quite possible to
have an element of A that does not have an arrow coming out of it. |

Solution

Functions

In Section 1.2 we showed that ordered pairs can be defined in terms of sets and we defined
Cartesian products in terms of ordered pairs. In this section we introduced relations as
subsets of Cartesian products. Thus we can now define functions in a way that depends
only on the concept of set. Although this definition is not obviously related to the way
we usually work with functions in mathematics, it is satisfying from a theoretical point
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1.3 The Language of Relations and Functions 17

of view and computer scientists like it because it is particularly well suited for operating
with functions on a computer.

A function F from a set A to a set B is a relation with domain A and co-domain B
that satisfies the following two properties:

1. For every element x in A, there is an element y in B such that (x, y) € F.
2. For all elements x in A and y and z in B,

if (x,y) € Fand (x,z) € F, then y=z.

Properties (1) and (2) can be stated less formally as follows: A relation F from A to
B is a function if, and only if:

1. Every element of A is the first element of an ordered pair of F.
2. No two distinct ordered pairs in F have the same first element.

In most mathematical situations we think of a function as sending elements from one
set, the domain, to elements of another set, the co-domain. Because of the definition of
function, each element in the domain corresponds to one and only one element of the
co-domain.

More precisely, if F is a function from a set A to a set B, then given any element x in
A, property (1) from the function definition guarantees that there is at least one element
of B that is related to x by F and property (2) guarantees that there is at most one such
element. This makes it possible to give the element that corresponds to x a special name.

If A and B are sets and F is a function from A to B, then given any element x in
A, the unique element in B that is related to x by F is denoted F(x), which is read
“F of x”

Example 1.3.4 Functions and Relations on Finite Sets

Let A ={2,4,6} and B = {1, 3, 5}. Which of the relations R, S, and T defined below
are functions from A to B?

a. R={(295), 4. 1), 4,3), (6,5)}
b. Forall (x,y) € A x B, (x,y) €S meansthat y =x+ 1.

c. T is defined by the arrow diagram

=
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18 Chapter 1 Speaking Mathematically

Solution

a. R is not a function because it does not satisfy property (2). The ordered pairs (4, 1)
and (4, 3) have the same first element but different second elements. You can see this
graphically if you draw the arrow diagram for R. There are two arrows coming out of
4: One points to 1 and the other points to 3.

b. S is not a function because it does not satisfy property (1). It is not true that every
element of A is the first element of an ordered pair in S. For example, 6 € A but there
isno y in B such that y = 6 + 1 = 7. You can also see this graphically by drawing
the arrow diagram for S.

A s B
—
Note In part (c),
T(4) = T(6). This
illustrates the fact that
although no element of c. T is a function: Each element in {2, 4, 6} is related to some element in {1, 3, 5}
the domain of a function and no element in {2, 4, 6} is related to more than one element in {1, 3, 5}. When

can be related to more these properties are stated in terms of the arrow diagram, they become (1) there is an

co-domain. several arrow coming out of each element of the domain, and (2) no element of the domain
clements in the domain has more than one arrow coming out of it. So you can write 7(2) =5, T(4) =1,

can be related to the same and 7(6) = 1. |
element in the co-domain.

than one element of the

Example 1.3.5 Functions and Relations on Sets of Real Numbers

a. In Example 1.3.2 the circle relation C was defined as follows:
Forall (x,y) e Rx R, (x,y) € C means that x>+ y2 =1.

Is C afunction? Ifitis, find C(0) and C(1).

b. Define a relation from R to R as follows:
Forall (x,y) e RxR, (x,y) €L meansthat y=x —1.
Is L a function? Ifitis, find L(0) and L(1).

Solution

a. The graph of C, shown on the next page, indicates that C does not satisfy either func-
tion property. To see why C does not satisfy property (1), observe that there are many
real numbers x such that (x, y) ¢ C for any y.
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1.3 The Language of Relations and Functions 19

Graph of C —7

For instance, when x = 2, there is no real number y so that
PERNINC Y, E NI S R |
because if there were, then it would have to be true that
y? = -3.

which is not the case for any real number y.

To see why C does not satisfy property (2), note that for some values of x there
are two distinct values of y so that (x, y) € C. One way to see this graphically is to
observe that there are vertical lines, such as x = %, that intersect the graph of C at two
separate points: (% ‘/Ti) and (% —‘/Ti)

b. L is a function. For each real number x, y = x — 1 is a real number, and so there is a
real number y with (x, y) € L. Alsoif (x, y) € Land (x, z) € L,theny = x — 1 and
z=x—1,and so y = z. In particular, L(0) =0—1=—land L(1) =1—-1=0.

You can also check these results by inspecting the graph of L, shown below. Note
that for every real number x, the vertical line through (x, 0) passes through the graph
of L exactly once. This indicates both that every real number x is the first element of
an ordered pair in L and also that no two distinct ordered pairs in L have the same first
element.

y=x-1

(x,0)

Graph of L —>,

Function Machines

Another useful way to think of a function is as a machine. Suppose f is a function from X
to Y and an input x of X is given. Imagine f to be a machine that processes x in a certain
way to produce the output f(x). This is illustrated in Figure 1.3.1 on the next page.
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20 Chapter 1 Speaking Mathematically

Input

function machine

\

S Output

Figure 1.3.1

Example 1.3.6 Functions Defined by Formulas

The squaring function f from R to R is defined by the formula f(x) = x for all real
numbers x. This means that no matter what real number input is substituted for x, the
output of f will be the square of that number. This idea can be represented by writing
EES 2. In other words, f sends each real number x to x2, or, symbolically,

f:x — x2. Note that the variable x is a dummy variable; any other symbol could replace
it, as long as the replacement is made everywhere the x appears.

The successor function g from Z to Z is defined by the formula g(n) = n + 1. Thus,
no matter what integer is substituted for n, the output of g will be that number plus
one: g([J) = O+ 1. In other words, g sends each integer n to n + 1, or, symbolically,
gn—>n+1.

An example of a constant function is the function 2 from Q to Z defined by the
formula i (r) = 2 for all rational numbers r. This function sends each rational number
r to 2. In other words, no matter what the input, the output is always 2: 2(J) =2 or
h:r — 2.

The functions f, g, and h are represented by the function machines in Figure 1.3.2.

7N SN 7N

n r

successor
function

constant
function

squaring
function

N

[ =x? gy =n+1
(@ (b)

Figure 1.3.2

A function is an entity in its own right. It can be thought of as a certain relationship
between sets or as an input/output machine that operates according to a certain rule. This
is the reason why a function is generally denoted by a single symbol or string of symbols,
such as f, G, of log, or sin.

A relation is a subset of a Cartesian product and a function is a special kind of relation.
Specifically, if f and g are functions from a set A to a set B, then

f={x,y)€AxB|y=f(x)} and g={(x,y) € AXB|y=g(x)}
It follows that

fequalsg, writtenf =g, if andonlyif, f(x)= g(x)forallxin A.
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1.3 The Language of Relations and Functions 21

Example 1.3.7 Equality of Functions
Define f: R — R and g: R — R by the following formulas:

f(x) = |x| forallx e R.
g(x) =+/x2 forallx € R.

Does f = g?

Solution

Yes. Because the absolute value of any real number equals the square root of its square,
|x| = v/x2forall x € R. Hence f = g. [ ]

Test Yourself
1. Given sets A and B, a relation from A to Bis .

2. A function F from A to B is a relation from A to B that
satisfies the following two properties:

a. for every element x of A, there is .

Exercise Set 1.3

1. Let A = {2, 3,4} and B = {6, 8, 10} and define a relation
R from A to B as follows: For all (x, y) € A x B,

(x,y) € R means that Y is an integer.
X

. Is4R671s4R8?1s (3,8) € R?Is (2, 10) € R?
. Write R as a set of ordered pairs.

. Write the domain and co-domain of R.

. Draw an arrow diagram for R.

a0 o

2. LetC =D ={-3,-2,—1, 1, 2, 3} and define a relation S
from C to D as follows: For all (x,y) € C x D,

1 1
(x,y) € S meansthat — — — is an integer.
X y

L Is2827Is —1S —1?71s (3,3) € S?1Is (3, —3) € §?
. Write S as a set of ordered pairs.

. Write the domain and co-domain of S.

. Draw an arrow diagram for S.

o o

3. Let E ={1,2,3} and F = {—2, —1, 0} and define a rela-
tion T from E to F as follows: For all (x,y) € E x F,

(x,y) € T means that — is an integer.
CIS3TO0?2Is IT(—1D)?Is 2, —1) e T?1s 3, —2) € T?
. Write T as a set of ordered pairs.

. Write the domain and co-domain of 7'.

. Draw an arrow diagram for 7'.

o o

4. Let G ={-2,0,2}and H = {4, 6, 8} and define a relation
V from G to H as follows: For all (x,y) € G x H,

(x,y) € V means that —Y is an integer.

a. Is2V621Is (=2)V (=6)?1s (0,6) € V?1s (2,4) € V?

b. for all elements x in A and y and z in B, if
then .

3. If F is a function from A to B and x is an element of A, then
F(x)is .

b. Write V as a set of ordered pairs.
c. Write the domain and co-domain of V.
d. Draw an arrow diagram for V.

5. Define a relation S from R to R as follows:
For all (x,y) € R xR,
(x,y) € S meansthat x > y.

a. Is(2,1) € S?71s (2,2) € S?1s 2832 Is (—1) S (—=2)?
b. Draw the graph of S in the Cartesian plane.

6. Define a relation R from R to R as follows:
For all (x,y) e R xR,
(x,y) € R meansthat y=x2

a. Is (2,4) e R?Is (4,2) € R?Is (=3) R9?Is 9 R (=3)?
b. Draw the graph of R in the Cartesian plane.

7. Let A=1{4,5,6} and B = {5, 6, 7} and define relations R,
S,and T from A to B as follows:
For all (x,y) € A x B,
(x,y) € R meansthat x > y.

(x,y) € S means that —7 is an integer.
T ={417),(6,5),(6,N}
a. Draw arrow diagrams for R, S, and 7.
b. Indicate whether any of the relations R, S, and 7 are

functions.

8. Let A=1{2,4} and B ={1,3,5} and define relations
U, V, and W from A to B as follows: For all (x,y)

€ A X B,
(x,y) €U meansthat y—x > 2.

(x,y) €V meansthat y—1=
W =1{2,5), 4, 1), (2,3}

| =
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22 Chapter 1 Speaking Mathematically

a. Draw arrow diagrams for U, V, and W.
b. Indicate whether any of the relations U, V, and W are

functions.
9. a. Find all relations from {0,1} to {1}.
b. Find all functions from {0,1} to {1}.

c. What fraction of the relations from {0,1} to {1} are
functions?

10. Find four relations from {a, b} to {x, y} that are not func-
tions from {a, b} to {x, y}.

11. Define a relation P from R" to R as follows: For all real
numbers x and y with x > 0,

(x,y) € P meansthat x =y
Is P a function? Explain.

12. Define a relation 7 from R to R as follows: For all real
numbers x and y,

(x,y) € T meansthat y>—x>=1.
Is T a function? Explain.

13. Let A={—1,0,1} and B = {t, u, v, w}. Define a function
F: A — B by the following arrow diagram:
A B

—

a. Write the domain and co-domain of F'.
b. Find F(—1), F(0),and F(1).

14. LetC ={1,2,3,4}and D = {a, b, ¢, d}. Define a function
G: C — D by the following arrow diagram:

)

a. Write the domain and co-domain of G.
b. Find G(1), G(2), G(3), and G(4).

15. Let X ={2,4,5} and Y = {1, 2,4, 6}. Which of the fol-
lowing arrow diagrams determine functions from X to Y'?

a. X Y

—]

| >

Answers for Test Yourself

/!

16.

19.

20.

><

\/
K

'

7
)

I

Let f be the squaring function defined in Example 1.3.6.
. 1
Find f(—1), £(0),and f (5)

. Let g be the successor function defined in Example 1.3.6.

Find g(—1000), g(0), and g(999).

. Let i be the constant function defined in Example 1.3.6.

Find h (—15—2) h (%) and h (%)

Define functions f and g from R to R by the following
formulas: For all x € R,
2x3 4+ 2x
=2 d =
fO =2 and g() = "5

Does f = g? Explain.

Define functions H and K from R to R by the following

formulas: For all x € R,
H(x)=(x—2)* and Kx)=(x—1D(x—-3)+1.

Does H = K? Explain.

1. a subset of the Cartesian product A x B 2. a. an element y of B such that (x,y) € F (i.e., such that x is related to y
by F) b.(x,y) € Fand(x,z) € F; y=2z 3.the unique element of B that is related to x by F
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CHAPTER 2

THE LOGIC OF COMPOUND
STATEMENTS

The first great treatises on logic were written by the Greek philosopher Aristotle. They
were a collection of rules for deductive reasoning that were intended to serve as a basis
for the study of every branch of knowledge. In the seventeenth century, the German
philosopher and mathematician Gottfried Leibniz conceived the idea of using symbols
to mechanize the process of deductive reasoning in much the same way that algebraic
notation had mechanized the process of reasoning about numbers and their relationships.
Leibniz’s idea was realized in the nineteenth century by the English mathematicians
George Boole and Augustus De Morgan, who founded the modern subject of symbolic
logic. With research continuing to the present day, symbolic logic has provided, among
other things, the theoretical basis for many areas of computer science such as digital logic
circuit design (see Sections 2.4 and 2.5), relational database theory (see Section 8.1),
automata theory and computability (see Section 7.4 and Chapter 12), and artificial intel-
ligence (see Sections 3.3, 10.1, and 10.5).

Bettmann/CORBIS

Aristotle
(384 B.c—322 B.C.)

2.1 Logical Form and Logical Equivalence

Logic is a science of the necessary laws of thought, without which no employment of the
understanding and the reason takes place. —Immanuel Kant, 1785

The central concept of deductive logic is the concept of argument form. An argument is a
sequence of statements aimed at demonstrating the truth of an assertion. The assertion at
the end of the sequence is called the conclusion, and the preceding statements are called
premises. To have confidence in the conclusion that you draw from an argument, you
must be sure that the premises are acceptable on their own merits or follow from other
statements that are known to be true.

In logic, the form of an argument is distinguished from its content. Logical analysis
won’t help you determine the intrinsic merit of an argument’s content, but it will help
you analyze an argument’s form to determine whether the truth of the conclusion follows
necessarily from the truth of the premises. For this reason logic is sometimes defined as
the science of necessary inference or the science of reasoning.

Consider the following two arguments, for example. Although their content is very
different, their logical form is the same. Both arguments are valid in the sense that if their
premises are true, then their conclusions must also be true. (In Section 2.3 you will learn
how to test whether an argument is valid.)

Argument | If the program syntax is faulty or if program execution results in division by
zero, then the computer will generate an error message. Therefore, if the computer does

23
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24 Chapter 2 The Logic of Compound Statements

not generate an error message, then the program syntax is correct and program execution
does not result in division by zero.

Argument 2 If x is a real number such that x < —2 or x > 2, then x% > 4. Therefore, if
x2 % 4, thenx ¢ —2 and x % 2.

To illustrate the logical form of these arguments, we use letters of the alphabet (such
as p, q, and r) to represent the component sentences and the expression “not p” to refer
to the sentence “It is not the case that p.” Then the common logical form of both the
previous arguments is as follows:

If p or g, then r.

Therefore, if not r, then not p and not g.

Example 2.1.1 Identifying Logical Form

Fill in the blanks below so that argument (b) has the same form as argument (a). Then
represent the common form of the arguments using letters to stand for component
sentences.

a. If Jane is a math major or Jane is a computer science major, then Jane will take
Math 150.
Jane is a computer science major.
Therefore, Jane will take Math 150.

b. If logic is easy or @ , then @
I will study hard.
Therefore, I will get an A in this course.

Solution
1. I (will) study hard.
2. I'will get an A in this course.

Common form: If p or g, then r.

q.
Therefore, r. [ |

Statements

Most of the definitions of formal logic have been developed so that they agree with the
natural or intuitive logic used by people who have been educated to think clearly and
use language carefully. The differences that exist between formal and intuitive logic are
necessary to avoid ambiguity and obtain consistency.

In any mathematical theory, new terms are defined by using those that have been
previously defined. However, this process has to start somewhere. A few initial terms
necessarily remain undefined. In logic, the words sentence, true, and false are the initial
undefined terms.

o Definition

A statement (or proposition) is a sentence that is true or false but not both.

For example, “Two plus two equals four” and “Two plus two equals five” are both
statements, the first because it is true and the second because it is false. On the other
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2.1 Logical Form and Logical Equivalence 25

hand, the truth or falsity of “He is a college student” depends on the reference for the
pronoun he. For some values of he the sentence is true; for others it is false. If the sen-
tence were preceded by other sentences that made the pronoun’s reference clear, then the
sentence would be a statement. Considered on its own, however, the sentence is neither
true nor false, and so it is not a statement. We will discuss ways of transforming sentences
of this form into statements in Section 3.1.

Similarly, “x 4+ y > 07 is not a statement because for some values of x and y the
sentence is true, whereas for others it is false. For instance, if x =1 and y = 2, the
sentence is true; if x = —1 and y = 0, the sentence is false.

Compound Statements

We now introduce three symbols that are used to build more complicated logical
expressions out of simpler ones. The symbol ~denotes not, A denotes and, and Vv denotes
or. Given a statement p, the sentence “~p” is read “not p” or “It is not the case that p”
and is called the negation of p. In some computer languages the symbol 7 is used in
place of ~. Given another statement ¢, the sentence “p A ¢” is read “p and ¢” and is
called the conjunction of p and ¢g. The sentence “p Vv ¢” is read “p or ¢” and is called
the disjunction of p and gq.

In expressions that include the symbol ~as well as A or Vv, the order of operations
specifies that ~ is performed first. For instance, ~p A ¢ = (~p) A ¢. In logical expres-
sions, as in ordinary algebraic expressions, the order of operations can be overridden
through the use of parentheses. Thus ~(p A ¢) represents the negation of the conjunction
of p and ¢. In this, as in most treatments of logic, the symbols A and Vv are considered
coequal in order of operation, and an expression such as p A g V r is considered ambigu-
ous. This expression must be written as either (p A g) V ror p A (g V r) to have meaning.

A variety of English words translate into logic as A, Vv, or ~. For instance, the word
but translates the same as and when it links two independent clauses, as in “Jim is tall
but he is not heavy.” Generally, the word but is used in place of and when the part of the
sentence that follows is, in some way, unexpected. Another example involves the words
neither-nor. When Shakespeare wrote, “Neither a borrower nor a lender be,” he meant,
“Do not be a borrower and do not be a lender.” So if p and ¢ are statements, then

p butg means p and g

neither p nor ¢ means ~p and ~q.

Example 2.1.2 Translating from English to Symbols: But and Neither-Nor

Write each of the following sentences symbolically, letting 7 = “It is hot” and s = “It is
sunny.”

a. Itis not hot but it is sunny.
b. Itis neither hot nor sunny.
Solution

a. The given sentence is equivalent to “It is not hot and it is sunny,” which can be written
symbolically as ~h A s.

b. To say it is neither hot nor sunny means that it is not hot and it is not sunny. Therefore,
the given sentence can be written symbolically as ~h A ~s. |
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26 Chapter 2 The Logic of Compound Statements

The notation for inequalities involves and and or statements. For instance, if x, a, and b
are particular real numbers, then

x=<a means X <a or X =a

x<b means a<x and x <b.

Note that the inequality 2 < x < 1 is not satisfied by any real numbers because
2<x<1 means 2<x and x <1,

and this is false no matter what number x happens to be. By the way, the point of specify-
ing x, a, and b to be particular real numbers is to ensure that sentences such as “x < a”
and “x > b” are either true or false and hence that they are statements.

Example 2.1.3 And, Or, and Inequalities

Suppose x is a particular real number. Let p, g, and r symbolize “0 < x,” “x < 3,” and
“x = 3, respectively. Write the following inequalities symbolically:
a. x <3 b.O<x<3 c. 0<x<3
Solution
aqgVvr b. pAg c. pA(gVr) |

Truth Values

In Examples 2.1.2 and 2.1.3 we built compound sentences out of component statements
and the terms not, and, and or. If such sentences are to be statements, however, they
must have well-defined truth values—they must be either true or false. We now define
such compound sentences as statements by specifying their truth values in terms of the
statements that compose them.

The negation of a statement is a statement that exactly expresses what it would mean
for the statement to be false.

o Definition

If p is a statement variable, the negation of p is “not p” or “It is not the case that
p” and is denoted ~p. It has opposite truth value from p: if p is true, ~p is false;
if p is false, ~p is true.

The truth values for negation are summarized in a truth table.

Truth Table for ~p
p ~p
T F
F
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2.1 Logical Form and Logical Equivalence 27

In ordinary language the sentence “It is hot and it is sunny” is understood to be true
when both conditions—being hot and being sunny—are satisfied. If it is hot but not
sunny, or sunny but not hot, or neither hot nor sunny, the sentence is understood to be
false. The formal definition of truth values for an and statement agrees with this general
understanding.

e Definition

If p and ¢ are statement variables, the conjunction of p and ¢ is “p and ¢,” denoted
p A gq. Itis true when, and only when, both p and ¢ are true. If either p or ¢ is false,
or if both are false, p A g is false.

The truth values for conjunction can also be summarized in a truth table. The table is
obtained by considering the four possible combinations of truth values for p and ¢g. Each
combination is displayed in one row of the table; the corresponding truth value for the
whole statement is placed in the right-most column of that row. Note that the only row
containing a T is the first one since the only way for an and statement to be true is for
both component statements to be true.

Truth Table for p A ¢

PAgq

mm| A
CIEIEIET S
T3>

By the way, the order of truth values for p and ¢ in the table above is TT, TF, FT,
FF. It is not absolutely necessary to write the truth values in this order, although it is
customary to do so. We will use this order for all truth tables involving two statement
variables. In Example 2.1.5 we will show the standard order for truth tables that involve
three statement variables.

In the case of disjunction—statements of the form “p or ¢”—intuitive logic offers
two alternative interpretations. In ordinary language or is sometimes used in an exclusive
sense (p or g but not both) and sometimes in an inclusive sense (p or g or both). A waiter
who says you may have “coffee, tea, or milk” uses the word or in an exclusive sense:
Extra payment is generally required if you want more than one beverage. On the other
hand, a waiter who offers “cream or sugar” uses the word or in an inclusive sense: You
are entitled to both cream and sugar if you wish to have them.

Mathematicians and logicians avoid possible ambiguity about the meaning of the
word or by understanding it to mean the inclusive “and/or.” The symbol V comes from
the Latin word vel, which means or in its inclusive sense. To express the exclusive o, the
phrase p or g but not both is used.
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28 Chapter 2 The Logic of Compound Statements

o Definition

If p and ¢ are statement variables, the disjunction of p and ¢ is “p or ¢,” denoted
p V q.ltis true when either p is true, or ¢ is true, or both p and ¢ are true; it is false
only when both p and g are false.

Note The statement Here is the truth table for disjunction:
“2 < 2” means that 2 is
less than 2 or 2 equals 2.
It is true because 2 = 2.

Truth Table for p v ¢

pVvVq

I IR
CIEIE IS
maaa]<

Evaluating the Truth of More General
Compound Statements

Now that truth values have been assigned to ~p, p A ¢, and p V g, consider the question
of assigning truth values to more complicated expressions such as ~p Vg,
(pVvag)A~(pAgq), and (p Aq) Vv r. Such expressions are called statement forms
(or propositional forms). The close relationship between statement forms and Boolean
expressions is discussed in Section 2.4.

A statement form (or propositional form) is an expression made up of statement
variables (such as p, ¢, and r) and logical connectives (such as ~, A, and V) that
becomes a statement when actual statements are substituted for the component state-
ment variables. The truth table for a given statement form displays the truth values
that correspond to all possible combinations of truth values for its component state-
ment variables.

To compute the truth values for a statement form, follow rules similar to those used
to evaluate algebraic expressions. For each combination of truth values for the statement
variables, first evaluate the expressions within the innermost parentheses, then evaluate
the expressions within the next innermost set of parentheses, and so forth until you have
the truth values for the complete expression.

Example 2.1.4 Truth Table for Exclusive Or

Construct the truth table for the statement form (p Vv g) A ~(p A q). Note that when or
is used in its exclusive sense, the statement “p or ¢~ means “p or g but not both” or “p
or ¢ and not both p and ¢,” which translates into symbols as (p vV g) A ~(p A g). This
is sometimes abbreviated p @ g or p XOR gq.
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Solution  Set up columns labeled p,q, pV g, p Ag,~(p Aq),and (p vV g) A ~(p A q).
Fill in the p and g columns with all the logically possible combinations of T’s and
F’s. Then use the truth tables for V and A to fill in the p V ¢ and p A g columns with the
appropriate truth values. Next fill in the ~(p A ¢g) column by taking the opposites of the
truth values for p A g. For example, the entry for ~(p A ¢) in the first row is F because
in the first row the truth value of p A ¢ is T. Finally, fill in the (p vV g¢) A ~(p A q) col-
umn by considering the truth table for an and statement together with the computed truth
values for p Vv g and ~(p A ¢g). For example, the entry in the first row is F because the
entry for p Vv ¢ is T, the entry for ~(p A q) is F, and an and statement is false unless both
components are true. The entry in the second row is T because both components are true
in this row.

Truth Table for Exclusive Or: (p Vv q) A ~(p A q)

p q A PAg ~(p Aq) PV A~PAQ)

T T T T F F

T F T F T T

F T T F T T

F F F F T F -

Example 2.1.5 Truth Table for (p A q) vV ~r
Construct a truth table for the statement form (p A g) Vv ~r.

Solution Make columns headed p, ¢, r, p Aq, ~r, and (p A q) V ~r. Enter the eight
logically possible combinations of truth values for p, ¢, and r in the three left-most
columns. Then fill in the truth values for p A g and for ~r. Complete the table by con-
sidering the truth values for (p A g) and for ~r and the definition of an or statement.
Since an or statement is false only when both components are false, the only rows in
which the entry is F are the third, fifth, and seventh rows because those are the only
rows in which the expressions p A g and ~r are both false. The entry for all the other

rows is T.
P 4 r | paq ~r | (pAgQV T
T T T T F T
T T F T T
T F T F F F
T F F F T T
F T T F F F
F T F F T T
F F T F F F
F F F F T T m

The essential point about assigning truth values to compound statements is that it
allows you—using logic alone—to judge the truth of a compound statement on the basis
of your knowledge of the truth of its component parts. Logic does not help you determine
the truth or falsity of the component statements. Rather, logic helps link these separate
pieces of information together into a coherent whole.
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30 Chapter2 The Logic of Compound Statements

Logical Equivalence
The statements
6is greater than2 and 2 is less than 6

are two different ways of saying the same thing. Why? Because of the definition of the
phrases greater than and less than. By contrast, although the statements

(1) Dogs bark and cats meow and (2) Cats meow and dogs bark

are also two different ways of saying the same thing, the reason has nothing to do with
the definition of the words. It has to do with the logical form of the statements. Any
two statements whose logical forms are related in the same way as (1) and (2) would
either both be true or both be false. You can see this by examining the following truth
table, where the statement variables p and g are substituted for the component statements
“Dogs bark” and “Cats meow,” respectively. The table shows that for each combination
of truth values for p and ¢, p A ¢ is true when, and only when, g A p is true. In such a
case, the statement forms are called logically equivalent, and we say that (1) and (2) are
logically equivalent statements.

P 4 | PAg  qAPp
T T T T
T F F F
F T F F
F F F F

N

p Agandg A palways
have the same truth
values, so they are
logically equivalent

Two statement forms are called logically equivalent if, and only if, they have identical
truth values for each possible substitution of statements for their statement variables.
The logical equivalence of statement forms P and Q is denoted by writing P = Q.

Two statements are called logically equivalent if, and only if, they have logically
equivalent forms when identical component statement variables are used to replace
identical component statements.

Testing Whether Two Statement Forms P and Q Are Logically Equivalent
1. Construct a truth table with one column for the truth values of P and another
column for the truth values of Q.

2. Check each combination of truth values of the statement variables to see whether
the truth value of P is the same as the truth value of Q.

a. If in each row the truth value of P is the same as the truth value of Q, then P
and Q are logically equivalent.

b. If in some row P has a different truth value from Q, then P and Q are not
logically equivalent.
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Example 2.1.6 Double Negative Property: ~(~p) = p

Construct a truth table to show that the negation of the negation of a statement is logically
equivalent to the statement, annotating the table with a sentence of explanation.

Solution » ~p | ~(~p)
F T
F T F
[

p and ~(~p) always have
the same truth values, so they
are logically equivalent |

There are two ways to show that statement forms P and Q are not logically equiva-
lent. As indicated previously, one is to use a truth table to find rows for which their truth
values differ. The other way is to find concrete statements for each of the two forms, one
of which is true and the other of which is false. The next example illustrates both of these
ways.

Example 2.1.7 Showing Nonequivalence
Show that the statement forms ~(p A g) and ~p A ~q are not logically equivalent.
Solution

a. This method uses a truth table annotated with a sentence of explanation.

p q |~ ~q pArgq | ~pAg) ~p A~q
T T F F T F F
T F F T F T £ F
F T T F F T £ F
F F T T F T T
1 1\

~(p A q) and ~p A ~q have
different truth values in rows 2 and 3,
so they are not logically equivalent

b. This method uses an example to show that ~(p A g) and ~p A ~g are not logically
equivalent. Let p be the statement “0 < 1” and let ¢ be the statement “1 < 0.” Then

~(p Agq) 1is “Itisnot the case thatbothO < land1 <0,”
which is true. On the other hand,
~pA~q is “0£1 and 1£0,”

which is false. This example shows that there are concrete statements you can substi-
tute for p and g to make one of the statement forms true and the other false. Therefore,
the statement forms are not logically equivalent. |
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32 Chapter 2 The Logic of Compound Statements

Example 2.1.8 Negations of And and Or: De Morgan’s Laws

For the statement “John is tall and Jim is redheaded” to be true, both components must
be true. So for the statement to be false, one or both components must be false. Thus
the negation can be written as “John is not tall or Jim is not redheaded.” In general, the
negation of the conjunction of two statements is logically equivalent to the disjunction
of their negations. That is, statements of the forms ~(p A ¢) and ~p Vv ~q are logically
equivalent. Check this using truth tables.

Solution P a4 |~ ~ prqg | ~prg ~pveg
T T F F T F F
T F F T F T T
F T T F F T T
F F T T F T T
1
~(p A g)and ~p V ~q always
have the same truth values, so they
are logically equivalent
Symbolically,

~(pAq)=~pVq.

In the exercises at the end of this section you are asked to show the analogous law that
the negation of the disjunction of two statements is logically equivalent to the conjunction
of their negations:

Culver Pictures

~pVag) =~pAq.
Augustus De Morgan |
(1806-1871)

The two logical equivalences of Example 2.1.8 are known as De Morgan’s laws
of logic in honor of Augustus De Morgan, who was the first to state them in formal
mathematical terms.

De Morgan’s Laws

The negation of an and statement is logically equivalent to the or statement in which
each component is negated.

The negation of an or statement is logically equivalent to the and statement in which
each component is negated.

Example 2.1.9 Applying De Morgan’s Laws
Write negations for each of the following statements:
a. John is 6 feet tall and he weighs at least 200 pounds.

b. The bus was late or Tom’s watch was slow.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.1 Logical Form and Logical Equivalence 33

Solution
a. John is not 6 feet tall or he weighs less than 200 pounds.
b. The bus was not late and Tom’s watch was not slow.

Since the statement “neither p nor ¢” means the same as “~p and ~¢g,” an alternative
answer for (b) is “Neither was the bus late nor was Tom’s watch slow.” [ |

If x is a particular real number, saying that x is not less than 2 (x < 2) means that x
does not lie to the left of 2 on the number line. This is equivalent to saying that either
x = 2 or x lies to the right of 2 on the number line (x = 2 or x > 2). Hence,

x £ 2 isequivalentto x > 2.

Pictorially,
-2 -1 0 1 2 3 4 5
} } } } + t t t
If x « 2, then x lies in hcrc.—J
Similarly,

x %2 Jisequivalentto x <2,
x £2 isequivalentto x > 2, and

x #2 isequivalentto x < 2.

Example 2.1.10 Inequalities and De Morgan’s Laws
Use De Morgan’s laws to write the negation of —1 < x < 4.

Solution  The given statement is equivalent to

—1<x and x <4.

f By De Morgan’s laws, the negation is
Caution!  The negation —1#£x or x % 4,
of —1 < x <4 is not
—1 ¢ x £ 4.Ttis also not which is equivalent to
—1>x>4.

—1>x or x>4.

Pictorially, if —1 > x or x > 4, then x lies in the shaded region of the number line,
as shown below.

4+ —

De Morgan’s laws are frequently used in writing computer programs. For instance,
suppose you want your program to delete all files modified outside a certain range of
dates, say from date 1 through date 2 inclusive. You would use the fact that

~(datel < file_modification_date < date2)
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34 Chapter 2 The Logic of Compound Statements

is equivalent to

(file_modification_date < datel) or (date2 < file_modification_date).

Example 2.1.11 A Cautionary Example
According to De Morgan’s laws, the negation of
p:Jim is tall and Jim is thin
is ~p: Jim is not tall or Jim is not thin

because the negation of an and statement is the or statement in which the two components
are negated.

Unfortunately, a potentially confusing aspect of the English language can arise when
you are taking negations of this kind. Note that statement p can be written more com-
pactly as

p': Jim is tall and thin.

When it is so written, another way to negate it is

~(p): Jim is not tall and thin.

A But in this form the negation looks like an and statement. Doesn’t that violate
De Morgan’s laws?

Caution! Although the Actually no violation occurs. The reason is that in formal logic the words and and or

laws of logic are are allowed only between complete statements, not between sentence fragments.

extremely useful, they
should be used as an aid
to thinking, not as a
mechanical substitute for
1t.

One lesson to be learned from this example is that when you apply De Morgan’s
laws, you must have complete statements on either side of each and and on either side of

each or.
[ ]

Tautologies and Contradictions

It has been said that all of mathematics reduces to tautologies. Although this is formally
true, most working mathematicians think of their subject as having substance as well as
form. Nonetheless, an intuitive grasp of basic logical tautologies is part of the equipment
of anyone who reasons with mathematics.

A tautology is a statement form that is always true regardless of the truth values of
the individual statements substituted for its statement variables. A statement whose
form is a tautology is a tautological statement.

A contradication is a statement form that is always false regardless of the truth val-
ues of the individual statements substituted for its statement variables. A statement
whose form is a contradication is a contradictory statement.

According to this definition, the truth of a tautological statement and the falsity of a
contradictory statement are due to the logical structure of the statements themselves and
are independent of the meanings of the statements.
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Example 2.1.12 Tautologies and Contradictions

Show that the statement form p v ~p is a tautology and that the statement form p A ~p
is a contradiction.

Solution p | ~p | pvep | pA~p
T F T F
F T T F
1 1
all T’s so allF’s so
pV ~pis pA~pisa [}

atautology contradiction

Example 2.1.13 Logical Equivalence Involving Tautologies and Contradictions

If t is a tautology and c¢ is a contradiction, show that p A t=pand pA c=c.

Solution P ¢ pAt | p c pAC
T T T F
F T F F F F
1 i) t
same truth same truth
values, so values, so
pAt=p pPAC=C |

Summary of Logical Equivalences

Knowledge of logically equivalent statements is very useful for constructing arguments.
It often happens that it is difficult to see how a conclusion follows from one form of a
statement, whereas it is easy to see how it follows from a logically equivalent form of the
statement. A number of logical equivalences are summarized in Theorem 2.1.1 for future

reference.
Theorem 2.1.1 Logical Equivalences
Given any statement variables p, ¢, and r, a tautology t and a contradiction ¢, the following logical equivalences
hold.
1. Commutative laws: PAG=qgAp pvVg=qVp
2. Associative laws: (pANg) AT =pA(gAT) (pvg)Vr=pVvi(gVr)
3. Distributive laws: pA(@Vvr)y=((pAq)V(pAr) pNV@Ar)y=(pVg)A(pVr)
4. Identity laws: pPAt=p pVveEe=p
5. Negation laws: pVv~p=t PA~p=C
6. Double negative law: ~(~p)=p
7. Idempotent laws: PADP=Dp pPVPp=p
8. Universal bound laws: pVvt=t PAC=Cc
9. De Morgan’s laws: ~(pAg)=~pV ~q ~(pVq)=~pA~q
10. Absorption laws: pV((pAg)=p pA(pVg) =p
11. Negations of t and c: ~t=c ~c=t
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36 Chapter 2 The Logic of Compound Statements

The proofs of laws 4 and 6, the first parts of laws 1 and 5, and the second part of law 9
have already been given as examples in the text. Proofs of the other parts of the theorem
are left as exercises. In fact, it can be shown that the first five laws of Theorem 2.1.1 form
a core from which the other laws can be derived. The first five laws are the axioms for a
mathematical structure known as a Boolean algebra, which is discussed in Section 6.4.

The equivalences of Theorem 2.1.1 are general laws of thought that occur in all areas
of human endeavor. They can also be used in a formal way to rewrite complicated state-
ment forms more simply.

Example 2.1.14 Simplifying Statement Forms
Use Theorem 2.1.1 to verify the logical equivalence
~p A APV g) = p.

Solution  Use the laws of Theorem 2.1.1 to replace sections of the statement form on the
left by logically equivalent expressions. Each time you do this, you obtain a logically
equivalent statement form. Continue making replacements until you obtain the statement
form on the right.

~(~p A q) AN(pVg)=(~(~p)V~q)AN(pVq) by De Morgan’s laws

=(pVv~q)AN(pVq) by the double negative law
=pVv(i~qgANq) by the distributive law
=pV@A~q) by the commutative law for A
=pVvVe by the negation law

=p by the identity law. |

Skill in simplifying statement forms is useful in constructing logically efficient computer
programs and in designing digital logic circuits.

Although the properties in Theorem 2.1.1 can be used to prove the logical
equivalence of two statement forms, they cannot be used to prove that statement forms are
not logically equivalent. On the other hand, truth tables can always be used to determine
both equivalence and nonequivalence, and truth tables are easy to program on a computer.
When truth tables are used, however, checking for equivalence always requires 2" steps,
where 7 is the number of variables. Sometimes you can quickly see that two statement
forms are equivalent by Theorem 2.1.1, whereas it would take quite a bit of calculating
to show their equivalence using truth tables. For instance, it follows immediately from
the associative law for A that p A (~g A ~r) = (p A ~q) A ~r, whereas a truth table
verification requires constructing a table with eight rows.

Test Yourself

Answers to Test Yourself questions are located at the end of each section.

1. An and statement is true if, and only if, both components are each component is , and (2) that the negation of an or
statement is logically equivalent to the statement in
which each component is .

2. An or statement is false if, and only if, both components are
5. A tautology is a statement that is always .

3. Two statement forms are logically equivalent if, and only if, 6. A contradiction is a statement that is always .
they always have .

4. De Morgan’s laws say (1) that the negation of an and state-
ment is logically equivalent to the statement in which
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Exercise Set 2.1°

In each of 1-4 represent the common form of each argument
using letters to stand for component sentences, and fill in the
blanks so that the argument in part (b) has the same logical form
as the argument in part (a).

1. a. If all integers are rational, then the number 1 is rational.
All integers are rational.
Therefore, the number 1 is rational.
b. If all algebraic expressions can be written in prefix
notation, then

Therefore, (a + 2b)(a®> — b) can be written in prefix
notation.

2. a. If all computer programs contain errors, then this
program contains an error.
This program does not contain an error.
Therefore, it is not the case that all computer programs
contain errors.

b. If , then

2 is not odd.
Therefore, it is not the case that all prime numbers are
odd.

3. a. This number is even or this number is odd.
This number is not even.
Therefore, this number is odd.

or logic is confusing.

My mind is not shot.

Therefore,

4. a. If n is divisible by 6, then n is divisible by 3.
If n is divisible by 3, then the sum of the digits of n is
divisible by 3.
Therefore, if n is divisible by 6, then the sum of the dig-
its of n is divisible by 3.
(Assume that n is a particular, fixed integer.)

b. If this function is then this function is differen-
tiable.
If this function is then this function is continuous.

Therefore, if this function is a polynomial, then this
function .

5. Indicate which of the following sentences are statements.
a. 1,024 is the smallest four-digit number that is a perfect

square.
b. She is a mathematics major.
c. 128 =2° d x=2°

Write the statements in 6-9 in symbolic form using the symbols
~,V, and A and the indicated letters to represent component
statements.

6. Let s = “stocks are increasing” and i = “interest rates are
steady.”

2.1 Logical Form and Logical Equivalence 37

a. Stocks are increasing but interest rates are steady.
b. Neither are stocks increasing nor are interest rates
steady.

7. Juan is a math major but not a computer science major.
(m = “Juan is a math major,” ¢ = “Juan is a computer
science major”)

8. Let & = “John is healthy,” w = “John is wealthy,” and s =
“John is wise.”

. John is healthy and wealthy but not wise.

. John is not wealthy but he is healthy and wise.

. John is neither healthy, wealthy, nor wise.

. John is neither wealthy nor wise, but he is healthy.

. John is wealthy, but he is not both healthy and wise.

o0 o

9. Either this polynomial has degree 2 or it has degree 3 but
not both. (n = “This polynomial has degree 2,” k = “This
polynomial has degree 3”)

10. Let p be the statement “DATAENDFLAG is off,” ¢ the
statement “ERROR equals 0,” and r the statement “SUM is
less than 1,000.” Express the following sentences in sym-
bolic notation.

a. DATAENDFLAG is off, ERROR equals 0, and SUM is
less than 1,000.

b. DATAENDFLAG is off but ERROR is not equal to 0.

c. DATAENDFLAG is off; however, ERROR is not 0 or
SUM is greater than or equal to 1,000.

d. DATAENDFLAG is on and ERROR equals 0 but SUM
is greater than or equal to 1,000.

e. Either DATAENDFLAG is on or it is the case that both
ERROR equals 0 and SUM is less than 1,000.

11. In the following sentence, is the word or used in its inclu-
sive or exclusive sense? A team wins the playoffs if it wins
two games in a row or a total of three games.

Write truth tables for the statement forms in 12-15.
12. ~p A g 13. ~(pAg) vV (pVq)
14. pA(g AT) 15. pA(~q Vr)

Determine whether the statement forms in 16-24 are logically
equivalent. In each case, construct a truth table and include a
sentence justifying your answer. Your sentence should show that
you understand the meaning of logical equivalence.

16. pv (p Ag)and p 17. ~(p Ag) and ~p A ~q
18. pvtandt 19. pAtand p
20. pAcand p Ve

21. (pAg)Arand pA(g AT)

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial
solution is given. The symbol * signals that an exercise is more challenging than usual.
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38 Chapter 2 The Logic of Compound Statements

22. pA(gVvr)and (pAg)V (pAT)

23. (pAg)VvVrandpA(gVvr)

24. (pvg)Vv(pAr)yand (pVvq) Ar

Use De Morgan’s laws to write negations for the statements in
25-31.

25. Hal is a math major and Hal’s sister is a computer science
major.

26. Sam is an orange belt and Kate is a red belt.
27. The connector is loose or the machine is unplugged.
28. The units digit of 4% is 4 or it is 6.

29. This computer program has a logical error in the first ten
lines or it is being run with an incomplete data set.

30. The dollar is at an all-time high and the stock market is at a
record low.

31. The train is late or my watch is fast.

Assume x is a particular real number and use De Morgan’s laws
to write negations for the statements in 32-37.

32, 2<x<7 33. -10<x <2
3. x <2o0rx >5 35. x < —lorx>1

36. 1 >x>-3 37. 0> x > -7

In 38 and 39, imagine that num_orders and num_instock are par-
ticular values, such as might occur during execution of a com-
puter program. Write negations for the following statements.

38. (num_orders > 100 and num_instock < 500) or
num_instock < 200

39. (num_orders < 50 and num_instock > 300) or
(50 < num_orders < 75 and num_instock > 500)
Use truth tables to establish which of the statement forms in
40-43 are tautologies and which are contradictions.
40. (pAg)V (~p Vv (p A~q)
4L (p A~ A (P Y q)
42. (>p A N(g AT A~q
43. (~p V@)V (pA~q)

In 44 and 45, determine whether the statements in (a) and (b)
are logically equivalent.

44. Assume x is a particular real number.

a. x < 2oritisnot the case that 1 < x < 3.

b. x < 1loreitherx < 2orx > 3.

45. a. Bob is a double math and computer science major
and Ann is a math major, but Ann is not a double
math and computer science major.

b. It is not the case that both Bob and Ann are dou-
ble math and computer science majors, but it is the
case that Ann is a math major and Bob is a double
math and computer science major.

% 46. In Example 2.1.4, the symbol @ was introduced to denote

exclusive or, 0 p@® g = (pV qg)A~(pAq). Hence the
truth table for exclusive or is as follows:

pPO©q

o 3
oS |3
oS T e

a. Find simpler statement forms that are logically equiva-
lentto p@® pand (p ® p) ® p.

b. Is(p®gq)®r=p@ (g dr)? Justity your answer.

c.Is (p@gAr=(pAr)®(gAr)? lJustify your
answer.

> 47. Inlogic and in standard English, a double negative is equiv-

alent to a positive. There is one fairly common English
usage in which a “double positive” is equivalent to a nega-
tive. What is it? Can you think of others?

In 48 and 49 below, a logical equivalence is derived from Theo-

rem 2.1.1. Supply a reason for each step.

18 PA~DV (A =pAaCgve by B
=pAgVv~g by ®
=pAt by ©
=p by HON

Therefore, (p A ~q) vV (p A q) = p.
49. (p vV ~q) A(~pV ~q)
= (~qVp)A(~gV~p) by @
= ~qV(pA~p) by (&
= ~qVec by ©
= ~q by HCON

Therefore, (p vV ~q) A (~p V ~q) = ~q.

Use Theorem 2.1.1 to verify the logical equivalences in 50-54.
Supply a reason for each step.

50. (pA~q)vVp=p 51.pA(qVvp)=p
52. ~(pV ~q)V (~p A~q) =~p
53. ~M(~p AV (~>p A~V (pAG)=p

54 (pA(~pV )V (pAg) =p
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2.2 Conditional Statements 39

Answers for Test Yourself

1. true 2. false 3. the same truth values 4. or; negated; and; negated 5. true 6. false

2.2 Conditional Statements

... hypothetical reasoning implies the subordination of the real to the realm of the
possible . .. — Jean Piaget, 1972

When you make a logical inference or deduction, you reason from a hypothesis o a
conclusion. Your aim is to be able to say, “If such and such is known, then something or
other must be the case.”

Let p and g be statements. A sentence of the form “If p then ¢” is denoted symboli-
cally by “p — ¢”’; p is called the hypothesis and g is called the conclusion. For instance,
consider the following statement:

If 4,686 is divisible by 6, then 4,686 is divisible by 3

hypothesis conclusion

Such a sentence is called conditional because the truth of statement ¢ is conditioned on
the truth of statement p.

The notation p — ¢ indicates that — is a connective, like A or V, that can be used to
join statements to create new statements. To define p — ¢ as a statement, therefore, we
must specify the truth values for p — ¢ as we specified truth values for p A ¢ and for
PV q. As is the case with the other connectives, the formal definition of truth values for
— (if-then) is based on its everyday, intuitive meaning. Consider an example.

Suppose you go to interview for a job at a store and the owner of the store makes you
the following promise:

If you show up for work Monday morning, then you will get the job.

Under what circumstances are you justified in saying the owner spoke falsely? That
is, under what circumstances is the above sentence false? The answer is: You do show
up for work Monday morning and you do not get the job.

After all, the owner’s promise only says you will get the job if a certain condition
(showing up for work Monday morning) is met; it says nothing about what will hap-
pen if the condition is not met. So if the condition is not met, you cannot in fairness
say the promise is false regardless of whether or not you get the job.

The above example was intended to convince you that the only combination of circum-
stances in which you would call a conditional sentence false occurs when the hypothesis
is true and the conclusion is false. In all other cases, you would not call the sentence
false. This implies that the only row of the truth table for p — ¢ that should be filled in
with an F is the row where p is T and ¢ is F. No other row should contain an F. But each
row of a truth table must be filled in with either a T or an F. Thus all other rows of the
truth table for p — ¢ must be filled in with T’s.

Truth Table for p — ¢

)4 q P —>4q
T T T
T F F
F T T
F F T
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40 Chapter 2 The Logic of Compound Statements

o Definition

If p and ¢ are statement variables, the conditional of ¢ by p is “If p then ¢ or
“p implies ¢” and is denoted p — ¢. It is false when p is true and ¢ is false;
otherwise it is true. We call p the hypothesis (or antecedent) of the conditional
and g the conclusion (or consequent).

A conditional statement that is true by virtue of the fact that its hypothesis is false is
often called vacuously true or true by default. Thus the statement “If you show up for
work Monday morning, then you will get the job” is vacuously true if you do not show up
for work Monday morning. In general, when the “if” part of an if-then statement is false,
the statement as a whole is said to be true, regardless of whether the conclusion is true or
false.

Example 2.2.1 A Conditional Statement with a False Hypothesis
Consider the statement:
IfO=1then1 =2.

As strange as it may seem, since the hypothesis of this statement is false, the statement
as a whole is true. |

The philosopher Willard Van Orman Quine advises against using the phrase “p implies
q” to mean “p — ¢ because the word implies suggests that g can be logically deduced
from p and this is often not the case. Nonetheless, the phrase is used by many people,
probably because it is a convenient replacement for the — symbol. And, of course, in

Note  For example, if many cases a conclusion can be deduced from a hypothesis, even when the hypothesis is
0 =1, then, by adding false.

I to both sides of the In expressions that include — as well as other logical operators such as A, Vv, and ~,
equation, you can deduce the order of operations is that — is performed last. Thus, according to the specification

hat 1 = 2. . . . .
e of order of operations in Section 2.1, ~ is performed first, then A and Vv, and finally —.

Example 2.2.2 Truth Table for p Vv ~q — ~p
Construct a truth table for the statement form p v ~g — ~p.

Solution By the order of operations given above, the following two expressions are equiv-
alent: p Vv ~q —~p and (p V (~q)) — (~p), and this order governs the construction
of the truth table. First fill in the four possible combinations of truth values for p and ¢,
and then enter the truth values for ~p and ~¢g using the definition of negation. Next fill in
the p v ~g column using the definition of V. Finally, fill in the p vV ~¢ — ~p column
using the definition of —. The only rows in which the hypothesis p Vv ~q¢ is true and the
conclusion ~p is false are the first and second rows. So you put F’s in those two rows
and T’s in the other two rows.

conc]psion hypothesis
p q ~p ~q pv~q pN~q—>~p
T T F F T F
T F F T T F
F T T F F T
F F T T T T m
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2.2 Conditional Statements 41

Logical Equivalences Involving —

Imagine that you are trying to solve a problem involving three statements: p, ¢, and r.
Suppose you know that the truth of r follows from the truth of p and also that the truth
of r follows from the truth of ¢. Then no matter whether p or ¢ is the case, the truth of »
must follow. The division-into-cases method of analysis is based on this idea.

Example 2.2.3 Division into Cases: Showingthat pvg - r=(p—>r)A(q > r)

Use truth tables to show the logical equivalence of the statement forms p vV ¢ — r and
(p — r) A (g — r). Annotate the table with a sentence of explanation.

Solution  First fill in the eight possible combinations of truth values for p, ¢, and r. Then
fill in the columns for p Vv ¢, p — r, and ¢ — r using the definitions of or and if-then.
For instance, the p — r column has F’s in the second and fourth rows because these are
the rows in which p is true and ¢ is false. Next fill in the p Vv ¢ — r column using the
definition of if-then. The rows in which the hypothesis p V ¢ is true and the conclusion
is false are the second, fourth, and sixth. So F’s go in these rows and T’s in all the others.
The complete table shows that p vV ¢ — r and (p — r) A (¢ — r) have the same truth
values for each combination of truth values of p, ¢, and r. Hence the two statement forms
are logically equivalent.

~

pvgqg—r (p—=>r)A(@—r)
T

]
=

I I RN RN A )
M
<

I ISR R )

—

mlm R a8 as
el AR AR R R R R R
I RN R A
mlm R RR8 88 <

SEIGIEIGIEIGIE
I I

pVvg—rand (p —>r)A(g—r)
always have the same truth values,
so they are logically equivalent ||

Representation of If-Then As Or
In exercise 13(a) at the end of this section you are asked to use truth tables to show that
p—>qg=~pVqg.

The logical equivalence of “if p then ¢’ and “not p or ¢’ is occasionally used in everyday
speech. Here is one instance.

Example 2.2.4 Application of the Equivalence between ~p v g and p — ¢
Rewrite the following statement in if-then form.
Either you get to work on time or you are fired.

Solution  Let ~p be
You get to work on time.
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42 Chapter 2 The Logic of Compound Statements

and g be
You are fired.
Then the given statement is ~p V g. Also p is
You do not get to work on time.
So the equivalent if-then version, p — ¢, is

If you do not get to work on time, then you are fired. |

The Negation of a Conditional Statement

By definition, p — ¢ is false if, and only if, its hypothesis, p, is true and its conclusion,
q, is false. It follows that

The negation of “if p then ¢” is logically equivalent to “p and not g.”

This can be restated symbolically as follows:

~p—>q)=pnr~q

You can also obtain this result by starting from the logical equivalence p — g = ~
p V q. Take the negation of both sides to obtain

~(p—4q) = ~(~pVq)
’\'(’\*p) A (’\’q) by De Morgan’s laws

= pA™q by the double negative law.

Yet another way to derive this result is to construct truth tables for ~(p — ¢) and for
p A ~q and to check that they have the same truth values. (See exercise 13(b) at the end
of this section.)

Example 2.2.5 Negations of If-Then Statements
Write negations for each of the following statements:
a. If my car is in the repair shop, then I cannot get to class.

b. If Sara lives in Athens, then she lives in Greece.

Solution
f a. My car is in the repair shop and I can get to class.
b. Sara lives in Athens and she does not live in Greece. (Sara might live in Athens,
ion! - . . . .

Caution! Remember Georgia; Athens, Ohio; or Athens, Wisconsin.) [ ]
that the negation of an
if-then statement does i . . X . i
not start with the Itis tempting to write the negation of an if-then statement as another if-then statement.
word if. Please resist that temptation!
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The Contrapositive of a Conditional Statement

One of the most fundamental laws of logic is the equivalence between a conditional
statement and its contrapositive.

The contrapositive of a conditional statement of the form “If p then ¢” is
If ~q then ~p.
Symbolically,

The contrapositive of p — g is ~g — ~p.

The fact is that

A conditional statement is logically equivalent to its contrapositive.

You are asked to establish this equivalence in exercise 26 at the end of this section.

Example 2.2.6 Writing the Contrapositive
Write each of the following statements in its equivalent contrapositive form:
a. If Howard can swim across the lake, then Howard can swim to the island.
b. If today is Easter, then tomorrow is Monday.
Solution
a. If Howard cannot swim to the island, then Howard cannot swim across the lake.

b. If tomorrow is not Monday, then today is not Easter. |

When you are trying to solve certain problems, you may find that the contrapositive
form of a conditional statement is easier to work with than the original statement. Replac-
ing a statement by its contrapositive may give the extra push that helps you over the top
in your search for a solution. This logical equivalence is also the basis for one of the most
important laws of deduction, modus tollens (to be explained in Section 2.3), and for the
contrapositive method of proof (to be explained in Section 4.6).

The Converse and Inverse of a Conditional Statement

The fact that a conditional statement and its contrapositive are logically equivalent is very
important and has wide application. Two other variants of a conditional statement are not
logically equivalent to the statement.
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44 Chapter 2 The Logic of Compound Statements

Suppose a conditional statement of the form “If p then ¢ is given.
1. The converse is “If g then p.”
2. The inverse is “If ~p then ~q.”
Symbolically,
The converse of p — g isq — p,
and

The inverse of p — g is ~p — ~q.

Example 2.2.7 Writing the Converse and the Inverse
Write the converse and inverse of each of the following statements:
a. If Howard can swim across the lake, then Howard can swim to the island.
b. If today is Easter, then tomorrow is Monday.
Solution

a. Converse: If Howard can swim to the island, then Howard can swim across the lake.

Inverse: 1If Howard cannot swim across the lake, then Howard cannot swim to the
island.

b. Converse: If tomorrow is Monday, then today is Easter.
ﬁ Inverse: If today is not Easter, then tomorrow is not Monday. |

Caution! Many people Note that while the statement “If today is Easter, then tomorrow is Monday is always

believe that if a true, both its converse and inverse are false on every Sunday except Easter.
conditional statement is

true, then its converse and
inverse must also be true.
This is not correct! 1. A conditional statement and its converse are not logically equivalent.

2. A conditional statement and its inverse are not logically equivalent.

3. The converse and the inverse of a conditional statement are logically equivalent
to each other.

In exercises 24, 25, and 27 at the end of this section, you are asked to use truth tables
to verify the statements in the box above. Note that the truth of statement 3 also follows
from the observation that the inverse of a conditional statement is the contrapositive of its
converse.

Only If and the Biconditional

To say “p only if ¢” means that p can take place only if g takes place also. That is,
if g does not take place, then p cannot take place. Another way to say this is that if p
occurs, then ¢ must also occur (by the logical equivalence between a statement and its
contrapositive).
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o Definition

It p and g are statements,
ponlyifg means “if notg then not p,”

or, equivalently,

“if p then q.”

Example 2.2.8 Converting Only If to If-Then

Rewrite the following statement in if-then form in two ways, one of which is the contra-
positive of the other.

John will break the world’s record for the mile run only if
he runs the mile in under four minutes.

Solution  Version 1: If John does not run the mile in under four minutes, then he will
not break the world’s record.

Version 2: 1f John breaks the world’s record, then he will have run the mile in

under four minutes. [
Caution! “p only if ¢” Note that it is possible for “p only if g to be true at the some time that “p if ¢” is
does not mean “p if ¢ false. For instance, to say that John will break the world’s record only if he runs the mile

in under four minutes does not mean that John will break the world’s record if he runs
the mile in under four minutes. His time could be under four minutes but still not be fast
enough to break the record.

o Definition

Given statement variables p and ¢, the biconditional of p and ¢ is “p if, and only
if, ¢”” and is denoted p < ¢. It is true if both p and ¢ have the same truth values and
is false if p and g have opposite truth values. The words if and only if are sometimes
abbreviated iff.

The biconditional has the following truth table:

Truth Table for p < ¢

p q p<q
T T T
T F F
F T F
F F T

In order of operations <> is coequal with —. As with A and V, the only way to indicate
precedence between them is to use parentheses. The full hierarchy of operations for the
five logical operators is on the next page.
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46 Chapter 2 The Logic of Compound Statements

Order of Operations for Logical Operators

1. ~ Evaluate negations first.
2. A,V Evaluate A and Vv second. When both are present, parentheses may be
needed.

3. —-,<  Evaluate — and < third. When both are present, parentheses may
be needed.

According to the separate definitions of if and only if, saying “p if, and only if, ¢”
should mean the same as saying both “p if ¢”” and “p only if ¢.” The following annotated
truth table shows that this is the case:

Truth Table Showing that p <+ g = (p — q¢) A (¢ = p)

r 4 P—4q q—>p pogq (p—>q)A(g—p)

T T T T T T

T F F T F F

F T T F F F

F F T T T T
7

p<qgand(p—>g)A(g— p)
always have the same truth values,
so they are logically equivalent

Example 2.2.9 If and Only If
Rewrite the following statement as a conjunction of two if-then statements:

This computer program is correct if, and only if, it produces
correct answers for all possible sets of input data.

Solution  If this program is correct, then it produces the correct answes for all possible sets
of input data; and if this program produces the correct answers for all possible sets of
input data, then it is correct. |

Necessary and Sufficient Conditions

The phrases necessary condition and sufficient condition, as used in formal English, cor-
respond exactly to their definitions in logic.

e Definition

If r and s are statements:

r is a sufficient condition for s  means  “if r then 5.”

r is a necessary condition for s means “if not r then not s.”

In other words, to say “r is a sufficient condition for s means that the occurrence
of r is sufficient to guarantee the occurrence of s. On the other hand, to say “r is a
necessary condition for s”” means that if r does not occur, then s cannot occur either:
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The occurrence of r is necessary to obtain the occurrence of s. Note that because of the
equivalence between a statement and its contrapositive,

r is a necessary condition for s also means “if s then r.”

Consequently,

r is a necessary and sufficient condition for s means “r if, and only if, 5.”

Example 2.2.10 Interpreting Necessary and Sufficient Conditions

Consider the statement “If John is eligible to vote, then he is at least 18 years old.” The
truth of the condition “John is eligible to vote” is sufficient to ensure the truth of the
condition “John is at least 18 years old.” In addition, the condition “John is at least 18
years old” is necessary for the condition “John is eligible to vote” to be true. If John were
younger than 18, then he would not be eligible to vote. |

Example 2.2.11 Converting a Sufficient Condition to If-Then Form
Rewrite the following statement in the form “If A then B”:

Pia’s birth on U.S soil is a sufficient condition
for her to be a U.S. citizen.

Solution  If Pia was born on U.S. soil, then she is a U.S. citizen. [ |

Example 2.2.12 Converting a Necessary Condition to If-Then Form
Use the contrapositive to rewrite the following statement in two ways:

George’s attaining age 35 is a necessary condition
for his being president of the United States.

Solution  Version 1: 1If George has not attained the age of 35, then he cannot be presi-
dent of the United States.

Version 2: If George can be president of the United States, then he has
attained the age of 35. [}

Remarks

1. Inlogic, a hypothesis and conclusion are not required to have related subject matters.

In ordinary speech we never say things like “If computers are machines, then Babe
Ruth was a baseball player” or “If 2+ 2 =5, then Mickey Mouse is president of
the United States.” We formulate a sentence like “If p then ¢ only if there is some
connection of content between p and ¢.

In logic, however, the two parts of a conditional statement need not have related
meanings. The reason? If there were such a requirement, who would enforce it? What
one person perceives as two unrelated clauses may seem related to someone else.
There would have to be a central arbiter to check each conditional sentence before
anyone could use it, to be sure its clauses were in proper relation. This is impractical,
to say the least!
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48 Chapter 2 The Logic of Compound Statements

Thus a statement like “if computers are machines, then Babe Ruth was a baseball
player” is allowed, and it is even called true because both its hypothesis and its conclu-
sion are true. Similarly, the statement “If 2 4+ 2 = 5, then Mickey Mouse is president
of the United States” is allowed and is called true because its hypothesis is false, even
though doing so may seem ridiculous.

In mathematics it often happens that a carefully formulated definition that suc-
cessfully covers the situations for which it was primarily intended is later seen to be
satisfied by some extreme cases that the formulator did not have in mind. But those
are the breaks, and it is important to get into the habit of exploring definitions fully to
seek out and understand all their instances, even the unusual ones.

2. In informal language, simple conditionals are often used to mean biconditionals.

The formal statement “p if, and only if, ¢” is seldom used in ordinary language.
Frequently, when people intend the biconditional they leave out either the and only if
or the if and. That is, they say either “p if ¢”” or “p only if ¢~ when they really mean
“p if, and only if, ¢g.” For example, consider the statement ‘“You will get dessert if,
and only if, you eat your dinner.” Logically, this is equivalent to the conjunction of the
following two statements.

Statement 1: If you eat your dinner, then you will get dessert.

Statement 2: You will get dessert only if you eat your dinner.
or
If you do not eat your dinner, then you will not get dessert.

Now how many parents in the history of the world have said to their children “You
will get dessert if, and only if, you eat your dinner”? Not many! Most say either “If you
eat your dinner, you will get dessert” (these take the positive approach—they emphasize
the reward) or “You will get dessert only if you eat your dinner” (these take the negative
approach—they emphasize the punishment). Yet the parents who promise the reward
intend to suggest the punishment as well, and those who threaten the punishment will
certainly give the reward if it is earned. Both sets of parents expect that their conditional
statements will be interpreted as biconditionals.

Since we often (correctly) interpret conditional statements as biconditionals, it is
not surprising that we may come to believe (mistakenly) that conditional statements are
always logically equivalent to their inverses and converses. In formal settings, however,
statements must have unambiguous interpretations. If-then statements can’t sometimes
mean “if-then” and other times mean “if and only if.” When using language in mathe-
matics, science, or other situations where precision is important, it is essential to interpret
if-then statements according to the formal definition and not to confuse them with their
converses and inverses.

Test Yourself

1. An if-then statement is false if, and only if, the hypothesis is
and the conclusion is .

. A conditional statement and its contrapositive are .

. The negation of “if p then ¢” is . . . L. .
& p gl - . “Risasufficient condition for S”” means “if then D

6
7. A conditional statement and its converse are not .
8
+ The converse of *if p then g™ s __. 9. “R is a necessary condition for S” means “if _ then

. The contrapositive of “if p then ¢” is

[ S N S ]

. The inverse of “if p then ¢” is . 10. “R only if S” means “if then 7
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Exercise Set 2.2

Rewrite the statements in 1-4 in if-then form.

1.

This loop will repeat exactly N times if it does not contain
a stop or a go to.

. T'am on time for work if I catch the 8:05 bus.
. Freeze or I'll shoot.

. Fix my ceiling or I won’t pay my rent.

Construct truth tables for the statement forms in 5-11.

(RN I

11.
12.

13.

14.

15.

. PN~ —> 1

LPAT gV

~pVq—~q 6. (pVg)V(~pAg) —>q

8. ~pVvgqg—>r
10. (p—>r)<(q—r)
(p—=>(@—>r)<WUprg) —r1)

Use the logical equivalence established in Example 2.2.3,
pVqg—>r=(p—r)A(g—r), to rewrite the follow-
ing statement. (Assume that x represents a fixed real
number.)

If x >2orx < —2, then x2 > 4.

Use truth tables to verify the following logical equiv-
alences. Include a few words of explanation with your
answers.

a p—->qg=~pVyq b. ~(p—>q)=pA~q.

a. Show that the following statement forms are all logically
equivalent.

p—>qVr, pA~q—r, and pA~r—gq

b. Use the logical equivalences established in part (a) to
rewrite the following sentence in two different ways.
(Assume that n represents a fixed integer.)

If n is prime, then n is odd or n is 2.

Determine whether the following statement forms are logi-
cally equivalent:

p—>(@q@—r) and (p—>gq)—>r

In 16 and 17, write each of the two statements in symbolic form
and determine whether they are logically equivalent. Include a
truth table and a few words of explanation.

16.

17.

If you paid full price, you didn’t buy it at Crown Books.
You didn’t buy it at Crown Books or you paid full price.

If 2 is a factor of n and 3 is a factor of n, then 6 is a factor
of n. 2 is not a factor of n or 3 is not a factor of n or 6 is a
factor of n.

. Write each of the following three statements in symbolic

form and determine which pairs are logically equivalent.
Include truth tables and a few words of explanation.

19.

20.

21.

H 22.
H 23.

2.2 Conditional Statements 49

If it walks like a duck and it talks like a duck, then it is
a duck.

Either it does not walk like a duck or it does not talk
like a duck, or it is a duck.

If it does not walk like a duck and it does not talk like
a duck, then it is not a duck.

True or false? The negation of “If Sue is Luiz’s mother, then
Ali is his cousin” is “If Sue is Luiz’s mother, then Ali is not
his cousin.”

Write negations for each of the following statements.

(Assume that all variables represent fixed quantities or enti-

ties, as appropriate.)

a. If P is a square, then P is a rectangle.

b. If today is New Year’s Eve, then tomorrow is January.

c. If the decimal expansion of r is terminating, then r is
rational.

d. If n is prime, then n is odd or n is 2.

e. If x is nonnegative, then x is positive or x is 0.

f. If Tom is Ann’s father, then Jim is her uncle and Sue is
her aunt.

g. If n is divisible by 6, then n is divisible by 2 and n is
divisible by 3.

Suppose that p and ¢ are statements so that p — ¢ is false.
Find the truth values of each of the following:

a. ~p —q b. pVvg c.gq—>p

Write contrapositives for the statements of exercise 20.

Write the converse and inverse for each statement of
exercise 20.

Use truth tables to establish the truth of each statement in 24-27.

24.

25.

26.

217.

H 28.

A conditional statement is not logically equivalent to its
converse.

A conditional statement is not logically equivalent to its
inverse.

A conditional statement and its contrapositive are logically
equivalent to each other.

The converse and inverse of a conditional statement are log-
ically equivalent to each other.

“Do you mean that you think you can find out the answer
to it?” said the March Hare.

“Exactly so,” said Alice.

“Then you should say what you mean,” the March Hare
went on.

“I do,” Alice hastily replied; “at least—at least I mean
what I say—that’s the same thing, you know.”
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50 Chapter 2 The Logic of Compound Statements

“Not the same thing a bit!” said the Hatter. “Why, you
might just as well say that ‘I see what I eat’ is the same
thing as ‘I eat what I see’!”

—from “A Mad Tea-Party” in Alice in Wonderland,
by Lewis Carroll
The Hatter is right. “I say what I mean” is not the same
thing as “I mean what I say.” Rewrite each of these two
sentences in if-then form and explain the logical relation
between them. (This exercise is referred to in the introduc-
tion to Chapter 4.)

If statement forms P and Q are logically equivalent, then
P < Q is a tautology. Conversely, if P <> Q is a tautology,
then P and Q are logically equivalent. Use <> to convert each
of the logical equivalences in 29-31 to a tautology. Then use a
truth table to verify each tautology.

29. p—>(qgVvr)=(pA~q) —>r

30. pA(@VIr)=(pAg)V(pAT)

3. p—>(@—>r)=(pArqg)—>r

Rewrite each of the statements in 32 and 33 as a conjunction of

two if-then statements.

32. This quadratic equation has two distinct real roots if, and
only if, its discriminant is greater than zero.

33. This integer is even if, and only if, it equals twice some
integer.

Rewrite the statements in 34 and 35 in if-then form in two ways,
one of which is the contrapositive of the other.

34. The Cubs will win the pennant only if they win tomorrow’s
game.

35. Sam will be allowed on Signe’s racing boat only if he is an
expert sailor.

36. Taking the long view on your education, you go to the Pres-
tige Corporation and ask what you should do in college to
be hired when you graduate. The personnel director replies
that you will be hired only if you major in mathematics
or computer science, get a B average or better, and take
accounting. You do, in fact, become a math major, get a B*
average, and take accounting. You return to Prestige Cor-
poration, make a formal application, and are turned down.
Did the personnel director lie to you?

Some programming languages use statements of the form
“r unless s to mean that as long as s does not happen, then
r will happen. More formally:

Definition: If » and s are statements,
runlesss means if ~s then r.

In 37-39, rewrite the statements in if-then form.

37. Payment will be made on the fifth unless a new hearing is
granted.

38. Ann will go unless it rains.

39. This door will not open unless a security code is entered.
Rewrite the statements in 40 and 41 in if-then form.

40. Catching the 8:05 bus is a sufficient condition for my being
on time for work.

41. Having two 45° angles is a sufficient condition for this tri-
angle to be a right triangle.

Use the contrapositive to rewrite the statements in 42 and 43 in
if-then form in two ways.

42. Being divisible by 3 is a necessary condition for this num-
ber to be divisible by 9.

43. Doing homework regularly is a necessary condition for Jim
to pass the course.

Note that “a sufficient condition for s is #”” means r is a suffi-
cient condition for s and that “a necessary condition for s is r”’
means r is a necessary condition for s. Rewrite the statements
in 44 and 45 in if-then form.

44. A sufficient condition for Jon’s team to win the champi-
onship is that it win the rest of its games.

45. A necessary condition for this computer program to be cor-
rect is that it not produce error messages during translation.

46. “If compound X is boiling, then its temperature must be at
least 150°C.” Assuming that this statement is true, which of
the following must also be true?

a. If the temperature of compound X is at least 150°C, then
compound X is boiling.

b. If the temperature of compound X is less than 150°C,
then compound X is not boiling.

c. Compound X will boil only if its temperature is at least
150°C.

d. If compound X is not boiling, then its temperature is less
than 150°C.

e. A necessary condition for compound X to boil is that its
temperature be at least 150°C.

f. A sufficient condition for compound X to boil is that its
temperature be at least 150°C.

In 47-50 (a) use the logical equivalences p — g =~p V g and
p < q=(~pVq)A(~qV p) to rewrite the given statement
forms without using the symbol — or <>, and (b) use the logi-
cal equivalence p vV g =~(~pA ~q) to rewrite each statement
form using only A and ~.

47. pA~q —>r 48. pV~q —>rVgq

9. (p—>r)y<(@q@—r)
50. (p—>(q@—>r)<prg) —T)

51. Given any statement form, is it possible to find a logi-
cally equivalent form that uses only ~ and A? Justify your
answer.
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2.3 Valid and Invalid Arguments 51

Answers for Test Yourself

1. true; false 2. pA~g 3.1if g then p 4. if ~q then ~p 5. if ~p then ~¢g 6. logically equivalent 7. logically
equivalent 8. R;S 9. S;R 10. R; S

2.3 Valid and Invalid Arguments

“Contrariwise,” continued Tweedledee, “if it was so, it might be; and if it were so, it
would be; but as it isn't, it ain’t. That’s logic.” — Lewis Carroll, Through the Looking Glass

In mathematics and logic an argument is not a dispute. It is a sequence of statements
ending in a conclusion. In this section we show how to determine whether an argument is
valid—that is, whether the conclusion follows necessarily from the preceding statements.
We will show that this determination depends only on the form of an argument, not on its
content.

It was shown in Section 2.1 that the logical form of an argument can be abstracted
from its content. For example, the argument

If Socrates is a man, then Socrates is mortal.
Socrates is a man.

-. Socrates is mortal.

has the abstract form

If p then ¢
p
g
When considering the abstract form of an argument, think of p and ¢ as variables
for which statements may be substituted. An argument form is called valid if, and only
if, whenever statements are substituted that make all the premises true, the conclusion is
also true.

An argument is a sequence of statements, and an argument form is a sequence
of statement forms. All statements in an argument and all statement forms in an
argument form, except for the final one, are called premises (or assumptions or
hypotheses). The final statement or statement form is called the conclusion. The
symbol ."., which is read “therefore,” is normally placed just before the conclusion.

To say that an argument form is valid means that no matter what particular state-
ments are substituted for the statement variables in its premises, if the resulting
premises are all true, then the conclusion is also true. To say that an argument is
valid means that its form is valid.

The crucial fact about a valid argument is that the truth of its conclusion follows
necessarily or inescapably or by logical form alone from the truth of its premises. It is
impossible to have a valid argument with true premises and a false conclusion. When
an argument is valid and its premises are true, the truth of the conclusion is said to be
inferred or deduced from the truth of the premises. If a conclusion “ain’t necessarily so,”
then it isn’t a valid deduction.
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52 Chapter 2 The Logic of Compound Statements

Testing an Argument Form for Validity

1. Identify the premises and conclusion of the argument form.

2. Construct a truth table showing the truth values of all the premises and the con-
clusion.

3. A row of the truth table in which all the premises are true is called a critical row.
If there is a critical row in which the conclusion is false, then it is possible for an
argument of the given form to have true premises and a false conclusion, and so
the argument form is invalid. If the conclusion in every critical row is true, then
the argument form is valid.

Example 2.3.1 Determining Validity or Invalidity

Determine whether the following argument form is valid or invalid by drawing a truth
table, indicating which columns represent the premises and which represent the conclu-
sion, and annotating the table with a sentence of explanation. When you fill in the table,
you only need to indicate the truth values for the conclusion in the rows where all the
premises are true (the critical rows) because the truth values of the conclusion in the
other rows are irrelevant to the validity or invalidity of the argument.

p—>q\N~r
q—> pATr
Sp—>r
Solution  The truth table shows that even though there are several situations in which the

premises and the conclusion are all true (rows 1, 7, and 8), there is one situation (row 4)
where the premises are true and the conclusion is false.

premises conclusion
P q r ~r qVvr~r PAT p—>qVrr q—> pPAT p—>r
T T T F T T T T T
T T F T T F T F .
This row shows that an
T F T F F T F T argument of this form can
T F F T T F T T F / have true premises and a false
conclusion. Hence this form
F T T F T F T F of argument is invalid.
F T F T T F T F
F F T F F F T T T
F F F T T F T T T m

Modus Ponens and Modus Tollens

An argument form consisting of two premises and a conclusion is called a syllogism. The
first and second premises are called the major premise and minor premise, respectively.
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The most famous form of syllogism in logic is called modus ponens. It has the following
form:
If p theng.
p
g
Here is an argument of this form:
If the sum of the digits of 371,487 is divisible by 3,
then 371,487 is divisible by 3.
The sum of the digits of 371,487 is divisible by 3.
*. 371,487 is divisible by 3.
The term modus ponens is Latin meaning “method of affirming” (the conclusion is an
affirmation). Long before you saw your first truth table, you were undoubtedly being
convinced by arguments of this form. Nevertheless, it is instructive to prove that modus
ponens is a valid form of argument, if for no other reason than to confirm the agreement

between the formal definition of validity and the intuitive concept. To do so, we construct
a truth table for the premises and conclusion.

prcnliscs conclusion
4 q p—q 4 q
T T T T <«— critical row
T F F T
F T T F
F F T F

The first row is the only one in which both premises are true, and the conclusion in that
row is also true. Hence the argument form is valid.
Now consider another valid argument form called modus tollens. It has the following
form:
If p theng.
~q
~p
Here is an example of modus tollens:
If Zeus is human, then Zeus is mortal.
Zeus is not mortal.
.. Zeus is not human.

An intuitive explanation for the validity of modus tollens uses proof by contradiction.
It goes like this:

Suppose
(1) If Zeus is human, then Zeus is mortal; and
(2) Zeus is not mortal.

Must Zeus necessarily be nonhuman?
Yes!
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54 Chapter 2 The Logic of Compound Statements

Because, if Zeus were human, then by (1) he would be mortal.
But by (2) he is not mortal.

Hence, Zeus cannot be human.

Modus tollens is Latin meaning “method of denying” (the conclusion is a denial). The
validity of modus tollens can be shown to follow from modus ponens together with the
fact that a conditional statement is logically equivalent to its contrapositive. Or it can be
established formally by using a truth table. (See exercise 13.)

Studies by cognitive psychologists have shown that although nearly 100% of college
students have a solid, intuitive understanding of modus ponens, less than 60% are able
to apply modus tollens correctly.” Yet in mathematical reasoning, modus tollens is used
almost as often as modus ponens. Thus it is important to study the form of modus tollens
carefully to learn to use it effectively.

Example 2.3.2 Recognizing Modus Ponens and Modus Tollens

Use modus ponens or modus tollens to fill in the blanks of the following arguments so
that they become valid inferences.

a. If there are more pigeons than there are pigeonholes, then at least two pigeons roost in
the same hole.
There are more pigeons than there are pigeonholes.

b. If 870,232 is divisible by 6, then it is divisible by 3.
870,232 is not divisible by 3.

Solution
a. At least two pigeons roost in the same hole. by modus ponens

b. 870,232 is not divisible by 6. by modus tollens |

Additional Valid Argument Forms: Rules of Inference

A rule of inference is a form of argument that is valid. Thus modus ponens and modus
tollens are both rules of inference. The following are additional examples of rules of
inference that are frequently used in deductive reasoning.

Example 2.3.3 Generalization

The following argument forms are valid:
a. p b. ¢
S.pVq S.pV4g
These argument forms are used for making generalizations. For instance, according
to the first, if p is true, then, more generally, “p or ¢” is true for any other statement g.
As an example, suppose you are given the job of counting the upperclassmen at your
school. You ask what class Anton is in and are told he is a junior.

*Cognitive Psychology and Its Implications, 3d ed. by John R. Anderson (New York: Freeman, 1990), pp. 292-297.
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You reason as follows:

Anton is a junior.

.. (more generally) Anton is a junior or Anton is a senior.

Knowing that upperclassman means junior or senior, you add Anton to your list. |

Example 2.3.4 Specialization

The following argument forms are valid:
a. pAgq b. pAg
. p g

These argument forms are used for specializing. When classifying objects according to
some property, you often know much more about them than whether they do or do not
have that property. When this happens, you discard extraneous information as you con-
centrate on the particular property of interest.

For instance, suppose you are looking for a person who knows graph algorithms to
work with you on a project. You discover that Ana knows both numerical analysis and
graph algorithms. You reason as follows:

Ana knows numerical analysis and Ana knows graph algorithms.

.. (in particular) Ana knows graph algorithms.
Accordingly, you invite her to work with you on your project. |
Both generalization and specialization are used frequently in mathematics to tailor
facts to fit into hypotheses of known theorems in order to draw further conclusions. Elim-
ination, transitivity, and proof by division into cases are also widely used tools.
Example 2.3.5 Elimination

The following argument forms are valid:

a. pVg b. pvyg
~q ~p
. p g

These argument forms say that when you have only two possibilities and you can rule
one out, the other must be the case. For instance, suppose you know that for a particular
number x,

x—3=0 or x+2=0.
If you also know that x is not negative, then x #= —2, so
x+2#0.
By elimination, you can then conclude that
Sx—=3=0. [ |
Example 2.3.6 Transitivity
The following argument form is valid:
pP—4q
q—r

p—r
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56 Chapter 2 The Logic of Compound Statements

Many arguments in mathematics contain chains of if-then statements. From the fact that
one statement implies a second and the second implies a third, you can conclude that the
first statement implies the third. Here is an example:

If 18,486 is divisible by 18, then 18,486 is divisible by 9.

If 18,486 is divisible by 9, then the sum of the digits of 18,486 is divisible by 9.

.. If 18,486 is divisible by 18, then the sum of the digits of 18,486 is divisible by 9.
|
Example 2.3.7 Proof by Division into Cases

The following argument form is valid:

pVyq

p—>r

q—r

r

It often happens that you know one thing or another is true. If you can show that in either
case a certain conclusion follows, then this conclusion must also be true. For instance,
suppose you know that x is a particular nonzero real number. The trichotomy property of
the real numbers says that any number is positive, negative, or zero. Thus (by elimination)
you know that x is positive or x is negative. You can deduce that x> > 0 by arguing as

follows:
X 1is positive or x is negative.

If x is positive, then x2>0.
If x is negative, then x2>0.
x2>0. u

The rules of valid inference are used constantly in problem solving. Here is an
example from everyday life.

Example 2.3.8 Application: A More Complex Deduction

You are about to leave for school in the morning and discover that you don’t have your
glasses. You know the following statements are true:

a. If I was reading the newspaper in the kitchen, then my glasses are on the kitchen table.
b. If my glasses are on the kitchen table, then I saw them at breakfast.
c. I did not see my glasses at breakfast.

d. I was reading the newspaper in the living room or I was reading the newspaper in the
kitchen.

e. If I was reading the newspaper in the living room then my glasses are on the coffee
table.

Where are the glasses?

Solution  Let RK = I was reading the newspaper in the kitchen.
GK = My glasses are on the kitchen table.
SB = I saw my glasses at breakfast.
RL = 1 was reading the newspaper in the living room.

GC = My glasses are on the coffee table.
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Here is a sequence of steps you might use to reach the answer, together with the rules of
inference that allow you to draw the conclusion of each step:

1. RK— GK by
GK — SB by (d)
.RK — SB by transitivity

2. RK — SB by the conclusion of (1)

~SB by (c)
. ~RK by modus tollens
3. RLVRK by (d)
~RK by the conclusion of (2)
. RL by elimination

4. RL— GC by

RL by the conclusion of (3)
. GC by modus ponens
Thus the glasses are on the coffee table. |

Fallacies

A fallacy is an error in reasoning that results in an invalid argument. Three common
fallacies are using ambiguous premises, and treating them as if they were unambiguous,
circular reasoning (assuming what is to be proved without having derived it from the
premises), and jumping to a conclusion (without adequate grounds). In this section we
discuss two other fallacies, called converse error and inverse error, which give rise to
arguments that superficially resemble those that are valid by modus ponens and modus
tollens but are not, in fact, valid.

As in previous examples, you can show that an argument is invalid by constructing
a truth table for the argument form and finding at least one critical row in which all the
premises are true but the conclusion is false. Another way is to find an argument of the
same form with true premises and a false conclusion.

For an argument to be valid, every argument of the same form whose premises
are all true must have a true conclusion. It follows that for an argument to be invalid
means that there is an argument of that form whose premises are all true and whose
conclusion is false.

Example 2.3.9 Converse Error
Show that the following argument is invalid:

If Zeke is a cheater, then Zeke sits in the back row.
Zeke sits in the back row.
.. Zeke is a cheater.
Solution  Many people recognize the invalidity of the above argument intuitively, reasoning
something like this: The first premise gives information about Zeke if it is known he is a

cheater. It doesn’t give any information about him if it is not already known that he is a
cheater. One can certainly imagine a person who is not a cheater but happens to sit in the
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58 Chapter 2 The Logic of Compound Statements

back row. Then if that person’s name is substituted for Zeke, the first premise is true by
default and the second premise is also true but the conclusion is false.
The general form of the previous argument is as follows:

pP—>4q
q
" p
In exercise 12(a) at the end of this section you are asked to use a truth table to show that
this form of argument is invalid. |

The fallacy underlying this invalid argument form is called the converse error
because the conclusion of the argument would follow from the premises if the premise
p — g were replaced by its converse. Such a replacement is not allowed, however,
because a conditional statement is not logically equivalent to its converse. Converse error
is also known as the fallacy of affirming the consequent.

Another common error in reasoning is called the inverse error.

Example 2.3.10 Inverse Error
Consider the following argument:

If interest rates are going up, stock market prices will go down.
Interest rates are not going up.

.. Stock market prices will not go down.
Note that this argument has the following form:

pP—4q
~p

A o~

Caution!  In logic, the You are asked to give a truth table verification of the invalidity of this argument form in

words true and valid have exercise 12(b) at the end of this section.
very different meanings. The fallacy underlying this invalid argument form is called the inverse error because
A valid argument may the conclusion of the argument would follow from the premises if the premise p — ¢

hazc ! r_alsc]_c d(’”d”m”’l were replaced by its inverse. Such a replacement is not allowed, however, because a
and an mnvalin 'd]'gun]t:n

may have a true conditional statement is not logically equivalent to its inverse. Inverse error is also known
conclusion. as the fallacy of denying the antecedent. [ |

Sometimes people lump together the ideas of validity and truth. If an argument seems
valid, they accept the conclusion as true. And if an argument seems fishy (really a slang
expression for invalid), they think the conclusion must be false. This is not correct!

Example 2.3.11 A Valid Argument with a False Premise and a False Conclusion

The argument below is valid by modus ponens. But its major premise is false, and so is
its conclusion.
If John Lennon was a rock star, then John Lennon had red hair.
John Lennon was a rock star.
.". John Lennon had red hair. |
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Example 2.3.12 An Invalid Argument with True Premises and a True Conclusion
The argument below is invalid by the converse error, but it has a true conclusion.

If New York is a big city, then New York has tall buildings.
New York has tall buildings.
.. New York is a big city. |

o Definition

An argument is called sound if, and only if, it is valid and all its premises are true.
An argument that is not sound is called unsound.

The important thing to note is that validity is a property of argument forms: If an
argument is valid, then so is every other argument that has the same form. Similarly, if
an argument is invalid, then so is every other argument that has the same form. What
characterizes a valid argument is that no argument whose form is valid can have all true
premises and a false conclusion. For each valid argument, there are arguments of that
form with all true premises and a true conclusion, with at least one false premise and a
true conclusion, and with at least one false premise and a false conclusion. On the other
hand, for each invalid argument, there are arguments of that form with every combination
of truth values for the premises and conclusion, including all true premises and a false
conclusion. The bottom line is that we can only be sure that the conclusion of an argument
is true when we know that the argument is sound, that is, when we know both that the
argument is valid and that it has all true premises.

Contradictions and Valid Arguments

The concept of logical contradiction can be used to make inferences through a technique
of reasoning called the contradiction rule. Suppose p is some statement whose truth you
wish to deduce.

Contradiction Rule

If you can show that the supposition that statement p is false leads logically to a
contradiction, then you can conclude that p is true.

Example 2.3.13 Contradiction Rule
Show that the following argument form is valid:
~p — ¢, where ¢ is a contradiction
" p

Solution  Construct a truth table for the premise and the conclusion of this argument.

premises conclusion
~p c ~p—c¢ p There is only one critical row
/ in which the premise is true,
F F T T and in this row the conclusion
is also true. Hence this form
F T F F . L
of argument is valid. |
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60 Chapter 2 The Logic of Compound Statements

The contradiction rule is the logical heart of the method of proof by contradiction. A
slight variation also provides the basis for solving many logical puzzles by eliminating
contradictory answers: If an assumption leads to a contradiction, then that assumption
must be false.

Example 2.3.14 Knights and Knaves

The logician Raymond Smullyan describes an island containing two types of people:
knights who always tell the truth and knaves who always lie.* You visit the island and are
approached by two natives who speak to you as follows:

Assays: B is a knight.
B says: A and [ are of opposite type.

What are A and B?

Solution A and B are both knaves. To see this, reason as follows:
Suppose A is a knight.

. What A says is true. by definition of knight
. Bisalsoa knight. That’s what A said.
. What B says is true. by definition of knight

. A and B are of opposite types.  That’s what B said.
*. We have arrived at the following contradiction: A and B
are both knights and A and B are of opposite type.

*. The supposition is false. by the contradiction rule

Indiana University Archives

*. A is not a knight. negation of supposition

Raymond Smullyan . A is a knave. by clm.nnatlon: It’s given tha.t all 1nh_ab1tams
(born 1919) are kmghtls or knaves, so since A is not a
knight, A is a knave.

. What A says is false.

". B is not a knight.

*. B is also a knave. by elimination
This reasoning shows that if the problem has a solution at all, then A and B must both
be knaves. It is conceivable, however, that the problem has no solution. The problem

statement could be inherently contradictory. If you look back at the solution, though, you
can see that it does work out for both A and B to be knaves. |

Summary of Rules of Inference

Table 2.3.1 summarizes some of the most important rules of inference.

*Raymond Smullyan has written a delightful series of whimsical yet profound books of logical puzzles starting with What Is the Name
of This Book? (Englewood Cliffs, New Jersey: Prentice-Hall, 1978). Other good sources of logical puzzles are the many excellent
books of Martin Gardner, such as Aha! Insight and Aha! Gotcha (New York: W. H. Freeman, 1978, 1982).
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Table 2.3.1 Valid Argument Forms

Modus Ponens p—q Elimination a. pVvg b. pvyg
p ~q ~p
q P q
Modus Tollens pP—q Transitivity pP—q
"\-’q q — I
P P
Generalization a. p b. ¢ Proof by pVag
pvgq S pvg Division into Cases P
Specialization a. pAg b. pAg q—r
p . q r
Conjunction p Contradiction Rule ~p—c¢
q P
“PAq

Test Yourself

1. For an argument to be valid means that every argument of 3. For an argument to be sound means that it is and its
the same form whose premises has a conclusion. premises . In this case we can be sure that its conclu-
L . sion .
2. For an argument to be invalid means that there is an argument
of the same form whose premises and whose conclu-
sion .

Exercise Set 2.3

Use modus ponens or modus tollens to fill in the blanks in the 5. If they were unsure of the address, then they would have
arguments of 1-5 so as to produce valid inferences. telephoned.
1. If +/2 is rational, then +/2 = a/b for some integers a . They were sure of the address.
and b.

Use truth tables to determine whether the argument forms in 6—
11 are valid. Indicate which columns represent the premises and
which represent the conclusion, and include a sentence explain-
2. If1—0.99999...isless than every positive real number, ing how the truth table supports your answer. Your explanation

then it equals zero. should show that you understand what it means for a form of
argument to be valid or invalid.

It is not true that /2 = a /b for some integers a and b.

*. The number 1 —0.99999.. .. equals zero.

. 6. p—gq 7. p
3. If logic is easy, then I am a monkey’s uncle. g—p P—q
I am not a monkey’s uncle. - pVg ~q VT
T
4. If this figure is a quadrilateral, then the sum of its interior 8. pvg 9. pAg — ~r
angles is 360°. p—> ~q ’ PV ~q
The sum of the interior angles of this figure is not 360°.
p—>r ~q —> p
r oo
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62 Chapter 2 The Logic of Compound Statements

10. p—r 1. p—>gqvVvr
q—r ~q N~
.pvVgqg—r So~p N o~

12. Use truth tables to show that the following forms of argu-
ment are invalid.

a. pP—q b. p—q
q ~p
P co~q
(converse error) (inverse error)

Use truth tables to show that the argument forms referred
to in 13-21 are valid. Indicate which columns represent the
premises and which represent the conclusion, and include a sen-
tence explaining how the truth table supports your answer. Your
explanation should show that you understand what it means for
a form of argument to be valid.

13. Modus tollens:

pP—=4q
~q
P
14. Example 2.3.3(a) 15. Example 2.3.3(b)
16. Example 2.3.4(a) 17. Example 2.3.4(b)
18. Example 2.3.5(a) 19. Example 2.3.5(b)
20. Example 2.3.6 21. Example 2.3.7

Use symbols to write the logical form of each argument in 22
and 23, and then use a truth table to test the argument for valid-
ity. Indicate which columns represent the premises and which
represent the conclusion, and include a few words of explana-
tion showing that you understand the meaning of validity.

22.  If Tomis not on team A, then Hua is on team B.
If Hua is not on team B, then Tom is on team A.
*. Tom is not on team A or Hua is not on team B.

23.  Oleg is a math major or Oleg is an economics major.
If Oleg is a math major, then Oleg is required to take
Math 362.
*. Oleg is an economics major or Oleg is not required to
take Math 362.

Some of the arguments in 24-32 are valid, whereas others
exhibit the converse or the inverse error. Use symbols to write
the logical form of each argument. If the argument is valid, iden-
tify the rule of inference that guarantees its validity. Otherwise,
state whether the converse or the inverse error is made.

24.  If Jules solved this problem correctly, then Jules obtained
the answer 2.
Jules obtained the answer 2.
*. Jules solved this problem correctly.

25.  This real number is rational or it is irrational.
This real number is not rational.
*. This real number is irrational.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

If T go to the movies, I won’t finish my homework. If
I don’t finish my homework, I won’t do well on the
exam tomorrow.
. If I go to the movies, I won’t do well on the exam
tOMOITOwW.

If this number is larger than 2, then its square is larger
than 4.
This number is not larger than 2.

*. The square of this number is not larger than 4.

If there are as many rational numbers as there are
irrational numbers, then the set of all irrational numbers
is infinite.
The set of all irrational numbers is infinite.

*. There are as many rational numbers as there are irrational
numbers.

If at least one of these two numbers is divisible by 6, then
the product of these two numbers is divisible by 6.
Neither of these two numbers is divisible by 6.

*. The product of these two numbers is not divisible by 6.

If this computer program is correct, then it produces the
correct output when run with the test data my teacher
gave me.

This computer program produces the correct output
when run with the test data my teacher gave me.
.. This computer program is correct.

Sandra knows Java and Sandra knows C++.
*. Sandra knows C++.

If I get a Christmas bonus, I'll buy a stereo.
If I sell my motorcycle, I'll buy a stereo.

.. If I get a Christmas bonus or I sell my motorcycle, then
I’ll buy a stereo.

Give an example (other than Example 2.3.11) of a valid
argument with a false conclusion.

Give an example (other than Example 2.3.12) of an invalid
argument with a true conclusion.

Explain in your own words what distinguishes a valid form
of argument from an invalid one.

Given the following information about a computer pro-

gram, find the mistake in the program.

a. There is an undeclared variable or there is a syntax error
in the first five lines.

b. If there is a syntax error in the first five lines, then there
is a missing semicolon or a variable name is misspelled.

c. There is not a missing semicolon.

d. There is not a misspelled variable name.
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37. In the back of an old cupboard you discover a note signed

38.

by a pirate famous for his bizarre sense of humor and

love of logical puzzles. In the note he wrote that he had

hidden treasure somewhere on the property. He listed

five true statements (a—e below) and challenged the

reader to use them to figure out the location of the

treasure.

a. If this house is next to a lake, then the treasure is not in
the kitchen.

b. If the tree in the front yard is an elm, then the treasure is
in the kitchen.

c. This house is next to a lake.

d. The tree in the front yard is an elm or the treasure is
buried under the flagpole.

e. If the tree in the back yard is an oak, then the treasure is
in the garage.

Where is the treasure hidden?

You are visiting the island described in Example 2.3.14 and
have the following encounters with natives.
a. Two natives A and B address you as follows:
A says: Both of us are knights.
B says: A is a knave.
What are A and B?
b. Another two natives C and D approach you but only C
speaks.
C says: Both of us are knaves.
What are C and D?
c. You then encounter natives E and F.
E says: F is a knave.
F says: E is a knave.
How many knaves are there?

H d. Finally, you meet a group of six natives, U, V, W, X,

39.

Y, and Z, who speak to you as follows:
U says: None of us is a knight.

V says: At least three of us are knights.
W says: At most three of us are knights.
X says: Exactly five of us are knights.

Y says: Exactly two of us are knights.

Z says: Exactly one of us is a knight.
Which are knights and which are knaves?

The famous detective Percule Hoirot was called in to solve

a baffling murder mystery. He determined the following

facts:

a. Lord Hazelton, the murdered man, was killed by a blow
on the head with a brass candlestick.

b. Either Lady Hazelton or a maid, Sara, was in the dining
room at the time of the murder.

Answers for Test Yourself

1.

2.3 Valid and Invalid Arguments 63

c. If the cook was in the kitchen at the time of the murder,
then the butler killed Lord Hazelton with a fatal dose of
strychnine.

d. If Lady Hazelton was in the dining room at the time of
the murder, then the chauffeur killed Lord Hazelton.

e. If the cook was not in the kitchen at the time of the mur-
der, then Sara was not in the dining room when the mur-
der was committed.

f. If Sara was in the dining room at the time the murder was
committed, then the wine steward killed Lord Hazelton.

Is it possible for the detective to deduce the identity of

the murderer from these facts? If so, who did murder Lord

Hazelton? (Assume there was only one cause of death.)

40. Sharky, a leader of the underworld, was killed by one of his
own band of four henchmen. Detective Sharp interviewed
the men and determined that all were lying except for one.
He deduced who killed Sharky on the basis of the following
statements:

a. Socko: Lefty killed Sharky.

b. Fats: Muscles didn’t kill Sharky.

c. Lefty: Muscles was shooting craps with Socko when
Sharky was knocked off.

d. Muscles: Lefty didn’t kill Sharky.

Who did kill Sharky?

In 41-44 a set of premises and a conclusion are given. Use the
valid argument forms listed in Table 2.3.1 to deduce the con-
clusion from the premises, giving a reason for each step as in
Example 2.3.8. Assume all variables are statement variables.

41.a. ~pVvVgqg—>r 42.a. pVvg
b. sV~q b. g—r
c. ~I c. pAS—t
d p—t d  ~r
e. ~pAFr—~s e. ~q—>UANS
f. . ~q f. ot
43.a. ~p—=>r A~ 4.a. p—gq
b. t—s b. rvs
C. u—>~p c. ~§ —>~t
. ~w d ~qvVs
e. uvw e, ~s
f.oo~t f. ~pAr—u
g wVt
h. ~urnw

are all true; true 2. are all true; is false 3. valid; are all true; is true
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64 Chapter 2 The Logic of Compound Statements

2.4 Application: Digital Logic Circuits
Only connect! — E. M. Forster, Howards End

In the late 1930s, a young M.L.T. graduate student named Claude Shannon noticed an
analogy between the operations of switching devices, such as telephone switching
circuits, and the operations of logical connectives. He used this analogy with striking
success to solve problems of circuit design and wrote up his results in his master’s thesis,
which was published in 1938.

The drawing in Figure 2.4.1(a) shows the appearance of the two positions of a simple
switch. When the switch is closed, current can flow from one terminal to the other; when
it is open, current cannot flow. Imagine that such a switch is part of the circuit shown in
Figure 2.4.1(b). The light bulb turns on if, and only if, current flows through it. And this
happens if, and only if, the switch is closed.

£
i The symbol =
el = J_ denotes a battery and
Claude Shannon e G@ the symbol @
(1916-2001) - e T _
Open Closed denotes a light bulb.
() (b)
Figure 2.4.1

Now consider the more complicated circuits of Figures 2.4.2(a) and 2.4.2(b).

P
I [
= B = "
L L
Switches “in series” Switches “in parallel”
(a) (b)
Figure 2.4.2

In the circuit of Figure 2.4.2(a) current flows and the light bulb turns on if, and only
if, both switches P and Q are closed. The switches in this circuit are said to be in series.
In the circuit of Figure 2.4.2(b) current flows and the light bulb turns on if, and only if, at
least one of the switches P or Q is closed. The switches in this circuit are said to be in
parallel. All possible behaviors of these circuits are described by Table 2.4.1.

Table 2.4.1
(a) Switches in Series (b) Switches in Parallel
Switches Light Bulb Switches Light Bulb
P 0 State p 0 State
closed closed on closed closed on
closed open off closed open on
open closed off open closed on
open open off open open off
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Observe that if the words closed and on are replaced by T and open and off are replaced
by F, Table 2.4.1(a) becomes the truth table for and and Table 2.4.1(b) becomes the
truth table for or. Consequently, the switching circuit of Figure 2.4.2(a) is said to cor-
respond to the logical expression P A Q, and that of Figure 2.4.2(b) is said to correspond
to PV Q.

More complicated circuits correspond to more complicated logical expressions. This
correspondence has been used extensively in the design and study of circuits.

In the 1940s and 1950s, switches were replaced by electronic devices, with the
physical states of closed and open corresponding to electronic states such as high and
low voltages. The new electronic technology led to the development of modern digi-
tal systems such as electronic computers, electronic telephone switching systems, traffic
light controls, electronic calculators, and the control mechanisms used in hundreds of
other types of electronic equipment. The basic electronic components of a digital system
are called digital logic circuits. The word logic indicates the important role of logic in the
design of such circuits, and the word digital indicates that the circuits process discrete, or
separate, signals as opposed to continuous ones.

The Intel 4004, introduced in
1971, is generally considered to
be the first commercially viable
microprocessor or central pro-
cessing unit (CPU) contained
on a chip about the size of a
fingernail. It consisted of 2,300
transistors and could execute
70,000 instructions per second,
essentially the same computing
power as the first electronic
computer, the ENIAC, built in
1946, which filled an entire
room. Modern microprocessors
consist of several CPUs on one
chip, contain close to a billion
transistors and many hundreds
of millions of logic circuits,
and can compute hundreds of
millions of instructions per
second.

Intel

Electrical engineers continue to use the language of logic when they refer to values

of signals produced by an electronic switch as being “true” or “false.” But they generally

\ b use the symbols 1 and O rather than T and F to denote these values. The symbols O and

John W, Tukey 1 are called bits, short for binary digits. This terminology was introduced in 1946 by the
(1915-2000) statistician John Tukey.

Courtesy of IBM

Black Boxes and Gates

Combinations of signal bits (1’s and 0’s) can be transformed into other combinations
of signal bits (1’s and 0’s) by means of various circuits. Because a variety of different
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66 Chapter 2 The Logic of Compound Statements

technologies are used in circuit construction, computer engineers and digital system
designers find it useful to think of certain basic circuits as black boxes. The inside of
a black box contains the detailed implementation of the circuit and is often ignored while
attention is focused on the relation between the input and the output signals.

Input
signals

—— black box S Output signal

The operation of a black box is completely specified by constructing an input/output
table that lists all its possible input signals together with their corresponding output
signals. For example, the black box pictured above has three input signals. Since each
of these signals can take the value 1 or 0, there are eight possible combinations of input
signals. One possible correspondence of input to output signals is as follows:

An Input/Output Table
Input Output
P 0 R S
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 1 1
0 0 0

The third row, for instance, indicates that for inputs P = 1, Q = 0, and R = 1, the output
Sis 0.

An efficient method for designing more complicated circuits is to build them by con-
necting less complicated black box circuits. Three such circuits are known as NOT-,
AND-, and OR-gates.

A NOT-gate (or inverter) is a circuit with one input signal and one output signal. If
the input signal is 1, the output signal is 0. Conversely, if the input signal is O, then the
output signal is 1. An AND-gate is a circuit with two input signals and one output signal.
If both input signals are 1, then the output signal is 1. Otherwise, the output signal is 0.
An OR-gate also has two input signals and one output signal. If both input signals are 0,
then the output signal is 0. Otherwise, the output signal is 1.

The actions of NOT-, AND-, and OR-gates are summarized in Figure 2.4.3, where P
and Q represent input signals and R represents the output signal. It should be clear from
Figure 2.4.3 that the actions of the NOT-, AND-, and OR-gates on signals correspond
exactly to those of the logical connectives ~, A, and V on statements, if the symbol 1 is

identified with T and the symbol 0 is identified with F.
Gates can be combined into circuits in a variety of ways. If the rules shown on the

next page are obeyed, the result is a combinational circuit, one whose output at any time
is determined entirely by its input at that time without regard to previous inputs.
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Type of Symbolic
Gate Representation Action

Input Output

P R
NOT P o R
1 0

0 1
Input Output
P 0 R
P p—
AND AND R ! ! !
0— 1 0 0
0 1 0
0 0 0
Input Output
P 0 R
P
0 1 0 1
0 1 1
0 0 0
Figure 2.4.3
Rules for a Combinational Circuit
Never combine two input wires. 2.4.1
A single input wire can be split partway and used as input
for two separate gates. 2.4.2
An output wire can be used as input. 243
No output of a gate can eventually feed back into that gate. 244

Rule (2.4.4) is violated in more complex circuits, called sequential circuits, whose
output at any given time depends both on the input at that time and also on previous
inputs. These circuits are discussed in Section 12.2.

The Input/Output Table for a Circuit

If you are given a set of input signals for a circuit, you can find its output by tracing
through the circuit gate by gate.
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68 Chapter 2 The Logic of Compound Statements

Example 2.4.1 Determining Output for a Given Input

Indicate the output of the circuits shown below for the given input signals.

Input signals: P =0 and Q =1

0
b. Input signals: P =1, 0 =0, R=1
o) oo >
Q
AND s
R
Solution

a. Move from left to right through the diagram, tracing the action of each gate on the
input signals. The NOT-gate changes P = 0 to a 1, so both inputs to the AND-gate
are 1; hence the output R is 1. This is illustrated by annotating the diagram as shown

below.
0 1
P O 1
AND R

ol [

b. The output of the OR-gate is 1 since one of the input signals, P, is 1. The NOT-gate
changes this 1 into a 0, so the two inputs to the AND-gate are 0 and R = 1. Hence the
output S is 0. The trace is shown below.

1 AND N

To construct the entire input/output table for a circuit, trace through the circuit to find
the corresponding output signals for each possible combination of input signals.

Example 2.4.2 Constructing the Input/Output Table for a Circuit

Construct the input/output table for the following circuit.

@..»
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George Boole
(1815-1864)

Note  Strictly speaking,

only meaningful
expressions such as
(~pAq)V (pAr)and
~(~(p Aq) Vr)are
allowed as Boolean, not
meaningless ones like
p~q((rs vV Aqg~.We
use recursion to give a
careful definition of
Boolean expressions in
Section 5.9.

CORBIS
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Solution  List the four possible combinations of input signals, and find the output for each

by tracing through the circuit.

Input Output
P 0 R
1 1 1
1 0 1
0 1 0
0 0 1 -

The Boolean Expression Corresponding to a Circuit

In logic, variables such as p, ¢ and r represent statements, and a statement can have one
of only two truth values: T (true) or F (false). A statement form is an expression, such as
p A (~q V r), composed of statement variables and logical connectives.

As noted earlier, one of the founders of symbolic logic was the English mathemati-
cian George Boole. In his honor, any variable, such as a statement variable or an input
signal, that can take one of only two values is called a Boolean variable. An expres-
sion composed of Boolean variables and the connectives ~, A, and V is called a Boolean
expression.

Given a circuit consisting of combined NOT-, AND-, and OR-gates, a correspond-
ing Boolean expression can be obtained by tracing the actions of the gates on the input
variables.

Example 2.4.3 Finding a Boolean Expression for a Circuit

Find the Boolean expressions that correspond to the circuits shown below. A dot indicates
a soldering of two wires; wires that cross without a dot are assumed not to touch.

P —t P —
.— AND

0 p AND 0— AND

ot

() (b)

Solution

a. Trace through the circuit from left to right, indicating the output of each gate symbol-
ically, as shown below.

NOT >0 19 I_

P— OR PV QO
0 AND PNVOANPANQ)
| D ) PrO

The final expression obtained, (P VvV Q) A ~(P A Q), is the expression for exclusive
or: P or Q but not both.
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70 Chapter 2 The Logic of Compound Statements

b. The Boolean expression corresponding to the circuit is (P A Q) A ~R, as shown
below.

AND (P A Q) AR
00— x| AND

R w 5
|
Observe that the output of the circuit shown in Example 2.4.3(b) is 1 for exactly one
combination of inputs (P = 1, Q = 1, and R = 0) and is O for all other combinations of
inputs. For this reason, the circuit can be said to “recognize” one particular combination

of inputs. The output column of the input/output table has a 1 in exactly one row and 0’s
in all other rows.

o Definition

A recognizer is a circuit that outputs a 1 for exactly one particular combination of
input signals and outputs 0’s for all other combinations.

Input/Output Table for a Recognizer

P (] R (PAQ)A~R
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

The Circuit Corresponding to a Boolean Expression

The preceding examples showed how to find a Boolean expression corresponding to a cir-
cuit. The following example shows how to construct a circuit corresponding to a Boolean
expression.

Example 2.4.4 Constructing Circuits for Boolean Expressions
Construct circuits for the following Boolean expressions.
a. (~PAQ)V~0 b. (PAOQYARAS)YAT
Solution

a. Write the input variables in a column on the left side of the diagram. Then go from
the right side of the diagram to the left, working from the outermost part of the
expression to the innermost part. Since the last operation executed when evaluating
(~P A Q) V ~Q is V, put an OR-gate at the extreme right of the diagram. One input
to this gate is ~P A Q, so draw an AND-gate to the left of the OR-gate and show its
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output coming into the OR-gate. Since one input to the AND-gate is ~P, draw a line
from P to a NOT-gate and from there to the AND-gate. Since the other input to the
AND-gate is Q, draw a line from Q directly to the AND-gate. The other input to the
OR-gate is ~Q, so draw a line from Q to a NOT-gate and from the NOT-gate to the
OR-gate. The circuit you obtain is shown below.

=

0

b. To start constructing this circuit, put one AND-gate at the extreme right for the A
between (P A Q) A(RAS)) and T. To the left of that put the AND-gate corre-
sponding to the A between P A Q and R A S. To the left of that put the AND-gates
corresponding to the A’s between P and Q and between R and S. The circuit is shown

in Figure 2.4.4.
P PR—
AND
— AND
¢ AND
R — |
AND
§— |
T

Figure 2.4.4 |

It follows from Theorem 2.1.1 that all the ways of adding parentheses to
P AQARASAT are logically equivalent. Thus, for example,

(PAOARASHAT=((PAQAR)ASAT).

It also follows that the circuit in Figure 2.4.5, which corresponds to
(P A (Q A R)) A (S AT), has the same input/output table as the circuit in Figure 2.4.4,
which corresponds to (P A Q) A(RAS)) AT.

A

0 —] AND
AND AND
R — |
N —
AND
y—
Figure 2.4.5

Each of the circuits in Figures 2.4.4 and 2.4.5 is, therefore, an implementation of
the expression P A O A R A'S A T. Such a circuit is called a multiple-input AND-gate
and is represented by the diagram shown in Figure 2.4.6. Multiple-input OR-gates are
constructed similarly.
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P
0

A=
R———— AND
S—,:
T

Figure 2.4.6

Finding a Circuit That Corresponds to a Given
Input/Output Table

To this point, we have discussed how to construct the input/output table for a circuit, how
to find the Boolean expression corresponding to a given circuit, and how to construct the
circuit corresponding to a given Boolean expression. Now we address the question of how
to design a circuit (or find a Boolean expression) corresponding to a given input/output
table. The way to do this is to put several recognizers together in parallel.

Example 2.4.5 Designing a Circuit for a Given Input/Output Table

Design a circuit for the following input/output table:

Input Output
P (] R S
1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 1
0 1 1 0
0 1 0 0
0 1 0
0 0 0

Solution  First construct a Boolean expression with this table as its truth table. To do this,
identify each row for which the output is 1—in this case, the first, third, and fourth rows.
For each such row, construct an and expression that produces a 1 (or true) for the exact
combination of input values for that row and a O (or false) for all other combinations of
input values. For example, the expression for the first row is P A QO A R because
PAQARisTif P=1and Q =1and R = 1, and it is O for all other values of P, Q,
and R. The expression for the third row is P A ~Q A R because P A ~Q A R is 1 if
P =1and Q =0and R =1, and it is O for all other values of P, Q, and R. Similarly,
the expression for the fourth row is P A ~Q A ~R.

Now any Boolean expression with the given table as its truth table has the value 1 in
case PAQAR=1,orincase PA~Q AR =1,orincase PA ~Q A ~R =1, and
in no other cases. It follows that a Boolean expression with the given truth table is

(PAQAR)YV(PA~QAR)V(PA~QAN~R). 245

The circuit corresponding to this expression has the diagram shown in Figure 2.4.7.
Observe that expression (2.4.5) is a disjunction of terms that are themselves conjunc-
tions in which one of P or ~P, one of Q or ~Q, and one of R or ~R all appear. Such
expressions are said to be in disjunctive normal form or sum-of-products form.
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=IO~
>
Z
o}

:

NOT AND

i

NOT AND

NOT

Figure 2.4.7 |

Simplifying Combinational Circuits

Consider the two combinational circuits shown in Figure 2.4.8.

P

o NOT
AND R

AN

o

—~

a)

P
AND R
0 —
(b)

Figure 2.4.8

If you trace through circuit (a), you will find that its input/output table is

Input Output
P 0 R
1 1 1
1 0 0
1 0
0 0

which is the same as the input/output table for circuit (b). Thus these two circuits do
the same job in the sense that they transform the same combinations of input signals
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74 Chapter 2 The Logic of Compound Statements

into the same output signals. Yet circuit (b) is simpler than circuit (a) in that it contains
many fewer logic gates. Thus, as part of an integrated circuit, it would take less space and
require less power.

o Definition

Two digital logic circuits are equivalent if, and only if, their input/output tables are
identical.

Since logically equivalent statement forms have identical truth tables, you can
determine that two circuits are equivalent by finding the Boolean expressions
corresponding to the circuits and showing that these expressions, regarded as statement
forms, are logically equivalent. Example 2.4.6 shows how this procedure works for cir-
cuits (a) and (b) in Figure 2.4.8.

Example 2.4.6 Showing That Two Circuits Are Equivalent

Find the Boolean expressions for each circuit in Figure 2.4.8. Use Theorem 2.1.1 to show
that these expressions are logically equivalent when regarded as statement forms.

Solution The Boolean expressions that correspond to circuits (a) and (b) are
(PA~Q)V(PAQ)AQand P A Q, respectively. By Theorem 2.1.1,

(PA~QV(PAONAQ
=(PA(~QOVO)YAQ by the distributive law
=(PAQV~Q))AQ bythe commutative law for v
=(PAHYAQ by the negation law
=PAQ by the identity law.

It follows that the truth tables for (P A ~Q) V (P A Q)) A Q and P A Q are the same.
Hence the input/output tables for the circuits corresponding to these expressions are also
the same, and so the circuits are equivalent. [ |

In general, you can simplify a combinational circuit by finding the corresponding
Boolean expression, using the properties listed in Theorem 2.1.1 to find a Boolean expres-
sion that is shorter and logically equivalent to it (when both are regarded as statement
forms), and constructing the circuit corresponding to this shorter Boolean expression.

NAND and NOR Gates

Another way to simplify a circuit is to find an equivalent circuit that uses the least number
of different kinds of logic gates. Two gates not previously introduced are particularly
useful for this: NAND-gates and NOR-gates. A NAND-gate is a single gate that acts like
an AND-gate followed by a NOT-gate. A NOR-gate acts like an OR-gate followed by a
NOT-gate. Thus the output signal of a NAND-gate is 0 when, and only when, both input
signals are 1, and the output signal for a NOR-gate is 1 when, and only when, both input
signals are 0. The logical symbols corresponding to these gates are | (for NAND) and |
(for NOR), where | is called a Sheffer stroke (after H. M. Sheffer, 1882-1964) and | is
called a Peirce arrow (after C. S. Peirce, 1839-1914; see page 101). Thus

Harvard University Archives

H. M. Sheffer
(1882-1964) P|lO=~(PAQ) and P | Q=~(PV Q).
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The table below summarizes the actions of NAND and NOR gates.

Type of Gate Symbolic Representation Action
Input Output
P [ R=P|Q
P — 1 1
Q— 1 0 1
0 1 1
0 0 1
Input Output
P 0 R=P| Q0
P
0 1 0 0
0 1 0
0 0 1

It can be shown that any Boolean expression is equivalent to one written entirely with
Sheffer strokes or entirely with Peirce arrows. Thus any digital logic circuit is equivalent
to one that uses only NAND-gates or only NOR-gates. Example 2.4.7 develops part of
the derivation of this result; the rest is left for the exercises.

Example 2.4.7 Rewriting Expressions Using the Sheffer Stroke
Use Theorem 2.1.1 and the definition of Sheffer stroke to show that
a. ~P=P|P and b. PvQO=(P|P)|(Q]0O).

Solution
a. ~P = ~(P A P) by the idempotent law for A
= P|P by definition of |.
b. PvQ = ~(~(PV Q) by the double negative law
= ~(~P A~Q) by De Morgan’s laws
= ~((PIP)A(Q]Q))  bypart(a)
= (P|P)|I(Q]0O) by definition of |. |
Test Yourself
1. The input/output table for a digital logic circuit is a table that 4. Two digital logic circuits are equivalent if, and only
shows . if,
2. The Boolean expression that corresponds to a digital logic 5. A NAND-gate is constructed by placing a gate imme-
circuit is . diately following an gate.
3. A recognizer is a digital logic circuit that . 6. A NOR-gate is constructed by placing a gate immedi-
ately following an gate.
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Exercise Set 2.4

Give the output signals for the circuits in 14 if the input signals 18. P 0 R S
are as indicated.

; 1 1 1 0

S F » R 10 |
1 0 1 0
© ’ 10 0o
i ignals: P =1 d 0=1 0 : : :
input signals: P = an =
put i 0 1 0 0
2P » o 0o 1 ]o
Q AND R 0 0 0 0
O
h 19. P 0 R S
input signals: P =1 and Q=0 1 1 1 0
3P 1 1 0 1
|_ 1 0 1 0
AND
Q ) o> o o
0 1 1 0
R
0 1 0 1
inputsignals: P =1, Q0=0, R=0 0 0 1 0
4. p » 0o 0 0 0
: Jo>—s
20. P 0 R S
AND O
R —— 1 1 1 1
input signals: P =0, Q =0, R=0 1 1 0 0
1 0 1 1
In 5-8, write an input/output table for the circuit in the refer-
enced exercise. 1 0 0 0
5. Exercise 1 6. Exercise 2 0 ! ! 0
0 1 0 0
7. Exercise 3 8. Exercise 4
0 0 1 0
In 9-12, find the Boolean expression that corresponds to the cir- 0 0 0 1
cuit in the referenced exercise.

9. Exercise 1 10. Exercise 2 21. P 0 R S
11. Exercise 3 12. Exercise 4 1 1 1 0
Construct circuits for the Boolean expressions in 13—17. 1 1 0 1
13. ~P VvV Q 14. ~(P v Q) ! 0 ! 0
15. P v (~P ) 16. (P ) R ! 0 0 0

PV (~P A~ . ANQ)V ~
Q Q 0 1 1 1
17. (P A~Q)V (~P AR) 0 1 0 1
For each of the tables in 18-21, construct (a) a Boolean expres- 0 0 1 0
sion having the given table as its truth table and (b) a circuit
having the given table as its input/output table. 0 0 0 0
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22. Design a circuit to take input signals P, Q, and R and out-
put a 1 if, and only if, P and Q have the same value and Q
and R have opposite values.

23. Design a circuit to take input signals P, Q, and R and out-
put a 1 if, and only if, all three of P, O, and R have the
same value.

24. The lights in a classroom are controlled by two switches:
one at the back and one at the front of the room. Moving
either switch to the opposite position turns the lights off if
they are on and on if they are off. Assume the lights have
been installed so that when both switches are in the down
position, the lights are off. Design a circuit to control the
switches.

25. An alarm system has three different control panels in three
different locations. To enable the system, switches in at
least two of the panels must be in the on position. If fewer
than two are in the on position, the system is disabled.
Design a circuit to control the switches.

Use the properties listed in Theorem 2.1.1 to show that each For the circuits corresponding to the Boolean expressions in
pair of circuits in 26-29 have the same input/output table. (Find each of 30 and 31 there is an equivalent circuit with at most
the Boolean expressions for the circuits and show that they are two logic gates. Find such a circuit.

logically equivalent when regarded as statement forms.)
30. (PAQ)V(~PAQ)V(~PA~Q)

26. a. P — ~ ~ ~ ~
N 3l. (“PA~Q)V(~PAQ)V(PA~Q)
0

32. The Boolean expression for the circuit in Example 2.4.5 is

;

b. P (PAOQAR)V(PA~QAR)V(PA~QA~R)

AND (a disjunctive normal form). Find a circuit with at most
three logic gates that is equivalent to this circuit.

33. a. Show that for the Sheffer stroke |,
AND PAQ = (PIO)I(P]Q).

AND . b. Use the results of Example 2.4.7 and part (a) above to
write P A (~Q V R) using only Sheffer strokes.

27. a. p

vl

34. Show that the following logical equivalences hold for the
Peirce arrow |, where P || QO = ~(P Vv Q).
a. ~P=P| P

.
M

b.PvQO={P |0 (PO
28. a. P c. PAQ=(P | P)|(Q]0O)
- AND H d. Write P — Q using Peirce arrows only.
0 e. Write P <> Q using Peirce arrows only.
AND
D
—— NOT
AND
NOT
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Answers for Test Yourself

1. the output signal(s) that correspond to all possible combinations of input signals to the circuit 2. a Boolean expression that
represents the input signals as variables and indicates the successive actions of the logic gates on the input signals 3. outputs a 1 for
exactly one particular combination of input signals and outputs 0’s for all other combinations 4. they have the same input/output
table 5. NOT; AND 6. NOT; OR

2.5 Application: Number Systems and Circuits
for Addition

Counting in binary is just like counting in decimal if you are all thumbs. — Glaser and Way

In elementary school, you learned the meaning of decimal notation: that to interpret a
string of decimal digits as a number, you mentally multiply each digit by its place value.
For instance, 5,049 has a 5 in the thousands place, a 0 in the hundreds place, a 4 in the
tens place, and a 9 in the ones place. Thus

5,049 =5-(1,000) + 0-(100) +4-(10) +9-(1).
Using exponential notation, this equation can be rewritten as
5,049 =5-10° +0-10* +4-10" +9-10°.

More generally, decimal notation is based on the fact that any positive integer can be
written uniquely as a sum of products of the form

d-10",

where each 7 is a nonnegative integer and each d is one of the decimal digits 0, 1, 2, 3, 4,
5,6,7,8,0r9. The word decimal comes from the Latin root deci, meaning “ten.” Decimal
(or base 10) notation expresses a number as a string of digits in which each digit’s position
indicates the power of 10 by which it is multiplied. The right-most position is the ones
place (or 10° place), to the left of that is the tens place (or 10! place), to the left of that is
the hundreds place (or 102 place), and so forth, as illustrated below.

- 103 10% 10! 10°
ace thousands hundreds tens ones
Decimal Digit 5 0 4 9

Binary Representation of Numbers

There is nothing sacred about the number 10; we use 10 as a base for our usual number
system because we happen to have ten fingers. In fact, any integer greater than 1 can serve
as a base for a number system. In computer science, base 2 notation, or binary notation,
is of special importance because the signals used in modern electronics are always in one
of only two states. (The Latin root bi means “two.”)

In Section 5.4, we show that any integer can be represented uniquely as a sum of
products of the form

d-2",

where each n is an integer and each d is one of the binary digits (or bits) O or 1. For
example,
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27T=16+8+2+1
=12 +1.22+0.22+1.2' +1.2°
In binary notation, as in decimal notation, we write just the binary digits, and not the

powers of the base. In binary notation, then,

1 -2 +1-224+0-224+1- 2"+

BRI

271 = 1101

where the subscripts indicate the base, whether 10 or 2, in which the number is written.
The places in binary notation correspond to the various powers of 2. The right-most
position is the ones place (or 2° place), to the left of that is the twos place (or 2' place),
to the left of that is the fours place (or 2% place), and so forth, as illustrated below.

24 23 22 2! 20
Place sixteens eights fours twos ones
Binary Digit 1 1 0 1 1

As in the decimal notation, leading zeros may be added or dropped as desired. For
example,

003, =3,0=1-2"+1.2°=11, =011,.

Example 2.5.1 Binary Notation for Integers from 1 to 9

Derive the binary notation for the integers from 1 to 9.

Solution 1,y = 1.2 = 1
20 = 1-2'4+0.2" = 10,
310 = 12" +1.2° = 11,
4, = 1.2240-2'40-2° = 100,
50 = 1-2240-2"+1.2° = 101,
610 = 1-22+1-2" 402" = 110,
T = 122 4+1-2"+1.2° = 111,
8 = 1-2240-22+0-2' +0-2° = 1000,
99 = 1224022 +0-2" +1-2° = 1001, L

A list of powers of 2 is useful for doing binary-to-decimal and decimal-to-binary
conversions. See Table 2.5.1.

Table 2.5.1 Powers of 2

Power of 2 210 29 28 27 26 23 24 23 22 2! 20
Decimal Form 1024 512 256 128 64 32 16 8 4 2 1
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80 Chapter 2 The Logic of Compound Statements

Example 2.5.2 Converting a Binary to a Decimal Number
Represent 110101, in decimal notation.
Solution 110101, = 1-2941-2* +0-2° +1-2240-2" +1.2°
32416+4+1
= 53

Alternatively, the schema below may be used.

v NS % % 5 N
o7 N N N7 N o7
Vv Vv v Vv Vv Vv
1 1 0 1 0 1,
\—%» 1.1 =1
02 =0
1-4 = 4
0-8 = 0
1-16 = 16
1-32 = 32
535 [ |

Example 2.5.3 Converting a Decimal to a Binary Number
Represent 209 in binary notation.

Solution  Use Table 2.5.1 to write 209 as a sum of powers of 2, starting with the highest
power of 2 that is less than 209 and continuing to lower powers.
Since 209 is between 128 and 256, the highest power of 2 that is less than 209 is 128.
Hence

209,y = 128 + a smaller number.

Now 209 — 128 = 81, and 81 is between 64 and 128, so the highest power of 2 that is
less than 81 is 64. Hence

209,y = 128 4+ 64 + a smaller number.
Continuing in this way, you obtain

209,) =128 +64 + 16 + 1
=12741-2°40-2241-2*40-224+0-224+0-2" +1-2°,

For each power of 2 that occurs in the sum, there is a 1 in the corresponding position
of the binary number. For each power of 2 that is missing from the sum, there is a O in the
corresponding position of the binary number. Thus

209,y = 11010001, |

Another procedure for converting from decimal to binary notation is discussed in

Section 5.1.
A Binary Addition and Subtraction
Caution! D ad
1:3u :lgrllen..: ?1 T :hrzl The computational methods of binary arithmetic are analogous to those of decimal arith-
number two. Read 10, as metic. In binary arithmetic the number 2 (= 10, in binary notation) plays a role similar
“one oh base two.” to that of the number 10 in decimal arithmetic.
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Example 2.5.4 Addition in Binary Notation
Add 1101, and 111, using binary notation.

Solution  Because 2o = 10, and 1;; = 1., the translation of 1o+ 1,0 = 2y to binary
notation is

5]

+ b

10,
It follows that adding two 1’s together results in a carry of 1 when binary notation is
used. Adding three 1’s together also results in a carry of 1 since 3;p = 11, (“one one base

two”).

5}

+ 1n

+ b

11,

Thus the addition can be performed as follows:

<— carry row

1 1
11 0 I
+ 1 1 b
1 01 0 0 u

Example 2.5.5 Subtraction in Binary Notation
Subtract 1011, from 11000, using binary notation.

Solution In decimal subtraction the fact that 10,0 — 1,0 = 9, is used to borrow across
several columns. For example, consider the following:

99

1\0 1 < borrow row
0 019
- 5 8o

94 2

In binary subtraction it may also be necessary to borrow across more than one column.
But when you borrow a 1, from 10,, what remains is 1,.

< borrow row

—
[\e]

=

z(é
OHQ/—

8_

—_
o]
|
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Circuits for Computer Addition

Consider the question of designing a circuit to produce the sum of two binary digits P
and Q. Both P and Q can be either O or 1. And the following facts are known:

L+ 1 = 10,,
I, + 0, =1, =01y,
0, +1, =1, =015,
0, + 0, =0, = 00,.

It follows that the circuit to be designed must have two outputs—one for the left
binary digit (this is called the carry) and one for the right binary digit (this is called
the sum). The carry output is 1 if both P and Q are 1; it is O otherwise. Thus the carry
can be produced using the AND-gate circuit that corresponds to the Boolean expression
P A Q. The sum output is 1 if either P or Q, but not both, is 1. The sum can, therefore,
be produced using a circuit that corresponds to the Boolean expression for exclusive or:
(P Vv Q)N ~(P A Q). (See Example 2.4.3(a).) Hence, a circuit to add two binary digits
P and Q can be constructed as in Figure 2.5.1. This circuit is called a half-adder.

HALF-ADDER
Circuit Input/Output Table
P 0 Carry Sum
P~ » 1] 1 0
0 — AND Sum 1 0 0 1
o> e
LA Carry 0 0 0 0

Figure 2.5.1 Circuit to Add P + Q, Where P and Q Are Binary Digits

Now consider the question of how to construct a circuit to add two binary integers,
each with more than one digit. Because the addition of two binary digits may result in
a carry to the next column to the left, it may be necessary to add three binary digits at
certain points. In the following example, the sum in the right column is the sum of two
binary digits, and, because of the carry, the sum in the left column is the sum of three
binary digits.

<— carry row
15
b
0>

+
1

— | ——

Thus, in order to construct a circuit that will add multidigit binary numbers, it is
necessary to incorporate a circuit that will compute the sum of three binary digits. Such a
circuit is called a full-adder. Consider a general addition of three binary digits P, Q, and
R that results in a carry (or left-most digit) C and a sum (or right-most digit) S.

P
+ 0
+ R

cS

The operation of the full-adder is based on the fact that addition is a binary operation:
Only two numbers can be added at one time. Thus P is first added to Q and then the
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result is added to R. For instance, consider the following addition:

1
L+0=012 1 1, =10,

=)

2
+ O
+ 1
10,

The process illustrated here can be broken down into steps that use half-adder circuits.

Step 11 Add P and Q using a half-adder to obtain a binary number with two digits.

P
+ 0
Ci S

Step 2:  Add R to the sum C S| of P and Q.

CiSi
+ R

To do this, proceed as follows:
Step 2a: Add R to S; using a half-adder to obtain the two-digit number C,S.
S

+ R
C,S

Then S is the right-most digit of the entire sum of P, Q, and R.

Step 2b: Determine the left-most digit, C, of the entire sum as follows: First note that
it is impossible for both C; and C; to be 1’s. For if C; = 1, then P and Q are
both 1, and so S; = 0. Consequently, the addition of S; and R gives a binary
number C,S; where C, = 0. Next observe that C will be a 1 in the case that
the addition of P and Q gives a carry of 1 or in the case that the addition of §;
(the right-most digit of P + Q) and R gives a carry of 1. In other words, C =1
if, and only if, C; = 1 or C, = 1. It follows that the circuit shown in Figure 2.5.2
will compute the sum of three binary digits.

FULL-ADDER
Circuit Input/Output Table
P G P ] R C S
half-adder #1 AND S 1 11|11
Sl

0 — 1 1 1
1 0 1 1 0
half-adder #2 1 0 0 0 |

R T

0 1 1 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 0 0

Figure 2.5.2 Circuit to Add P + Q + R, Where P, O, and R Are Binary Digits
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84 Chapter 2 The Logic of Compound Statements

Two full-adders and one half-adder can be used together to build a circuit that will
add two three-digit binary numbers P QR and ST U to obtain the sum WXY Z. This is
illustrated in Figure 2.5.3. Such a circuit is called a parallel adder. Parallel adders can
be constructed to add binary numbers of any finite length.

R — $=2Z

half-adder
¢

I_ S,=Y

full-adder

U

r &l
L Sy=X

P full-adder
s Ci=W
Figure 2.5.3 A Parallel Adder to Add P QR and ST U to Obtain WXYZ

Two’s Complements and the Computer Representation
of Negative Integers

Typically, a fixed number of bits is used to represent integers on a computer, and these
are required to represent negative as well as nonnegative integers. Sometimes a particular
bit, normally the left-most, is used as a sign indicator, and the remaining bits are taken to
be the absolute value of the number in binary notation. The problem with this approach is
that the procedures for adding the resulting numbers are somewhat complicated and the
representation of O is not unique. A more common approach, using two’s complements,
makes it possible to add integers quite easily and results in a unique representation for 0.
The two’s complement of an integer relative to a fixed bit length is defined as follows:

o Definition

Given a positive integer a, the two’s complement of a relative to a fixed bit length
n is the n-bit binary representation of

2" —a.

Bit lengths of 16 and 32 are the most commonly used in practice. However, because
the principles are the same for all bit lengths, we use a bit length of 8 for simplicity in
this discussion. For instance, because

(2% —27)10 = (256 — 27)10 = 229, = (128 + 64 + 32 + 4 + 1), = 111001015,

the 8-bit two’s complement of 27 is 11100101,.

It turns out that there is a convenient way to compute two’s complements that involves
less arithmetic than direct application of the definition. For an 8-bit representation, it is
based on three facts:
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L2 —a=[2%-1)—al+ 1.
2. The binary representation of 28 — 1is 11111111,.

3. Subtracting an 8-bit binary number a from 11111111, just switches all the 0’s in a
to 1's and all the 1’s to O’s. (The resulting number is called the one’s
complement of the given number.)

For instance, by (2) and (3), with a = 27,

NNRRRnnD -
e UL O
[1]i]1]o]o]1]olo| o 1 » 251

and so in binary notation the difference (28 — 1) — 27 is 11100100,. But by (1) with
a=27,28=-27=[(2%—1) —27] + 1, and so if we add 1 to (2.5.1), we obtain the 8-bit
binary representation of 28 — 27, which is the 8-bit two’s complement of 27:

[11]1]o]o[1]olo] o1

loloJofo]ofofo[ 1]

[1]i]1]ofolt]o] 1] »

In general,

To find the 8-bit two’s complement of a positive integer a that is at most 255:

e Write the 8-bit binary representation for a.
e Flip the bits (that is, switch all the 1’s to 0’s and all the 0’s to 1°s).
e Add 1 in binary notation.

Example 2.5.6 Finding a Two’s Complement
Find the 8-bit two’s complement of 19.

Solution  Write the 8-bit binary representation for 19, switch all the 0’s to 1’s and all the
1’sto 0’s, and add 1.

19,0 = (16 +2 4 1);9 = 00010011, _flipthebits 11101100 _2dd 1. 11101101
To check this result, note that
11101101, = (128 +64 +324+8 4+ 4+ 1);9 = 237;p = (256 — 19)
=2 -19).

which is the two’s complement of 19. |
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86 Chapter 2 The Logic of Compound Statements

Observe that because
B2 —a)=a

the two’s complement of the two’s complement of a number is the number itself, and
therefore,

To find the decimal representation of the integer with a given 8-bit two’s
complement:

¢ Find the two’s complement of the given two’s complement.

e Write the decimal equivalent of the result.

Example 2.5.7 Finding a Number with a Given Two’s Complement
What is the decimal representation for the integer with two’s complement 10101001?
Solution
10101001, _flipthe bits - 01010110
_add 1 01010111, = (64 + 16 +4+24+ 1)1, =87
To check this result, note that the given number is
10101001, = (128 +32 4+ 8 + 1);0 = 1695 = (256 — 87),) = (2% — 87) 1,

which is the two’s complement of 87. |

8-Bit Representation of a Number

Now consider the two’s complement of an integer n that satisfies the inequality 1 <n <
128. Then

—1>-n>-128 because multiplying by —1 reverses
the direction of the inequality

and
2 1>28—n>28—128 byadding 2 toall parts of the inequality.
But 28 — 128 =256 — 128 = 128 = 27. Hence
27 < the two’s complement of n < 28,

It follows that the 8-bit two’s complement of an integer from 1 through 128 has a
leading bit of 1. Note also that the ordinary 8-bit representation of an integer from 0
through 127 has a leading bit of 0. Consequently, eight bits can be used to represent both
nonnegative and negative integers by representing each nonnegative integer up through
127 using ordinary 8-bit binary notation and representing each negative integer from —1
through —128 as the two’s complement of its absolute value. That is, for any integer a
from —128 through 127,

The 8-bit representation of a

__ ) the 8-bit binary representation of a ifa>0
"~ | the 8-bit binary representation of 28 — |a| ifa <0’
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The representations are illustrated in Table 2.5.2.

Table 2.5.2
8-Bit Representation (ordinary 8-bit Decimal Form of
binary notation if nonnegative or 8-bit two’s Two’s Complement
Integer complement of absolute value if negative) for Negative Integers
127 01111111
126 Ol111110
2 00000010
1 00000001
0 00000000
—1 IRRRRENEI 28 -1
-2 11111110 28 -2
-3 11111101 28 -3
—127 10000001 28 — 127
—128 10000000 28 — 128

Computer Addition with Negative Integers

Here is an example of how two’s complements enable addition circuits to perform sub-
traction. Suppose you want to compute 72 — 54. First note that this is the same as 72 +
(—54), and the 8-bit binary representations of 72 and —54 are 01001000 and 11001010,
respectively. So if you add the 8-bit binary representations for both numbers, you get

01 00T1TO0O00O0
+ 1 1001010
1 00010O0T10O0

And if you truncate the leading 1, you get 00010010. This is the 8-bit binary
representation for 18, which is the right answer!

The description below explains how to use this method to add any two integers
between —128 and 127. It is easily generalized to apply to 16-bit and 32-bit represen-
tations in order to add integers between about —2,000,000,000 and 2,000,000,000.

To add two integers in the range —128 through 127 whose sum is also in the
range —128 through 127:

e Convert both integers to their 8-bit representations (representing negative
integers by using the two’s complements of their absolute values).

e Add the resulting integers using ordinary binary addition.

e Truncate any leading 1 (overflow) that occurs in the 28th position.

e Convert the result back to decimal form (interpreting 8-bit integers with leading
0’s as nonnegative and 8-bit integers with leading 1’s as negative).
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To see why this result is true, consider four cases: (1) both integers are nonnegative,
(2) one integer is nonnegative and the other is negative and the absolute value of the
nonnegative integer is less than that of the negative one, (3) one integer is nonnegative
and the other is negative and the absolute value of the negative integer is less than or
equal to that of the nonnegative one, and (4) both integers are negative.

Case 1, (both integers are nonnegative): This case is easy because if two nonnegative
integers from O through 127 are written in their 8-bit representations and if their sum is
also in the range O through 127, then the 8-bit representation of their sum has a lead-
ing 0 and is therefore interpreted correctly as a nonnegative integer. The example below
illustrates what happens when 38 and 69 are added.

lofo[1]o]o]1]1]o]| =
+
lol1]ololofi]o]1] e

|0|1|1|0|1|0|1|1| 107

Cases (2) and (3) both involve adding a negative and a nonnegative integer. To be
concrete, let the nonnegative integer be a and the negative integer be —b and suppose
both @ and —b are in the range —128 through 127. The crucial observation is that adding
the 8-bit representations of a and —b is equivalent to computing

a+ 2% -b)

because the 8-bit representation of —b is the binary representation of 2% — b.

Case 2 (a is nonnegative and —b is negative and |a| < |b|): In this case, observe that
a=|a| < |b] =band

a+ @28 —b)=28— (b —a),
and the binary representation of this number is the 8-bit representation of —(b —a) =

a + (—b). We must be careful to check that 28 — (b — a) is between 27 and 28. But it is
because

27 =282 < B (b—a) < 2% sinceO<b-a<b=128=2".

Hence in case |a| < |b|, adding the 8-bit representations of a¢ and —b gives the 8-bit
representation of a 4 (—b).

Example 2.5.8 Computing a + (—b) Where 0 <a < b < 128
Use 8-bit representations to compute 39 + (—89).
Solution

Step 1: Change from decimal to 8-bit representations using the two’s complement to
represent —89.
Since 390 = (32+4+4+2+1);0 = 1001115, the 8-bit representation of 39
is 00100111. Now the 8-bit representation of —89 is the two’s complement of
89. This is obtained as follows:

8910 = (64 + 16 + 8 4 1);p = 01011001, _flip the bits |
10100110 _2dd 1 10100111
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2.5 Application: Number Systems and Circuits for Addition 89

So the 8-bit representation of —89 is 10100111.

Step 2: Add the 8-bit representations in binary notation and truncate the 1 in the 23th
position if there is one:

[ofo]1]ofo]t]1]1]

(o] 1]ofo]1]1]1]

There is no 1 in the 28th

position to truncate— | 1 | 1 |0 | 0| 1 | 1 | 1 |0|

Step 3: Find the decimal equivalent of the result. Since its leading bit is 1, this number is
the 8-bit representation of a negative integer.

11001110 M) 00110001 &) 00110010
< —(32+16+2)1p = =501

Note that since 39 — 89 = —50, this procedure gives the correct answer. |
Case 3 (a is nonnegative and —b is negative and |b| < |a|): In this case, observe that
b =|b] < |a| = aand
a+2%=b) = 2%+ (a —b).
Also
2 < 24 (a—b) < 22427 becauseO<a—b<a<128=2".

So the binary representation of @ 4+ (28 — b) = 2% + (a — b) has a leading 1 in the ninth
(28th) position. This leading 1 is often called “overflow” because it does not fit in the
8-bit integer format. Now subtracting 2% from 28 4+ (a — b) is equivalent to truncating
the leading 1 in the 28th position of the binary representation of the number. But
[a+@2—b)]-2" =2°+@-b)—2° = a—b = a+(-b).

Hence in case |a| > |b|, adding the 8-bit representations of a and —b and truncating the
leading 1 (which is sure to be present) gives the 8-bit representation of a + (—b).

Example 2.5.9 Computing a + (—b) Where 1 < b < a < 127
Use 8-bit representations to compute 39 + (—25).
Solution

Step 1: Change from decimal to 8-bit representations using the two’s complement to
represent —25.

As in Example 2.5.8, the 8-bit representation of 39 is 00100111. Now the
8-bit representation of —25 is the two’s complement of 25, which is obtained as
follows:

25,0 = (16 +8 + 1);p = 00011001, _flip the bits |
11100110 _2dd 1 11100111

So the 8-bit representation of —25is 11100111.

Step 2: Add the 8-bit representations in binary notation and truncate the 1 in the 23th
position if there is one:
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[ofo]1]ofot]1]1]

[ififofolifi]1]

Truncate— 1|0|0|0|0|1|1|1|0|

Step 3: Find the decimal equivalent of the result:
00001110, = (8 +4+2)9 = 14y.

Since 39 — 25 = 14, this is the correct answer. [ |

Case 4 (both integers are negative): This case involves adding two negative integers in
the range —1 through —128 whose sum is also in this range. To be specific, consider the
sum (—a) + (—b) where a, b, and a + b are all in the range 1 through 128. In this case,
the 8-bit representations of —a and —b are the 8-bit representations of 28 — ¢ and 28 — b.
So if the 8-bit representations of —a and —b are added, the result is

@ —a)+ @ —b)=[2" - (a+b)]+2%

Recall that truncating a leading 1 in the ninth (2%th) position of a binary number is
equivalent to subtracting 28. So when the leading 1 is truncated from the 8-bit repre-
sentation of (2% — a) 4 (28 — b), the result is 2% — (a 4 b), which is the 8-bit represen-
tation of —(a + b) = (—a) + (—b). (In exercise 37 you are asked to show that the sum
(2% — a) + (28 — b) has a leading 1 in the ninth (28th) position.)

Example 2.5.10 Computing (—a) + (—b) Where1 <a,b <128,and 1 <a + b < 128
Use 8-bit representations to compute (—89) + (—25).
Solution

Step 1: Change from decimal to 8-bit representations using the two’s complements to
represent —89 and —25.
The 8-bit representations of —89 and —25 were shown in Examples 2.5.8 and
2.5.9tobe 10100111 and 11100111, respectively.

Step 2: Add the 8-bit representations in binary notation and truncate the 1 in the 23th
position if there is one:

(o] 1]ofoli]1]1]

[ ififofolifi 1]

tuncae— 1 1]0]ofo[1]1]1]o0]

Step 3: Find the decimal equivalent of the result. Because its leading bit is 1, this number
is the 8-bit representation of a negative integer.

10001110 _flipthe bits - 01110001 _2dd 1. 01110010,
<~ —(64+32+ 16+2)1() = —1141()

Since (—89) + (—25) = —114, that is the correct answer. [ |
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Hexadecimal Notation

It should now be obvious that numbers written in binary notation take up much more
space than numbers written in decimal notation. Yet many aspects of computer opera-
tion can best be analyzed using binary numbers. Hexadecimal notation is even more
compact than decimal notation, and it is much easier to convert back and forth between
hexadecimal and binary notation than it is between binary and decimal notation. The
word hexadecimal comes from the Greek root hex-, meaning “six,” and the Latin root
deci-, meaning “ten.” Hence hexadecimal refers to “sixteen,” and hexadecimal notation is
also called base 16 notation. Hexadecimal notation is based on the fact that any integer
can be uniquely expressed as a sum of numbers of the form

d-16",

where each n is a nonnegative integer and each d is one of the integers from 0O to 15. In
order to avoid ambiguity, each hexadecimal digit must be represented by a single symbol.
The integers 10 through 15 are represented by the symbols A, B, C, D, E, and F. The
sixteen hexadecimal digits are shown in Table 2.5.3, together with their decimal
equivalents and, for future reference, their 4-bit binary equivalents.

Table 2.5.3
4-Bit Binary
Decimal Hexadecimal Equivalent
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

Example 2.5.11 Converting from Hexadecimal to Decimal Notation
Convert 3CF,, to decimal notation.

Solution A schema similar to the one introduced in Example 2.5.2 can be used here.
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% N N
N4 N 87
K NS O
3Iﬁ C1(, F]()
Il Il I
3[() 12]() 151()
L———15.1 = 15
12- 16 =192
3256 =768
9751
So 3CF](, =975]0. [ |

Now consider how to convert from hexadecimal to binary notation. In the example
below the numbers are rewritten using powers of 2, and the laws of exponents are applied.
The result suggests a general procedure.

©
o
N VSN N

7 2 v 4
5 v N N

C[(, 5]6 0]6 Al6
I Il Il Il
1249 S10 (UM 1010

L—10-16°= (23 +2)-1 =242 since 10 = 23 42
0-16' =0-2* =0 since 16! = 24
5-162 = (22 4+ 1)-28 =210428 since 5 =22+ 1, 162 = (2*)2 = 28 and 2%.28 =210

12163 = (23 +2%).212 =215 4 214 gince 12 =23 + 22, 16% = (2%)3 =212,
23212 =215 and 2% 212 =214

But

(215 +2]4) + (210+28) +0_|_(23 +2)
= 1100 0000 0000 0000, 4+ 0101 0000 0000, by the rules for writing
+ 0000 0000, + 1010, binary numbers.

So
C50A 4 = 1100 0101 0000 1010, by the rules for adding

e S

Cis Si6 016 A

binary numbers.

The procedure illustrated in this example can be generalized. In fact, the following
sequence of steps will always give the correct answer:

To convert an integer from hexadecimal to binary notation:

e Write each hexadecimal digit of the integer in 4-bit binary notation.

e Juxtapose the results.
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Example 2.5.12 Converting from Hexadecimal to Binary Notation
Convert BO9F 4 to binary notation.

Solution Bis=11= 10112, 016 = O]() = 00002, 9]6 = 91() = 10012, and Fio = 1510 =
1111,. Consequently,

B 0 9 F
J J 7 J
10110000 1001 1111

and the answer is 10110000100111115. [ |

To convert integers written in binary notation into hexadecimal notation, reverse the
steps of the previous procedure.

To convert an integer from binary to hexadecimal notation:
e Group the digits of the binary number into sets of four, starting from the right
and adding leading zeros as needed.

¢ Convert the binary numbers in each set of four into hexadecimal digits. Juxtapose
those hexadecimal digits.

Example 2.5.13 Converting from Binary to Hexadecimal Notation
Convert 100110110101001, to hexadecimal notation.

Solution  First group the binary digits in sets of four, working from right to left and adding
leading O’s if necessary.

0100 1101 1010 1001.
Convert each group of four binary digits into a hexadecimal digit.

0100 1101 1010 1001
J J 7 J
4 D A 9

Then juxtapose the hexadecimal digits.

4DA9 ¢ |

Example 2.5.14 Reading a Memory Dump

The smallest addressable memory unit on most computers is one byte, or eight bits. In
some debugging operations a dump is made of memory contents; that is, the contents
of each memory location are displayed or printed out in order. To save space and make
the output easier on the eye, the hexadecimal versions of the memory contents are given,
rather than the binary versions. Suppose, for example, that a segment of the memory
dump looks like

A3 BB 59 2E.

What is the actual content of the four memory locations?
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Solution

Test Yourself

A3 = 10100011,
BB, = 10111011,
59,5 = 01011001,
2E ;s = 00101110,

1. To represent a nonnegative integer in binary notation means 6. To find the 8-bit two’s complement of a positive integer a
to write it as a sum of products of the form , where . that is at most 255, you , , and

2. To add integers in binary notation, you use the facts that 7. If a is an integer with —128 < a < 127, the 8-bit represen-
LL+1,= and I, + 1, + 1, = tation of a is ifa > 0andis ifa <0.

3. To subtract integers in binary notation, you use the facts that 8. To add two integers in the range —128 through 127 whose
10, — 1, = and 11, — 1, = . sum is also in the range —128 through 127, you s s

, and
4. A half-adder is a digital logic circuit that and—
, and a full-adder is a digital logic circuit 9. To represent a nonnegative integer in hexadecimal notation
that . means to write it as a sum of products of the form s
where .

5. The 8-bit two’s complement of a positive integer a

is 10. To convert a nonnegative integer from hexadecimal to binary
notation, you ____and

Exercise Set 2.5
Represent the decimal integers in 1-6 in binary notation. P G

1. 19 2.55 3. 287 half-adder #1 AND s

S
Q pE——

4. 458 5. 1609 6. 1424 I
Represent the integers in 7-12 in decimal notation. half-adder #2

7. 1110, 8. 10111, 9. 110110, R T

10. 1100101, 11. 1000111, 12. 1011011,

Perform the arithmetic in 13-20 using binary notation. 22. Add 11111111, + 1» and convert the result to decimal nota-

13. 1011, 14. 1001, tion, to verify that 11111111, =(28— Dio.
+ 101, +1011,
Find the 8-bit two’s complements for the integers in 23-26.
15. 101101, 16. 110111011,
+ 11101, +1001011010, 23. 23 24. 67 25. 4 26. 115
17. 10100, 18. 11010, Find the decimal representations for the integers with the 8-bit
— 1101, — 1101, representations given in 27-30.
19. 101101, 20. 1010100, 27. 11010011 28. 10011001
— 10011, — loiil, 29. 11110010 30. 10111010
21. Give the output signals S and 7 for the circuit in the right Use 8-bit representations to compute the sums in 31-36.

column if the input signals P, Q, and R are as specified.
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Note that this is not the circuit for a full-adder.
a. P=1,0=1,R=1
b. P=0,0=1,R=0
c. P=1,0=0,R=1

31. 574 (—118)
33. (=6) + (=73)
35. (—15) + (—46)

32. 62+ (—18)
34. 89 + (—55)
36. 123 + (—94)



*37. Show that if a, b, and a + b are integers in the range 1
through 128, then

B —a)+ 28 —b)= (28— (a+b))+28>25+727.

Explain why it follows that if the 8-bit binary representa-
tion of the sum of the negatives of two numbers in the given
range is computed, the result is a negative number.

Convert the integers in 38—40 from hexadecimal to decimal
notation.

38. A2BCy, 39. EOD,¢ 40. 39EB ¢

Convert the integers in 41-43 from hexadecimal to binary nota-
tion.

41. 1COABE,, 42. B53DF8,, 43. 4ADF83;

Convert the integers in 44—46 from binary to hexadecimal
notation.

44. 00101110, 45. 10110111110001015

Answers for Test Yourself

. d-2"; d =0o0rd =1, and n is a nonnegative integer

2. 102, 1 12

2.5 Application: Number Systems and Circuits for Addition 95

46. 11001001011100,

47. Octal Notation: In addition to binary and hexadecimal,
computer scientists also use octal notation (base 8) to rep-
resent numbers. Octal notation is based on the fact that any
integer can be uniquely represented as a sum of numbers of
the form d - 8", where each n is a nonnegative integer and
each d is one of the integers from 0 to 7. Thus, for example,
50735 = 5-8°4+0-8 +7-8' +3-8° = 2619,.

a. Convert 615023 to decimal notation.

b. Convert 20763 to decimal notation.

c. Describe methods for converting integers from octal to
binary notation and the reverse that are similar to the
methods used in Examples 2.5.12 and 2.5.13 for con-
verting back and forth from hexadecimal to binary nota-
tion. Give examples showing that these methods result
in correct answers.

3. 12; 102

. outputs the sum of any two binary digits; outputs the sum of any three binary digits

6. write the 8-bit binary representation of a; flip the bits; add 1 in binary notation

. the 8-bit binary representation of a; the 8-bit binary representation of 28 — a
. convert both integers to their 8-bit binary representations; add the results using binary notation; truncate any leading 1; convert

1
4
5.2 —a
7
8

back to decimal form

9.d-16"; d=0,1,2,...9,A, B,C, D, E, F, and n is a nonnegative integer
10. write each hexadecimal digit in 4-bit binary notation; juxtapose the results
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CHAPTER 3

THE LOGIC OF QUANTIFIED
STATEMENTS

In Chapter 2 we discussed the logical analysis of compound statements—those made of
simple statements joined by the connectives ~, A, V, —, and <>. Such analysis casts
light on many aspects of human reasoning, but it cannot be used to determine validity in
the majority of everyday and mathematical situations. For example, the argument

All men are mortal.
Socrates is a man.

*. Socrates is mortal.

is intuitively perceived as correct. Yet its validity cannot be derived using the methods
outlined in Section 2.3. To determine validity in examples like this, it is necessary to
separate the statements into parts in much the same way that you separate declarative
sentences into subjects and predicates. And you must analyze and understand the special
role played by words that denote quantities such as “all” or “some.” The symbolic analysis
of predicates and quantified statements is called the predicate calculus. The symbolic
analysis of ordinary compound statements (as outlined in Sections 2.1-2.3) is called the
statement calculus (or the propositional calculus).

3.1 Predicates and Quantified Statements |

... it was not till within the last few years that it has been realized how fundamental any
and some are to the very nature of mathematics. — A. N. Whitehead (1861-1947)

As noted in Section 2.1, the sentence “He is a college student” is not a statement because
it may be either true or false depending on the value of the pronoun he. Similarly, the
sentence “x + y is greater than 0” is not a statement because its truth value depends on
the values of the variables x and y.

In grammar, the word predicate refers to the part of a sentence that gives information
about the subject. In the sentence “James is a student at Bedford College,” the word James
is the subject and the phrase is a student at Bedford College is the predicate. The predicate
is the part of the sentence from which the subject has been removed.

In logic, predicates can be obtained by removing some or all of the nouns from a
statement. For instance, let P stand for “is a student at Bedford College” and let Q stand
for “is a student at.” Then both P and Q are predicate symbols. The sentences “x is a
student at Bedford College” and “x is a student at y” are symbolized as P(x) and as
Q(x, y) respectively, where x and y are predicate variables that take values in appropri-
ate sets. When concrete values are substituted in place of predicate variables, a statement
results. For simplicity, we define a predicate to be a predicate symbol together with suit-
able predicate variables. In some other treatments of logic, such objects are referred to as
propositional functions or open sentences.

96

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3.1 Predicates and Quantified Statements | 97

e Definition

A predicate is a sentence that contains a finite number of variables and becomes
a statement when specific values are substituted for the variables. The domain of
a predicate variable is the set of all values that may be substituted in place of the
variable.

Example 3.1.1 Finding Truth Values of a Predicate

Let P(x) be the predicate “x? > x” with domain the set R of all real numbers. Write
P(2), P(%), and P(—%), and indicate which of these statements are true and which are

false.
Solution PQ2): 2*>2, or 4>2. True.
P(Y): () >4 o 1ol Fase
P(—%): (—%)2>—%, or }‘>—%. True. |

When an element in the domain of the variable of a one-variable predicate is substi-
tuted for the variable, the resulting statement is either true or false. The set of all such
elements that make the predicate true is called the truth set of the predicate.

o Definition

If P(x) is a predicate and x has domain D, the truth set of P(x) is the set of all

Note Recall that we elements of D that make P (x) true when they are substituted for x. The truth set of
read these symbols as P(x) is denoted

“the set of all x in D such

that P(x).” {xeD| Px)}.

Example 3.1.2 Finding the Truth Set of a Predicate
Let Q(n) be the predicate “n is a factor of 8.” Find the truth set of Q(n) if
a. the domain of n is the set Z* of all positive integers
b. the domain of n is the set Z of all integers.
Solution

a. The truth set is {1, 2, 4, 8} because these are exactly the positive integers that divide 8
evenly.

b. Thetruthsetis {1, 2, 4, 8, —1, —2, —4, —8} because the negative integers —1, —2, —4,
and —8 also divide into 8 without leaving a remainder. |

The Universal Quantifier: ¥

One sure way to change predicates into statements is to assign specific values to all their
variables. For example, if x represents the number 35, the sentence “x is (evenly) divis-
ible by 5” is a true statement since 35 = 5-7. Another way to obtain statements from
predicates is to add quantifiers. Quantifiers are words that refer to quantities such as
“some” or “all” and tell for how many elements a given predicate is true. The formal
concept of quantifier was introduced into symbolic logic in the late nineteenth century by
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98 Chapter 3 The Logic of Quantified Statements

the American philosopher, logician, and engineer Charles Sanders Peirce and, indepen-
dently, by the German logician Gottlob Frege.

The symbol V denotes “for all” and is called the universal quantifier. For example,
another way to express the sentence “All human beings are mortal” is to write

V human beings x, x is mortal.

When the symbol x is introduced into the phrase “Y human beings x,” you are sup-
posed to think of x as an individual, but generic, object—with all the properties shared
by every human being but no other properties. Thus you should say “x is mortal” rather
than “x are mortal.” In other words, use the singular “is” rather than the plural verb “are”
Charles Sanders Peirce when describing the property satisfied by x. If you let H be the set of all human beings,
(1839-1914) then you can symbolize the statement more formally by writing

Culver Pictures

Note  Think “for all” Vx € H, x is mortal,

when you see the

symbol V which is read as “For all x in the set of all human beings, x is mortal.”

The domain of the predicate variable is generally indicated between the YV symbol and
the variable name (as in Y human beings x) or immediately following the variable name
(as in Vx € H). Some other expressions that can be used instead of for all are for every,
for arbitrary, for any, for each, and given any. In a sentence such as “V real numbers x
and y,x +y = y + x,” the V symbol is understood to refer to both x and y.*

Sentences that are quantified universally are defined as statements by giving them the
truth values specified in the following definition:

® Definition

Let Q(x) be a predicate and D the domain of x. A universal statement is a statement
of the form “Vx € D, Q(x).” It is defined to be true if, and only if, Q(x) is true for
every x in D. It is defined to be false if, and only if, Q(x) is false for at least one x in
D. A value for x for which Q(x) is false is called a counterexample to the universal

Gottlob Frege statement.
(1848-1925)

Friedrich Schiller, Universitat Jena

Example 3.1.3 Truth and Falsity of Universal Statements
a. Let D = {1, 2,3, 4,5}, and consider the statement
Vx € D, x2 > X.
Show that this statement is true.
b. Consider the statement
Vx e R, x% > x.
Find a counterexample to show that this statement is false.
Solution
a. Check that “x* > x” is true for each individual x in D.
P>1, 22>2, 3>3  4>4, 5 >5

Hence “Vx € D, x? > x” is true.

*More formal versions of symbolic logic would require writing a separate V for each variable:
“VxeR(Vye Rx+y=y+x))”
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b. Counterexample: Take x = % Then x is in R (since % is a real number) and

1 1 4!
2) 4T 2
Hence “Vx € R, x2 > x” is false. [ |

The technique used to show the truth of the universal statement in Example 3.1.3(a)
is called the method of exhaustion. It consists of showing the truth of the predicate sep-
arately for each individual element of the domain. (The idea is to exhaust the possibilities
before you exhaust yourself!) This method can, in theory, be used whenever the domain
of the predicate variable is finite. In recent years the prevalence of digital computers has
greatly increased the convenience of using the method of exhaustion. Computer expert
systems, or knowledge-based systems, use this method to arrive at answers to many of
the questions posed to them. Because most mathematical sets are infinite, however, the
method of exhaustion can rarely be used to derive general mathematical results.

The Existential Quantifier: 3

The symbol 3 denotes “there exists”” and is called the existential quantifier. For example,
the sentence “There is a student in Math 140 can be written as

Ja person p such that p is a student in Math 140,

) or, more formally,
Note Think “there

exists” when you see the dp € P such that p is a student in Math 140,
symbol 3.

where P is the set of all people. The domain of the predicate variable is generally indi-
cated either between the 3 symbol and the variable name or immediately following the
variable name. The words such that are inserted just before the predicate. Some other
expressions that can be used in place of there exists are there is a, we can find a, there is
at least one, for some, and for at least one. In a sentence such as “3J integers m and n such
that m + n = m-n,” the 3 symbol is understood to refer to both m and n.*

Sentences that are quantified existentially are defined as statements by giving them
the truth values specified in the following definition.

e Definition

Let Q(x) be a predicate and D the domain of x. An existential statement is a
statement of the form “3Ix € D such that Q(x).” It is defined to be true if, and only
if, Q(x) is true for at least one x in D. It is false if, and only if, Q(x) is false for all
x in D.

Example 3.1.4 Truth and Falsity of Existential Statements

a. Consider the statement
Im € Z* such that m*> = m.

Show that this statement is true.

*In more formal versions of symbolic logic, the words such that are not written out (although
they are understood) and a separate 3 symbol is used for each variable: “Im € Z(3n € Z(m +n =
m-n)).”
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b. Let E = {5, 6,7, 8} and consider the statement
Im € E such that m? = m.
Show that this statement is false.

Solution

a. Observe that 12 = 1. Thus “m? = m” is true for at least one integer m. Hence “Im € Z
such that m?> = m” is true.

b. Note that m?> = m is not true for any integers m from 5 through 8:

52 =125 # 5, 6% =36 # 6, TP =49 # 17, 82 =64 # 8.

Thus “Im € E such that m*> = m” is false. [ |

Formal Versus Informal Language

It is important to be able to translate from formal to informal language when trying to
make sense of mathematical concepts that are new to you. It is equally important to
be able to translate from informal to formal language when thinking out a complicated
problem.

Example 3.1.5 Translating from Formal to Informal Language

Note  The singular noun
is used to refer to the
domain when the V
symbol is translated as
every, any, or each.

Note In ordinary
English, the statement in
part (c) might be taken to
be true only if there are at
least two positive integers
equal to their own
squares. In mathematics,
we understand the last
two statements in part (c)
to mean the same thing.

Rewrite the following formal statements in a variety of equivalent but more informal
ways. Do not use the symbol V or 3.

a. Vx e R, x2 > 0.
b. Vx e R, x% # —1.
c. 3m € Z*tsuch that m? = m.

Solution

a. All real numbers have nonnegative squares.
Or: Every real number has a nonnegative square.
Or: Any real number has a nonnegative square.
Or: The square of each real number is nonnegative.

b. All real numbers have squares that are not equal to —1.
Or: No real numbers have squares equal to —1.
(The words none are or no . . . are are equivalent to the words all are not.)

c. There is a positive integer whose square is equal to itself.
Or: We can find at least one positive integer equal to its own square.
Or: Some positive integer equals its own square.
Or: Some positive integers equal their own squares. |

Another way to restate universal and existential statements informally is to place the
quantification at the end of the sentence. For instance, instead of saying “For any real
number x, x> is nonnegative,” you could say “x? is nonnegative for any real number x.”
In such a case the quantifier is said to “trail” the rest of the sentence.
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Example 3.1.6 Trailing Quantifiers
Rewrite the following statements so that the quantifier trails the rest of the sentence.
a. For any integer n, 2n is even.
b. There exists at least one real number x such that x2 < 0.
Solution
a. 2n is even for any integer n.

b. x2 < 0 for some real number x.
Or: x? < 0 for at least one real number x. [ |

Example 3.1.7 Translating from Informal to Formal Language
Rewrite each of the following statements formally. Use quantifiers and variables.
a. All triangles have three sides.
b. No dogs have wings.
c. Some programs are structured.
Solution

a. Vtriangles , ¢ has three sides.
Or:Vt € T, t has three sides (where T is the set of all triangles).

b. V dogs d, d does not have wings.
Or:VYd € D, d does not have wings (where D is the set of all dogs).

c. Japrogram p such that p is structured.
Or: 3p € P such that p is structured (where P is the set of all programs). |

Universal Conditional Statements

A reasonable argument can be made that the most important form of statement in mathe-
matics is the universal conditional statement:

Vx, if P(x) then Q(x).

Familiarity with statements of this form is essential if you are to learn to speak mathematics.

Example 3.1.8 Writing Universal Conditional Statements Informally
Rewrite the following statement informally, without quantifiers or variables.
Vx € R,if x > 2 then x* > 4.

Solution  If a real number is greater than 2 then its square is greater than 4.
Or: Whenever a real number is greater than 2, its square is greater than 4.
Or: The square of any real number greater than 2 is greater than 4.

Or: The squares of all real numbers greater than 2 are greater than 4. |

Example 3.1.9 Writing Universal Conditional Statements Formally

Rewrite each of the following statements in the form

v , if then

a. If a real number is an integer, then it is a rational number.
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b. All bytes have eight bits.
c. No fire trucks are green.
Solution

a. Vreal numbers x, if x is an integer, then x is a rational number.
Or:Vx e R,if x € Z then x € Q.

b. Vx, if x is a byte, then x has eight bits.
c. Vx, if x is a fire truck, then x is not green.

It is common, as in (b) and (c) above, to omit explicit identification of the domain of
predicate variables in universal conditional statements. |

Careful thought about the meaning of universal conditional statements leads to another
level of understanding for why the truth table for an if-then statement must be defined as
it is. Consider again the statement

V real numbers x, if x > 2 then x* > 4.
Your experience and intuition tell you that this statement is true. But that means that
If x > 2 then x> > 4

must be true for every single real number x. Consequently, it must be true even for values
of x that make its hypothesis “x > 2” false. In particular, both statements

If1>2then1>>4 and If —3 > 2then(—3)> >4

must be true. In both cases the hypothesis is false, but in the first case the conclusion
“12 > 4” is false, and in the second case the conclusion “(—3)? > 4” is true. Hence,
regardless of whether its conclusion is true or false, an if-then statement with a false
hypothesis must be true.

Note also that the definition of valid argument is a universal conditional statement:

V combinations of truth values for the component statements,
if the premises are all true then the conclusion is also true.

Equivalent Forms of Universal and Existential Statements

Observe that the two statements “V real numbers x, if x is an integer then x is rational”
and “V integers x, x is rational” mean the same thing. Both have informal translations
“All integers are rational.” In fact, a statement of the form

Vx € U,if P(x) then Q(x)
can always be rewritten in the form
Vx € D, Q(x)

by narrowing U to be the domain D consisting of all values of the variable x that make
P (x) true. Conversely, a statement of the form

Vx € D, Q(x)
can be rewritten as

Vx,if x isin D then Q(x).
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Example 3.1.10 Equivalent Forms for Universal Statements

Rewrite the following statement in the two forms “Vx, if then ” and
“v X, ”: All squares are rectangles.
Solution Vx, if x is a square then x is a rectangle.
V squares x, x is a rectangle. |

Similarly, a statement of the form “Jx such that p(x) and Q(x)” can be rewritten as
“Jxe D such that Q(x),” where D is the set of all x for which P (x) is true.

Example 3.1.11 Equivalent Forms for Existential Statements

A prime number is an integer greater than 1 whose only positive integer factors are
itself and 1. Consider the statement “There is an integer that is both prime and even.”
Let Prime(n) be “n is prime” and Even(n) be “n is even.” Use the notation Prime(n) and
Even(n) to rewrite this statement in the following two forms:

a. dn such that A
b. 3 n such that .
Solution

a. dn such that Prime(n) A Even(n).

b. Two answers: 3 a prime number n such that Even(n).
3 an even number n such that Prime(n). [ |

Implicit Quantification
Consider the statement
If a number is an integer, then it is a rational number.

As shown earlier, this statement is equivalent to a universal statement. However, it
does not contain the telltale word all or every or any or each. The only clue to indicate
its universal quantification comes from the presence of the indefinite article a. This is an
example of implicit universal quantification.

Existential quantification can also be implicit. For instance, the statement “The num-
ber 24 can be written as a sum of two even integers” can be expressed formally as “3 even
integers m and n such that 24 =m +n.”

Mathematical writing contains many examples of implicitly quantified statements.
Some occur, as in the first example above, through the presence of the word a or an.
Others occur in cases where the general context of a sentence supplies part of its meaning.
For example, in an algebra course in which the letter x is always used to indicate a real
number, the predicate

Ifx > 2thenx? > 4
is interpreted to mean the same as the statement
V real numbers x, if x > 2 then x> > 4.

Mathematicians often use a double arrow to indicate implicit quantification symbolically.
For instance, they might express the above statement as

x>2 = x*>4
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Let P(x) and Q(x) be predicates and suppose the common domain of x is D.
e The notation P(x) = Q (x) means that every element in the truth set of P(x)
is in the truth set of Q(x), or, equivalently, Vx, P(x) — Q(x).

e The notation P(x) < Q (x) means that P(x) and Q(x) have identical truth
sets, or, equivalently, Vx, P(x) <> QO(x).

Example 3.1.12 Using = and &

Let
Q(n) be “n is a factor of 8,”

R(n) be “n is a factor of 4,”
S(n)be “n <Sandn # 3,

and suppose the domain of n is Z, the set of positive integers. Use the = and <> symbols
to indicate true relationships among Q(n), R(n), and S(n).

Solution

1. As noted in Example 3.1.2, the truth set of Q(n) is {1, 2,4, 8} when the domain of
n is Z*. By similar reasoning the truth set of R(n) is {1, 2, 4}. Thus it is true that
every element in the truth set of R(n) is in the truth set of Q(n), or, equivalently, Vn
inZ*, R(n) — Q(n).So R(n) = Q(n), or, equivalently

nis afactorof4 = nisa factor of 8.

2. The truth set of S(n) is {1, 2, 4}, which is identical to the truth set of R(n), or, equiv-
alently, Vn in Z*, R(n) <> S(n). So R(n) < S(n), or, equivalently,

nisafactorof4 << n <5andn #3.

Moreover, since every element in the truth set of S(n) is in the truth set of Q(n), or,
equivalently, Vn in Z*, S(n) — Q(n), then S(n) = Q(n), or, equivalently,

n<5andn #3 = nisa factor of 8. |
Some questions of quantification can be quite subtle. For instance, a mathematics text
might contain the following:
a (x+1D2=x24+2x+1. b. Solve 3x —4 = 5.

Although neither (a) nor (b) contains explicit quantification, the reader is supposed to
understand that the x in (a) is universally quantified whereas the x in (b) is existentially
quantified. When the quantification is made explicit, (a) and (b) become

a. Vreal numbers x, (x + 1)% = x2 +2x + 1.
b. Show (by finding a value) that 3 a real number x such that 3x — 4 = 5.

The quantification of a statement—whether universal or existential—crucially deter-
mines both how the statement can be applied and what method must be used to establish
its truth. Thus it is important to be alert to the presence of hidden quantifiers when you
read mathematics so that you will interpret statements in a logically correct way.
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Tarski’s World

Tarski’s World is a computer program developed by information scientists Jon Barwise
and John Etchemendy to help teach the principles of logic. It is described in their book
The Language of First-Order Logic, which is accompanied by a CD-Rom containing the
program Tarski’s World, named after the great logician Alfred Tarski.

Example 3.1.13 Investigating Tarski’s World

The program for Tarski’s World provides pictures of blocks of various sizes, shapes, and
colors, which are located on a grid. Shown in Figure 3.1.1 is a picture of an arrangement
of objects in a two-dimensional Tarski world. The configuration can be described using
logical operators and—for the two-dimensional version—notation such as Triangle(x),
meaning “x is a triangle,” Blue(y), meaning “y is blue,” and RightOf(x, y), meaning “x
is to the right of y (but possibly in a different row).” Individual objects can be given names
such as a, b, orc.

A O
Alfr Tarski A P
(1902-1983)
- |
NCIE
k

Figure 3.1.1

Determine the truth or falsity of each of the following statements. The domain for all
variables is the set of objects in the Tarski world shown above.

a. Vt, Triangle(t) — Blue(?).
b. Vx, Blue(x) — Triangle(x).
c. Jy such that Square(y) A RightOf(d, y).
d. 3z such that Square(z) A Gray(z).
Solution
a. This statement is true: All the triangles are blue.
b. This statement is false. As a counterexample, note that e is blue and it is not a triangle.
c. This statement is true because e and & are both square and d is to their right.

d. This statement is false: All the squares are either blue or black. |
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Test Yourself

Answers to Test Yourself questions are located at the end of each section.

c. For all real numbers r, —r is a negative real number.
d. Every real number is an integer.

3. Let P(x) be the predicate “x > 1/x.”

1. If P(x) is a predicate with domain D, the truth set of P (x) 4. A statement of the form Vx € D, Q(x) is true if, and only
isdenoted . We read these symbols out loud as __ . if, Q(x)is__ for__

2. Some ways to express the symbol V in words are . 5. A statement of the form 3x € D such that Q(x) is true if,
3. Some ways to express the symbol 3 in words are . and only if, Q(x)is ___for___
Exercise Set 3.1*

1. A menagerie consists of seven brown dogs, two black dogs, 6. Let R(m, n) be the predicate “If m is a factor of n> then m
six gray cats, ten black cats, five blue birds, six yellow birds, is a factor of n,” with domain for both m and n being the set
and one black bird. Determine which of the following state- Z of integers.
ments are true and which are false. a. Explain why R(m, n) is false if m = 25 and n = 10.

a. There is an animal in the menagerie that is red. b. Give values different from those in part (a) for which
b. Every animal in the menagerie is a bird or a mammal. R(m, n) is false.
c. Every animal in the menagerie is brown or gray or black. c. Explain why R(m, n) is true if m = 5 and n = 10.
d. There is an animal in the menagerie that is neither a cat d. Give values different from those in part (c) for which
nor a dog. R(m, n) is true.
e. No animal in the menagerie is blue.
f. There are in the menagerie a dog, a cat, and a bird that 7. Find the truth set of each predicate.
all have the same color. a. predicate: 6/d is an integer, domain: Z
. . . . b. predicate: 6/d is an integer, domain: Z*
2. Indicate which of the following statements are true and ) S 2 .
X . c. predicate: 1 < x~ < 4, domain: R
which are' false. J}JStlfy your answers as best as you can. d. predicate: 1 < x? < 4, domain: Z
a. Every integer is a real number.
b. 0 is a positive real number. 8. Let B(x) be “—10 < x < 10.” Find the truth set of B(x) for

each of the following domains.
a. Z b. Z* c. The set of all even integers

Find counterexamples to show that the statements in 9-12 are

a. Write P(2), P(3), P(—1), P(—3}), and P(—8), and false.
indicate which of these statements are true and which
are false. 9. Vx e R,x > 1/x.

b. Find the truth set of P (x) if the domain of x is R, the set
of all real numbers.

10.

VYa € Z, (a — 1)/a is not an integer.

c. If the domain is the set R of all positive real numbers, 11. V positive integers m and n, m-n > m + n.
what is the truth set of P (x)? 12. ¥ real numbers x and y, /X + y = /X + /3.
4. Let an) be the predicate “n” < 30.” Lo 13. Consider the following statement:
a. Write Q(2), Q(—2), Q(7), and Q(—7), and indicate
which of these statements are true and which are false. V basketball players x, x is tall.
b. Find the truth set of Q(n) if the domain of n is Z, the set . X . .
of all integers. Whlch of the following are equivalent ways of expressing
c. If the domain is the set Z* of all positive integers, what this statement? )
is the truth set of Q(n)? a. Every basketball player is tall.
b. Among all the basketball players, some are tall.
5. Let Q(x, y) be the predicate “If x < y then x> < y*” with c. Some of all the tall people are basketball players.
domain for both x and y being the set R of real numbers. d. Anyone who is tall is a basketball player.
a. Explain why Q(x, y) is falseif x = —2and y = 1. e. All people who are basketball players are tall.
b. Give values different from those in part (a) for which f. Anyone who is a basketball player is a tall person.

Q(x, y) is false.

c. Explain why Q(x, y) istrueif x =3 and y = 8.

d. Give values different from those in part (c) for which
Q(x, y) is true.

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial
solution is given. The symbol * signals that an exercise is more challenging than usual.
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14.

17.

18.

19.

Consider the following statement:
3x € Rsuch that x* = 2.

Which of the following are equivalent ways of expressing
this statement?

. The square of each real number is 2.

. Some real numbers have square 2.

. The number x has square 2, for some real number x.

. If x is a real number, then x2 = 2.

. Some real number has square 2.

. There is at least one real number whose square is 2.

-0 a0 o

. Rewrite the following statements informally in at least two

different ways without using variables or quantifiers.
a. Vrectangles x, x is a quadrilateral.
b. 3 aset A such that A has 16 subsets.

. Rewrite each of the following statements in the form

“v X, V

a. All dinosaurs are extinct.

b. Every real number is positive, negative, or zero.

c. No irrational numbers are integers.

d. No logicians are lazy.

e. The number 2,147,581,953 is not equal to the square of
any integer.

f. The number —1 is not equal to the square of any real
number.

Rewrite each of the following in the form “3 x such
that J
a. Some exercises have answers.

b. Some real numbers are rational.

Let D be the set of all students at your school, and let M (s)

be “s is a math major,” let C(s) be “s is a computer sci-

ence student,” and let E(s) be “s is an engineering student.”

Express each of the following statements using quantifiers,

variables, and the predicates M (s), C(s), and E(s).

a. There is an engineering student who is a math major.

b. Every computer science student is an engineering stu-
dent.

c. No computer science students are engineering students.

d. Some computer science students are also math majors.

e. Some computer science students are engineering stu-
dents and some are not.

Consider the following statement:
V integers n, if n? is even then 7 is even.

Which of the following are equivalent ways of expressing

this statement?

a. All integers have even squares and are even.

b. Given any integer whose square is even, that integer is
itself even.

c. For all integers, there are some whose square is even.

d. Any integer with an even square is even.

e. If the square of an integer is even, then that integer is
even.

f. All even integers have even squares.

H 20.

21.

22.

23.

24.

25.

26.

217.
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Rewrite the following statement informally in at least two
different ways without using variables or the symbol V or
the words “for all.”

V real numbers x, if x is positive, then
the square root of x is positive.

Rewrite the following statements so that the quantifier trails

the rest of the sentence.

a. For any graph G, the total degree of G is even.

b. For any isosceles triangle 7', the base angles of 7 are
equal.

c. There exists a prime number p such that p is even.

d. There exists a continuous function f such that f is not
differentiable.

Rewrite each of the following statements in the form

“y x, if then

a. All Java programs have at least 5 lines.

b. Any valid argument with true premises has a true con-
clusion.

Rewrite each of the following statements in the two forms

“Vx, if then ” and “V X, ”

(without an if-then).

a. All equilateral triangles are isosceles.

b. Every computer science student needs to take data struc-
tures.

Rewrite the following statements in the two forms
“3 x such that ” and “Jx such that

and .
a. Some hatters are mad.

»

b. Some questions are easy.

The statement “The square of any rational number is ratio-

nal” can be rewritten formally as “For all rational numbers

x, x? is rational” or as “For all x, if x is rational then x?2

is rational.” Rewrite each of the following statements in the

two forms “V X, ” and “Vx, if , then
” or in the two forms “V x and y, ”

and “Vx and y, if , then .”

a. The reciprocal of any nonzero fraction is a fraction.

b. The derivative of any polynomial function is a polyno-

mial function.

. The sum of the angles of any triangle is 180°.

. The negative of any irrational number is irrational.

. The sum of any two even integers is even.

. The product of any two fractions is a fraction.

[=Tae]

- D

Consider the statement “All integers are rational numbers
but some rational numbers are not integers.”

a. Write this statement in the form “Vx, if

,but 3 x such that D

b. Let Ratl(x) be “x is a rational number” and Int(x) be “x

is an integer.” Write the given statement formally using

only the symbols Ratl(x), Int(x), V, 3, A, V, ~, and —.

then

Refer to the picture of Tarski’s world given in Example
3.1.13. Let Above(x, y) mean that x is above y (but pos-
sibly in a different column). Determine the truth or falsity
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of each of the following statements. Give reasons for your
answers.

a. VYu, Circle(u) — Gray(u).

b. Vu, Gray(u) — Circle(u).

c. dy such that Square(y) A Above(y, d).

d. 3z such that Triangle(z) A Above(f, z).

In 28-30, rewrite each statement without using quantifiers or
variables. Indicate which are true and which are false, and jus-
tify your answers as best as you can.

28.

29.

30.

Let the domain of x be the set D of objects discussed
in mathematics courses, and let Real(x) be “x is a real
number,” Pos(x) be “x is a positive real number,” Neg(x)
be “x is a negative real number,” and Int(x) be “x is an
integer.”

a. Pos(0)

b. Vx, Real(x) A Neg(x) — Pos(—x).

c. Vx, Int(x) — Real(x).

d. 3x such that Real(x) A ~Int(x).

Let the domain of x be the set of geometric figures in the
plane, and let Square(x) be “x is a square” and Rect(x) be
“x is a rectangle.”

a. Jx such that Rect(x) A Square(x).

b. Jx such that Rect(x) A ~Square(x).

c. Vx, Square(x) — Rect(x).

Let the domain of x be the set Z of integers, and let Odd(x)
be “x is odd,” Prime(x) be “x is prime,” and Square(x) be

Answers for Test Yourself

1. {x € D| P(x)}; the set of all x in D such that P(x) 2. Possible answers: for all, for every, for any, for each, for arbitrary, given
any 3. Possible answers: there exists, there exist, there exists at least one, for some, for at least one, we can find a 4. true; every x
in D (Alternative answers: all x in D; each x in D) 5. true; at least one x in D (Alternative answer: some x in D)

32.

33.

“x is a perfect square.” (An integer n is said to be a perfect
square if, and only if, it equals the square of some integer.
For example, 25 is a perfect square because 25 = 5%.)

a. Jx such that Prime(x) A ~Odd(x).

b. Vx, Prime(x) — ~Square(x).

c. dx such that Odd(x) A Square(x).

. In any mathematics or computer science text other than this

book, find an example of a statement that is universal but is
implicitly quantified. Copy the statement as it appears and
rewrite it making the quantification explicit. Give a com-
plete citation for your example, including title, author, pub-
lisher, year, and page number.

Let R be the domain of the predicate variable x. Which of
the following are true and which are false? Give counter
examples for the statements that are false.
ax>2=x>1

b.x>2=x>>4

. x?>4=x>2

d x?’>46 x| >2

Let R be the domain of the predicate variables a, b, ¢, and
d. Which of the following are true and which are false?
Give counterexamples for the statements that are false.
a.a>0andb>0=ab>0

b.a<0andb <0=ab <0
c.ab=0=a=00rb=0
d.a<bandc <d = ac <bd

3.2 Predicates and Quantified Statements 11

TOUCHSTONE: Stand you both forth now: stroke your chins, and swear by your

beards that I am a knave.

CELIA: By our beards—if we had them—thou art.
TOUCHSTONE: By my knavery—if I had it—then I were; but if you swear by that that
is not, you are not forsworn. — William Shakespeare, As You Like It

This section continues the discussion of predicates and quantified statements begun in
Section 3.1. It contains the rules for negating quantified statements; an exploration of the
relation among Vv, 3, A, and V; an introduction to the concept of vacuous truth of universal
statements; examples of variants of universal conditional statements; and an extension of
the meaning of necessary, sufficient, and only if to quantified statements.
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Negations of Quantified Statements

Consider the statement “All mathematicians wear glasses.” Many people would say that
its negation is “No mathematicians wear glasses,” but if even one mathematician does not
wear glasses, then the sweeping statement that al/l mathematicians wear glasses is false.
So a correct negation is “There is at least one mathematician who does not wear glasses.”

The general form of the negation of a universal statement follows immediately from
the definitions of negation and of the truth values for universal and existential statements.

Theorem 3.2.1 Negation of a Universal Statement
The negation of a statement of the form
Vx in D, Q(x)
is logically equivalent to a statement of the form
3Jx in D such that ~Q(x).
Symbolically, ~(Vx € D, Q(x)) = Ix € D such that ~Q(x).

Thus

The negation of a universal statement (“all are”) is logically equivalent to an
existential statement (‘“‘some are not” or ‘“‘there is at least one that is not”).

Note that when we speak of logical equivalence for quantified statements, we mean
that the statements always have identical truth values no matter what predicates are sub-
stituted for the predicate symbols and no matter what sets are used for the domains of the
predicate variables.

Now consider the statement “Some snowflakes are the same.” What is its negation?
For this statement to be false means that not a single snowflake is the same as any other.
In other words, “No snowflakes are the same,” or “All snowflakes are different.”

The general form for the negation of an existential statement follows immediately
from the definitions of negation and of the truth values for existential and universal
statements.

Theorem 3.2.2 Negation of an Existential Statement
The negation of a statement of the form
dx in D such that Q(x)
is logically equivalent to a statement of the form
Vxin D, ~Q(x).
Symbolically, ~(3x € Dsuchthat Q(x)) = Vx € D, ~Q(x).

Thus

The negation of an existential statement (“some are”) is logically
equivalent to a universal statement (“none are” or “all are not”).
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Example 3.2.1 Negating Quantified Statements

Write formal negations for the following statements:

a. V primes p, p is odd.

b. Jatriangle T such that the sum of the angles of T equals 200°.

Solution
a. By applying the rule for the negation of a V statement, you can see that the answer is
Ja prime p such that p is not odd.

b. By applying the rule for the negation of a 3 statement, you can see that the answer is

VY triangles 7', the sum of the angles of 7" does not equal 200°. |

You need to exercise special care to avoid mistakes when writing negations of state-
ments that are given informally. One way to avoid error is to rewrite the statement for-
mally and take the negation using the formal rule.

Example 3.2.2 More Negations

Rewrite the following statement formally. Then write formal and informal negations.
No politicians are honest.

Solution Formal version: Y politicians x, x is not honest.
Formal negation: 3 a politician x such that x is honest.

Informal negation: Some politicians are honest. |

Another way to avoid error when taking negations of statements that are given in
informal language is to ask yourself, “What exactly would it mean for the given statement

to be false? What statement, if true, would be equivalent to saying that the given statement
is false?”

Example 3.2.3 Still More Negations

Write informal negations for the following statements:

a. All computer programs are finite.

b. Some computer hackers are over 40.

c. The number 1,357 is divisible by some integer between 1 and 37.

Solution

a. What exactly would it mean for this statement to be false? The statement asserts that
all computer programs satisfy a certain property. So for it to be false, there would have

to be at least one computer program that does not satisfy the property. Thus the answer
is

There is a computer program that is not finite.
Or: Some computer programs are infinite.

b. This statement is equivalent to saying that there is at least one computer hacker with

a certain property. So for it to be false, not a single computer hacker can have that
property. Thus the negation is

No computer hackers are over 40.

Or: All computer hackers are 40 or under.
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Note  Which is true: the c. This statement has a trailing quantifier. Written formally it becomes:
statement in part (c) or its

negation? Is 1,357 3 an integer n between 1 and 37 such that 1,357 is divisible by n.
divisible by some integer . .

between 1 and 377 Or is Its negation is therefore

1,357 not divisible by any
integer between 1 and 377

V integers n between 1 and 37; 1,357 is not divisible by n.

An informal version of the negation is

The number 1,357 is not divisible by any integer between 1 and 37. |

Informal negations of many universal statements can be constructed simply by insert-

A ing the word not or the words do not at an appropriate place. However, the resulting state-
Caution!  Just inserting ments may be ambiguous. For example, a possible negation of “All mathematicians wear
the word not to negate a glasses” is “All mathematicians do not wear glasses.” The problem is that this sentence
quantified statement can has two meanings. With the proper verbal stress on the word not, it could be interpreted

result in a statement that

- as the logical negation. (What! You say that all mathematicians wear glasses? Nonsense!
1S ambiguous.

All mathematicians do not wear glasses.) On the other hand, stated in a flat tone of voice
(try it!), it would mean that all mathematicians are nonwearers of glasses; that is, not a
single mathematician wears glasses. This is a much stronger statement than the logical
negation: It implies the negation but is not equivalent to it.

Negations of Universal Conditional Statements

Negations of universal conditional statements are of special importance in mathematics.
The form of such negations can be derived from facts that have already been established.
By definition of the negation of a for all statement,

~(Vx, P(x) — Q(x)) = dxsuchthat ~(P(x) — Q(x)). 3.2.1

But the negation of an if-then statement is logically equivalent to an and statement. More
precisely,

~(P(x) > Q) = P(x) A ~Q(x). 322
Substituting (3.2.2) into (3.2.1) gives
~(Vx, P(x) > Q(x)) = 3Fxsuchthat (P(x)A ~Q(x)).

Written less symbolically, this becomes

Negation of a Universal Conditional Statement

~(Vx,if P(x) then Q(x)) = 3x such that P(x) and ~Q(x).

Example 3.2.4 Negating Universal Conditional Statements
Write a formal negation for statement (a) and an informal negation for statement (b).
a. V people p, if p is blond then p has blue eyes.
b. If a computer program has more than 100,000 lines, then it contains a bug.
Solution
a. Japerson p such that p is blond and p does not have blue eyes.

b. There is at least one computer program that has more than 100,000 lines and does not
contain a bug. |
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112 Chapter 3 The Logic of Quantified Statements

The Relation amongV, 3, A, and v

The negation of a for all statement is a there exists statement, and the negation of a there
exists statement is a for all statement. These facts are analogous to De Morgan’s laws,
which state that the negation of an and statement is an or statement and that the nega-
tion of an or statement is an and statement. This similarity is not accidental. In a sense,
universal statements are generalizations of and statements, and existential statements are
generalizations of or statements.

If Q(x) is a predicate and the domain D of x is the set {x|, x2, ..., x,}, then the
statements
Vx € D, Q(x)
and Q) A QMx2) A A Qxy)
are logically equivalent. For example, let Q(x) be “x-x = x” and suppose D = {0, 1}.
Then
Vx € D, Q(x)
can be rewritten as V binary digits x, x - x = x.

This is equivalent to
0-0=0 and 1-1=1,
which can be rewritten in symbols as
20) A Q).
Similarly, if Q(x) is a predicate and D = {x1, x5, ..., X, }, then the statements

dx € D such that Q(x)

and Q) vV OMx2) V-V Oxy)
are logically equivalent. For example, let Q(x) be “x + x = x” and suppose D = {0, 1}.
Then

dx € D such that Q(x)
can be rewritten as Ja binary digit x such that x + x = x.
This is equivalent to
0+0=0 or 1+1=1,
which can be rewritten in symbols as

Q00) v o).

Vacuous Truth of Universal Statements

Suppose a bowl sits on a table and next to the bowl is a pile of five blue and five gray
balls, any of which may be placed in the bowl. If three blue balls and one gray ball are
placed in the bowl, as shown in Figure 3.2.1(a), the statement “All the balls in the bowl
are blue” would be false (since one of the balls in the bowl is gray).

Now suppose that no balls at all are placed in the bowl, as shown in Figure 3.2.1(b).
Consider the statement

All the balls in the bowl] are blue.

Is this statement true or false? The statement is false if, and only if, its negation is true.
And its negation is

There exists a ball in the bowl that is not blue.
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3.2 Predicates and Quantified Statements Il 113

But the only way this negation can be true is for there actually to be a nonblue ball in
the bowl. And there is not! Hence the negation is false, and so the statement is true “by
default.”

) & ) &5

(a) (b
Figure 3.2.1

In general, a statement of the form
Vxin D, if P(x) then Q(x)

is called vacuously true or true by default if, and only if, P (x) is false for every x in D.

By the way, in ordinary language the words in general mean that something is usu-
ally, but not always, the case. (In general, I take the bus home, but today I walked.) In
mathematics, the words in general are used quite differently. When they occur just after
discussion of a particular example (as in the preceding paragraph), they are a signal that
what is to follow is a generalization of some aspect of the example that always holds true.

Variants of Universal Conditional Statements

Recall from Section 2.2 that a conditional statement has a contrapositive, a converse,
and an inverse. The definitions of these terms can be extended to universal conditional
statements.

Consider a statement of the form: Vx € D, if P(x) then Q(x).
1. Its contrapositive is the statement: Vx € D, if ~Q(x) then ~P(x).
2. Its converse is the statement: Vx € D, if Q(x) then P(x).

3. Its inverse is the statement: Vx € D, if ~P(x) then ~Q(x).

Example 3.2.5 Contrapositive, Converse, and Inverse of a Universal Conditional Statement

Write a formal and an informal contrapositive, converse, and inverse for the following
statement:

If a real number is greater than 2, then its square is greater than 4.

Solution  The formal version of this statement is Vx € R, if x > 2 then x? > 4.
Contrapositive: ¥x € R, if x> < 4 then x < 2.
Or: If the square of a real number is less than or equal to 4,
then the number is less than or equal to 2.

Converse: Vx € R, if x2 > 4 then x > 2.
Or: If the square of a real number is greater than 4, then the
number is greater than 2.
Inverse: Vx € R, if x < 2 then x2 < 4.
Or: If a real number is less than or equal to 2, then the square
of the number is less than or equal to 4.

Note that in solving this example, we have used the equivalence of “x » a” and
“x < a” for all real numbers x and a. (See page 33.) |
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114 Chapter 3 The Logic of Quantified Statements

In Section 2.2 we showed that a conditional statement is logically equivalent to its
contrapositive and that it is not logically equivalent to either its converse or its inverse.
The following discussion shows that these facts generalize to the case of universal condi-
tional statements and their contrapositives, converses, and inverses.

Let P(x) and Q(x) be any predicates, let D be the domain of x, and consider the
statement

Vx € D, if P(x) then Q(x)
and its contrapositive
Vx € D,if ~Q(x) then ~P(x).

Any particular x in D that makes “if P(x) then Q(x)” true also makes “if ~Q(x) then
~P(x)” true (by the logical equivalence between p — ¢ and ~g — ~p). It follows that
the sentence “If P(x) then Q(x)” is true for all x in D if, and only if, the sentence “If
~Q(x) then ~P(x)” is true for all x in D.

Thus we write the following and say that a universal conditional statement is logically
equivalent to its contrapositive:

Vx € D,if P(x) then Q(x) = Vx € D, if ~Q(x) then ~P(x)

In Example 3.2.5 we noted that the statement

Vx e R,ifx > 2 thenx? > 4

has the converse Vx € R, if x2 > 4 then x > 2.

Observe that the statement is true whereas its converse is false (since, for instance,
(=3)2 =9 > 4 but —3 % 2). This shows that a universal conditional statement may have
a different truth value from its converse. Hence a universal conditional statement is not
logically equivalent to its converse. This is written in symbols as follows:

Vx € D,if P(x) then Q(x) # Vx € D,if Q(x) then P(x).

In the exercises at the end of this section, you are asked to show similarly that a universal
conditional statement is not logically equivalent to its inverse.

Vx € D,if P(x) then Q(x) # Vx € D, if ~P(x) then ~Q(x).

Necessary and Sufficient Conditions, Only If

The definitions of necessary, sufficient, and only if can also be extended to apply to uni-
versal conditional statements.

* “Vx,r(x) is a sufficient condition for s(x)” means “Vx, if r(x) then s(x).”

* “Vx, r(x) is a necessary condition for s(x)” means “Vx, if ~r(x) then ~s(x)”
or, equivalently, “Vx, if s(x) then r(x).”

* “Vx, r(x) only if s(x)” means “Vx, if ~s(x) then ~r(x)” or, equivalently, “Vx,
if 7 (x) then s(x).”
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Example 3.2.6 Necessary and Sufficient Conditions

Rewrite the following statements as quantified conditional statements. Do not use the
word necessary or sufficient.

a. Squareness is a sufficient condition for rectangularity.

b. Being at least 35 years old is a necessary condition for being President of the United
States.

Solution
a. A formal version of the statement is
Vx, if x is a square, then x is a rectangle.
Or, in informal language:
If a figure is a square, then it is a rectangle.
b. Using formal language, you could write the answer as

V people x, if x is younger than 35, then x
cannot be President of the United States.

Or, by the equivalence between a statement and its contrapositive:

V people x, if x is President of the United States,
then x is at least 35 years old. |

Example 3.2.7 Only If
Rewrite the following as a universal conditional statement:
A product of two numbers is 0 only if one of the numbers is 0.
Solution  Using informal language, you could write the answer as
If neither of two numbers is 0, then the product of the numbers is not 0.

Or, by the equivalence between a statement and its contrapositive,

If a product of two numbers is 0, then one of the numbers is 0. |
Test Yourself
1. A negation for “All R have property S is “There is R 4. The converse of “For all x, if x has property P then x has
that . property Q” is “ ”
2. A negation for “Some R have property S” is v 5. The contrapositive of “For all x, if x has property P then x

ha tv O™ is
3. A negation for “For all x, if x has property P then x has as property 0™is"___
property Q” is 7 6. The inverse of “For all x, if x has property P then x has

property Q7 is * ”

Exercise Set 3.2

1. Which of the following is a negation for “All discrete math- c. There is an athletic person who is a discrete mathematics
ematics students are athletic”? More than one answer may student.
be correct. d. No discrete mathematics students are athletic.
a. There is a discrete mathematics student who is nonath- e. Some discrete mathematics students are nonathletic.
letic.

f. No athletic people are discrete mathematics students.
b. All discrete mathematics students are nonathletic.
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116 Chapter 3 The Logic of Quantified Statements

2. Which of the following is a negation for “All dogs are
loyal”? More than one answer may be correct.

. All dogs are disloyal. b. No dogs are loyal.

. Some dogs are disloyal. d. Some dogs are loyal.

. There is a disloyal animal that is not a dog.

. There is a dog that is disloyal.

. No animals that are not dogs are loyal.

. Some animals that are not dogs are loyal.

S0 - 0 0 o

3. Write a formal negation for each of the following state-
ments:
a. V fish x, x has gills.
b. V computers ¢, ¢ has a CPU.
c. 3 amovie m such that m is over 6 hours long.
d. 3 a band b such that b has won at least 10 Grammy
awards.

4. Write an informal negation for each of the following state-
ments. Be careful to avoid negations that are ambiguous.
a. All dogs are friendly.
b. All people are happy.
c. Some suspicions were substantiated.
d. Some estimates are accurate.

5. Write a negation for each of the following statements.
a. Any valid argument has a true conclusion.
b. Every real number is positive, negative, or zero.

6. Write a negation for each of the following statements.
a. Sets A and B do not have any points in common.
b. Towns P and Q are not connected by any road on the
map.

7. Informal language is actually more complex than formal
language. For instance, the sentence “There are no orders
from store A for item B” contains the words there are. Is
the statement existential? Write an informal negation for
the statement, and then write the statement formally using
quantifiers and variables.

8. Consider the statement “There are no simple solutions to
life’s problems.” Write an informal negation for the state-
ment, and then write the statement formally using quanti-
fiers and variables.

Write a negation for each statement in 9 and 10.
9. V real numbers x, if x > 3 then x2 > 9.

10. V computer programs P, if P compiles without error mes-
sages, then P is correct.

In each of 11-14 determine whether the proposed negation is
correct. If it is not, write a correct negation.

11. Statement: The sum of any two irrational numbers
is irrational.
Proposed negation: The sum of any two irrational numbers
is rational.

12. Statement: The product of any irrational number
and any rational number is irrational.

15.

Proposed negation: The product of any irrational number
and any rational number is rational.

Statement: For all integers n, if n? is even then n is
even.
Proposed negation: For all integers n, if n? is even then 7 is
not even.

Statement: For all real numbers x; and x,, if
x} = x3 then x; = x,.

Proposed negation: For all real numbers x; and xp, if
x? = x3 then x| # x,.

Let D ={-48, —14, =8, 0, 1, 3, 16, 23, 26, 32, 36}.

Determine which of the following statements are true and

which are false. Provide counterexamples for those state-

ments that are false.

a. Vx € D, if x is odd then x > 0.

b. Vx € D, if x is less than O then x is even.

c. Vx € D, if x is even then x < 0.

d. Vx e D, if the ones digit of x is 2, then the tens digit is
3or4.

e. Vx € D, if the ones digit of x is 6, then the tens digit is
1 or2.

In 16-23, write a negation for each statement.

16.
17.
18.
19.
20.

21.

22.
23.
24.

25.

VY real numbers x, if x2 > 1 then x > 0.

V integers d, if 6/d is an integer then d = 3.

Vx e R,ifx(x +1) >0thenx >0orx < —1.
Vn € Z, if n is prime then n is odd or n = 2.

V integers a, b and c, if a — b is even and b — c is even,
then a — c is even.

V integers n, if n is divisible by 6, then n is divisible by 2
and n is divisible by 3.

If the square of an integer is odd, then the integer is odd.
If a function is differentiable then it is continuous.

Rewrite the statements in each pair in if-then form and indi-
cate the logical relationship between them.

a. All the children in Tom’s family are female.
All the females in Tom’s family are children.

b. All the integers that are greater than 5 and end in 1, 3,
7, or 9 are prime.
All the integers that are greater than 5 and are prime
endin 1, 3,7,0r9.

Each of the following statements is true. In each case write
the converse of the statement, and give a counterexample
showing that the converse is false.

a. If n is any prime number that is greater than 2, then
n + 1is even.

b. If m is any odd integer, then 2m is even.

c. If two circles intersect in exactly two points, then they
do not have a common center.
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In 26-33, for each statement in the referenced exercise write the
converse, inverse, and contrapositive. Indicate as best as you can
which among the statement, its converse, its inverse, and its con-
trapositive are true and which are false. Give a counterexample
for each that is false.

26. Exercise 16 27. Exercise 17

28. Exercise 18 29. Exercise 19

30. Exercise 20 31. Exercise 21

32. Exercise 22 33. Exercise 23

34. Write the contrapositive for each of the following state-
ments.

a. If n is prime, then n is not divisible by any prime num-
ber between 1 and /7 strictly. (Assume that 7 is a fixed
integer that is greater than 1.)

b. If A and B do not have any elements in common, then
they are disjoint. (Assume that A and B are fixed sets.)

35. Give an example to show that a universal conditional state-
ment is not logically equivalent to its inverse.

*36. If P(x) is a predicate and the domain of x is the set of

all real numbers, let R be “Vx € Z, P(x),” let S be “Vx €

Q, P(x),”and let T be “Vx € R, P(x).”

a. Find a definition for P(x) (but do not use “x € Z”) so
that R is true and both S and T are false.

b. Find a definition for P(x) (but do not use “x € Q”) so
that both R and S are true and T is false.

37. Consider the following sequence of digits: 0204. A person
claims that all the 1’s in the sequence are to the left of all the
0’s in the sequence. Is this true? Justify your answer. (Hint:
Write the claim formally and write a formal negation for it.
Is the negation true or false?)

38. True or false? All occurrences of the letter u in Discrete
Mathematics are lowercase. Justify your answer.

Rewrite each statement of 39-42 in if-then form.

39. Earning a grade of C— in this course is a sufficient condi-
tion for it to count toward graduation.

Answers for Test Yourself

3.3 Statements with Multiple Quantifiers 117

40. Being divisible by 8 is a sufficient condition for being divis-
ible by 4.

41. Being on time each day is a necessary condition for keeping
this job.

42. Passing a comprehensive exam is a necessary condition for
obtaining a master’s degree.

Use the facts that the negation of a V statement is a 3 statement
and that the negation of an if-then statement is an and statement
to rewrite each of the statements 43-46 without using the word
necessary or sufficient.

43. Being divisible by 8 is not a necessary condition for being
divisible by 4.

44. Having a large income is not a necessary condition for a
person to be happy.

45. Having a large income is not a sufficient condition for a
person to be happy.

46. Being a polynomial is not a sufficient condition for a func-
tion to have a real root.

47. The computer scientists Richard Conway and David Gries
once wrote:

The absence of error messages during translation
of a computer program is only a necessary and
not a sufficient condition for reasonable [program]
correctness.

Rewrite this statement without using the words necessary
or sufficient.

48. A frequent-flyer club brochure states, “You may select
among carriers only if they offer the same lowest fare.”
Assuming that “only if” has its formal, logical meaning,
does this statement guarantee that if two carriers offer
the same lowest fare, the customer will be free to choose
between them? Explain.

1. some (Alternative answers: at least one; an); does not have property S. 2. No R have property S. 3. There is an x such that x
has property P and x does not have property Q. 4. For all x, if x has property Q then x has property P. 5. For all x, if x does not
have property Q then x does not have property P. 6. For all x, if x does not have property P then x does not have property Q.

3.3 Statements with Multiple Quantifiers

It is not enough to have a good mind. The main thing is to use it well. — René Descartes

Imagine you are visiting a factory that manufactures computer microchips. The factory

guide tells you,

There is a person supervising every detail of the production process.
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118 Chapter 3 The Logic of Quantified Statements

Note that this statement contains informal versions of both the existential quantifier there
is and the universal quantifier every. Which of the following best describes its meaning?

e There is one single person who supervises all the details of the production process.

e For any particular production detail, there is a person who supervises that detail,
but there might be different supervisors for different details.

As it happens, either interpretation could be what the guide meant. (Reread the sentence
to be sure you agree!) Taken by itself, his statement is genuinely ambiguous, although
other things he may have said (the context for his statement) might have clarified it. In
our ordinary lives, we deal with this kind of ambiguity all the time. Usually context helps
resolve it, but sometimes we simply misunderstand each other.

In mathematics, formal logic, and computer science, by contrast, it is essential that we
all interpret statements in exactly the same way. For instance, the initial stage of software
development typically involves careful discussion between a programmer analyst and
a client to turn vague descriptions of what the client wants into unambiguous program
specifications that client and programmer can mutually agree on.

Because many important technical statements contain both 3 and V, a convention has
developed for interpreting them uniformly. When a statement contains more than one
quantifier, we imagine the actions suggested by the quantifiers as being performed in the
order in which the quantifiers occur. For instance, consider a statement of the form

Vx in set D, y in set E such that x and y satisfy property P(x, y).
To show that such a statement is true, you must be able to meet the following challenge:

¢ Imagine that someone is allowed to choose any element whatsoever from the set
D, and imagine that the person gives you that element. Call it x.

e The challenge for you is to find an element y in E so that the person’s x and your
v, taken together, satisfy property P (x, y).

Note that because you do not have to specify the y until after the other person has
specified the x, you are allowed to find a different value of y for each different x you
are given.

Example 3.3.1 Truth of a V3 Statement in a Tarski World

Consider the Tarski world shown in Figure 3.3.1.

e |a
B || |

j

Show that the following statement is true in this world:

Figure 3.3.1

For all triangles x, there is a square y such that x and y have the same color.
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3.3 Statements with Multiple Quantifiers 119

Solution  The statement says that no matter which triangle someone gives you, you will be
able to find a square of the same color. There are only three triangles, d, f, and i. The
following table shows that for each of these triangles a square of the same color can be

found.
Given x = choose y = and check that y is the same color as x.
d e yes v’
fori horg yes v’ n

Now consider a statement containing both V and 3, where the 3 comes before the V:
Janx in D such thatVyin E, x and y satisfy property P (x, y).

To show that a statement of this form is true:
You must find one single element (call it x) in D with the following property:
¢ After you have found your x, someone is allowed to choose any element whatsoever
from E. The person challenges you by giving you that element. Call it y.
* Your job is to show that your x together with the person’s y satisfy property P (x, y).

Note that your x has to work for any y the person gives you; you are not allowed to
change your x once you have specified it initially.

Example 3.3.2 Truth of a 3V Statement in a Tarski World

Consider again the Tarski world in Figure 3.3.1. Show that the following statement is
true: There is a triangle x such that for all circles y, x is to the right of y.

Solution  The statement says that you can find a triangle that is to the right of all the circles.
Actually, either d or i would work for all of the three circles, a, b, and ¢, as you can see
in the following table.

Choose x = Then, given y = check that x is to the right of y.
dori a yes v’
yes v’
c yes v’ m

Here is a summary of the convention for interpreting statements with two different
quantifiers:

Interpreting Statements with Two Different Quantifiers

If you want to establish the truth of a statement of the form
Vxin D, Ay in E such that P(x, y)

your challenge is to allow someone else to pick whatever element x in D they wish
and then you must find an element y in E that “works” for that particular x.

If you want to establish the truth of a statement of the form

dx in D such thatVyin E, P(x, y)

your job is to find one particular x in D that will “work” no matter what y in E
anyone might choose to challenge you with.
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Example 3.3.3 Interpreting Multiply-Quantified* Statements

A college cafeteria line has four stations: salads, main courses, desserts, and beverages.
The salad station offers a choice of green salad or fruit salad; the main course station
offers spaghetti or fish; the dessert station offers pie or cake; and the beverage station
offers milk, soda, or coffee. Three students, Uta, Tim, and Yuen, go through the line and
make the following choices:

Uta: green salad, spaghetti, pie, milk
Tim: fruit salad, fish, pie, cake, milk, coffee
Yuen: spaghetti, fish, pie, soda

These choices are illustrated in Figure 3.3.2.

Salads

green salad
fruit salad

Uta -
Main courses

spaghetti
fish
Desserts
pie

cake

Tim

Yuen 3
Beverages

milk
soda
coffee

Figure 3.3.2

Write each of following statements informally and find its truth value.

a. Janitem I such that V students S, S chose I.

b. 3 a student S such that V items 7, S chose 1.

c. Jastudent S such that V stations Z, 3 an item / in Z such that S chose /.

d. V students S and V stations Z, 3 an item / in Z such that S chose /.
Solution

a. There is an item that was chosen by every student. This is true; every student chose pie.

b. There is a student who chose every available item. This is false; no student chose all
nine items.

c. There is a student who chose at least one item from every station. This is true; both
Uta and Tim chose at least one item from every station.

d. Every student chose at least one item from every station. This is false; Yuen did not
choose a salad. |

“The term “multiply-quantified” is pronounced MUL-ti-plee QUAN-ti-fied. A multiply-quantified
statement is a statement that contains more than one quantifier.
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Translating from Informal to Formal Language

Most problems are stated in informal language, but solving them often requires translating
them into more formal terms.

Example 3.3.4 Translating Multiply-Quantified Statements from Informal
to Formal Language

The reciprocal of a real number a is a real number b such that ab = 1. The following
two statements are true. Rewrite them formally using quantifiers and variables:

a. Every nonzero real number has a reciprocal.
b. There is a real number with no reciprocal. The number 0 has no reciprocal.

Solution

a. V nonzero real numbers u, 3 a real number v such that uv = 1.

b. 3 areal number c such that V real numbers d, cd # 1. [ |

Example 3.3.5 There Is a Smallest Positive Integer

Recall that every integer is a real number and that real numbers are of three types: posi-
tive, negative, and zero (zero being neither positive nor negative). Consider the statement
“There is a smallest positive integer.” Write this statement formally using both symbols
JandV.

Solution  To say that there is a smallest positive integer means that there is a positive integer
m with the property that no matter what positive integer n a person might pick, m will be
less than or equal to n:

Ja positive integer m such thatV positive integersn, m < n.

Note that this statement is true because 1 is a positive integer that is less than or equal to
every positive integer.

positive integers
A

Example 3.3.6 There Is No Smallest Positive Real Number

Imagine any positive real number x on the real number line. These numbers correspond
to all the points to the right of 0. Observe that no matter how small x is, the number x /2
will be both positive and less than x.*

*This can be deduced from the properties of the real numbers given in Appendix A. Because x is
positive, 0 < x. Add x to both sides to obtain x < 2x. Then 0 < x < 2x. Now multiply all parts of
the inequality by the positive number 1/2. This does not change the direction of the inequality, so
0<x/2 <x.
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122 Chapter 3 The Logic of Quantified Statements

Thus the following statement is true: “There is no smallest positive real number.” Write
this statement formally using both symbols V and 3.

Solution V positive real numbers x, 3 a positive real number y such that y < x. |
Example 3.3.7 The Definition of Limit of a Sequence

The definition of limit of a sequence, studied in calculus, uses both quantifiers V and 3
and also if-then. We say that the limit of the sequence a, as n goes to infinity equals L
and write

lim a, =L

n—00
if, and only if, the values of a, become arbitrarily close to L as n gets larger and larger
without bound. More precisely, this means that given any positive number &, we can find
an integer N such that whenever n is larger than N, the number a, sits between L — ¢
and L + ¢ on the number line.

L-¢ L L+e¢

a, must lie in here when n > N

Symbolically:
Ve > 0, 3 an integer N such that V integers 7,
ifn >NthenL —¢ <a, <L +es.

Considering the logical complexity of this definition, it is no wonder that many students
find it hard to understand. n

Ambiguous Language

The drawing in Figure 3.3.3 is a famous example of visual ambiguity. When you look at
it for a while, you will probably see either a silhouette of a young woman wearing a large
hat or an elderly woman with a large nose. Whichever image first pops into your mind,
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3.3 Statements with Multiple Quantifiers 123

try to see how the drawing can be interpreted in the other way. (Hint: The mouth of the
elderly woman is the necklace on the young woman.)

Once most people see one of the images, it is difficult for them to perceive the other.
So it is with ambiguous language. Once you interpreted the sentence at the beginning of
this section in one way, it may have been hard for you to see that it could be understood
in the other way. Perhaps you had difficulty even though the two possible meanings were
explained, just as many people have difficulty seeing the second interpretation for the
drawing even when they are told what to look for.

Although statements written informally may be open to multiple interpretations, we
cannot determine their truth or falsity without interpreting them one way or another.
Therefore, we have to use context to try to ascertain their meaning as best we can.

Negations of Multiply-Quantified Statements

You can use the same rules to negate multiply-quantified statements that you used to
negate simpler quantified statements. Recall that

~(Yx in D, P(x)) = 3x in D such that ~P(x).
and
~(3dx in D such that P(x)) = Vx in D, ~P(x).
We apply these laws to find
~(Vx in D, 3y in E such that P(x, y))
by moving in stages from left to right along the sentence.

First version of negation: 3x in D such that ~(3y in E such that P(x, y)).
Final version of negation: 3x in D such thatVy in E, ~P(x, y).

Similarly, to find
~(3x in D such that Vy in E, P(x, y)),
we have

First version of negation: Vx in D, ~(Vy in E, P(x, y)).
Final version of negation: Vx in D, 3y in E such that ~P (x, y).

These facts can be summarized as follows:

Negations of Multiply-Quantified Statements

~(Yx in D, 3y in E such that P(x, y)) = 3Ix in D such that Vy in E, ~P(x, y).
~(3x in D such that Vy in E, P(x, y)) = Vx in D, 3y in E such that ~P(x, y).
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124 Chapter 3 The Logic of Quantified Statements

Example 3.3.8 Negating Statements in a Tarski World

Refer to the Tarski world of Figure 3.3.1, which is reprinted here for reference.

o
@ A

,.

Write a negation for each of the following statements, and determine which is true, the
given statement or its negation.

a. For all squares x, there is a circle y such that x and y have the same color.
b. There is a triangle x such that for all squares y, x is to the right of y.

Solution

a. First version of negation: 3 a square x such that ~(3 a circle y such
that x and y have the same color).

Final version of negation: 3 a square x such that V circles y, x and y
do not have the same color.

The negation is true. Square e is black and no circle is black, so there is a square that does
not have the same color as any circle.

b. First version of negation: V triangles x, ~ (V squares y, x is to the
right of y).
Final version of negation: ¥ triangles x, 3 a square y such that x is
not to the right of y.

The negation is true because no matter what triangle is chosen, it is not to the right of
square g (or square j). |

Order of Quantifiers

Consider the following two statements:

Y people x, 3 a person y such that x loves y.

3 a person y such that V people x, x loves y.

Note that except for the order of the quantifiers, these statements are identical. How-
ever, the first means that given any person, it is possible to find someone whom that
person loves, whereas the second means that there is one amazing individual who is
loved by all people. (Reread the statements carefully to verify these interpretations!)

The two sentences illustrate an extremely important property about multiply-quantified
statements:
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In a statement containing both V and 3, changing the order of the quantifiers usually
changes the meaning of the statement.

Caution! If a statement
contains two different

quantifiers, reversing their . 3 . . . .
order can change the truth Interestingly, however, if one quantifier immediately follows another quantifier of the

value of the statement to same type, then the order of the quantifiers does not affect the meaning. Consider the
its opposite. commutative property of addition of real numbers, for example:

V real numbers x and V real numbers y,x +y =y + x.
This means the same as

V real numbers y and V real numbers x,x +y =y + x.
Thus the property can be expressed more briefly as

V real numbers x and y, x +y =y + x.

Example 3.3.9 Quantifier Order in a Tarski World

Look again at the Tarski world of Figure 3.3.1. Do the following two statements have the
same truth value?

a. For every square x there is a triangle y such that x and y have different colors.
b. There exists a triangle y such that for every square x, x and y have different colors.

Solution  Statement (a) says that if someone gives you one of the squares from the Tarski
world, you can find a triangle that has a different color. This is true. If someone gives you
square g or & (which are gray), you can use triangle d (which is black); if someone gives
you square e (which is black), you can use either triangle f or triangle i (which are both
gray); and if someone gives you square j (which is blue), you can use triangle d (which
is black) or triangle f or i (which are both gray).

Statement (b) says that there is one particular triangle in the Tarski world that has
a different color from every one of the squares in the world. This is false. Two of the
triangles are gray, but they cannot be used to show the truth of the statement because the
Tarski world contains gray squares. The only other triangle is black, but it cannot be used
either because there is a black square in the Tarski world.

Thus one of the statements is true and the other is false, and so they have opposite
truth values. |

Formal Logical Notation

In some areas of computer science, logical statements are expressed in purely symbolic
notation. The notation involves using predicates to describe all properties of variables
and omitting the words such that in existential statements. (When you try to figure out
the meaning of a formal statement, however, it is helpful to think the words such that to
yourself each time they are appropriate.) The formalism also depends on the following
facts:

“Vx in D, P(x)” can be written as*“Vx(x in D — P(x)),” and

“Jx in D such that P(x)” can be written as “Jx(x in D A P(x)).”

We illustrate the use of these facts in Example 3.3.10.
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Example 3.3.10 Formalizing Statements in a Tarski World

Consider once more the Tarski world of Figure 3.3.1:

o
@ A

i
x 1is a circle,” and “x

Let Triangle(x), Circle(x), and Square(x) mean “x is a triangle,

is a square”; let Blue(x), Gray(x), and Black(x) mean “x is blue,” “x is gray,” and “x is
black”; let RightOf(x, y), Above(x, y), and SameColorAs(x, y) mean “x is to the right
of y,” “x is above y,” and “x has the same color as y”’; and use the notation x = y to
denote the predicate “x is equal to y”. Let the common domain D of all variables be the
set of all the objects in the Tarski world. Use formal, logical notation to write each of the

following statements, and write a formal negation for each statement.

99 <

a. For all circles x, x is above f.

b. There is a square x such that x is black.

c. For all circles x, there is a square y such that x and y have the same color.
d. There is a square x such that for all triangles y, x is to right of y.

Solution

a. Statement: Vx(Circle(x) — Above(x, f)).
Negation: ~(Vx(Circle(x) — Above(x, f)))

3x ~ (Circle(x) — Above(x, f))

by the law for negating a V statement

Jx (Circle(x) A ~Above(x, f))

by the law of negating an if-then statement

b. Statement: Ix(Square(x) A Black(x)).
Negation: ~(3x(Square(x) A Black(x)))
Vx ~ (Square(x) A Black(x))
by the law for negating a 3 statement
Vx (~Square(x) v ~Black(x))
by De Morgan’s law

c. Statement: Vx(Circle(x) — Jy(Square(y) A SameColor(x, y))).
Negation: ~(¥x(Circle(x) — 3Jy(Square(y) A SameColor(x, y))))

dx ~ (Circle(x) — Jy(Square(y) A SameColor(x, y)))
by the law for negating a V statement
= dx(Circle(x) A ~(3y(Square(y) A SameColor(x, y))))

by the law for negating an if-then statement
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= Jx(Circle(x) A Yy(~(Square(y) A SameColor(x, y))))

by the law for negating a 3 statement

Ax (Circle(x) A Vy(~Square(y) v ~SameColor(x, y)))
by De Morgan’s law
d. Statement: Ix(Square(x) A Vy(Triangle(y) — RightOf(x, y))).
Negation: ~(3x(Square(x) A Yy(Triangle(y) — RightOf(x, y))))
= Vx ~ (Square(x) A Vy(Triangle(x) — RightOf(x, y)))

by the law for negating a 3 statement

Vx(~Square(x) VvV ~(Vy(Triangle(y) — RightOf(x, y))))

by De Morgan’s law

Vx (~Square(x) Vv Jy(~(Triangle(y) — RightOf(x, y))))

by the law for negating a V statement
= Vx(~Square(x) Vv Jy(Triangle(y) A ~RightOf(x, y)))
by the law for negating an if-then statement

The disadvantage of the fully formal notation is that because it is complex and
somewhat remote from intuitive understanding, when we use it, we may make errors
that go unrecognized. The advantage, however, is that operations, such as taking nega-
tions, can be made completely mechanical and programmed on a computer. Also, when
we become comfortable with formal manipulations, we can use them to check our intu-
ition, and then we can use our intuition to check our formal manipulations. Formal logical
notation is used in branches of computer science such as artificial intelligence, program
verification, and automata theory and formal languages.

Taken together, the symbols for quantifiers, variables, predicates, and logical
connectives make up what is known as the language of first-order logic. Even though
this language is simpler in many respects than the language we use every day, learning it
requires the same kind of practice needed to acquire any foreign language.

Prolog

The programming language Prolog (short for programming in logic) was developed in
France in the 1970s by A. Colmerauer and P. Roussel to help programmers working in
the field of artificial intelligence. A simple Prolog program consists of a set of statements
describing some situation together with questions about the situation. Built into the lan-
guage are search and inference techniques needed to answer the questions by deriving
the answers from the given statements. This frees the programmer from the necessity of
having to write separate programs to answer each type of question. Example 3.3.11 gives
a very simple example of a Prolog program.

Example 3.3.11 A Prolog Program

Consider the following picture, which shows colored blocks stacked on a table.

8 wy g | = gray block bs | =blue block 3
b, by by | =blue block 1 w; | = white block 1
“ b3 b, |=blueblock2 | w, |=white block 2
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Note Different Prolog The following are statements in Prolog that describe this picture and ask two questions

implementations follow about it.
different conventions as to

how to represent constant, isabove(g, b) color(g, gray) color(bs, blue)

variable, and predicate isabove(b, wy) color(by, blue) color(wy, white)
ames and forms of . .

frames and forms o isabove(ws, by) color(b,, blue) color(w,, white)

questions and answers.
The conventions used

isabove(b,, b3)
2color(by, blue)

isabove(X, Z) if isabove(X, Y) and isabove(Y, Z)

here are similar to those .
?isabove(X, wq)

of Edinburgh Prolog.
The statements “isabove(g, b;)” and “color(g, gray)” are to be interpreted as “g is above
b;” and “g is colored gray”. The statement “isabove(X, Z) if isabove(X,Y) and
isabove(Y, Z)” is to be interpreted as “For all X, Y, and Z, if X is above Y and Y is
above Z, then X is above Z.” The program statement

?color(by, blue)
is a question asking whether block b, is colored blue. Prolog answers this by writing
Yes.
The statement
Tisabove(X, wy)

is a question asking for which blocks X the predicate “X is above w;” is true. Prolog
answers by giving a list of all such blocks. In this case, the answer is

X:bl,X:g.

Note that Prolog can find the solution X = b; by merely searching the original set of
given facts. However, Prolog must infer the solution X = g from the following statements:

isabove(g, by),
isabove (b, wy),
isabove(X, Z) if isabove(X, Y) and isabove(Y, Z).

Write the answers Prolog would give if the following questions were added to the pro-
gram above.

a. ?isabove(by, wy) b. ?color(w;, X) c. ?color(X, blue)
Solution
a. The question means “Is b, above w;?”; so the answer is “No.”

b. The question means “For what colors X is the predicate ‘w; is colored X’ true?”’; so
the answer is “X = white.”

c. The question means “For what blocks is the predicate ‘X is colored blue’ true?”’; so

the answer is “X = b;,” “X = b,,” and “X = b3.” [ |

Test Yourself
1. To establish the truth of a statement of the form “Vx in 2. To establish the truth of a statement of the form “3x in D
D, 3y in E such that P(x,y),” you imagine that some- such that Vy in E, P(x,y),” you need to find so that
one has given you an element x from D but that you no matter what a person might subsequently give you,

have no control over what that element is. Then you

need to find with the property that the x the person
gave you together with the you subsequently found
satisfy .

will be true.

. Consider the statement “Vx, 3y such that P (x, y), a property

involving x and y, is true.” A negation for this statement is
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4. Consider the statement “Jx such that Vy, P(x, y), a prop- is true. Then the statement “dx in D such that Vy in E,
erty involing x and y, is true.” A negation for this statement P(x,y)”
is*__ 7 a.is true. b. is false. c. may be true or may be false.

5. Suppose P(x, y) is some property involving x and y, and

suppose the statement*“Vx in D, dy in E such that P(x, y)”

Exercise Set 3.3

1. Let C be the set of cities in the world, let N be the set 11. Let S be the set of students at your school, let M be the set
of nations in the world, and let P(c, n) be “c is the capi- of movies that have ever been released, and let V (s, m) be
tal city of n.” Determine the truth values of the following “student s has seen movie m.” Rewrite each of the follow-
statements. ing statements without using the symbol V, the symbol 3,
a. P(Tokyo, Japan) b. P(Athens, Egypt) or variables.

c. P(Paris, France) d. P(Miami, Brazil) a. ds € S such that V (s, Casablanca).
b. Vs € S, V(s, Star Wars).

2. Let G(x, y) be “x*> > y.” Indicate which of the following ¢. Vs € S,3m € M such that V (s, m).
statements are true and which are false. d. 3m € M such thatVs € S, V (s, m).

a. G(2,3) b. G(1,1) e. Ise€ S, e S, and Im € M such that s #r and
¢ G(3.3) dG-22) Vi(s.m) AVt m).
f.3ds€S and Ir €S such that s #¢ and Vm e M,

3. The following statement is true: “Y nonzero numbers x, 3 a V(s,m) — V(t,m).

real number y such that xy = 1.” For each x given below, 12. Let D = E = {—2,—1,0, 1, 2}. Write negations for each

find a y to make the predicate “xy = 1" true.
a x=2 b. x =—1 c. x =3/4

. The following statement is true: “V real numbers x, 3 an

integer n such that n > x.”* For each x given below, find an
n to make the predicate “n > x” true.
a.x=1583 b x=10° ¢ x=10""

The statements in exercises 5—8 refer to the Tarski world given
in Example 3.3.1. Explain why each is true.

5.

10.

For all circles x there is a square y such that x and y have
the same color.

. For all squares x there is a circle y such that x and y have

different colors and y is above x.

. There is a triangle x such that for all squares y, x is above y.
. There is a triangle x such that for all circles y, y is above x.

. LetD = E ={-2,-1,0, 1, 2}. Explain why the following

statements are true.
a. Vx in D, 3y in E such that x +y = 0.
b. 3x in D suchthatVyin E, x +y = y.

This exercise refers to Example 3.3.3. Determine whether

each of the following statements is true or false.

. V students S, 3 a dessert D such that S chose D.

.V students S, 3 a salad T such that S chose T'.

. Jadessert D such that V students S, S chose D.

. dabeverage B such that V students D, D chose B.

. Janitem [ such that V students S, S did not choose 1.

. J a station Z such that V students S, 3 an item / such
that S chose 7 from Z.

-0 a0 o

of the following statements and determine which is true,
the given statement or its negation.

a. Yx in D,3dyin E such that x +y = 1.

b. 3x in D such thatVy in E,x +y = —y.

c. Vxin D, Jy in E such that xy > y.

d. 3x in D such that Vy in E, x < y.

In each of 13-19, (a) rewrite the statement in English without
using the symbol V or 3 or variables and expressing your answer
as simply as possible, and (b) write a negation for the statement.

13

V colors C, 3 an animal A such that A is colored C.

3 a book b such that V people p, p has read b.

V odd integers n, 3 an integer k such thatn = 2k + 1.
3 a real number u such that V real numbers v, uv = v.
Vr € Q, Jintegers a and b such thatr = a/b.

Vx € R, 3 areal number y such that x +y = 0.

3x € R such that for all real numbers y, x +y = 0.

Recall that reversing the order of the quantifiers in a state-
ment with two different quantifiers may change the truth
value of the statement—but it does not necessarily do so.
All the statements in the pairs on the next page refer to the
Tarski world of Figure 3.3.1. In each pair, the order of the
quantifiers is reversed but everything else is the same. For
each pair, determine whether the statements have the same
or opposite truth values. Justify your answers.

*This is called the Archimedean principle because it was first formulated (in geometric terms) by the great Greek mathematician
Archimedes of Syracuse, who lived from about 287 to 212 B.C.E.
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a. (1) For all squares y there is a triangle x such that x and
y have different color.
(2) There is a triangle x such that for all squares y, x and

y have different colors.
b. (1) For all circles y there is a square x such that x and y

have the same color.
(2) There is a square x such that for all circles y, x and
y have the same color.

21. For each of the following equations, determine which of the
following statements are true:
(1) For all real numbers x, there exists a real number y
such that the equation is true.
(2) There exists a real number x, such that for all real num-
bers y, the equation is true.
Note that it is possible for both statements to be true or for
both to be false.
a 2x+y=7
.Yy tx=x+y
L x2=2xy+y*=0
L (x=50-1)=0
x4yt =—1

o oo

In 22 and 23, rewrite each statement without using variables or
the symbol V or 3. Indicate whether the statement is true or false.

22. a. Vreal numbers x, 3 areal number y such thatx + y = 0.
b. Jareal number y such that V real numbers x, x +y = 0.

23. a. V nonzero real numbers r, 3 a real number s such that

rs =1.
b. 3 a real number r such that V nonzero real numbers
s, rs = 1.

24. Use the laws for negating universal and existential state-
ments to derive the following rules:
a. ~(Vx € D(Vy € E(P(x,))))
=3x € D3y € E(~P(x,y)))
b. ~(3x € D@y € E(P(x, y))))
=Vx € D(Vy € E(~P(x,y)))

Each statement in 25-28 refers to the Tarski world of Figure
3.3.1. For each, (a) determine whether the statement is true or
false and justify your answer, (b) write a negation for the state-
ment (referring, if you wish, to the result in exercise 24).

25. V circles x and V squares y, x is above y.
26. V circles x and V triangles y, x is above y.

27. Facircle x and 3 a square y such that x is above y and x
and y have different colors.

28. Jatriangle x and 3 a square y such that x is above y and x
and y have the same color.

For each of the statements in 29 and 30, (a) write a new state-
ment by interchanging the symbols V and 3, and (b) state which
is true: the given statement, the version with interchanged quan-
tifiers, neither, or both.

29. Vx e R,3y € Rsuch thatx < y.

30. 3x € R such that Vy € R™ (the set of negative real
numbers), x > y.

31. Consider the statement “Everybody is older than some-
body.” Rewrite this statement in the form “V people x,
3

32. Consider the statement “Somebody is older than every-
body.” Rewrite this statement in the form “3 a person x such
that V 7

In 33-39, (a) rewrite the statement formally using quantifiers
and variables, and (b) write a negation for the statement.

33. Everybody loves somebody.

34. Somebody loves everybody.

35. Everybody trusts somebody.

36. Somebody trusts everybody.

37. Any even integer equals twice some integer.

38. Every action has an equal and opposite reaction.

39. There is a program that gives the correct answer to every
question that is posed to it.

40. In informal speech most sentences of the form “There is

every ” are intended to be understood as

meaning “V 3 )’ even though the existen-

tial quantifier there is comes before the universal quantifier

every. Note that this interpretation applies to the following

well-known sentences. Rewrite them using quantifiers and
variables.

a. There is a sucker born every minute.
b. There is a time for every purpose under heaven.

41. Indicate which of the following statements are true and
which are false. Justify your answers as best you can.

. Vx €Zt,3y € Z" such thatx = y + 1.

Vx € Z,3y € Zsuchthatx =y + 1.

dx € RsuchthatVy e R,x =y + 1.

Vx € R, 3y € R" such that xy = 1.

Vx € R,3y € Rsuch that xy = 1.

Vx € Zt andVy € Z*,3z € Z* such that z = x — y.

Vx €eZandVy € Z,3z € Zsuchthatz =x — y.

. Ju € R* such that Vv € R, uv < v.

R

42. Write the negation of the definition of limit of a sequence
given in Example 3.3.7.

43. The following is the definition for lim,_,, f(x) = L:

For all real numbers ¢ > 0, there exists a real
number § > 0 such that for all real numbers x, if
a—3§ <x <a+§andx # athen

L—¢<flx) <L+e.

Write what it means for lim,_,, f(x) # L. In other words,
write the negation of the definition.

44. The notation 3! stands for the words “there exists a unique.”
Thus, for instance, “3! x such that x is prime and x is even”

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



means that there is one and only one even prime number.
Which of the following statements are true and which are
false? Explain.

a. 3! real number x such that V real numbers y, xy = y.
b. 3!integer x such that 1/x is an integer.
c. Vreal numbers x, 3! real number y such that x + y = 0.

*45. Suppose that P(x) is a predicate and D is the domain
of x. Rewrite the statement “3! x € D such that P(x)”
without using the symbol 3!. (See exercise 44 for the
meaning of 3!.)

In 4654, refer to the Tarski world given in Figure 3.1.1, which
is printed again here for reference. The domains of all variables
consist of all the objects in the Tarski world. For each state-
ment, (a) indicate whether the statement is true or false and jus-
tify your answer, (b) write the given statement using the formal
logical notation illustrated in Example 3.3.10, and (c) write the
negation of the given statement using the formal logical notation
of Example 3.3.10.

A

CE
N IE
E

46. There is a triangle x such that for all squares y, x is above y.

47. There is a triangle x such that for all circles y, x is above y.

48. For all circles x, there is a square y such that y is to the
right of x.

Answers for Test Yourself

3.3 Statements with Multiple Quantifiers 131

49. For every object x, there is an object y such that x # y
and x and y have different colors.

50. For every object x, there is an object y such that if x # y
then x and y have different colors.

51. There is an object y such that for all objects x, if x # y
then x and y have different colors.

52. For all circles x and for all triangles y, x is to the right of y.

53. There is a circle x and there is a square y such that x and y
have the same color.

54. There is a circle x and there is a triangle y such that x and
y have the same color.

Let P(x) and Q(x) be predicates and suppose D is the domain
of x. In 55-58, for the statement forms in each pair, determine
whether (a) they have the same truth value for every choice of
P(x), Q(x), and D, or (b) there is a choice of P(x), Q(x), and
D for which they have opposite truth values.

55. Vx € D, (P(x) A Q(x)), and
(Vx € D, P(x)) A (Yx € D, Q(x))

56. 3x € D, (P(x) A Q(x)), and
(3x € D, P(x)) A(3x € D, Q(x))

57. Vx € D, (P(x) VvV Q(x)), and
(Vx € D, P(x)) Vv (¥Yx € D, Q(x))

58. 3x € D, (P(x) v Q(x)), and
(3x € D, P(x)) v (3x € D, Q(x))

In 59-61, find the answers Prolog would give if the following
questions were added to the program given in Example 3.3.11.

59. a. ?isabove(b;, w;)
b. ?color(X, white)
c. ?lisabove(X, b3)

60. a. ?isabove(w, g)
b. ?color(w,, blue)
c. ?lisabove(X, b))

61. a. ?isabove(w,, b3)
b. ?color(X, gray)
c. ?lisabove(g, X)

1. anelement y in E; y; P(x,y) 2. anelementxin D;yin E; P(x,y) 3. Jx such thatVy, the property P(x, y) is false. 4. Vx,
Jy such that the property P (x, y) is false. 5. The answer is (c): the truth or falsity of a statement in which the quantifiers are reversed

depends on the nature of the property involving x and y.
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132 Chapter 3 The Logic of Quantified Statements

3.4 Arguments with Quantified Statements

The only complete safeguard against reasoning ill, is the habit of reasoning well; familiarity with
the principles of correct reasoning; and practice in applying those principles. — John Stuart Mill

The rule of universal instantiation (in-stan-she-AY-shun) says the following:

If some property is true of everything in a set, then it is true of any particular thing
in the set.

Use of the words universal instantiation indicates that the truth of a property in a particu-
lar case follows as a special instance of its more general or universal truth. The validity of
this argument form follows immediately from the definition of truth values for a universal
statement. One of the most famous examples of universal instantiation is the following:

All men are mortal.
Socrates is a man.

.. Socrates is mortal.

Universal instantiation is the fundamental tool of deductive reasoning. Mathematical
formulas, definitions, and theorems are like general templates that are used over and over
in a wide variety of particular situations. A given theorem says that such and such is true
for all things of a certain type. If, in a given situation, you have a particular object of
that type, then by universal instantiation, you conclude that such and such is true for that
particular object. You may repeat this process 10, 20, or more times in a single proof or
problem solution.

As an example of universal instantiation, suppose you are doing a problem that requires
you to simplify Ly

where r is a particular real number and k is a particular integer. You know from your
study of algebra that the following universal statements are true:

1. For all real numbers x and all integers m and n, x™ - x" = x"*",
2. For all real numbers x, x! = x.

So you proceed as follows:

k+1

r r=vr -r Step 1
— pkt+D+1 Step 2
= pkt2 by basic algebra.

The reasoning behind step 1 and step 2 is outlined as follows.

Step 1:  For all real numbers x, x' = x. universal truth
r is a particular real number. particular instance
t. 1’1 =r. conclusion

Step 2:  For all real numbers x and all integers
m and n, x"- x" = x"*t".
r is a particular real number and k + 1

and 1 are particular integers. particular instance
kLT D+

universal truth

conclusion

Both arguments are examples of universal instantiation.
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3.4 Arguments with Quantified Statements 133

Universal Modus Ponens

The rule of universal instantiation can be combined with modus ponens to obtain the valid
form of argument called universal modus ponens.

Universal Modus Ponens
Formal Version Informal Version
Vx, if P(x) then Q(x). If x makes P (x) true, then x makes Q(x) true.
P(a) for a particular a. a makes P (x) true.
. Q(a). . a makes Q(x) true.

Note that the first, or major, premise of universal modus ponens could be written “All
things that make P (x) true make Q(x) true,” in which case the conclusion would follow
by universal instantiation alone. However, the if-then form is more natural to use in the
majority of mathematical situations.

Example 3.4.1 Recognizing Universal Modus Ponens

Rewrite the following argument using quantifiers, variables, and predicate symbols. Is
this argument valid? Why?

If an integer is even, then its square is even.
k is a particular integer that is even.
- k% is even.
Solution  The major premise of this argument can be rewritten as
Vx, if x is an even integer then x2 is even.

Let E(x) be “x is an even integer,” let S(x) be “x~ is even,” and let k stand for a particular
integer that is even. Then the argument has the following form:

Vx, if E(x) then S(x).
E(k), for a particular k.
oLSk).

This argument has the form of universal modus ponens and is therefore valid. |

Example 3.4.2 Drawing Conclusions Using Universal Modus Ponens
Write the conclusion that can be inferred using universal modus ponens.
If T is any right triangle with hypotenuse Pythagorean theorem
c and legs a and b, then ¢? = a® + b°. c 1

The triangle shown at the right is a right
triangle with both legs equal to 1 and ]
hypotenuse c.

Solution ¢2=124+12=2
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134 Chapter 3 The Logic of Quantified Statements

Note that if you take the nonnegative square root of both sides of this equation, you
obtain ¢ = +/2. This shows that there is a line segment whose length is V/2. Section 4.7
contains a proof that +/2 is not a rational number. |

Use of Universal Modus Ponens in a Proof

In Chapter 4 we discuss methods of proving quantified statements. Here is a proof that
the sum of any two even integers is even. It makes use of the definition of even integer,
namely, that an integer is even if, and only if, it equals twice some integer. (Or, more
formally: V integers x, x is even if, and only if, 3 an integer k such that x = 2k.)

Suppose m and n are particular but arbitrarily chosen even integers. Then m = 2r for
some integer r,'" and n = 2s for some integer s.”’ Hence
m-4+n=2r+2s by substitution

=2(r + S)m by factoring out the 2.

Now r + s is an integer,”” and so 2(r + s) is even.””) Thus m + n is even.

The following expansion of the proof shows how each of the numbered steps is justified
by arguments that are valid by universal modus ponens.

Note The logical (1)  If an integer is even, then it equals twice some integer.
principle of existential m is a particular even integer.

instantiation sa_\is that if “m equals twice some integer r
we know something

exists, we may give it a (2)  If an integer is even, then it equals twice some integer.
name. This principle, n is a particular even integer.

discussed further in .. n equals twice some integer s.

Section 4.1 allows us to o . L

give the integers the (3)  If a quantity is an integer, then it is a real number.
names r and s. r and s are particular integers.

. r and s are real numbers.

For all a, b, and ¢, if a, b, and ¢ are real numbers, then ab 4+ ac = a(b + ¢).
2, r,and s are particular real numbers.
L 2r 4+ 25 =2(r + 5).
(4)  Forall u and v, if # and v are integers, then u + v is an integer.
r and s are two particular integers.
. r + s is an integer.

(5)  If a number equals twice some integer, then that number is even.
2(r 4 s) equals twice the integer r + s.
. 2(r 4+ s) is even.

Of course, the actual proof that the sum of even integers is even does not explic-
itly contain the sequence of arguments given above. (Heaven forbid!) And, in fact, peo-
ple who are good at analytical thinking are normally not even conscious that they are
reasoning in this way. But that is because they have absorbed the method so completely
that it has become almost as automatic as breathing.

Universal Modus Tollens

Another crucially important rule of inference is universal modus tollens. Its validity
results from combining universal instantiation with modus tollens. Universal modus tol-
lens is the heart of proof of contradiction, which is one of the most important methods of
mathematical argument.
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3.4 Arguments with Quantified Statements 135

Universal Modus Tollens

Formal Version Informal Version
Vx, if P(x) then Q(x). If x makes P(x) true, then x makes Q(x) true.
~Q(a), for a particular a. a does not make Q(x) true.
. ~P(a). .. a does not make P (x) true.

Example 3.4.3 Recognizing the Form of Universal Modus Tollens

Rewrite the following argument using quantifiers, variables, and predicate symbols. Write
the major premise in conditional form. Is this argument valid? Why?

All human beings are mortal.
Zeus is not mortal.

.. Zeus is not human.
Solution  The major premise can be rewritten as
Vx, if x is human then x is mortal.

Let H(x) be “x is human,” let M (x) be “x is mortal,” and let Z stand for Zeus. The
argument becomes

Vx,if H(x) then M (x)
~M(Z)
C.~H(Z).

This argument has the form of universal modus tollens and is therefore valid. |

Example 3.4.4 Drawing Conclusions Using Universal Modus Tollens
Write the conclusion that can be inferred using universal modus tollens.

All professors are absent-minded.
Tom Hutchins is not absent-minded.

Solution  Tom Hutchins is not a professor. [ ]

Proving Validity of Arguments with Quantified
Statements

The intuitive definition of validity for arguments with quantified statements is the same as
for arguments with compound statements. An argument is valid if, and only if, the truth
of its conclusion follows necessarily from the truth of its premises. The formal definition
is as follows:

o Definition

To say that an argument form is valid means the following: No matter what particular
predicates are substituted for the predicate symbols in its premises, if the resulting
premise statements are all true, then the conclusion is also true. An argument is
called valid if, and only if, its form is valid.
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136 Chapter 3 The Logic of Quantified Statements

As already noted, the validity of universal instantiation follows immediately from the
definition of the truth value of a universal statement. General formal proofs of validity
of arguments in the predicate calculus are beyond the scope of this book. We give the
proof of the validity of universal modus ponens as an example to show that such proofs
are possible and to give an idea of how they look.

Universal modus ponens asserts that

Vx,if P(x) then Q(x).
P (a) for a particular a.
. 0(a).

To prove that this form of argument is valid, suppose the major and minor premises are
both true. [We must show that the conclusion “Q(a)” is also true.] By the minor premise,
P(a) is true for a particular value of a. By the major premise and universal instantiation,
the statement “If P(a) then Q(a)” is true for that particular a. But by modus ponens,
since the statements “If P(a) then Q(a)” and “P(a)” are both true, it follows that Q(a)
is true also. [This is what was to be shown.]

The proof of validity given above is abstract and somewhat subtle. We include the
proof not because we expect that you will be able to make up such proofs yourself at
this stage of your study. Rather, it is intended as a glimpse of a more advanced treatment
of the subject, which you can try your hand at in exercises 35 and 36 at the end of this
section if you wish.

One of the paradoxes of the formal study of logic is that the laws of logic are used to
prove that the laws of logic are valid!

In the next part of this section we show how you can use diagrams to analyze the
validity or invalidity of arguments that contain quantified statements. Diagrams do not
provide totally rigorous proofs of validity and invalidity, and in some complex settings
they may even be confusing, but in many situations they are helpful and convincing.

Using Diagrams to Test for Validity
Consider the statement
All integers are rational numbers.
Or, formally,
Vintegers n, n is a rational number.

Picture the set of all integers and the set of all rational numbers as disks. The truth of the
given statement is represented by placing the integers disk entirely inside the rationals
disk, as shown in Figure 3.4.1.

rational numbers

integers

Figure 3.4.1
Because the two statements “Vx € D, Q(x)” and “Vx, if x is in D then Q(x)” are logi-

cally equivalent, both can be represented by diagrams like the foregoing.
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3.4 Arguments with Quantified Statements 137

Perhaps the first person to use diagrams like these to analyze arguments was the
German mathematician and philosopher Gottfried Wilhelm Leibniz. Leibniz (LIPE-nits)
was far ahead of his time in anticipating modern symbolic logic. He also developed the
main ideas of the differential and integral calculus at approximately the same time as (and
independently of) Isaac Newton (1642-1727).

To test the validity of an argument diagrammatically, represent the truth of both
premises with diagrams. Then analyze the diagrams to see whether they necessarily rep-
resent the truth of the conclusion as well.

Culver Pictures

G. W. Leibniz
(1646-1716)

Example 3.4.5 Using a Diagram to Show Validity
Use diagrams to show the validity of the following syllogism:

All human beings are mortal.
Zeus is not mortal.
.. Zeus is not a human being.
Solution  The major premise is pictured on the left in Figure 3.4.2 by placing a disk labeled

“human beings” inside a disk labeled “mortals.” The minor premise is pictured on the
right in Figure 3.4.2 by placing a dot labeled ‘“Zeus” outside the disk labeled “mortals.”

human beings Zeus

Major premise Minor premise

Figure 3.4.2

The two diagrams fit together in only one way, as shown in Figure 3.4.3.

human beings Zeus

Figure 3.4.3

Since the Zeus dot is outside the mortals disk, it is necessarily outside the human beings
disk. Thus the truth of the conclusion follows necessarily from the truth of the premises.
It is impossible for the premises of this argument to be true and the conclusion false;
hence the argument is valid. |
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138 Chapter 3 The Logic of Quantified Statements

Example 3.4.6 Using Diagrams to Show Invalidity
Use a diagram to show the invalidity of the following argument:

All human beings are mortal.
Felix is mortal.

.. Felix is a human being.

Solution  The major and minor premises are represented diagrammatically in Figure 3.4.4.

mortals
human beings
® Felix
Major premise Minor premise

Figure 3.4.4

All that is known is that the Felix dot is located somewhere inside the mortals disk.
Where it is located with respect to the human beings disk cannot be determined. Either
one of the situations shown in Figure 3.4.5 might be the case.

mortals

A

Caution!  Be careful
when using diagrams to

mortals

test for validity! For human beings

human beings

instance, in this example
if you put the diagrams ® Felix
for the premises together
to obtain only Figure
3.4.5(a) and not Figure (a) (b)
3.4.5(b), you would Figure 3.4.5

conclude erroneously that

the argument was valid. . .. . . . .
¢ The conclusion “Felix is a human being” is true in the first case but not in the second

(Felix might, for example, be a cat). Because the conclusion does not necessarily follow
from the premises, the argument is invalid. |

The argument of Example 3.4.6 would be valid if the major premise were replaced
by its converse. But since a universal conditional statement is not logically equivalent to
its converse, such a replacement cannot, in general, be made. We say that this argument
exhibits the converse error.

Converse Error (Quantified Form)
Formal Version Informal Version
Vx, if P(x) then Q(x). If x makes P (x) true, then x makes Q(x) true.
Q(a) for a particular a. a makes Q(x) true.
. P(a). < invalid . a makes P(x) true. < invalid
conclusion conclusion
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3.4 Arguments with Quantified Statements 139

The following form of argument would be valid if a conditional statement were logi-
cally equivalent to its inverse. But it is not, and the argument form is invalid. We say that

it exhibits the inverse error. You are asked to show the invalidity of this argument form in
the exercises at the end of this section.

Inverse Error (Quantified Form)

Formal Version Informal Version
Vx, if P(x) then Q(x). If x makes P (x) true, then x makes Q(x) true.
~P (a), for a particular a. a does not make P (x) true.
.~Q(a). < invalid .. a does not make Q(x) true. < invalid

conclusion conclusion

Example 3.4.7 An Argument with “No”
Use diagrams to test the following argument for validity:

No polynomial functions have horizontal asymptotes.
This function has a horizontal asymptote.
.. This function is not a polynomial function.

Solution A good way to represent the major premise diagrammatically is shown in Figure

3.4.6, two disks—a disk for polynomial functions and a disk for functions with horizontal
asymptotes—that do not overlap at all. The minor premise is represented by placing a dot
labeled “this function” inside the disk for functions with horizontal asymptotes.

functions with
horizontal asymptotes

polynomial functions

@ this function

Figure 3.4.6

The diagram shows that “this function” must lie outside the polynomial functions disk,

and so the truth of the conclusion necessarily follows from the truth of the premises.
Hence the argument is valid. |

An alternative approach to this example is to transform the statement “No polynomial
functions have horizontal asymptotes” into the equivalent form “Vx, if x is a polynomial

function, then x does not have a horizontal asymptote.” If this is done, the argument can
be seen to have the form

Vi, if P(x) then Q(x).
~Q(a), for a particular a.

c.~P(a).

where P(x) is “x is a polynomial function” and Q(x) is “x does not have a horizontal
asymptote.” This is valid by universal modus tollens.
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140 Chapter 3 The Logic of Quantified Statements

Creating Additional Forms of Argument

Universal modus ponens and modus tollens were obtained by combining universal instan-
tiation with modus ponens and modus tollens. In the same way, additional forms of argu-
ments involving universally quantified statements can be obtained by combining universal
instantiation with other of the valid argument forms given in Section 2.3. For instance, in
Section 2.3 the argument form called transitivity was introduced:

pP—49q
q—)r
p—r

This argument form can be combined with universal instantiation to obtain the following
valid argument form.

Universal Transitivity
Formal Version Informal Version
VxP(x) - Q(x). Any x that makes P (x) true makes Q(x) true.
VxQ(x) — R(x). Any x that makes Q(x) true makes R(x) true.
. VYxP(x) - R(x). .. Any x that makes P (x) true makes R(x) true.

Example 3.4.8 Evaluating an Argument for Tarski’s World

The following argument refers to the kind of arrangement of objects of various types and
colors described in Examples 3.1.13 and 3.3.1. Reorder and rewrite the premises to show
that the conclusion follows as a valid consequence from the premises.

1. All the triangles are blue.
2. If an object is to the right of all the squares, then it is above all the circles.
3. If an object is not to the right of all the squares, then it is not blue.
.. All the triangles are above all the circles.
Solution It is helpful to begin by rewriting the premises and the conclusion in if-then form:
1. Vx, if x is a triangle, then x is blue.
2. Vx, if x is to the right of all the squares, then x is above all the circles.
3. Vx, if x is not to the right of all the squares, then x is not blue.
.. Vx, if x is a triangle, then x is above all the circles.

The goal is to reorder the premises so that the conclusion of each is the same as
the hypothesis of the next. Also, the hypothesis of the argument’s conclusion should be
the same as the hypothesis of the first premise, and the conclusion of the argument’s
conclusion should be the same as the conclusion of the last premise. To achieve this goal,
it may be necessary to rewrite some of the statements in contrapositive form.

In this example you can see that the first premise should remain where it is, but the
second and third premises should be interchanged. Then the hypothesis of the argument
is the same as the hypothesis of the first premise, and the conclusion of the argument’s
conclusion is the same as the conclusion of the third premise. But the hypotheses and

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3.4 Arguments with Quantified Statements 141

conclusions of the premises do not quite line up. This is remedied by rewriting the third
premise in contrapositive form.
Thus the premises and conclusion of the argument can be rewritten as follows:

1. Vx, if x is a triangle, then x is blue.

3. Vx, if x is blue, then x is to the right of all the squares.

2. Vx, if x is to the right of all the squares, then x is above all the circles.
.. Vx, if x is a triangle, then x is above all the circles.

The validity of this argument follows easily from the validity of universal transitivity.
Putting 1 and 3 together and using universal transitivity gives that

4. Vx, if x is a triangle, then x is to the right of all the squares.

And putting 4 together with 2 and using universal transitivity gives that
Vx, if x is a triangle, then x is above all the circles,

which is the conclusion of the argument. |

Remark on the Converse and Inverse Errors

One reason why so many people make converse and inverse errors is that the forms of
the resulting arguments would be valid if the major premise were a biconditional rather
than a simple conditional. And, as we noted in Section 2.2, many people tend to conflate
biconditionals and conditionals.

Consider, for example, the following argument:

All the town criminals frequent the Den of Iniquity bar.
John frequents the Den of Iniquity bar.

.". John is one of the town criminals.

The conclusion of this argument is invalid—it results from making the converse error.
Therefore, it may be false even when the premises of the argument are true. This type of
argument attempts unfairly to establish guilt by association.

The closer, however, the major premise comes to being a biconditional, the more
likely the conclusion is to be true. If hardly anyone but criminals frequents the bar and
John also frequents the bar, then it is likely (though not certain) that John is a criminal.
On the basis of the given premises, it might be sensible to be suspicious of John, but it
would be wrong to convict him.

A variation of the converse error is a very useful reasoning tool, provided that it
is used with caution. It is the type of reasoning that is used by doctors to make medical
diagnoses and by auto mechanics to repair cars. It is the type of reasoning used to generate
explanations for phenomena. It goes like this: If a statement of the form

For all x, if P(x) then Q(x)
is true, and if
Q(a) is true, for a particular a,

then check out the statement P (a); it just might be true. For instance, suppose a doctor
knows that

For all x, if x has pneumonia, then x has a fever and chills,
coughs deeply, and feels exceptionally tired and miserable.
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And suppose the doctor also knows that

John has a fever and chills, coughs deeply,
and feels exceptionally tired and miserable.

On the basis of these data, the doctor concludes that a diagnosis of pneumonia is a strong
possibility, though not a certainty. The doctor will probably attempt to gain further sup-
port for this diagnosis through laboratory testing that is specifically designed to detect
pneumonia. Note that the closer a set of symptoms comes to being a necessary and suf-
ficient condition for an illness, the more nearly certain the doctor can be of his or her
diagnosis.

This form of reasoning has been named abduction by researchers working in artificial
intelligence. It is used in certain computer programs, called expert systems, that attempt
to duplicate the functioning of an expert in some field of knowledge.

Test Yourself

1. The rule of universal instantiation says that if some property “For a particular value of a ,” then the conclusion can
is true for in a domain, then it is true for . be written as “ D
. . . 4. If the fir remi f universal transitivity are written
2. If the first two premises of universal modus ponens are writ- the first two premises of universal transitivity are writte

as “Any x that makes P (x) true makes Q(x) true” and “Any
x that makes Q(x) true makes R(x) true,” then the conclu-

»

ten as “If x makes P (x) true, then x makes Q(x) true” and

“For a particular value of a ,” then the conclusion can . - “
. « ' sion can be written as
be written as . —

5. Diagrams can be helpful in testing an argument for validity.

3. If the first two premises of universal modus tollens are writ- However, if some possible configurations of the premises
ten as “If x makes P (x) true, then xmakes Q(x) true” and are not drawn, a person could conclude that an argument
was when it was actually .

Exercise Set 3.4

1. Let the following law of algebra be the first statement of an 4.V real numbers r, a, and b, if r is positive, then
argument: For all real numbers a and b, r9)b =re.
r=3,a=1/2, and b = 6 are particular real numbers

2_ 2 2
(a+b) =a +2ab+b. such that r is positive.

Suppose each of the following statements is, in turn, the
second statement of the argument. Use universal instantia-
tion or universal modus ponens to write the conclusion that Use universal modus tollens to fill in valid conclusions for the
follows in each case. arguments in 5 and 6.

a. a=xand b =y are particular real numbers. 5. Allirrational numbers are real numbers

b. a = f; and b = f; are particular real numbers. 1.

c. a = 3u and b = 5v are particular real numbers. p ismota real number.

d. a = g(r) and b = g(s) are particular real numbers. ’

e. a = log(r;) and b = log(r,) are particular real numbers. 6.  If a computer program is correct, then compilation of the
Use universal instantiation or universal modus ponens to fill in program does not produce error messages.
valid conclusions for the arguments in 2—4. Compilation of this program produces error messages.

2. If an integer n equals 2-k and k is an integer, then n is
even.

. . Some of the arguments in 7-18 are valid by universal modus
0 equals 2-0 and 0 is an integer.

ponens or universal modus tollens; others are invalid and exhibit
the converse or the inverse error. State which are valid and
3. For all real numbers a, b, ¢, and d, if b # 0 and d # 0, which are invalid. Justify your answers.

thena/b + c¢/d = (ad + bc)/bd. 7.

a=2, b=3, c=4, and d =5 are particular real

numbers such that b # 0 and d # 0.

All healthy people eat an apple a day.
Keisha eats an apple a day.
.. Keisha is a healthy person.
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10.

12.

13.

16.

17.

18.

All freshmen must take writing.
Caroline is a freshman.
*. Caroline must take writing.

All healthy people eat an apple a day.
Herbert is not a healthy person.
*. Herbert does not eat an apple a day.

If a product of two numbers is 0, then at least one of the
numbers is 0.
For a particular number x, neither (2x 4+ 1) nor (x — 7)
equals 0.

*. The product (2x + 1)(x — 7) is not 0.

All cheaters sit in the back row.
Monty sits in the back row.
". Monty is a cheater.

All honest people pay their taxes.
Darth is not honest.
*. Darth does not pay his taxes.

For all students x, if x studies discrete mathematics, then
x is good at logic.
Tarik studies discrete mathematics.

*. Tarik is good at logic.

If compilation of a computer program produces error
messages, then the program is not correct.
Compilation of this program does not produce error
messages.

*. This program is correct.

Any sum of two rational numbers is rational.
The sum r + s is rational.
*. The numbers r and s are both rational.

If a number is even, then twice that number is even.
The number 27 is even, for a particular number 7.
*. The particular number 7 is even.

If an infinite series converges, then the terms go to 0.

© 1
The terms of the infinite series Y. — go to 0.

n=1
> 1
*. The infinite series ) — converges.
n=1 N

If an infinite series converges, then its terms go to 0.

> n
The terms of the infinite series P do not go to 0.
n=1 NI

00
*. The infinite series ) _
n=1 1

does not converge.

. Rewrite the statement “No good cars are cheap” in the form

“VYx, if P(x) then ~Q(x).” Indicate whether each of the
following arguments is valid or invalid, and justify your
answers.
a.  No good car is cheap.
A Rimbaud is a good car.
.. A Rimbaud is not cheap.

20.

a.
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No good car is cheap.
A Simbaru is not cheap.
*. A Simbaru is a good car.
No good car is cheap.
A VX Roadster is cheap.
*. A VX Roadster is not good.
No good car is cheap.
An Omnex is not a good car.
*. An Omnex is cheap.

Use a diagram to show that the following argument can
have true premises and a false conclusion.

All dogs are carnivorous.
Aaron is not a dog.
.. Aaron is not carnivorous.

. What can you conclude about the validity or invalidity

of the following argument form? Explain how the result
from part (a) leads to this conclusion.

Vx,if P(x) then Q(x).
~P (a) for a particular a.

w~Q(a).

Indicate whether the arguments in 21-27 are valid or invalid.

Support your answers by drawing diagrams.

21.

22.

24.

26.

27.

All people are mice.
All mice are mortal.

*. All people are mortal.

All discrete mathematics students can tell a valid
argument from an invalid one.

All thoughtful people can tell a valid argument from an
invalid one.

.. All discrete mathematics students are thoughtful.

All teachers occasionally make mistakes.
No gods ever make mistakes.

*. No teachers are gods.

No vegetarians eat meat.
All vegans are vegetarian.

*. No vegans eat meat.

No college cafeteria food is good.
No good food is wasted.

*. No college cafeteria food is wasted.

All polynomial functions are differentiable.
All differentiable functions are continuous.

-, All polynomial functions are continuous.

[Adapted from Lewis Carroll.]
Nothing intelligible ever puzzles me.
Logic puzzles me.

*. Logic is unintelligible.
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In exercises 28-32, reorder the premises in each of the
arguments to show that the conclusion follows as a valid con-
sequence from the premises. It may be helpful to rewrite the
statements in if-then form and replace some statements by their
contrapositives. Exercises 28-30 refer to the kinds of Tarski
worlds discussed in Example 3.1.13 and 3.3.1. Exercises 31 and
32 are adapted from Symbolic Logic by Lewis Carroll.*

28. 1. Every object that is to the right of all the blue objects is
above all the triangles.
2. If an object is a circle, then it is to the right of all the
blue objects.
3. If an object is not a circle, then it is not gray.
*. All the gray objects are above all the triangles.

29. 1. All the objects that are to the right of all the triangles are
above all the circles.
2. If an object is not above all the black objects, then it is
not a square.
3. All the objects that are above all the black objects are to
the right of all the triangles.
*. All the squares are above all the circles.

30. 1. If an object is above all the triangles, then it is above all
the blue objects.
2. If an object is not above all the gray objects, then it is
not a square.
3. Every black object is a square.
4. Every object that is above all the gray objects is above
all the triangles.
*. If an object is black, then it is above all the blue objects.

31. 1. Itrust every animal that belongs to me.
2. Dogs gnaw bones.
3. I admit no animals into my study unless they will beg
when told to do so.
4. All the animals in the yard are mine.
5. T admit every animal that I trust into my study.

*Lewis Carroll, Symbolic Logic (New York: Dover, 1958),
pp. 118, 120, 123.

Answers for Test Yourself

6. The only animals that are really willing to beg when told
to do so are dogs.
*. All the animals in the yard gnaw bones.

32. 1. When I work a logic example without grumbling, you

may be sure it is one I understand.

2. The arguments in these examples are not arranged in
regular order like the ones I am used to.

3. No easy examples make my head ache.

4. 1 can’t understand examples if the arguments are not
arranged in regular order like the ones I am used to.

5. I never grumble at an example unless it gives me a
headache.

*. These examples are not easy.

In 33 and 34 a single conclusion follows when all the given
premises are taken into consideration, but it is difficult to see
because the premises are jumbled up. Reorder the premises to
make it clear that a conclusion follows logically, and state the
valid conclusion that can be drawn. (It may be helpful to rewrite
some of the statements in if-then form and to replace some state-
ments by their contrapositives.)

33. 1. No birds except ostriches are at least 9 feet tall.
2. There are no birds in this aviary that belong to anyone
but me.
. No ostrich lives on mince pies.
. I have no birds less than 9 feet high.

W

34. 1. All writers who understand human nature are clever.

. No one is a true poet unless he can stir the human heart.

. Shakespeare wrote Hamlet.

. No writer who does not understand human nature can
stir the human heart.

5. None but a true poet could have written Hamlet.

R R S

> 35. Derive the validity of universal modus tollens from the

validity of universal instantiation and modus tollens.

> 36. Derive the validity of universal form of part(a) of the elim-

ination rule from the validity of universal instantiation and
the valid argument called elimination in Section 2.3.

1. all elements; any particular element in the domain (Or: each individual element of the domain) 2. P(a) is true; Q(a) is true
3. Q(a) is false; P(a) is false 4. Any x that makes P (x) true makes R(x) true. 5. valid; invalid (Or: invalid; valid).
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CHAPTER 4

ELEMENTARY NUMBER THEORY
AND METHODS OF PROOF

The underlying content of this chapter is likely to be familiar to you. It consists of proper-
ties of integers (whole numbers), rational numbers (integer fractions), and real numbers.
The underlying theme of this chapter is the question of how to determine the truth or
falsity of a mathematical statement.

Here is an example involving a concept used frequently in computer science. Given
any real number x, the floor of x, or greatest integer in x, denoted |x], is the largest
integer that is less than or equal to x. On the number line, | x] is the integer immediately
to the left of x (or equal to x if x is, itself, an integer). Thus [2.3] = 2, [12.99999] = 12,
and |—1.5] = —2. Consider the following two questions:

1. For any real number x,is [x — 1] = |x| — 1?
2. For any real numbers x and y,is [x —y] = [x] — [y]?

Take a few minutes to try to answer these questions for yourself.

It turns out that the answer to (1) is yes, whereas the answer to (2) is no. Are these the
answers you got? If not, don’t worry. In Section 4.5 you will learn the techniques you need
to answer these questions and more. If you did get the correct answers, congratulations!
You have excellent mathematical intuition. Now ask yourself, “How sure am I of my
answers? Were they plausible guesses or absolute certainties? Was there any difference
in certainty between my answers to (1) and (2)? Would 1 have been willing to bet a large
sum of money on the correctness of my answers?”

One of the best ways to think of a mathematical proof is as a carefully reasoned
argument to convince a skeptical listener (often yourself) that a given statement is true.
Imagine the listener challenging your reasoning every step of the way, constantly asking,
“Why is that so?” If you can counter every possible challenge, then your proof as a whole
will be correct.

As an example, imagine proving to someone not very familiar with mathematical
notation that if x is a number with 5x 4+ 3 = 33, then x = 6. You could argue as follows:

If 5x + 3 = 33, then 5x + 3 minus 3 will equal 33 — 3 since subtracting the same
number from two equal quantities gives equal results. But 5x + 3 minus 3 equals
5x because adding 3 to 5x and then subtracting 3 just leaves 5x. Also, 33 — 3 = 30.
Hence 5x = 30. This means that x is a number which when multiplied by 5 equals 30.
But the only number with this property is 6. Therefore, if 5x + 3 = 33 then x = 6.

Of course there are other ways to phrase this proof, depending on the level of math-
ematical sophistication of the intended reader. In practice, mathematicians often omit

145
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146 Chapter 4 Elementary Number Theory and Methods of Proof

reasons for certain steps of an argument when they are confident that the reader can easily
supply them. When you are first learning to write proofs, however, it is better to err on the
side of supplying too many reasons rather than too few. All too frequently, when even the
best mathematicians carefully examine some “details” in their arguments, they discover
that those details are actually false. One of the most important reason’s for requiring proof
in mathematics is that writing a proof forces us to become aware of weaknesses in our
arguments and in the unconscious assumptions we have made.

Sometimes correctness of a mathematical argument can be a matter of life or death.
Suppose, for example, that a mathematician is part of a team charged with designing
a new type of airplane engine, and suppose that the mathematician is given the job of
determining whether the thrust delivered by various engine types is adequate. If you knew
that the mathematician was only fairly sure, but not positive, of the correctness of his
analysis, you would probably not want to ride in the resulting aircraft.

At a certain point in Lewis Carroll’s Alice in Wonderland (see exercise 28 in Section
2.2), the March Hare tells Alice to “say what you mean.” In other words, she should
be precise in her use of language: If she means a thing, then that is exactly what she
should say. In this chapter, perhaps more than in any other mathematics course you have
ever taken, you will find it necessary to say what you mean. Precision of thought and
language is essential to achieve the mathematical certainty that is needed if you are to
have complete confidence in your solutions to mathematical problems.

4.1 Direct Proof and Counterexample I: Introduction

Mathematics, as a science, commenced when first someone, probably a Greek, proved
propositions about “any” things or about “some” things without specification of
definite particular things. — Alfred North Whitehead, 1861-1947

Both discovery and proof are integral parts of problem solving. When you think you have
discovered that a certain statement is true, try to figure out why it is true. If you succeed,
you will know that your discovery is genuine. Even if you fail, the process of trying will
give you insight into the nature of the problem and may lead to the discovery that the
statement is false. For complex problems, the interplay between discovery and proof is
not reserved to the end of the problem-solving process but, rather, is an important part of
each step.

Assumptions

e In this text we assume a familiarity with the laws of basic algebra, which are listed
in Appendix A.

e We also use the three properties of equality: For all objects A, B, and C,
(1)A=A,Q2)if A=Bthen B=A,and 3)if A= Band B = C,then A =C.

e In addition, we assume that there is no integer between 0 and 1 and that the set of
all integers is closed under addition, subtraction, and multiplication. This means
that sums, differences, and products of integers are integers.

e Of course, most quotients of integers are not integers. For example, 3 -+ 2, which
equals 3/2, is not an integer, and 3 - 0 is not even a number.

The mathematical content of this section primarily concerns even and odd integers
and prime and composite numbers.
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4.1 Direct Proof and Counterexample I: Introduction 147

Definitions

In order to evaluate the truth or falsity of a statement, you must understand what the
statement is about. In other words, you must know the meanings of all terms that occur
in the statement. Mathematicians define terms very carefully and precisely and consider
it important to learn definitions virtually word for word.

An integer n is even if, and only if, n equals twice some integer. An integer n is odd
if, and only if, n equals twice some integer plus 1.
Symbolically, if n is an integer, then

niseven < Jan integer k such thatn = 2k.
nisodd < Jan integer k such thatn = 2k + 1.

It follows from the definition that if you are doing a problem in which you happen to
know that a certain integer is even, you can deduce that it has the form 2 - (some integer).
Conversely, if you know in some situation that an integer equals 2-(some integer), then
you can deduce that the integer is even.

Know a particular n has the form

deduce
integer n is even. 2 - (some integer).
Know n has the form .
deduce
n is even.

2 -(some integer).

Example 4.1.1 Even and Odd Integers
Use the definitions of even and odd to justify your answers to the following questions.
a. Is 0 even?
b. Is =301 odd?
c. If a and b are integers, is 6a2b even?
d. If a and b are integers, is 10a + 86 + 1 odd?
e. Is every integer either even or odd?
Solution
a. Yes,0=2-0.
b. Yes, —301 =2(—151) + 1.

c. Yes, 6a’b = 2(3a’b), and since a and b are integers, so is 3ab (being a product of
integers).

d. Yes, 10a + 86 + 1 = 2(5a + 4b) + 1, and since a and b are integers, so is Sa + 4b

(being a sum of products of integers).

e. The answer is yes, although the proof is not obvious. (Try giving a reason yourself.)
We will show in Section 4.4 that this fact results from another fact known as the
quotient-remainder theorem. |

The integer 6, which equals 2-3, is a product of two smaller positive integers. On
the other hand, 7 cannot be written as a product of two smaller positive integers; its only
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148 Chapter 4 Elementary Number Theory and Methods of Proof

positive factors are 1 and 7. A positive integer, such as 7, that cannot be written as a
product of two smaller positive integers is called prime.

An integer n is prime if, and only if, n > 1 and for all positive integers r and s, if
n=rs, then either r or s equals n. An integer n is composite if, and only if, n > 1
and n = rs for some integers r and s with 1 <r<nand 1 <s<n.

In symbols:

nisprime < V positive integers r and s, if n = rs
then eitherr = lands =norr =nands = 1.

n is composite < 3 positive integers  and s such thatn = rs
andl <r <nandl <s <n.

Example 4.1.2 Prime and Composite Numbers
a. Is 1 prime?
b. Is every integer greater than 1 either prime or composite?
c. Write the first six prime numbers.

d. Write the first six composite numbers.

Solution
Note  The reason for not a. No. A prime number is required to be greater than 1.
allowing 1 to be prime is . . . . L
discussed in Section 4.3. b. Yes. Let n be any integer that is greater than 1. Consider all pairs of positive integers

r and s such that n = rs. There exist at least two such pairs, namely r = n and s = 1
and r = 1 and s = n. Moreover, since n = rs, all such pairs satisfy the inequalities
1 <r <nandl <s < n.Ifnisprime, then the two displayed pairs are the only ways
to write n as rs. Otherwise, there exists a pair of positive integers r and s such that
n = rs and neither r nor s equals either 1 or n. Therefore, in this case 1 < r < n and
1 < s < n, and hence n is composite.

c. 2,3,5,7,11,13
d. 4,6,8,9,10, 12 |

Proving Existential Statements

According to the definition given in Section 3.1, a statement in the form
dx € D such that Q(x)
is true if, and only if,
Q(x)is true for at least one x in D.

One way to prove this is to find an x in D that makes Q(x) true. Another way is to give
a set of directions for finding such an x. Both of these methods are called constructive
proofs of existence.
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Example 4.1.3 Constructive Proofs of Existence

a. Prove the following: 3 an even integer n that can be written in two ways as a sum of
two prime numbers.

b. Suppose that r and s are integers. Prove the following: 3 an integer k such that
22r + 18s = 2k.

Solution
a. Letn = 10. Then 10 =545 =3+ 7 and 3, 5, and 7 are all prime numbers.

b. Letk = 11r + 9s. Then k is an integer because it is a sum of products of integers; and
by substitution, 2k = 2(11r + 9s), which equals 22r + 18s by the distributive law of
algebra. |

A nonconstructive proof of existence involves showing either (a) that the existence
of a value of x that makes Q(x) true is guaranteed by an axiom or a previously proved
theorem or (b) that the assumption that there is no such x leads to a contradiction. The
disadvantage of a nonconstructive proof is that it may give virtually no clue about where
or how x may be found. The widespread use of digital computers in recent years has
led to some dissatisfaction with this aspect of nonconstructive proofs and to increased
efforts to produce constructive proofs containing directions for computer calculation of
the quantity in question.

Disproving Universal Statements by Counterexample

To disprove a statement means to show that it is false. Consider the question of disproving
a statement of the form

Vx in D, if P(x) then Q(x).

Showing that this statement is false is equivalent to showing that its negation is true. The
negation of the statement is existential:

Jx in D such that P (x) and not Q(x).

But to show that an existential statement is true, we generally give an example, and
because the example is used to show that the original statement is false, we call it a coun-
terexample. Thus the method of disproof by counterexample can be written as follows:

Disproof by Counterexample

To disprove a statement of the form “Vx € D, if P(x) then Q(x),” find a value of x
in D for which the hypothesis P(x) is true and the conclusion Q(x) is false. Such
an x is called a counterexample.

Example 4.1.4 Disproof by Counterexample
Disprove the following statement by finding a counterexample:
V real numbers a and b, ifa®> = b>thena = b.

Solution  To disprove this statement, you need to find real numbers a and b such that the
hypothesis a> = b? is true and the conclusion a = b is false. The fact that both positive
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and negative integers have positive squares helps in the search. If you flip through some
possibilities in your mind, you will quickly see that 1 and —1 will work (or 2 and —2, or
0.5 and —0.5, and so forth).

Statement: V real numbers a and b, if a®> = b2, then a = b.

Counterexample: Leta = 1 and b = —1. Then > = 1> = 1 and b> = (—1)? =1,
and so a®> = b%>. Buta # b since 1 # —1.

It is a sign of intelligence to make generalizations. Frequently, after observing a prop-
erty to hold in a large number of cases, you may guess that it holds in all cases. You may,
however, run into difficulty when you try to prove your guess. Perhaps you just have not
figured out the key to the proof. But perhaps your guess is false. Consequently, when
you are having serious difficulty proving a general statement, you should interrupt your
efforts to look for a counterexample. Analyzing the kinds of problems you are encoun-
tering in your proof efforts may help in the search. It may even happen that if you find a
counterexample and therefore prove the statement false, your understanding may be suf-
ficiently clarified that you can formulate a more limited but true version of the statement.
For instance, Example 4.1.4 shows that it is not always true that if the squares of two
numbers are equal, then the numbers are equal. However, it is true that if the squares of
two positive numbers are equal, then the numbers are equal.

Proving Universal Statements

The vast majority of mathematical statements to be proved are universal. In discussing
how to prove such statements, it is helpful to imagine them in a standard form:

Vx € D, if P(x) then O(x).

Sections 1.1 and 3.1 give examples showing how to write any universal statement in this
form. When D is finite or when only a finite number of elements satisfy P (x), such a
statement can be proved by the method of exhaustion.

Example 4.1.5 The Method of Exhaustion
Use the method of exhaustion to prove the following statement:

Vn € Z,if nis even and 4 < n < 26, then n can be written as a sum
of two prime numbers.

Solution 4=2+2 6=3+3 8=3+5 10=5+5
12=5+7 14=114+3 16=5+11 18=7+11
20=74+13 22=5+4+17 24=5+19 26=7+19 [ |

In most cases in mathematics, however, the method of exhaustion cannot be used.
For instance, can you prove by exhaustion that every even integer greater than 2 can be
written as a sum of two prime numbers? No. To do that you would have to check every
even integer, and because there are infinitely many such numbers, this is an impossible
task.
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Even when the domain is finite, it may be infeasible to use the method of exhaustion.
Imagine, for example, trying to check by exhaustion that the multiplication circuitry of a
particular computer gives the correct result for every pair of numbers in the computer’s
range. Since a typical computer would require thousands of years just to compute all
possible products of all numbers in its range (not to mention the time it would take to
check the accuracy of the answers), checking correctness by the method of exhaustion is
obviously impractical.

The most powerful technique for proving a universal statement is one that works
regardless of the size of the domain over which the statement is quantified. It is called
the method of generalizing from the generic particular. Here is the idea underlying the
method:

Method of Generalizing from the Generic Particular

To show that every element of a set satisfies a certain property, suppose x is a
particular but arbitrarily chosen element of the set, and show that x satisfies the

property.

Example 4.1.6 Generalizing from the Generic Particular

At some time you may have been shown a “mathematical trick” like the following. You
ask a person to pick any number, add 5, multiply by 4, subtract 6, divide by 2, and subtract
twice the original number. Then you astound the person by announcing that their final
result was 7. How does this “trick” work? Let an empty box [] or the symbol x stand
for the number the person picks. Here is what happens when the person follows your

directions:
Step Visual Result Algebraic Result
Pick a number. d X
Add 5. Ol x+5
Multiply by 4. O
I —
Ol (x+5)-4=4x+20
Ol
Subtract 6. Y
il
4x +20) —6=4x+ 14
ojny | @
A
Divide by 2. (Al 4x + 14
=2 7
S 2 t
Subtract twice the original number. : : " Qx+7)—2x =7

Thus no matter what number the person starts with, the result will always be 7. Note that
the x in the analysis above is particular (because it represents a single quantity), but it
is also arbitrarily chosen or generic (because any number whatsoever can be put in its
place). This illustrates the process of drawing a general conclusion from a particular but
generic object. |
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The point of having x be arbitrarily chosen (or generic) is to make a proof that can
be generalized to all elements of the domain. By choosing x arbitrarily, you are making
no special assumptions about x that are not also true of all other elements of the domain.
The word generic means “sharing all the common characteristics of a group or class.”
Thus everything you deduce about a generic element x of the domain is equally true of
any other element of the domain.

When the method of generalizing from the generic particular is applied to a property
of the form “If P(x) then Q(x),” the result is the method of direct proof. Recall that
the only way an if-then statement can be false is for the hypothesis to be true and the
conclusion to be false. Thus, given the statement “If P(x) then Q(x),” if you can show
that the truth of P (x) compels the truth of Q(x), then you will have proved the statement.
It follows by the method of generalizing from the generic particular that to show that “Vx,
if P(x) then Q(x),” is true for all elements x in a set D, you suppose x is a particular but
arbitrarily chosen element of D that makes P (x) true, and then you show that x makes

Q(x) true.

Method of Direct Proof

1. Express the statement to be proved in the form “Vx € D, if P(x) then Q(x).”
(This step is often done mentally.)

2. Start the proof by supposing x is a particular but arbitrarily chosen element of D
for which the hypothesis P (x) is true. (This step is often abbreviated “Suppose
x € D and P(x).”)

3. Show that the conclusion Q(x) is true by using definitions, previously established
results, and the rules for logical inference.

j Example 4.1.7 A Direct Proof of a Theorem

Prove that the sum of any two even integers is even.

Caution!  The word rwo . . o .

in this statement does not Solution  Whenever you are presented with a statement to be proved, it is a good idea to
necessarily refer to two ask yourself whether you believe it to be true. In this case you might imagine some pairs
distinct integers. If a of even integers, say 2 + 4, 6 + 10, 12 4 12, 28 + 54, and mentally check that their sums
choice of integers is made are even. However, since you cannot possibly check all pairs of even numbers, you cannot
arbitrarily, the integers are . . . . . .
[ know for sure that the statement is true in general by checking its truth in these particular
very likely to be distinct, R X . X
but they might be the instances. Many properties hold for a large number of examples and yet fail to be true in
same. general.

To prove this statement in general, you need to show that no matter what even integers
are given, their sum is even. But given any two even integers, it is possible to represent
them as 2r and 2s for some integers r and s. And by the distributive law of algebra,
2r + 25 = 2(r + s), which is even. Thus the statement is true in general.

Suppose the statement to be proved were much more complicated than this. What is
the method you could use to derive a proof?

Formal Restatement: ¥ integers m and n, if m and n are even then m + n is even.

This statement is universally quantified over an infinite domain. Thus to prove it in gen-
eral, you need to show that no matter what two integers you might be given, if both of
them are even then their sum will also be even.

Next ask yourself, “Where am I starting from?” or “What am I supposing?” The
answer to such a question gives you the starting point, or first sentence, of the proof.
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A

Caution!  Because m
and n are arbitrarily

chosen, they could be any

pair of even integers
whatsoever. Once r is
introduced to satisfy

m = 2r, then r is not
available to represent
something else. If you
had set m = 2r, and

n = 2r, then m would
equal n, which need not
be the case.
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Starting Point: Suppose m and n are particular but arbitrarily chosen integers that are
even.

Or, in abbreviated form:
Suppose m and n are any even integers.

Then ask yourself, “What conclusion do I need to show in order to complete the proof?”
To Show: m + n is even.

At this point you need to ask yourself, “How do I get from the starting point to the
conclusion?” Since both involve the term even integer, you must use the definition of
this term—and thus you must know what it means for an integer to be even. It follows
from the definition that since m and n are even, each equals twice some integer. One of
the basic laws of logic, called existential instantiation, says, in effect, that if you know
something exists, you can give it a name. However, you cannot use the same name to
refer to two different things, both of which are currently under discussion.

Existential Instantiation

If the existence of a certain kind of object is assumed or has been deduced then it
can be given a name, as long as that name is not currently being used to denote
something else.

Thus since m equals twice some integer, you can give that integer a name, and since n
equals twice some integer, you can also give that integer a name:

m = 2r, for some integer r and n = 2s, for some integer s.

Now what you want to show is that m + n is even. In other words, you want to show
that m + n equals 2 - (some integer). Having just found alternative representations for m
(as 2r) and n (as 2s), it seems reasonable to substitute these representations in place of m
and n:

m+n =2r+2s.

Your goal is to show that m + n is even. By definition of even, this means that m + n can
be written in the form

2 -(some integer).

This analysis narrows the gap between the starting point and what is to be shown to
showing that

2r 4+ 2s = 2-(some integer).
Why is this true? First, because of the distributive law from algebra, which says that
2r +2s =2(r +s),

and, second, because the sum of any two integers is an integer, which implies that r 4 s
is an integer.

This discussion is summarized by rewriting the statement as a theorem and giving a
formal proof of it. (In mathematics, the word theorem refers to a statement that is known
to be true because it has been proved.) The formal proof, as well as many others in this
text, includes explanatory notes to make its logical flow apparent. Such comments are
purely a convenience for the reader and could be omitted entirely. For this reason they are
italicized and enclosed in italic square brackets: [ J.
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Donald Knuth, one of the pioneers of the science of computing, has compared con-
structing a computer program from a set of specifications to writing a mathematical proof
based on a set of axioms.* In keeping with this analogy, the bracketed comments can be
thought of as similar to the explanatory documentation provided by a good programmer.
Documentation is not necessary for a program to run, but it helps a human reader under-
stand what is going on.

Theorem 4.1.1

The sum of any two even integers is even.

Proof:

Suppose m and n are [particular but arbitrarily chosen] even integers. [We must show
that m + n is even.] By definition of even, m = 2r and n = 2s for some integers r

and s. Then
m+4+n=2r+42s by substitution
=2(r+s) by factoring out a 2.
Note Introducing  to Let t = r 4 5. Note that ¢ is an integer because it is a sum of integers. Hence
equal r + s is another use . .
of existential m+n =2t wheret is an integer.

instantiation. It follows by definition of even that m + n is even. [This is what we needed to show.]"

Most theorems, like the one above, can be analyzed to a point where you realize that
as soon as a certain thing is shown, the theorem will be proved. When that thing has been
shown, it is natural to end the proof with the words “this is what we needed to show.” The
Latin words for this are quod erat demonstrandum, or Q.E.D. for short. Proofs in older
mathematics books end with these initials.

Note that both the if and the only if parts of the definition of even were used in the
proof of Theorem 4.1.1. Since m and n were known to be even, the only if (=) part of
the definition was used to deduce that m and n had a certain general form. Then, after
some algebraic substitution and manipulation, the if (<) part of the definition was used
to deduce that m 4 n was even.

Directions for Writing Proofs of Universal Statements

Think of a proof as a way to communicate a convincing argument for the truth of a
mathematical statement. When you write a proof, imagine that you will be sending it to
a capable classmate who has had to miss the last week or two of your course. Try to be
clear and complete. Keep in mind that your classmate will see only what you actually
write down, not any unexpressed thoughts behind it. Ideally, your proof will lead your
classmate to understand why the given statement is true.

*Donald E. Knuth, The Art of Computer Programming, 2nd ed., Vol. I (Reading, MA: Addison-
Wesley, 1973), p. ix.

See page 134 for a discussion of the role of universal modus ponens in this proof.
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Over the years, the following rules of style have become fairly standard for writing
the final versions of proofs:

1. Copy the statement of the theorem to be proved on your paper.
2. Clearly mark the beginning of your proof with the word Proof.

3. Make your proof self-contained.

This means that you should explain the meaning of each variable used in your
proof in the body of the proof. Thus you will begin proofs by introducing the initial
variables and stating what kind of objects they are. The first sentence of your proof
would be something like “Suppose m and n are any even integers” or “Let x be a real
number such that x is greater than 2.” This is similar to declaring variables and their
data types at the beginning of a computer program.

At a later point in your proof, you may introduce a new variable to represent a
quantity that is known at that point to exist. For example, if you have assumed that a
particular integer # is even, then you know that n equals 2 times some integer, and you
can give this integer a name so that you can work with it concretely later in the proof.
Thus if you decide to call the integer, say, s, you would write, “Since n is even, n = 2s
for some integer s,” or “since n is even, there exists an integer s such that n = 2s5.”

4. Write your proof in complete, gramatically correct sentences.
This does not mean that you should avoid using symbols and shorthand abbrevia-
tions, just that you should incorporate them into sentences. For example, the proof of
Theorem 4.1.1 contains the sentence

Thenm +n =2r + 2s
=2(r +s).

To read such text as a sentence, read the first equals sign as “equals” and each subse-
quent equals sign as “which equals.”

5. Keep your reader informed about the status of each statement in your proof.
Your reader should never be in doubt about whether something in your proof has
been assumed or established or is still to be deduced. If something is assumed, preface
it with a word like Suppose or Assume. If it is still to be shown, preface it with words
like, We must show that or In other words, we must show that. This is especially impor-
tant if you introduce a variable in rephrasing what you need to show. (See Common
Mistakes on the next page.)

6. Give a reason for each assertion in your proof.

Each assertion in a proof should come directly from the hypothesis of the theorem,
or follow from the definition of one of the terms in the theorem, or be a result obtained
earlier in the proof, or be a mathematical result that has previously been established or
is agreed to be assumed. Indicate the reason for each step of your proof using phrases
such as by hypothesis, by definition of .. ., and by theorem . . ..

7. Include the “little words and phrases” that make the logic of your arguments
clear.

When writing a mathematical argument, especially a proof, indicate how each
sentence is related to the previous one. Does it follow from the previous sentence or
from a combination of the previous sentence and earlier ones? If so, start the sentence
by stating the reason why it follows or by writing Then, or Thus, or So, or Hence, or
Therefore, or Consequently, or It follows that, and include the reason at the end of the
sentence. For instance, in the proof of Theorem 4.1.1, once you know that m is even,
you can write: “By definition of even, m = 2r for some integer »,” or you can write,
“Then m = 2r for some integer r by definition of even.”
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If a sentence expresses a new thought or fact that does not follow as an immedi-
ate consequence of the preceding statement but is needed for a later part of a proof,
introduce it by writing Observe that, or Note that, or But, or Now.

Sometimes in a proof it is desirable to define a new variable in terms of previous
variables. In such a case, introduce the new variable with the word Let. For instance,
in the proof of Theorem 4.1.1, once it is known that m 4+ n = 2(r + s), where r and
s are integers, a new variable ¢ is introduced to represent r 4 s. The proof goes on to
say, “Letr = r + 5. Then ¢ is an integer because it is a sum of two integers.”

8. Display equations and inequalities.

The convention is to display equations and inequalities on separate lines to increase
readability, both for other people and for ourselves so that we can more easily check
our work for accuracy. We follow the convention in the text of this book, but in order
to save space, we violate it in a few of the exercises and in many of the solutions con-
tained in Appendix B. So you may need to copy out some parts of solutions on scratch
paper to understand them fully. Please follow the convention in your own work. Leave
plenty of empty space, and don’t be stingy with paper!

Variations among Proofs

It is rare that two proofs of a given statement, written by two different people, are identi-
cal. Even when the basic mathematical steps are the same, the two people may use differ-
ent notation or may give differing amounts of explanation for their steps, or may choose
different words to link the steps together into paragraph form. An important question is
how detailed to make the explanations for the steps of a proof. This must ultimately be
worked out between the writer of a proof and the intended reader, whether they be stu-
dent and teacher, teacher and student, student and fellow student, or mathematician and
colleague. Your teacher may provide explicit guidelines for you to use in your course. Or
you may follow the example of the proofs in this book (which are generally explained
rather fully in order to be understood by students at various stages of mathematical devel-
opment). Remember that the phrases written inside brackets [ ] are intended to elucidate
the logical flow or underlying assumptions of the proof and need not be written down at
all. It is entirely your decision whether to include such phrases in your own proofs.

Common Mistakes

The following are some of the most common mistakes people make when writing math-
ematical proofs.

1. Arguing from examples.

Looking at examples is one of the most helpful practices a problem solver can
engage in and is encouraged by all good mathematics teachers. However, it is a mistake
to think that a general statement can be proved by showing it to be true for some special
cases. A property referred to in a universal statement may be true in many instances
without being true in general.

Here is an example of this mistake. It is an incorrect “proof” of the fact that the
sum of any two even integers is even. (Theorem 4.1.1).

This is true because if m = 14 and n = 6, which are both even,
then m + n = 20, which is also even.

Some people find this kind of argument convincing because it does, after all, consist
of evidence in support of a true conclusion. But remember that when we discussed
valid arguments, we pointed out that an argument may be invalid and yet have a true
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conclusion. In the same way, an argument from examples may be mistakenly used to
“prove” a true statement. In the previous example, it is not sufficient to show that the
conclusion “m + n is even” is true for m = 14 and n = 6. You must give an argument
to show that the conclusion is true for any even integers m and n.

2. Using the same letter to mean two different things.
Some beginning theorem provers give a new variable quantity the same letter name
as a previously introduced variable. Consider the following “proof” fragment:

Suppose m and n are any odd integers. Then by definition of odd,
m = 2k + 1 and n = 2k + 1 for some integer k.

This is incorrect. Using the same symbol, k, in the expressions for both m and n
implies that m = 2k + 1 = n. It follows that the rest of the proof applies only to inte-
gers m and n that equal each other. This is inconsistent with the supposition that m
and n are arbitrarily chosen odd integers. For instance, the proof would not show that
the sum of 3 and 5 is even.

3. Jumping to a conclusion.
To jump to a conclusion means to allege the truth of something without giving an
adequate reason. Consider the following “proof” that the sum of any two even integers
is even.

Suppose m and n are any even integers. By definition of even, m = 2r and
n = 2s for some integers r and s. Then m +n = 2r + 2s. Som + n is even.

The problem with this “proof™ is that the crucial calculation
2r +2s =2(r +5)
is missing. The author of the “proof” has jumped prematurely to a conclusion.

4. Circular reasoning.
To engage in circular reasoning means to assume what is to be proved; it is a
variation of jumping to a conclusion. As an example, consider the following “proof™
of the fact that the product of any two odd integers is odd:

Suppose m and n are any odd integers. When any odd integers are
multiplied, their product is odd. Hence mn is odd.

5. Confusion between what is known and what is still to be shown.

A more subtle way to engage in circular reasoning occurs when the conclusion to
be shown is restated using a variable. Here is an example in a “proof™ that the product
of any two odd integers is odd:

Suppose m and n are any odd integers. We must show that mn is odd. This means

that there exists an integer s such that

mn = 2s + 1.
Also by definition of odd, there exist integers a and b such that
m=2a+1andn =2b+ 1.
Then
mn=QRa+1)2b+1)=2s+ 1.

So, since s is an integer, mn is odd by definition of odd.

In this example, when the author restated the conclusion to be shown (that mn is
odd), the author wrote “there exists an integer s such that mn = 2s 4+ 1.” Later the
author jumped to an unjustified conclusion by assuming the existence of this s when
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that had not, in fact, been established. This mistake might have been avoided if the
author had written “This means that we must show that there exists an integer s such
that

mn =2s + 1.

An even better way to avoid this kind of error is not to introduce a variable into a proof
unless it is either part of the hypothesis or deducible from it.

6. Use of any rather than some.

There are a few situations in which the words any and some can be used inter-
changeably. For instance, in starting a proof that the square of any odd integer is odd,
one could correctly write “Suppose m is any odd integer” or “Suppose m is some odd
integer.” In most situations, however, the words any and some are not interchangeable.
Here is the start of a “proof™ that the square of any odd integer is odd, which uses any
when the correct word is some:

Suppose m is a particular but arbitrarily chosen odd integer.
By definition of odd, m = 2a + 1 for any integer a.

In the second sentence it is incorrect to say that “m = 2a + 1 for any integer a”
because a cannot be just “any” integer; in fact, solving m = 2a + 1 for a shows
that the only possible value for a is (m — 1)/2. The correct way to finish the sec-
ond sentence is, “m = 2a + 1 for some integer a” or “there exists an integer a such
thatm = 2a + 1

7. Misuse of the word if.

Another common error is not serious in itself, but it reflects imprecise think-
ing that sometimes leads to problems later in a proof. This error involves using the
word if when the word because is really meant. Consider the following proof
fragment:

Suppose p is a prime number. If p is prime, then p cannot be
written as a product of two smaller positive integers.

The use of the word if in the second sentence is inappropriate. It suggests that the
primeness of p is in doubt. But p is known to be prime by the first sentence. It cannot
be written as a product of two smaller positive integers because it is prime. Here is a
correct version of the fragment:

Suppose p is a prime number. Because p is prime, p cannot be
written as a product of two smaller positive integers.

Getting Proofs Started

Believe it or not, once you understand the idea of generalizing from the generic particular
and the method of direct proof, you can write the beginnings of proofs even for theorems
you do not understand. The reason is that the starting point and what is to be shown in a
proof depend only on the linguistic form of the statement to be proved, not on the content
of the statement.

Example 4.1.8 Identifying the “Starting Point”’ and the “Conclusion to Be Shown”

Note  You are not Write the first sentence of a proof (the “starting point”) and the last sentence of a proof
expected to know (the “conclusion to be shown”) for the following statement:

anything about complete,

bipartite graphs. Every complete, bipartite graph is connected.
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Solution It is helpful to rewrite the statement formally using a quantifier and a variable:

domain hypothesis conclusion
e —_——

Formal Restatement: ¥ graphs G, if G is complete and bipartite, then G is connected.

The first sentence, or starting point, of a proof supposes the existence of an object (in
this case G) in the domain (in this case the set of all graphs) that satisfies the hypothesis
of the if-then part of the statement (in this case that G is complete and bipartite). The
conclusion to be shown is just the conclusion of the if-then part of the statement (in this
case that G is connected).

Starting Point: Suppose G is a [particular but arbitrarily chosen] graph such that G
is complete and bipartite.

Conclusion to Be Shown: G is connected.

Thus the proof has the following shape:

Proof:

Suppose G is a [particular but arbitrarily chosen] graph such that G is complete and
bipartite.

Therefore, G is connected. n

Showing That an Existential Statement Is False

Recall that the negation of an existential statement is universal. It follows that to prove an
existential statement is false, you must prove a universal statement (its negation) is true.

Example 4.1.9 Disproving an Existential Statement
Show that the following statement is false:
There is a positive integer n such that n> 4 3n + 2 is prime.

Solution  Proving that the given statement is false is equivalent to proving its negation is
true. The negation is

For all positive integers n, n*> + 3n + 2 is not prime.

Because the negation is universal, it is proved by generalizing from the generic particular.

Claim: The statement “There is a positive integer n such that n> 4 3n + 2 is prime” is
false.

Proof:

Suppose n is any [particular but arbitrarily chosen] positive integer. [We will show that
n® 4 3n + 2 is not prime. ] We can factor n> + 3n + 2 toobtainn? +3n +2 = (n + 1)(n +
2). We also note that n + 1 and n + 2 are integers (because they are sums of integers) and
that both n + 1 > 1 and n 4+ 2 > 1 (because n > 1). Thus n”> 4+ 3n + 2 is a product of
two integers each greater than 1, and so n” 4 3n + 2 is not prime. |

Conjecture, Proof, and Disproof

More than 350 years ago, the French mathematician Pierre de Fermat claimed that it is
impossible to find positive integers x, y, and z with x" 4 y" = 7" if n is an integer that
is at least 3. (For n = 2, the equation has many integer solutions, such as 32 4 4% = 52
and 5% + 122 = 132.) Fermat wrote his claim in the margin of a book, along with the
comment “I have discovered a truly remarkable PROOF of this theorem which this margin
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160 Chapter 4 Elementary Number Theory and Methods of Proof

is too small to contain.” No proof, however, was found among his papers, and over the
years some of the greatest mathematical minds tried and failed to discover a proof or a
counterexample, for what came to be known as Fermat’s last theorem.

In 1986 Kenneth Ribet of the University of California at Berkeley showed that if a cer-
tain other statement, the Taniyama—Shimura conjecture, could be proved, then Fermat’s
theorem would follow. Andrew Wiles, an English mathematician and faculty member at
Princeton University, had become intrigued by Fermat’s claim while still a child and, as
an adult, had come to work in the branch of mathematics to which the Taniyama—Shimura
conjecture belonged. As soon as he heard of Ribet’s result, Wiles immediately set to work

: to prove the conjecture. In June of 1993, after 7 years of concentrated effort, he presented
Pierre de Fermat a proof to worldwide acclaim.
(1601-1665) During the summer of 1993, however, while every part of the proof was being care-
fully checked to prepare for formal publication, Wiles found that he could not justify one
step and that that step might actually be wrong. He worked unceasingly for another year
to resolve the problem, finally realizing that the gap in the proof was a genuine error but
that an approach he had worked on years earlier and abandoned provided a way around
the difficulty. By the end of 1994, the revised proof had been thoroughly checked and
pronounced correct in every detail by experts in the field. It was published in the Annals
of Mathematics in 1995. Several books and an excellent documentary television show
have been produced that convey the drama and excitement of Wiles’s discovery.*

One of the oldest problems in mathematics that remains unsolved is the Goldbach
conjecture. In Example 4.1.5 it was shown that every even integer from 4 to 26 can be
represented as a sum of two prime numbers. More than 250 years ago, Christian Goldbach
(1690-1764) conjectured that every even integer greater than 2 can be so represented.
Explicit computer-aided calculations have shown the conjecture to be true up to at least
108, But there is a huge chasm between 10'® and infinity. As pointed out by James Gleick
of the New York Times, many other plausible conjectures in number theory have proved
false. Leonhard Euler (1707-1783), for example, proposed in the eighteenth century that
a* + b* + ¢* = d* had no nontrivial whole number solutions. In other words, no three
perfect fourth powers add up to another perfect fourth power. For small numbers, Euler’s
conjecture looked good. But in 1987 a Harvard mathematician, Noam Elkies, proved it
wrong. One counterexample, found by Roger Frye of Thinking Machines Corporation in
a long computer search, is 95,800 + 217,519* + 414,560* = 422,481*.F

In May 2000, “to celebrate mathematics in the new millennium,” the Clay Mathe-
matics Institute of Cambridge, Massachusetts, announced that it would award prizes of
$1 million each for the solutions to seven longstanding, classical mathematical ques-
tions. One of them, “P vs. NP,” asks whether problems belonging to a certain class can
be solved on a computer using more efficient methods than the very inefficient methods
that are presently known to work for them. This question is discussed briefly at the end
of Chapter 11.

Bettmann/CORBIS

Andrew Wiles/Princeton University

e s S~
Andrew Wiles
(born 1953)

Test Yourself

Answers to Test Yourself questions are located at the end of each section.

1. Aninteger is even if, and only if, . 3. An integer n is prime if, and only if,

2. Aninteger is odd if, and only if, 4. The most common way to disprove a universal statement is

to find .

*“The Proof,” produced in 1997, for the series Nova on the Public Broadcasting System; Fermat’s
Enigma: The Epic Quest to Solve the World’s Greatest Mathematical Problem, by Simon Singh
and John Lynch (New York: Bantam Books, 1998); Fermat’s Last Theorem: Unlocking the Secret
of an Ancient Mathematical Problem by Amir D. Aczel (New York: Delacorte Press, 1997).

James Gleick, “Fermat’s Last Theorem Still Has Zero Solutions,” New York Times, 17 April 1988.
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5. According to the method of generalizing from the generic
particular, to show that every element of a set satisfies a cer-
tain property, suppose x is a , and show that .

Exercise Set 4.1*%

In 1-3, use the definitions of even, odd, prime, and composite
to justify each of your answers.

1. Assume that k is a particular integer.
a. Is —17 an odd integer? b. Is 0 an even integer?
c. Is2k — 1 odd?

2. Assume that m and n are particular integers.
a. Is 6m + 8n even? b. Is 10mn + 7 odd?
c. Ifm > n > 0,is m> — n® composite?

3. Assume that r and s are particular integers.
a. Is 4rs even? b. Is 6r + 45 + 3 0dd?
c. If r and s are both positive, is 7> 4 2rs + s> composite?

Prove the statements in 4—10.

4. There are integers m and n such thatm > 1 and n > 1 and
% + % is an integer.

5. There are distinct integers m and n such that % + % is an
integer.

6. There are real numbers a and b such that

Va+b =a+b.
7. There is an integer n > 5 such that 2" — 1 is prime.

8. There is a real number x such that x > 1 and 2* > x'°.

Definition: An integer n is called a perfect square if, and
only if, n = k? for some integer k.

9. There is a perfect square that can be written as a sum of two
other perfect squares.

10. There is an integer n such that 2n*> — 5n 4 2 is prime.
Disprove the statements in 11-13 by giving a counterexample.
11. For all real numbers a and b, if a < b then a® < b?.

12. For all integers n, if n is odd then % is odd.

13. For all integers m and n, if 2m + n is odd then m and n are
both odd.

In 14-16, determine whether the property is true for all integers,
true for no integers, or true for some integers and false for other
integers. Justify your answers.
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6. To use the method of direct proof to prove a statement of the
form, “For all x ina set D, if P(x) then Q(x),” one supposes
that and one shows that

14. (a + b)> = a®> + b? H15. —a" = (—a)"
16. The average of any two odd integers is odd.

Prove the statements in 17 and 18 by the method of exhaustion.

17. Every positive even integer less than 26 can be expressed
as a sum of three or fewer perfect squares. (For instance,
10 =12 +3%and 16 = 42)

18. For each integer n with 1 <n < 10, n?>—n+11is a prime
number.

19. a. Rewrite the following theorem in three different ways: as
v , if then as v s (with-
out using the words if or then), and as If , then
(without using an explicit universal quantifier).

b. Fill in the blanks in the proof of the theorem.

Theorem: The sum of any even integer and any odd inte-
ger is odd.

Proof: Suppose m is any even integer and n is @ By
definition of even, m = 2r for some ) , and by defini-
tion of odd, n = 2s + 1 for some integer s. By substitution
and algebra,

man=_9 =20 4s5)+1.

Since r and s are both integers, so is their sum r + s. Hence
m + n has the form twice some integer plus one, and so
@ by definition of odd.

Each of the statements in 20-23 is true. For each, (a) rewrite
the statement with the quantification implicit as If , then
__, and (b) write the first sentence of a proof (the “starting
point”) and the last sentence of a proof (the “conclusion to be
shown”). Note that you do not need to understand the statements
in order to be able to do these exercises.

20. For all integers m, if m > 1 then 0 < % < L.

21. For all real numbers x, if x > 1 then x> > x.

22. For all integers m and n, if mn =1 then m =n =1 or
m=n=—1.

23. For all real numbers x, if 0 < x < 1 then x? < x.

*For exercises with blue numbers, solutions are given in Appendix B. The symbol H indicates that only a hint or partial solution is
given. The symbol * signals that an exercise is more challenging than usual.
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162 Chapter 4 Elementary Number Theory and Methods of Proof

Prove the statements in 24-34. In each case use only the defini-
tions of the terms and the Assumptions listed on page 146, not
any previously established properties of odd and even integers.
Follow the directions given in this section for writing proofs of
universal statements.

24. The negative of any even integer is even.

25. The difference of any even integer minus any odd integer is
odd.

H 26. The difference between any odd integer and any even inte-
ger is odd. (Note: The “proof” shown in exericse 39 con-
tains an error. Can you spot it?)

27. The sum of any two odd integers is even.

28. For all integers n, if n is odd then n” is odd.

29. For all integers n, if n is odd then 3n + 5 is even.

30. For all integers m, if m is even then 3m + 5 is odd.

31. If k is any odd integer and m is any even integer, then,
k? 4+ m? is odd.

32. If a is any odd integer and b is any even integer, then,
2a + 3b is even.

33. If n is any even integer, then (—1)" = 1.

34. If n is any odd integer, then (—1)" = —1.

Prove that the statements in 35-37 are false.

35. There exists an integer m > 3 such that m* — 1 is prime.

36. There exists an integer n such that 6n> + 27 is prime.

37. There exists an integer k > 4 such that 2k> — 5k + 2 is
prime.

Find the mistakes in the “proofs” shown in 38—42.

38. Theorem: For all integers k, if k > O then K +2k+11s
composite.
“Proof: For k =2, k> +2k+1=2>+2.2+1=09. But
9 = 3.3, and so 9 is composite. Hence the theorem is true.”

39. Theorem: The difference between any odd integer and any
even integer is odd.
“Proof: Suppose n is any odd integer, and m is any even
integer. By definition of odd, n = 2k 4+ 1 where k is an
integer, and by definition of even, m = 2k where k is an
integer. Then

n—m=Q2k+1)—2k=1.

But 1 is odd. Therefore, the difference between any odd
integer and any even integer is odd.”

40. Theorem: For all integers k, if k > 0 then k? + 2k + 1 is
composite.
“Proof: Suppose k is any integer such that k > 0. If
k* + 2k + 1 is composite, then k> 4+ 2k + 1 = rs for some
integers r and s such that

L<r<(+2k+1)
and 1 <s < k>+2k+1).
Since K+2k+1=rs

and both r and s are strictly between 1 and k> 4 2k + 1,
then k% + 2k + 1 is not prime. Hence k> 4 2k + 1 is com-
posite as was to be shown.”

41. Theorem: The product of an even integer and an odd inte-
ger is even.

“Proof: Suppose m is an even integer and » is an odd inte-
ger. If m - n is even, then by definition of even there exists an
integer r such that m-n = 2r. Also since m is even, there
exists an integer p such that m = 2p, and since n is odd
there exists an integer ¢ such that n = 2¢ + 1. Thus

mn = 2p)2q +1) = 2r,

where r is an integer. By definition of even, then, m -n is
even, as was to be shown.”

42. Theorem: The sum of any two even integers equals 4k for
some integer k.

“Proof: Suppose m and n are any two even integers. By
definition of even, m = 2k for some integer k and n = 2k
for some integer k. By substitution,

m~+n =2k 4 2k = 4k.

This is what was to be shown.”

In 43-60 determine whether the statement is true or false. Jus-
tify your answer with a proof or a counterexample, as appropri-
ate. In each case use only the definitions of the terms and the
Assumptions listed on page 146 not any previously established
properties.

43. The product of any two odd integers is odd.

44. The negative of any odd integer is odd.

45. The difference of any two odd integers is odd.

46. The product of any even integer and any integer is even.

47. If a sum of two integers is even, then one of the sum-
mands is even. (In the expression a + b, a and b are called
summands.)

48. The difference of any two even integers is even.
49. The difference of any two odd integers is even.

50. For all integers n and m, if n — m is even then n® — m? is
even.

51. For all integers n, if n is prime then (—1)" = —1.
52. For all integers m, if m > 2 then m* — 4 is composite.

2

53. For all integers n, n~ — n + 11 is a prime number.

54. For all integers n, 4(n*> + n + 1) — 3n? is a perfect square.
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55. Every positive integer can be expressed as a sum of three or unique nonnegative real number y, denoted /x, such that
fewer perfect squares. yi=1x)
H *56. (Two integers are consecutive if, and only if, one is one 60. For all nonnegative real numbers a and b,
more than the other.) Any product of four consecutive inte-
gers is one less than a perfect square. Va+b=a++b.
57. If m and n are positive integers and mn is a perfect square, 61. Suppose that integers m and n are perfect squares. Then
then m and n are perfect squares. m + n + 2/mn is also a perfect square. Why?

58. The difference of the squares of any two consecutive inte- H * 62. If p is a prime number, must 27 — 1 also be prime? Prove
gers is odd. or give a counterexample.

59. For all nonnegative real numbers a and b, vab = /a~/b. > 63. If n is a nonnegative integer, must 2> + 1 be prime? Prove
(Note that if x is a nonnegative real number, then there is a or give a counterexample.

Answers for Test Yourself

1. it equals twice some integer 2. it equals twice some integer plus 1 3. n is greater than 1 and if n equals the product of any
two positive integers, then one of the integers equals 1 and the other equals n. 4. a counterexample 5. particular but arbitrarily
chosen element of the set; x satisfies the given property 6. x is a particular but arbitrarily chosen element of the set D that makes
the hypothesis P (x) true; x makes the conclusion Q(x) true.

4.2 Direct Proof and Counterexample Il: Rational Numbers

Such, then, is the whole art of convincing. It is contained in two principles: to define all
notations used, and to prove everything by replacing mentally the defined terms by their
definitions. — Blaise Pascal, 1623-1662

Sums, differences, and products of integers are integers. But most quotients of integers
are not integers. Quotients of integers are, however, important; they are known as rational
numbers.

o Definition

A real number r is rational if, and only if, it can be expressed as a quotient of two
integers with a nonzero denominator. A real number that is not rational is irrational.
More formally, if r is a real number, then

r is rational < 3 integers a and b such that r = % and b # 0.

The word rational contains the word ratio, which is another word for quotient. A rational
number can be written as a ratio of integers.

Example 4.2.1 Determining Whether Numbers Are Rational or Irrational
a. Is 10/3 a rational number?
b. Is —35—9 a rational number?
c. Is 0.281 a rational number?

d. Is 7 a rational number?

e. Is 0 a rational number?
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164 Chapter 4 Elementary Number Theory and Methods of Proof

f. Is 2/0 a rational number?
g. Is 2/0 an irrational number?

h. Is 0.12121212... a rational number (where the digits 12 are assumed to repeat
forever)?

i. If m and n are integers and neither m nor n is zero, is (m + n)/mn a rational number?
Solution

a. Yes, 10/3 is a quotient of the integers 10 and 3 and hence is rational.
_S _ =
39 7 39°
c. Yes, 0.281 = 281/1000. Note that the real numbers represented on a typical calculator
display are all finite decimals. An explanation similar to the one in this example shows
that any such number is rational. It follows that a calculator with such a display can
represent only rational numbers.

d. Yes,7=17/1.
e. Yes,0=0/1.

b. Yes, which is a quotient of the integers —5 and 39 and hence is rational.

f. No, 2/0 is not a number (division by 0 is not allowed).

g. No, because every irrational number is a number, and 2/0 is not a number. We discuss
additional techniques for determining whether numbers are irrational in Sections 4.6,
4.7, and 9.4.

h. Yes. Let x = 0.12121212.... Then 100x = 12.12121212.... Thus

100x — x = 12.12121212... — 0.12121212... = 12.
But also 100x — x = 99x by basic algebra
Hence 99x = 12,
12
and so X =—.
99
Therefore, 0.12121212... = 12/99, which is a ratio of two nonzero integers and thus

is a rational number.

Note that you can use an argument similar to this one to show that any repeating
decimal is a rational number. In Section 9.4 we show that any rational number can be
written as a repeating or terminating decimal.

i. Yes, since m and n are integers, so are m + n and mn (because sums and products of
integers are integers). Also mn # 0 by the zero product property. One version of this
property says the following:

Zero Product Property

If neither of two real numbers is zero, then their product is also not zero.
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(See Theorem T11 in Appendix A and exercise 8 at the end of this section.) It follows
that (m + n)/mn is a quotient of two integers with a nonzero denominator and hence
is a rational number. n

More on Generalizing from the Generic Particular

Some people like to think of the method of generalizing from the generic particular as
a challenge process. If you claim a property holds for all elements in a domain, then
someone can challenge your claim by picking any element in the domain whatsoever and
asking you to prove that that element satisfies the property. To prove your claim, you
must be able to meet all such challenges. That is, you must have a way to convince the
challenger that the property is true for an arbitrarily chosen element in the domain.

For example, suppose “A” claims that every integer is a rational number. “B” chal-
lenges this claim by asking “A” to prove it for n = 7. “A” observes that

7
7= T which is a quotient of integers and hence rational.
“B” accepts this explanation but challenges again with n = —12. “A” responds that
—12 = T which is a quotient of integers and hence rational.

Next “B” tries to trip up “A” by challenging with n = 0, but “A” answers that

0=- which is a quotient of integers and hence rational.

1
As you can see, “A” is able to respond effectively to all “B”’s challenges because “A” has a
general procedure for putting integers into the form of rational numbers: “A” just divides
whatever integer “B” gives by 1. That is, no matter what integer n “B” gives “A”, “A”
writes

n=— which is a quotient of integers and hence rational.

1

This discussion proves the following theorem.

Theorem 4.2.1

Every integer is a rational number.

In exercise 11 at the end of this section you are asked to condense the above discussion
into a formal proof.

Proving Properties of Rational Numbers

The next example shows how to use the method of generalizing from the generic partic-
ular to prove a property of rational numbers.

Example 4.2.2 A Sum of Rationals Is Rational
Prove that the sum of any two rational numbers is rational.

Solution  Begin by mentally or explicitly rewriting the statement to be proved in the form
“v if then ”
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Formal Restatement: Y real numbers r and s, if r and s are rational then r + s is rational.

Next ask yourself, “Where am I starting from?”” or “What am I supposing?” The answer
gives you the starting point, or first sentence, of the proof.

Starting Point: Suppose r and s are particular but arbitrarily chosen real numbers such
that r and s are rational; or, more simply,

Suppose r and s are rational numbers.

Then ask yourself, “What must I show to complete the proof?”
To Show: r + s is rational.

Finally ask, “How do I get from the starting point to the conclusion?”” or “Why must » + s
be rational if both r and s are rational?” The answer depends in an essential way on the
definition of rational.

Rational numbers are quotients of integers, so to say that r and s are rational means
that

r= % and s = ¢ for some integers a, b, ¢, and d
where b # Q0 and d # 0.
It follows by substitution that
+ - + <
r+s=-—+-.
b d

You need to show that r + s is rational, which means that » + s can be written as a single
fraction or ratio of two integers with a nonzero denominator. But the right-hand side of
equation (4.2.1) in

g + E _ ﬂ + bj rewriting the fraction with a common
b d_ bd bd  denominator

_ ad + bc adding fractions with a common

- bd denominator.

Is this fraction a ratio of integers? Yes. Because products and sums of integers are inte-
gers, ad + bc and bd are both integers. Is the denominator bd # 0? Yes, by the zero
product property (since b # 0 and d # 0). Thus r + s is a rational number.

This discussion is summarized as follows:

Theorem 4.2.2

The sum of any two rational numbers is rational.

Proof:

Suppose r and s are rational numbers. [We must show that r + s is rational.] Then,
by definition of rational, »r = a/b and s = c¢/d for some integers a, b, ¢, and d with
b # 0and d # 0. Thus

a c o
r+s = Z + g by substitution
ad + bc

" bd

by basic algebra.
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Let p = ad + bc and ¢ = bd. Then p and g are integers because products and sums
of integers are integers and because a, b, ¢, and d are all integers. Also g # 0 by the
zero product property. Thus

r4s= L where p and ¢ are integers and g # 0.
q

Therefore, r + s is rational by definition of a rational number. [This is what was to be
shown. ]

Deriving New Mathematics from Old

Section 4.1 focused on establishing truth and falsity of mathematical theorems using
only the basic algebra normally taught in secondary school; the fact that the integers are
closed under addition, subtraction, and multiplication; and the definitions of the terms in
the theorems themselves. In the future, when we ask you to prove something directly
from the definitions, we will mean that you should restrict yourself to this approach.
However, once a collection of statements has been proved directly from the definitions,
another method of proof becomes possible. The statements in the collection can be used
to derive additional results.

Example 4.2.3 Deriving Additional Results about Even and Odd Integers

Suppose that you have already proved the following properties of even and odd integers:

1. The sum, product, and difference of any two even integers are even.
. The sum and difference of any two odd integers are even.

. The product of any two odd integers is odd.

The product of any even integer and any odd integer is even.

. The sum of any odd integer and any even integer is odd.

. The difference of any odd integer minus any even integer is odd.

N o L AW N

. The difference of any even integer minus any odd integer is odd.

Use the properties listed above to prove that if a is any even integer and b is any odd
a?+b+1
2

integer, then is an integer.

Solution  Suppose a is any even integer and b is any odd integer. By property 3, 5% is odd,
and by property 1, a® is even. Then by property 5, a> 4 b? is odd, and because 1 is also
odd, the sum (a® 4 b%) + 1 = a® + b*> + 1 is even by property 2. Hence, by definition
of even, there exists an integer k such that a®> + b> 4+ 1 = 2k. Dividing both sides by 2

a?+b*+1 a’+b*+1

2 2

gives =k, which is an integer. Thus is an integer [as was to be
shown]. [ |

A corollary is a statement whose truth can be immediately deduced from a theorem
that has already been proved.
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Example 4.2.4 The Double of a Rational Number

Derive the following as a corollary of Theorem 4.2.2.

Corollary 4.2.3

The double of a rational number is rational.

Solution

The double of a number is just its sum with itself. But since the sum of any two

rational numbers is rational (Theorem 4.2.2), the sum of a rational number with itself is
rational. Hence the double of a rational number is rational. Here is a formal version of

this argument:

Proof:

Suppose r is any rational number. Then 2 = r + r is a sum of two rational numbers. So,
by Theorem 4.2.2, 2r is rational. [ |

Test Yourself

1. To show that a real number is rational, we must show that
we can write it as

Exercise Set 4.2

The numbers in 1-7 are all rational. Write each number as a
ratio of two integers.
35

2. 4.6037 3.
6

| &~
+
Nl )

4. 0.37373737 ...

5. 0.56565656. ..

6. 320.5492492492 . ..
7. 52.4672167216721 ...

8. The zero product property, says that if a product of two real
numbers is 0, then one of the numbers must be 0.

a. Write this property formally using quantifiers and
variables.

b. Write the contrapositive of your answer to part (a).

c. Write an informal version (without quantifier symbols
or variables) for your answer to part (b).

9. Assume that ¢ and b are both integers and that a # 0
and b # 0. Explain why (b — a)/(ab*) must be a rational
number.

10. Assume that m and n are both integers and that n # 0.
Explain why (5m + 12n)/(4n) must be a rational number.

11. Prove that every integer is a rational number.

2. An irrational number is a that is .

3. Zero is a rational number because

12. Fill in the blanks in the following proof that the square of
any rational number is rational:

Proof: Suppose that r is @ By definition of rational,
r = a/b for some ®) with b # 0. By substitution,

=0 = a*/b*.
Since a and b are both integers, so are the products a® and

D Also b2 # 0 by the (©) . Hence 72 is a ratio of two

integers with a nonzero denominator, and so ® by defi-
nition of rational.

13. Consider the statement: The negative of any rational num-
ber is rational.
a. Write the statement formally using a quantifier and a
variable.
b. Determine whether the statement is true or false and jus-
tify your answer.

14. Consider the statement: The square of any rational number
is a rational number.
a. Write the statement formally using a quantifier and a
variable.
b. Determine whether the statement is true or false and jus-
tify your answer.

Determine which of the statements in 15-20 are true and which
are false. Prove each true statement directly from the defi-
nitions, and give a counterexample for each false statement.
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In case the statement is false, determine whether a small change

would make it true. If so, make the change and prove the new

statement. Follow the directions for writing proofs on page 154.

15. The product of any two rational numbers is a rational
number.

H 16. The quotient of any two rational numbers is a rational
number.

H 17. The difference of any two rational numbers is a rational

number.
H 18. If r and s are any two rational numbers, then % is
rational.

H 19. For all real numbers a and b, if a < b then a < % < b.

(You may use the properties of inequalities in T17-T27 of
Appendix A.)

20. Given any two rational numbers r and s with r < s, there
is another rational number between r and s. (Hint: Use the
results of exercises 18 and 19.)

Use the properties of even and odd integers that are listed in
Example 4.2.3 to do exercises 21-23. Indicate which properties
you use to justify your reasoning.

21. True or false? If m is any even integer and n is any odd
integer, then m? + 3n is odd. Explain.

22. True or false? If a is any odd integer, then a® + a is even.
Explain.

23. True or false? If k is any even integer and m is any odd
integer, then (k 4+ 2)> — (m — 1)? is even. Explain.

Derive the statements in 2426 as corollaries of Theorems 4.2.1,
4.2.2, and the results of exercises 12, 13, 14, 15, and 17.

24. For any rational numbers r and s, 2r + 3s is rational.
25. If r is any rational number, then 37> — 2r + 4 is rational.
26. For any rational number s, 5s° + 8s> — 7 is rational.
27. Itis a fact that if n is any nonnegative integer, then
PR S I IO S V50!
202202 2" 1-(1/2)

(A more general form of this statement is proved in Section
5.2). Is the right-hand side of this equation rational? If so,
express it as a ratio of two integers.

28. Suppose a, b, ¢, and d are integers and a # c. Suppose also
that x is a real number that satisfies the equation

ax +b ]
cx+d
Must x be rational? If so, express x as a ratio of two

integers.

* 29. Suppose a, b, and ¢ are integers and x, y, and z are nonzero
real numbers that satisfy the following equations:

bl =a and ad =b and <
x+y x+z y+z

=cC.

Is x rational? If so, express it as a ratio of two integers.
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30. Prove that if one solution for a quadratic equation of the
form x? + bx + ¢ = 0 is rational (where b and ¢ are ratio-
nal), then the other solution is also rational. (Use the fact
that if the solutions of the equation are r and s, then
X24+bx+c=x—-r)(x—ys).)

31. Prove that if a real number c satisfies a polynomial equation
of the form

r3x® 4 rx? 4+ rx 419 =0,

where rg, r1, 2, and r3 are rational numbers, then ¢ satisfies
an equation of the form

n3x> + nox? +nix +no =0,

where ng, ny, n,, and n3 are integers.

Definition: A number c is called a root of a polynomial p(x)
if, and only if, p(c) = 0.

% 32. Prove that for all real numbers c, if ¢ is a root of a polyno-

mial with rational coefficients, then c is a root of a polyno-
mial with integer coefficients.

Use the properties of even and odd integers that are listed in
Example 4.2.3 to do exercises 33 and 34.

33. When expressions of the form (x —r)(x — s) are multi-
plied out, a quadratic polynomial is obtained. For instance,
(x=2)x— (=) =x—-2(x+7) =x>+5x— 14.

H a. What can be said about the coefficients of the polyno-
mial obtained by multiplying out (x — r)(x — s) when
both r and s are odd integers? when both r and s are
even integers? when one of r and s is even and the other
is odd?

b. It follows from part (a) that x> — 1253x + 255 cannot
be written as a product of two polynomials with integer
coefficients. Explain why this is so.

% 34. Observe that (x — r)(x — s)(x — 1)

=x>— (@ +s+0)x>+ (s +rt +st)x — rst.

a. Derive a result for cubic polynomials similar to the result
in part (a) of exercise 33 for quadratic polynomials.

b. Canx? + 7x% — 8x — 27 be written as a product of three
polynomials with integer coefficients? Explain.

In 35-39 find the mistakes in the “proofs” that the sum of any
two rational numbers is a rational number.

35. “Proof: Any two rational numbers produce a rational
number when added together. So if r and s are particu-
lar but arbitrarily chosen rational numbers, then r + s is
rational.”

36. “Proof: Let rational numbers r = % and s = % be given.

Thenr 4+ s = }‘ + % = %, which is a rational number. This

is what was to be shown.”
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37.

38.

“Proof: Suppose r and s are rational numbers. By defini-
tion of rational, r = a/b for some integers @ and b with
b # 0, and s = a/b for some integers a and b with b # 0.
Then

a a 2a

r—i—s:Z-f—E b

Let p = 2a. Then p is an integer since it is a product of
integers. Hence r + s = p/b, where p and b are integers
and b # 0. Thus r + s is a rational number by definition of
rational. This is what was to be shown.”

“Proof: Suppose r and s are rational numbers. Then
r =a/b and s = c/d for some integers a, b, ¢, and d with
b # 0 and d # 0O (by definition of rational). Then

39.

But this is a sum of two fractions, which is a fraction.
So r + s is a rational number since a rational number is
a fraction.”

“Proof: Suppose r and s are rational numbers. If r + s is
rational, then by definition of rational r + s = a/b for some
integers a and b with b # 0. Also since r and s are rational,
r =i/j and s = m/n for some integers i, j, m, and n with
Jj # 0and n # 0. It follows that

i m a

r+s=-++ P

which is a quotient of two integers with a nonzero denomi-
nator. Hence it is a rational number. This is what was to be
shown.”

ts=T4°
r4+s=—-4+-.
b d

Answers for Test Yourself

. . . . . 0
1. aratio of integers with a nonzero denominator 2. real number; not rational 3. 0 = 1

4.3 Direct Proof and Counterexample Il1: Divisibility

The essential quality of a proof is to compel belief. — Pierre de Fermat

When you were first introduced to the concept of division in elementary school, you were
probably taught that 12 divided by 3 is 4 because if you separate 12 objects into groups
of 3, you get 4 groups with nothing left over.

Ixxx | [xxx| [xxx| |xxx|

You may also have been taught to describe this fact by saying that “12 is evenly divisible
by 3” or “3 divides 12 evenly.”

The notion of divisibility is the central concept of one of the most beautiful subjects
in advanced mathematics: number theory, the study of properties of integers.

If n and d are integers and d # O then
n is divisible by d if, and only if, n equals d times some integer.
Instead of “n is divisible by d,” we can say that

n is a multiple of d, or
d is a factor of n, or

d is a divisor of n, or
d divides n.

The notation d | n is read “d divides n.” Symbolically, if n and d are integers and
d #0:

d|n <& 3Janintegerk such thatn = dk.
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Example 4.3.1 Divisibility

a. Is 21 divisible by 3? b. Does 5 divide 40? c. Does 7427

d. Is 32 a multiple of —16? e. Is 6 a factor of 547 f. Is 7 a factor of —7?
Solution

a. Yes, 21 =3-7. b. Yes, 40 =5-8. c. Yes, 42 =7-6.

d. Yes, 32 = (—16)-(—2). e. Yes, 54 =6-9. f. Yes, =7 =7-(—1). |

Example 4.3.2 Divisors of Zero
If k is any nonzero integer, does k divide 0?

Solution  Yes, because 0 = k-0. [ ]

Two useful properties of divisibility are (1) that if one positive integer divides a sec-
ond positive integer, then the first is less than or equal to the second, and (2) that the only
divisors of 1 are 1 and —1.

Theorem 4.3.1 A Positive Divisor of a Positive Integer

For all integers a and b, if a and b are positive and a divides b, then a < b.

Proof:

Suppose a and b are positive integers and a divides b. [We must show that a < b.]
Then there exists an integer k so that b = ak. By property T25 of Appendix A, k
must be positive because both a and b are positive. It follows that

1<k

because every positive integer is greater than or equal to 1. Multiplying both sides
by a gives

a<ka=0b

because multiplying both sides of an inequality by a positive number preserves the
inequality by property T20 of Appendix A. Thus a < b [as was to be shown].

Theorem 4.3.2 Divisors of 1

The only divisors of 1 are 1 and —1.

Proof:

Since 1-1 =1 and (—1)(—1) =1, both 1 and —1 are divisors of 1. Now suppose
m is any integer that divides 1. Then there exists an integer n such that 1 = mn. By
Theorem T25 in Appendix A, either both m and n are positive or both m and n are
negative. If both m and n are positive, then m is a positive integer divisor of 1. By
Theorem 4.3.1, m < 1, and, since the only positive integer that is less than or equal

continued on page 172

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



172 Chapter 4 Elementary Number Theory and Methods of Proof

to 1 is 1 itself, it follows that m = 1. On the other hand, if both m and n are negative,
then, by Theorem T12 in Appendix A, (—m)(—n) = mn = 1. In this case —m is
a positive integer divisor of 1, and so, by the same reasoning, —m = 1 and thus
m = —1. Therefore there are only two possibilities: either m = 1 orm = —1. So the
only divisors of 1 are 1 and —1.

Example 4.3.3 Divisibility of Algebraic Expressions
a. If a and b are integers, is 3a + 3b divisible by 3?
b. If k and m are integers, is 10km divisible by 5?
Solution

a. Yes. By the distributive law of algebra, 3a + 3b = 3(a + b) and a + b is an integer
because it is a sum of two integers.

b. Yes. By the associative law of algebra, 10km = 5-(2km) and 2km is an integer because
it is a product of three integers. |
When the definition of divides is rewritten formally using the existential quantifier,
the result is
d|n < Janinteger k such thatn = dk.

Since the negation of an existential statement is universal, it follows that d does not divide
n (denoted d [ n) if, and only if, V integers k, n # dk, or, in other words, the quotient n/d
is not an integer.

For all integersn andd, d}fn <% 7 is not an integer.

Example 4.3.4 Checking Nondivisibility

Does 4| 15?
Solution  No, 14—5 = 3.75, which is not an integer. [ |
Be careful to distinguish between the notation a | b and the notation a/b. The notation
a | b stands for the sentence “a divides b,” which means that there is an integer k such that
Caution! b = ak. Dividing both sides by a gives b/a = k, an integer. Thus, when a # 0, a | b if,
a | b denotes the sentence and only if, b/a is an integer. On the other hand, the notation a/b stands for the number
“a divides b.” whereas a/b which is the result of dividing a by b and which may or may not be an integer. In

a/b denotes the number

Svided b 1 particular, be sure to avoid writing things like
a aivide Yy D.

4] =48.

If read out loud, this becomes, “4 divides the quantity 3 plus 5 equals 4 divides 8,” which
is nonsense.

Example 4.3.5 Prime Numbers and Divisibility

An alternative way to define a prime number is to say that an integer n > 1 is prime if,
and only if, its only positive integer divisors are 1 and itself. |
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Proving Properties of Divisibility

One of the most useful properties of divisibility is that it is transitive. If one number
divides a second and the second number divides a third, then the first number divides the
third.

Example 4.3.6 Transitivity of Divisibility
Prove that for all integers a, b, and ¢, ifa |b and b | ¢, then a | c.

Solution  Since the statement to be proved is already written formally, you can immediately
pick out the starting point, or first sentence of the proof, and the conclusion that must be
shown.

Starting Point: Suppose a, b, and c are particular but arbitrarily chosen integers such that
albandb|c.

To Show: a | c.

You need to show that « | ¢, or, in other words, that
¢ = a-(some integer).
But since a | b,
b =ar for some integer r. 4.3.1
And since b | c,
¢ = bs for some integer s. 432

Equation 4.3.2 expresses ¢ in terms of b, and equation 4.3.1 expresses b in terms of a.
Thus if you substitute 4.3.1 into 4.3.2, you will have an equation that expresses ¢ in
terms of a.

c=bs by equation 4.3.2

= (ar)s by equation 4.3.1.
But (ar)s = a(rs) by the associative law for multiplication. Hence
c=a(rs).

Now you are almost finished. You have expressed ¢ as a - (something). It remains only to
verify that that something is an integer. But of course it is, because it is a product of two
integers.

This discussion is summarized as follows:

Theorem 4.3.3 Transitivity of Divisibility

For all integers a, b, and c, if a divides b and b divides c, then a divides c.

Proof:

Suppose a, b, and ¢ are [particular but arbitrarily chosen] integers such that a divides
b and b divides c. [We must show that a divides c.] By definition of divisibility,

b=ar and c¢=bs forsome integersr ands.

continued on page 174
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By substitution
c=bs
= (ar)s

=a(rs) by basic algebra.
Let k = rs. Then k is an integer since it is a product of integers, and therefore
¢ =ak wherekis an integer.

Thus a divides ¢ by definition of divisibility. [This is what was to be shown.]

It would appear from the definition of prime that to show that an integer is prime
you would need to show that it is not divisible by any integer greater than 1 and less
than itself. In fact, you need only check whether it is divisible by a prime number less
than or equal to itself. This follows from Theorems 4.3.1, 4.3.3, and the following the-
orem, which says that any integer greater than 1 is divisible by a prime number. The
idea of the proof is quite simple. You start with a positive integer. If it is prime, you
are done; if not, it is a product of two smaller positive factors. If one of these is prime,
you are done; if not, you can pick one of the factors and write it as a product of still
smaller positive factors. You can continue in this way, factoring the factors of the number
you started with, until one of them turns out to be prime. This must happen eventually
because all the factors can be chosen to be positive and each is smaller than the preced-
ing one.

Theorem 4.3.4 Divisibility by a Prime

Any integer n > 1 is divisible by a prime number.

Proof:

Suppose n is a [particular but arbitrarily chosen] integer that is greater than 1. [We
must show that there is a prime number that divides n.] If n is prime, then n is divisible
by a prime number (namely itself), and we are done. If n is not prime, then, as
discussed in Example 4.1.2b,

n =ropso  where rp and sy are integers and
l<rg<nandl < sy < n.

It follows by definition of divisibility that ry | n.
If ry is prime, then ry is a prime number that divides n, and we are done. If rj is
not prime, then

ro =r1s;  where r; and s; are integers and
l<ri<rpand 1 < s; < 1.

It follows by the definition of divisibility that r| | ry. But we already know that r¢ | n.
Consequently, by transitivity of divisibility, | | n.

If | is prime, then r| is a prime number that divides n, and we are done. If r| is
not prime, then

ry =rys,  where rp and s, are integers and
l<rm<randl < s <.
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4.3 Direct Proof and Counterexample IlI: Divisibility 175

It follows by definition of divisibility that r, | r;. But we already know that r| | n.
Consequently, by transitivity of divisibility, r | n.

If r, is prime, then r; is a prime number that divides n, and we are done. If r; is
not prime, then we may repeat the previous process by factoring r, as r3s3.

We may continue in this way, factoring successive factors of n until we find a
prime factor. We must succeed in a finite number of steps because each new factor
is both less than the previous one (which is less than n) and greater than 1, and there
are fewer than n integers strictly between 1 and n.* Thus we obtain a sequence

Fos F'is 12y o oo s Ty
where k > 0,1 <rp <rp_ 1 <---<rp<rp<ro<n,andr;|nforeachi =0,1,
2, ..., k. The condition for termination is that r; should be prime. Hence ry is a

prime number that divides n. [This is what we were to show.]

Counterexamples and Divisibility

To show that a proposed divisibility property is not universally true, you need only find
one pair of integers for which it is false.

Example 4.3.7 Checking a Proposed Divisibility Property

Is the following statement true or false? For all integers a and b, if a |b and b | a then
a=>b.

Solution  This statement is false. Can you think of a counterexample just by concentrating
for a minute or so?
The following discussion describes a mental process that may take just a few seconds.
It is helpful to be able to use it consciously, however, to solve more difficult problems.
To discover the truth or falsity of a statement such as the one given above, start off
much as you would if you were trying to prove it.

Starting Point: Suppose a and b are integers such thata | b and b | a.

Ask yourself, “Must it follow that a = b, or could it happen that a # b for some a and b?”
Focus on the supposition. What does it mean? By definition of divisibility, the conditions
a|b and b | a mean that

b=ka and a=1b forsome integers k and /.

Must it follow that @ = b, or can you find integers a and b that satisfy these equations for
which a # b? The equations imply that

b =ka =k(lb) = (kl)b.
Since b|a, b # 0, and so you can cancel b from the extreme left and right sides to obtain
1 =kl

In other words, k and / are divisors of 1. But, by Theorem 4.3.2, the only divisors of
1 are 1 and —1. Thus k and [/ are both 1 or are both —1. If k =/ = 1, then b = a. But

*Strictly speaking, this statement is justified by an axiom for the integers called the well-ordering
principle, which is discussed in Section 5.4. Theorem 4.3.4 can also be proved using strong math-
ematical induction, as shown in Example 5.4.1.
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if k =1= —1, then b = —a and so a # b. This analysis suggests that you can find a
counterexample by taking b = —a. Here is a formal answer:

Proposed Divisibility Property: For all integers a and b, if a|b and b|a
thena = b.

Counterexample: Let « = 2 and b = —2. Then
al|bsince 2| (—2) and b | a since (—2) |2, but a # b since 2 # —2.

Therefore, the statement is false.

The search for a proof will frequently help you discover a counterexample (provided
the statement you are trying to prove is, in fact, false). Conversely, in trying to find a
counterexample for a statement, you may come to realize the reason why it is true (if it
is, in fact, true). The important thing is to keep an open mind until you are convinced by
the evidence of your own careful reasoning.

The Unique Factorization of Integers Theorem

The most comprehensive statement about divisibility of integers is contained in the unigue
factorization of integers theorem. Because of its importance, this theorem is also called
the fundamental theorem of arithmetic. Although Euclid, who lived about 300 B.C., seems
to have been acquainted with the theorem, it was first stated precisely by the great German
mathematician Carl Friedrich Gauss (rhymes with house) in 1801.

The unique factorization of integers theorem says that any integer greater than 1 either
is prime or can be written as a product of prime numbers in a way that is unique except,
perhaps, for the order in which the primes are written. For example,

72=2.2-2.3.3=2.3-3.2.2=3.2.2-3.2

and so forth. The three 2’s and two 3’s may be written in any order, but any factorization of
72 as a product of primes must contain exactly three 2’s and two 3’s—no other collection
of prime numbers besides three 2’s and two 3’s multiplies out to 72.

Note This theorem is Theorem 4.3.5 Unique Factorization of Integers Theorem

the reason the number 1 is (Fundamental Theorem of Arithmetic)

not allowed to be prime.

If 1 were prime, then Given any integer n > 1, there exist a positive integer k, distinct prime numbers

factorizations would not P1s P2, - - - » Pk, and positive integers ey, e, . . ., ¢; such that

be unique. For example,

e (& e €,

6=2-3=1-2-3,and n=pi'pyps...pk,

so forth. . . L . .
and any other expression for n as a product of prime numbers is identical to this
except, perhaps, for the order in which the factors are written.

The proof of the unique factorization theorem is outlined in the exercises for Sec-
tions 5.4 and 8.4.

Because of the unique factorization theorem, any integer n > 1 can be put into a
standard factored form in which the prime factors are written in ascending order from
left to right.
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Given any integer n > 1, the standard factored form of n is an expression of the

form
. €1 €2 €3 (23
n=p  pypP3y Py
where k is a positive integer; pi, pa, ..., pr are prime numbers; ej, ez, . .., ¢ are

positive integers; and p; < py < -+ < pg.

Example 4.3.8 Writing Integers in Standard Factored Form
Write 3,300 in standard factored form.
Solution  First find all the factors of 3,300. Then write them in ascending order:

3,300 = 100-33 = 4-25-3-11
=2.2.5.5.3-11 =22.3".52. 11", ]

Example 4.3.9 Using Unique Factorization to Solve a Problem
Suppose m is an integer such that
8.7-6-54-3.2.m=17-16-15-14-13-12-11-10.
Does 17 |m?

Solution  Since 17 is one of the prime factors of the right-hand side of the equation, it is
also a prime factor of the left-hand side (by the unique factorization of integers theorem).
But 17 does not equal any prime factor of 8, 7, 6, 5, 4, 3, or 2 (because it is too large).
Hence 17 must occur as one of the prime factors of m, and so 17 | m. [ |

Test Yourself

1. To show that a nonzero integer d divides an integer n, we 6. The transitivity of divisibility theorem says that for all inte-
must show that gers a, b, and ¢, if then .
2. To say that d divides n means the same as saying that 7. The divisibility by a prime theorem says that every integer
is divisible by . greater than 1 is
3. If a and b are positive integers and a | b, then is less 8. The unique factorization of integers theorem says that any
than or equal to integer greater than 1 is either or can be written as
. . . in a way that is unique except possibly for the
4. For all integers n and d, d / n if, and only if, . in which the numbers are written.
5. If a and b are integers, the notation a | b denotes and
the notation a/b denotes
Exercise Set 4.3
Give a reason for your answer in each of 1-13. Assume that all 4. Does 3 divide (3k + 1)(3k +2)(3k + 3)?
variables represent integers. 5. Ts 6m(2m + 10) divisible by 47
1. Is 52 divisible by 13? 2. Does 756? 6. Is 29 a multiple of 3? 7. Is =3 a factor of 66?
3. Does 510? 8. Is 6a(a + b) a multiple of 3a?
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10.
12.
13.
14.

. Is 4 a factor of 2a -34b?

Does 7| 347
If n = 4k + 1, does 8 divide n> — 1?
If n = 4k + 3, does 8 divide n> — 1?

11. Does 13]73?

Fill in the blanks in the following proof that for all integers
aand b, ifa|bthena|(—b).

Proof: Suppose a and b are any integers such that @ By
definition of divisibility, there exists an integer r such that
b By substitution.

—b = —ar =a(-r).

Lett = © . Then ¢ is an integer because t = (—1) -7, and
both —1 and r are integers. Thus, by substitution, —b = at,
where r is an integer, and so by definition of divisibility,

ﬂ, as was to be shown.

Prove statements 15 and 16 directly from the definition of divis-
ibility.

18.

For

. For all integers a, b, and ¢, ifa |b and a | c thena | (b + ¢).
. Forall integers a, b, and ¢, ifa |band a | c thena | (b — ¢).

. Consider the following statement: The negative of any mul-

tiple of 3 is a multiple of 3.

a. Write the statement formally using a quantifier and a
variable.

b. Determine whether the statement is true or false and jus-
tify your answer.

Show that the following statement is false: For all integers
aand b,if 3| (a + b) then 3 | (a — D).

each statement in 19-31, determine whether the statement

is true or false. Prove the statement directly from the definitions

if it
H 19.
20.

21.

H 22.

23.

24.

25.

H 26.
H 27.

is true, and give a counterexample if it is false.
For all integers a, b, and c, if a divides b then a divides bc.

The sum of any three consecutive integers is divisible by
3. (Two integers are consecutive if, and only if, one is one
more than the other.)

The product of any two even integers is a multiple of 4.

A necessary condition for an integer to be divisible by 6 is
that it be divisible by 2.

A sufficient condition for an integer to be divisible by 8 is
that it be divisible by 16.

For all integers a, b, and ¢, if a|b and a|c then
al|(2b —3c¢).

For all integers a, b, and c, if a is a factor of ¢ then ab is a
factor of c.

For all integers a, b, and ¢, if ab |c thena |c and b | c.

For all integers a, b, and ¢, ifa | (b +c) thena |bora | c.

Chapter 4  Elementary Number Theory and Methods of Proof

28.
29.
30.
31.
32.

33.

34.

35.

36.

37.

38.

39.

For all integers a, b, and ¢, if a | bc thena |b ora | c.
For all integers a and b, if a | b then a? | b%.

For all integers a and n, if a |n* and a < n then a | n.
For all integers a and b, if a | 10b thena | 10 or a | b.

A fast-food chain has a contest in which a card with num-
bers on it is given to each customer who makes a purchase.
If some of the numbers on the card add up to 100, then
the customer wins $100. A certain customer receives a card
containing the numbers

72,21, 15,36, 69, 81,9, 27,42, and 63.
Will the customer win $100? Why or why not?

Is it possible to have a combination of nickels, dimes, and
quarters that add up to $4.72? Explain.

Is it possible to have 50 coins, made up of pennies, dimes,
and quarters, that add up to $3? Explain.

Two athletes run a circular track at a steady pace so that the
first completes one round in 8 minutes and the second in
10 minutes. If they both start from the same spot at 4 PM.,
when will be the first time they return to the start together?

It can be shown (see exercises 44-48) that an integer is
divisible by 3 if, and only if, the sum of its digits is divisible
by 3. An integer is divisible by 9 if, and only if, the sum of
its digits is divisible by 9. An integer is divisible by 5 if,
and only if, its right-most digitis a 5 or a 0. And an integer
is divisible by 4 if, and only if, the number formed by its
right-most two digits is divisible by 4. Check the following
integers for divisibility by 3, 4, 5 and 9.

a. 637,425,403,705,125 b. 12,858,306,120,312

c. 517,924,440,926,512 d. 14,328,083,360,232

Use the unique factorization theorem to write the following
integers in standard factored form.
a. 1,176 b. 5,733 c. 3,675

Suppose that in standard factored form a = p}' p5* - - - p;*,
where £ is a positive integer; py, pa, ..., py are prime num-
bers; and ey, e, .. ., ¢; are positive integers.

a. What is the standard factored form for a*?

b. Find the least positive integer n such that 2°-3-5%.7%.n
is a perfect square. Write the resulting product as a per-
fect square.

c. Find the least positive integer m such that
22.3%.7-11-m is a perfect square. Write the resulting
product as a perfect square.

Suppose that in standard factored form a = p}' p5* - - - p;*,

where k is a positive integer; py, pa, ..., Py are prime num-

bers; and ey, ey, .. ., ¢ are positive integers.

a. What is the standard factored form for a*?

b. Find the least positive integer k such that2*.3%.7-11% -k
is a perfect cube (i.e., equals an integer to the third
power). Write the resulting product as a perfect cube.
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40.

H 41.

42.

* 43,

a. If a and b are integers and 12a = 25b, does 12 | b? does
25| a? Explain.

b. If x and y are integers and 10x = 9y, does 10 | y? does
9| x? Explain.

How many zeros are at the end of 45%-883? Explain how
you can answer this question without actually computing
the number. (Hint: 10 = 2-5.)

If n is an integer and n > 1, then n! is the product of n and

every other positive integer that is less than n. For example,

51=5-4.3.2-1.

a. Write 6! in standard factored form.

b. Write 20! in standard factored form.

c. Without computing the value of (20!)> determine how
many zeros are at the end of this number when it is writ-
ten in decimal form. Justify your answer.

In a certain town 2/3 of the adult men are married to 3/5
of the adult women. Assume that all marriages are monog-
amous (no one is married to more than one other person).
Also assume that there are at least 100 adult men in the
town. What is the least possible number of adult men in the
town? of adult women in the town?

Definition: Given any nonnegative integer n, the decimal
representation of # is an expression of the form

where k is a nonnegative integer; dy, d, d,, ..
the decimal digits of n) are integers from 0 to 9 inclusive;
dy # O unless n = 0 and k = 0; and

(For example, 2,503 = 2-10° +5-10> +0-10 + 3.)

didi—y - - - dydydy,
., d; (called

n=d 10" +di_ - 1057 + -+ dy - 107 + d; - 10 + d.

4.

Prove that if » is any nonnegative integer whose decimal
representation ends in O, then 5 |n. (Hint: If the decimal
representation of a nonnegative integer n ends in dj, then
n = 10m + d, for some integer m.)

Answers for Test Yourself

1. n equals d times some integer (Or: there is an integer r such that n =dr) 2. n;d 3. a;b 4. %

45.

46.

H % 47.

* 48.

* 49,
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Prove that if n is any nonnegative integer whose decimal
representation ends in 5, then 5 | n.

Prove that if the decimal representation of a nonnegative
integer n ends in d;dy and if 4| (10d; + dy), then 4|n.
(Hint: If the decimal representation of a nonnegative inte-
ger n ends in d,dy, then there is an integer s such that
n = 100s + 10d, + d.)

Observe that

7524 =7-1000+5-1004+2-10 + 4
=709994+1)+5099+1)+209+1)+4
=(T7-994+7+G5-9+5+2-9+2)+4
=(7-9994+5-9+2-94+(T+5+2+4)
=(7-111-945-11-942-9)+ (T+5+2+4)
=7-1114+5114+2)94+T+5+2+4)
= (an integer divisible by 9)

+ (the sum of the digits of 7524).

Since the sum of the digits of 7524 is divisible by 9, 7524
can be written as a sum of two integers each of which is
divisible by 9. It follows from exercise 15 that 7524 is divis-
ible by 9.

Generalize the argument given in this example to any
nonnegative integer n. In other words, prove that for any
nonnegative integer n, if the sum of the digits of n is divis-
ible by 9, then n is divisible by 9.

Prove that for any nonnegative integer n, if the sum of the
digits of n is divisible by 3, then n is divisible by 3.

Given a positive integer n written in decimal form, the alter-
nating sum of the digits of n is obtained by starting with the
right-most digit, subtracting the digit immediately to its left,
adding the next digit to the left, subtracting the next digit,
and so forth. For example, the alternating sum of the digits
of 180,928 is 8 — 24+ 9 — 0+ 8 — 1 = 22. Justify the fact
that for any nonnegative integer 7, if the alternating sum of
the digits of n is divisible by 11, then n is divisible by 11.

% is not an integer 5. the

sentence “a divides b”; the number obtained when a is divided by b 6. a divides b and b divides c; a divides ¢ 7. divisible by

some prime number

8. prime; a product of prime numbers; order

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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4.4 Direct Proof and Counterexample IV: Division
into Cases and the Quotient-Remainder Theorem

Be especially critical of any statement following the word “obviously.”
— Anna Pell Wheeler 1883-1966

When you divide 11 by 4, you get a quotient of 2 and a remainder of 3.
2 < quotient
411
8
3 < remainder

Another way to say this is that 11 equals 2 groups of 4 with 3 left over:

XXXX XXXX XXX

1 )
2 groups of 4 3 left over
Or,
11=2-443.
Tt
2 groups of 4 3 left over

Of course, the number left over (3) is less than the size of the groups (4) because if 4 or
more were left over, another group of 4 could be separated off.

The quotient-remainder theorem says that when any integer n is divided by any pos-
itive integer d, the result is a quotient ¢ and a nonnegative remainder r that is smaller
than d.

Theorem 4.4.1 The Quotient-Remainder Theorem

Given any integer n and positive integer d, there exist unique integers ¢ and r such
that

n=dg+r and 0<r <d.

The proof that there exist integers ¢ and r with the given properties is in Section 5.4;
the proof that ¢ and r are unique is outlined in exercise 18 in Section 4.7.

If n is positive, the quotient-remainder theorem can be illustrated on the number line
as follows:

(=)
U
o
U
w
QU
Q
QU
+ =

If n is negative, the picture changes. Since n = dg + r, where r is nonnegative, d must
be multiplied by a negative integer g to go below n. Then the nonnegative integer r is
added to come back up to n. This is illustrated as follows:

d

1
+ 3

©3d -2d -d O -
t t t t
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Example 4.4.1 The Quotient-Remainder Theorem

For each of the following values of n and d, find integers ¢ and r such that n = dq +r
and0 <r <d.

an=>5,d=4 bn=-54,d=4 c.n=54,d="170
Solution
a. 54 =4-13+2; hence ¢ =13 andr = 2.
b. =54 =4-(—14) +2; hence ¢ = —14 and r = 2.
c. 54 =70-0+ 54; hence ¢ = 0 and r = 54. |

div and mod

A number of computer languages have built-in functions that enable you to compute
many values of g and r for the quotient-remainder theorem. These functions are called
div and mod in Pascal, are called / and % in C and C++, are called / and % in Java,
and are called / (or \) and mod in .NET. The functions give the values that satisfy the
quotient-remainder theorem when a nonnegative integer n is divided by a positive integer
d and the result is assigned to an integer variable. However, they do not give the values
that satisfy the quotient-remainder theorem when a negative integer n is divided by a
positive integer d.

* Definition
Given an integer n and a positive integer d,

n div d = the integer quotient obtained
when 7 is divided by d, and

n mod d = the nonnegative integer remainder obtained
when 7 is divided by d.

Symbolically, if n and d are integers and d > 0, then
ndivd=q and n mod d=r & n=dq+r

where g and r are integers and 0 < r < d.

Note that it follows from the quotient-remainder theorem that n mod d equals one of
the integers from O through d — 1 (since the remainder of the division of n by d must be
one of these integers). Note also that a necessary and sufficient condition for an integer
n to be divisible by an integer d is that n mod d = 0. You are asked to prove this in the
exercises at the end of this section.

You can also use a calculator to compute values of div and mod. For instance, to
compute n div d for a nonnegative integer n and a positive integer d, you just divide n by
d and ignore the part of the answer to the right of the decimal point. To find n mod d, you
can use the fact that if n = dg +r, thenr =n —dq. Thus n =d-(ndivd) + nmodd,
and so

nmodd=n—d-(ndivd).

Hence, to find n mod d compute n div d, multiply by d, and subtract the result from 7.
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182 Chapter4 Elementary Number Theory and Methods of Proof

Example 4.4.2 Computing div and mod
Compute 32 div 9 and 32 mod 9 by hand and with a calculator.

Solution  Performing the division by hand gives the following results:

3 «<32div9
o[32
27
_5 <« 32 mod 9

If you use a four-function calculator to divide 32 by 9, you obtain an expression like
3.555555556. Discarding the fractional part gives 32 div 9 = 3, and so

32mod 9 =32—-9-(32div9) =32 —-27=5.

A calculator with a built-in integer-part function iPart allows you to input a single expres-
sion for each computation:

32 div 9 = iPart(32/9)
and 32mod 9 =32 —9-iPart (32/9) = 5. |

Example 4.4.3 Computing the Day of the Week

Suppose today is Tuesday, and neither this year nor next year is a leap year. What day of
the week will it be 1 year from today?

Solution  There are 365 days in a year that is not a leap year, and each week has 7 days.
Now

365div7 =52 and 365mod7 =1

because 365 = 52-7 4 1. Thus 52 weeks, or 364 days, from today will be a Tuesday, and
so 365 days from today will be 1 day later, namely Wednesday.

More generally, if DayT is the day of the week today and DayN is the day of the week
in N days, then

DayN = (DayT + N) mod 7, 4.4.1

where Sunday = 0, Monday = 1, ..., Saturday = 6. |

Example 4.4.4 Solving a Problem about mod
Suppose m is an integer. If m mod 11 = 6, what is 4m mod 11?

Solution  Because m mod 11 = 6, the remainder obtained when m is divided by 11 is 6.
This means that there is some integer ¢ so that

m=11q + 6.
Thus dm =44q +24 =44 +22+2=11(4qg +2) + 2.

Since 4¢g + 2 is an integer (because products and sums of integers are integers) and since
2 < 11, the remainder obtained when 4m is divided by 11 is 2. Therefore,

4dm mod 11 = 2. [ |
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Representations of Integers

In Section 4.1 we defined an even integer to have the form twice some integer. At that
time we could have defined an odd integer to be one that was not even. Instead, because
it was more useful for proving theorems, we specified that an odd integer has the form
twice some integer plus one. The quotient-remainder theorem brings these two ways of
describing odd integers together by guaranteeing that any integer is either even or odd.
To see why, let n be any integer, and consider what happens when 7 is divided by 2.
By the quotient-remainder theorem (with d = 2), there exist unique integers g and r
such that

n=2¢g+r and 0<r <2.

But the only integers that satisfy 0 < r < 2 arer = 0 and » = 1. It follows that given any
integer n, there exists an integer ¢ with

n=29g+0 or n=2q+1.

In the case that n = 2g + 0 = 2¢, n is even. In the case that n = 2¢g + 1, n is odd. Hence
n is either even or odd, and, because of the uniqueness of ¢ and r, n cannot be both even
and odd.

The parity of an integer refers to whether the integer is even or odd. For instance, 5
has odd parity and 28 has even parity. We call the fact that any integer is either even or
odd the parity property.

Example 4.4.5 Consecutive Integers Have Opposite Parity
Prove that given any two consecutive integers, one is even and the other is odd.

Solution  Two integers are called consecutive if, and only if, one is one more than the other.
So if one integer is m, the next consecutive integer is m + 1.

To prove the given statement, start by supposing that you have two particular but
arbitrarily chosen consecutive integers. If the smaller is m, then the larger will be m + 1.
How do you know for sure that one of these is even and the other is odd? You might
imagine some examples: 4, 5; 12, 13; 1,073, 1,074. In the first two examples, the smaller
of the two integers is even and the larger is odd; in the last example, it is the reverse.
These observations suggest dividing the analysis into two cases.

Case 1: The smaller of the two integers is even.

Case 2: The smaller of the two integers is odd.

In the first case, when m is even, it appears that the next consecutive integer is odd.
Is this always true? If an integer m is even, must m + 1 necessarily be odd? Of course
the answer is yes. Because if m is even, then m = 2k for some integer k, and som + 1 =
2k + 1, which is odd.

In the second case, when m is odd, it appears that the next consecutive integer is even.
Is this always true? If an integer m is odd, must m + 1 necessarily be even? Again,
the answer is yes. For if m is odd, then m = 2k 4 1 for some integer k, and som + 1 =
2k +1)+1 =2k + 2 =2(k + 1), which is even.

This discussion is summarized on the following page.
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Theorem 4.4.2 The Parity Property

Any two consecutive integers have opposite parity.

Proof:

Suppose that two [particular but arbitrarily chosen] consecutive integers are given;
call them m and m + 1. [We must show that one of m and m + 1 is even and that the
other is odd. ] By the parity property, either m is even or m is odd. [We break the proof
into two cases depending on whether m is even or odd. |

Case 1 (mis even): In this case, m = 2k for some integer k,andsom + 1 = 2k + 1,
which is odd [by definition of odd]. Hence in this case, one of m and m + 1 is even
and the other is odd.

Case 2 (m is odd): In this case, m = 2k + 1 for some integer k, and so m + 1 =
2k +1)+1=2k+2=2(k+ 1). But k + 1 is an integer because it is a sum of
two integers. Therefore, m + 1 equals twice some integer, and thus m + 1 is even.
Hence in this case also, one of m and m + 1 is even and the other is odd.

It follows that regardless of which case actually occurs for the particular m and
m + 1 that are chosen, one of m and m + 1 is even and the other is odd. [This is what
was to be shown. ]

The division into cases in a proof is like the transfer of control for an if-then-else
statement in a computer program. If m is even, control transfers to case 1; if not, control
transfers to case 2. For any given integer, only one of the cases will apply. You must
consider both cases, however, to obtain a proof that is valid for an arbitrarily given integer
whether even or not.

There are times when division into more than two cases is called for. Suppose that at
some stage of developing a proof, you know that a statement of the form

AjorAyorAjzor...orA,

is true, and suppose you want to deduce a conclusion C. By definition of or, you know
that at least one of the statements A; is true (although you may not know which). In this
situation, you should use the method of division into cases. First assume A; is true and
deduce C; next assume A, is true and deduce C; and so forth until you have assumed A,
is true and deduced C. At that point, you can conclude that regardless of which statement
A, happens to be true, the truth of C follows.

Method of Proof by Division into Cases
To prove a statement of the form “If A; or A, or ... or A,, then C,” prove all of the
following: If A, then C.
If A,, then C,
If A,, then C.
This process shows that C is true regardless of which of A, A,, ..., A, happens to
be the case.
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Proof by division into cases is a generalization of the argument form shown in Exam-
ple 2.3.7, whose validity you were asked to establish in exercise 21 of Section 2.3. This
method of proof was combined with the quotient-remainder theorem for d = 2 to prove
Theorem 4.4.2. Allowing d to take on additional values makes it possible to obtain a
variety of other results. We begin by showing what happens when a = 4.

Example 4.4.6 Representations of Integers Modulo 4

Show that any integer can be written in one of the four forms
n=4g or n=4¢+1 or n=49g+2 or n=49q+3

for some integer q.

Solution  Given any integer n, apply the quotient-remainder theorem to n with d = 4. This
implies that there exist an integer quotient ¢ and a remainder » such that

n=4g+r and 0<r <4.
But the only nonnegative remainders r that are less than 4 are 0, 1, 2, and 3. Hence
n=4q or n=49+1 or n=4g+2 or n=4¢g+3

for some integer g. |

The next example illustrates how the alternative representations for integers modulo 4
can help establish a result in number theory. The solution is broken into two parts: a dis-
cussion and a formal proof. These correspond to the stages of actual proof development.
Very few people, when asked to prove an unfamiliar theorem, immediately write down
the kind of formal proof you find in a mathematics text. Most need to experiment with
several possible approaches before they find one that works. A formal proof is much like
the ending of a mystery story—the part in which the action of the story is systematically
reviewed and all the loose ends are carefully tied together.

Example 4.4.7 The Square of an Odd Integer

Note  Another way to Prove: The square of any odd integer has the form 8m + 1 for some integer m.

state this fact is that if you .

square an odd integer and Solution  Begin by asking yourself, “Where am I starting from?” and “What do I need to
divide by 8, you will show?” To help answer these questions, introduce variables to represent the quantities in
always get a remainder of the statement to be pI’OVGd‘

1. Try a few examples! ; . . 2
Formal Restatement: ¥ odd integers n, 3 an integer m such that n° = 8m + 1.

From this, you can immediately identify the starting point and what is to be shown.
Starting Point: Suppose n is a particular but arbitrarily chosen odd integer.
To Show: 3 an integer m such that n> = 8m + 1.

This looks tough. Why should there be an integer m with the property that n’> =
8m + 1? That would say that (n> — 1)/8 is an integer, or that 8 divides n> — 1. Perhaps
you could make use of the fact that n> — 1 = (n — 1)(n + 1). Does 8 divide (n — 1)(n +
1)? Since n is odd, both (n — 1) and (n + 1) are even. That means that their product is
divisible by 4. But that’s not enough. You need to show that the product is divisible by 8.
This seems to be a blind alley.

You could try another tack. Since n is odd, you could represent n as 2¢g + 1 for some
integer ¢. Then n> = 2g + 1)> = 4¢> + 4q + 1 = 4(¢> + q) + 1. It is clear from this
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186 Chapter 4 Elementary Number Theory and Methods of Proof

analysis that 7% can be written in the form 4m + 1, but it may not be clear that it can be
written as 8m + 1. This also seems to be a blind alley.”
Yet another possibility is to use the result of Example 4.4.6. That example showed
that any integer can be written in one of the four forms 4¢q, 4q + 1, 4g + 2, or 4q + 3.
Two of these, 4¢ + 1 and 4¢ + 3, are odd. Thus any odd integer can be written in the
form 4qg + 1 or 4 + 3 for some integer g. You could try breaking into cases based on
these two different forms.
Note Desperation can It turns out that this last possibility works! In each of the two cases, the conclu-

spur creativity. When you sion follows readily by direct calculation. The details are shown in the following formal
have tried all ¥he obvious pI‘OOfZ

approaches without
success and you really
care about solving a
problem, you reach into Theorem 4.4.3
the odd corners of your

memory for anything that The square of any odd integer has the form 8m + 1 for some integer m.

may help.
Proof:

Suppose n is a [particular but arbitrarily chosen] odd integer. By the quotient-remainder
theorem, n can be written in one of the forms

4g or 49+1 or 4g+2 or 4943

for some integer ¢. In fact, since n is odd and 4¢g and 4q + 2 are even, n must have
one of the forms

4g+1 or 4q+3.

Case 1 (n=4q + 1 for some integer q): [We must find an integer m such that
n>=8m+ 1.] Since n = 4q + 1,

n* = (49 + 1)2 by substitution
= (461 + 1)(4q + 1) by definition of square
=16¢> +8q + 1

= 8(2q2 +q9)+1 by the laws of algebra.
Let m = 2g* + g. Then m is an integer since 2 and ¢ are integers and sums and
products of integers are integers. Thus, substituting,
n* =8m+1 where m is an integer.
Case 2 (n=4q + 3 for some integer q): [We must find an integer m such that
n®> =8m 4+ 1.] Since n = 4q + 3,
n* = (4q + 3)2 by substitution
= (4qg +3)4q +3) by definition of square
= 16¢% +24q +9
=16¢%>+24g + 8 + 1)
= 8(2q2 +3¢g+1)+1 by the laws of algebra.

[The motivation for the choice of algebra steps was the desire to write the expression in
the form 8- (some integer) + 1.]

*See exercise 18 for a different perspective.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4.4 Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem 187
Let m = 2¢* + 3q + 1. Then m is an integer since 1, 2, 3, and ¢ are integers and
sums and products of integers are integers. Thus, substituting,

n®> =8m 41 where m is an integer.

Cases 1 and 2 show that given any odd integer, whether of the form 4 + 1 or
4q + 3, n? = 8m + 1 for some integer m. [This is what we needed to show.]

Note that the result of Theorem 4.4.3 can also be written, “For any odd integer 7,
n>mod8 =17

In general, according to the quotient-remainder theorem, if an integer n is divided by
an integer d, the possible remainders are O, 1, 2, ..., (d — 1). This implies that n can be
written in one of the forms

dg, dg+1,dq+2,, ...,dg+{d—-1) for some integer g.

Many properties of integers can be obtained by giving d a variety of different values and
analyzing the cases that result.

Absolute Value and the Triangle Inequality

The triangle inequality is one of the most important results involving absolute value. It
has applications in many areas of mathematics.

o Definition

For any real number x, the absolute value of x, denoted |x|, is defined as follows:

x ifx>0
lx| = . .
—x ifx <0

The triangle inequality says that the absolute value of the sum of two numbers is less
than or equal to the sum of their absolute values. We give a proof based on the following
two facts, both of which are derived using division into cases. We state both as lemmas. A
lemma is a statement that does not have much intrinsic interest but is helpful in deriving
other results.

Lemma 4.4.4

For all real numbers r, —|r| < r < |r|.

Proof:

Suppose r is any real number. We divide into cases according to whether » > 0 or
r <0.

Case 1 (r = 0): In this case, by definition of absolute value, || = r. Also, since r is
positive and —|r| is negative, —|r| < r. Thus it is true that

=lrl=r=irl.

continued on page 188
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188 Chapter 4 Elementary Number Theory and Methods of Proof

Case 2 (r <0): In this case, by definition of absolute value, |r| = —r. Multiplying
both sides by —1 gives that —|r| = r. Also, since r is negative and |r| is positive,
r < |r|. Thus it is also true in this case that

—lrl<r <|rl.
Hence, in either case,
—lrl <r <|r|

[as was to be shown].

Lemma 4.4.5

For all real numbers 7, | — r| = |r|.

Proof:

Suppose r is any real number. By Theorem T23 in Appendix A, if r > 0, then
—r < 0,and if r < 0, then —r > 0. Thus

—r if —r>0
| —rl= 0 if —r=0 by definition of absolute value
—(—r) if —r<0
—r if —r>0
. because —(—r) = r by Theorem T4
=0 if-r=0 . ’
. in Appendix A
if —r<0
—-r ifr <0 because, by Theorem T24 in Appendix A, when
= 0 if —r=0 —r >0, thenr <0, when —r <0, thenr > 0,
r ifr>0 and when —r = 0, thenr =0
r ifr >0
= . by reformatting the previous result
—r ifr <0

Il
=

by definition of absolute value.

Lemmas 4.4.4 and 4.4.5 now provide a basis for proving the triangle inequlity.

Theorem 4.4.6 The Triangle Inequality

For all real numbers x and y, [x + y| < |x| + |y|-.

Proof:
Suppose x and y, are any real numbers.
Case 1 (x +y = 0): In this case, |x + y| = x + y, and so, by Lemma 4.4.4,
x <|x| and y <]yl
Hence, by Theorem T26 of Appendix A,
[x+yl=x+y < |x[+ |yl
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Case 2 (x +y <0): In this case, |x + y| = —(x + y) = (—x) + (—y), and so, by
Lemmas 4.4.4 and 4.4.5,

—x =|—x|=lx|
It follows, by Theorem T26 of Appendix A, that
X+ yl = (=x) + (=y) =[x+ [yl

Hence in both cases |x + y| < |x| + |y| [as was to be shown].

Direct Proof and Counterexample 1V: Division into Cases and the Quotient-Remainder Theorem 189

and —y<|—yl=Iyl

Test Yourself

1.

. If n and d are integers with d > 0, n div d is

The quotient-remainder theorem says that for all integers n
and d with d > 0, there exist q and r such that
and

and n
mod d is

. The parity of an integer indicates whether the integer is

Exercise Set 4.4

For each of the values of n and d given in 1-6, find integers ¢
and r such thatn =dg +rand0 <r < d.

1.
3.

S.

n=70,d =9 2.n=62,d="1
n=36,d =40 4. n=3,d=11
n=—45d =11 6. n=-27,d =38

Evaluate the expressions in 7-10.

7.
8.
9.
10.
11.

*12.
13.

16.

a. 43div9 b. 43 mod 9
a. 50div7 b. 50 mod 7
a. 28div 5 b. 28 mod 5
a. 30div2 b. 30 mod 2

Check the correctness of formula (4.4.1) given in Example
4.4.3 for the following values of DayT and N.
a. DayT = 6 (Saturday) and N = 15

b. DayT = 0 (Sunday) and N =7
¢. DayT = 4 (Thursday) and N = 12

Justify formula (4.4.1) for general values of DayT and N.

On a Monday a friend says he will meet you again in 30
days. What day of the week will that be?

. If today is Tuesday, what day of the week will it be 1,000

days from today?

. January 1, 2000, was a Saturday, and 2000 was a leap year.

What day of the week will January 1, 2050, be?

Suppose d is a positive integer and n is any integer. If
d | n, what is the remainder obtained when the quotient-
remainder theorem is applied to n with divisor d?

17.

18.

19.
20.

21.

22.

23.

24.

25.

H 26.

. According to the quotient-remainder theorem, if an integer

n is divided by a positive integer d, the possible remainders
are . This implies that n can be written in one of the
forms for some integer gq.

. To prove a statement of the form “If A, or A, or As, then

and and

C,’ prove

. The triangle inequality says that for all real numbers x and

Y,

Prove that the product of any two consecutive integers is
even.

The result of exercise 17 suggests that the second apparent
blind alley in the discussion of Example 4.4.7 might not be
a blind alley after all. Write a new proof of Theorem 4.4.3
based on this observation.

Prove that for all integers n, n? —n + 3is odd.

Suppose a is an integer. If @ mod 7 = 4, what is 5a mod 7?
In other words, if division of a by 7 gives a remainder of 4,
what is the remainder when 5« is divided by 7?

Suppose b is an integer. If b mod 12 = 5, what is

8b mod 127 In other words, if division of b by 12 gives a
remainder of 5, what is the remainder when 8b is divided
by 12?

Suppose c is an integer. If ¢ mod 15 = 3, what is

10c mod 157? In other words, if division of ¢ by 15 gives a
remainder of 3, what is the remainder when 10c is divided
by 15?

Prove that for all integers n, if n mod 5 = 3 then
n? mod 5 = 4.

Prove that for all integers m and n, if m mod 5 = 2 and
n mod 3 = 6 then mn mod 5 = 1.

Prove that for all integers a and b, if a mod 7 = 5 and
b mod 7 = 6 then ab mod 7 = 2.

Prove that a necessary and sufficient condition for a non-
negative integer n to be divisible by a positive integer d is
that n mod d = 0.
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27.

28.

H 29.

30.

Show that any integer n can be written in one of the three
forms

n=3g or n=3¢+1 or n=3¢+2

for some integer g.

a. Use the quotient-remainder theorem with d = 3 to prove
that the product of any three consecutive integers is
divisible by 3.

b. Use the mod notation to rewrite the result of part (a).

a. Use the quotient-remainder theorem with d = 3 to prove
that the square of any integer has the form 3k or 3k + 1
for some integer k.

b. Use the mod notation to rewrite the result of part (a).

a. Use the quotient-remainder theorem with d = 3 to prove
that the product of any two consecutive integers has the
form 3k or 3k + 2 for some integer k.

b. Use the mod notation to rewrite the result of part (a).

In 31-33, you may use the properties listed in Example 4.2.3.

31.

32.

33.

H 34.

a. Prove that for all integers m and n,m + nand m — n
are either both odd or both even.

b. Find all solutions to the equation m?> —n* = 56 for
which both m and n are positive integers.

c. Find all solutions to the equation m? — n?> = 88 for
which both m and n are positive integers.

Given any integers a, b, and ¢, if a — b is even and b — ¢
is even, what can you say about the parity of 2a — (b + ¢)?
Prove your answer.

Given any integers a, b, and ¢, if a — b is odd and b — ¢
is even, what can you say about the parity of a — c¢? Prove
your answer.

Given any integer n, if n > 3, could n,n + 2, and n + 4
all be prime? Prove or give a counterexample.

Prove each of the statements in 35-46.

35.

37.

H 38.
H 39.

40.

The fourth power of any integer has the form 8m or 8m + 1
for some integer m.

. The product of any four consecutive integers is divisible

by 8.

The square of any integer has the form 4k or 4k + 1 for
some integer k.

For any integer n, n* + 5 is not divisible by 4.

The sum of any four consecutive integers has the form
4k + 2 for some integer k.

For any integer 1, n(n> — 1)(n + 2) is divisible by 4.

Answers for Test Yourself

1. integers; n =dq +r; 0 <r <d 2. the quotient obtained when n is divided by d; the nonnegative remainder obtained when n
isdivided byd 3. oddoreven 4. 0,1,2,..., (d—1); dgq, dg+1,dg+2,...,dg+(d—1) 5. 1If Ay, then C; If A,, then
C;If As,then C 6. |x +y| < |x|+ |y

41.

H 42.

43.
H 44.
45.

46.

47.

48.

* 49.

* 50.

*51.

* 52.

53.

For all integers m, m*> = 5k, or m* = 5k + 1, or
m? = 5k + 4 for some integer k.

Every prime number except 2 and 3 has the form 6 + 1 or
6q + 5 for some integer g.

If n is an odd integer, then n* mod 16 = 1.
For all real numbers x and y, |x|-|y| = |xy].

For all real numbers r and ¢ withc¢ > 0, if —c < r < ¢, then
[r] <ec.

For all real numbers r and ¢ with ¢ > 0, if |r| < ¢, then
—c<r<ec.

A matrix M has 3 rows and 4 columns.

app dpp apiy ay
dz)  dyy  drxz  dxg
asy Az dsz Az

The 12 entries in the matrix are to be stored in row major

form in locations 7,609 to 7,620 in a computer’s memory.

This means that the entries in the first row (reading left to

right) are stored first, then the entries in the second row, and

finally the entries in the third row.

a. Which location will a», be stored in?

b. Write a formula (in i and j) that gives the integer n so
that g;; is stored in location 7,609 + n.

c. Find formulas (in n) for r and s so that a, is stored in
location 7,609 + n.

Let M be a matrix with m rows and n columns, and
suppose that the entries of M are stored in a computer’s
memory in row major form (see exercise 47) in locations
N,N+1,N+2,..., N+ mn — 1. Find formulas in k for
r and s so that a, is stored in location N + k.

If m, n, and d are integers, d > 0, and m mod d = n mod d,
does it necessarily follow that m = n? That m — n is divis-
ible by d? Prove your answers.

If m, n, and d are integers, d > 0, and d | (m — n), what is
the relation between m mod d and n mod d? Prove your
answer.

If m,n,a, b, and d are integers, d > 0, and m mod d = a
and n modd = b, is (m +n) modd = a + b? Is (m + n)
mod d = (a + b) mod d? Prove your answers.

It m,n,a, b, and d are integers, d > 0, and m mod d = a
and n mod d = b, is (mn) mod d = ab? Is (mn) mod d = ab
mod d? Prove your answers.

Prove that if m,d, and k are integers and d > 0, then
(m + dk) mod d = m mod d.
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4.5 Direct Proof and Counterexample V: Floor and Ceiling 191

4.5 Direct Proof and Counterexample V:
Floor and Ceiling

Proof serves many purposes simultaneously. In being exposed to the scrutiny and
Judgment of a new audience, [a] proof is subject to a constant process of criticism and
revalidation. Errors, ambiguities, and misunderstandings are cleared up by constant
exposure. Proof is respectability. Proof is the seal of authority.

Proof, in its best instances, increases understanding by revealing the heart of the
matter. Proof suggests new mathematics. The novice who studies proofs gets closer to
the creation of new mathematics. Proof is mathematical power; the electric voltage of
the subject which vitalizes the static assertions of the theorems.

Finally, proof is ritual, and a celebration of the power of pure reason.

— Philip J. Davis and Reuben Hersh, The Mathematical Experience, 1981

Imagine a real number sitting on a number line. The floor and ceiling of the number are
the integers to the immediate left and to the immediate right of the number (unless the
number is, itself, an integer, in which case its floor and ceiling both equal the number
itself). Many computer languages have built-in functions that compute floor and ceiling
automatically. These functions are very convenient to use when writing certain kinds
of computer programs. In addition, the concepts of floor and ceiling are important in
analyzing the efficiency of many computer algorithms.

® Definition

Given any real number x, the floor of x, denoted | x ], is defined as follows:
|x] = that unique integer n such thatn < x <n + 1.
Symbolically, if x is a real number and » is an integer, then

lx]=n & n<x<n+l.

X

:

floor of x = |x]

o Definition

Given any real number x, the ceiling of x, denoted [x7, is defined as follows:
[x] = that unique integer n such thatn — 1 < x < n.
Symbolically, if x is a real number and » is an integer, then

[x]=n & n—1<x<n.

—> = 4

ceiling of x = [x]
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Example 4.5.1 Computing Floors and Ceilings
Compute | x| and [x] for each of the following values of x:

a. 25/4 b. 0.999 c. —2.01

Solution

a. 25/4 =6.25and 6 < 6.25 < 7; hence |25/4] = 6 and [25/4] =17.
b. 0 < 0.999 < 1; hence [0.999] = 0 and [0.999] = 1.
c. =3 < —=2.01 < —2; hence |[-2.01] = =3 and [-2.01] = 2.

Note that on some calculators |x | is denoted INT (x). |

Example 4.5.2 An Application

The 1,370 students at a college are given the opportunity to take buses to an out-of-town
game. Each bus holds a maximum of 40 passengers.

a. For reasons of economy, the athletic director will send only full buses. What is the
maximum number of buses the athletic director will send?

b. If the athletic director is willing to send one partially filled bus, how many buses will
be needed to allow all the students to take the trip?

Solution
a. |[1370/40] = [34.25] =34 b. [1370/407 = [34.25] = 35 |
Example 4.5.3 Some General Values of Floor

If k is an integer, what are | k] and |k + 1/2]? Why?

Solution  Suppose k is an integer. Then
k] = k because k is an integer and k < k <k + 1,

and
1 . . 1
k+§ :kbecauseklsanmtegerandk§k+§<k+1. [ |
Example 4.5.4 Disproving an Alleged Property of Floor
Is the following statement true or false?

For all real numbers x and y, |x + y] = [x] + |y].

Solution  The statement is false. As a counterexample, take x = y = % Then

L) + Lyl = BJ+BJ —040=0,
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whereas

Lx+yJ—L2+2J—LJ—-

Hence |x + y| # Lx] + L.

To arrive at this counterexample, you could have reasoned as follows: Suppose x and
y are real numbers. Must it necessarily be the case that [x + y| = [x] + |y], or could
x and y be such that | x 4+ y| # [x] 4+ |y]? Imagine values that the various quantities
could take. For instance, if both x and y are positive, then |x] and |y] are the integer
parts of |x] and |y respectively; just as

3 3
22 =242
5 5\
integer part fractional part
sois
x = |x] 4+ fractional part of x
and

y = Ly] + fractional part of y.

where the term fractional part is understood here to mean the part of the number to the
right of the decimal point when the number is written in decimal notation. Thus if x and
y are positive,

x +y = |x] + Lyl + the sum of the fractional parts of x and y.
But also
X +y = |x + y] + the fractional part of (x + y).

These equations show that if there exist numbers x and y such that the sum of the frac-
tional parts of x and y is at least 1, then a counterexample can be found. But there do

exist such x and y; for instance, x = % and y = % as before. [ |

The analysis of Example 4.5.4 indicates that if x and y are positive and the sum of
their fractional parts is less than 1, then | x 4+ y| = [x] + [y]. In particular, if x is posi-
tive and m is a positive integer, then |x + m| = |x] + |m] = [x]| + m. (The fractional
part of m is 0; hence the sum of the fractional parts of x and m equals the fractional part
of x, which is less than 1.) It turns out that you can use the definition of floor to show that
this equation holds for all real numbers x and for all integers m.

Example 4.5.5 Proving a Property of Floor

Prove that for all real numbers x and for all integers m, [x +m| = [x]| 4+ m.

Solution  Begin by supposing that x is a particular but arbitrarily chosen real number and
that m is a particular but arbitrarily chosen integer. You must show that |[x +m] =
Lx] + m. Since this is an equation involving |x] and |x + m], it is reasonable to give
one of these quantities a name: Let n = [ x]. By definition of floor,

nisaninteger and n <x <n+ 1.
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This double inequality enables you to compute the value of |x + m] in terms of n by
adding m to all sides:

n+m<x+m<n-+m-+1.
Thus the left-hand side of the equation to be shown is
lx +m| =n+m.
On the other hand, since n = |x], the right-hand side of the equation to be shown is
x|+m=n+m

also. Thus |x + m] = | x| + m. This discussion is summarized as follows:

Theorem 4.5.1

For all real numbers x and all integers m, |x +m]| = |x] + m.

Proof:

Suppose a real number x and an integer m are given. [We must show that |x +m] =
x| + m.] Let n = |x]. By definition of floor,  is an integer and

n<x<n+l.
Add m to all three parts to obtain

n+m<x+m<n+m+1

[since adding a number to both sides of an inequality does not change the direction of
the inequality].

Now n + m is an integer [since n and m are integers and a sum of integers is
an integer], and so, by definition of floor, the left-hand side of the equation to be
shown is

lx +m| =n+m.
Butn = | x]. Hence, by substitution,
n+m=|x|+m,

which is the right-hand side of the equation to be shown. Thus |x +m] = |x] +m
[as was to be shown].

The analysis of a number of computer algorithms, such as the binary search and merge
sort algorithms, requires that you know the value of |n/2], where n is an integer. The
formula for computing this value depends on whether » is even or odd.
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4.5 Direct Proof and Counterexample V: Floor and Ceiling 195

Theorem 4.5.2 The Floor of n/2

For any integer n,

if n is even

— 1

,_
oS
[

Il

S IS

if n is odd.

Proof:

Suppose n is a [particular but arbitrarily chosen] integer. By the quotient-remainder
theorem, either n is odd or » is even.

Case 1 (n is odd): In this case, n = 2k + 1 for some integer k. [We must show that
[n/2] = (n — 1)/2.] But the left-hand side of the equation to be shown is

225 24

because k is an integer and k < k + 1/2 < k + 1. And the right-hand side of the
equation to be shown is

n—1 _ @2k+1)-1 2k

2 2 2

k

also. So since both the left-hand and right-hand sides equal k, they are equal to each

—1
other. That is, \‘%J = 3 [as was to be shown].

Case 2 (n is even): In this case, n = 2k for some integer k. [We must show that
[n/2] = n/2.] The rest of the proof of this case is left as an exercise.

Given any integer n and a positive integer d, the quotient-remainder theorem guaran-
tees the existence of unique integers ¢ and r such that

n=dq+r and 0<r <d.

The following theorem states that the floor notation can be used to describe ¢ and r as

follows:
= —_ N = _ — 1.
q d al r n d

Thus if, on a calculator or in a computer language, floor is built in but div and mod are
not, div and mod can be defined as follows: For a nonnegative integer n and a positive
integer d,

ndivd:\‘ﬁJ and nmodd:n—dLEJ. 45.1
d d

Note that d divides » if, and only if, n mod d = 0, or, in other words, n = d|n/d]. You
are asked to prove this in exercise 13.
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196 Chapter 4 Elementary Number Theory and Methods of Proof

Theorem 4.5.3
If n is any integer and d is a positive integer, and if ¢ = |n/d] andr =n —d|n/d],
then
n=dgq+r and 0<r <d.
Proof:

Suppose n is any integer, d is a positive integer, ¢ = |n/d], and r =
n —d|n/d]. [We must show thatn = dq + r and 0 < r < d.] By substitution,

o[ -ef5) -

So it remains only to show that 0 < r < d. But ¢ = |n/d]. Thus, by definition of

floor,
n
q = 7 <q+1

Then

dg<n<dqg+d by multiplying all parts by d
and so

0<n-— dq <d by subtracting dg from all parts
But

r:n—d{zJ =n—dgq.
d
Hence
0<r<d by substitution.

[This is what was to be shown. |

Example 4.5.6 Computing div and mod
Use the floor notation to compute 3850 div 17 and 3850 mod 17.
Solution By formula (4.5.1),

3850 div 17 = [3850/17] = [226.4705882....] = 226
3850 mod 17 = 3850 — 17-[3850/17

= 3850 — 17-226
= 3850 — 3842 = 8. |
Test Yourself
1. Given any real number x, the floor of x is the unique integer 2. Given any real number x, the ceiling of x is the unique inte-
n such that . ger n such that
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Exercise Set 4.5

Compute |[x] and [x] for each of the values of x in 1-4.

1.
3.
5.

10.

11.

12.
13.

37.999
—14.00001

2. 17/4
4. —32/5

Use the floor notation to express 259 div 11 and
259 mod 11.

. If k is an integer, what is [k]? Why?
. If k is an integer, what is |—k + ﬂ ? Why?

. Seven pounds of raw material are needed to manufacture

each unit of a certain product. Express the number of units
that can be produced from n pounds of raw material using
either the floor or the ceiling notation. Which notation is
more appropriate?

. Boxes, each capable of holding 36 units, are used to ship

a product from the manufacturer to a wholesaler. Express
the number of boxes that would be required to ship 7 units
of the product using either the floor or the ceiling notation.
Which notation is more appropriate?

If 0 = Sunday, 1 = Monday, 2 = Tuesday, ..., 6 = Satur-
day, then January 1 of year n occurs on the day of the week
given by the following formula:

n n—1 n—1 " n—1 47
- mod 7.
" 4 100 400
a. Use this formula to find January 1 of
i. 2050 ii. 2100 iii. the year of your birth.

b. Interpret the different components of this formula.

State a necessary and sufficient condition for the floor of a
real number to equal that number.

Prove that if n is any even integer, then [n/2] = n/2.

Suppose n and d are integers and d # 0. Prove each of the

following.

a. Ifd|n,thenn = |n/d]-d.

b. If n = |n/d]-d, thend |n.

c. Use the floor notation to state a necessary and sufficient
condition for an integer n to be divisible by an integer d.

Some of the statements in 14-22 are true and some are false.
Prove each true statement and find a counterexample for each
false statement, but do not use Theorem 4.5.1. in your proofs.

14.

For all real numbers x and y, [x — y| = [x]| — |y].

Answers for Test Yourself

l.n<x<n+1

2.n—1<x<n

4.5 Direct Proof and Counterexample V: Floor and Ceiling

16.
H 17.

H 18.
H 19.
20.
21.
22.

197

. For all real numbers x, |[x — 1] = [x] — 1.

For all real numbers x, [x%| = [x]?.

For all integers n,

n/3 ifnmod3 =0
n/3]=3(n—1)/3 ifnmod3 =1
(n—2)/3 ifnmod3 =2

For all real numbers x and y, [x + y] = [x] + [y].
For all real numbers x, [x — 17 = [x] — 1.

For all real numbers x and y, [xy] = [x]-[y].

For all odd integers n, [n/2] = (n + 1)/2.

For all real numbers x and y, [xy] = [x]-y].

Prove each of the statements in 23-29.

23.

24.

H 25.
26.

217.

28.

29.

30.

For any real number x, if x is not an integer, then
lx]+|—x]=-1

For any integer m and any real number x, if x is not an
integer, then [x| + [m — x] =m — 1.

For all real numbers x, [|x/2]/2] = [x/4].

For all real numbers x, if x — [x] < 1/2 then

[2x] = 2]x].

For all real numbers x, if x — [x] > 1/2 then

[2x] =2|x] + 1.

For any odd integer n,

005

For any odd integer 7,

7l n*43
4|17 4 7
Find the mistake in the following “proof” that |n/2] =
(n —1)/2 if n is an odd integer.
“Proof: Suppose n is any odd integer. Then n = 2k + 1 for
some integer k. Consequently,
LZk-l—lJ _@k+DH -1 2k

= ok
2 2 2

But n =2k 4+ 1. Solving for k gives k= (n—1)/2.
Hence, by substitution, [n/2] = (n — 1)/2.”
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198 Chapter 4 Elementary Number Theory and Methods of Proof

4.6 Indirect Argument: Contradiction
and Contraposition

Reductio ad absurdum is one of a mathematician’s finest weapons. It is a far finer
gambit than any chess gambit: a chess player may offer the sacrifice of a pawn or even
a piece, but the mathematician offers the game. — G. H. Hardy, 18771947

In a direct proof you start with the hypothesis of a statement and make one deduction after
another until you reach the conclusion. Indirect proofs are more roundabout. One kind of
indirect proof, argument by contradiction, is based on the fact that either a statement
is true or it is false but not both. So if you can show that the assumption that a given
statement is not true leads logically to a contradiction, impossibility, or absurdity, then
that assumption must be false: and, hence, the given statement must be true. This method
of proof is also known as reductio ad impossible or reductio ad absurdum because it relies
on reducing a given assumption to an impossibility or absurdity.

Argument by contradiction occurs in many different settings. For example, if a man
accused of holding up a bank can prove that he was some place else at the time the crime
was committed, he will certainly be acquitted. The logic of his defense is as follows:

Suppose I did commit the crime. Then at the time of the crime, I would have had to be
at the scene of the crime. In fact, at the time of the crime I was in a meeting with 20
people far from the crime scene, as they will testify. This contradicts the assumption
that I committed the crime since it is impossible to be in two places at one time. Hence
that assumption is false.

Another example occurs in debate. One technique of debate is to say, “Suppose for
a moment that what my opponent says is correct.” Starting from this supposition, the
debater then deduces one statement after another until finally arriving at a statement that
is completely ridiculous and unacceptable to the audience. By this means the debater
shows the opponent’s statement to be false.

The point of departure for a proof by contradiction is the supposition that the state-
ment to be proved is false. The goal is to reason to a contradiction. Thus proof by contra-
diction has the following outline:

Method of Proof by Contradiction

Note Be very careful 1. Suppose the statement to be proved is false. That is, suppose that the negation of
when writing the the statement is true.
negation!

2. Show that this supposition leads logically to a contradiction.

3. Conclude that the statement to be proved is true.

There are no clear-cut rules for when to try a direct proof and when to try a proof by
contradiction, but there are some general guidelines. Proof by contradiction is indicated
if you want to show that there is no object with a certain property, or if you want to show
that a certain object does not have a certain property. The next two examples illustrate
these situations.

Example 4.6.1 There Is No Greatest Integer

Use proof by contradiction to show that there is no greatest integer.
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4.6 Indirect Argument: Contradiction and Contraposition 199

Solution  Most small children believe there is a greatest integer—they often call it a “zil-
lion.” But with age and experience, they change their belief. At some point they realize
that if there were a greatest integer, they could add 1 to it to obtain an integer that was
greater still. Since that is a contradiction, no greatest integer can exist. This line of rea-
soning is the heart of the formal proof.

For the proof, the “certain property” is the property of being the greatest integer. To
prove that there is no object with this property, begin by supposing the negation: that
there is an object with the property.

Starting Point: Suppose not. Suppose there is a greatest integer; call it N.
This means that N > n for all integers n.

To Show: This supposition leads logically to a contradiction.

Theorem 4.6.1

There is no greatest integer.

Proof:

[We take the negation of the theorem and suppose it to be true.] Suppose not. That
is, suppose there is a greatest integer N. [We must deduce a contradiction.] Then
N > n for every integer n. Let M = N + 1. Now M is an integer since it is a sum
of integers. Also M > N since M = N + 1. Thus M is an integer that is greater
than N. So N is the greatest integer and N is not the greatest integer, which is a
contradiction. [This contradiction shows that the supposition is false and, hence, that
the theorem is true.]

After a contradiction has been reached, the logic of the argument is always the same:
“This is a contradiction. Hence the supposition is false and the theorem is true.” Because
of this, most mathematics texts end proofs by contradiction at the point at which the
contradiction has been obtained.

The contradiction in the next example is based on the fact that 1/2 is not an integer.

Example 4.6.2 No Integer Can Be Both Even and Odd

The fact that no integer can be both even and odd follows from the uniqueness part of
the quotient-remainder theorem. A full proof of this port of the theorem is outlined in
exercise 18 of section 4.7. This example shows how to use proof by contradiction to
prove one specific case.

Theorem 4.6.2

There is no integer that is both even and odd.

Proof:

[We take the negation of the theorem and suppose it to be true.] Suppose not. That is,
suppose there is at least one integer n that is both even and odd. [We must deduce a
contradiction. ] By definition of even, n = 2a for some integer a, and by definition of
odd, n = 2b 4+ 1 for some integer b. Consequently,

2a =2b+1 by equating the two expressions for n

continued on page 200
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200 Chapter 4 Elementary Number Theory and Methods of Proof

and so

2a —2b =1
2(a—b)=1
a—b=1/2 byalgebra.
Now since a and b are integers, the difference @ — b must also be an integer. But
a—b=1/2,and 1/2 is not an integer. Thus @ — b is an integer and a — b is not

an integer, which is a contradiction. [This contradiction shows that the supposition is
false and, hence, that the theorem is true.]

The next example asks you to show that the sum of any rational number and any
irrational number is irrational. One way to think of this is in terms of a certain object
(the sum of a rational and an irrational) not having a certain property (the property of
being rational). This suggests trying a proof by contradiction: suppose the object has the
property and deduce a contradiction.

Example 4.6.3 The Sum of a Rational Number and an Irrational Number

Use proof by contradiction to show that the sum of any rational number and any irrational
number is irrational.

Solution  Begin by supposing the negation of what you are to prove. Be very careful when
A writing down what this means. If you take the negation incorrectly, the entire rest of
Caution! The negation the proof will be flawed. In this example, the statement to be proved can be written
of “The sum of any fomlally as
irrational number and any
rational number is V real numbers r and s, if r is rational and

irrational” is NOT “The
sum of any irrational
number and any rational
number is rational.”

s is irrational, then r + s is irrational.
From this you can see that the negation is

3 a rational number r and an irrational
number s such that » + s is rational.

It follows that the starting point and what is to be shown are as follows:

Starting Point: Suppose not. That is, suppose there is a rational number » and an irrational
number s such that » + s is rational.

To Show: This supposition leads to a contradiction.

To derive a contradiction, you need to understand what you are supposing: that there are

numbers r and s such that r is rational, s is irrational, and r + s is rational. By definition

of rational and irrational, this means that s cannot be written as a quotient of any two
integers but that » and r 4 s can:

r= for some integers a and b with b # 0, and 4.6.1

r+s= for some integers ¢ and d with d # 0. 4.6.2

Ul SR
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4.6 Indirect Argument: Contradiction and Contraposition 201

If you substitute (4.6.1) into (4.6.2), you obtain

a + c
—+s5=-.
b d
Subtracting a /b from both sides gives
C a
§=-——
d b
bc  ad - _ o
= — - — by rewriting ¢/d and a/b as equivalent fractions
bd bd
_ bc —ad by the rule for subtracting fractions
- bd with the same denominator.

But both bc — ad and bd are integers because products and differences of integers are
integers, and bd # 0 by the zero product property. Hence s can be expressed as a quotient
of two integers with a nonzero denominator, and so s is rational, which contradicts the
supposition that it is irrational.

This discussion is summarized in a formal proof.

Theorem 4.6.3

The sum of any rational number and any irrational number is irrational.

Proof:

[We take the negation of the theorem and suppose it to be true.] Suppose not. That is,
suppose there is a rational number r and an irrational number s such that r + s is
rational. [We must deduce a contradiction.] By definition of rational, r = a/b and
r + s = c/d for some integers a, b, ¢, and d with b # 0 and d # 0. By substitution,

a + C
—+s5s=—,
b d
and so
C a
S =—-—— by subtracting a /b from both sides
d b
bc —ad
= ————— by the laws of algebra.
bd

Now bc — ad and bd are both integers [since a, b, ¢, and d are integers and since prod-
ucts and differences of integers are integers], and bd # O [by the zero product property].
Hence s is a quotient of the two integers bc — ad and bd with bd # 0. Thus, by def-
inition of rational, s is rational, which contradicts the supposition that s is irrational.
[Hence the supposition is false and the theorem is true.]

Argument by Contraposition

A second form of indirect argument, argument by contraposition, is based on the logical
equivalence between a statement and its contrapositive. To prove a statement by con-
traposition, you take the contrapositive of the statement, prove the contrapositive by a
direct proof, and conclude that the original statement is true. The underlying reasoning
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202 Chapter 4 Elementary Number Theory and Methods of Proof

is that since a conditional statement is logically equivalent to its contrapositive, if the
contrapositive is true then the statement must also be true.

Method of Proof by Contraposition
1. Express the statement to be proved in the form
Vx in D, if P(x) then Q(x).

(This step may be done mentally.)

2. Rewrite this statement in the contrapositive form
Vx in D, if Q(x) is false then P (x) is false.

(This step may also be done mentally.)

3. Prove the contrapositive by a direct proof.

a. Suppose x is a (particular but arbitrarily chosen) element of D such that Q(x)
is false.

b. Show that P(x) is false.

Example 4.6.4 If the Square of an Integer Is Even, Then the Integer Is Even
Prove that for all integers n, if n? is even then n is even.
Solution  First form the contrapositive of the statement to be proved.
Contrapositive: For all integers n, if n is not even then n” is not even.

By the quotient-remainder theorem with d = 2, any integer is even or odd, so any integer
that is not even is odd. Also by Theorem 4.6.2, no integer can be both even and odd. So
if an integer is odd, then it is not even. Thus the contrapositive can be restated as follows:

Contrapositive: For all integers n, if n is odd then n? is odd.

A straightforward computation is the heart of a direct proof for this statement, as shown
below.

Proposition 4.6.4

For all integers n, if n? is even then 7 is even.

Proof (by contraposition):

Suppose 7 is any odd integer. [We must show that n? is odd.] By definition of odd,
n = 2k + 1 for some integer k. By substitution and algebra,

n? = Qk+1)? =4k> + 4k + 1 =202k> + 2k) + 1.

But 2k? + 2k is an integer because products and sums of integers are integers.
So n? =2-(an integer) + 1, and thus, by definition of odd, n? is odd [as was to be
shown].

We used the word proposition here rather than theorem because although the word theorem
can refer to any statement that has been proved, mathematicians often restrict it to

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions requireit.



4.6 Indirect Argument: Contradiction and Contraposition 203

especially important statements that have many and varied consequences. Then they use
the word propeosition to refer to a statement that is somewhat less consequential but
nonetheless worth writing down. We will use Proposition 4.6.4 in Section 4.7 to prove
that +/2 is irrational. |

Relation between Proof by Contradiction
and Proof by Contraposition

Observe that any proof by contraposition can be recast in the language of proof by con-
tradiction. In a proof by contraposition, the statement

Vx in D, if P(x) then Q(x)
is proved by giving a direct proof of the equivalent statement
Vx in D, if ~Q(x) then ~P(x).

To do this, you suppose you are given an arbitrary element x of D such that ~Q(x). You
then show that ~P (x). This is illustrated in Figure 4.6.1.

Suppose x is an arbitrary sequence of steps
it hneidhialiutad Sl

element of D such that ~Q(x). ~P()

Figure 4.6.1 Proof by Contraposition

Exactly the same sequence of steps can be used as the heart of a proof by contradiction
for the given statement. The only thing that changes is the context in which the steps are
written down.

To rewrite the proof as a proof by contradiction, you suppose there is an x in D such
that P(x) and ~Q(x). You then follow the steps of the proof by contraposition to deduce
the statement ~P(x). But ~P(x) is a contradiction to the supposition that P(x) and
~Q(x). (Because to contradict a conjunction of two statements, it is only necessary to
contradict one of them.) This process is illustrated in Figure 4.6.2.

Suppose Jx in D such same sequence of steps Contradiction:
that P(x) and ~Q(x). P(x) and ~P(x)

Figure 4.6.2 Proof by Contradiction

As an example, here is a proof by contradiction of Proposition 4.6.4, namely that for
any integer n, if n? is even then n is even.

Proposition 4.6.4

For all integers n, if n” is even then 7 is even.

Proof (by contradiction):

[We take the negation of the theorem and suppose it to be true.] Suppose not. That
is, suppose there is an integer n such that n? is even and n is not even. [We must
deduce a contradiction.] By the quotient-remainder theorem with d = 2, any integer

continued on page 204
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204 Chapter 4 Elementary Number Theory and Methods of Proof

is even or odd. Hence, since n is not even it is odd, and thus, by definition of odd,
n = 2k + 1 for some integer k. By substitution and algebra:

n? = Qk+ 1) =4+ 4k +1 =202k +2k) + 1.

But 2k? + 2k is an integer because products and sums of integers are integers. So
n®> = 2-(an integer) + 1, and thus, by definition of odd, n? is odd. Therefore, n? is
both even and odd. This contradicts Theorem 4.6.2, which states that no integer can
be both even and odd. [This contradiction shows that the supposition is false and, hence,
that the proposition is true. |

Note that when you use proof by contraposition, you know exactly what conclusion
you need to show, namely the negation of the hypothesis; whereas in proof by contra-
diction, it may be difficult to know what contradiction to head for. On the other hand,
when you use proof by contradiction, once you have deduced any contradiction whatso-
ever, you are done. The main advantage of contraposition over contradiction is that you
avoid having to take (possibly incorrectly) the negation of a complicated statement. The
disadvantage of contraposition as compared with contradiction is that you can use contra-
position only for a specific class of statements—those that are universal and conditional.
The previous discussion shows that any statement that can be proved by contraposition
can be proved by contradiction. But the converse is not true. Statements such as “v/2
is irrational” (discussed in the next section) can be proved by contradiction but not by
contraposition.

Proof as a Problem-Solving Tool

Direct proof, disproof by counterexample, proof by contradiction, and proof by contra-
position are all tools that may be used to help determine whether statements are true or
false. Given a statement of the form

For all elements in a domain, if (hypothesis) then (conclusion),

imagine elements in the domain that satisfy the hypothesis. Ask yourself: Must they sat-
isfy the conclusion? If you can see that the answer is “yes” in all cases, then the statement
is true and your insight will form the basis for a direct proof. If after some thought it is
not clear that the answer is “yes,” ask yourself whether there are elements of the domain
that satisfy the hypothesis and not the conclusion. If you are successful in finding some,
then the statement is false and you have a counterexample. On the other hand, if you are
not successful in finding such elements, perhaps none exist. Perhaps you can show that
assuming the existence of elements in the domain that satisfy the hypothesis and not the
conclusion leads logically to a contradiction. If so, then the given statement is true and
you have the basis for a proof by contradiction. Alternatively, you could imagine elements
of the domain for which the conclusion is false and ask whether such elements also fail
to satisfy the hypothesis. If the answer in all cases is “yes,” then you have a basis for a
proof by contraposition.

Solving problems, especially difficult problems, is rarely a straightforward process.
At any stage of following the guidelines above, you might want to try the method of
a previous stage again. If, for example, you fail to find a counterexample for a certain
statement, your experience in trying to find it might help you decide to reattempt a direct
argument rather than trying an indirect one. Psychologists who have studied problem
solving have found that the most successful problem solvers are those who are flexible
and willing to use a variety of approaches without getting stuck in any one of them for
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very long. Mathematicians sometimes work for months (or longer) on difficult problems.
Don’t be discouraged if some problems in this book take you quite a while to solve.

Learning the skills of proof and disproof is much like learning other skills, such as
those used in swimming, tennis, or playing a musical instrument. When you first start
out, you may feel bewildered by all the rules, and you may not feel confident as you
attempt new things. But with practice the rules become internalized and you can use
them in conjunction with all your other powers—of balance, coordination, judgment,
aesthetic sense—to concentrate on winning a meet, winning a match, or playing a concert
successfully.

Now that you have worked through the first five sections of this chapter, return to the
idea that, above all, a proof or disproof should be a convincing argument. You need to
know how direct and indirect proofs and counterexamples are structured. But to use this
knowledge effectively, you must use it in conjunction with your imaginative powers, your
intuition, and especially your common sense.

Test Yourself

1. To prove a statement by contradiction, you suppose that 3. To prove a statement of the form “Vx € D, if P(x) then
and you show that . Q(x)” by contraposition, you suppose that and you
show that .

2. A proof by contraposition of a statement of the form “Vx €
D, if P(x) then Q(x)” is a direct proof of .

Exercise Set 4.6

1. Fill in the blanks in the following proof by contradiction rational, there exist integers a, b, ¢, and d with b # 0 and
that there is no least positive real number. d #0sothatx = (©) andx — y = @ By substitution,
Proof: Suppose not. That is, suppose that there is a least a c
positive real number x. [We must deduce (@) 7 Consider the b y= d
number x /2. Since x is a positive real number, x/2 is also c
_®) In addition, we can deduce that x /2 < x by multiply- Adding y and subtracting 7 both sides gives
ing both sides of the inequality 1 < 2 by _(©)_ and dividing
@ Hence x /2 is a positive real number that is less than y =)
the least positive real number. This is a ©)_ [Thus the sup- _ ad  bc
position is false, and so there is no least positive real number. | bd  bd

1 = M by algebra.

2. Is 0 an irrational number? Explain. bd ’

3. Use proof by contradiction to show that for all integers 7, Now both ad — bc and bd are integers because products
3n + 2 is not divisible by 3. and differences of _(D_are (&)  And bd # 0 by the RO

4. Use proof by contradiction to show that for all integers Hence y is a ratio of integers with a nonzero denominator,
m, 7m + 4 is not divisible by 7. and thus y is @ by definition of rational. We therefore

have both that y is irrational and that y is rational, which is
a contradiction. [Thus the supposition is false and the state-
ment to be proved is true.]

Carefully formulate the negations of each of the statements in
5-7. Then prove each statement by contradiction.

5. There is no greatest even integer. 9. a. When asked to prove that the difference of any irra-
. There is no greatest negative real number. tional number and any rational number is irrational, a
student began, “Suppose not. That is, suppose the differ-

6

7. There is no least positive rational number. o .
ence of any irrational number and any rational number

8

. Fill in the blanks for the following proof that the difference is rational.” What is wrong with beginning the proof in
of any rational number and any irrational number is irra- this way? (Hint: Review the answer to exercise 11 in
tional. Section 3.2.)

Proof: Suppose not. That is, suppose that there exist @) b. Prove that the difference of any irrational number and
x and _(® y such that x — y is rational. By definition of any rational number is irrational.
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206 Chapter 4 Elementary Number Theory and Methods of Proof

Prove each statement in 10-17 by contradiction. 24.

10. The square root of any irrational number is irrational.

The reciprocal of any irrational number is irrational. (The
reciprocal of a nonzero real number x is 1/x.)

. . H 25. For all int , if n? is odd th is odd.
11. The product of any nonzero rational number and any irra- oratfiicgers n, Lnis 0 enniso
tional number is irrational. 26. For all integers a, b, and ¢, if a J bc then a f b. (Recall that
. . L the symbol ans “does not divide.”
12. If a and b are rational numbers, b # 0, and r is an irrational e symbol /' means “does not divide.”)
number, then a + br is irrational. H 27. For all integers m and n, if m + n is even then m and n are
both d both odd.
H 13. For any integer n, n*> — 2 is not divisible by 4. ot even orm andm are both 0
. 5 5 5 28. For all integers m and n, if mn is even then m is even or n
H 14. For all prime numbers a, b, and ¢, a* + b* # ¢*. is even
: 2 2 _ 2
H 15. If a, I?f anddcba}re integers and a” + b~ = ¢~, then at least 29. For all integers a, b, and ¢, if a | b and a [ ¢, then
one ot aandbis even. a } (b + c). (Hint: To prove p — q V r, it suffices to prove
H *16. For all odd integers a,b, and ¢, if z is a solution of either p A ~q¢ — r or p A ~r — q. See exercise 14 in
ax® +bx 4+ ¢ =0 then z is irrational. (In the proof, use Section 2.2.)
gxe prolp 6211263 of even and odd integers that are listed in 30. The following “proof” that every integer is rational is incor-
xample 4.2.3.) rect. Find the mistake.
17. For all integers a, if a mod 6 = 3, then a mod 3 # 2. “Proof (by contradiction): Suppose not. Suppose every
18. Fill in the blanks in the following proof by contraposition integer is irrational. Then the integer 1 is irrational. But
that for all integers n, if 5 f n” then 5 J n. 1 = 1/1, which is rational. This is a contradiction. [Hence
Proof (by contraposition): [The contrapositive is: For all the supposition is false and the theorem is true.]”
. . 5 . .
integers n, (y;)S\n then S|n”.] Suppos(z)n 1S any mt'eger 31. a. Prove by contraposition: For all positive integers n, r,
such t.hé.it. . i We(gust show tha.t .] By deﬁmt.lon and s, if rs < n, then r < /i or s < /1.
of divisibility, n = for some integer k. By substitu- b. Prove: For all integers n > 1, if n is not prime, then
tion, n? = ﬂ = 5(5k?). But 5k? is an integer because it there exists a prime number p such that p < \/n and
is a product of integers. Hence n*> = 5-(an integer), and so n is divisible by p. (Hints: Use the result of part (a),
ﬁ as was to be shown]. Theorems 4.3.1, 4.3.3, and 4.3.4, and the transitive prop-
[ ] prop
e the stz in 19 and 20 by contrapositi erty of order.)
Prove the statements in 19 an y contraposition. c. State the contrapositive of the result of part (b).
19. If a product of two positive real numbers is greater than The results of exercise 31 provide a way to test whether
100, then at least one of the numbers is greater than 10. an nteger is prime.
20. If a sum of two real numbers is less than 50, then at least
one of the numbers is less than 25. Test for Primality
21. Consider the statement “For all integers n, if n” is odd then Given an integer n > 1, to test whether » is prime check to
nis odd.” see if it is divisible by a prime number less than or equal to
a. Write what you would suppose and what you would its square root. If it is not divisible by any of these numbers,
need to show to prove this statement by contradiction. then it is prime.

b. Write what you would suppose and what you would

need to show to prove this statement by contraposition.
32. Use the test for primality to determine whether the follow-

22. Consider the statement “For all real numbers r, if r= is irra- ing numbers are prime or not.

tional then r is irrational.” A 667 b. 557 c. 527 d. 613
a. Write what you would suppose and what you would
need to show to prove this statement by contradiction. 33. The sieve of Eratosthenes, named after its inventor, the
b. Write what you would suppose and what you would Greek scholar Eratosthenes (276-194 B.C.E.), provides a
need to show to prove this statement by contraposition. way to find all prime numbers less than or equal to some

fixed number n. To construct it, write out all the integers
from 2 to n. Cross out all multiples of 2 except 2 itself,
then all multiples of 3 except 3 itself, then all multiples of
23. The negative of any irrational number is irrational. 5 except 5 itself, and so forth. Continue crossing out the

Prove each of the statements in 23-29 in two ways: (a) by con-
traposition and (b) by contradiction.
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4.7 Indirect Argument: Two Classical Theorems 207

multiples of each successive prime number up to /5. The Use the sieve of Eratosthenes to find all prime numbers less
numbers that are not crossed out are all the prime numbers than 100.

from 2 to n. Here is a sieve of Eratosthenes that includes
the numbers from 2 to 27. The multiples of 2 are crossed
out with a /, the multiples of 3 with a \, and the multiples

34. Use the test for primality and the result of exercise 33 to
determine whether the following numbers are prime.
a. 9,269 b. 9,103 c. 8,623 d. 7,917

of 5 with a —.
203 4 5 6 7 8 9 011 12 13 14 H *35. Use proof by contradiction to show that every integer
15 16 17 18 19 26 21 22 23 24 25 26 2 greater than 11 is a sum of two composite numbers.

Answers for Test Yourself

1. the statement is false; this supposition leads to a contradiction 2. the contrapositive of the statement, namely, Vx € D, if ~Q(x)
then ~P(x) 3. x is any [particular but arbitrarily chosen] element of D for which Q(x) is false; P (x) is false

4.7 Indirect Argument: Two Classical Theorems

He is unworthy of the name of man who does not know that the diagonal of a square is
incommensurable with its side.—Plato (ca. 428-347 B.C.E.)

This section contains proofs of two of the most famous theorems in mathematics: that /2
is irrational and that there are infinitely many prime numbers. Both proofs are examples
of indirect arguments and were well known more than 2,000 years ago, but they remain
exemplary models of mathematical argument to this day.

The Irrationality of +/2

When mathematics flourished at the time of the ancient Greeks, mathematicians believed
that given any two line segments, say A: and B: , a certain unit of length
could be found so that segment A was exactly a units long and segment B was exactly
b units long. (The segments were said to be commensurable with respect to this special
unit of length.) Then the ratio of the lengths of A and B would be in the same proportion
as the ratio of the integers a and b. Symbolically:

length A a

length B b’

Now it is easy to find a line segment of length +/2; just take the diagonal of the unit
square:

1

By the Pythagorean theorem, ¢ = 12 4 12 =2, and so ¢ = /2. If the belief of the
ancient Greeks were correct, there would be integers a and b such that

length (diagonal)  a

length (side) b’
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208 Chapter 4 Elementary Number Theory and Methods of Proof

Euclid
(fl. 300 B.c.E.)

Note Strictly speaking,
being able to assume that
m and n have no common
factors is a consequence
of the “well-ordering

principle for the integers,”

which is discussed in
Section 5.4.

Bettmann/CORBIS

And this would imply that

9}

c

a
1 1 V2 b

But then +/2 would be a ratio of two integers, or, in other words, /2 would be rational.

In the fourth or fifth century B.C.E., the followers of the Greek mathematician and
philosopher Pythagoras discovered that /2 was not rational. This discovery was very
upsetting to them, for it undermined their deep, quasi-religious belief in the power of
whole numbers to describe phenomena.

The following proof of the irrationality of ~/2 was known to Aristotle and is similar to
that in the tenth book of Euclid’s Elements of Geometry. The Greek mathematician Euclid
is best known as a geometer. In fact, knowledge of the geometry in the first six books of
his Elements has been considered an essential part of a liberal education for more than
2,000 years. Books 7-10 of his Elements, however, contain much that we would now call
number theory.

The proof begins by supposing the negation: /2 is rational. This means that there
exist integers m and n such that ~/2 = m/n. Now if m and n have any common factors,
these may be factored out to obtain a new fraction, equal to m /n, in which the numerator
and denominator have no common factors. (For example, 18/12 = (6-3)/(6-2) = 3/2,
which is a fraction whose numerator and denominator have no common factors.) Thus,
without loss of generality, we may assume that m and n had no common factors in the
first place. We will then derive the contradiction that m and n do have a common factor
of 2. The argument makes use of Proposition 4.6.4. If the square of an integer is even,
then that integer is even.

Theorem 4.7.1 Irrationality of 2
/2 is irrational.

Proof:

[We take the negation and suppose it 1o be true.] Suppose not. That is, suppose +/2 is
rational. Then there are integers m and n with no common factors such that

V2=" 47.1
n

[by dividing m and n by any common factors if necessary]. [We must derive a contradic-
tion.] Squaring both sides of equation (4.7.1) gives

L
=5
Or, equivalently,
m? = 2n°. 472

Note that equation (4.7.2) implies that m? is even (by definition of even). It follows
that m is even (by Proposition 4.6.4). We file this fact away for future reference and
also deduce (by definition of even) that

m = 2k for some integer k. 473
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4.7 Indirect Argument: Two Classical Theorems 209

Substituting equation (4.7.3) into equation (4.7.2), we see that
m? = (2k)* = 4k* = 2n”.
Dividing both sides of the right-most equation by 2 gives
n* = 2k%.
Consequently, n? is even, and so n is even (by Proposition 4.6.4). But we also know
that m is even. [This is the fact we filed away.] Hence both m and n have a com-

mon factor of 2. But this contradicts the supposition that m and n have no common
factors. [Hence the supposition is false and so the theorem is true.]

Now that you have seen the proof that +/2 is irrational, you can use the irrationality
of +/2 to derive the irrationality of certain other real numbers.

Example 4.7.1 Irrationality of 1 + 34/2
Prove by contradiction that 1 + 3+/2 is irrational.

Solution  The essence of the argument is the observation that if 1 + 3+/2 could be written
as a ratio of integers, then so could +/2. But by Theorem 4.7.1, we know that to be
impossible.

Proposition 4.7.2
1 + 3+4/2 is irrational.

Proof:

Suppose not. Suppose 1 + 3+/2 is rational. [We must derive a contradiction.] Then by
definition of rational,

14+3v2= % for some integers a and b with b # 0.

It follows that

a
3\/5 = Z —1 by subtracting 1 from both sides
a b o
== — = by substitution
b b
a—b>b by the rule for subtracting fractions
b with a common denominator.

Hence

by dividing both sides by 3.

a—>b
2:
V2 3b

But a — b and 3b are integers (since a and b are integers and differences and products of
integers are integers), and 3b # 0 by the zero product property. Hence +/2 is a quotient
of the two integers @ — b and 3b with 3b # 0, and so +/2 is rational (by definition of
rational.) This contradicts the fact that /2 is irrational. [This contradiction shows that
the supposition is false.] Hence 1 + 34/2 is irrational.
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210 Chapter4 Elementary Number Theory and Methods of Proof

Are There Infinitely Many Prime Numbers?

You know that a prime number is a positive integer that cannot be factored as a product
of two smaller positive integers. Is the set of all such numbers infinite, or is there a largest
prime number? The answer was known to Euclid, and a proof that the set of all prime
numbers is infinite appears in Book 9 of his Elements of Geometry.

Euclid’s proof requires one additional fact we have not yet established: If a prime
number divides an integer, then it does not divide the next successive integer.

Proposition 4.7.3
For any integer a and any prime number p, if p|a then p f (a + 1).

Proof:

Suppose not. That is, suppose there exists an integer a and a prime number p such
that p |a and p | (@ + 1). Then, by definition of divisibility, there exist integers » and
s such that a = pr and a + 1 = ps. It follows that

Il=(a+1)—a=ps—pr=p(s—r),

and so (since s —r is an integer) p | 1. But, by Theorem 4.3.2, the only integer
divisors of 1 are 1 and —1, and p > 1 because p is prime. Thus p <1 and p > 1,
which is a contradiction. [Hence the supposition is false, and the proposition is true.]

The idea of Euclid’s proof is this: Suppose the set of prime numbers were finite. Then
you could take the product of all the prime numbers and add one. By Theorem 4.3.4 this
number must be divisible by some prime number. But by Proposition 4.7.3, this number
is not divisible by any of the prime numbers in the set. Hence there must be a prime
number that is not in the set of all prime numbers, which is impossible.

The following formal proof fills in the details of this outline.

Theorem 4.7.4 Infinitude of the Primes

The set of prime numbers is infinite.

Proof (by contradiction):

Suppose not. That is, suppose the set of prime numbers is finite. [We must deduce a
contradiction.] Then some prime number p is the largest of all the prime numbers,
and hence we can list the prime numbers in ascending order:

2,3,5 7,11,...,p.
Let N be the product of all the prime numbers plus 1:
N=@2-35711---p)+1

Then N > 1, and so, by Theorem 4.3.4, N is divisible by some prime number g.
Because g is prime, ¢ must equal one of the prime numbers 2, 3,5,7, 11, ..., p.
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4.7 Indirect Argument: Two Classical Theorems 211

Thus, by definition of divisibility, ¢ divides 2-3-5-7-11---p, and so, by
Proposition 4.7.3, g does not divide (2-3-5-7-11---p) + 1, which equals N. Hence
N is divisible by ¢ and N is not divisible by ¢, and we have reached a contradiction.
[Therefore, the supposition is false and the theorem is true. |

The proof of Theorem 4.7.4 shows that if you form the product of all prime numbers
up to a certain point and add one, the result, N, is divisible by a prime number not on the
list. The proof does not show that N is, itself, prime. In the exercises at the end of this
section you are asked to find an example of an integer N constructed in this way that is
not prime.

When to Use Indirect Proof

The examples in this section and Section 4.6 have not provided a definitive answer to
the question of when to prove a statement directly and when to prove it indirectly. Many
theorems can be proved either way. Usually, however, when both types of proof are pos-
sible, indirect proof is clumsier than direct proof. In the absence of obvious clues sug-
gesting indirect argument, try first to prove a statement directly. Then, if that does not
succeed, look for a counterexample. If the search for a counterexample is unsuccessful,
look for a proof by contradiction or contraposition.

Open Questions in Number Theory

In this section we proved that there are infinitely many prime numbers. There is no known
formula for obtaining primes, but a few formulas have been found to be more successful
at producing them than other formulas. One such is due to Marin Mersenne, a French
monk who lived from 1588-1648. Mersenne primes have the form 27 — 1, where p is
prime. Not all numbers of this form are prime, but because Mersenne primes are easier to
test for primality than are other numbers, most of the largest known prime numbers are
Mersenne primes.

An interesting question is whether there are infinitely many Mersenne primes. As
of the date of publication of this book, the answer is not known, but new mathematical
discoveries are being made every day and by the time you read this someone may have
discovered the answer. Another formula that seems to produce a relatively large number
of prime numbers is due to Fermat. Fermat primes are prime numbers of the form 2>* + 1,
where 7 is a positive integer. Are there infinitely many Fermat primes? Again, as of now,
no one knows. Similarly unknown are whether there are infinitely many primes of the
form n? + 1, where 7 is a positive integer, and whether there is always a prime number
between integers n” and (n + 1)2.

Another famous open question involving primes is the twin primes conjecture, which
states that there are infinitely many pairs of prime numbers of the form p and p + 2. As
with other well-known problems in number theory, this conjecture has withstood com-
puter testing up to extremely large numbers, and some progress has been made toward a
proof. In 2004, Ben Green and Terence Tao showed that for any integer m > 1, there is
a sequence of m equally spaced integers all of which are prime. In other words, there are
are positive integers n and k so that the following numbers are all prime:

Courtesy Ben Joseph Green

Ben Joseph Green
(born 1977)

n,n+k, n+2k, n+3k, ..., n+ (m— 1)k.
Related to the twin primes conjecture is a conjecture made by Sophie Germain, a
Terence Chi-Shen Tao French mathematician born in 1776, who made significant progress toward a proof of
(born 1975) Fermat’s Last Theorem. Germain conjectured that there are infinitely many prime number
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212 Chapter4 Elementary Number Theory and Methods of Proof

pairs of the form p and 2p + 1. Initial values of p with this property are 2, 3, 5, 11, 23, 29,
41, and 53, and computer testing has verified the conjecture for many additional values.
In fact, as of the writing of this book, the largest prime p for which 2p + 1 is also known
to be prime is 183027.2%6%0 _ . This is a number with 79911 decimal digits! But
compared with infinity, any number, no matter how large, is less than a drop in the bucket.

In 1844, the Belgian mathematician Eugene Catalan conjectured that the only solu-
tions to the equation x" — y™ = 1, where x, y, n, and m are all integers greater than 1, is
32 — 23 = 1. This conjecture also remains unresolved to this day.

In 1993, while trying to prove Fermat’s last theorem, an amateur number theorist,
= : Andrew Beal, became intrigued by the equation x™ + y”" = zX, where no two of x, y, or
Marie-Sophie Germain 7 have any common factor other than £1. When diligent effort, first by hand and then
(1776-1831) by computer, failed to reveal any solutions, Beal conjectured that no solutions exist. His
conjecture has become known as Beal’s conjecture, and he has offered a prize of $100,000
to anyone who can either prove or disprove it.

These are just a few of a large number of open questions in number theory. Many
people believe that mathematics is a fixed subject that changes very little from one century
to the next. In fact, more mathematical questions are being raised and more results are
being discovered now than ever before in history.

The Art Gallery Collection/Alamy

Test Yourself

1. The ancient Greeks discovered that in a right triangle where that if the square of an integer is even then , and even-
both legs have length 1, the ratio of the length of the tually show that a and b .
hypotenuse to the length of one of the legs is not equal to 3. One way to prove that there are infinitely many prime num-
aratioof _____. bers is to assume that there is a largest prime number p,
2. One way to prove that +/2 is an irrational number is to construct the number ____, and then show that this num-
assume that v/2 = a/b for some integers a and b that have ber has to be divisible by a prime number that is greater than

no common factor greater than 1, use the lemma that says _—

Exercise Set 4.7

1. A calculator display shows that /2 = 1.414213562, and 11. The sum of any two positive irrational numbers is irrational.
1414213562
1.414213562 = 1000000000" This suggests that v/2 is a 12. The product of any two irrational numbers is irrational.

rational number, which contradicts Theorem 4.7.1. Explain H 13

. . If an integer greater than 1 is a perfect square, then its cube
the discrepancy.

root is irrational.
2. Example 4.2.1(h) illustrates a technique for showing that
any repeating decimal number is rational. A calcula-
tor display shows the result of a certain calculation as
40.72727272727. Can you be sure that the result of the cal-
culation is a rational number? Explain. 15. a. Prove that for all integers a, if a? is even then a is even.
b. Prove that ~/2 is irrational.

14. Consider the following sentence: If x is rational then /X is
irrational. Is this sentence always true, sometimes true and
sometimes false, or always false? Justify your answer.

Determine which statements in 3—-13 are true and which are

false. Prove those that are true and disprove those that are false. 16. a. Use proof by contradiction to show that for any inte-
3. 6 — 74/2 is irrational. 4. 332 — 7is irrational. ger n, it is impossible for n to equal poth 3q, +r; and
3q, + rp, where q, q», 11, and r,, are integers, 0 < r| <
5. /4 is irrational. 6. ~/2/6 is rational. 3,0<r <3,and ry #rs.
L L. b. Use proof by contradiction, the quotient-remainder
7. The sum of any two irrational numbers is irrational. P Yo d
theorem, division into cases, and the result of part (a)
8. The difference of any two irrational numbers is irrational. to prove that for all integers 7, if n” is divisible by 3 then
9. The positive square root of a positive irrational number is n is divisible by 3.

c. Prove that +/3 is irrational.

irrational.
10. If r is any rational number and s is any irrational number, 17. Give an example to show that if d is not prime and n? is
then r/s is irrational. divisible by d, then n need not be divisible by d.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



H 19.
H 20.
21.

22.

H 23.
* 24,

H 26.

27.

. The quotient-remainder theorem says not only that there

exist quotients and remainders but also that the quotient and
remainder of a division are unique. Prove the uniqueness.
That is, prove that if ¢ and d are integers with d > 0 and if
q1, 711, g2, and r, are integers such that

a=dq +r where0<r <d
and
a=dg,+r, where0<r <d,
then
g1 =¢q» and 1 =r,.

Prove that /3 is irrational.
Prove that for any integer a, 9 J (a> — 3).

An alternative proof of the irrationality of +/2 counts the
number of 2’s on the two sides of the equation 21> = m?
and uses the unique factorization of integers theorem
to deduce a contradiction. Write a proof that uses this
approach.

Use the proof technique illustrated in exercise 21 to prove
that if n is any integer that is not a perfect square, then /n
is irrational.

Prove that /2 4 /3 is irrational.

Prove that logs(2) is irrational. (Hint: Use the unique fac-
torisation of integers theorem.)

. Let N =2-3-5-7+ 1. What remainder is obtained when

N is divided by 2? 3? 5? 7? Is N prime? Justify your
answer.

Suppose « is an integer and p is a prime number such that
plaand p|(a+ 3). What can you deduce about p? Why?

Let pi, pa2, p3, - .. be a list of all prime numbers in ascend-
ing order. Here is a table of the first six:

D1 D2 p3 P4 DPs De
2 3 5 7 11 13

H a. For each i =1,2,3,4,5,6, let N; = pipy---p;i + 1.

Calculate Ny, N>, N3, N4, N5, and Ng.

b. For each i =1,2,3,4,5,6, find the smallest prime
number ¢; such that ¢; divides N;. (Hint: Use the test for
primality from exercise 31 in Section 4.6 to determine
your answers.)

Answers for Test Yourself

1. two integers

H > 30. Prove thatif p;, ps, .

2. the integer is even; have a common factor greater than 1
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For exercises 28 and 29, use the fact that for all integers n,

n'=nn-1...3-2-1.

28. An alternative proof of the infinitude of the prime numbers
begins as follows:

Proof: Suppose there are only finitely many prime num-
bers. Then one is the largest. Call it p. Let M = p! + 1. We
will show that there is a prime number ¢ such that g > p.
Complete this proof.

H % 29. Prove that for all integers n, if n > 2 then there is a prime

number p such thatn < p < nl.

.., and p, are distinct prime numbers
with p; =2andn > 1, then p,p; - - - p, + 1 can be written
in the form 4k + 3 for some integer k.

H 31. a. Fermat’s last theorem says that for all integers n > 2,

the equation x” + y" = 7" has no positive integer solu-
tion (solution for which x, y, and z are positive integers).
Prove the following: If for all prime numbers p > 2,
x? 4+ y? = z” has no positive integer solution, then for
any integer n > 2 that is not a power of 2, x" + y" = "
has no positive integer solution.

b. Fermat proved that there are no integers x, y, and z such
that x* + y* = z*. Use this result to remove the restric-
tion in part (a) that n not be a power of 2. That is, prove
that if n is a power of 2 and n > 4, then x" + y" = 7"
has no positive integer solution.

For exercises 32-35 note that to show there is a unique object
with a certain property, show that (1) there is an object with
the property and (2) if objects A and B have the property, then
A =B.

32. Prove that there exists a unique prime number of the form
n? — 1, where n is an integer that is greater than or equal
to 2.

33. Prove that there exists a unique prime number of the form
n® + 2n — 3, where n is a positive integer.

34. Prove that there is at most one real number a with the prop-
erty that @ 4+ r = r for all real numbers r. (Such a number
is called an additive identity.)

35. Prove that there is at most one real number b with the prop-
erty that br = r for all real numbers r. (Such a number is
called a multiplicative identity.)

3.2.3.57-11---p+1; p
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4.8 Application: Algorithms

Begin at the beginning . .. and go on till you come to the end: then stop.
— Lewis Carroll, Alice’s Adventures in Wonderland, 1865

In this section we will show how the number theory facts developed in this chapter form
the basis for some useful computer algorithms.

The word algorithm refers to a step-by-step method for performing some action.
Some examples of algorithms in everyday life are food preparation recipes, directions
for assembling equipment or hobby kits, sewing pattern instructions, and instructions for
filling out income tax forms. Much of elementary school mathematics is devoted to learn-
ing algorithms for doing arithmetic such as multidigit addition and subtraction, multidigit
(or long) multiplication, and long division.

The idea of a computer algorithm is credited to Ada Augusta, Countess of Lovelace.
Trained as a mathematician, she became very interested in Charles Babbage’s design
_ 5 for an “Analytical Engine,” a machine similar in concept to a modern computer. Lady

RS sk : Lovelace extended Babbage’s explorations of how such a machine would operate, recog-
Lady Lovelace (1815-1852) nizing that its importance lay “in the possibility of using a given sequence of instructions
repeatedly, the number of times being either preassigned or dependent on the results of
the computation.” This is the essence of a modern computer algorithm.

Hulton Archive/Getty Images

An Algorithmic Language

The algorithmic language used in this book is a kind of pseudocode, combining elements
of Pascal, C, Java, and VB.NET, and ordinary, but fairly precise, English. We will use
some of the formal constructs of computer languages—such as assignment statements,
loops, and so forth—but we will ignore the more technical details, such as the require-
ment for explicit end-of-statement delimiters, the range of integer values available on a
particular installation, and so forth. The algorithms presented in this text are intended to
be precise enough to be easily translated into virtually any high-level computer language.

In high-level computer languages, the term variable is used to refer to a specific
storage location in a computer’s memory. To say that the variable x has the value 3 means
that the memory location corresponding to x contains the number 3. A given storage
location can hold only one value at a time. So if a variable is given a new value during
program execution, then the old value is erased. The data type of a variable indicates the
set in which the variable takes its values, whether the set of integers, or real numbers, or
character strings, or the set {0, 1} (for a Boolean variable), and so forth.

An assignment statement gives a value to a variable. It has the form

X :=e,

where x is a variable and e is an expression. This is read “x is assigned the value ¢” or “let
x be e.” When an assignment statement is executed, the expression e is evaluated (using
the current values of all the variables in the expression), and then its value is placed in the
memory location corresponding to x (replacing any previous contents of this location).

Ordinarily, algorithm statements are executed one after another in the order in which
they are written. Conditional statements allow this natural order to be overridden by
using the current values of program variables to determine which algorithm statement
will be executed next. Conditional statements are denoted either

a. if (condition) or b. if (condition) then s;
then s;

else s,
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where condition is a predicate involving algorithm variables and where s, and s, are
algorithm statements or groups of algorithm statements. We generally use indentation to
indicate that statements belong together as a unit. When ambiguity is possible, however,
we may explicitly bind a group of statements together into a unit by preceding the group
with the word do and following it with the words end do.

Execution of an if-then-else statement occurs as follows:

1. The condition is evaluated by substituting the current values of all algorithm variables
appearing in it and evaluating the truth or falsity of the resulting statement.

2. If condition is true, then s; is executed and execution moves to the next algorithm
statement following the if-then-else statement.

3. If condition is false, then s, is executed and execution moves to the next algorithm
statement following the if-then-else statement.

Execution of an if-then statement is similar to execution of an if-then-else statement,
except that if condition is false, execution passes immediately to the next algorithm state-
ment following the if-then statement.

Often condition is called a guard because it is stationed before s; and s, and restricts
access to them.

Example 4.8.1 Execution of if-then-else and if-then Statements
Consider the following algorithm segments:
a.ifx > 2 b.y:=0
theny :=x+1 if x > 2 then y :=2*
elsedox :=x —1
y:=3-x end do
What is the value of y after execution of these segments for the following values of x?
i x=5 i. x =2
Solution
a. (i) Because the value of x is 5 before execution, the guard condition x > 2 is true
at the time it is evaluated. Hence the statement following then is executed, and

so the value of x +1 =5+ 1 is computed and placed in the storage location
corresponding to y. So after execution, y = 6.

(i1) Because the value of x is 2 before execution, the guard condition x > 2 is false at
the time it is evaluated. Hence the statement following else is executed. The value
ofx — 1 =2 — 1iscomputed and placed in the storage location corresponding
to x, and the value of 3-x = 3-1 is computed and placed in the storage location
corresponding to y. So after execution, y = 3.

b. (i) Since x = 5 initially, the condition x > 2 is true at the time it is evaluated. So the
statement following then is executed, and y obtains the value 2° = 32.

(i1) Since x = 2 initially, the condition x > 2 is false at the time it is evaluated. Exe-
cution, therefore, moves to the next statement following the if-then statement,
and the value of y does not change from its initial value of 0. |

Iterative statements are used when a sequence of algorithm statements is to be exe-
cuted over and over again. We will use two types of iterative statements: while loops and
for-next loops.
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A while loop has the form

while (condition)
[statements that make up
the body of the loop]

end while

where condition is a predicate involving algorithm variables. The word while marks the
beginning of the loop, and the words end while mark its end. Execution of a while loop
occurs as follows:

1. The condition is evaluated by substituting the current values of all the algorithm vari-
ables and evaluating the truth or falsity of the resulting statement.

2. If condition is true, all the statements in the body of the loop are executed in order.
Then execution moves back to the beginning of the loop and the process repeats.

3. If condition is false, execution passes to the next algorithm statement following the
loop.

The loop is said to be iterated (IT-a-rate-ed) each time the statements in the body of the
loop are executed. Each execution of the body of the loop is called an iteration (it-er-AY-
shun) of the loop.

Example 4.8.2 Tracing Execution of a while Loop

Trace the execution of the following algorithm segment by finding the values of all the
algorithm variables each time they are changed during execution:

i=1,s5:=0

while (i <2)
si=s5+1
i=i+1

end while

Solution  Since i is given an initial value of 1, the condition i < 2 is true when the while
loop is entered. So the statements within the loop are executed in order:

s=04+1=1 and i=1+1=2.

Then execution passes back to the beginning of the loop.
The condition i < 2 is evaluated using the current value of i, which is 2. The condition
is true, and so the statements within the loop are executed again:

s=14+2=3 and i=2+1=3.

Then execution passes back to the beginning of the loop.

The condition i < 2 is evaluated using the current value of i, which is 3. This time
the condition is false, and so execution passes beyond the loop to the next statement of
the algorithm.

This discussion can be summarized in a table, called a trace table, that shows the
current values of algorithm variables at various points during execution. The trace table
for a while loop generally gives all values immediately following each iteration of the
loop. (“After the zeroth iteration” means the same as “before the first iteration.”)
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Trace Table

Iteration Number
0 1 2

i 1 2 3
s 0 1 3 m

Variable Name

The second form of iteration we will use is a for-next loop. A for-next loop has the
following form:

for variable := initial expression to final expression

[statements that make up
the body of the loop]

next (same) variable
A for-next loop is executed as follows:
1. The for-next loop variable is set equal to the value of initial expression.

2. A check is made to determine whether the value of variable is less than or equal to the
value of final expression.

3. If the value of variable is less than or equal to the value of final expression, then the
statements in the body of the loop are executed in order, variable is increased by 1,
and execution returns back to step 2.

4. If the value of variable is greater than the value of final expression, then execution
passes to the next algorithm statement following the loop.

Example 4.8.3 Trace Table for a for-next Loop

Convert the for-next loop shown below into a while loop. Construct a trace table for the

loop.
fori .=1to4
x =i’
next i

Solution  The given for-next loop is equivalent to the following:

i:=1
while (i < 4)
x =i
i=i+1
end while
Its trace table is as follows:
Trace Table
Iteration Number
0 1 2 3 4
) x 1 4 9 16
Variable Name
i 1 2 3 4 5 ™
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A Notation for Algorithms

We will express algorithms as subroutines that can be called upon by other algorithms
as needed and used to transform a set of input variables with given values into a set of
output variables with specific values. The output variables and their values are assumed
to be returned to the calling algorithm. For example, the division algorithm specifies a
procedure for taking any two positive integers as input and producing the quotient and
remainder of the division of one number by the other as output. Whenever an algorithm
requires such a computation, the algorithm can just “call” the division algorithm to do
the job.

We generally include the following information when describing algorithms formally:

1. The name of the algorithm, together with a list of input and output variables.
2. A brief description of how the algorithm works.

3. The input variable names, labeled by data type (whether integer, real number, and so
forth).

4. The statements that make up the body of the algorithm, possibly with explanatory
comments.

5. The output variable names, labeled by data type.

You may wonder where the word algorithm came from. It evolved from the last part of
the name of the Persian mathematician Abu Ja’far Mohammed ibn M{isa al-Khowarizmi.
During Europe’s Dark Ages, the Arabic world enjoyed a period of intense intellectual
activity. One of the great mathematical works of that period was a book written by
al-Khowarizmi that contained foundational ideas for the subject of algebra. The trans-

Suleymaniye Kutuphanesi

al-Khowarizmi . . . .. R .
(ca. 780-850) lation of this book into Latin in the thirteenth century had a profound influence on the

development of mathematics during the European Renaissance.

The Division Algorithm

For an integer a and a positive integer d, the quotient-remainder theorem guarantees the
existence of integers ¢ and r such that

a=dg+r and 0<r <d.

In this section, we give an algorithm to calculate ¢ and r for given a and d where a is
nonnegative. (The extension to negative a is left to the exercises at the end of this sec-
tion.) The following example illustrates the idea behind the algorithm. Consider trying to
find the quotient and the remainder of the division of 32 by 9, but suppose that you do not
remember your multiplication table and have to figure out the answer from basic princi-
ples. The quotient represents that number of 9°s that are contained in 32. The remainder is
the number left over when all possible groups of 9 are subtracted. Thus you can calculate
the quotient and remainder by repeatedly subtracting 9 from 32 until you obtain a number
less than 9:

32—-9=23>9,and
32-9-9=14>9,and
32-9-9-9=5<09.

This shows that 3 groups of 9 can be subtracted from 32 with 5 left over. Thus the quotient
is 3 and the remainder is 5.
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Algorithm 4.8.1 Division Algorithm

[Given a nonnegative integer a and a positive integer d, the aim of the algorithm is to
find integers q and r that satisfy the conditions a = dq +r and O < r < d. This is done
by subtracting d repeatedly from a until the result is less than d but is still nonnegative.

0<a-d—-d—-d—----—d=a—-dgq<d.
The total number of d’s that are subtracted is the quotient q. The quantity a — dq equals
the remainder r.]
Input: a [a nonnegative integer], d [a positive integer]
Algorithm Body:
r:=a,qg:=0
[Repeatedly subtract d from r until a number less than d is obtained. Add 1 to q each
time d is subtracted. ]

while (r > d)

ri=r—d
qg:=q+1
end while

[After execution of the while loop, a = dq +r.]

Output: g, r [nonnegative integers]

Note that the values of ¢ and r obtained from the division algorithm are the same as
those computed by the div and mod functions built into a number of computer languages.
That is, if ¢ and r are the quotient and remainder obtained from the division algorithm
with input @ and d, then the output variables g and r satisfy

q=adivd and r=amodd.

The next example asks for a trace of the division algorithm.

Example 4.8.4 Tracing the Division Algorithm
Trace the action of Algorithm 4.8.1 on the input variables a = 19 and d = 4.

Solution  Make a trace table as shown below. The column under the kth iteration gives the
states of the variables after the kth iteration of the loop.

Iteration Number

0 1 2 3 4
a 19
. 4
Variable Name
r 19 15 11 7 3
q 0 1 2 3 4 m

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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The Euclidean Algorithm

The greatest common divisor of two integers a and b is the largest integer that divides
both a and b. For example, the greatest common divisor of 12 and 30 is 6. The Euclidean
algorithm provides a very efficient way to compute the greatest common divisor of two
integers.

Let a and b be integers that are not both zero. The greatest common divisor of a
and b, denoted ged(a, b), is that integer d with the following properties:

1. d is a common divisor of both a and b. In other words,
d|la and d|b.

2. For all integers c, if ¢ is a common divisor of both a and b, then c is less than or
equal to d. In other words,

for all integers ¢, if ¢ |a and c | b, thenc < d.

Example 4.8.5 Calculating Some ged’s
a. Find ged(72, 63).
b. Find ged(10%, 6%9).

c. In the definition of greatest common divisor, gcd(0, 0) is not allowed. Why not? What
would gecd(0, 0) equal if it were found in the same way as the greatest common divisors
for other pairs of numbers?

Solution

a. 72=9-8and 63 =9-7. S0 9|72 and 9 63, and no integer larger than 9 divides both
72 and 63. Hence gcd(72, 63) = 9.

b. By the laws of exponents, 1020 = 220.520 and 630 = 230.330 = 220.210.330 Tt follows
that

220 | 1020 and 220 | 630,

and by the unique factorization of integers theorem, no integer larger than 2%° divides
both 10?° and 6%° (because no more than twenty 2’s divide 10%°, no 3’s divide 10%°,
and no 5’s divide 6°°). Hence ged(10%°, 63%) = 2%,

c. Suppose ged(0, 0) were defined to be the largest common factor that divides 0 and O.
The problem is that every positive integer divides 0 and there is no largest integer. So
there is no largest common divisor! |

Calculating ged’s using the approach illustrated in Example 4.8.5 works only when
the numbers can be factored completely. By the unique factorization of integers theorem,
all numbers can, in principle, be factored completely. But, in practice, even using the
highest-speed computers, the process is unfeasibly long for very large integers. Over
2,000 years ago, Euclid devised a method for finding greatest common divisors that is
easy to use and is much more efficient than either factoring the numbers or repeatedly
testing both numbers for divisibility by successively larger integers.

The Euclidean algorithm is based on the following two facts, which are stated as
lemmas.
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Lemma 4.8.1

If r is a positive integer, then ged(r, 0) = r.

Proof:

Suppose r is a positive integer. [We must show that the greatest common divisor of both
r and 0 is r.] Certainly, r is a common divisor of both r and 0 because r divides itself
and also r divides O (since every positive integer divides 0). Also no integer larger
than » can be a common divisor of » and O (since no integer larger than r can divide
r). Hence r is the greatest common divisor of r and 0.

The proof of the second lemma is based on a clever pattern of argument that is used
in many different areas of mathematics: To prove that A = B, prove that A < B and that
B < A.

Lemma 4.8.2
If @ and b are any integers not both zero, and if ¢ and r are any integers such that
a=bq+r,
then
gcd(a, b) = ged(b, r).

Proof:

[The proof is divided into two sections: (1) proof that gcd(a, b) < ged(b, r), and (2)
proof that ged(b, r) < ged(a, b). Since each ged is less than or equal to the other; the
two must be equal. ]

1. ged(a, b) < ged (b, r):

a. [We will first show that any common divisor of a and b is also a common divisor
ofbandr.]
Let a and b be integers, not both zero, and let ¢ be a common divisor of
a and b. Then c¢|a and c | b, and so, by definition of divisibility, @ = nc and
b = mc, for some integers n and m. Now substitute into the equation
a=bqg+r
to obtain
nc = (mc)q +r.
Then solve for r:
r =nc — (mc)g = (n —mgq)c.

But n — mgq is an integer, and so, by definition of divisibility, c | 7. Because we
already know that ¢ | b, we can conclude that ¢ is a common divisor of b and r
[as was to be shown].

continued on page 222
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b. [Next we show that gcd(a, b) < ged(b, r).]
By part (a), every common divisor of @ and b is a common divisor of b and
r. It follows that the greatest common divisor of a and b is defined because
a and b are not both zero, and it is a common divisor of b and r. But then
gcd(a, b) (being one of the common divisors of b and r) is less than or equal
to the greatest common divisor of b and r:

ged(a, b) < ged(b, r).
2. ged (b, r) < ged (a, b):

The second part of the proof is very similar to the first part. It is left as an
exercise.

The Euclidean algorithm can be described as follows:
1. Let A and B be integers with A > B > 0.

2. To find the greatest common divisor of A and B, first check whether B = 0. If it
is, then gcd(A, B) = A by Lemma 4.8.1. If it isn’t, then B > 0 and the quotient-
remainder theorem can be used to divide A by B to obtain a quotient ¢ and a
remainder r:

A=Bqg+r where0<r < B.
By Lemma 4.8.2, gcd(A, B) = gcd(B, r). Thus the problem of finding the greatest
common divisor of A and B is reduced to the problem of finding the greatest common
divisor of B and r.
What makes this piece of information useful is that B and r are smaller numbers

than A and B. To see this, recall that we assumed

A>B>0.
Also the r found by the quotient-remainder theorem satisfies

0<r<B.
Putting these two inequalities together gives

0<r<B<A.

So the larger number of the pair (B, r) is smaller than the larger number of the pair

(A, B).
Note Strictly speaking, 3. Now just repeat the process, starting again at (2), but use B instead of A and r instead
the fact that the of B. The repetitions are guaranteed to terminate eventually with » = 0 because each

repetitions eventually new remainder is less than the preceding one and all are nonnegative.
terminate is justified by

the well-ordering By the way, it is always the case that the number of steps required in the Euclidean
principle for the integers, algorithm is at most five times the number of digits in the smaller integer. This was proved

phieh i dicussedin by the French mathematician Gabriel Lamé (1795-1870).
Section 5.4.
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The following example illustrates how to use the Euclidean algorithm.

Example 4.8.6 Hand-Calculation of ged’s Using the Euclidean Algorithm
Use the Euclidean algorithm to find gcd(330, 156).
Solution

1. Divide 330 by 156:

2 < quotient

156[ 330
312

18 <« remainder
Thus 330 = 1562 + 18 and hence ged(330, 156) = ged(156, 18) by Lemma 4.8.2.
2. Divide 156 by 18:

8 < quotient

18] 156
144
12 <« remainder
Thus 156 = 18-8 + 12 and hence gcd (156, 18) = gcd(18, 12) by Lemma 4.8.2.
3. Divide 18 by 12:
1 < quotient

12[ 18
12

6 < remainder

Thus 18 = 12-1 + 6 and hence ged(18, 12) = ged(12, 6) by Lemma 4.8.2.
4. Divide 12 by 6:
2 < quotient
6[ 12
12
() < remainder
Thus 12 = 6-2 4 0 and hence gcd(12, 6) = ged(6, 0) by Lemma 4.8.2.
Putting all the equations above together gives
gcd(330, 156) = ged(156, 18)
= ged(18, 12)
= gcd(12, 6)

= gcd(6, 0)
=6 by Lemma 4.8.1.

Therefore, ged(330, 156) = 6. [ |

The following is a version of the Euclidean algorithm written using formal algorithm
notation.
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Algorithm 4.8.2 Euclidean Algorithm

[Given two integers A and B with A > B > 0, this algorithm computes gcd(A, B). It is
based on two facts:

1. ged(a, b) = ged(b, r) ifa, b, q, and r are integers witha =b-q +r and 0 <r < b.
2. ged(a,0) =a.]

Input: A, B [integers with A > B > 0]

Algorithm Body:
a:=A,b:=B,r =B
[If b # O, compute a mod b, the remainder of the integer division of a by b, and set r
equal to this value. Then repeat the process using b in place of a and r in place of b. ]

while (b # 0)
r:=amodb

[The value of a mod b can be obtained by calling the division algorithm.]
a:=b
b:=r

end while

[After execution of the while loop, gcd(A, B) = a.]
ged :=a

Output: ged [a positive integer]

Test Yourself

1. When an algorithm statement of the form x := e is exe- When such a statement is executed, variable is set equal to
cuted, . the value of the initial expression, and a check is made to
2. Consider an algorithm statement of the following form. determine whether the Value. of variable is less than or equal
to the value of final expression. If so, . If not,
if (condition)
then s, . Given a nonnegative integer a and a positive integer d the
else s, division algorithm computes

When such a statement is executed, the truth or falsity
of the condition is evaluated. If condition is true,
If condition is false,

3. Consider an algorithm statement of the following form.

while (condition)
[statements that make up the body of the loop]
end while

When such a statement is executed, the truth or falsity
of the condition is evaluated. If condition is true,
If condition is false,

4. Consider an algorithm statement of the following form.

for variable := initial expression to final expression.
[statements that make up the body of the loop]
next (same) variable

. Given integers a and b, not both zero, gcd(a, b) is the inte-

ger d that satisfies the following two conditions: and

. If r is a positive integer, then ged(r, 0) =

. If a and b are integers not both zero and if ¢ and r are

nonnegative integers such that a = bq + r then ged(a, b) =

. Given positive integers A and B with A > B, the Euclidean

algorithm computes
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Exercise Set 4.8

Find the value of z when each of the algorithm segments in 1
and 2 is executed.

1.i:=2 2.i:=3
if (( >3o0ri <0) if (. <3ori>0)
then z := 1 thenz :=2
else 7 :=0 elsez :=0

3. Consider the following algorithm segment:
ifx-y>0Othendoy:=3-x
x :=x+1enddo
zi=x-y

Find the value of z if prior to execution x and y have the
values given below.

a x=2,y=3 b.x=1y=1
Find the values of a and e after execution of the loops in 4
and 5:
4. a =2 5.e:=0,f:=2
fori:=1to2 for j:=1to4
a 1 fi=fj
a:=—+ -
2 a 4 1
e:=e+ —
next i f
next j

Make a trace table to trace the action of Algorithm 4.8.1 for the
input variables given in 6 and 7.

6. a=26,d=17 7.a=59,d=13

8. The following algorithm segment makes change; given an
amount of money A between 1¢ and 99¢, it determines a
breakdown of A into quarters (g), dimes (d), nickels (n),
and pennies (p).

q:=Adiv25
A 1= A mod 25
d:=Adiv10
A= A mod 10
n:=Adiv5

p:=Amod5

a. Trace this algorithm segment for A = 69.
b. Trace this algorithm segment for A = 87.

Find the greatest common divisor of each of the pairs of integers

in 9-12. (Use any method you wish.)
9. 27 and 72 10. 5and 9

11. 7 and 21 12. 48 and 54

4.8 Application: Algorithms 225

Use the Euclidean algorithm to hand-calculate the greatest com-
mon divisors of each of the pairs of integers in 13-16.

13. 1,188 and 385 14. 509 and 1,177

15. 832 and 10,933 16. 4,131 and 2,431

Make a trace table to trace the action of Algorithm 4.8.2 for the
input variables given in 17 and 18.

17. 1,001 and 871 18. 5,859 and 1,232

H 19. Prove that for all positive integers @ and b, a | b if, and only
if, ged(a, b) = a. (Note that to prove “A if, and only if, B,”
you need to prove “if A then B” and “if B then A.”)

20. a. Prove that if @ and b are integers, not both zero, and
d = ged(a, b), then a/d and b/d are integers with no
common divisor that is greater than one.

b. Write an algorithm that accepts the numerator and
denominator of a fraction as input and produces as out-
put the numerator and denominator of that fraction writ-
ten in lowest terms. (The algorithm may call upon the

Euclidean algorithm as needed.)

21. Complete the proof of Lemma 4.8.2 by proving the follow-
ing: If @ and b are any integers with b # 0 and ¢ and r are
any integers such that

a=bqg+r.

then ged(b, r) < ged(a, b).

H 22. a. Prove: If a and d are positive integers and ¢ and r are

integers such thata = dg +r and 0 < r < d, then
—a=d(=(g+ 1)+ =1
and O<d—r<d.

b. Indicate how to modify Algorithm 4.8.1 to allow for the
input a to be negative.

23. a. Prove that if a,d, g, and r are integers such that a =

dg+rand 0 <r < d, then

q=l|a/d] and r=a-—|a/d]-d.

b. In a computer language with a built-in-floor function,
div and mod can be calculated as follows:

adivd = |a/d] and amodd =a — |a/d]-d.

Rewrite the steps of Algorithm 4.8.2 for a computer lan-
guage with a built-in floor function but without div and
mod.

24. An alternative to the Euclidean algorithm uses subtraction
rather than division to compute greatest common divisors.
(After all, division is repeated subtrac