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PREFACE

Most textbooks on plane geometry show a certain onesideclness
and concentrate the attention to an unduly great extent on conics,
probably because these are so well suited to the illustration of
general principles. Those properties, however, which require the
introduction of differential quotients and integrals in the formulae
are hardly mentioned at all in textbooks on analytical geometry
and can be found in textbooks on the differential- and integral­
calculus. Non-algebraic curves, finally, are mostly treated in
textbooks on kinematics.

The present book is an attempt to combine the various parts
of plane geometry. It gives a compilation of the most important
properties of algebraic and transcendent curves together with
their applications in physics and in technics; in the choice of
the latter the author has been led by his own experience in
physical engineering.

Another striking point is, in the author's opinion, the uneven
way in which books on analytical geometry are distributed over
the different levels of erudition required of the reader, there
being found unduly great densities on the extreme ends of
elementary treatise and of higher algebraic geometry, compared
to which a certain scarcity exists in the middle regions. The
present book belongs to these latter regions in so far as it
presupposes a certain elementary knowledge of geometry but
avoids on the other hand that field of abstract geometry which
hardly requires the aid of any figures for its treatment.

To most readers the striking feature of this book will be the
method used, as it is not the conventional Cartesian one, but
is based on the possibility of representing a point with coordinates
x and y by the complex quantity z = x + jy (j2 = - 1) as is
already generally done in electrotechnics. To mathematicians,
physicists and electricians the method will hardly appear revolu­
tionary; chemically and mechanically trained readers will have
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to accustom themselves to the complex notation and calculus.
In the author's opinion the use of complex quantities in plane

geometry has important pedagogic advantages. The student not
only learns geometry but also gets trained in the handling of
complex numbers. This method is, moreover, a most appropriate
introduction to theoretical electrotechnics, modern acoustics, the
theory of complex functions and to operational calculus.

But the treatment with complex numbers deserves attention
also from the restricted standpoint of pure geometry. It turns out,
namely, that formulae representing the curves give a much more
direct description of their character than those occurring in
Cartesian geometry. Many theorems can be deduced with sur­
prising ease, as is shown throughout the book and in generality
of scope the two methods are entirely equivalent.

So far as the author is aware, plane geometry is here for the
first time treated consistently and completely as the geometrical
interpretation of identities in complex numbers. Forerunners have
been published as papers in periodicals and in an appendix the
author presents a short historical review of the material available.

The figures have for the greater part been drawn by dr J. J.
GELUK physicist and by mr 'V. MANINTVELD, chem. stud. The
author is much indebted to them and to the publisher who so
willingly complied with all his wishes relating to the make up
of the book.



CHAPTER I

THE COMPLEX PLANE

1. Introduction

The representation of a complex number

z = x + jy (j2 = - 1)

as a point with coordinates x and y in the mathematical plane
dates from CASPAR WESSEL (1799) and from GAUSS (1831) 1). z,
may stand for the point Pi (fig. 1) or for the vector from the

Fig. 1

origin to the point Pi' Addition and subtraction of two com­
plex numbers may be accomplished geometrically by vectorial
addition, respectively subtraction of the vectors denoted by ZI

and Z2' In Ch. II we shall extend this remark in such a way that
we shall find for each analytical operation its geometrical
equivalent.

This geometrical representation of the operations performed
on complex numbers has been an important aid in the study of
complex functions and in the treatment of complex impedances
and admittances in electric engineering. The reverse procedure,
using analytical calculations with complex numbers as a means
of detecting or proving geometrical properties of plane figures
has so far received but little attention.

1) See also Appendix V for a historical review.
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It will appear throughout this book that the application of
complex numbers in analytical geometry often has marked
advantages over the conventional Cartesian geometry, especially
as regards physical and technical problems.

Now suppose x and y to be functions of a real parameter u
and suppose we plot the corresponding z values in the plane for
all values of u, we find a continuous locus of z values, a curve
and a scale of u-values attached to it. The equation

z = t (u),

where t (u) stands for a complex function of a real parameter u,
is the equation of a curve and is equivalent to the Cartesian
formula:

t (x, y) = 0

or rather we should say that it gives more than the Cartesian
formula, as it also fixes a scale along the curve.

The method of representing a curve as the locus of the extremities
of vectors, the components of which change in a continuous way
with a parameter has been used in three-dimensional geometry 1)
and it might look as if we were taking a two-dimensional cross­
section of this more general treatment. This is not the case. The
important property of the two-dimensional vector of being
represented by a complex number has no simple analogon in
three dimensions and the possibility of applying the often sur­
prisingly simple calculation with complex numbers gives a special
charm to two-dimensional vectorial geometry, or, expressed in
a less exact way, to the geometry of the complex plane.

In the actually occurring cases various quantities may be
introduced as the parameter. In kinematics, for example, it will
usually be the time, while in purely geometrical problems the
length of the curve, measured from a fixed point will be preferably
used, especially in considerations of a more general nature. Further,
the abscissa xor the ordinate y and even the radius of curvature
may occasionally be the most suitable one. Again, in electro­
technical problems the usual one is the angular frequency along
the contours representing impedances as functions of the frequency

1) e.g. W. BLASCHKE, Vorlesungen iiber Differentialgeometrie, Berlin 1930.
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and we shall, besides, meet many cases, in which still other
quantities will play the part of parameter.

By changing from one parameter u to another v, being a real
function of u, we do not change the character of the curve, the
only thing that changes geometrically is the scale along the curve.
It is therefore possible to represent one curve by different equations
and we shall in each case choose the one that is most adapted
to the problem in hand.

2. First examples

In order to familiarize the reader with the above notions we
shall by way of introduction treat a number of curves and their
analytical representation. It will strike us that simple functions
always give rise to simple curves and vice versa.

a

,,
c ,

\
\
\
\
\

,,
I

/
I,,,,

Fig. 2

a. Z = 1 + ju is in fig. 2 represented by curve a; it is a straight
line with a uniform u-scale. Its direction is the same as that of
the imaginary axis (y-axis).

b. z = exp (ju) (Fig. 2, curve b)
Separating real and imaginary parts with the aid ofEuler's rule l ),

exp (ju) = cosu + j sin u,

we see that the curve is a circle with radius 1 round the origin
as centre. The u-scale is uniform, but we may change to non­
uniform scales by a transformation of the parameter. Each function

z = exp (jf (u))

1) Named after EULER (1707-1783) but already known to ROGER

COTES (1682-1716).
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represents the same circle. Anticipating later results, we may
well state that the simple analytical representation of the circle
is the reason why complex calculus is so well-adapted to the
treatment of technical problems.

c. Z = x + jy = VI + ju.

In order to calculate real and imaginary parts we square the
equation,

x 2 + 2 jxy - y2 = 1 + ju.

Separating now real and imaginary parts, we get

x 2 - y 2 = 1; 2 xy = u.

We recognize the first equation as that of the orthogonal
hyperbola in Cartesial'i geometry. The curve is therefore a hyperbola
(fig. 2, curve c).

The second equation fixes the u-scale along the curve, this
scale being non-uniform in this case. Each curve

(1)

,.,
, .'

1 1 + ju
Z= --;- =---

1 - JU 1 + u2

hence:

1
z =-- (Fig. 3).

I-ju ,u,~,! I·

is a circle with radi~s t and with its
centre on the real axis in the point
x= t. To show the circle character we
split z into real and imaginary parts:

Fig. 3 1 u
x, 1+U2; y= l+u2

and (x - t)2 + y2 = 1, which is the Cartesian equation of the circle.
In connection with example b we might have represented the

same circle by the equation

is identical with c.

d.

z = t (l + exp (jv)) . (2)

now using the letter v for the parameter to distinguish it from u.
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The change from equation (1) to equation (2), however, is nothing
but a transformation of the parameter. By putting

u=-tan~
2

•- .........,B

Fig. 4

,
\

\
' .........

'-

Z= (cosu+ jsinu)+ u (sinu +

- jcosu)= (l-ju) exp (ju).

So that the ~!!!lctJonJ)ft4~'

ciJ:QI~.~yg!y~!!te is:

equation (1) is transformE;'d i;}to equation (2). ./ .-/,
...a-.~.../·"t·t,,~'{;"b""'-'''~ "/'L. 'J~.,(.. f ,£,!:"l' /"<t(-(."t,>t.,,,-.

e. The evolven~ of the circle Z= exp (ju) is obtained by
measuring on the tangent a distance u (BC in fig. 4). In complex
notation the vector BC is 'I. ,v/ j

t~- /~J

u (sin u - j cos u). :0 t/(. c..
Adding this to the vector OB

we find for the point C of the
evolvente:

Z= (1 - ju) exp (ju). :::

These five examples may suffice as a provisional introduction.

3. Intersection 01 two curves. Complex x- and y-values

The points of intersection of two curves

ZI = 11 (u); Z~ = la (v)

are found by solving the equation ~ = Za' ~.IA.

As this is a vector equation, it is equivalent to two ibfIIIAU­

equations, from which u and v may be calculated. Introduction
of these values in ZI or in Za respectively gives us the points of
intersection. .

Example: Let us take for the first curve the circle ZI = r exp (ju)
and for the second the straight line Za = 1 + jv. From ZI = zlI it
follows by taking real and imaginary parts apart:

r cos u = 1; r sin u = 11

from which u is easily eliminated by squaring and adding, giving:

v= ± Vra 1



6 1. The complex plane

Fig. 5

80 that the two points of intersection are: Z= 1 ±jVr2-1 which
may be verified by applying ele­
mentary methods to fig. 5.

If r<1 there are no points of
intersection, v is imaginary.

In this connection, however, one
should carefully avoid a treacherous
pitfall, for substituting in that case
v=±jVl-r2 in Z2 would make
Z = 1 =F vr=-r2 which are two points
OIl the real axis and are certainly
not the points of intersection.

This difficulty offers us an op­
portunity to enter somewhat deeper into the nature of the

" It! constant j. We may i~~~~PE~ttlle..~ultiJllicatiQ!!.Q.yJg~2.r.P!~ti.9..!!Jly
'. as a_!2.t~~!QP in ,the x-y-plane counter-~,!!?c1s,~i§El2!~r."..~E.~~Bile

~ II 71:£2. By repeating this operation the values obtained are the
....~ ii opposite of the original, thus j2z = - z. Therefore j can be

treated in all calculations in the same way as V-1.
!,~ Now suppose we introduce imaginary values of x or even complex

values x= a+ ib, i = V 1. This may be interpreted in this
way, that we consider the x-axis as the real section of a complex
x-plane, in which multiplication by i means a rotation over an
angle 71:/2. We now see that, although the square of both quantIties
j and i is equal to -1, they are not interchangeable and the

.- product ij is certainly not -1. A third kindred quantity enters,
when we admit complex values for y: y = c + id, i = V-1,
where now i means geometrically a rotation over an angle 71:/2
in the complex y-plane. The complex x-plane and the complex
y-plane are orthogonal planes in a four-dimensional space and
by admitting complex values for x and for y we are doing four­
dimensional geometry, a point being represented by the vector
with four components:

z = a + ib + j (c + id),.
~'_'~.» t ~ ~

Paying due attenti~i to1hese considerations we see that in
the case where r < 1 we might represent the points of intersection
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of circle and straight line by:

z=1±iiVl-r2 ; (i2 =-1).

The introduction of complex values for x and y thus enables
us to state that circle and straight line always have two points
of intersection and this generalization appeals to our aesthetic
sense. l )

In general throughout this book we shall disregard complex
values of x and y, as non-existent points are of no value in physical
and technical applications of plane geometry. Nevertheless, these
expatiations were necessary to correct the opinion that the vectorial
treatment of plane geometry falls short of the Cartesian one. Both
ways will always give identical results.

4. The elements at infinity

Another point that ought to be made clear in this introductory
chapter regards the character of the infinitely remote parts of
the plane. As in Cartesian geometry one usually speaks of the
.§ltrl:\!ght.!inel:\~_!!llinityand as we shall, as a rule, speak of the
point at infinity in the present treatise, it is worth while to
ascertain whether this is a contradiction or not.

One is led to the conception of the straight line at infinity
by the properties of the perspective picture. All the infinitely
remote parts of the original plane are found in the picture on a
straight line. Now, as a straight line in the picture is always the
image of a straight line in the original, it simplifies matters to
consider the infinitely remote parts of the original as also con­
stituting a straight line.

There are, however, other ways of portraying the plane. Take,
for example, the transformation by which each point of the plane
inverses its distance from the origin, thereby remaining on the
same radius vector. Each point is transformed into another point
with the exception of the infinitely remote parts of the plane

1) E. LAGUERRE has given a general method for representing points
with complex x - and (or) y - values by visible points of the plane.
(Oeuvres, Paris 1905, vol. II, pp. 88 ff.) The points z = I =f vr=-Ti are
the Laguerre-representation of the points of intersection we have been
looking for and in general the Laguerre-representation is formed by just
disregarding the difference between i and j.
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,r-:f I-j
V-J=±V2'Fig. 6

which are all converted into the origin. Now, in order to make
the one to one conjugation of the points a general rule, it is
convenient to speak of the point at infinity of the plane.

From this we see that the conception of the character of the
infinitely remote parts of the plane is dependent on the kind
of transformation applied so that there is not the slightest con­
tradiction in using at one time the expression "straight line at
infinity" and at another time the expression "point at infinity".
Because of its highly algebraic character Cartesian geometry
mostly makes use of the straight line at infinity, whereas we
shall often make use of the point at infinity. Let there be no
mystery about the infinitely remote parts of the plane, it is just
an infinite plane.

Historical note: GIRARD DESARGUES (1593-1662) introduced
the general idea of elements at infinity. JEAN VICTOR PONCELET

(1788-1868) contributed much to a better understanding. It
was he who was the first to speak of the straight line at infinity.

x and y may become infinitely great for a certain value of u,
so that the curve has a branch extending into infinity. As a rule,
a second branch returns from the opposite side of the plane and
although the two branches may be separate tracks, they behave
in projection as if they were connected at infinity. By a perspective
portrayal of the straight line l, its point at infinity is brought
within finite distances. (point I in fig. 6) and we see the two

branches as one continuous line;' in the picture.
The hyperbola

, 7:.'"' Z= Vf+ju
( .

extends intiinfinity for u= 00 and for u = - 00.

As

x = y = 00 or x = y = - 00 for u = 006

x=-y=oo or x=-y=-oo for u=-oo. ;'
There are four points at infinity and they lie on the bi,Sectors

of the right angles between the coordinate axes. By any pers~ective
projection the two points, denoted by u =00 will be ~ade to

; I J,f _ p ) :i -;;' {'i., .' J
.!~'f.. l{ ~ t,l,.. • k ".

(
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Fig. 7

coincide and likewise the two points denoted by u = - 00. If we
put it this way the hyperbola has not two separate tracks but
consists of only one track, or with a technical term, is unicursal.
In this projective language the hyperbola cuts the straight line
at infinity in two points just as it cuts any normal straight line.

By applying the inversion we change
the hyperbola into ..; lemniscate (fig. 7)

and we bring the points at infinity together
in the origin O. We see that the lemnis­
cate reaches 0 from four different direct­
ions being opposite by pairs; inversely the
hyperbola reaches the "point at infinity"
from four different directions being opposite
by pairs.

The projective geometer assigns to the hyperbola two normal
points at infinity, the inversion geometer one double point; both
consider the hyperbola as consisting of one single track and both
have a simpler idea of the hyperbola than the layman who assigns
four infinitely remote points to it and who considers it as consisting
of two separate branches. We may add that a comet flying past
the sun behaves according to the layman's conception. It describes
only one of the tracks, disappears into infinity, but does not
come back from the opposite side.

5. Oomplex values of u(~'?) curves
Suppose that both x(u) and y(u) assume real values for certain

complex values of u. They then represent a real point in the plane
not situated on the contour generated by the real u-values.
From what has been said about the complex values of x and y
it will be clear that by complex values of u we mean a+ib and
not a + jb. In these cases the curve may show more than one
single track; it is no longer unicursal, but bicursal, tricursal and
so on, in general multicursal.

In Ch. VI we shall treat at length the curve:

Z = P (u) + jdp (u)/du,
where p (u) is Weierstrass' elliptic function. x and yare real for
all real values of u but also for certain complex values, so that
we find a curve consisting of two isolated tracks.
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A simple example where x and yare real for complex values of u,
although the curve remains unicursal, is furnished by the curve

z=sinu+icos2~'; (1)

As y = cos 2u = 1 -:: ~ sin2 U= 1- 2x2, curve (1) is identical with
the parabola y=1-2 x2>However, as long as u is real the curve

will consist only of a Lissajous­
diagram, drawn as a thick line in
fig. 8. The parts of the parabola
beyond this stretch, correspond to
complex values of u, namely for
the right hand branch:

Fig. 8

x=sinu=coshw

y = cos 2u = - cosh 2w

Fig. 9

For:

and
are both real.

We have chosen this simple example in order to illustrate the
possibility of the occurrence of complex u values. Of course, we
may represent the complete parabola by a formula such as

Z = u +i (1 - 2u2),

where u takes only real values. However, this choice depends
on the character of the physical problem and when we have to
deal with a Lissajous problem form (1) is the more natural one.

Curves consisting of isolated tracks will be observed if x and y
are at the same time real for certain values of u, real or complex,
which in the complex u-plane describe two or more contours
entirely separated from each other. Take for example:

z=u+i V(1-u2) (1-e2u2) with e< l.

x is real for any real value of u; y only
for those real values of u lying between ·-1
and + lor lying beyond ± lIe. The curve
consists of three tracks (fig. 9) of which the
two outer ones may be considered as one
in the sense of projective geometry. If e
equals 1 the curve degenerates into a
parabola like that of fig. 8, together with
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its mirrored image:

,
;'1

I:')"'~ J-
>
(
~,

)
~ ....,

"'.~- tl

y = ± (1- x2).

In this limiting case the curve is unicursal in the projective
sense and exhibits two double point~. In general new branches
occur at the cost of"double points. Unicursal curves therefore are ff
also called curves of deficiency zero, where the word deficiencyf{
refers to the number of double points. .

.. ,
" lIt'

}

(



CHAPTER II

THE GEOMETRICAL INTERPRET ATION OF
AN AL YTIC OPERATIONS APPLIED TO

COMPLEX NUMBERS

Fig. 10

o

1. Addition, subtraction, multitiplication

As addition and subtraction of complex numbers consists in
adding, respectively subtracting the real and the imaginary parts

separately, this means geometrically that
B the components of the two vectors ZI and

__--'7 Z2 have to be added or subtracted and the
component sums, respectively differences,
combined to a new vector. In other words,
we have to apply the rules of vectorial
addition and subtraction (fig. 1 p. 1).

The vector pointing from the point A to
the point B may be expressed analytically
by the difference ZB -ZA' the vector BA =

= - AB by ZA - ZB' (fig. 10).
Adding a constant real value a to all z's is equivalent to a shift

of the origin over a distance -a along the real axis; addition
of an imaginary constant equals a snift of the origin along the
imaginary axis. In general we may shift the origin to any arbitrary
point 0' of the plane by adding a constant complex value -zo
to all z-values, Zo being the position of 0' with respect to 0 as
origin. (fig. 11).

Any formula of the character

Z = Zo + t (u)

where Zo is a constant complex number may be simplified by
leaving this constant out. This means geometrically that we
either shift the curve parallel to itself over the vector -Zo or that
we shift the origin over the opposite value ZOo

In order to interpret the multiplication of two complex numbers
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we remark that any complex number may be split up into two
factors:

z = IzI exp (j ,)

where (fig. 12) Izi is the absolute value or the modulus of the vector,
, is the angle which the vector makes with the x-axis and is called

p

o
Fig. 11 Fig. 12

y

the argument; exp (j ,) will be called the argument [actor. The
proofor"'thE; last equation follows from Euler's'·th;~;~;~-

exp (j ,) = cos, + j sin ,

and by remarking that Izl cos '=x; Izl sin '=y.
Multiplication of z by a real number means multiplying the

modulus by this factor without changing the argument; multi­
plication of z by a factor exp (j rp) means addition of rp to the
argument, that is a rotation of the vector over an angle rp counter­
clockwise without changing the modulus.

Any formula of the character

z = exp (j rp) t (u)

where rp is a constant may be simplified by leaving the factor
exp (j rp) out. This means only that we have rotated the curve
over an angle - IfJ round the origin without changing its form.

The curves

z = t (u) and z = {f (u) - Zl} exp (j rp) + Z2

are congruent. Indeed, we can reduce the second equation to
the first by:

a. shifting the origin over the distance Z2' by which Z2 drops
out of the formula;



14 II. Geometrical interpretation of analytic operations

b. rotating the curve round the new origin over an angle -ip
by which the factor exp (j 11') disappears;

c. shifting the origin again, but now over the vector -ZI'

Exercise: Try to simplify the equation:

Z = r{1 - j (v + tanV')} exp {j (v - V')}

where v is the ,parameter, r and V' constants.
The curve is identical with

z = r (1 - ju) exp {j (u - tan V' - V')}

as we have only introduced the parameter u for v + tanV'.
Now split off the factor exp (- j (tan V' + '1'», which means a.

rotation over the angl; (tan V' + '1'). What remains is:

z = r (1 - ju) exp (ju)

and this we recognize as the evolvente of the circle of radius r.

The rotation over a right angle deserves special attention; it
is accomplished by multiplication by the factor exp (± j n/2).
But by Euler's rule:

exp (± j n/2) = cos n/2 ± j sinn/2 =± j

from which we see, that multiplication by ± j means a rotation
counter-clockwise over an angle ± n/2, a result anticipated in
Ch. I when discussing the nature of j.

Multiplication of two complex numbers zt and Z2 gives:

IZll • IZ21 exp {j (C1 +C2)}.

The modulus of the product is the product of the two original
moduli, the new argument is the sum of the two original arguments.
Apart from the changes in the modulus, squaring a vector Z doubles
the argument, taking the square root halves the atgument.

By way of example let us multiply I-ju by exp (ju). As ju
is not constant, multiplication by exp (ju) does not mean an
overall rotation over a constant angle. We have to multiply each
vector 1- ju by the corresponding factor exp (ju ). Now 1- ju
is the tangent to the unit circle, running vertically (fig. 13) and



I

1. Addition, subtraction, multiplication 15

I

A
Fig. 13

C is evidently the circle evolvente. The
same result was already found on page
5, but the present method is omore
illustrative of the possibilities of geo­
metry in the complex plane.

We shall end this section with four
remarks which are of a more purely

analytical character, but which will be useful in several cases.

a. Raise both sides of the equation . ~,

j = exp (jn/2)

by rotating it over the angle u it remains a tangent and point A
moves to the position C. Now as BC equals u, the arc length of

the circle, the locus of the points C,
represented by the equation

".,.t
. z = (1 - ju) exp (ju)

to the j-th power. The result is ,

IF eX,I> (~~T2)1
and, quite unexpectedly ji is real. A Frenchman once called this
formula "la plus belle formule de la mathematique".

b. By taking logarithms on both sides, we find the Neperian

logarithm of j:/ :~( 'I" :":,.-:\
::: 'v:' .,..,lgJ-J.n/2." ,...,j',

",41 ,'. " ..." ..",__,,~,~ > ""'~., ._...~ it f")i"

By bisectiilg arcs, as is done in fig. 14, we find the~often

required values of VT and V-j. They are:

VT ±t V2(I + j)

V=-j= ± t V2 (I-j).

d. By dividing the circumference of the unit circle by a whole
number n, we find the points which after being raised to the
n-th power give 1, performing thereby one or more complete..
turns over the unit circle. The n values of VI form a regular
n-angle (fig. 15) and are analytically expressed by:

:. z = exp (j. 2:k) (k = I, ... ,n).
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The unit circle may be represented by the formula:

z= VI = exp (j 2vn)
2n

which by the real transformation v = - IS the transform of
u

Z= exp (ju) (fig. 16).

+

6
7

Fig. 16

\IfJ -j

Fig. 14 Fig. 15

2. Decomposition of complex numbers

In connection with the process of addition or for the sake of
finding the Cartesian coordinates, and in many other cases, it
is necessary to have a general method at our disposal for finding
separately the real and imaginary parts of a complex number.
The best way is to make use of the conjugate complex number
obtained from z by converting j into -j and which will be

-It-__--+ -+

•z-z

Fig. 17

designated by an asterisk: z·. Changing the sign of j is geometrically
equivalent to a reflection of z with respect to the real axis. The
sum z+ z 'will be real and equal to twice thefeal value of z (fig. 17)

x=Re(z)=! (z+z·).
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from which:

In a similar wayw:~fin?for y: '. .'rjy ~ "j i~(~)-"T(;- ~-;)-r"'"
i.e".", ,..,",~.,;."~";" ...."".,~.,, ...,., - ,. _. ''''-'_·''''_''''·',"~.·o"~",,,,"_,,.,·, _,' I

Example: take z=(I-ju)exp(ju) (fig. 4)

x=! [(I-ju) exp (ju)+ (1 +ju) exp (-ju)]= cos u+u sin u.
jy =! [(I-ju) exp (ju)- (1 +ju) exp (-ju)]=j sin u-ju cos u.

(compare p. 5).

The sum of any two conjugate numbers or functions will be
real: as it does not change its value by interchanging j and - j,
it is identical with its conjugate and this is only possible if it is
real. For example! [exp (ju) + exp (-ju)] = cos u is real" and

z = exp [jf(u) + jf'(u)]

must be a point on the unit circle.
The difference of two conjugate numbers or functions will be

purely imaginary. By interchanging j and - j it changes its sign
and conjugate numbers only differ in their sign if they are purely
imaginary.

Example: ! [exp (ju) - exp (- ju)] = j sin u

and z = exp [f(u) - f'(u)]

must be a point on the unit circle.

Of equal importance is the availability of a general method
for finding the modulus and the argument factor. This is also
done by the intermediary of the conjugate value. We have:

z = Izi exp (g) z' = Izi exp ( - g)

...... - ..".~.. , ,.." i

( 'r) 10 i
exp h = ¥7:J

The example of the circle evolvente (fig. 4; 13) goes as follows:

Izl2 = (1- ju) exp (ju). (1 + ju)exp (- ju) = 1 +u2

exp (g) = -V~ +j~ .exp (ju).

Any function being the quotient of two conjugate functions

will have unit modulus: I~ 1= 1, because -.; . -.:.: = 1.
z' z z
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For example the function ~+~:' occurring in the last example,

has unit modulus; it is a point on the unit circle and, indeed,
by the transformation

u=tanv
it assumes the form

.";>. e:x:p (- 2jv)
IT 7'

from which C= u---;:.'P = u -iarc tan u (fig. 13).
By combination with the method for finding real and imaginary

parts we can split the argument function as ·follows:

cos C= t (V:' +V~ )
jsinC =t( Vz~ - VZ~).

The argument itself is:

C=~lgl/-';' ....·.I.lg ~. ':. ./
J VZ '2J Z

3. QUQtients

-------7
I
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Division of two vectors in the
complex plane is graphically exec­
uted by the reversed process of
multiplication, that is, by dividing
the modulus of one vector by the
modulus of the second one and by
subtracting the arguments (fig. 18):

zl1 z11 {' }Z; = Tz;] exp J (C1 - C2) •

Fig. 18
If the two vectors are parallel,

C1 - C2 = 0 and the quotient is purely real. As the imaginary part
is in this case zero we have:

• ' ."',••"",/)"',.-"',..CO'''1'''''' ........j

Zl Zl " i--.=0 or: .ZlZ2-Z1Z2=O.,)
Z2 Z2 , __.~~_"",-, '" ..'

This is the criterion tor parallel vectors.
If, on the other hand, the vectors are orthogonal, we have
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C1 - C2 = ± n/2, exp j ('1 - '2) = ± j and Zl/Z2 has no real part,
in formula:

Zl z~ • •- + -. = 0 or: Zl Z2 + Zl Z2 = 0
Z2 Z2,

and this is the criterion for orthogonal vectors.
The two expressions occurring in these criteria are closely

related with the vectorial and scalar products of two vectors as
defined in normal vector calculus. The ~~2~",,£~,c;d2:; is the area
of the parallel?gI'a:r:tl' framed by the vectors Zl and Z2:- 'WH_~._"

-,....-.,." ", ',CH ,," A = JZ11.lz21 sin ('1 - '2)'
But

Zl Z; - z~ Z2 = IZ11·lz2\ {exp (j ('1 - '2» - exp ( - j ('1 - '2»}
= IZ11·IZ21· 2j sin ('1 - ~2)'

so that the area of the parallelogram is:

)\ .;; I '- A = ;j (Zl z; - z~ Z2) = 1m (Zl z;). I----'-~.
In a similar way we find for the scalar product B:

B = IZ1\.lz21. cos ('1 - '2) =! (Zl Z; + z~ Z2) = Re (ZlZ;),

Scalar and vector products turn out to be the two components
of the complex vector product ZlZ;:

ZlZ; =B +jA.

For the sake of completeness we may state that, expressed in
the x's and the y's,

A =X1 Y2 -X2Y1;

B = X 1 X2 +Y1Y2'

A proportionality of four vectors (fig. 19):

~=~
Z2 Z4

means that the moduli are proportional:

IZ11 IZa I
TZJ = IZ41

and that the enclosed angles are equal: '1 - '2 = '3 - '4'
]-7
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The two trian~les constructed on Zl Z2 and.z3z4 are similar.
-The equality of the angles is already assured, if

~ = real factor times ~
Z2 Z4

or Zl z4 = real factor times Z2~ ;

and in the special case where Z2 and Z3 coincide, the two
remaining vectors will make equal angles
with this middle vector, if:

Zl z~ = real factor times z~' ~

These rules are always applied in order
to prove equality of angles in geometrical

&. figures. For example Z = Vf(u) bisects the
angle between z4 f(u) and the real axis
(z.=l), whereas Z = Vjf(u) bisects the angle
.betw~en ~= f(u) and the imaginary axis
(1 = 1)·

By the anharmonic ratio, cross ratio or double quotient D of
four points we understand the expression:

D- Zl-Z3 • Z\l-Z3

- Zl- Z4 --;- Z;;- Z4'

D is in general complex and its argument is the difference of

the arguments of Zl - Z3 and Z2-~. If this difference is zero, that
Zl- Z4 Z2- Z4

is (fig. 20) if L Z3Z1Z4 = L Z3Z2Z4' D will be real. In this case the four
points will be situated on a circle and the criterion for the con­
centric configuration of four points is the reality of the cross ratio.

Let three of the points be fixed on
the circle and let Z4 move over it, then
D will assume all the positive and
negative real values. Now D can be
considered as the parameter and the
formula of the circle through Zl' Z2

and ~ is evidently:

Fig. 20



4. Confonnal transforms, inversion 21

The value of the cross ratio depends on the order in which
we take the four points. We shall denote the sequence by writing
D (1 2 3 4) for the sequence chosen in the definition. One
sees at once that interchanging 1 and 2 or 3 and 4 inverts
the value. Interchanging 2 and 3 or 1 and 4 changes D into 1- D
as may be seen by performing the calculation.

This leads to the rules named after MOBIUS:

=D (4321)=15
= lib
=1-15

I D (1234)=D (3412)=D (2143)
II D (21 34)= = D (1243)

[II D (1 3 2 4) = D (4 2 3 1) = 1- D (1 2 3 4) =

and by further permutation of the indices the values 1- 1I15,

1 1 15 and 15 15 1 can be obtained.

In case D is real, it represents the double quotient of the
lengths of the four vectors Zl- Za, Zl- Z4' Z2--;;Z;j 8:n~~~:-:,~4'

Mobius' third rule immediately gives us iPtolemaios' Yfamous
theorem (150 A.D), for (fig. 20) •. -,~~~.. j

D (1234)= Zl-Za~Z2- Z a= AD.BC =15
Zl-Z4 Z2-Z4 AC.BD

D (1324)= Zl-Z2~za-~=AB.CD =1-15.
Zl-Z4 Za-Z4 AC.BD

Since the sum is 1 we find:

AD.BC+AB.CD =AC.BD~

in words:

The product of the diagonals of a quadrilateral inscribed in a
circle equals the sum of the products of the opposite sides.

4. Conformal transforms, inversion.

Bya transformation W= f(z), where wand Z are complex values,
one or more points of the complex w-plane correspond with one
or more points of the z-plane. Let, furthermore, the function
f be of such a nature, that the derivative dwldz is a single-valued
function of z, by which we mean that it is independent of the
direction of dz. In this case dw makes a constant angle with dz,
this angle being the argument of dwldz. Two lines passing through

".... ; ...

. '
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z and making a certain angle with each other will be transformed
into two lines passing through wand making the same angle
with each other as the original ones. Because of this property
these transforms are called conformal. Conformity means in other
words, that infinitely small polygons do not change their shape
by this transformation.

In general, the function dw(dz, considered as a function of z,
will, for a restricted number of z-values, be zero (so-called zero­
points of dw(dz) and for a restricted number of values of z it will
be infinite (so-called poles of dw(dz). Neither in the zero points,
nor in the poles will it be clear what the meaning is of the argument
of dw(dz and in these points we may find deviations from the
conformity of the transforms. As these exceptional points are
present only in a finite number, we shall nevertheless call these
transformations conform.

For the transformation w=Vz, dw(dz = 1(2VZ, the poin~ z = 0
is a pole, z = 00 a zero point of dw(dz; the whole z-plane will be
transformed conformally, but at z = 0 and z = 00 we may expect
deviations.

We shall consider here in some detail the transformation:

z-zo
w=--

z+zo

where Zo is a complex constant. This transformation plays a role
in the problem of the reflection of a plane wave, travelling in a
medium of wave-resistance Zo against a wall of impedance z. The
number w is the complex reflection factor, the modulus being
the ratio of the amplitudes of reflected and incident wave, the
argument being the phase shift at reflection.

The argument L of w is constructed in fig. 21. It is constant
along a circle going through the points - Zo and +Zo of the z-plane.
The modulus of w is the ratio of the lengths of the vectors z - Zo

and z +Zo and we know from elementary geometries that this
ratio is constant along a circle (circle of Apollonius) with its center
on the straight line through - Zo and + zoo

Now, as in the w-plane the lines [wl= constant (circles around
the origin) and the lines L -:- constant (radii) are two orthogonal
sets of curves, the two sets of circles in the z-plane for Iwi = constant
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and !:J. = constant must by the property of conformal transforms
also be orthogonal.
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Fig. 21

We learn in passing from this example two geometrical con­
elusions:

a. The circle going through the points Zl and Z2 lying in such
a way that the <:hord Zl Z2 sll.bten~s at any point of the circle the
constant angle !:J. is given'by the -equation:

z-zu exp (i.6.) = __1.
Z-Z2

1 - ""."'..,•." •. ~.;''''''''•. >~-..,., ..~••:"'''

b. The circle of Apollonius, iwith the property that the ratio
of the distances of any'point of the circle to the two fixed points
Zl and Z2 is constant and equal to a, is given by the equation:

z-za exp (ju) = __1.
Z-Z2

One of the most important tra.nsfprmations is the inversion:
1 \

w=7 )
by which the argument is not 'chaI~ged and only the modulus
is inverted. We have seen already that the inversion of the vertical
straight line z = 1 + ju is a circle passing through the origin (we
shall call it an O-circle). By an obvious generalization all straight
lines will be converted into O-circles and conversely, the angle
between two of these straight lines being equal to the angle at
the intersection of the two corresponding O-circles.
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Let us now see what the result is of a transformation by_~~~:~~?n

of the cross ratio of four points. We find:

and this is the conjugate value of the original D(z). Although
the cross ratio is in general changed by the inversion, it will
remain the same, if it is real. In other words, if the four
points are on a circle before the transformation, they will still
be on a circle after the transformation, straight lines being included
as circles of infinite radius.

We shall encounter pairs of curves which are mutual inversions:
e.g. parabola and cardioid, orthogonal hyperbola and lemniscate.
All the properties concerning angles between straight lines related
to (me member of the pair can immediately be converted into
properties of angles between O-circles related to the second one.
Concyclical location of four or more points will be invariant with
respect to inversion.

5. Non-conformal transforms, collineation

There are, however, other transformations of the z-plane into
the w-plane, where the angles do change. We shall call these
transformations non-conformal and they are rather the general case.

A simple example is: w = az + bz·

duo _ I b dz·
dz -aT dz'

We now see that dw{dz is not merely a function of z but depends
on the direction in which we choose dz, as dz·{dz varies with
this choice. As our argument in the last section was based on
the fact that dw{dz was single-valued, the conclusion to the
invariance of the angles can no longer be maintained.

The most important member of the family of non-conformal
transformations is the collineation.. Whereas the inversion converted
circles into circles, the collineation has the even more important
property of converting straight lines into straight lines, the straight
line at infinity being included in the collection.
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By way of introduction we wish to show that any
line can be represented by a formula of the kind:

p'z+pz'-2=O /'
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where p is a constant complex number.
According to this equation the real part of p'z is constant

and equal to 1; p'z therefore is a vertical straight line. Division
by p' shifts this line and turns it into a certain position in the
plane'dependent on the choice ofp', but leaves it a straight line, q.e.d.

The collineation is defined as:

(p;z+ P2Z' - 2)+j (P~Z+PIZ'- 2)w = . .:=--'::---=--,~=-------'-

Poz+ POl- -2

The real axis of the w-plane corresponds with the line

P~Z+ P1z' - 2= 0

of the z-plane, the imaginary axis of the w-plane corresponds with:

p;z+ P2Z' - 2= 0

and the infinitely remote line of the w-plane with the line

p~z+ Poz' - 2= 0

of the z-plane. The transforms of these three lines of the z-plane
in the w-plane are represented schema-
tically in fig. 22.

We may collect the terms with z in
the numerator of the definition to
one term ZaZ, the terms with z· to ZbZ'
and - (2+ j2) to one complex number Zc

and we see that the collineation may also
be represented by the equation

P,Z+P,Z-2-0

Fig. 22

where the numerator is now a trinomial, linear in z and z·.
Let us now consider an arbitrary straight line in the

w-plane, say:
w~w+wow'-2 = 0

where Wo is a constant complex number.
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Its transformation is

(W~za+Woz~-2p~)z+ (woz;+ W~Zb - 2po)z' + (w~zc+ woz:+ 4) = 0
p~z+Poz' - 2

The left hand side has the form of a real factor times (p'z+pz' - 2)
and will, if equal to zero, represent a straight line in the z-plane.

The collineation is the analytical expression for the central
projection of one plane (the original) on a second plane (the
picture), placed, in general, inclined in space with respect to the
original. It is therefore also called the projective transformation.
It leaves the order of a. curve - that is the number of -l!QiD.ts
of interseclk;rt·with·~~Y··-s.~~iKl].,tJj~-' unalt~~~d~-T'he cross
ratr~··however-;is in gei;ral changed by the collineation; it,
therefore, does not always transform circles into circles. On the
contrary it may be shown that any curve of the second order
can be transformed into the unit circle with the aid ofa collineation
and this is equivalent to the fact that any second order curve
can be considered as a section of a right-angled circular cone and
therefore deserves the name of conic. (See later).

u

"2

Fig. 23

o

6. The first derivative,. tangents

The vector z varies in a continuous way along a curve and
we shall call the derivative dz/du the
velocity of the point along the curve. The
word velocity isb.<>rrowed from gnem­
atics; dz/du is identi~ai with'·the kille-iii="
-iti~'"velocity, if u stands forthetime.
As dz is a vect~"d~'~-;~~i~~;'d~
is also a vector. It has the direction of
dz, that is of the tangent to the curve.
Derivation with respect to the para­

meter will in future be denoted by a dot: z=dz/du.
The argument of z has a definite geometrical meaning, it is

the argument of the tangent and we shall denote it by the
letter T; therefore:

exp (jT)= V~.
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The modulus of zhas no definite geometrical meaning, it changes
its value if we apply a real transformation to the parameter, by
which, as we know, the curve does not change its nature. If 'U stands
for the time Izi is the absolute value of the kinematic velocity.
Special attention should be paid to the case where we choose
the arc-length 8 along the curve as parameter; dz and d8 are,
apart from the argument factor, identical, Izl = jdzjd81 = 1. For
this choice of the parameter the curve is described with constant
velocity 1, only the direction of the velocity being variable.

Plotting the velocity vector from the origin for all values of
8 brings the extremities of this vector on the unit circle, the 8

scale, marked on this circle is characteristic for the curve under
consideration. The unit circle together with the 8-scale is called
the velocity indicatrix of the curve. Any curve is completely defined
by its velocity indicatrix, apart from a parallel translation:

z=Jz d8+Zo.

It is certainly tempting to use the arc length 8 as parameter
because of the simplification of the formulae in which z occurs,
but we are withheld by the fact that the formulae of many simple
curves are not simple at all, if we try to express z in 8. We shall
make this choice in the case of general considerations where cal­
culations in detail are not required (compare p. 136 and 144). But
even if we start with the special parameter 8, we are already
compelled to follow the general procedure as soon as we consider
the second derivative, this being the velocity of the velocity
indicatrix, on which 8 is no longer identical with the arc-length.

Returning now to the general parameter 'U, not necessarily
representing the arc-length, we find for the arc-length element:

and for the arc-length comprised between the points belonging
to the values 'Ul and Uz of the parameter:

'"8= J!z!du
....
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Examples:
a. Circle: z = exp (ju); i = j exp (ju); Iii = 1.

Total perimeter: s = rdu = 2n
o

b. Circle evolvente: Z= (1 - ju) exp (ju); i = u exp (ju); Iii = u
u

Arc-length: I udu = tu2

o
c. Exponential curve: y = exp (x).
Take x as parameter: z = x+j exp (x); Z= 1 + j exp (x) = 1+ jy.
In fig. 24 i is represented by the vector AB and we see at a

glance that the subtangent AC is constant = 1. The arc-length

s = IV1 +exp (2x) dx

. ,I' (

and hence

is not an elementary function of x and in the formula z=f(s)
the right-hand member would not be an elementary function,
although the curve is a simple one.

d. Logarithmic ~p~~~ being the curve for which the radius
vector grows exponentially with the argument, in complex notation:

~ exp (m + j) u i'" ':f,,:d(),~~:-'
. ( .) ( .) ----z = m + J exp m +J u

..J
=0 z . t t- = m + J = cons an

z

which means that all tangents make the same angle with the
radius vector, this angle being arc cotan m (fig. 25). The

Fig. 25
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logarithmic spiral is the curve of "constant inclination". The
arc-length is:

" 1/1+m2

8 J!1+m2 exp(mu)du= r -----:;;i2 exp(mu)

and therefore proportional to the radius vector.

How do we find the tangents to a given curve from a certain
point P not lying on this curve 1 First suppose P to be the origin.
The vector to the tangent point has the same or the opposite
direction as the tangent Z, which can be formulated by:

z Z
-=- or zZ·-z·z=O or Im(zz·)=O
z· z·

and from this condition the parameter values of the tangent
points can be calculated. If, more generally, P is not the origin,
we substitute z by z - z (P) and the condition is:

Im{(z -z(P)).z·} =0.

p

Fig. 26
sin u = ± 1/ 1 _ 1

V a2

1
cosu=- "

a '

from which:

The order of this equation is the number of tangents which
caIlp~ drawn to the curve from any point and is called the\,<;fa~i

>,0," ,."" ,. ._-".",~~~••",.--,

~~the'cur~.~)

Example: Take as the curve the unit circle and as the point
P a point z = a on the real axis.
The condition for the tangents is:

Im{(exp(ju)- a). - j exp (-ju)} =

= 1m {- j + ja exp (- ju)} =
= - 1 + a cos u = 0

and the tangent points are therefore: (fig. 26).

(") .. l±.V 1ZT '-= exp JU = cos u +J sm u = - J 1 - 2 .a a
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where T is the argument of the tangent.
In order to express e in z and its deri­
vatives we calculate separately ds/du
and dT/du. The first is simply ds/du=

calculation of dT/du we start from:

M

Fig. 27

= Izi = Vz.z·. For the

7. The second derivative, curvature

The second derivative, d2z/du2, or z is called the acceleration
of the point along the curve; it coincides with the kinematic
acceleration, if u stands for the time. In general the acceleration
has two components, one in the direction of the tangent being
the derivative of the absolute value of the velocity, and one normal
to the tangent and connected with the change in direction of
the curve, that is with the curvature.

The curvature is defined as the in­
verse value of the radius of curvature
e by the equation (fig. 27):

1 dT

e ds

from which:

dT 1 z: i-zz·
du 2j zz·

Hence:

or:

z= - exp (ju).z· = - j exp ( - ju)

Examples:
a. The unit circle: z = exp (ju); z= j exp (ju); Izi = 1.

~=Im(j)= 1
e

as we might have expected.

',' I
~~f '?
/.

/'

.-'
-f ,., i,11;"j ~~L .. r'

, ...' , '" .:

-(
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b. Circle evolvente. z=(l-ju) exp(ju); z=uexp(ju); Izl=u.

z'=uexp(-ju); z=(l+ju) (expju)

1 Im{u+ju2} u 2 1-- ---- . e- ue - US - us- u ' - .

Referring to fig. 13 we see that the centre of curvature lies on
the circle which is developed and this could be t3xpected if we
consider this point to be the instantaneous centre of rotation
during the evolvement of the circle.

The point M of fig. 27 is called the centre of curVature and the
circle of radius e with M as centre is called the osculating circle,
it can be considered as having three points in common with the
curve, the three points having coinci<;led with each other.

A point of the curve for which the curvature is zero l js called to...
.,.,Hl0,.,· 0 ThO Of .• iJ." I' ° "",.t. (' .an ~~on po~nto IS occurs, 1 Z = 0-" ~'4'" ,.'i",. "',(7 jh....,'J. .'

A pointfo'j:"which the curvature is 00, is called a cusp. This
occurs if~he curves treated up to now as examples show
neither inflection points nor cusps, except the lemniscate, p. 9.

If we choose the arc-length s as parameter, Iii is always unity
and the formula for the curvature takes the simple form:

;"'\ 1 (dZ' d2Z)
..~. ' 0) . e= 1m ds' ds2 .

.' "":" " . ./,l .' .,. r .f.t•.., i ,: "'"v'" " > I.• I.e....
The right-hand &ember is a certain function of s and this

equation expresses the relation existing between the arc-length
s and the radius of curvature e. This relation is called the natural
equation or the intrinsic equation of the curve. It defines the curve
apart from its orientation and location in the plane and may
be used as the starting-point for the deduction of all other properties
of the curve. The natural equation of the unit circle is simply
e= 1; the natural equation of the circle evolvente follows from
e=u, s=t u2, hence s=t e2• We may further refer to E. CESARO'S
book: Natiirliche Geometrie.

We wish to state explicitly that the vecto~ ~;~ is always normal

to_.the,cwy~;~";rhisfollows from the fact that the velocity dzlda
has always unit value, so that there exists no tangential component
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of the acceleration. But we can also give a purely analytical proof,
as follows:

2 Re (dZ' d
2
Z) _ dz' d

2
z dz d

2
z' _ ~ (~~ d,!~)

ds . ds2 - ds . ds2+ ds . ds2 - ds ds' ds .

of the curve.

N dz dz' Idz '1

2
h t't d . t" B t l'fow as' ds = ds = 1 so tal s er1va 1ve IS zero. u

dz' d2z . dz d2z
the real part of ds . dS\lS~zer~: the vectors ds and ds2 must be

orthogonal, q.e.d." .? 2q /"'j,

As a consequence we can simplify the formula of the c'urvature
still somewhat more. It becomes:

, '. \i 1 dz' d2z
i-e=T ds . I1s2

l
time the natural equation

!
:..~-~

and this is at the same

We may consider the radius of curvature from the centre of
curvature M to the curve as a vector. Its argument is .-n/2 and
it is represented by:

z,= ~ exp (j.).
J

If we plot all vectors z, from the origin we describe a curve
which is called the radial of the original curve and which is
represented also by the last equation. Expresi'ing (! and • in
terms of z the formula for the radial can also be brought on
the form:

2zz'
z,= .• .. . .,. z.

z z -zz

The radial of the circle z=exp(ju) is again this circle. The radial
of the circle evolvente z=(l-ju)exp(ju)tums out to be:

z,= ~ exp (iu)
J

and this is a spiral for which the modulus is proportional to the
argument (spiral of Archimedes).



CHAPTER III

THE STRAIGHT LINE

1. Collinearity of three points, concurrency of three straight lines

We have already used the formula Z = 1 + j u for the straight
line, passing through the point 1 in the direction of the vector j.
If we wish to represent the line passing through the pojpt Zl in
the direction of the vector Z2' we can generalize the above formula
to Z = Zl + Z2 u.

The equation of the line passing through two given points
Zl and Z2' is however, more often required. Point P lying on this
line in such a way that the distances from P to Zl and Z2 are in
the proportion u to 1 is given by: (fig. 28):

Z = Zl;~~2 • ,HJ Z"'I

For u = 0, P coincides with Zl' for u = 00, P coincides with zs'
Positive values of u occur between Zl and Z2, negative values on

both sides outside the stretch Zl Z2; the point at infinity of the
line is characterized by the parameter value u = - l.

Calculating u from the equation gives:

_u=z-~
Z-Z2

and from this equation we see at once that the three points lie
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in one line as the reality of either side means that the vectors
Z - Zt and z - Z2 have the same direction.

We can bring the criterion for collinearity of three points
ZI' Z2 and Z:! in a more symmetrical form. The argument factor of

J
must equal ±l~ in formula:

Za - ZI :; - z; = 1
za-z2' z;-z~

and this can be written in the symmetrical form:

(ZI z; - z~ Z2) + (Z2 z; - z; za) + (za z~ -z; ZI) = 0

or, in the form of a determinant, the criterion of collinearity
becomes:

1 1 1

" ZI Z2 Za =0.

z~ z; Z·3

We now proceed to calculate the point of intersection of the
two lines passing through ZI and Z2 and through Z:! and Z4 respectively.
The two lines are:

Z=:"1 + UZ2 and Z= za+ VZ4.
l+u l+v

For the point of intersection these two expressions are equal,
hence

For the conjugate values a similar equation must be valid:

and from these two equations u and v of the point of intersection
can be calculated. Substituting these values into the line equations
yields for the point of intersection:

(ZI z;- z~ Z2) (Z:!- Z4) --(Z:! z~ - z; Z4) (ZI- Z2)
Z= (Zt- Z2) (z; - z~) - (z~ - z;) (Z:!- Z4) .

If the vectors ZI - Z2 and Za - Z4 are parallel, the denominator
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equals zero by the criterion of parallellity and then z=oo, as
was to be expected.

If we cut the line Za Z4 by a third line z" Z6' we create a second
point of intersection, the place of which is given by the last
equation, if only we add 2 to each index. If the three lines have
to pass through one point (in a technical term, if the lines are
concurrent), the two expressions for the points of intersection have
to be put equal to each other and the condition resulting from
this equality can be brought into the symmetrical form of a deter­
minant:

ZI-ZZ za- z" ZS-Z6

4. z~-z; z;-z: z;-z; =0..,
ZIZ~-Z~zz zaz: - z;z" zsZ;-Z;Z6

We can check this formula by laying the origin in the common
point of intersection. Each element of the third row is propor­
tional to the area of the parallelograms on the vectors ZIZZ, zaz"
and z" Z6 respectively and all three must vanish if the origin is
on the lines ZI Zz, ZaZ4 and Z"Z6' but then the determinant is also zero.

Fig. 29

AP 0 BQ 0 CR 1 lli
PBoQCoRA = - are co near.

Let the three points be:

2. The theorems of Ceva, M enelaos and Desargues

As applications of the general theory let us prove the theorems
of MENELAOS and CEVA.

MENELAOS (58 A. Do): the three
points P, Q, R, each lying on a
side of the triangle ABC (fig. 29)
in such a way that

ZI + uZz _ Zz + vZa 0 Za + wZI
Zp= l+u; zQ- l+v' ZR= l+w .

The condition is then equivalent to u·v·w=-l. The determinant
occurring in the criterion for collinearity is

l+u l+v l+w ~I.- ,
',,' .

ZI +uzz Zz + VZa za+wzi \,} .

z~ + uz; z; +vz; Z;+WZ~

,
! '"'

.
,._.; .•~ .~'J' II!-,"
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Add the first row and -u times the second to -I!w=uv times
the third row. The members of this row then become zero from
which it follows that the determinant is zero and hence that
the points PQR are collinear, q.e.d.

. CEVA (1700): the three lines joining

'~liifi. ~~;,;::::::~e:~:h:~r::"
PB. QC :RA = 1are concurrent.

A(=:z:,)..'! B(=zz)

't;g. ~o Let the three points be:

then the condition leads to u·v·w=l. The determinant of the
criterion of concurrency is:

(I +u)Za- (ZI +uzz)
(I +u) z;- (z; + uz;)

(I +u) {za (z; +uz;)-z; (ZI +uZz)}

(I+v) ZI- (zz+vza)
(I + v) z; - (z;+ vz;)

cyc!.

(I +w) zz- (Z3+ WZ1 )

(I+w)z;-(z;+wz;)
cyc!.

The sum of v times the first column, the second column and
I!w = uv times the third is zero; therefore the determinant is
zero, which proves the concurrency of the three lines.

Each Ceva's point characterized by three definite values of
u, v and w is correlated to one Meneloas' line, characterized
by - u, - v, - w. They are taken together as trilinear pole and
trilinear polar. The polar of the centre of gravity of the triangle
(u = v = w = I) is the straight line at infinity.

Another important theorem is Desargues' theorem, stating that
corresponding sides of two perspective triangles intersect in three
collinear points, (±1650), and we may see as follows, that it is
a conseq~,nce of the theorems of MENELAOS and CEVA. Draw'v ~

, );,
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-II

Fig. 31

three po~ts of, )he , ...
\ t---~,,/ ",,",,(,.t_?, t~c,"/ ';';'c-l1 ; i' t;;"

,c'f;::( t<)·fc >;<':~'''''''.' 4 /A. ¥t+1,. :,.'(!

, f ~'~'~{i~.+'~j)
-3. Line coordinates
If in the criterion of collinearity of three points we substitute

z for '1\, it becomes:

(fig. 31) the triangle ABC and mark the points u, v and w on its
sides. By Ceva's theorem the triangles ABC and vwu are
perspective if u .v· w = 1. Mark the c A'1,::
points - u, - v and - w an~

draw the straight line m through
these points, which is possible
because of Menelaos' theorem.
Now as uvw=l, the points w,
u, -v must be collinear and also
the points v, u, - w . ... and also
the points w, v, -u. We see
thus that the corresponding sides
of the triangles ABC anq VW1.t intersect in
line m, q.e.d. ,/"?~"

1 1 1

Zl Z2 Z =0
z~ z; z·

and this can be considered as the equation of the line passing
through Zl and Z2; written in one line the equation is:

(z~ - z;) Z+ (Z2- Zl) z·+ (Zlzi.- Z2Z~)= o.
and this can be brought into the simple form :,:;:;,"'i,

p·z+ pz· - 2=0 (or Re (p·z))')
"

by introducing:

The straight line appears to be completely determined by the
choice of p. p is called the vector of the line and its components
are called the line coordinates. A point is determined by one
vector or by two coordfuat-;~'-~nd we see that the same applies
to a straight line.

The use of the line vector appears at once, if we introduce it
/J /"

.0' __--;;; k

A uL',.., Y.: ;.{" .!

i ,

j' 'it.,-{ ~',,,'H



38 III. The straight line

into the formula for the point of intersection of two lines, deduced
in a former section. Let the line Zl Z2 be characterized by PI and
the line ZaZ4 by P2' where

After introducing this in the formula for the point of inter­
section Z it becomes:

Z= 2 P2- '!!!...-
P~P2- PIP;

and there exists a remarkable reciprocity between the point of
intersection Z of the two lines determined by the vectors PI and P2

and the line P connecting the two points determined by the vectors
Zl and Z2'

Let us also introduce the notion of the line vector into the
condition for the concurrency of three lines. This takes then
the form:

~_.-

~;' .
<

Fig. 32

nator is purely imaginary, we conclude that the vector from theorigin
to P is normal to the vector Z2 -Zl' that means normal to the

o

1 1 1

PI P2 Pa = 0
p~ P; P;

which is formally identical with the condition for the collinearity
of three points. Indeed we may say that three lines~:r~Q(mcurr_l:lnt,

if t!J.eirp'8 are co]m.!iar. . ,,---
We shall now investigate the geometrical nature of the vector P,

defining the point P (fig. 32). As in the definition of P the denomi-

(. ····,1
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line Zl Z2' As, furthermore, the absolute value of the denominator
equals twice the area of the triangle OZl Z2' of which Zl Z2 is the
base, we easily conclude that the modulus of p is the inverse of
the length of the perpendicular let down from 0 on to the line.
Point P is the inversion of the base of this perpendicular.

From now on we shall take point P and the corresponding line
together as pole and polar with respect to the unit circle; both
the pole and the line will be characterized by the letter p. As
we have seen above, by the transformation of pole and polar a
pencil of rays passing through one point is transformed into a
point· assemblage on a straight line. We can prove that this line
is the polar of the point which carries the pencil of rays. Let this
point be Q with coordinate q. The condition that Q shall lie on
an arbitrary member p of the pencil is:

p.q+ pq" - 2= 0

but owing to the symmetry between p and q this is also the
condition that P shall fall on the polar q of Q, q.e.d.

The polar of the point of intersection R of the lines p and q
(fig. 33) must be the line PQ. PQR is a so-called polar triangle.

p

,,,,, ,, ,, ,
\ I '
\1 ,,"

vQ

Fig. 33

By the transformation of pole and polar it is transformed into
itself.

4. Porar transformation, dual conceptions

By the transformation of pole and polar a curve considered
as a collection of points is transformed into a collection of straight
lines. These lines will envelop a second curve which, therefore,
may be considered as the transform of the original curve. A secant

;
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Fig. 34

o

of example we shall
indicate the general
transform.

The point of intersection of the lines p and q which are the
transforms of the points P with coordinate p and Q with coordinate
q is:

of the original curve, intersecting it in n (= the order) points
will be transformed into a point carrying n lines from the collection

that envelops the second curve. As these
lines are tangents to thiS,curve, the trans­
form will be of the~class ~) Conversely the
class of the originatcur~e will equal the
order of the transform. As conics are both
of second order and second class, the
transformation of pole and polar will
transform conics into conics. We know
that the inversion transforms circles into
circles, but tii'is is not the case with the
transformation of pole and polar. By way

transform the circle, but first we have to
way of finding the formula of the polar

q-p
.z= 2. •.

pq-pq

Now let Q approach to P, then the line PQ will approach to
a limiting position which is a tangent of the original curve. In
the transform the point of intersection of p and q will approach
a limiting position which by definition will be considered as a
point of the transformed curve. Now if q-p=dp,

p.q- pq.= p·(p+dp)- p (p. +dp·)= p·dp- pdp·

and the point of the transformEl~.,QurvE:l. is:

dp
z=2 p.dp-pdp.'

Performing the polar transformation for a second time that is,

finding 2 •d dz zd • gives of course again the original curve p,
z z- z

as may be verified by actually performing the calculation.
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I;.. . r

We shall now apply this general result to the circle (fig. 35)

p= a+ exp (ju)

dp = j exp (ju) du

dp' = - j exp (- ju) du

The transform is therefore:

expju
Z= ----=--'---,-

acosu+ 1

and this is not a circle, but a hyperbola (fig. 35).

O~---+----1---jf--I----+---+

••

Fig. 35

Any property of the original figure will be found again in the
transform, but in the so-called dual form (PONCELET). Dual
expressions are point and line; collinearity of points and con­
currency of lines; order and class; point on a curve and tangent.
As examples of dual theorems we may Jonsider the theorems C!.
of MENELAOS and CEVA. Another example is supplied by Pappos'
theorems (300 A.D., fig. 36): -_.

Take three"points ul ' Us, Us on one line and three points VI' Va, Va
on a second line. The lines ulVS and uav1 intersect in C, the lines
UaVa and UaVa in A, the lines Uav1 and u1va in B. The theorem says
that A, Band C are collinear. It can be proved with the methods
of the preceding sections.

The dual theorem is (fig. 37):
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Take three lines U I , U 2' ua through one point U and three lines
VI' V 2, Va through a second point V.

The points U IV 2 and U 2V I determine the straight line c, the points

Fig. 36 Fig. 37

U 2Va and UaV2 determine the line a, the points UaVI and UIVa

determine the line b. According to the theorem the lines a, band c
are concurrent.

Although this theorem too can be proved by means of the
methods of the previous sections, it is not necessary to do so, once
the dual theorem has been proved. More than that, the analytical
proof of one of the theorems is identical with that of the second.
We have merely to interpret the symbols in the dual way. Finally
we may remind that Desargues' theorem is dual with itself.

5. Projective point assemblages and ray pencils

The point assemblage on the straight line:

(1)

(2)(m and n are real) ..

may be compared with that on the arbitrary other straight line:

I Za+ Z4U
z=---

m+nu
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The latter equation is of a more general character than the
former. We remark here, that za and Z4 are no longer points of
the straight line; it passes through the points za/m (u=O) and
Z4/n (n=oo). We shall show that the transition from (1) to (2)
can be accomplished by a combination of parallel translations,
rotations and perspective projections.

By way of i~oduci~ we may remark that two lines:

and

are perspective with respect to the orIgm, by which we mean,
that the points on the two lines with equal values of u lie on one
straight line passing through O. Indeed, the quotient

is real and that means that ZA and ZB have the same direction.
The construction of the scale of (2)

,"r'_' '~'''. __h'''_:·';;';'~':~··'''''''·

is shown in fig. 38. We first construct the line Za+Z4U which is

,
, ,
"

Fig. 38

perspective with (2) and has a uniform scale (unit=modulus of
Z4)' Fig.39 showR in the same way the construction of (1):
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Now move one of the here mentioned uniform scales until
both are parallel and at the same time perspective and the
chain of operations leading from (1) to (2) is closed. In general
two point assemblages of the type (2) will not be perspective,
but we call them .E.9i!:f}ti"l.e...

Perspective projection leaves certain properties intact; these
are called projective properties, other properties may be lost in
the projection; as opposed to the projective properties they are
called metric properties.

Examples of projective properties are; incidence of point and
line, collinearity of points, concurrency of lines, order and class
of a curve, character of tangent, double point, inflection point,
cusp. We shall now add one important example more to this
collection; ~he cross-r.atio of f().llrpoints.2!!_~~,~~I!!V!,:-t..Jj!"e is.
~nvaria'[lt. To prove this, take four points U 1U 2UaU4 on the line (2) .
and calculate the cross ratio. We find:

D= Z' (u1)-z' (ua) --=-- z' (u2)-z' (ua) = u1-ua-,- U2-Ua
z' (u1)- z' (u4) . Z' (u2)- z' (u4) U 1 - u4 . U2- U4

and this is entirely independent of za' Z4' m and n.
The projective character of the cross ratio was already known

to Pappos (300 A.D.).

o
Fig 40

The cross ratio is, so to say, picked up by a projecting pencil
of rays and transferred to a second line. We expect that it
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can be expressed in the angles of the pencil without the help of
a secant. Indeed (fig. 40)

zl-za A3 03sin L13
Zl-Z4= B4= 04sin L14

In the same way:

Z2-za C 3 03 sin L23
Z2 - Z4 = D4 = 0 4 sin L 24

and the cross ratio:
------ jlD---sin~Ll3 . sin L23 i

l - sin L14 --;- sin L24'

where L 12 is the angle between the two rays from 0 to the
points Zl and Z2 etc. ; as the choice of 0 however is entirely arbitrary
we have left 0 out of the expression for D.

A ray pencil projecting a linear point assemblage will be
called projective with it. Two pencils projecting projective point
assemblages will be called mutually projective; if, more in par­
ticular, corresponding rays of these two pencils intersect all on
one straight line, we shall can them perspective. "Perspective
pencils of lines" is the dual conception of "perspective point
assemblages" .

Fig. 41

The poles of a ray pencil lie on
the polar of the carrier point of the
pencil and as the pole of each mem­
ber is situated on the perpendicular
let down from 0 on the line concerned,
the arguments of the poles differ by
the same amounts as the slopes of
the lines ofthe original pencil (fig. 41).
We come therefore, to the conclusion
that the cross ratio is also invariant
with respect to the transformation
of pole and polar.

6. Projective geometry

As a rule projective properties of figures are much more easily
proved by direct projective methods than by analytical calculation.

-
t/.~l"A-o.. i:.£-t. {', ,,,'J('/e t ('10·' .,;::;--',;,
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We shall give a number of examples of theorems proved by the
former methods.

a. Harmonic point quadruples in the complete quadrangle.

AIL-_3~B----0

Fig. 42

The complete quadrangle ABCD has six sides and three diagonal
points, P, Q and R (fig. 42). Connect P and Q by a line which
intersects the two remaining sides in K and L, then the points
P, Q, K and L are lying harmonically (D=-I). The proof is
as follows:

D(PQKL) = (projected from A on RB)) =D(CBRL).

= (projected from D on KQGf)(QPKL).

Now P and Q have changed places, but from the definition
of the cross ratio it follows that it is inverted by changing two
elements. So D must be either +1 or -1, and from the figure
we see, that in this case it is - 1.

b. Desargues' theorem was proved analytically in a previous
section. The projective proof is as follows: (fig. 31). The point
quadruples - wAwC and - vBvC are both harmonic (D = - 1)
and as they have one point in common (0) they must be perspective,
so that w -v and -w v must intersect on the side AB (in the
point u); for the same reason w v and -w v must meet on AB.;
q.e.d.
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c. Pappos' theorem I follows from the fact, that in fig. 43,
where the lines u2C and uaBare
parallel and so on, defining three
points VI' v2 and va on the straight
line at infinity, A, Band Care
collinear for elementary reasons.
By a collineation this figure is trans­
formed into fig. 36 of page 42, but
the three points A, Band C will
remain collinear, and this is what Fig. 43

the theorem states.

7. Involution

We shall now return to the study of the point assemblage:

lying on the straight line through the two points Zl and Z2' and
try to find the point which lies harmonically with the point u
with respect to Zl and Z2' This point u' has to be determined from

or, as u = 0 for Zl' u = 00 for Z2' from:

u-o u-oo
-'--0 --;- -,--- = - 1; hence u' = - u.u - u-oo

The transformation transforming each point into the fourth
harmonic with respect to two fixed points, is called the involution,
its analytical expression is simply:

u'=-u.

Evidently the relation is reciprocal, the points u and -u form
a pair 01 the involution. There are two points which coincide with
their partners, namely u=o and u=oo; these are precisely the
points Zl and Z2' Because of this property they are called the
double point8 of the involution. The middle of the section
Zl Z2 (u=l) is the partner of the infinite point.of the line (u=-l).
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The harmonic mean of the distances of two partners of the
involution to one of the double points is constant;

U
z( -U)-Zl = (Zl-Z2) -1-·'

-u

hence

1 1 2 1----:---:---+ = --= constant =-
Z(u ) - Zl Z ( - u) - Zl Z2 - Zl t

and as all vectors involved are in the same direction, the same
relation holds for the absolute values. With respect to the second
double point (Z2) we come to the same result with opposite sign:

-;--;-1_+ 1
z(u)-Zg (Z-U)-Z2

2
--= constant.
Zl-Z2

Another theorem states that the product of the distances of
the partners of a pair to the "centre" of the involution, that is the
point 1(Zl+Z2)' is constant. Indeed:

( z(u) _ Zl~Z2) (Z( -u)- Zl~Z2) =

= (Zl+Z9U _ Zl+Z2) (Zl-Z21J,_ Zl+Z2)= (~-Z2)2=constant
l+u 2, l-u 2 2

and as all vectors involved are in the same direction the same
holds for the absolute values.

This theorem provides us with a second definition of the
involution: The involution transforms a point into its partner in
such a way that the product of the distances of the two partners
to a fixed centre is constant.

This definition is more general than the original one. If the
two partners are situated on the same side of the centre, as was
the case up to now, the product is positive, if, however, we choose
the points on opposite sides of the center, the product is negative
and there exist no real double points of the involution. We
distinguish hyperbolic (product positive, real double points) .from
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elliptic (product negative, imaginary double points) and parabolic
(product zero, two coinciding double points) involutions. In the
case of the parabolic involution one of the points of each pair
coincides always with the double point.

Now the point l/u lies symmetrical with the point u with
respect to the centre ! (Zl + Z2) :

Z (u) _ ZI + Z2 = U - 1 . Z2 - ZI; Z (! ') _ZI + Z2 = 1 - u . Z2 - ~.
2 u + 1 2 u, 2 1 + u 2 '

and, as the pairs (u, - u) form a hyperbolic involution, the pairs
of points (u, - l/u), form an elliptic involution. The basic points
ZI (u = + 0) and Z2 (u = - 00) are no longer double points, but
form a pair. The double points are imaginary (u = ± i) and with
respect to these imaginary double points the harmonic con­
figuration of the pairs is maintained.

Fig. 44 Fig 45

An example of a hyperbolic involution is provided by the pairs
of objects and images in the case ofreflection oflight by a spherical
mirror, for which the equation l/r1 + l/r2 = l/t holds. This case
is depicted in fig. 44; the mirror is placed in the point Z2' the
centre of the spherical surface is placed in ZI'

An example of an elliptic involution is provided by the pairs
of points of insersection of the sides of a right angle with a
straight line, if the right angle is rotated round its vertex,
fig. 45.

A point involution can be picked up by a projecting ray pencil
and projected on a second line. If in particular, as is the case in
fig. 45, the rays of each pair of the ray involution are at right
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angles we speak of an orthogonal involution. In projecting an
involution on an other line carrier, the double points are perspective,
but the centre is not projected as the centre of the new involution;
the centre is not a projective but a metric characteristic of the
involution.

'/ '

V

\' 'I
, ......... ~. t.



CHAPTER IV

THE TRIANGLE

1. Centre 0/ gravity, orthocentre, circumcentre

The line connecting one of the vertices with the middle of the
opposite side of the triangle is called a median. The three medians
pass through one point called the centre a/gravity (point G in
fig. 46). --'

This theorem is a special case of Ceva's theorem (u = v = w = 1

The middle of the side Z2Za is Z2 ~ za. Connect this point with Zl"

Take on this median the point G that divides the median in ratio 2
to 1. Its position is:

A'3 this result is symmetrical in the indices, we should have
found the same point on the two other medians, so that all three
medians pass through this point G.

Fig. 46

Taking G as origin changes the last equation into:

0= Zl + Z2 + Za

and as this is a vector equation, it means that separately:

}; Xi = 0 and }; Yi = 0
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Fig. 47

A rotation of the triangle round the centre of gravity does
not change the relation:

0= Zl + Zz + Za

and by separating onoe more real and imaginary parts we conclude
that the sum of the perpendiculars let down from the three vertices
on any straight line through the centre of gravity is zero.

Divide the three sides by the points PQR in the same ratio
(fig. 47):

Zl + uZz Zz + uZa za + uZl
zp = 1 + U ; zQ = 1 + U ; ; R = 1 + U

The center of gravity of the triangle PQR is

-A- (zp + zQ + ZR) =.~ (Zl + Z2 +Za)

and coincides with the centre of gravity of the whole triangle ABO
(PAPPOS). The centre.of gravity of the subtriangle ORQ is:

to I ( + + )_ 1~+ 2Za) + (Zl + 2za) U
'''<_) "5" Za ZR zQ -"J 1 + U

and when U varies, this point decribes a straight line through

c=z) ~~ 2zJ (u = 0) and

Zl + 2za (u= (0),
3

these being the points lying on
l--~::"",,---~zz=B one third from 0 on the two

sides BO and OA of the triangle.
This theorem is also due to PAPPOS.

The area of the triangle is half the vector products of the
vectors Zz - Zl and Za - Zl (compare p. 19), that is:

A = ~ { (za - Zl) (z; - za - (z; - z~) (zz - Zl)}
4J

. 1 1 1
J=-Zl Zz za
4 • • •

Zl Zz za

It is zero if the ,"ree points are collinear.
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In order to find the common point of intersection of the three
perpendiculars, we calculate the point of intersection of two of
them. If the result is symmetrical in the indices we may infer that
the three perpendiculars are concurrent (orthocentre 0, zo, fig. 48).

%.%,

, , , ,
"" ,

--- - ----~~~~~,
Fig. 48

The vector Zo - za should he perpendicular to Z2 - Zl and Zo - Zl

should be perpendicular to Za - Z2' in formula:

Zo-Za z;-z; ZO-Zl z;-z;
-.--•. ---- = -.--•. -_.- = - I
Zo - za Zz - Zl Zo - Zl za - Z2

which after figuring out gives the symmetrical result:

Zl {Zl (z; - z;) + z; (Z2 - za)} + cycl.
zo= 4jA .

Let us next calculate the centre C of the circumscribing circle
(fig. 48). It is at equal distances from the three vertices and therefore
determined by the equations:

(zc - Zl) (z~ - z;) = (zc - Z2) (z~ - z;) = (zc - za) (z~ - z;) = R2

where R is the radius of the circumscribing circle. Figuring out,
we find for C the symmetrical expression:

Zl z; (za - Z2) + cycl.
Zc= 4jA

and for the radius R:
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2. Euler's axis, nine points circle

The line connecting the centre of the circumscribing circle C
with the orthocenterO is called EULER'S axis (line e in fig. 48).
This ax[s~o~t~i~;-~i;~-the centre of gravity and this lies at one
third of the distance CO, reckoned from C, for:

l Zc +1Zo = ~ (Zl + Z2 + Za)·

A fourth remarkable point lies on Euler's axis, halfway between
C and 0. It is the centre F of FEUERBACH'S circle, also known
as the nine points circle. Feuerbach's circle can be defined as
the circle going through the middles of the sides. This circle can
be deduced from the circumscribing circle by multiplication with
respect to G by the factor -! and it will be clear that by this
multiplication the centre C of the circumscribing circle is brought
to another point of Euler's axis. Point F = ! Zc + ! Zo is:

zr (z; - z;) + cycl.
ZF = 8jA .

If we lay the origin in the circumcentre C we find the auxiliary
points by the following formulae:

Circumcentre Z = 0

Centre of gravity : Z = 1 (Zl + Z2 + Z3)

Orthocentre Z = Zl + Z2 + Za

FEUERBACH'S point: Z =! (zJ + Z2 + Za)

Because FC=FO, the bases of the perpendiculars let down
from C and °on any of the three sides of the triangle, have the
same distance to F. Therefore, Feuerbach's circle not only passes
through the middles of the sides of the triangle, but also through
the bases of the perpendiculars.

Furthermore, Feuerbach's circle may also be considered as
the multiplication of the circumscribing circle with respect to the
orthocentre by the factor !. Therefore the middles of the stretches
of the perpendiculars comprised between the orthocentre and the
vertices will also lie on FEUERBACH'S circle. All this explains its
second name: nine points circle.

If Z4 is any fourth point on the circumscribing circle, the point
S halfway between the orthocentre and Z4 will be ! (Zl + Z2 + Za + Z4)'

This point is situated on Feuerbach's circle.
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3. Base points of perpendiculars, Wallace's theor.m

We found in the last chapter (p. 39) that the base of the per­
pendicular let down from the origin on a line p is simply lip·, the
inversion of the pole P.

Inserting the values for the triangle Zt zaZa (fig. 49):

~ _ 1 Zl Z; - Z~ Za . ~ _ 1 Z; Za - Za Z;
.-"'1 •• , .-"'1 •• )
~ ~-~ ~ ~-~

yielding for the vector wa' connecting these two bases:

I I (za ---:.ZI····ZB'L. za) •
wa= p~ - p; = t z; ../-zi·:::" z; r ~ za·

- ,.7 1"'''''.
The form between brackets is independent of the location of° and only depends on the directions of the two lines. Indeed

it equals, if 'l't and 'l'a are the arguments of the two lines:! ..~

.-'''-,

so thatlb.E1~I~ sill ('l'a ~r:~-=.>
Further, it appears that Wais proportional to z;. If, therefore,° moves over a circle having Za as

its centre, the absolute value of wa
remains constant. Conversely: if a line
of constant length moves with its
extremities along the two legs of an
angle, the locus of the points of
intersection of the normals erected
on the legs of the angle at the extre- ':'
mities of the moving line will be a
circle of which the centre coincides with the vertex of the angle.

In the second place we find, that 0Za and wa rotate with the
same angular velocity, only in opposite directions.

Now, draw the line ZaZt and find the base point vector, if za
is the vertex of the angle zaZaZt. This line is
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Fig. 50

The ratio W 2jw3 is:

w2 = _ (Z2 - Zl) (z; - z;) - (z; - z~) (Z2 - Z3) (z; - z~) . z;
w3 (Za - Z2) (z; - z~) - (z; - Z;)(Z3 - Zl) • (Z;=-z~)-:-Z; .

The first factor is the quotient of two imaginary value;;~nd
thus real. The rest is real if Zl' Z2' Z3 and the origin lie on one
circle; W 2 and w3 have then the same direction and coincide.

By the above we have proved Wallace'8 theorem (1798):

The bases of the perpendi­
culars let down from any point
of the circumscribing circle on
the three sides of a triangle are
collinear. This common base
points line will be called Wa.1:_
lace's line. (fig. 50). "
-rrthis point, from now on to
be called Z4' moves over the
circumscribing circle with angu­
lar velocity w, all three vectors

from Z4 to Zl> Z2 and Z3 rotate with half this velocity, Wallace's
line rotates also with the velocity wj2 but in the opposite sense.

4. Steiner'8 cycloid

We now again lay the ongm in the circumcentre. For this
choice of the origin (fig. 50):

ZlZ~ = Z2Z; = Z3Z; = Z4Z= = R2 (1)

The place of the bases of the perpendiculars let down from Z4

on the sides of the triangle can be borrowed from the last section,
provided we subtract Z4 from all vectors mentioned there: The
base on the side Zl z3 will be:

1 (Zl - Z4) (z; - Z=) - (Z~ - Z=) (Z3 - Z4) +
z ( • .) Z4

Z3 - Zl

for which we can write with the help of (1):

Zl Za + Z2 Z4t (Zl + Z2 + Z3 + Z4) - t -.
Z4

Now t (Zl + Z2 + Z3 + Z4) is the point S, situated on Feuerbach's
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circle midway between the orthocentre and point Z4 on the circum­
scribing circle. The vector from the base point to this point S is:

l ZlZa + Z2 Z4

Z4

and its direction is determined by the argument factor

z= (Zl Za + Z2 Z4)

Z4 (z; z; + z; z=)
which again with the aid of (1) appears to be:

~ VZIZ2Z3

R Z4

and is therefore independent of the choice of the base, so that
we have not only proved once again that the three bases lie in
one line, but also that this line passes through the point S, and
that, moreover, this line rotates with half of the velocity with
which Z4 rotates and in opposite sense.

If Z4 moves on the circumscribing circle, point S moves with the
same angular velocity over Feuerbach's circle. At the same time
Wallace's line, always passing through S, rotates with half this
angular velocity. As we shall see in Ch. XIX the envelope of lines
which move in this way is a hypocycloid with three cusps. It is
also the track of a point of a circle of radius RJ2 rolling within
a circle of radius 3RJ2. This cycloid is called Steiner's cycloid (fig. 51).

If Z4 coincides with a vertex of the triangle, Wallace's line
coincides with the perpendicular drawn from this vertex on to
the opposite side. If Z4 lies diametri­
cally opposite Z2' Zl Z3 is Wallace's
line. In this way we easily find 6
Wallace lines, namely the three sides
of the triangle and the three perpen­
diculars. But if we consider the three
vertices and the Qrthocentre as a com­
plete quadrangle, having six sides,
each joining two of the points, we
see that sides and perpendiculars of
the triangle are equivalent with respect Fig. 51

to this quadrangle and may be interchanged. A complete
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quadrangle of which two opposite sides are orthogonal, as is the
case with the configuration of the sides and perpendiculars of a
triangle is called an orthogonal complete quadrangle.

Feuerbach's circle and Steiner's cycloid are, strictly speaking,
related to the orthogonal complete quadrangle, of which the
triangle from which we started is only a part.



CHAPTER V

THE CIRCLE

Fig. 52

"'-'------="'" B

1. Properties 01 constant angle and 01 constant power

In the preceding chapters the circle has been of frequent
occurrence and so far, we have in our applications simply borrowed
its proporties from elementary Euclids. This refers in particular
to the theorems of constant angle and of constant power. For
consistency, however, we shall now
prove these theorems along the lines
of the present treatise. For the
proof of Ptolemaios' theorem we

refer to page 21.
Proof of the constant angle the­

orem: Let A, Band P be points_<iiJ)
t~~ circl~ z :::':rexp(Ju);B is 'situated

-~onthe r~al axis (u = 0), A is fixed
(u = q;) and P is arbitrary (fig. 52).

Vector AP is: rexp (ju)- r exp(jq;).
Vector BP is: r exp (ju) - r.
The quotient of these two vectors contains the factor exp (ja)

as argument function:

Real function. exp (ja) = r exp (ju)-: r exp (jq;) .
rexp (Ju) - r

Divide this by the conjugate equation, we find:

(2' ) _ exp (ju) - exp (jq;) . exp (- ju) - I - C )
exp Ja - exp (ju) _ I . exp (-ju) _ exp ( _jq;) - exp Jq;

from which: a = q;f2, q.e.d.
Proof of the constant power theorem: Choose point A on the

negative real axis at a distance a, from 0 (fig. 53). Draw a. secant-7
.~ .. - '" .J

through A; its formula is:
z = - a +s exp (jq;).

It cuts the circle
z = r exp (ju),
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where:
- a + 8 exp (jgJ) = r exp (ju).

Multiplying this equation by its conjugate, we shall find:

a2 - 2 as cos gJ + 82 = r2•

This equation has two roots, 8 1 and 8 2, the product of which
equals a2 - r 2, independent of the choice of gJ, q.e.d.

~~A a 0

Fig. 53

2. General circle formula
We shall now prove that each of the curves represented by

the equation:

(1)

is a circle. The curte passes through point A = Zl!Z3 (u = 0) (fig. 54)
and through point B = Z2!Z4 (u = 00).

Let P be a point on the curve,
represented by (1). The vector PA is:

~ Z2 Z3 - Zl Z4

Z3 ~ + Z4U

Zl + Z2U Z2 1 Z2 z3 - Zl Z4

Z3 + Z4U - ~ = - ~ Z3 + Z4U

Zl +Z2U_~

Z3 + Z4U Z3

The vector PB is:

Fig. 54

. PA Z4
so that the quotlent PB = - Z; u.

Now, as Z3 and Z4 are constant and
u is real, the argument of this quotient

is constant. Therefore the angle a in fig.52 is independent of U

from which we may conclude that P describes a circle.
All formulae used up to now to represent circles can be brought
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to the general form (1) by a real transformation of the parameter.
We saw already (p. 4) that

Z = t (1 + exp (jv~

can be transformed into:

1
Z=--

I-ju

by the transformation:
u = - tan (v/2)

By the same transformation

Z = exp (iv)
is transformed into:

1 +ju
Z=--.•

I-Ju

Appollonius' circle was found (p. 23) in the form:

Z-Za exp (jv) = __I
Z-Z2

and by the same transformation it is changed into:

a (1 + ju) Z2 - (1 - ju) ZI

Z = a (1 + ju) - (1 - ju)

of the character of (1), which proves that Appolonius' curve is
indeed a circle.

On p. 20 we found the equation for the circle passing through
.the three points ZI' Z2' and Za:

u = ':L- za-;- Z2 - Za i) Or, :5

and indeed, solving this eq::tio: fO::~g:veS~aga.i:..n in accordance
with (1): \~

(ZI - za) Z2 - (Z2 - za) ZIU \ ;;"z= . \
ZI - za - (Z2 - za)u !

. . I

What is the ra:dius r and the centre Zc of the circle represented
by (1)1 Solve the equation for u:

ZI - zZa
-U=---.

Z2 - ZZ4

/
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As this is real, it must also equal the conjugate value of the
right hand side, so that the circle is represented by the equation:

(Zl - z.za) (z; - z· z~) = (z~ - z· z;) (Z2 - ZZ4)

and if we arrange the symbols so that we find the form:

(z - zc) (z· - z:) = r2

equating corresponding terms will give us Zc and r. This leads to

The last expression gives us the Eower.of the circle for the
origin acting as the pole.

3. Circuit impedance and admittance.

Circle diagrams are- constantly encountered in electrotechnical
circuit theory. The impedance ofa circuit, containing a resistance R,
selfinduction L and capacity C in series, when applying an electro­
motive force of angular frequency w; is:

z=jwL +R+ .I
C

'
JW

1
or with the new parameter u = w L - wC :

z=R+ju

and this is a straight line in the complex z-plane. The admittance

1 1 h . . I
R +----, owever, IS a eIre e.

z JU
Connecting a resistance R, a capacity C and a selfinduction

L in parallel leads to an admittance:

] 1 1 . L-=-+-.-+Jwz R JWC

1
which with the new parameter u = wC - wL becomes:

1 1 .
z= R+ Ju
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and represents a straight line in the complex-plane. Now, however,
the impedance z will be a circle.

In more complicated cases both impedance and admittance
will be circles. The admittance of the circuit of fig. 55 is:

R1 +R2 + jwL
R1 R 2 + jwLRJ

a2
Z=..,....",---.,.......,-

j(b-a)+u

wL

Fig. 55

and this as well as its inversion represent!' a circle.
It is not always the frequency

which acts as the varying para­
R, meter. In BOUCHEROT'S circuit (fig.

R, 56) we find a variable resistance u.
The impedance is;

and this is again represented by a circle. As a matter of electro­
technical interest we may observe that i 2 is independent ofu. For:

In other cases, again, it may be the power output which
functions as parameter. The circle diagram named after HEYLAND

Fig. 56

is obtained by plotting the admittance of a motor as a function
of the load.
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If one tries to find out why circular diagrams occur so often
in electrical engineering one sees that the reason is the linear
character of the fundamental equations. And as mechanical
vibrations obey similar equations as the electrical ones, the
field of application includes mechanics and acoustics.

az+b
W = cz + d (a, b, c and d complex).

4. The circle transformation

The transformation
.1

transforms the circle:

ZI + Z2U
z=----

Za + Z4U

into another circle:

(1)

(2a)

(2b)

and for this reason the transformation (1) is called the circle
transformation. I) Straight lines will have to be considered as special
cases of circles, as the straight line

ZI + Z2U
Z=----

m+nu

will also be transformed into a circle and it is not impossible
••.•_ •..••••••••-. ·.c.~••c~. that reversely it will turn out

v.:=t ~v,t~'-::-'~~~~~~';;r
w=~ ------ Z =~ the circle transformation is fur-

'; '1 nished by the linear four ter-
Fig. 57 minal network. Suppose that

linear relations exist between the quantities of the primary and
of the secondary sides of the network:

VI =a V 2 + bi2

i l = CV2 + di2

1) See e.g. J. L. COOLIDGE, Treatise on the circle and the sphere.
Oxford 1916. A. FELDKELLER, Vierpoltheorie.
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then we find by dividing:

W = az + b W = ~l Z = ~2 ,
ez + d t l t 2

so that the impedance is transformed according to the scheme (1)
and if z is a circle impedance, w will again have circular character.

Four terminal networks can be of electrical, mechanical,
acoustical or even optical character, they may be electromechanical
couplings and so on. I)

Of special interest are symmetrical networks in which case
the values V 2 and VI for resp. VI and V2, and - i 2 and - i l for resp.
i l and i 2 must not infringe equ. (2).

In addition to (2), therefore, the equations:

V2 = aVI - bi l

- i 2 = eVI - dil

must hold. Eliminate VI from (2a) and (3a):

. a2 - 1 .
t l = -b- V 2 + at2

(3a)

(3b)

and identify this with (2b). Comparison of the corresponding
coefficients shows that in the case of a symmetrical network
the coefficients must fulfil the conditions:

a = d and a2 - be = 1

The following considerations will all relate to symmetrical
networks so that we shall put d = a, the second relation is of no
consequence for what follows, but from a purely physical point
of view it is even more important than the first one. 2)

For a symmetrical four terminal network the transformation is:

az+bW=--.. (4)
ez +a

Characteristic values of z are z=oo (secondary terminals open)
and z = 0 (secondary terminals shortcircuited). The corresponding

1) A remarkable relation exists between the circle transformation and
the rotation of a solid body in space. See e.g. E. T. WHITTAKER. Ana­
lytische Dynamik, p. 13.

2) E. M. Me. MILLAN. Jl. Acoust Soc. Am. 18, 344 (1946).
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values of w, denoted by Woo and Wo are:

Woo = ale ; Wo= bla.

Furthermore, the case where w = z is of importance. This value
of z is called the wave impedance. An arbitrary number of networks,
put in cascade, would not change the impedance. From (4) it
follows that this value is Vble, we shall denote it by w•. We may
note that w; = WoWoo, which means geometrically that the triangles
Woo Ow. and w.Owo are similar (fig. 58).

The transformation (4) can be written as:

(w-!!-)' (z+!!.-)=~_a2
e e e e2

or, keeping in mind the meaning of ale and ble:
(w - woo) (z + woo) = w~ - w~ = (w. - woo) (w. + woo).

Still more explicitly:

w-woo w. + Woo

w. - Woo Z + Woo •

which means that the triangles w, -Woo, w. and w, Woo, z are
similar (fig. 59).

Now, as Woo, -Woo, w. are fixed points in the plane, this offers

O'k-r- ----:ii7wOO

Fig. 58

w

Fig. 59

z

us a method to construct point w for any given place of z, thereby
performing the transformation point for point.

Besides, it is very instructive to follow how the z-plane is
transformed as a whole. (Fig. 60, 61). All radii, emanating from 0
in the z-plane (fig. 61) will be transformed into w-circles through the
fixed points Wo and Woo (fig. 50). The straight line wowoo is one of
these circles, it contains the pointw = 00, corresponding to z=-ale
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(= - woo). This point is indicated in the z-plane and the radius
vector through this point makes angles a and {J with the coordinate
axis. The transformation is conform and plotting these same angles
a and {J in the point Woleads us to the w-circles which are the trans-

Fig. 61

forms of the coordinate axes of the z-plane. The circles of the
z-plane having 0 as center will be transformed into w-circles,
cutting the first set of circles orthogonally. One of these w-circles
is the straight line A. This line contains the point w = ex> and
the corresponding z-circle will contain the point z=-ajc. Roman

Fig. 62

ciphers indicate where the four quadrants of the z-plane within
the circle A will be represented in the transform.
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The entire right half of the z-plane is represented within the
right hand circle, drawn in the w-plane. As in many problems
only the positive values of the real part of the electric impedance
are of importance this circular image of the complete infinitely
extended semi-z-plane is of great use.

As a special case of the circle transforms we mention RIECKE'S

diagram, often used in papers of the Bell Telephone Laboratories
(See fig. 62). Use is made of the special circle transformation:

.1- z
w=J 1+ z'

5. Projective properties

C 'd' hOI Zl + Z2U • blonSI ermg t e Clrc e z = -+-- as a pomt assem age we
Za Z4U

may inquire what the cross ratio is of four points characterized
by the values U 1, ~t2' Ua and U4 of the parameter.

By figuring out ft appears that:

D _ z (u1) - z (ua) . Z (u1) - Z (u4 ) _ U 1 - U a . U 1 - U 4

- Z (u
2

) - Z (ua) ---;- Z (u
2

) - Z (u
4

) - U
2

- Ua ---;- U
2

_. u
4

'

The anharmonic ratio is thus independent of the choice of
the four vectors Zl' Z2' Za and Z4 and, moreover, is real as we had
already expected from what was said on p. 20.

As the circle transformations only change the values of the
vectors Zi but leave U unchanged in its character of parameter
we infer that the cross ratio is invariant with respect to circle,
transformations. .... . ..." ... _ ..~.._--_.-
,-,.,,·'F ..•. " .. "'.,,,.. ~ •.. ,_..--.......

It is possible to correlate a circular point assemblage to a linear
one. Indeed, by a suitable circle transformation the circle can
always be transformed to:

m+nu
Z = -'-'--.

Zl +Z2U

This is a .~ircle througl1~~El ni,gip." as for U = - min, Z = O.
The circle character may also be concluded from the fact that

this Z is the inversion of the straight line

z~ + z;u
Z =----.

m+nu



Circle and straight line are perspective in the sense that points
of the same u-value are seen from 0 in the same direction.
Indeed the quotient of the two z-values is real:

( \ !
m + nu .z; + Z;U\ (m + nu)2
Zl +Z2U "i"m -+ nUllzl + z2u1

.... J'
and this proves the property mentioned (fig. 63).

As the linear point assembly

z; + z;u
----
m+nu

and also the pencil of rays projecting it from 0 are projective
with any linear point assemblage of the form

Za + ZbUz=----
k+lu

we see that any circular point assemblage

Zl + Z2U
z=----.

Za + Z4U

is projective with any of these linear point assemblages, provided
we project the circular point assemblage from a point situated on
the circle itself.

5. Projective properties 69

Fig. 63 Fig. 64

Fig. 64 shows how by the intermediary of a straight line we
can construct two point quadruples on two circles of the same
cross ratio.
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The circular point assemblage

m+nu
Z =-----

Zl + zzu

is not only perspective with its inversion but also with any
linear assemblage

Z~ + z;u
Z = k+lu

and particularly also with Z = z~ + z;u. This furnishes an easy
way to construct the assemblage

m+nu
Z=---

Zl + ZzU

(fig. 65). First construct the uniform assemblage z~ + z;u. Then
find the points mJzl on the radius vector of z~ and nJzz on the
radius vector of z;. Draw the circle through the points 0, mJzl
and nJzz and finally project the linear point assemblage on the circle.

By taking together as pairs the rays with opposite parameter
values we obtain an involution. The double rays are the rays
through z~ and z; (u = ± 0; u = ± 00). Join the points +u and
-u on the circle. This line has a line vector p(u), determined by

2 z(+u)-z(-u)
p(u) = z· (+ u) z (- u) - z (+ u) . z· (- u)

figured out:

The factor

2 mzz - n:!­
z~zz - zlz;

is independent of u and hence we see that by varying u the
poles p(u) will describe a straight line, similar to:

but if the poles of all the lines joining +u and -u are on a straight
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line, the lines themselves pass through a single point Q (fig. 66).
By the above we have correlated by projective means the ray

Fig. 65 Fig. 66

pencil 0 with the ray pencil Q in such a way however, that one
ray of Q corresponds to two rays of O. It is therefore, preferable
to say that we have correlated the involution in 0 with the ray
pencil in Q.

The involution in 0 may be transformed by projective means
into point or ray involutions of the general formula:

(m and n are real)

and the ray pencil in Q into point assemblages or ray-pencils of
the formula:

,,- + Z4 u ll P + P ull
Z - -" resp. p = _3 4_

- r + 8Ull ' r + 8Ull (r and 8 are real).

and we shall call all these involutions, point assemblages and ray
pencils mutually projective.

We now have the following construction for the pairs of an
involution (fig. 67).Cut a ray pencil Q by a circle. Project the points
of intersection from a point 0 of the circle by a ray involution. The
double rays of the involution point to the tangent points of the
tangents from Q to the circle.

The rays u and -u lie harmonically with respect to the double
rays.

We may add here that the role of the circle in the correlation
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of involution and pencil may be taken over by any curve of the
second order (conic). This follows from the fact that the correlation

o

Fig. 67

belongs to the projective properties and as the conics are projections
of the circle the argument holds for conics in general as well.

=.

/.~...
""

j,.:I
",/~"~' ,c:); 'i4f



CHAPTER VI

ALGEBRAIC CURVES

1. Unicursal curves of the n-th order

In general the curve of the formula

(1)

is of the n-th order, by which we mean that it cuts a straight
line in n points apart from the point at infinity. The m's are all
real. Curves of this kind are encountered in alternating current
theory as soon as we consider impedances and admittances (as
functions of frequency) for circuits consisting of two and more
parallel loops. 1)

However (1) is not the most general curve of the n-th order
as defined in Cartesian geometry: \

aoxn + a1 x"-cJ+ a2 x"-l y' +... +akt= 0
possessing f.;" {tit \

1 + 2 + 3 +... + (n + 1) =! (n + 1) (n + 2) = k + 1 coefficients.

As only the ratio of the coefficients is of importance there are
=k curves of the n-th order. Formula (1) contains 3 (n + 1)
coefficients, and consequently, we find here =3(n+11-1 different
forms.

Now by the linear transformation

. p+qv
U=---

r+sv

numbering =3, we can transform the formula into another one

1) Litterature: O. BLOCH: Die Ortskurven der Wechselstromtechnik.
A. BLONDEL: Revue Gen. de I'Electr. 1938, p. 739, 773, 803. F. M.
COLEBROOK: Alternating Currents and Transients. M. J. DE LANGE:
Beginselen der vectormeetkunde.
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/

of the family (1), but the curve remains the same, so that the
number of curves denoted by (1) is actually only 008 .. - 1•

For n=2; k=5 and 3n-l=5 too so that formula (I)

represents indeed *altc.:':lry~s of~h~,s.~~9!1<J.~!<ler, but for\~.~J
we have k = 9, whereas 3n - 1 = 8, so that (1) represents ·only
part of the third order curves.

For n = 4; we have k = 14, and 3n - 1 = 11, and formula (1)
represents only a small part of all fourth order curves.

The curves dengte4, by (1) are called n-th order~nic1!:~!5!.lcurves
or curves of deficiency'l) zero. The word deficiency refers to the
number of double points (including cusps), the unicursal curves
being characterized by a maximum number of double-or higher
multiple points. By a continuous change in the coefficients in the
equation of the curve, the curve may change from a to b (fig. 68)

o
b

Fig. 68

and then consists of two branches and this goes at the cost of a
double point; cf. fig. 8 and 9, p. 10.

Although the deficient curves are the more general type they
are. of ~essimpoiiance-than the unicursal type for all technical
and phYsi¢irapplications. In many cases the separate loops may
be consid6red as separate curves being more or less incidentally
represen~ed by the same Cartesian formula. We shall treat in
section.S a third order curve of the multicursal type (conchoid).

The class 11 of a curve of the n-th order is our next point
of discussion.

"'",.""~,,

1) In Gennan texts: teSCh1eCh,~)
(, ---..·• .._orv ..·,.'
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Let the formula of the curve be:

75

t(u)
Z = g(u)·\. to ;~" L

where t and g are of the n-th ord~; In u; ~(u) having real coefficients.
The formula for the tangent is

Z= gi-til
g2

and we find the tangents from the origin by establishing the
condition tha~3and,'~)shallhave the same direction, in formula:

zz·-z·z=O
or

t (g i· -J;;(~ r (g i --: r~)= 0

from which as the second and fourth terms cancel out;

.,.'

"

Fig. 68d
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, 1,/
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I III
I I tI,,'
!I'

Fig. 6Be

(2)

Fig. 68/

and this is an equation in u of the order n +n - 1 = 2 n - 1,
but the coefficient of the term of the highest order in u cancels
out automatically, so that the order is 2 n - 2. In this way
we find the general rule:.. "
[Tria Class of a unicursal curve of the n-th order is V= 2 n-2.

-'''--'.''~''''''.'
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The second order curves are of the second class, the third order
curves of class 4, fourth order curves of class 6.

This number 2n - 2 for the class of the curve has to be considered
as a maximum, as equation (2) may be reduced to a lower order
for special values of the coefficients of f and because it may have
complex u-roots. If the double point degenerates into a cusp one
tangent vanishes and the class changes into the next lower one
(fig. 68c, f). Multicursal curves in general have higher classes, 11

jumping up by 2 for each new loop that appears (fig. 68c).
Double points are found by solving the equations

Z (u1) = Z (u2) z· (u1) = z· (u2)

for U1 and u2 • By a similar method as used for finding the class
we find that the maximum number of double p_oints is:

d = ~ (n- 1) (n- 2).

From this we infer, that the deficiency may be defined as

m = t (n-l) (n- 2)-d.

A third order curve can have only one cusp and its class therefore
is 3 or 4. A fourth order curve may have up to three cusps (e.g.
the deltoid, p. 248) and may have the class numbers, 3, 4, 5 or 6.

By dual transformation, class 11 and order n are interchanged.
The dual transform of a second order curve is a curve of the
second class, but this is again a conic.

The dual transformation of a third order curve with cusp is
again a curve for which n = 3, 11 = 3, e.g. semi-cubical parabola
(NEIL'S parabola). The dual tra.nsform of a third order curve
with double point (n = 3, 11 = 4) is a fourth order curve of class
3 (showing three cusps).

2. Synthetic construction of conics, cubics and quartics

All curves of the second order are called conics, because, as
will be proved later, they can all be generated by cutting a right
circular cone by a plane. If the points of intersection with the
line at infinity are real, we call the curve a hyperbola, if they are
non-existent, the curve is an ellipse and if they coincide, the curve
is a parabola. All three types are to be considered as unicursal
and they are all projective transforms of each other.
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A synthetic way of generating conics is provided by the mutual
intersecting of two projective ray-pencils, that is: the locus of,
the points of intersection of cOJres'ponding rays is ;:-;'~ic.}o~;
let tIle t'WC;-"pendis' be : .,/." :;~==""T

P _ PI +1i;~ . q = qi + q2 U •
- m1 + m 2 u ' n i +n2 'U . , .

Corresponding rays intersect in the point: (:
,-~'" _.

z=2 q-p
p"q - pq" .

This is the quotient of two quadratic functions in u, of which
the denominator is purely imaginary, so tha,t is a curve of the

se;~: c:~;:; ~~~~s P and Q ar:\~~::t: on l;~e conic. As the
ray p approaches point Q, the corresponding ray q becomes the
tangent in Q (u = 40 in fig. 69). Conversely as the ray q reaches
P, the corresponding line p becomes tangent in P (u = - 2.8 in
fig. 69).

In the same way as the curve of the second order was built
up synthetically by the cutting of two projective ray pencils w~, .

~

40

, .....

u

Fig. 69

may build up a curve of the third order (cubic) by cutting a ray
involution with a projective ray-pencil.
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The corresponding rays are:

PI + P2 U

P=m +m u;
1 2

i
i <,.

,.~

Corresponding rayR cut each other in the point:

q-p
z = 2. •

P q-pq

and this is the quotient of two cubic functions in u, of which
the denominator is purely imaginary, q.e.d. Again the points
P and Q, carrying the involution and the pencil will be points
of the curve.

It may, further be proved in exactly the same way that the
two projective ray involutions:

Vv
= PI + P2

U2 and <_ ql + q!-u
2

P m1 + m2u2 ,/p n1 +n2u2

cut each other along a curve of the fourth order (quartic).
Dualistically, the connecting lines of the corresponding points

of two projective linear point series will envelop a curve of the
second class, which, however, is also a conic.

In fig. 69 we projected a linear point series on the conic. We
want to emphasize that in doing so the cross rat!Q!i.J!r.e.J;:.banged
In the linear series all cross ratiosMe rearli they are still to
be real after projection on the conic, this conic should be a
circle. As this is not the general case, the cross ratio will be changed.

3. Pole and polar

Apply the two tangents to the conic through the point P
outside the conic. Connect the tangent points A and B by the
line p. Point P and line P are called pole and polar with respect
to the conic (fig. 70).

Draw an arbitrary secant PRS through P, cutting the polar
in Q. We can prove that P and Q lie harmonically with respect
to the cone, that is with respect to Rand S. For: project the point
quadruple PQRS from B on the conic, giving BRAS, then project
these points from A again on PS, giving QRPS. Now the cross
ratios of PRQS and QRPS are the same, but as two letters are

(~ "'... 0\

(
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exchanged it must also be reversed. So the cross ratio is either
1 or - 1; the figure says that it is - 1. q.e.d.

Therefore:
The polar is the locus of the points separated harmonically

from the pole by the conic.
This provides us at the same time with a definition of the polar

T

P B ~'!tifcJ
Fig. 70 Fig. 71 ......---

for a point like Q, situated within the conic. This polar, q, will
have to go through the point T on p, harmonically separated
from Q by A and B. The triangle PQT is a polar triangle, by
which we mean that each vertex is the pole of the opposite side.

If P moves along the line RS, the polar will also move and so
does the point Q. P and Q describe an involution.

This conception of pole and polar is a generalization of the
same phenomenon for the circle which we used to define the line
coordinates and line vector and on which we based the duality
of the geometric theorems, using the unit circle round the origin
as reference conic.

4. Pascal's and Brianchon's theorems

Important projective properties of the conics are the theorems
named after PASCAL (1640) and BRIANCHON (1806).

PASCAL: Take 6 points on a conic (fig. 71), AI" ..Ae, connect



80 VI. Algebraic curveB

them in this order so that a ~~!~go~ is created. Opposite
sides AIA2 and A4A6 meet in P; A2Aa and A6Au in Q, AaA4

and AuAI in R. Now the theorem states that P, Q and Rare
collinear.

We shall give a projective proof of the theorem. Project the
points from Al and A6 , cut the first pencil by A4Aa, the second
by A2Aa, then the two point series A4KRAa and LA2 QAa are
projective, but as they have the element Aa in common, they
must be perspective and the center of perspectivity is P, so that
P, Q and R are in one line, q.e.d.

PQ is called Pascal's line. By changing the order of the points
several Pascal's lines can be constructed, starting from the same

R

Fig. 72

R

Fig. 73

6 points. The configurations of these lines have many remarkable
properties, so that the hexagon, inscribed in a conic is known
by the name of hexagramma mysticum, but we shall not enter
further into this matter.

Special cases of Pascal's theorem are those where one or more
pairs of points coincide so that the corresponding chord becomes
a tangent. Fig. 72 shows the case where AI A2, AaA4 and A6Au
have become tangents: The tangent triangle is perspective with
the corresponding chord triangle.

In fig. 73 only two sides: AI A2 and A4A6 have become tangents.
We see here that the tangents in two consecutive points of
a quadrangle inscribed in a conic, intersect on the line joining
two diagonal points (Q and R). If we apply this result to any
other pair of consecutive points of the quadrilateral we get the
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~roperty shown ~ fig. 74 and kno~n~~~on'8th~,~e:~~~:Ji~);
m words: The dIagonals and the lines JOImng-upJ}osite tangent
points of a quadrilateral circumscribed to a conic are concurrent..

Brianchon's theorem is the dual theorem of Pascal's and may
be- consid~~ed-a:sproveQOriceP"asc~~··i;-proved. We", ,,,",', .,w'·­
borrow from section 1 the result that the dual curve of a' conic
is again a conic. Now take 6 tangents, producing a circumscribing

~
6~

1 2

Fig. 74 Fig. 75 Fig. 76

hexagon. Brianchon's the~;;ill'\states that the three lines con­
necting opposite vertices6f the tangent hexagon are concurrent.
(fig. 75).

Special cases arise if two of the tangents coincide, in which
oase the point of intersection becomes a tangent point and at
the same time the hexagon degenerates to a multilateral with
less sides.

Fig. 76 shows the case where a pentagon is circumscribed; fig. 77
for a quadrilateral. On the same diagonal we may find another

Fig. 77 Fig. 78

point of Brianchon, again as the intersection of two lines joining
each a vertex with a tangent point.

SIMSON'S theorem may be derived from Brianchon's by assigning
numbers to the tangents as indicated in fig. 74.
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Finally, fig. 78 shows the case of three pairs of coinciding
tangents. This figure depicts MAcLAURIN'S theorem, stating that
in a circumscribed triangle the three lines joining the vertices
with the opposite tangent points are concurrent, or that the
tangent triangle is perspective with the tangent point-triangle,
the dual case of fig. 72 (compare Desargues' theorem, p. 36).

5. Oubics, Newton's classification

There is a remarkable connection between third order curves
and Weierstras~Jl.~f!:1:nction, which function re slla;!1 presently
defipe.'l'he""equation', , , '\

j I
z=p+jp. <.' (I)

r~presents a third order curve and it can be shown (NEwToN, I711)
that all third order curves can be transformed into (I) by projective
transformations (collineations).

The definition of Weierstrass' function p(u) is formulated by:
00

(2)

. (3)

. dx
u-j~=- J/4x3-g2x-ga

P)
where g2 and ga are real constants. u considered as a function of

- p is called the elliptic integral, inversely, p considered as a function

,~ of u is calle? Weierstrass'-p-fun~n; J;" /'!J,~~i;
.. \"h<i', From (2) It follows that: ''J ,~ /, ", ,

'\ ~

du _ (::!.L
d p - V4 pa - g2 P - ga

or

(
d P)2 .. .,
d u . p2 = 4 pa - g2 P - ga

, _--- _------'

the well-known differential equation of the p-function.
Now, if we draw the curve defined by (I) we see that its equation

in Cartesian coordinates is, as x = p, y = p:
y2=4x3-g2x-ga • •••••• (4)

and this obviously is a curve of the third order.
Newton's theorem stating that (4) is the transform of any

third order curve is proved as follows: Project the curve in such
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a way that a point of inflection coincides with the point 00 of
the y-axis and that the line at infinity is tangent. Of the third
order terms only x3 remains alldtp,: curve is then represented by:

."~'. )( ,,(' i"~H> ':u , (

(~x3)~~2+ cxy -f'd,~2 +~x+ ty + g = O•.~

Take as ~~ Vari~bie~'~~~,.':I_d, .. ,::::,0_ - &~ ,j,'~¥tb
v. ~ • If' t1 J ".'
,:...'::"__. !/. · ...,t (;/ft _.:rl~;I{;~ 1-: tb

x' = x + b/3a-·--il" -Y-+-&-'Xl=-~:~----
, 2d 2d

the equation is then transformed into:

ax'3 + dy'2 + ex' + g = o.

By an appropriate choice of the unit on the x-axis aId can always
be made equal to 4, so that equation (4) is obtained, q.e.d.

The curve (1) will assume different characters, according as
the constants g2 and ga have different values. p is zero if the right­
hand member of (4) is zero. Let the three roots be PI> P2 and Pa,
PI being algebraically the largest (corresp~mding to the point of
intersection of the curve with the x-axis most to the right). Then

and by equating the coefficients of equal powers of x on both sides:

PI + P2+ Pa=O

PIP2 + P2Pa + PaPI = - !g2

PIP2Pa= !ga

NEWTON now distinguishes five classes:

1. Parabolic class. Let two of the P's be conjugate complex,
one real. As representative of this class we take the equi­
anharmonic case, that is the case where PI' P2 and Pa al'e the
three third power roots of unity. They are 1, exp (j in) and
exp (j ~ n) cf. p. 15. The name equi-anharmonic is suggested by
the fact that if four points have a cross ratio equal to exp (j f n)
or exp (j t n) the 6 cross ratios obtained by combining the 'four
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points in all possible ways are the same in both cases, as the
reader may check for himself,lJY'8::eP!;Y!!~KMobius'rules (p. 21).

The values of <p'iina:"p~a~functionsof'10are tabulated (e.g.
JAHNKE-EMDE. Funktionentafeln p:'i2) and the curve may be
constructed with the help of these tables (fig. 79). The curve
consists of a single track. In the equi-anharmonic case: g2 = 0,
ga = 4 and in Cartesian coordinates the curve is:

.. ,-"._-.. _'''--'-''''~'~--''"""" \.;

The,c~bical paral:>()l~ Y x'd belongs to this class; the point of
inflexion which lies at infinity if we use form. (1) is now projected
in the origin.

u

%lJJ,
o

Fig. 79 Fig. 80

II. Acnodal class: P2 and Pa are real and equal. As repl'esentative
we shall take PI = 1 ; P2 = Pa = -1 (fig. 80); The curve has
an isolated double point or acnode, g2 = 3, ga = 1.

The equation in Cartesian coordinates is:

y2=4x'd-3x-1.

III. The three p's are real and all different. We shall call this
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the conchoidal class. As representative of this class we take
(fig. 81):

Pi = 1 Ps = 0 , Ps = - 1.

gs= 4 , g3= 0

y2 = 4 X (x2 - 1)

These curves consist of two branches.

u

o

Fig. 82

IV. Pi and Ps are equal, the strophoidal or crunodal class.
The curve has a double point or crunode. As representative we
take (fig. 82):

Pi = P2 =! , Ps = - 1

gs= 3 gs=-1

yS = 4 Xs - 3 x + 1.

The Iiltrophoid belongs to this class.

V. All three p's are equal = 0;

gs = 0 , gs = O.

y2 = 4 xl'
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(NEIL'S parabola fig. 83). The curve has a cusp and this case
is called the cissoid or cuspidal class. The cissoid belongs to
this class.

• f'i

Fig. 83

We shall now see how the u-scale behaves along the branches
of this curve. For a good understanding it is advisable to consider
first the elliptic integral u as a function of p.

•. I
Ij

I '/

(
p =;=d=x=:::::===o======:=

u=-. V4(~-Plj (X-P2) (x-Pa)'
00

Starting from x = 00 and letting it decrease we see that the
denominator is real for all values of x from 00 to PI and u will
also be real (fig. 84). At X= PI the denom~torbecomes imaginary
and the increase of u will be in the irilaginary direction. This
goes on until x = P2' where the denominator becomes real again,
du will be real up to x = Pa where it again becomes imaginary
and remains so up to x = - 00. As the root has double si~
the minus sign in the definition of u "has no sense".-"-Af, "each
corner we may even change the sign of the integrand and in this
way create adjacent rectangles in fig. 84, u is a multivalued
function of p.

We now see that ~: is real between P = 00 and P = PI' and again
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A'

between p = P2 and P = P3' In these same intervals y = p will
be real. And as P is real all along the contour of the rectangle

I

__ J ~_---p~~,=~~~,~~-~~: ~ ~
I complex u plane
I
~,
I ~OO)(

IU--W1

!
...
I

: U=·iCU3
r- --+- ---+-....:..=~~---+-

Fig. 84

there exist two intervals where we have at the same time real
values for P and Ii and for which the curve (1)

can be drawn. This corresponds to the two branches of the con­
choidal class of the third-order curves.

Along the oval branch of class IIIithe~-values are complex
but with a constant imaginary part :ll: i co~,.A'hich is the value ...
of u for P = P3" \ __.•.•,/V .

As u is a .multi-va~ued function of•.R we may add to any
u-value an arbitrary multiple of 2 col' COl being the value of u
for P = PI and 2 i C03 , but we shall choose the u-values as indic­
ated in fig. 81. Conversely, we may say that P is a periodical
function of u with periods 2 COl' and 2 i COs.

Let us now see how the situation is changed when we consider
not the general case of class III, but the more or less special cases.

Class I, P2 and P3 are conjugate complex (fig. 79).
By giving to x all values between +00 and - 00, the expression

under the root sign changes its sign only for x = PI and remains
negative for ever after. u follows the real axis down to x = PI
and then moves in the imaginary direction without bending
again. There is no second branch.

Class II P2 = P3' The upper side of the rectangle in the u-plane
K'~ , .... :<: I

it (
<;;.;;....1" /1. w -!

j
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1

is described with infinite velocity, that is to say within an
infinitely small p-interval. The oval contracts to a single point
(acnode) (fig. 80).

Class IV PI = P2' The integrand contains the factor l/(x - PI)
and the integral becomes infinite for P = PI> so that U = 00 lies
in the node (fig. 82).

Class V: PI = P2= Pa = O. As is the case with class IV, U

obtains infinite value in the node (the cusp).

6. Cubic8, projective porperties

The most important projective properties of the third-order
curves are a consequence of the so-called addition theorem of
thep-function, which says that:

III

I
P (u1) P (u2 ) P (Ua) = 0 if U 1 + U 2 + Ua = 0 (mod. per).l)

P(u1) P(u2 ) P(Ua)

the analytical proof of which may be found in any textbook on
elliptical functions. By elementary properties of determinants
it follows that in this case also:

1

P (u1) + j p(u1)

P (UI) - jp (u1)

that is:

1

P (u2 ) + j P(u2)

P (U2) - jp (Ua)

1

P (Ua) + j P(Ua) = 0

P (us) - jp (Ua)

III

Zl Z2 Za = 0 if U 1 + U 2 + Ua = 0 (mod per.)

The geometrical interpretation of this is, that the three points
of the third order curve represented by these three values of U

lie on a straight line (are collinear).
This property leads to several interesting geometrical conse­

quences.

1) By (mod. per) is expressed that an arbitrary entire nwnber ofeach
of the periods may be added.
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Cut the curve by two straight lines U and v (fig. 85), let the
points of intersection be characterized by ul , U 2, U:! and Vl' V2, va'
Then:

U l + U 2 + U:! = 0 . (6)
vl + vl + va = o.

The line UlVl cuts the curve in a third point wl and

U l + Vl + wl = o.
In the same way the lines U 2V2 and U:!Va determine points w2

and W a• in such a way that

u2 + v2 + w2 = 0
U:! + va +wa = O.

Adding the three last equations gives in connection with (6):

w l +W2+
Wa=O. ftC f/K)

and the points W lie also on a straight line (fig.~ . Y
Dualistically (fig. 86): Apply to a curve

of the third class the tangents u l ' u 21 ua
running' through point U and the three
tangents Vl' V 2• va running through point ~'.

V. The ~tangents through the points ~
U1V1• u2v;"'aiid uava will again be concurrent
(point W).

Draw the tangents in three points PlP2Pa
,;/..-1. ~4'
--'-'f;" "tft,.

'\

-..--·w

Fig. 85 Fig. 86

lying on
cuts the

a straight line, parameter values U l , U 2, U:!. Each tangent
curve in a third point Q (called the tangelltial C2P()int,.

9--' , ",.Sf" i-<if",. #1:._ ,$·'f.il",r";;'$~14,1'.....,""-.'
/v;,~,''!l"",(:; I,,',"

'1 .
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of P). As the tangent is the limiting position of a(~~nsect
it cuts the curve with the parameter values u(P), u( and
u(Q). Now, as the sum must be zero:.

u (Q) = - 2 u (P) //«t.?,
So that the sum of the parameters of the three tang~~l co-

points is 2 ( ) 0 ~.rilt--
- u l +u2 +ua = /-')f~

and the three tangential copoints lie on a straight line (fig. 87).

Another property: Bring (fig. 88) through point Q of the curve
a line a; it cuts the curve in Al
and A2• Draw SAl and SA2 , where T

S is another point of the curve.
SAl cuts the curve also in BII

SA2 in B2•

The line BI B2 (b) cuts the
curve in R. Now the property

Fig. 87 Fig. 88

-'

";1
_ f

is this, that when a is rotated round Q, all corresponding lines
b will go through R. The proof is as follows:

?( __ .)" u(Q) +u(A I )+u(A2)=O
u (S) + U (AI) + u (BI) = 0

U (S) + U (A2) + U (B2) = 0
U (B I ) + u (B2) + u (R) = 0
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i) .I
-~, ,.:.-,.

u (Q) - 2 u (&) + u (R) = 0
./

and as Q and 8 are fixed, "If is also fixed.
The u-value of 8 is midway between the u-values of Q andR.

Another formulation of the theorem is therefore: Draw two
@.~hrough an arbitrary point 8 of the curve. They cut the
curve in four further points. Drawthediagonalsofthis quadrangle.}
These diagonals cut the cubic further in two points Q and ll'
on equal u-distances from 8. .' .' "."

The tangent in 8 cuts the cubic in point T, suc~ that
u (T) = - 2 u (8), so that T is collinear with Q and ~.

8 is the carrier of a ray involution projective with either the
ray pencil a, in Q or the ray pencil b in R (comp. p.2.~l"

If a, E~%LI!!.~§ _~o1ia.Ilgent, b. bec~J.I.l~!L;:tJ§Q __!i..tf:!.nglt.l}t~urves of
the conchoidal class have ,fouiJangents a, and four tangents b
and ~~__!hepencils .JY.~_ prO!eQtiv~ the cross ratio.. of the four I

tangents drawn from any point of the curve is constant'\\Tl3_r ~ t>oQ

can even calculate this constant. Take Q in the point u = <r;"'tnat
is at infinity in the~direction. The four ta,ngent points are the ~
points where the curve cuts the x-axis: PI' P2> Pa and the point
x = 00. The cross ratio is ~ . y::.:: /1

,~"~,;"~~,,~,",''''''.,,,,,~-,~ .-..,,-,,~

PI - P2 . 00 - P2 _ PI - P2
--- --;- --~ - ,

PI - Pa 00 - Pa PI - Pa

which ratio is known a<§..~l~~'~_J~
The inflection':p'oir).ts_ have to satisfy the equation

3 - 0 (d ) l~n"e,.",.A-r.-1l-u - mo. per. • . ",../:4.
One of them is u = 0, another one (fig. 79): __~ .' ''''0"'-;1

3 u = ± 2~u = ± i WI k:..::flt i'-!2:;~~~.:I}
This fix1;A:~~fl!-tion of the tangent points and we find that

the three' , "t \ It points u = 0 and u = ± i WI lie on a straight
linefa:'S)the sum is zero. As this is a projective property it holds
for ~ third-order curve. @inflection points are:

u = ± Ii% ; u = ± i WI ± i i Wa

and in total there are 9 inflection points, of which three always

.:d" (c /;///=
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We mu~t, however, remark that only three of these inflection
points are real points, namely u = 0 and u= ± t WI and if WI =00

two of the real inflection points disappear into the node or into
the cusp.

Cut the third-order curve bya se­
cond-order curve, there are ,6 p01~

of intersection and again asJ.n tnecase
of cutting a straight lint(Eu~We
shall not prove this property:1t8"'basis
is a generalization of the addition
theorem of the p-function mentioned
above , for the proof of which we also
referred to analytical text books. See
e.g. B. L. VAN DER WAERDEN: Al­
gebraische Geometrie.

Let the 6~oints of intersection with
Fig. 89 a conic be~ Ul-~:-:'-U~-:~'

. Dr.aw U 1u~; ~1; ~6' they cut the curve for the third time
ill ~ ~'and~ Tlien: .

lilt 10';1 ..
.' . .~ U1 + u-.,+ uf.i 0

Ujl+~+~=O

~U6+~=0
and because

lie on a straight line and each of them lies on four of such inter­
connection lines.

For the point u = 1iWa for example we have the four col­
line~rities :

iiwa -iiwa +0 =0

! iiwa + (lw1 -iiwa) -lw1 = 0

""\.\.l i i w3\+ (- i WI - i i Wa) +1WI = 0

liwa+(iwl+iiwa)+(-iwl+iiwa)=2iwa =0 (mod. per).

'-'J

Etu. = 0

u,-,+~+~'-O
so that these three points are collinear (fig. 89).

/)
. ,f

~ 1- '1'-",., I



CHAPTER VII

THE ELLIPSE

1. Introduction

For the sake of a simple definition we shall introduce the ellipse
as the curve in Cartesian geometry represented by the formula:

x2 y2
a2 + b2 = 1.

Introducing the parameter u by the definition

x=acosu

we find from the above formula:

y=bsinu

and in complex notation the formula of the ellipse is:

z = a COl;! u + jb sin u . (1)

from which follows at once the construction indicated in fig. 90.
The x- and y-axes are called the prin­

cipal axes,. the longer one is the major
axis, the shorter one the minor axis. The
origin is called the centre of the ellipse, u
the eccentric angle. The two circles ofradii
a and b are called the auxiliary circles,
again distinguished as major and minor.
The name ellipse (= falling short) is
due to ApOLLONIUS of PERGA (262- 200

B.C.), who wrote a treatise in eight Fig. 90
volumes on conics and to whom most
of the names of characteristic points, lines and measures date
back. EUCLID, who is older than ApoLLoNIUs (EUCLID approx.
360-300 B.C.) called the ellipse by the name of "thyreos"
(= shield).

Equation (1) is the basis of the use of the ellipsograph, con-
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sisting (fig. 91) of a rod oflength a carried by two rotary sledges
which slide along two guiding bars placed perpendicular to each
other. The sledges are placed at one end of the moving rod and

p

Fig. 91

at a distance a-b from this end. The other end of the rod carries
the recording pen. Introducing the angle u between the direction
ofthe moving rod and the x-axis as parameter we see from fig. 91
at once that x=acosu; y=bsinu.

Many problems give immediately rise to a curve of the form
of equation (1) so that the ellipse is one of the most important
curves. We shall, for the time being, give only four examples:

a~ Projection of a circle. Equ. (1) is created by shortening
all ordinates of the circle

z = a exp (ju) = a cos u + ja sin u

by the factor bfa. This may possibly be due to the projection of
a circle placed in an inclined position with respect to the z-plane.
From this way of generating the ellipse we may deduce, that its
area is bfa times that of the circle, that is A = nab.

b. Lissajous movement. Suppose a point to perform simult­
aneously two harmonic movements in two mutually perpendicular
directions with the same angular velocities wand with a phase
difference of nf2 radians.

Then:
x = a cos wt; y --: b sin wt

and the resulting track is the ellipse (1) with u = wt.



1. Introduction 95

c. Oentral force. The Lissajous movement may be originated
by a force acting on a material point always in the direction of
the origin and proportional to the radius vector r. These conditions
apply to a pendulum of small amplitude. The mechanical equation,
neglecting centrifugal forces, is:

d2r
m---=-Dr

dt2

with m= mass of the particle, D =directive constant. As this is
a vector equation we may split it into its components:

d 2x d2y
m dt2 = - Dx m dt2 = - Dy

with particular solutions:

x = a cos V~ .t ; Y = bsin V~.t

giving rise to a motion along the curve (1), now with U = V~ t.

d. Tensional ellipse. Let al and a2 be the principal tensions
in a rigid body. The equilibrium of a small solid triangle with its
sides perpendicular to the principle directions and the direction
defined by u (fig. 90) requires that the components of the
tension in the hypotenusal plane be:

al cos U and a2 sin u

and the total tension in the plane fixed by the angle u is given
by the vector:

au = a1 cos u + j a2 sin u,

the extremity of which lies on the ellipse (1). The same applies
to the case of anisotropal dilatation (dilatation ellipse) and to
other cases of tensorial quantities of the second order.

These four examples may suffice to show the direct lucidity
of equation (1). By passing to exponentials we can bring it into
the form:

a+b (') a-b (.)z=-2 exp JU +-2- exp -JU . (2)

and this formula suggests the ellipse construction, indicated in
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fig. 92, the so called flail construction. Combination of fig. 90
and fig. 92 gives the relations shown in fig. 93.

Fig. 92 Fig. 93

2. Oonjugate diameters

Starting from equ. 2 we shall consider the location of two points
of the ellipse with parameters u ± q (fig. 94). They are:

z (u ± q) = a -; b exp {j (u ± q)} + a 2 b exp {- j (u ± q)}.

Fig. 94

The chord connecting these two points is indicated by the
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(3)

letter q in fig. 94. Its middle is half the sum of the two values
mentioned above:

z (M) = ~ at b exp (ju) + a 2 bexp (- ju) ~ , cos q

and we observe that this is z (P), multiplied by the real factor
cos q. This means, that M lies on the radius of P and as this
conclusion holds for all values of q, all these middles lie on this
radius.

Moreover, all these chords are parallel to each other. This
results from the calculation of the difference of z (u+q) and z (u-q):

Hz (u + q) - z (u - q)} = ~

~a+b (') a-b ( ')~ ..= ~-2- exp JU --2- exp - JU ~. J smq

which is a vector, the magnitude of which varies with q, but of
which the direction is independent of q. The line OP, therefore,
is the locus of the middles of a set of parallel chords and such a
line is called a diameter or median, All straight lines through the
centre of the ellipse are diameters.

If we allow q to decrease indefinitely, the vector (3) will
approach to the tangent in the point P and we expect this tangent
to be parallel to the set of chords (3). Indeed, by differentiating (2)
we have:

. ,(a+b (') a-b ( .)}z = J,-- exp JU - -- exp - JU ~
~ 2 2 ~'

which differs from (3) only by the real factor sin q so that the
parallelism is proved.

Again, draw the tangents to the ellipse in the points U ± q.
Choosing uniform parameter scales VI and v2 on these tangents,
their equations are:

Zl a + b { '( ±)} a - b {' }
Z2 = -2 exp J U q +-2- exp - J (u ± q) +

+ ~~ j t ~ b exp {j (u ± q)} - a 2 b exp {- j (u ± q)} ~ .
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By equating ZI and Z2 we find the point of intersection Q of
these two lines. The calculation gives:

- VI = V2 = tan q

z (Q) = (a cos u + jb sin u) _1_
cos q

which just as M, is a point on the radius OP. Point Q is called
the pole of the line q, q the polar line of Q. The line OP not only
contains the middles ofall chords q ~ut also the poles of all chords q.

We observe, that \:J9I::J~r•. ~2(P))which means that the
points Q and M lie harmonically with respect to the extremities P
and - P of the diameter. By varying q, the points M and Q
describe an involution.

One more observation: By elementary reasoning we conclude
from fig. 94 that the tangent in P is cut by the tangents through Q
in such a way that the intercepts between P and the tangents
are equal.

Returning now to the set of chords (3), we observe that for

,r- ;}Olig.-:5
',~ ';' J :1 ~'..

q=n/2"M falls in the origin and the corresponding chord is a
diam.eter with extremities Rand - R:

//'" u (± R) = u (P) ± n/2. (5)

This diameter R, - R is called the conjugate diameter to the
diameter P, - P. Now what will be the conjugate diameter to
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R, - R? From (5) it follows that the extremities of this diameter
will have the parameter values u and u+n, but this leads to the
points P and - P. The conjugation of the diameters 'is therefore
reciprocal.

If a ",circums.9}:L~!!K "parallelogram touches the ellipse in the
extremities of two conjugate diameters, these diameters are
parallel to the sides of the parallelogram (fig. 95).

Apart from the sign, the angle y between a diameter and the
tangents in its extremities is the same for two conjugate diameters,
namely equal to the angle between the diameters themselves.
The minimum of y is equal to nj2, if we choose the principal axes
as conjugate diameters, it is a maximum I
for the diameters characterized by the
parameter values nj4 and 3nj4, as for
reasons of symmetry (fig. 95) Y changes
in the same direction on both sides ~f'
these points.

Fig.. 96 shows a simple way of con­
struction of two conjugate diameters,
making use of the fact, that the eccentric
~~~ differ by nj2. ; -:, ~c.-"" Fig. 96

Passing to exponentials we find

z (P) = a + b exp (ju) + a - b exp (-_ ju)
2 2

z (R) = j ~ at b exp (ju) - a 2 b exp (- ju) ~

J.t'f<" rT •;:.

and this suggests another construction, shown in fig. 97. We first
construct the point P as was already done in fig. 92 and the
auxiliary point H:

(H) a + b (.) a - b ( .)z = -2- exp JU - -2 exp - JU •

Turn the vector OH over nj2 (multiplying by j) in order to
find the point R.
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We must not leave the subject of the conjugate diameters
without mentioning two metric theorems due to APOLLONIUS.

-r
(i/VJli ,

Fig. 97

From (1) we deduce for the square of the radius of P:

Iz (P)12 = a2 cos 2 U + b2 sin2 u

and with the help of (5) for the radius of R:

i.·.J:." Iz (R)12 = a 2 sin2u + b2 cos2u
adding: " , ,."..-,,~ ~.

Iz (P)12+ Iz (R)12=a2+b2;

in words: The sum of the squares of two conjugate half diameters
is constant and equal to a2 + b2 (E.:i~t theorem of APOLLONIUS).

For u = n/4 th~t\Y,().. ,conjugate diamet~rs are''''equal, the semi~
_,"" - ,..i'"" "",-"--_'·_;~*""",,._,._.r, ,_,.,,","'__ ;;_F,."., , __

. . i 1!a2 + b2
'\.. ••

dIameter bemg.y--2-.:l'he sum of the d~ameters IS not constant

and it may be shown-that this sum is a maximum in the case of
the two equal conjugates.

The area of the parallelogram on two conjugate diameters is:
~'- .i' ,f

with: A =(~J:m {z (P). z· (R)} ):/~~(.~{2,..l1

z (P) = a cos u + jb sin u ; z (R) = - a sin u:+ jb:cos~u

this gives ':.4 ..4~bln words:
\
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The area .. of a parallelogram on conjugate diameters is
constant .. 4ab"'lSecond theorem of ApOLLONIUS).

~./ .." ~•..,.".,,,,,,,",.,,,..,-_....~-._._._,,.,~,...-- ....,,,,' "'

3. The foci

The two foci of the ellipse are the points situated on the major
axis at a distance c = Va2 - b2 from the centre. The ratio e= cIa
is called the eccentricity of the ellipse; it is zero if the ellipse
degenerates into a circle (a= b). Although the foci playa very
important role, they seem to have been unknown to the Greeks;
they are a contribution of the mathematicians of the 16-th century,
who studied the optical and mechanical properties of the ellipse.

In order to write down the equation of the ellipse relatively

Fig. 98

to one of the foci as origin, we have to add or to substract the
real amount c = Va 2 - b2 to or from the values ofz given by (1)
or (2):

resp.

Zl = acos u + jb sin u ± c .
Z2

(6)
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The right hand side is a full square:

~~ = t ~ Va + b exp (j ; ) ± Va - b exp ( - j ; )r (7)

which is an equation of remarkable symmetry.
The absolute value of Zl is:

Izll = t ~ Va + b-exp (j ; ) + Va b exp ( - j ; ) ~ X

X ~ Va+7J exp ( - j ; ) + Va b exp (j ; ) ~
= a + c cos u.

and in the same way we find for the absolute value of Z2:

Iz21 = a - c cos u.

whence, by adding:

!
in words: The sum of the radii vectors from the two foci to any
point of the ellipse is constant and equal to 2a. We shall refer to
this theorem as to the vector .sum, law. It is the basic property of
the ellipse and, indeed, the most popular way of defining the
ellipse is as the locus of the points for which the sum of the

Fig. 99

distances to two fixed points is constant. This property is used
in the so called cord- or gardener's construction (fig. 99). Attach
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the ends of a cord of constant length 2a to two fixed points, and
keep it stretched by the lead pencil.

For the tops of the minor axis Izll = Iz21 = a. Fig. 100 illustrates

r

I--_--l<::__----=-__---L -----:_--L_---l0

Fig. 100

the relation a2 =b2+c2• For a point just above one of the foci,
the real part of z is zero; from (6) we deduce that in that case
cos u=±cja=±e consequently: sinu= VI-e2 =bja and the value
of y is b sin u= b2 ja, a value, which is usually called the parameter p
of the ellipse. Eccentricity e and parameter p are sufficient to
fix shape and size of the ellipse, just as are a and b. Another name
for 2p is latus rectum.

We shall now proceed to mention a number of applications of
the vector sum law, without however, exhausting this prodigious
theme.

a. Directive circles: The circles of radius 2a described round
the foci as centres are called the directive circles (fig. 98). Each ,/~~
point of the ellipse lies at the same distance from the circle drawn / r~/
round the first and from the second focus. The ellipse therefore, 'f.
is the ~~_..£f._.E~Jlli~.havingthe same distance to a fixed circle ' .
and a fixed point within this circle.

b. Syntrepency: Two curves are called !yntrepent1.. if, when
both rotate with constant or variable angular velocity round a
fixed point, they roll over each other, always tangent to each
other without sliding. If the two curves have the same size and
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shape, we say that this curve i8J!~!~~?~~~)Dueto the vector sum
law the ellipse is isotrepent (fig. 101). F I and F/ are the centres

Fig. 101

of rotation, their distance apart is 2a. If one of the ellipses rotates
with constant angular velocity, the second one will show variations
in velocity. A transmission like this may serve either to create a
periodically varying angular velocity or to compensate for existing
variations.

c. Elliptic bar system: During the motion, illustrated in fig. 101
point F 2 describes a circle of radius 2c round the fixed point F I

and F 2' describes likewise a circle of the same size round F 1'.

Moreover, the distance F 2 F 2' remains constant= 2a. One may
just as well leave the contours of the ellipses out and apply a
bar system consisting of only three bars of lengths 2c, 2a and 2c
with the extremities of the two outer bars fixed in the points
F)- and F I ', a distance 2a apart. This bar system serves the same
purpose as the transmission by syntrepent ellipses (fig. 102).

d. Hyperbolic bar system: In our case 2c<2a. One may also
choose 2c> 2a in which case one speaks of a hyperbolic bar
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system (fig. 103). The point M, where the two bars of length 2c

cross, has, for reasons of symmetry, distances from the fixed
points F 1 and F / so that their sum is always 2c. M therefore,
describes an ellipse and this suggests another ellipsograph. It
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may be added, that the point of intersection of F 1 F 2 and F 1'F2'

in the case of an elliptic bar system (fig. 102) describes a hyperbola.
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Fig. 103

4. Kepler orbits

What is the orbit of a particle moving in a central field of force
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in which the centripetal force varies inversely as the square of
the distance1 It will tum out that these orbits are either ellipses,
parabolae or hyperbolae. The problem was solved in the reverse
order by NEWTON (1687). He showed that in order to account
for the elliptic orbits of the planets as found by KEFLER (Kepler's

Fig. 104

first law) it is necessary to assume a central force inversely
proportional to the square of the distance.

The mechanical equation for the radial component is:

(8)

in which a is the gravitational constant, 0 the azimuth (fig. 104).
The first term on the right hand side is the radial acceleration,
the second term accounts for the centripetal acceleration necessary
to keep the particle on a circular orbit of radius r.

The equation for the tangential component is supplied by the
law of permanency of the moment of momentum:

.r~l~ ll, -;;.. t,,,r"'4 7.-.:t·~ft,.f"""

dO
r 2 dt = constant = {3. (9)

This second equation is identical with Kepler's second law,
stating that the radius vector covers equal areas in equal times.

From (9):

d {3 d
dt=-"a·dO
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and hence:

dZr {J2 d21jr
dt 2 - r 2 dfJ2

which, introduced into ($) gives as the differential equation of
the orbit:

integrated:
1 a
- = - (1 - e cos 0)
r {J2

(10)

1
( ~--''''''''''''

\,

coso = ; = :~sc:~:' .;' \)

Eliminating the parameter u from these two ~ions, we
find the polar equatio~ of the ellipse:;,,/

-- Lilr = Ijp (£'':: ~os o>1;:~'M'(j1 """ ...1·······

identical with (10), if only we choose p = b2ja = (J2ja.
Now in (10) e was an integration constant and may assume

any value, whereas for the ellipse e is always less than 1. Equation
(10) therefore only represents an ellipse if e< 1; ife= 1 the curve
is a parabola (Ch.IX) and ife> 1, the curve is a hyperbola (Ch. VIII).

Having been forced to deduce the polar equation of the ellipse,
we may as well use this opportunity to show another remarkable
property of the ellipse. Extend the radius vector beyond the
focus and let the chord be divided by the focus in the intercepts
r1 and rs. From (10):

Ijr1 = Ijp (1 - e cos 0) ; Ijr2 = Ijp (1 + e cos 0)

and we have still to prove that this can be an ellipse.
This is easily done with the aid of (6). This gives for the radius

vector, as already carried out on page 102:

/1/1 .,. r = a + c cos u.

For the focal azimuth we find:

and
Ijr l + Ijrs = 2jp,

, ,O~)
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so that we see, that each chord passing through the focus is
divided by the focus into two parts in such a way, that their
harmonic mean is constant and equal to the parameter of the
ellipse.

5. Conic sections

The fact, that ellipse, parabola and hyperbola are to be con­
sidered as the sections of a plane with a right cone, was already

T

Fig. 105

discovered by MENAECHMUS in ± 350 B.C., but DANDELIN gave
a most elegant proof in 1825.

Suppose a right circular cone cut by a plane (Fig. 105) and let P
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ao

Fig. 106

be any point of the section. Conceive two spheres placed so that
they are inscribed in the cone and tangent to the plane, the
two spheres touching the plane on opposite sides in the points
F 1 and F 2' The spheres touch the cone along two parallel circles.
Draw in P the generator of the cone, it intersects the parallel
circles in R 1 and R 2• Now PF1 and PR1 are both tangents to
the same sphere and will therefore be equal. Also and for the
same reason PF2 = PR2• Now because PR1+PR2 is the constant
distance between the two parallel circles, PF1+ PF2 is also con­
stant. The section, therefore,is an ellipse and F1 and F 2 are its foci.

The sectional plane cuts the planes of the two parallel circles \!

along straight lines f1 and f2• Let down the common normal from
P on the lines f1 and f2, and let the base points of these normals
be D1 and D2• Now:

PF1 : PD1 \ PR1 : PD1 = R 1R 2 : D1D2 '·E~~~:..j/
In wo~ds: The ellipse is the. locus of points for which t~e.rati~ _ .I.__

of the distances to a fixed pomt lj ,.~,...~~,:-t-~.

and to a fixed straight line f is ~--- .
constant and less than 1. The lines
f1 and f2 therefore, have also a
planimetric meaning; they are called
the directrices of the ellipse. Applying
the law of constant ratio to the tops
of the major axis, we find that this ratio, which we shall call
e, satisfies the equations:

a-c a+c
e=--=--

X 2a+x
(11)

from which by elimination of x we calculate e= cia, which result
we had already anticipated when we denoted the ratio by the
letter e, up to now reserved for the eccentricity.

By tilting the section plane of fig. 105 we may place it Earallel
~~~.~~._£~;in this case the conic is a'parabola.
We may tilt it still further so that it cuts the extension of the
cone beyond the top; in this case the conic is a hyperbola. The
parabola has only one focus and one directrix, the hyperbola
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two of each. The constant ratio e becomes 1 for the parabola,

Fig. 107

> 1 for the hyperbola. We therefore repeat the last theorem in
the following way: ¥,~_~~ -+-

The locus of points having a constant ratio e for its distances
toafl,~e<l!!Qi.Ilt:F and a fixed line f is a conic with eccentricity e.
~-·There is another consequence which we can make from (lIT,-
viz. that the tops of the major axis lie harmo~}~~~~,~t~.~and f;

'~{cR';, ' ~</~I-~, ._~ .",..

Fig. 108

f therefore is the polar of the corresponding focus F. Again from
(11) we calculate for the distance between F and f the value
b2jc = pje (fig. 106).
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a

Fig. 109

6. The reflection law

The second basic property of the ellipse is also related to the
foci, viz.: the two radii from the foci to any point of the ellipse
make equal angles with the tangent in that point. (Fig. 107).

The proof follows from (7) by remarking that:

;i; = jj2 {Va + b exp (juj2) + Va b exp (-juj2)} X

X {va-+ b exp ((juj2) - va: b exp (- juj2)}

so that

which means that the angle between Zl and the tangent equals
the angle between the negative tangent and Zs'

All light rays emerging from Fl will after reflection at the
ellipse converge towards F 2 and it is this property which accounts
for the name of focus for the pointsFl and F 2 (fig. 108).

In connection with the reflection law
we shall mention a number of secondary
properties, derived from it (fig. 109).

a. Let K be the image of F 2 mirrored
in the tangent in the point P ofthe ellipse.
By the reflection law F1PK must be a
straight line and its length must be the
sum of F1P and PF2 that is 2a, so that
K lies on the directive circle of Fl

b. The line F 2K is cut orthogonally
by the tangent in its middle V2' Since
o too cuts the stretch F1F 2 in two halves, OVs is half F1K, that
means that V2 must be situated on the major auxiliary circle.

Generalizing: The bases of the normals let down from the foci
on the tangents of the ellipse are located on the major aJJ!,iliary
circle. In other words: the major auxiliary circle is a (P;dai:)

c. F1Vl equals F 2V/;,J Now as V2V2' and the majo?-~are
both chords of the major auxiliary circle intersecting in F 2,

and the product F1Vl . F 2V2 has this same value, in;4-ords: The
/'

./~

/
.. ..J.j .,_NIe-.. ., <' , .~, c
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Fig. 110

product of the two normals let down from the foci on any tangent
is constant and is equal to b2•

The reflection law may be considered
as a special case of a more general pro­
perty of the ellipse, viz. the two tangents
passing through a point Q located out­
side the ellipse make equal angles with
the two lines connecting Q with the two
foci (fig. 110).

From section 2 we take the two
tangents:

:~ = j [_a ~ b exp {j (u ± q)} - a 2 b exp {- j (u ± q)}J
Their product is:

.. (a + b)2 2iu + (a - b)2 -2iu c2 2
-Zl Z2= 2- e 2- e -2 cos q.

The two lines connecting Q with the foci are:

Za 1 ~a+b . a-b . ~= -- -- exp (Ju) +-- exp (- JU) ± C
Z4 cos q 2 2

and their product is:

1 [(a + b)2 (a - b)2 C
2JZaZ = -- -- e2iu + -- e-2iu +- - c2

4 cos2 q 2 2 2

which, as cos 2q= 2 cos2 q-l, differs from Zl Z2 only by the real
factor cos2 q and this is the proof of the stated theorem. When
Q approaches the ellipse this theorem degenerates into the simple
reflection law.

Again, draw the lines connecting F1 with the two tangent
points. These vectors are:

:~ = a ~ b exp {j (u ± q)} + a 2 b exp {-j (u ± q)} + C

and their product equals cos2q.za2, as may be verified by elementary
calculation. The line F1Q therefore makes equal angles with Zl
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and Z2 (fig. 110). Of course the same applies to F 2' If in particular,
as is nearly the case in fig. 110, F 2 lies on the polar q of Q, the two
angles at F 2 are right. In that case Q must lie on the polar of F 2;

that is on the directrix f2•

We find in this way the theorem, that any line passing through
a focus is normal to the polar q of the point Q where it intersects
the corresponding directrix.

The two properties of constant vector sum and equal angles are
not independent of each other. Suppose (fig. 111) the point P to
move over the ellipse over a distance d8. Let Izll decrease by
the amount d8 cos Yl and let Iz21 increase by the amount d8 cos Y2'
If the vector sum law holds, Yl and Y2 must be equal. Conversely
the vector sum law must hold if the reflection law be given.

We will now mention a generalization of the cord construction.
Suppose we sling a cord round a polygon and keep it straight
with the help of a recording pencil. The pencil will describe parts
of ellipses, two corners of the polygon acting as temporary foci.
In any point of the track of the pencil the two parts of the cord
will make equal angles with the track described. Now suppose

F,

Fig. 111 Fig. 112

the number of sides to increase until a (continuously smooth
curbed) curve is generated, then the track will, so to speak,
consist of an infinite number of parts of ellipses and the reflection
law will still hold. Each cord construction where the cord is slung
round any closed contour will obey the reflection law.

Now suppose a cord slung round the ellipse of fig. 110 and kept
stretched in Q. Execute the cord construction. Q will describe
a track in a direction which makes equal angles with the two
tangents of the ellipse. The angles between the direction in which
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Q moves and the lines towards F 1 and F 2 will also be equal. The
orbit of Q is therefore an ellipse having F 1 and F 2 as foci; with
a technical term, it is confocal with the first ellipse. In order to
generate an ellipse by the cord construction one may sling the
cord round any smaller confocal ellipse (GRAVES 1850) and the
straight line F 1F 2, described in both directions, may be con­
sidered as one of these confocal ellipses.

7. The perimeter of the ellipse, radius of curvature

Although the area of the ellipse could be given by a very simple
formula there exists no elementary expression for its perimeter.

Starting from the ellipse equation:

z = a cos u + jb sin u
we have:

and

z= - a sin u + jb cos u

Izi = Va2 sin2u + b2 cos2u = a VI - e2 cos2 u

hence the arc length, starting from the bottom of the ellipse is:

u ~

s = a f du VI - e2 cos2 u = a f dp VI - e2 sin2 p (p = u + n/2)
-"'/2 0

and this integral, known as the elliptic integral of the second
kind and as a rule designated by E(e,p), cannot be expressed in
elementary functions. It is evaluated by numerical calculation
and tabulated (e.g. JAHNKE-EMDE. Funktionentafeln).

The integral from u=-n/2 to u= 0 (p from 0 to n/2) gives us the
length of one quarter of the perimeter and is designated by a
square letter: E(e). The total perimeter, therefore, is:

s=4aE(e)

We find in mathematical tables:

(=n/2)E = 1,5708
1,4675
1,3506
1,2111
1

(circle),
(c = a/2)
(b = c)
(b = a/2)
(straight line)

e2 = 0
e2 = 1/,
e2 =1/2

e2=3/,
e2 = 1
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An expansion of the function E(e), suitable for numerical
evaluation is:

~E ( ) = 1 _ (1)2 2_(~)2 ~_(1.3.5)2~_
7t e "2" e 2.4 3 2.4.6 5 ...

For the radius of curvature in point P (u) of the ellipse one
calculates:

{2 (a2 + b2 ) - 2c2 cos 2U}S/2
e= 8ab

giving in the extremities of the major axis (cos 2u= 1):

e = b2/a = p

and in the extremities of the minor axis (cos 2u = - 1):



CHAPTER VIn

HYPERBOLA
1. Introduction

For an introductory treatment of the hyperbola we sl].all start
from the CARTESIAN formula

x2 y2
a2 - b2 = 1.

We introduce a parameter u by putting

x = a cosh u and hence y = b sinh u

by which the formula in complex notation will be:

~ = a cosh u + jb sinh u. .

Passing on to exponentials, this can also be written as:

a+jb a- jb
Z= 2-exp (u) +2-exp (- u).

(1)

(2)

The vectors a + jb and a - jb are indicated in fig. 113 and a point

Fig. 113

of the hyperbola is found by a superposition of t exp (u) times
the first (OT) and t exp (- u) times the latter vector (TP).
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It may be observed that the product of OT and TP is constant
a2 + b2

-4-'

By the conjugate hyperbola is meant the curve:

or after introducing the same parameter u:

a+jb a-jb
z= --exp (u) ---exp (-u)

2 2
• (3)

and this curve can be constructed in a way closely analogous to
the first hyperbola, the vector ! (a - jb) exp (- u) only being
drawn in the opposite direction (TQ).

If u increases indefinitely the second term decreases more

and more and both vectors z approach to the line '!-~jb exp (u).

This line and its counterpart a 2 jb exp (- u), to which both

hyperbolae approach if u approaches to -00, are called the
asymptote8 of the two conjugate hyperbolae.

2. M edianB, conjugate direction8

In a way closely analogous to the one followed for the ellipse
we can show that each line through 0 is a median.

The middle of the chord connecting the points characterized
by the parameter values u±q is (fig. U3):

l a +jb a - jb i
z (M) = ~-2-expu+ 2-exp (- u) \ coshq

the locus of which is the radius from 0 to the point P (u). The
vector from the point u - q to the point u + q is:

~a+ jb a - jb ~.
z (u + q) - z (u -q) = (-2- exp (u) - 2- exp (-u)) 2smhq

and has a direction independent of q and parallel to the diameter
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passing through point Q(u) of the conjugate hyperbola. These
two directions will be called conjugate directions. Moreover, the
conjugate direction is parallel to the tangent in point P (u) of
the original hyperbola. Conversely, the conjugate line is the median
for all chords of the conjugate hyperbola which are parallel to
the median through point P(u) of the original hyperbola.

For the modulus of the line OP (fig. 113) we have:

IOPI2 =~ a ~ jb exp (u) + a 2 jb exp (- u) ~

~ a - jb exp (u) + a + jb exp (_ u) l
( 2 2 ~

= t (a 2 - b2 ) +t (a2 + b2
) cosh 2 u.

and for the conjugate semidiameter, (computated in the same way),
we find

IOQj2 = - t (a 2 - b2 ) + t (a2 + b2 ) cosh 2u,

so that:

IOPI2 -[ OQj2 = a2 - b2 ,

in words: The difference of the squares of the moduli of two
conjugate semidiameters is constant and equal to a2 - b2•

In the same way as for the ellipse, we might prove that the
median is at the same time the locus of the poles of the set of
parallel chords and that any tangent t is cut at equal distances
from the tangent point by the two tangents drawn through the
extremities of a chord parallel to tangent t.

From fig. 113 we see that the tangent in P cuts the asymptote
a- jb in point R in such a way that OR= PQ= (a- jb) exp (- u).
This is twice the distance TP. By extending the line RP by the same
amount we shall therefore, reach a point S situated on the other
asymptote. In words: The intercept of a tangent to the hyperbola,
between the asymptotes is divided into two equal parts by the
tangent point.

3. Foci

The foci are the points situated on the real axis at distances
c= Va2 + b2 from O. The ratio cIa is called the eccentricity e.
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Whereas for the ellipse e is smaller than 1, it is always greater
than 1 for the hyperbola. In the intermediate case of the parabola
e= 1. In order to write down the formula of the hyperbola if one
of the foci is the origin, we have to add ± Va2 + b2 to form (2)
which leads to (fig. 114):

:1 = ! {Va + jb exp uj2 ± va= jb exp (- uj2)}2. . (4)
2

It follows from (4) that Z2 is purely imaginary for cosh u= cja= e
and that the modulus of Z2 in this case is p= b2ja. The same result

Fig. 114

was found for the ellipse, in both cases p is called the parameter.
The absolute values of ZI and Z2 are computed to be:

IZll hIz21 = ± a + c cos u.

so that the difference of the two radii vectors is constant=2a.
The circle of radius 2a round one of the foci is called a directive

circle. From fig. 114 we see that the hyperbola is the locus of the
points which have equal distances to a fixed point (F2) and to
a circle provided this fixed point be situated outside the circle.

The constant difference law of the vectors to F 1 and F 2 leads
to a cord construction, shown in fig. 115. A ruler is rotated round
F1; a cord, 2a shorter than the ruler, is fastened to the far end
of the ruler and in point F 2' The cord is hold taut against the
ruler by a pencil and by rotating the ruler the pencil will describe
a hyperbola.
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DANDELIN'S proof that the ellipse is a conic can be repeated
for the hyperbola (fig. 116) with almost the same words as were

I
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I
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I
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\

Fig. 115 Fig. 116

used for the ellipse; only, the plane of intersection is chosen in
such a way that it cuts the cone on both sides of the top. Again
the foci appear as the tangent points of the inscribing spheres
which touch the plane of intersection and the directrices as the
intersections of this plane with the planes passing through the
contact circles of the cone and the inscribing spheres. Referring
to fig. 116

PFl : PDl = PRl : PDl = RlR 2 : DlD2 = constant,

in words: the hyperbola is the locus of points for which the ratio
of the distances to a fixed point and a fixed straight line is constant
and> l.

In the same way as for the ellipse, it can be shown that focus
and directrix are related to each other as pole and polar.

By differentiating (4) we find for the tangent:

:i: = 1- {Va + jb exp (uj2) + Va - jb exp (- uj2)}

{Va + jb exp (uj2) - Va - jb exp (- uj2)}
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showing that: Zl/Z= zjZ2 which means geometrically that the tangent
makes equal angles with the two vectors to the foci (mirror law,
fig. 117). In the same way as for the ellipse, it can be shown that
this property is not independent of the constant difference law.

Another consequence of this law is the property of isotrepency
of the hyperbola (fig. 118). Hyperbola F 1F 2 will roll without sliding

-,

..' ...... "
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···I{ -
I

Fig. 117 Fig. 118

over hyperbola F'lF'2 if the former rotates round F1 and the
latter round F\. It suffices to construct only the hyperbolic
barsystem F1F2F'2F'1' After what was said concerning this subject
when treating the ellipse, it will not be necessary to elucidate
this point further.

Again, as was the case for the ellipse, it can be shown that
the hyperbola is a Kepler orbit, characterized by

l/r = l/p (1 - e cos 0). (5)

(See fig. 104 of Ch. VII). Indeed, taking a focus as origin we
saw already that:

r = a (1 + e cosh u).

and from (4) we find for the argument 0:

CO) va+}bexp(u/2) + va=Jb exp (-u/2)
exp J = va-jbexp(u/2) + Va+jb exp (-u/2)
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from which:

VIII. Hyperbola

() cosh u + e
cos = with

1 +e coshu
Va2 +b2

e =cla = .
a

Fig. 119

This r and this cos () satisfy indeed
the equation (5) with IIp = bla2•

As a last property of the foci, we
mention that the pedal for one of
the foci as pole is the major auxiliary
circle (fig. 119); this may be compu­
ted from (4) by the general formula
for the pedal (Ch. XI).

4. Ortlwgonal Hyperbola

If the constants a and b of (1) are equal, the hyperbola is
called isosceles or orthogonal and we may choose the unit of length
in such a way that a=b= 1. The asymptotes will be orthogonal.
The distances OT and TP of fig. 113 will be the projections of OP
on the asymptotes and their product will be constant. In the
same way we might call the circle an isosceles ellipse and as the
circle shows many metrical properties which the ellipse no longer
possesses, the isosceles hyperbola will likewise show more
regularities than the general hyperbola.

Fig. 120 a Fig. 120 b

Among these properties there is only one that we shall treat
here: we shall try to find the area enclosed by the real axis, the
hyperbola and the radius to point P(u) (fig. 120a). We borrow
from Ch. XII the general formula for areas:

A = -1/2 f 1m (zz·)du.

Now for the unit isosceles hyperbola:
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5. Cartesian ovals

z = cosh u + j sinh u ~

z' = sinh u - j cosh u ~

Imzz' =- cosh2 u + sinh2 u = -1,

123

(7)

so that the area A = ! u.
This reminds us of the area of a sector of the circle

z = cos u + j sin u

(fig. I20b), which is A = tu. The factor! disappears in both cases
if we take the two opposite sectors together. The parameter u
therefore is called the area.

As shown in fig. I20a and I20b the hyperbolic functions are defined
from P in exactly the same way as the goniometric functions are
defined from Q.

On p. 4 we found for the isosceles hyperbola the formula:

z=VI+jv

and by the transformation:

v=sinh2u

(8)

this is transformed into:

Z = VI + j sinh 2 u = Vcosh2 u-sinh2 u + 2 j sinhucoshu

= cosh u+ j sinh u.

The form. (8) is found for the electric impedance of homogeneous
electric transmission lines or for the acoustical impedance of
channels with resistance. For the electrical case:

z = VL/C. Vl-jR/wL

where L, C and R are the selfinductance, capacity and resistance
per unit of length respectively, w the angular frequency and
this formula is brought into the form (8) by putting R/wL =-v.

5. Cartesian ovals

We shall now proceed to find the locus of the points for which
the sum or the difference of the distance to one point (F1) and
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n times the distance to a second point (F2) is constant. These
curves are called Oartesian ovals and obey the formulae:

IZll +nlz2 1=O;

IZll-nlz2 1=O;

-IZll + n IZ21=O.
For each value of 0 only two of these curves are possible.

It will, for instance, be clear that if 0 is smaller than the distance
between the foci, the first curve cannot exist, assuming n> l.

These curves occur as boundary-lines between crystals or
between bacteria colonies which grow with different velocities.
In order to obtain images without spherical aberration lenses
should have surfaces of which the sections are Cartesian ovals.
They can easily be drawn by cord-constructions if n is a whole
number. We can show that the projection of the intersection
curve of two circular cones with parallel axes on a plane perpen­
dicular to these axes is a set of Cartesian ovals (fig. 121, 122).

Fig. 121 and 122

For, let the foci F 1 and F 2 be the projections of the tops, then
the radii Zl and Z2 are the horizontal projections of generating
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lines of the cones. The projections of two intersecting generating
lines on the cone axes differ by a constant amount, this being
the difference 6. in heights of the tops, which can be formulated:

Izll cotan fPI -I z21 cotan fP2 =6.,

where fPI and fP2 are the semitop angles of the two cones. But this
formula is essentially the same as the defining formula of
Cartesian's ovals.

A synthetic way of generating the ovals, which are fourth
order curves, is the following (fig. 122). Cut two circles by a ray
pencil, the carrier point of which is situated on the line connecting
the centres of the circles. Project the point involutions obtained
on the two circles from their centres. The intersection of these
two ray involutions is a set of conjugated Cartesian ovals.

The circles can be considered as the bases of two cones, their
centres F I and F 2 as the projections of the tops and the third
point Fa on their connecting line as the point where the straight
line passing through the two cone tops T1 and T2 cuts the basic
plane. A plane through T1 and T2 cuts the basic plane by a straight
line, p, the cones by generating lines, which are projected on the
basic plane as radii form FI and F 2 and the construction of the
projection of the intersecting curve comes down to the above
mentioned synthetic generation of the oval. The ratio

cotanfP2 T2F 2 A1F1 F 2Fa rl----n--- --=-- -
cotanfPl - - T1F1 . A2F2 F1Fa ' r 2 '

In fig. 122 the smaller oval Pa P 4 is the curve

IZII- ~ Iz21 = Const.

the larger one PIP2 the curve

~ IZ21 -I Zll = Const.

The constant G is found by the calculation to be:

6. 6. F1 F 2
G = cotan fPI = T1F;. . r l = F1Fa . r l •

In order to arrive at an oval IZII+nlz21=G, it is necessary to
choose the tops TI and T2 on different sides of the basic plane.



CHAPTER IX

THE PARABOLA

1. Introduction

The parabola is generated as a conic (fig. 123) if we choose the
plane cutting the circular cone parallel to one of the generating
lines of the cone. Applying again Dandelin's method we find
in this case only one focus and one directrix. The focus is the

Fig. 123

point where the inscribing sphere touches the plane, the directrix
is the line of intersection of the plane mentioned above and the
plane through the contact circle of the inscribing sphere. Again
focus and directrix belong together as pole and polar of the curve.
The distance of P to f equals P'R' = PR = PF (~g. 123), so that
the parabola is the locus of points at equal distances from a
fixed point and a fixed straight line.
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Fig. 124 shows a cord construction based on this principle. The
ruler is fixed, the triangle slides along the ruler. The length of
the cord equals that of the base of the triangle.

Denoting the distance of the focus F to the directrix f by
p (= parameter), we have for any point of the parabola (fig. 126),
if the origin is in F:

Now put Y = pu, then x = t P (u2 - 1) and the complex equa­
tion is:

(1 )

F

Fig. 124 Fig. 125

The level of a liquid contained in a vessel rotating round a
vertical axis with constant velocity assumes the form of a parabola
(fig. 125), for if the level shall be normal to the resultant force
tan a = dxJdy must be proportional to y, or dxJdy = Const. y.

Integrated: x = Const. y2 +02'
and this corresponds to the equation derived above for the
parabola.

By differentiating we find:

z= p (u + j)..

Differentiating once more we find:

z=p

(2)
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and this means that any material point moving with an acceleration,
constant in value and direction (e.g. in the gravity field), will
describe a parabola. Hence the application of the parabola in
ballistics.

The parabola belongs also to the family of Kepler orbits,
characterized by (fig. 126):

Ijr = 2jp (1- e cos 0)
for:

Fig. 126

and:
. u + j u2 -1

exp (JO) = --..'. cos (} = 2 +-1
u-J u

and these values tally with Kepler's
formula, if only we put the eccentricity
e = 1.

The arc length of the parabola,
reckoned from the top (u = 0) to point
P(u) is, with the aid of (2):

8 = plYI + u2du = ~ p [u Yl +U2+log (u + Yl + u2)]

and gives no reason to important remarks. Owing to the complicated
nature of 8 = f (u), the evolvente is not a simple curve.

The area of a sector is, borrowing the general formula for sector
area's from Ch. XII

A = - ! f 1m (zz') duo

This gives, with the aid of (1) and (2):

A = - i p2 f (u2+ 1) du = t- p2 (u3 j3 + u).

The cap cut off by the vertical line through F has an area:

+1
A = ~ p2 f (u2+ 1) du = 2p2j3.

-1

For the radius of curvature we find:

e = p (1 + U 2)3/2,

giving the value e = p for the top (u = 0).
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2. Right angles in the parabola

Measuring z on the normal we come to the point (fig. 127)

z-jz = t p (u + j)2_jp (u + j) = t P (u2+ 1)

and this is a point on the real axis, lying a constant amount p to
the right of point P(u), in other words: The subnormal is constant
=p.

Equ. (2) of the tangent can also be written:

(3)

which means that the slope of the tangent is half the slope of
the radius vector. If this changes by n (fig. 127), the slope of the

Fig. 127 Fig. 128

tangent will change by n/2, in words: the tangents in the
extremities of a cord through F will be orthogonal.

Another consequence of (3) is (fig. 128) that a horizontal light
ray will be reflected towards the focus.

This reflection law combined with the equal distance law leads
to fig. 128 which shows that the base R of the perpendicular let
down from F on the tangent, must lie on a vertical straight line
halfway between F and the directrix f, but this line is the top
tangent. In other words: The top tangent is the pedal of the
parabola for the focus as origin.

If we construct a semi circle on FP it will be tangent to the
top tangent in point R.

Extend the tangent beyond the top tangent to point U of the
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exp (j Op) = - exp (j 0Q)

so that with the help of (1):

Up+j uQ+j
Up-j = - UQ-)

whence:

p

Fig. 129

directrix (fig. 129). The two triangles PUS and PUF are congruent
and as the angle at S is right, the angle at F must also be right:
The part of a tangent comprised between the directrix and the
tangent point subtends a right angle at the focus.

Let Q be the point on the parabola opposite to P. QU is
also seen under a right angle at F. L PUQ must be right as

follows from fig. 127. Therefore:
The directrix is the orthoptic
curve of the parabola.

The opposite points P and Q
show a simple u-relationship. As
the arguments, 0, differ by n:

UpUQ=-l.. (4)

Another simple u-relationship is shown by two points of the
parabola which subtend a right angle at the top (fig. 130). The
vector from the top to point u of the parabola is

z=i- p (u2 + 2ju).

The right angle at T requires that

}
/ui +2ju1 _ • vu~+2ju2

o 9' -J 2 2" ,Ui - -Ju1 u2 - JU2

from which: u1 U 2 = -4.
Take point S on the real axis at 2p from the top. The vectors

Zl- Sand Z2- S are respectively:

.~. P (ui +2jul -4) and 1- P (UE +2ju2-4).

As u1 u l = -4, the latter is:
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and appears to have the same direction as Zl - S. The three points
Zv Z2 and S are therefore collinear, so that we find, that S lies
on all chords connecting two points for which U 1U 2= -4. Conversely
we may say that the vertices of all triangles that have a right
angle in T and the hypotenuse of which shall pass through a.
fixed point S lie on a parabola.

Fig. 130 Fig. 131

We may extend these considerations to any point on the axis
lying 8,p/2 from T. This point will be collinear with any two points
for which U 1U 2 = -a. The proof will be exactly the same as that
given for a= 4.

3. Medians, pole and polar

Draw the chord connecting the two points u ± q (fig. 131).

z (u ± q) = }p (u ± q + j)2.

The centre M is

ZM={- p{(U+j)2+ q2)},

differing from z(u) only by the real amount pq2/2, so that M is
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situated on a line through P parallel to the axis. The vector from
u-q to u+q is:

z (u +q)- z (u-q) = 2pq (u +j)

with a slope defined by the argument factor:

l/u+~.u-J

This slope is independent of q and is moreover, equal to that
of the tangent in point P(u). The set of chords u ± q, therefore,
is a set of parallel lines and their median is a line parallel to the axis.

Fig. 132

Let us now draw the tangents in the extremities of the chord
(fig. 132) and calculate their point of intersection. Introducing
uniform scales 81 and 8 2 along these tangents, their point of inter­
section S will be

ZS=tp(U+q+j)2-81(u+q+j) = ~p(U-q+j)2+82(U-q+j).

Separation of the real and imaginary parts yields two equations
for 81 and 82, from which we calculate:
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and substituting these values in zs, we find:

133

(5)

Zs =t p {(u + j)2_ q2}.

Again, as was the case for M the point S is situated on the
horizontal line through P and also at a distance pq2J2 from P.
In words: The part of a median intercepted between a pole and
the corresponding polar is cut by the parabola in two equal parts.

The vector Zs can be split into two factors:

Zs=!p(u+q+j) (u-q+j)~

= Vz (u + q) . z (u-q) ~

which means (fig. 133) first, that for an eye in F the parts of the
tangents in the points u+q and u-q, comprised between the
tangent points and their point of intersection subtend equal angles,
secondly, that the triangles FS (u+q) and F (u-q) S are similar,
leading to equal angle relations (fig: 133).

Fig. 133

(5) also indicates directly that 2p.zs equals the product of the
tangents in the points u + q and u-q. As 2p is a vector in the
direction of the real axis this means geometrically that the angle
between the real axis and one tangent equals the angle between
SF and the other tangent (fig. 133).
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(6)

4. Ooncluding remarks on conics

The question remains whether ellipse, hyperbola and parabola
are the only curves of the second order. In order to prove this,
we start from the general formula for second order curves:

zo+Zl U+Z2U2
Z= 2' ••

mO+m1 u+m2u

By the transformation: u = u' - m1/2m2 the denominator assumes
the form:

and the numerator does not change its character.

According as q~ 0, we shall distinguish three cases:

q> 0 (ellipse?, no real points at infinity)

q = 0 (parabola?, two coinciding points at infinity)

q < 1 (hyperbola?, two real points at infinity)

and without loss of generality we may restrict ourselves to the
consideration of the three z-formulas:

and

Zo + zlu + Z2U2
Z = 1 + u2 ;

Zo + zlu + Z2U2
Z=

u2

Zo - zlu - Z2U2
z=-I_u-2 -'

Fig. 134

where band c are real constants.
Division by Zo only means a trans­

formation into a similar curve and does
its character. After this division we again apply anot change

Shift the origin from 0 to 0' in such a way that the vectors
Zo and Z2 acquire the same direction and Zl becomes orthogonal

to these (fig. 134). The first equation
then takes the form:

1 + jbu + cu2
Z =zo 1 + u2
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parallel translation by adding -~; C to z, by which we obtain:

a + jbu- au2

Z= 1+ u2

which by the transformation: u = tan vj2 becomes:

a + b (.) a-b (.z = -2- exp JV + -2- exp - JV),

which is the formula used by us for the ellipse. As through the
above the character of the curve has not changed, we infer, that
all curves (6), provided q> 0, will be ellipses and in the same way
the characters of the two remaining types may be identified with
those of the parabola and of the hyperbola.
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INVOLUTES, EVOLUTES, ANTICAUSTICS

1. Involute and evolute

The evolvente or involute of a basis-curve Zl is the curve described
by the end of a supple cord which is unwound from the basis-curve.
We shall denote this curve by ZOo Each basis-curve has many
involutes depending on the starting point uo (fig. 135).

The relation between Zl and Zo

is seen from fig. 135 to be:

Zo = Zl - 81 exp (j T1)" • • (1)

where we may substitute

u

8 1= f IZll du ; exp (j T1) = dz1/ds1•
Uo

Fig. 135 The involute of the circle is,
technically speaking the most

important owing to its application to gear wheel cog-profiles:
Starting from the equation for the circle

Zl = exp (ju) we find: 8 1 = U ; dz1/d81 = dz1/du = j exp (ju)

and the equation of the evolvente is:

Zo = (l-ju)exp (ju)

as already found before. (Ch. I, p. 5).
We shall in general use the term involute and for the sake

of marking its importance reserve the term evolvente only for
the circle involute.

As the point Zl is the instantaneous centre of rotation, we
expect 8 1 to be the radius of curvature of the involute.

Let us apply the general formula:

1 1 z~zo-ZoZ~

eo = 2 j ~oz~)3/2
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and let us start from (1):

Zo = Zl-Sl exp (j Tl)

choosing Tl as parameter. Evidently, as S exp (jT) =Z:
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and

Zo = -jSl exp (jTl ),

zo= (-j 81 +Sl)exp (jTl)

Introduction of these and their conjugate values in the formula
for eo teaches us that indeed eo = Sl'

The original curve is therefore the locus of the centres of
curvature of the involute, or - in a technical term - is the
evolute of its involute.

The last formula but one is the direct analytical proof, that
the direction of the involute is normal to the tangent to Zl'

We now ask: Can any arbitrary curve Zo be considered an
involute? The answer is yes. It will always have an evolute,
the equation of which is:

(2)

and

where eo is the radius of curvature and TO the slope of the
basis curve.

Choosing To as parameter, this may be written as

Zl = Zo + j soexp (jTO)'

Zl = Zo + j 80 exp (j TO) - So exp (j TO)'

The first and third term cancel out, so that

Zl = j So exp (j To)

which means that the direction of the evolute is the same as that
of the normal to the original curve. (Tl = To + nJ2). The evolute is
thus tangent to all normals of the basis curve Zo0

The arc length along the evolute is

Sl = f IZll dTO= f 80 dTO= So = eo

and we are now prepared to close the circle of our argument, as
we can now apply form. (1) to determine the involute of the
evolute Zl'
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Executing this, the involute is:

%l-Slexp (jT1 )

= Zo + j 80exp (jTo)-jeoexp (jTo) = Zo

and this is indeed the original curve.

The radius of curvature of the evolute is:

. dSI deo d2s0
el = dT

I
= dTo = dT5 .

where eo and So refer to the basis curve. It is, therefore, easy to
give a formula for the second evolute, that is the evolute of the
evolute.

We can continue in this way and find for the nth evolute:

+ .dso (.) ."d"so (.)Zo J-d exp J!o + ... + J d" exp JTo .
To To

For the circle the first evolute is the centre, the second evolute
and all higher evolutes do not exist.

2. N orwick spiral

Starting from the circle:

%1 = exp (ju)

we found the involute or evolvente:

%0 = (l~ju) exp ju

eo = SI = U

So= lu2

and the natural equation is

So = le8·
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The involute of the circle evolvente is (fig. 136):
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Zoo = (l-ju-!u2) exp (ju)

eoo = So = !u2

Soo = Au3

and the natural equation is: 9S50 = 2eilo.

We may draw from any point S on the second evolvente a
tangent to the circle. This tangent will have the length

~/ lZoo12-1 = !u2

and this is equal to the normal eoo in S. See fig. 136, where SP = SQ.
As we remarked already, any curve has many involutes and

all these involutes will be parallel curves, because they have the

Fig. 136 Fig. 137

same normals and, measured along these normals, have constant
distance apart. An interesting involute of the circle evolvente is
generated as a parallel of the above-mentioned curve Zoo if we
lengthen the unwounding cord by an amount equal to half the
radius of the circle. The curve z" generated in this way is called
the N orwick spiral and its properties were discovered by Sylvester
(1868). It follows from the way in which it is generated, that its
radius of curvature is greater by ! than that of zoo; it is therefore
! (u2 + 1). Its equation is, starting from 2:0:

z" = zo-!(u2+ 1) exp (ju) = !(I-ju)2 exp (ju)
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Fig'. 138

As z=I(1-ju2 ) is a parabola, the points of the spiral are found
by a rotation of the points of the parabola over an angle u (fig. 137).

The absolute value of z is 1(1 +u2 ) and this equals the radius
of curvature. The Norwich spiral is therefore the locus of the
points for which the distance to a fixed centre equals the radius
of curvature. This means that in fig. 136 ON=NP.

3. Oatenary and tractrix

Another couple of curves mutually related as evolute and
involute are the catenary and the tractrix.

The formula of the catenary (=chain curve fig. 138) is:

z = u + j cosh u.

it is the graphic representation of the cosh function.
The tangent is

i = 1 + j sinh u.

The absolute value of the velocity is

li!=Vl +sinh2 u =coshu.

The arc length, starting from the bottom of the curve is:

8 = I Ii Idu = sinh u

and from the formula for i we see, that the slope is determined by

tan. = sinh u.

Incidentally, tan • equals the arc length and this is the reason
why a supple cord will hang
in the shape of a catenary
from which the curve has
received its name. Indeed,
the weight to be carried will
be proportional to the length
8 and the vertical component
of the force will be propor­

tional to 8. As the horizontal component of the force is constant,
the tan of the slope will have to be proportional to 8 and this is
what is actually found for the catenary.
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or as

The radius of curvature of the catenary is found to be:

e= cosh2u;

so that the natural equation of the catenary is e= 1 + 8 2.
If we measure the distance e on the normal on both sides, we

find the centre of curvature C and a point M, for which we have

ZM = Z~ j cosh2u . exp (ir) .
introducing:

Z=u+jcoshu

ex ("'l') = ~ = 1 + j sinh u
p J Iii coshu

we find:
ZM = U + sinh u cosh u

and this is real, so that M is a point on the real axis (fig. 139).
This property is of interest in connection with capillarity.

Let the catenary rotate round
the x-axis, the generated surface
is called catenoid and the two prin­
cipal radii of curvature of this
surface will be PC and PM, of
equal length but having opposite M

signs; the surface being concave Fig. 139

in the meridional planes but
convex along the parallel circles. The total curvature of the
surface, being the sum of the two principal curvatures is zero
and this is the condition for the shape of soap films extended
between two parallel circular rings.

For two points on the catenary having mutually orthogonal
tangents we have the condition: (fig. 139).

tan'l'1 . tan'l'2 = -1

tan 'l' = sinh u = 8 :

sinh U 1 • sinh U2 = - 1 and 818 2 = - 1 and the sum of the cur­
vatures in these two points is:
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The involute of the catenary may easily be derived by means
of the general formula, it is

j - exp (u)
Zo = u + j + exp (u)

and is called the tractrix (fig. 138). Its principal characteristics
may be calculated in the usual way; one finds:

eo = sinh u ; So = ln cosh u

and the natural equation: 80 = ln VI + e~.

The most remarkable property of the tractrix is that the x-axis
cuts a constant piece of unit length off all tangents. For if we
measure on the tangent the length = I, we find the point:

Zo - j exp (j or),

which, on computation, appears to be the point u on the real
axis (fig. 138). If a tug-boat should move along the x-axis (the
tractor) and tug a bar~e by means of a rope of length I, the barge
would follow the tractrix. This explains its name.

4. Tractrices in general

The relation of tractrix and tractor can be extended to the
problem to find the tractor curve of a given curve considered as
tractrix and vice versa.

The first derivation is very simple. If the tractrix is given as
Zi" = f (s), where s is the arc length, the tractor is simply:

the choice of the sign being dependent on the direction in which
the tugging takes plase.

The reverse problem is a bit more complicated, as any tractor
may have an infinite number of tractrices. Let zo, be given, using
an arbitrary parameter u. Take a point Zi" at unit distance from

zo, (u): Zi" = zo, (u) + ei I (ul

and in such a direction that dzi"fdu is directed towards the point
zo, (u). in formula:

or

Zo, (u) + j i ei I (ul = Real. ei I (ul

(zo,e- il + j i> = Real = z:,e+ i 1_ j f
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dfjsinf=dlgtanf/2=du; tan f/2=eu ;

This is to be considered as a differential equation from which
f(u) is to be calculated.

Example: What is the tractrix of the straight line:

Zor = U ; zor = z:r = 1 .

The differential equation is: sin f = i. Separating variables:

. i---:-expu
exp (Jf) = i+expu'

and the tractrix is
j - expu

Zi~ = U + j + exp u

in accordance with what we expected.

5. The evolute of the parabola

The evolute of the parabola (origin in the focus, fig. 140)

Zo =! P (i +U)2

is easily found to be:

Zl = P n+ i u2
- j u3

).

Dropping for a moment the contant pj2 we see, that this curve
is represented in Cartesian coordinates by the equation:

y = Const. X 3/2,

it is called the semicubic parabola. It
is a curve with cusp and belongs to f

the cissoid class of cubics. It is also
drawn in fig. 140. The cusp E is situ­
ated at pj2 to the right of the focus.

Fig. 140 shows the point of inter­
section of the parabola and its evolute.
It can be calculated in the usual way

and we find that it is the point u = 2 jI2 Fig. 140

of the parabola and the point u = - Vi
of the evolute. This means that the tangent in this point is the

parabola's normal in point u = - V2. As the product of these
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two u-values 2 V2 and - V2 equals - 4, this normal passes through
point S at 2p to the right of the parabola's top and subtends a
right angle at the top T. From the general formula for the radius
of curvature:

e= p (1 +U 2)3/2

we find its length to be equal to p. 3 Vi
The normal in point u=1 of the parabola has a length equal

to p. 2V2; its tangent point on the evolute is situated at p(2-j)
with respect to the focus (fig. 140).

5

Fig. 141

6. Anticaustics
Suppose a cord to be slung round a polygon c (fig. 112, p. 113)

and the cord stretched tight by a pencil. Now move the pencil
in such a way that the cord is permanently kept taut. Repeating
the argument of p. 113 we observe that the line a described
by the pencil will consist of parts of ellipses, two vertices
of the polygon acting temporarily as the foci of the ellipse. The
curve a therefore possesses the property that its tangent always
makes equal angles with the two parts of the cord leading to the
pencil. When we let the number of sides of the polygon c increase
indefinitely this equal angle property of the pencil curve, a will
remain valid and in the limit, that is, if we sling the cord round
a closed contour c of arbitrary form, the pencil curve a will still
be such that the tangent in any point will make equal angles
with the two tangents drawn from this point of a to the contour c.

Now sling the cord round a closed
contour and the fixed point S (fig.
141), manipulate the pencil in the
same way, this leads again to a
curve a. Again the equal angle property
will occur. Any light ray coming from
the source S will be reflected by the
curve a (anticaustic) in such a way that
the reflected ray will be tangent to the
contour c, c therefore acting as the

caustic. The length of the cord may be varied, which will lead to
different anticaustics for a single choice of source S and caustic c.
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In practice a light source is never a mathematical point but
has finite dimensions. In fig. 142 we represent the light source by
a countour s. If we wish to prevent reflected light from entering
the contour c, the cord is now slung round C and s with a twist.
Cases like this occur in the designing of incandescent lamps and
fittings where one is anxious to keep radiation from certain lamp
parts which may not reach high temperatures.

Other variations of the cord construction may be imagined
dependent on the problem in hand, the cord, if required being
slung with one or two twists.

In order to find an analytical formula for the curve a in the
case of a point source of light S we shall suppose that the contour
C is given by the formula z = f (s) with respect to S as origin. We
choose the arc length, s, measured along the curve, as parameter. s
contains an arbitrary constant and we shall fix this constant
in such a way that s will be the length of the cord CAS (fig. 143).
Now reflect the point S with respect to the tangent to a in point A.
The image point is E. CAE is straight and has the length s, E
obviously describes an involute of the contour c, if A is moved
in the prescribed way with the pencil.

Fig 142.

!M
ds

Fig. 143

The "velocity" of point C along the contour C is a vector dzjds,
it has unit value and is directed along the tangent. The place
of point E is therefore represented by the vector:

dz
zE=z-sds
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and for point A, situated somewhere on the tangent, we have:

dz
ZA=Z-t­

ds
(1)

where t is a real factor still to be determined.
On the other hand A is situated on the bisector of the, fine

SE. Choosing S as the origin of coordinates, the vector SE is ~.

Point M i~ represented by: ~ = 1ZE. The bisector is orthogonal
to ~, and point A on it may be represented by the formula

(2)

where A. is a parameter, j indicating the orthogonal direction of
MA with respect to SE. Now t and A. follow from equating (1)
and (2):

ZA=Z-t~:= (!+jA.)ZE

from which:

dz.
ZE= z-s ds'

dz
z-t-

!+iA.= :.
Z-8­

ds

For the conjugate values, denoting these by asterisks we obtain

• dz'
z -t-

!-i A.= ;S.•• z
z -s ds

Addition of these two equations eliminates A. and gives an
equation for t, the solution of which is:

Now zz· is the square of the absolute value of the vector z
(CS in fig. 143), we shall denote it bye. As, furthermore, the
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denominator of t is the derivative of the numerator, we can write:

8
2-e2

t = --:d,---------=--
ds (82 _(2

)

. (3)

Measuring the distance t on the tangent of the caustic c will
give us the anticaustic, so that the geometrical problem is solved.

Example: Let c be the unit circle and let 8 lie on the circle.
If we let 8 start from point 8 (fig. 144a), 8 is the arc length
8C; the stl'aight distance 8C=e=2 sin 812, hence

8 2-4 sin2 !....
2

t = ---;:----::----=---
28-2sin8

and this has to be measured on the tangent in C for all values
of 8 (fig. 145 curve a).

We may make 8 longer, for example by starting the 8-scale
from the bottom point of the circle (fig. 144b); in this case

e2 = 2 (1- sin 8)

82 - 2 (1- sin 8)
t= .

28+2coS8

The corresponding curve is shown in fig. 145 curve b.
The anticaustics have a spiral character, by mirroring an

arc of the spiral with respect to the horizontal axis we may obtain
symmetrical shapes.

(30
a b

Fig. 144 Fig. 145

The formula (3) for t is simplified if the light source 8 is moved
towards the right to infinity. For this purpose we write:

lit = dlds 19 (82-e2) = dlds 19 (8-e) + dlds 19 (8 + e)



148 X. Involutes, evolutes, anticaustics

Now 8 and egrow infinitely large together and as the derivative of
the logarithm tends to zero for infinite value of its argument

we have djd8 19 (8 + e) -?- 0 for
e=-x-?- 00, so that t becomes:

t= 8+X
d
d8 (8+ x)

and this introduced into (1) will
give anticaustics for parallel rays.
We may move the origin back
from infinity, keeping 8+ x con­
stant, and as there is an arbitrary
constant in 8 the choice of the
origin is of no importance, it is
only the differences in x for the
various points of the caustic that
will influence the shape of the

Fig. 146 anticaustic.
Example: Let again c be the

unit circle and let us make the same two choices of 8 as in the
last example. We place the origin at the centre of the circle. For
8 starting in the horizontal axis, x=cos 8, hence:

t = 8+ cos 8
71--'-----;si-n-8 (fig. 146a)

(fig. 146b)

For 8 starting from the bottom of the circle:

x = sin 8, so that

t=8+sin8
I+COS8

The anticaustics are spirals passing through the point at infinity
of the horizontal axis. Again symmetrical curves may be obtained
by mirroring a branch of the anticaustic with respect to the
horizontal axis.

In the general case the caustic is given by z = f (u), where u is
different from 8. Take, for instance, the classical case of caustics:



6. Anticaustics 149

)(-~~+---=~s

(4)
dz dw

ZA = z- t . dw' ds

dw 82 - (12
t. - = ----;-----=--

ds d (2 2)
dw 8-(1

with

the cardioid. This is the trajectory of a point of a circle (say of
unit radius) rolling over an equally large stationary circle. Taking
the centre of the stationary circle as origin (fig. 147) the centre M
of the rolling circle may be represented by ZM = 2 exp(jw) and
the point C of the cardioid by

Z = 2 exp (jw) + exp (2jw)

and the formula would lose much of its lucidity if we tried to
transform w into the arc length 8. A~__

In this case it is appropriate to
rewrite (1) as follows:

and the difficulties encountered are Fig. 147

not greater than before.
Let us work out the case of the cardioid; we take the light

source S on the cardioid where it cuts the horizontal axis (zs= 3).
The chord (1 is found from:

(12= (z- 3) (z· - 3) = 20- 8 cos w-12 cos2 w.

The arc-length element is:

1
1dz dz· w

ds = / dw' dw' dw = 4 cos 2"' dw.

and the total arc length:

8 = f d8 = 8 sin w/2 ; S2 = 32 (1- cos w):. 82 -(12 = 12 (I-cos w)2,

hence:
dw l-cosw

t. dB = 2sinw .

This introduced into (4) gives ZA =3el
a>. and this is the circle

of radius 3 (point A in fig. 147).



CHAPTER XI

PEDALS AND OTHER DERIVED CURVES

1. Pedal and contrapedal

The pedal of a curve is the locus of the bases of the perpendiculars
let down from a fixed point on to all
tangents of the curve. As the fixed
point is arbitrary, each basis curve
has many pedals. We shall always
take the fixed point as the origin of

x-axis coordinates (fig. 148), the basis curve
-""7!";"'£ri:--~-+-~=' will be denoted by Zo (point S) and

the pedal by zv' From fig. 148 we
Fig. 148 see that

IZv I= IZo Isin (i - 3)

and the argument function of P is - j exp (ji), so that

Zv = - j Zo sin (i - 3) exp (ji- 3). (1)

Introducing exp (ji) = Vz!z·, this can be transformed into:

Zv = t Zo • z~ .•_z~ Zo . (2)
Zo

a general formula, easy to handle.
Examples: a. The circle coincides with its pedal if we choose

the centrE{ as pole. If we choose the pole on the circle itself, its
formula is:

zo= 1 + exp (ju)
with the pedal: Zv = ! (1 + exp (ju) )2, being a cardioid.

(Compare Ch. XX).
b. Circle evolvente, pole in centre of circle.

Zo = (1 - ju) exp (ju)
Zv = - ju exp (ju).

This curve is a spiral, the modulus of which IS proportional
to the argument. This is Archimedes' spiral.

The modulus of the vector Zo - Zv = exp (ju) is 1 and as Zv is
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on the tangent of Zo, Archimedes' spiral is a tractor for the
evolvente as tractrix.

The contrapedal is the locus of the bases of the perpendiculars
let down from a fixed point (which we always choose in the
origin 0) on to the normals of a basis curve.

We shall denote the contrapedal by Zq. (fig. 148). As

IZql = IZol cos (T - 3)

and the argument function is simply exp(jT), the contrapedal is
represented by:

which we can apply at once to any example that may occur.
Theorem 1: The contrapedal of Zo is the pedal of the evolute

Zl of Zoo

This follows from the fact that the normal SQ of the curve Zo

is tangent to its evolute. It is equivalent to stating that the
contrapedal of the involute is the pedal of the basis curve.

Example: As the Norwich spiral is an involute of the circle­
evolvente, its contrapedal is the pedal of the evolvente, that is
Archimedes' spiral.

The tangent to the pedal is obtained by differentiating (2):

• _ 1 Zo z~- z~ Zo •
zP-"2 .•• zo­

Zo

Dividing this expression by zp gives:

zp Zo z~- z~ Zo z~
-= .-
zp Zo z~ - z~ Zo z~ .

The first factor to the right-hand side is the quotient of two
imaginary functions and thus real. The argument of the second
factor equals that of the quotient Zo/zo and this is by the reality
of the first factor also the argument of zp/zp. In words:

Theorem 11: The angle between radius vector and tangent
at a point of the pedal equals the angle between radius vector
and tangent at the corresponding point of the basis curve:
(i- 3)1' = (i-- 3)0'

It means that in fig. 148 PQ is the normal to the pedal zp.

Now as zp/zo according to (1) is only a function of i- 3 the
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quotient of the second pedal (that is the pedal of the pedal)
to the first Z2P/Zp will equal zp/zo and so on:

Corollary I: The n-th pedal z"p is:

z"p= (~)" . zoo

If specially we ask for the negative pedal, that is the curve
of which the basis curve is the pedal we find:

Corollary II: The negative pedal z---1> is:

-1 Z z· - z· z
Zp- 2 ZO

and we find by figuring out indeed the
value I/z~, q.e.d.

The theorems III and IV together may
be represented by the annexed scheme from
which we read

Corollary I I I. Pedal and basis curve
exchange roles by inversion.

Corollary IV: Pedal and basis curve exchange roles by polar
transformation.

The pedal of the logarithmic spiral:

z = exp (ja + I) u

2. The pedal inversion theorem

By comparing the general formule of the pedal (p. 150) with
the formula for the polar transform (p. 40) we find immediately:

Theorem III. The pedal is the inversion of the polar transform.
And we shall add

Theorem I V: The inversion is the pedal of the polar transform.
Proof: Introduce the z-value of the polar transform

Zo
2 • . .•

zoZo-zozo
into the formula for the pedal

~ 4 invel'llion J/.;

I · f

T~T
z, inversion

· tper

is the curve:

Zp = +a. exp (ja + I) u
a 1
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again a logarithmic spiral. The inversions are:

-!. = exp (ja - 1) u ; -!. = a - j exp (ja - 1) u
Z ~ a

and the pedal of the last will be obtained from l/z; by multi-

plying by~, exactly reproducing l/z·.
a-J

The problem of the negative pedal, that is the reversed problem of
finding the base curve Zo for which a given curve z1> shall be the
pedal, can also be solved by making use of the inversion theorem.
First find the pedal of l/z; and this pedal will be the inversion
of the curve Zo to be found. In this way we are led to:

2 ••

zo= 2 .•Z1> z1> •••
z1>z1>-z1>z1>

3. Li'TtWfon, conchoid
The circle pedal for arbitrary position of the pole is called the

limalton (PASCAL, 1623-1662). The equation of the circle is:
Zo = a + exp (ju)

and with the well-known prescription we find for the pedal:
z1> = (1 + a cos u) exp (ju).

Fig. 149 shows the limalt0n for 0 outside of the circle, fig. 150
for the case where 0 is inside the circle. It is the inversion of
a conic with respect to a focus, compare p. 107.

Fig. 149 Fig. 150

If 0 is on the circle, a = 1, and the limalt0n merges iI!to the
cardioid.

The formula of the circle's contrapedal is:
Zq = - ja sin u exp (ju)
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which is a circle of radius aJ2 passing through 0 (u = 0) and
through the centre of the basis circle (u = nJ2). The circle Zq is
described twice, when u increases from 0 to 2n. It is called the
directrix of the lima<;on. The normals PIQ and P 2Q of two points
of the lima<;on, lying diametrically opposite each other with respect
to 0, intersect on the directrix.

The point of the directrix for the parameter value u + nJ2 is:

Zq (u:+ nJ2) = a cos u exp (ju)

and is seen from 0 in the direction of zp(u), the moduli differing
by the constant value 1. The lima<;on can therefore be derived
from the circle by measuring a constant length on all rays of a
pencil of which the carrier point 0 is situated on the circle, starting
at the second point of intersection of the rays with the circle.
This way of generating a new curve is called the conchoidal
transformation and the lima<;on is the conchoidal transform of
the circle with respect to a pole on the circle.

The most general circle conchoid (0 not on the circle) has no
special name but plays just as the lima<;on a role in the theory of
gear wheel cog profiles (Ch. XXI).

.) VI + ju
Z = a (1 + JU ± c -1-;-

-Ju

The argument function of which is:

. VI +juexp (J p) = -1-;-·
-Ju

The conchoid has the equation:

and the general formula for all con­
choidal transforms is:

c

Of-,"'-'--t-----I---f-----,,,
: u,,,
,,,,
~----- 0·----

The simplest conchoid is Niwmedes' conchoid (270 BC), being
the conchoidal transform of the straight line. Let (fig. 151) the

directrix be the straight line

a (1 + ju)

Fig. 151 Yz;;
Zc= Zo ± c ••

Zo
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4. Pedals derived from the parabola

Interesting examples of pedals are supplied by the parabola
as base curve. If first, we choose the pole in the focus, the equation
of the parabola is:

with the pedal:
ZIl = t p (ju - 1)

which is the tangent in the top of the parabola.
Secondly, shifting the origin to the top, the equation of the

parabola becomes:
Zo = ~ P u2+ j pu

and that of the pedal:
u2

ZIl=-tp 1 +ju

which we shall call the cissoid (DIOCLES, 100 B.C.), fig. 152.
Thirdly, if we shift the origin to the intersection of the axis

and the directrix, the equation of the parabola is:

Zo = t p (u + j)2 + p
and the pedal is:

l-u~

ZIl=tp l+lu
this curve being the strophoid (DE ROBERVAL, 1602-1675), fig. 152.

Fig. 152 Fig. 153

The pedal of the evolute is the contrapedal of the parabola.
We find for this curve the formula (fig. 153):

Zq = t P (u2+ ju) = t P {(2U)2 + 2j (2u))
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and this ,again, is a parabola with its top in F and a parameter p!4.
If we choose on the parabola two points, which are the

extremities of a chord through F (fig. 153), we have u1 U 2 = - 1.
The corresponding points of the contrapedal will have parameters
2 u1 and 2 u2 and their product is - 4, so that the two points
on the contrapedal subtend at F a right angle and the line
connecting them goes through point E at 4. p!8 = p!2 from F.

5. Cissoid and strophoid
Both cissoid and strophoid are cubics, so that they show all

the properties, discussed in Ch. VI. The cissoid has a cusp, the
strophoid a double point.

The cissoid may be generated in the
following way. Take a vertical line (fig. 154)
Q8: z (8) = - 1 + ju and the circle on OQ as

diameter z(R) = --1_1_~-.
- -JU

Plot the distance R8 from OP on each
radius.

J-----3~o

z (P) = z (8) - z (R) =

. 1 u2

=-I+Ju----=---
-1-ju l+ju

and the locus of P appears to be the cissoid.
It will be clear that the cissoid will cut the
circle in tpe highest and in the lowest points.

Fig. 154 We can write the last equation as follows:
z (P) ju
}U 1 + ju

which means in the figure that
lc,. OPU ,...", lc,. 8QO

and this provides another construction for the cissoid.

The formula of the strophoid can better be handled by shifting
the origin from the double point to the top, which is equivalent
to subtracting p!2 from the formula found on p. 155. Leaving
the factor p!2 out, its formula is:

. ju- 1
z=Ju ju + 1 Izl=u. (3)
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If we write this as follows:

ju
ju + 1

Fig. 155

A

we arrive at the construction of fig. 155, the triangles OPM and
OBC being similar, even congruent. We see from this construction,
that the strophoid is the locus of the
tangent points of the circles of unit radius,
lying between and tangent to two parallel
lines with the rays of a pencil from 0, 0
lying on one of the parallel lines. On each
ray there are two such tangent points,
PI and P 2•

DE ROBERVAL, when introducing the
strophoid (1640), had a mental picture of
balls moving up and down in a cylindrical
vessel.

If in (3) we pass from u to - IJu, the
place of the point (P2) becomes:

j ju - 1
Z2 = Uj u + 1 ; I z21 = IJu

and this differs from (3) only by the real
factor IJu2• This means that the two
points of the strophoid on one ray are
related in such a way that the product
of their parameters equals - 1 and the
product of the moduli equals 1.

By elementary methods one can prove that the quadrangle
PI DOM1 is an isosceles trapezium, from which we conclude that
P 1 Sl = SID. But as SI is in the middle of P 1 P 2, we have also
P 2 SI = SI D, so that the strophoid may be constructed by measuring
the height of SI on each ray starting from the middle SI towards
the two sides.

The angle rp between the radius vector and the tangent of the
strophoide at the point PI is found from the quotient

Z 1 + u 2 - 2 ju ..
z = u (1 + u2) = cos rp + J sm rp.
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As tan q; is the quotient of the imaginary and the real parts,
we find

-2u
tan q; = 1 + u2

and to find the angle at P 2 we have to change u into -1/u, giving:

2u
tan q;2 = 1+ u2'

. jUo-l . ju-l
zQ-zp=JuOjUo+I-JUju+I'

If this is to be a tangent, it must have the
direction of z(u), this is:

. . u2- 2ju + I
z(u)=-J (ju+l)2 •

u

Apart from the sign, the strophoid makes equal angles with
the radius vector in the two points of intersection.

The two tangents in PI and P2 do not intersect
on the strophoid itself, but they cut the
strophoid again in two points Q1and Q2 which, as
we shall see, lie in one vertical line (fig. 156).

Suppose Ql to have the parameter value
Uo and draw the tangents from Q1 to the
strophoid. If the tangent point P has the
parameter value u, the vector PQ is

The quotient of these two vectors must be
real, in equation (criterion for parallelism):

z(u) {z' (uo)- z· (u)} - z' (u) {z (uo) - Z (u)} = O.

Fig. 156 Figuring out leads to the condition:

which gives two trivial solutions u = Uo (the tangent in Q1 itself)
and two more roots of which the product is 1. The second tangent,
therefore, touches the strophoid in the point l/u. See fig. 156. The
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sum of the roots is - 2uo' so that the parameter value in Ql is:

Uo = - t (U + ~); IzQ 1= U + ~ = IZg I·

For reasons of symmetry the tangent in P2 (-IJu) must cut
the strophoid in a point Q2 lying straight above Ql.

We have in this way found quite a number of metrical properties
which must be added to the projective properties already discussed
for all cubics in Ch. VI.

p

Fig. 157
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6. Orthoptic curves

The orthoptic curve of a basis curve Z is the locus of the points
from where two mutually orthogonal tangents can be drawn
to the curve.

Let the tangent points on z, giving
rise to two mutually orthogonal tan­
gents, be u 1 and u2 (fig. 157). The
vectors Z (u1 ) and Z(u2 ) will be mutually
orthogonal. Their quotient is purely
imaginary and. they must therefore
fulfill the condition for orthogonality:

which is an equation from which the
functional relation between U 1 and U 2

must be calculated. This relation once
known the point of intersection of the
two tangents may be determined in
the usual way, for instance as a
function of U 1•

For example: The logarithmic spiral is z = exp { (j + 1) u}
z= (j + 1) exp {(j + 1) U }. The condition of orthogonality is:

exp (j + 1) u1 • exp (- j + 1) u2 + exp (- j + 1) u l • exp (j+ 1) u2 = 0

or:

That is

cos (u1 - u2 ) = o.

ul - u2 =nJ2.

The two tangent points lie on radii which make a right angle
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with each other. We might have deduced this same result from
the property of constant inclination, which states that the angle
between two tangents equals the angle between the corresponding
radii vectors.

The tangent in point U is represented by

Z = Z (u) + Z (u) . A

where A is a parameter measured from the tangent point.
The two tangents in the points U 1 and U 2 may be written down as:

Zl = {I + (j + 1) Ad exp (j + 1) u1

Z2 = { 1 + (j + 1) A2 } exp (j + 1) u2•

In the point of intersection Zl = Z2' Equating the two and

considering that exp (j + 1) u2 = exp (--:n j2) exp (j + l)uv we find
J

the following relation for Al and A2 :

{j + (j - 1) Ad e,,!2 = 1 + (j + 1) A2•

From this and the conjugate equation we calculate:

A _ - 1 - exp (- nj2) A _ - 1 + exp (nj2)
1- 2 2- 2 .

Introducing either Al in Zl or A2 in Z2 gives us as the point P
of the orthoptic curve:

Zorth = (1;- j) {1- jexp (- nj2)} exp (j + 1) u 1•

and this is again a logarithmic spiral. We can write it in the
simple symmetrical form:

I-j
Zorth = 2-,{ Z (u1) + Z (u2)}·

This point is constructed as follows fig. 157. Complete the rectangle
o Z (u2) Q Z (u1). Draw the diagonal OQ and halve it (point M).
Draw the perpendicular in M and make MP = OP, then P is the
point of the orthoptic curve.

Circles are found as orthoptic curves in the case of the conics
as basic curves, the circle degenerating to a straight line in the
case of the parabola. Dual to this, e.g.: the chords of the ellipse
subtending a right angle at the centre envelop a circle. More dual
theorems are found by different choices ofthe location of the origin.



CHAPTER XII

AREAS AND OTHER INTEGRALS

1. Areas

If u increases by du the radius vector z(u) covers a sector, the
area of which can be calculated as if this sector were a triangle
with base Iz!du and a height Izi sin (T-p). (fig. 158). The area.
therefore is:

Fig. 158

2n

A =! f du =71:.
o

b. Ellipse: z=a cos u+jb sin u;
z= - a sin u + jb cos u;

1m (z· z) = abo

The area of the complete ellipse is:

dA = t Jzl.lzlsin (T-p) du

_ 1 I I I· Iexp (j. i=q;) - exp (- j ;=q;) d
-g-z.z 2j U

1 (.. ..) d=4j zz-zz u

= pm (z·.z)du

and by integration between the limits U 1 and u2 do we find the
area bounded by the curve itself and the two radii vectors at
the values u1 and u2•

Examples: a. Circle: z = exp (ju);
z = j exp ju, so that 1m (z· ·z) = 1, and
the area of the complete circle is

2n

A = ! f ab du = 71: abo
o

c. Hyperbola. z= a cosh u+ jb sinh u; z= a sinh u+ jb cosh u,

1m (z·z) = ab

and the area, starting from it = 0, is A = !.ab.u.
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d. Cardioid. (Ch. XX): z = 2 exp (ju) + exp 2 ju

1m (z·z) = 6 + 3 cos u.

The area of the complete curve is:
2n

.A = t f (6 + 3 cos u) du = 6n.
o

e. Lemniscate (Ch. XVII): z = -.;; 1 .~
r I-Ju

1m (z· z) = 2 (1 ~ U 2)3/2'

The area of the complete curve is:

f+OO du I U 1+
00

A = t 2 (1 + U 2)2/3 = t ru2-I -00 1.
-00

f. Cycloid. (Ch. XVIII): z = j (I-exp (-ju)) + u

1m (z·z) = 2 (cos u-I) + u sin u

and the area of the complete arc is:

2"
.A = t f {2 (cos u- 1) + u sin u} du = - 3n.

o

The minus sign appears, because the curve turns clockwise
round the origin instead of anti-clockwise as was assumed in
fig. 158.

g. Strophoid (fig. 159) (Ch. XI) .

. ju-I
z = JU }u+ l'

I ( . ") 2u2

m z z =-1 + u2

"• 2u2

A = - t.J 1 + u2 = U - arc tan u.
o

The area of the loop is found by substituting -1 and + I
for the limits of the integration; we find 2-nJ2, which equals
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the area of the two corners cut off from the square in fig. 159
by the unit circle.

To find the area, hatched in fig. 160 we take the integral from
-ljutouandsubtractthe area of the loop, giving u+lju-2, which
is proportional to the sum of the thick parts of the line OA in
fig. 160.

A

Fig. 159 Fig. 160

o
I
I
I
I

I
I
I

Fig. 161

In order to find the area of the infinitely long strip along the
asymptote we shift the origin to O2 (fig. 159), by which the equa­
tion is changed into;

jU-l
z =ju ju+ 1 + 2

and we find an area 'Jl (= area of unit circle).
h. Cissoid. (Ch. XI). To find the area of the infinitely long

strip along the asymptote we choose the origin in O2 (fig. 161).

u2

z=-'--1 + 1.
JU-
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nj2 - 1

Integrating between u = - 00 and u = + 00 we find for this
area: !n(=3 times the circle drawn in fig. 161).

To find the area of the "ivy leaf" A02BOI we lay the origin
in 0 3 and determine the area of the part of the ivy leaf to the
right of 0 3 by integrating from u = - 1 to u = + 1. Adding the
area of the semicircle to the left of 0 3 gives as the total area of
the ivy leaf:

The area of the lens-shaped figure AO I appears to be Hl-nj4),
that is twice the comer ACOI •

2. Surfaces of revolution

Simple formula's can be deduced for the areas of the surfaces
generated by the rotation of a plane curve round the imaginary­
or round the real axis. .

x

o

Fig. 162

The line element Iz1 du, rotating round the imaginary axis
will describe an area: 2n:r.1 zIdu
and the total area of the surface will be the integral:

• (2a)

The area of the surface generated when the curve rotates round
the real axis will be:

S.=2n[ylzldu (2b)

Examples: a. Unit sphere: z = exp (ju); :r = cos u; y = sin u.
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The sphere, if described by a rotation of the circle round the
imaginary axis will have an area:

+11/2

S = 2;71; J cos U d,t = 4;71;
-11/2

and if described by a rotation of the circle round the real axis:
11

S = 2;71; Jsin u du = 4;71;.
o

b. Torus. If the centre of the circle is not in the origin, but
at the point x = a on the real axis, IzI will again be 1, but
x = a + cos u and the area of the torus described by a rotation
of the circle round the imaginary axis will be (fig. 163)

2n

S = 2;71; J (a + cos u) du = 4;71;2 a.
o

For a torus that is just closed (a = 1) this becomes 4;71;2.

I

G ~.€)
Fig. 163

o

Fig. 164

c. Negative sphere. Let the tractrix rotate round the real
axis. The formula of the tractrix is:

j - expu
z=u+-.---

J + expu

2expu
Y = exp (2u) + 1;

. _ exp (2u) - 1 ,,;;::::
z - ± exp (2u) + 1 (± for u::5' 0).

The area of the trumpet-shaped surface to the right is:

S - 4;71;/ exp (2u) - 1 d (ex u' _ 4;71; I - exp u I""- 2;71;
, - (exp (2u) + 1)2 P 1- exp 2u + 1 0 -
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and together with the trumpet to the left the surface has an area
4n equal to that of the unit sphere.

A second property which this surface has in common with the
sphere is the constancy of the product of the two principle radii
of curvature. Whereas this product amounts to + 1 for the sphere
it is - 1 for the two-trumpet surface and this explains the name
"negative sphere". The property referred to is shown in fig. 138, p.
140. One principle radius of curvature is the intercept on the normal
from the tractrix to the evolute (= sinh u), the second radius of
curvature for the surface of revolution is the intercept on the
same normal from the tractrix to the real axis. By an elementary
geometrical property of right angled triangles the product of
these two distances equals the square of the perpendicular let
down on the hypotenuse and in this case the square equals 1.
As the two radii of curvature have opposite directions we have
to add the minus sign.

3. Volumes of revolution

We have also general formulas for the volumes of the surfaces
generated by a rotation of the curve z(u) either round the
imaginary or round the real axis.

We shall derive the formula for the case of a rotation round
the imaginary axis. The elementary cone shell hatched in fig. 165

has a volume:

with

OIL...J'"'--------~

Fig. 165

dV i = 1/sy·2nx.dh

y=lzlsin<p

dh = Izi du. sin ~T-<p)
sm <p

which gives, after substitution and
integration:

Vi = ~ n f x 1m (ZZO) du. (3a)

and in the same way we find for the volume of the surface
generated by a rotation of the curve z(u) round the real axis:

V r =! nfy.lm (zzO)du (3b)
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Examples: a. Sphere: z = exp (ju) ; i = j exp (ju)

1m (izO) = 1 ; x = cos u

+"/2
V, = i n J cos u du = 4n/3.

-"/2

b. Torus: z = a + exp (ju) ; 1m (izO) = 1 + a cos u

2n

V.=jn J (a+cosu) (l+acosu)du=2n2 a.
o

167

c. Negative sphere: Starting from the equation of the tractrix
we figure out by elementary integrals that the volume of the
negative sphere amounts to 2n/3; this is half the volume of the
positive sphere.

4. Center of gravity

The center of gravity of a surface is the point of application of
the resulting force of gravity, assuming that the weight is evenly
distributed over the surface. From the theorems on the combination
of forces it follows that the coordinates of the center of gravity G
are fixed by the conditions:

f {x (G) - x} dA = 0

f{y (G) -y}dA =0

which two conditions can be
combined to:

(G) = fZdA
Z fdA • (4)

x

and we may ask whether there Fig. 166

exists a general formula which
teaches us how to calculate z (G) if the contour z (u) is given. We
shall find the answer by a detour, making use ofGULDIN 's second rule
(named after GULDIN 1577-1643, although it was already known to
PAPPOS) stating that the volume of a surface of revolution equals
the product of the area of the cross-section and the length of the
path described by the centre of gravity during the rotation. We
prove this rule as follows. (Fig. 166). An element dA of the cross-
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section lying at a distance x from the axis of rotation describes a
volume element:

d V, = 2nx. dA = 2ndA {xG) - x + x (G)}

and the total volume is obtained by integrating over the whole
cross-section. But, as by definition:

f {x(G) -x} dA = 0

the volume will be:

V, = 2nx (G) f dA = 2nx (G). A q.e.d.

We obtained already explicit expressions for V, and A so
that for x (G) we can now write at once:

x (G) = 2 f x 1m (:. i)du
! IIm(z i)du

and in the same way, by applying GULDIN'S rule to a rotation
round the real axis, we arrive at:

(G) = 2 I y 1m (z·i)du
Y I IIm(z.i)du

and the two last formulas can be taken together, giving

Z (G) = 2 I Z 1m (:. i) du (5)
! I 1m (z i) du

Examples: a. Circle z = exp (ju); 1m (z·i) = 1
To find the centre of gravity for the complete circle, we have

to introduce 0 and 2n as integration limits and find, as was
expected, z (G)= o. For the upper half of the circle separately,
after introducing 0 and n for the integration limits, we find
z(G) = j 4/3n.

b. The upper half of the ellipse z = a cos u + jb sin u has its
centre of gravity in z (G) = ~ jnb.

c. From the parabola z = t p (u + j)2 a cap can be cut off by
the vertical line through the focus, connecting the points u = -1
and u = + 1. Introducing these as integration limits into the
formula for z (G) yields:

z (G) = -p/5.



4. Center of gravity 169

If we consider z (G) as a function of the upper integration limit,
keeping the lower limit constant, we obtain, what we shall call
the centroid or the G-curve. For the circle, choosing u = 0 as the
lower integration limit, (5) yields for the G-curve (fig. 167):

(G)
_ g exp (ju) - 1

z - 3 • •
JU

It is a spiral, starting from the point z = i of the real axis for
u=o.

u

Fig. 167

o

This line "pursuits" the curve 2/3 z, by which we mean that
the tangent in point U of the G-curve is directed towards the
point 2/3 z(u), because that is the centre of gravity of the elementary
sector which is added to the already existing area. This can also
be seen from (5) by differentiation:

z (G) = f/dU ~~ z-z (G)~ with 1 = 1m (z·z)

from which we see that the direction of z (G) is from the point
o (G) of the G-curve to 2/3 z.

The "natural" centre of gravity will be obtained by integration
over a complete turn; we shall denote this point by Go:

2 ~zldu
z (Go) = 3 ~ 1 du '



170 XII. Areas and other integrals

the circle through the integral sign denoting a complete turn
along the contour.

If we choose the origin in the centre of gravity of the closed
curve, z (Go) = 0 by definition and from (5):

g'lzIdu= o.
The numerator of (5) then assumes the same complex value

each time we return to the point u, but the denominator (which
is real) is changed and all points G belonging to the same point
of the z-curve, but reached after different numbers of circulations,
will lie on one line with the fundamental center of gravity. This
is illustrated in fig. 167 for the point u = n; all corresponding
G-points lying on the imaginary axis.

5. Center 01 gravity 01 the contour.

Besides the center of gravity for the area, we have a center of
gravity of the contour g which is defined as the point of application
of the resultant force if the weight is evenly distributed along
the contour. Mechanics teach us that the coordinates of g are
determined from:

J{:v (g)-x} ds = 0

J{y (g)-y} ds = 0
or combined:

(6)

so that we arrive at once at a formula for the computation of
z (g) if z (u) is a given function.

Another derivation of (6) can be given ,starting from GULDIN'S
first rule (also already known to PAPPOS), stating that the area
of a surface of revolution equals the product of the length of the
contour of the cross-section and the length of the path described
by g during the rotation. This rule can be proved along much
the same lines as was done in the last section for z (G).

Again we may apply (6) to a closed circuit, giving the "natural"
centre of gravity, go:
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or we may consider (6) as a function of the upper integration limit.
In this case z(g) is a so called g-curve. For the unit circle it is

()
exp (ju)-l

z g = . •
1U

a spiral which in this special case is similar to the G-curve.
Let us as a second example give the g-curve of the logarithmic

spiral z = exp (ja + 1) u. It is

z
z (g) = ja + 2

that is, the same spiral, multiplied by a constant number. Its
G-curve is

which represents again the original curve, multiplied by a constant.
The g-curve "pursuits" the point z for the same reason as the

G-curve "pursuits" the point 2z/3.
All points z (g) belonging to the same point z but being reached

after different numbers of turns along a closed contour, will lie
in one line with go' Furthermore it will be clear that in the point
u = 0 the curves z and z(g) touch each other and it may be proved
in general that in this point of contact the curvature of the
g-curve is 4/3 times that of the z (u)-curve.

6. Inertia moments
Four different inertia moments of

used in the theory of elasticity, viz.:

polar inertia moment

Binet's inertia moments

centrifugal inertia moment

closed plane surfaces are

: Jo = f r 2 dA
: J z = f y2 dA

J. = f x2 dA
: J zv = f xydA

Obviously, as r2 = x2 + y2, Jo can be found from J z and J. by
addition:
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Let us calculate J" by dividing the surface in elementary
sectors and let us calculate J" for a sector drp (fig. 168):

As: y = r sin rp ; dA = r dr drp

Fig. 168

OL.--'-'--__--'- _

dJ" = J r3 dr sin2rpdrp = Ir: sin2rpdrp [I = 1y2 zz· drp

where now y is the imaginary part of point z on the curve.
We have furthermore:

. yz. 1 z·z-z:z" 1m (z·z)
exp () rp) = -.. . drp = 2' • du = --.- duz ) zz zz

and for simplification denoting 1m (z· z) by I, we have for Binet's
moment J"

J" = lJ y2J du

In the same way we find:

J'I/ = i J x2 J du

Jo = if zz· J du

J,,'I/= if xyJ du

in which expressions x, y and J refer always to point z (u) of the
boundary contour.

For the unit circle we know that J = 1; so that:

2n :It
J., = i J sin2 u du = -

o 4

2n :It
J'I/ = 1J cos2 U du = -

o 4

2n

J""II = i J sin u cos u du = o.
o

For circles of radius r all these values are to be multiplied by ,-4.
We shall next calculate Binet's moment with respect to an

inclined axis. Let us define the position of this axis by the angle a
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which it makes with the real axis and call this Binet moment J a•

In this case the moment of an elementary sector is:

dJa = I:I~ sin2 (f[!- a) df[!.

As sin2 (f[!- a) = (sin f[! cos a- cos f[! sin 11)2, J a can be expressed
in J", J II and J"II:

J a = J" cos2 a +J II sin2 a- 2J"1I 'lin a cos a.

If we measure I/VJa on the radius of argument a, we come to
a point

cos a
x= VJ

a

sin a
y= VJ

a

and the locus of these points will be given by:

I =J",X2+Jlly2_2J"lIxy

which is the equation of an ellipse. It is called the momental ellipse
(CAUCHY 1827). In general we find two orthogonal directions for
one of which J a is a maximum and for the other one J a is a
minimum.

If we construct the dual curve of this momental ellipse we
shall obtain an ellipse for which the lengths of the perpen-

diculars from 0 to the tangents is equal to VJ:, and this is called
the ellipse of gyration. (J.MAC CULLAGH, 1844)). The ratios
between the principle axes of the momental ellipse and between

those of the ellipse of gyration are the same, viz. VJmax/Jmtn,
so that the ellipses are similar. If we turn the ellipse of gyration
over an angle n/2 it becomes homothetic with the momental
ellipse. This new ellipse is called Gulmann's ellipse, it is the
envelope of the lines running parallel to all axes a on both sides

at a distance VJ:".
J a is often put equal to AeL where A is the area of the surface

and ethe so-called radius of gyration. Instead of plottingVI/Jaor VJ:
in order to obtain the three ellipses mentioned above, we might
plot I/ea and ea respectively and we should find again similar
ellipses.
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Fig. 169

Fig. 170

The third term is zero by virtue of the
definition of the centre of gravity. The first
term is the moment with respect to the axis

through G, the second term is d2 A, so that

Culmann's ellipse for an equilateral triangle will for reasons

of symmetry be a circle. The radius of gyration is V2/4 times the
radius of the circumscribed circle as may be figured out in an

elementary way. Shift the top so
that the triangle becomes scalene
but leave the height the same.
J", for an axis going through the
centre of gravity will not change
and the horizontal line through

the top will remain a tangent to 4/V2Culmann's ellipse. Generalizing:
Culmann's ellipse for a scalene triangle is homothetic to the
ellipse circumscribing the triangle in such a way, that the tangents
to the ellipse in the three vertices of the triangle are parallel to
the opposite sides of the triangle. This special circumscribing
ellipse is called STEINER'S ellipse; the momental ellipse will also
be homothetic with it.

This was a case of parallel projection and from this example
it may be generalized that Culmann's ellipse of the parallel
projection of a plane figure is the parallel projective of CULMANN'S
ellipse of the original figure. 1)

Finally we wish to mention HUYGENS' theorems which concern
the relations between the moments of inertia with respect to an

arbitrary axis and the same moments with
respect to a parallel axis through the centre
of gravity. Let the two axes be separated by
a distance d (fig. 170)

J a = f p2dA = f (g-d)2dA

= f g2dA + d2f dA-2d f gdA.

As the last term is essentially positive we see that the moments

1) J. F. eUSELL, Ingenieur, 59, nr. 265 (1947).
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by addition:

have a minimum for axes passing through the centre of gravity
and as a rule the axes are chosen so as to pass through this point.

Comparing the moments with respect to G and to an arbitrary
point H (fig. 170) of the plane we have:

JB.~ =JG,~+ a2A

J B,II = J G.1I + b2 A

JB,o =JG,o + c2A (polar moment)

Instead of the inertia moments of the area we may try to find
the inertia moments of the contour, assuming uniform distribution
of mass along this contour. Their definitions will be:

Polar: K o = f r2 ds = f zz·lzl du

Axial: K~ = f y2 ds = f y2 1z1 du

K II = f x2 ds = f x2
l z/du

Centrifugal: K~ = f xy ds = f xy Iii duo

For the unit circle, for which Iii = 1, we find:

K o= 2n ; K~ = n ; K II = n ; K~ = o.
These moments will have minimum values if we choose the

axes through g or - in the case of the polar moment - the pole
in g.



CHAPTER XIII

ENVELOPES

1. Definition of the envelope

The envelope of a set of curves is the curve tangent to all curves
of the set, the individuals of this set being distinguished from
each other by the value of a parameter occurring in the equation
of each individual curve. We say for example, that all tangents
to a curve are enveloped by that curve. A classic case of an
envelope is the curve touched by all positions of a ladder sliding
down a wall, having always one extremity on the floor, the second
on the vertical wall. This envelope is the astroid.

Two neighbouring curves of the set intersect in a point close
to the two tangential points of these curves with the envelope,
and as the two curves draw nearer to each other, their point of
intersection will approach the envelope and in the limit it will
fall on the envelope. We shall use this criterion as the definition
of the envelope: The envelope is the locus of the limits of the
points of intersection of two curves of the set, if we let the
difference of the corresponding values of the parameter decrease
to zero. We shall prove, starting from this definition, that the
envelope is tangent to the individual curves of the set.

Let, in general, the set be represented by:

z = f(u, v) (1)

where u is the running parameter along the curve and v is a
parameter characterizing the particular member.

A point of a neighbouring curve v +L, v will be represented by:

z +L, z = f (u +L, u, v +L, v),

from which

L,z= i)f L,u+ i)f L,v.
i)u i)v

For a point of intersection of two neighbouring curves this
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vector f'::,z must be zero, so that the ratio of f'::,u to f'::,v is found
from

~f'::,u+ of f'::,v=O
oU oV

or in the limit, if f'::, v _ 0 :

(2)

This is an equation with complex coefficients in u, v and
(ou/ov) •. It is equivalent to two equations with real coefficients,
so that v and (ou/ov). can be calculated as functions of u.
Substitution in (1) of the relation between u and v obtained in
this way furnishes the equation of the envelope, either expressed
in u or in vas running parameter. From this same relation between
u and v a differential quotient du/dv may be derived, which is
not identical with (ou/ov) •.

If (ou/ov). turns out to be different from zero it means, that
the envelope is touched by the individual curves of the set at
varying values of u and, as we shall see later, this is a measure
for the speed with which the individual glides over the envelope,
at the same time changing its shape, during the variation of v.

As (ou/ov). is real we deduce from (2) that for any point of
the envelope (oz/ou). and (oz/ov)u are parallel vectors. Now
(oz/ou). is the tangent to the individual curve of the set and the
tangent to the envelope itself is

(oZ) + (oZ) dV,
oU oV du

• u

but this vector is also parallel to (oz/ou)•.
We have proved herewith that the individual curves of the

set are tangent to the envelope.
Owing to the symmetry as regards u and v, equation (1) can

also be considered to represent a set of curves u-constant with
running parameter v and we arrive at exactly the same condition
(2) if we try to find the envelope of this second set. And con­
sidering the last alinea, we may say that the envelope of both
sets is the locus of the points where the individual curves of one
set touch the individual curves of the second set.
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2. Astroid

Let us treat as a concrete case the problem of the sliding ladder.
The straight line AB of constant length, moving with its ends
along the vertical and the horizontal axis (fig. 171) can be repres­
ented by:

Z= (l-u)cosv+jusinv.
from which:

llZ . . llZ (1) . .-=-cosv+Jsmv ; -=- -u smv+Jucosv
llu llV

llZ/IlU and llz/IlV will be parallel, if

(3)

sin v ucosv. _. 2

cos v (l-u)sinv .. u -sm v,

and the envelope will be:

Z = cos3 V + j sin3 V •

l-u = cos2 v.. (4)

(5)

u

The astroid is the hypocycloid described by a point of a circle
of radius 1/4 rolling inside a circle of radius
1 (Cf. Ch. XIX):

Z = i exp (jv) + t exp (- 3 jv)

and this is identical with (5).
(3) is also to be considered as a set of

Fig. 171 ellipses -u- constant with semiaxes (1- u) and
u, and all these ellipses are also enveloped

by the astroid. Each ellipse is the path that a fixed point of the
ladder describes during the sliding of the ladder. The middle of
the ladder describes a circle of radius 1/2.

Applying equation (2) to any point of the envelope we find:

(~~) z = - t sin 2 v.

whereas from (4) we find:

du . 2
dv = SIn v.

(6)

(7)

and we may well inquire into the geometrical meaning of these
two equations.
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Equation (6) states that of the two intersecting neighbouring
lines the one with the greater v-value (steeper) has the lower
u-value at the point of intersection. Equation (7) states that a
line of greater v-value touches the astroid at a greater u-value,
that is to say, more towards the upper end of the moving ladder.

If ("iJu/"iJv). should be zero, the straight line would roll over
the astroid without sliding and in general ("iJu/"iJv). is connected
with the slip and in this case, where u is the length measured
on the straight line, ("iJu/"iJv). would be the speed of the slip if v
should change uniformly with time. The total slip of the line is

o
f ("iJu/"iJv).dv = f -sin.v cos.vdv = 1 and, indeed, the point of

"/2
contact lies at u=l if v = n/2 and at u = 0 if v = 0, in the mean-
time having moved over the whole length of the line.

If there were no slip du/dv would be equal to ds/dv, where ds
is the arc length of the astroid. Owing to the slip however, the
arc length of the astroid is greater:

ds _ du ("iJU)
dv - dv - "iJv

/ .
in our case: ds/dv = t sin 2 v, giving by integration a length 3/2
for the length of one arc of the astroid.

In general the parameter u will not represent the arc length
along the moving curve. Let this be denoted by s'. The more
general formula will then be:

ds _ ds' ("iJS')
dv - dv - ~ .

•
(8)

As we might take v proportional to time, this equation can be
written as follows in terms of the velocities of the point of contact:
velocity along the envelope=velocity relative to carrier curve

-slip velocity of carrier curve.
In the special problem in hand the slip velocity was negative.
We may choose another parameter, for example the real part

of z. The straight line is then represented by:

z = x + j (sin v-x tan v)
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Fig. 172

eJ)'.' ~
A 0 F

P

Applying equation (2) gives:

( ~Xv). = 0II ; X = cos3 v.

The last result, introduced into the formula for z· gives as
envelope:

z = cos3 V + j sin3 v

as before. We now have the additional result that

and this is trivial as two intersecting lines will have the same
x-value in their point of intersection. But it does not mean that
there is no slip, for now the parameter x is no longer identical
with 8'.

For the determination of the envelope itself, it is not necessary
to introduce 8'. It is however appropriate, if possible, to identify
U with 8'.

3. Caustics
Other examples of envelopes are the caustics, which are the

envelopes of light rays reflected by a mirror.
a. A classical case is supplied by the light

rays emerging from a point A situated on a
circle of radius 3p and reflected on the inside
of this circle. Let the point B of the circle
where the ray is reflected be characterized
by the angle v (fig. 172), the reflected ray
has a slope i v-n and if u is the distance on
the reflected ray, the equation of the latter will be:

z = 3p exp (jv)-u exp (Hv) (9)

Carrying out the recipe for finding the envelope, we find that

(llU) 3' v
~v . =- pSlllT 2

v .
U= pcosT'
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T

Fig. 173

Introducing the latter result into the equation for z, we find
for the envelope:

- z = 2p exp (jv) + p exp (2jv)

and this is the cardioid (Oh. XX), that is the track of a point of a
circle of radius p, rolling over an equally large circle.

The length of the cardioid from A to point P is found from
v v

r~ du (au ') If' v V
8=. (dv- av .• ~dv= 4PS1ll2dv=8pcos2"

" "
and for the complete arc from A to F we find a length 8p.
It is remarkable that the arc-length AP = 8p cos (v/2) equals the
length of the light ray ABP. For AB = 6p cos (v/2) and BP= u = 2p
cos (v/2). By unwinding a cord wound round the cardioid fixed
at both ends A and F with the aid of a lead pencil which keeps
the pieces PB and BA taut, we describe the reflector (Of the
problem of the anticaustic Oh. X). All caustics show this
property and it can be proved along the same lines as the equal
vector sum law of the ellipse was deduced from the reflection law.

The curves u constant, represented by (9), taking vas running
parameter along the curves of which the cardioid is also the
envelope, are limagons (Cf. Oh. XI) of which the circle of radius
3p is one (u=O). They are the curves obtained by plotting on
all reflected rays a constant stretch u.

b. If the light source is at infinity the
rays reflected on the circle of radius 4p are
represented by:

z = 4p exp (jv) - u exp (2jv)

and the recipe for finding the envelope leads
to the nephroid: (fig. 173)

z = 3p exp (jv)-p exp (3jv)

and the length of the nephroid from the top T to the focus F is
found to be 6p.

c. Let light fall vertically on a reflecting exponential line,
represented by

z =V + j exp v
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The tangent in point v is:

Z = 1 + j exp v

The reflected ray makes the same angle with z as the imaginary
axis does and is therefore proportional to

~ (1 + j exp V)2
J

which, apart from a real factor, is:

1 +j sinh v

80 that the reflected ray may be represented by:

Z = v + j exp v - U (1 + j sinh v) .

(JZ!(JU and (Jz!(Jv have the same direction for U = 1, from which
we find for the envelope:

Z = v-I + j cosh v.

and this is the catenary.

o

Fig. 174

u

4. Negative pedals

The problem of the negative pedal, that is the problem of finding
the curve of which a given curve is the pedal,
has been solved in Ch. XI with the aid of the
inversion-pedal-theorem. We can also solve
this same problem by means of the envelope
theory.

Let zp = f (v) be the given pedal and let Zo be
the required curve. The perpendicular from 0
on to the tangent to curve Zo has its base P
on the curve zp' The tangent is normal to zp
and is represented by

Z= zp (v) +jzp (v).u = z" (v) (1 + jul.

and we have to find the envelope of all these tangents.

(J z . (1 + .) (Jz .
(J v = zp JU; (Ju = JZp
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and these two vectors will be parallel if:

zp (1 + iu) izp
z~ (1 - iu) = -iz~

from which

183

which value introduced into the formula of z yields for the
envelope the equation

in accordance with what we found on p. 153, Ch. XI.

5. Anticaustic8

Another problem is that of the anticaustics which we have
already solved in Ch. X by considering the anticaustic as the
elliptical involute of the caustic. It is, however, also possible to
solve it as a problem of envelopes.

Let (fig. 175) L be the light source and C be a point of the caustic.
The distance LP be 2c. Choose a length 2a A

equal to the length of the caustic from L to
the point C and construct the ellipse on Land
C as foci with major axis 2a. If AC is tangent
to the caustic in C, the light ray LA will be
reflected towards C if A is on the ellipse and
the anticaustic will touch the ellipse in A. The Fig. 175

anticaustic is the envelope of all ellipses.
Instead of making the major axis of the ellipse equal to the arc
length of the caustic, we may add a constant amount. This leads
to a different set of ellipses and also to a different anticaustic.
We know already from Ch. X that an infinite number of anti­
caustics correspond to one given caustic.

The ellipse will be represented, taking the origin of coordinates
in L by:

z = (c + a cos u + ib sin u) exp iq;
with
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We shall consider 8 as the current parameter along the caustic.
The tangent point of the ellipse to the anticaustic is found by
the condition that ozjou and ozj08 have the same direction. Now:

oz , 'b ) .- = (- a sm u + J cos u exp J<P
OU

oz. o<p (0 C oa + .ob. ) .- = Jz - + - +- cos u J - sm u exp J<P .
08 08 08 08 08

They will have the same direction if:

-b sin u o<p + 0C + oa cos u
08 08 08
-a sin u

o<p o<p ob.
C- + a cos u- +- smu

08 08 08
b cos u

which can be simplified, because of:

oa 1

08 2
1 a b ob
----
2 C C 08

to:
. o<p b ob

c2 sm u- + -2 cos u = - (a cos u-c).
08 08

From this, together wiph :

we find:
b oC

e + a cos u = 2c - - . -
ob 08
08

, be o<p
bsmu=--· -

ob 08'
08

Introducing these values into the equation of the ellipse we
find for the anticaustic:

2 . b (2 oe 2' 0<P) .za= eexPJ<P--b -+ JC- expJ<p=
2~ 08 08

08

b2 ozo
=zc---' -,

~b2 08
08

which is the same result that we found in Ch. X.
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If the light source is in infinity the formula will reduce to:

as was shown in Ch. X, where ea is the component of Zc in the
direction a from which the light comes. As an example we may
reverse the problem of the reflecting exponential curve and start
with the catenary

Zc = v- 1 + j cosh v

as caustic for light coming from above. In this case

na= - cosh v . 8 = sinh v . oea
" , , 08

so that

sinh v oZc
- cosh v 08

1+ jsinh v
cosh v

Za = V + j exp v

and this is the exponential curve.



CHAPTER XIV

ORTHOGONAL TRAJECTORIES

1. General way 01 linding orthogonal trajectories

The conception of conformal transformation leads almost
automatically to systems of curves all of which are cut orthogon­
nally by a second system of curves. Any curve of one of the sets
is called an orthogonal trajectory of the other set.

As we saw in Ch. II, any transformation

z = I (w)

(where z and w are complex numbers), the derivative dzjdw of
which is a univalued function of w, is conform: the angle between
two curves in the w-plane is transformed into an equal angle
between the two corresponding curves in the z-plane.

Now consider was the complex generalisation of the parameter
u used up to now:

w=u+jv.

So long as we leave v constant, the function z = Iv (w) represents
a curve to which a u scale is attached. Passing on to a second
value of v, we get a second curve and by varying v continuously
we generate a set of curves which finally will cover the whole
z-plane.

Now conceive, conversely, u to be constant but v variable.
We generate a curve z = lu (w) and by varying u continuously we
obtain another set of curves.

The network of straight lines in the w-plane consisting of the
lines v=constant and u = constant is transformed into a network
of curved lines in the z-plane consisting of the lines z = I. (w) and
z = lu (w) mentioned above, and as all angles of the former network
are right angles, the same will apply to the angles of the latter
network. In other words we have created two sets of mutually
orthogonal trajectories and both sets together may analytically
be represented by one single formula:

z = I (w) ; z = x + jy ; w = u + jv.
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Examples: a. z = w2 = (u + jV)2.
First let v be constant:

187

and this is a set of parabolas, all having their focus in the origin
(confocal parabolas) and all directed towards the same side of
the real axis.

If we assume u to be a constant:

and this, again ,is a set of confocal parabolas, but directed towards
the opposite side of the real axis (fig. 176).

Fig. 176

The whole z-plane is covered by this network. As a check we
shall verify the orthogonality. The tangent to a curve for which
v is constant is:

(~) = dz (OW) = dz . 1
oU dw oU dw

v v

and the tangent to a curve u constant is:

(~~t = :: . (~~t = ~~ . j

and these two differ indeed by the factor j which means that
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they are orthogonal and this result is due to the fact that u and v
occur in the combination u + jv = w.

b. Z= Vw.
The lines u = constant:

z(v) = vu-+ jv= VU VI + j~

are isosceles hyperbolas, all with asymptotes in the 45°-directions.
The lines v = constant

z(u) = VJV V1 - j;
are the same hyperbolas but multiplied by the factor Vr. that
is rotated round the origin over an angle of n/4 (fig. 177).

.Fig. 177

Ul

-u,

Fig. 178

u,

c. z = l/w.
This is the inversion that transforms straight lines into circles

all passing through the origin (fig. 178).
d. z = l/w2

is the inversion of case a. The two sets of curves consist of
cardioids, these being the inversions of the parabolas (fig. 179).

e. z = I/VW
is the inversion of case b and the curves are isosceles lemniscates
(fig. 180).
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f. z = exp w = exp (u + jv)
(fig. 181). The lines v = constant are radii emerging from the origin,
the lines u = constant are the set of concentric circles round the
origin.

Fig. 179 Fig. 180

u,

Fig 181 Fig. 182

g. z = cosh w = cosh u cos v + j sinh u sin v.
Consider first the lines v=constant, they are all hyperbolas.

The lengths of the semiaxes a and b introduced in Ch. VIII are
now: a = cos u ; b = sin v
and incidentally:

c2 = a2 + b2 = cos2 V + sin2 v = 1.

This means that all hyperbolas have the same foci; they are
a set of confocal hyperbolas (fig. 182).
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and

Now consider the lines u = constant. These are ellipses with:

a=coshu; b=sinhu

c2 = a2 - b2 = cosh2 U - sinh2 u = 1.

These ellipses therefore have also all the same foci and what
is still more remarkable, the set of hyperbolas has the same foci
as the set of ellipses.

This system of orthogonal confocal conics has attracted much
attention and has often been used as a system of coordinates,
any point of the plane being defined by its u and v values; u and v
are called the elliptic coordinates. In the same way, each of the
cases a - f might have given rise to new curvilinear coordinates
but these, with the exception of case f (polar coordinates), have
not gained nearly as much importance as the elliptical ones.

2. Laplace's equatio1i

The distribution of u- and v-values in the z-plane obeys a
differential equation, named after LAPLACE, an equation which
holds in all cases where dw/dz is unambiguous. Because of this
unambiguity:

ClW ClW dw
ClX Cljy dz

or
ClU+. ClV=~+.~
ClX J ClX Cljy J Cljy'

Split this equation into real and imaginary parts:

ClU ClV
ClX Cly

ClV ClU
ClX Cly

which are the so-called equations of CAUCHy-RIEMANN.
By differentiating once more with respect to x and y, we can

eliminate either v or u and obtain Laplace's equation:

The great importance of Laplace's equation is due to the fact
that the eleotric and the magnetic potential in two-dimensional
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problems are governed by this same equation, and likewise the
temperature distribution in heat-conduction problems and the
velocity potential in the problem of the flow of incompressible
fluids. Any of the sets of curves u-constant or v-constant which
we may derive from some z = !(w), may therefore represent a set
of equipotential or equitemperature lines and we choose this
set in such a way that one of the lines coincides with a given
equipotential (equitemperature) line.

If the curves u-constant represent lines of constant potential
or temperature, the lines v-constant will represent lines of force
or lines of flow and the reverse, v being a measure of the so-called
flow function (= the flux reckoned from an arbitrary zero
streamline).

If, for instance, the potential is given on two confocal ellipses,
the solution of the physical problem is simply:

z=coshw

by which in any point x, y both u and v are determined.
Find the two u-values for which the curves z(v) coincide with

the two given lines of constant potential. Let them differ by
t::, u. Compare this with the difference t::, V in potential and
determine the factor t::, V / t::, u. With the aid of this constant
factor we can change all u-values of our problem into V-values.

If, starting from a certain curve z(u), we apply a transformation
on u, the curve will not change its shape but we may arrive at a
different set of orthogonal trajectories if we complete the new
parameter u' to w' = u' + jv'. For example, when starting from
an orthogonal hyperbola it will be possible to arrive either at a
set of confocal conics (case g of p. 189) or at a set of orthogonal
hyperbolas (case b of p. 188), dependent on the choice of the
parameter used in the analytical formula for the original hyperbola.

In electrical problems the choice of the parameter will depend
on the shape of the anti-electrode. If, for instance, in the hyperbola

z = a cosh u + jb sinh u.

we replace u by u + 2 j arctan alb, we find:

z = - a cosh u + jb sinh u,
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which is the second branch of the hyperbola. This means that
the solution of the Laplace-problem:

z = cosh w

(case g, p. 189) applies to the case where the two branches of the
hyperbola have different potential, fig. 182.

On the other hand the formula of the orthogonal hyperbola:

Z= VI + ju

cannot by a substitution u + ja be made to coincide with
z = - Vf+ ju, so that this case (case b of p. 188) applies to the
same potential for the two branches of the hyperbola, the anti­
electrode being at infinity, fig. 177.

3. The transformation u' = 19 u

Most interesting is the use of the transformation

u' = 19u.

If u passes from 0 to 00, u' will pass from - 00 to + 00, but
if u passes from - 00 to 0, u' will pass from - 00 + jn to +00 + jn,
as 19 ( - a) = 19 a + 19 (- 1) = 19 a + jn.

If therefore, we complete u' to w' = u' + jv', the line v' = 0 will
coincide with that part of the curve that carries positive values
of the u-scale and the line v' = n will coincide with that part of
the curve that carries negative u-values. Using the u-scale, we
have to deal with the LAPLACE problem for which the u-curve is
equipotential, whereas using the u' scale, we have to deal with
the problem in which these two parts of the curve have different
potentials. This is an entirely different problem and the analytical
solution of the latter is obtained by simply subtituting exp u in
stead of u in the solution of the former problem.

z = w2 was the solution in the case that two parabola's are
equipotential lines. Now if the upper part of the z = (u + j)2
parabola is at one potential, the lower part at another potential,
we have to represent the parabola by the equation:

z = (exp u + j)2

and the LAPLACE problem will have for its solution:

Z= (expw+j)2.
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If the break in the line has to take place not in the point u = 0,
but in the arbitrll-ry point u = Uo we have to apply the trans­
formation:

u' = 19 (u - uo) ;

in order to obtain the result that the two parts will act as two
separate equipotential lines. The solution of the new potential
problem is found by first subtituting Uo + exp u for u and then
completing u to w.

Let, for example, the positive real axis be at one potential,
the negative at another potential. The real axis is represented
by z = u so that the solution of the Laplace problem, in the ~se

that the potential jump is at x = 0, will be simply: z = exp w.
Compare this with case f of p. 189. If the break is at x = 1 we
shall find z = exp w - 1 as the solution of the Laplace problem.

4. Point sources

For an electrical point source situated in the origin the solution
of the potential problem is (compare case f of p. 189):

z = exp w or w = 19 z

and if the point source is situated in the point ZI:

w = 19 (z - ZI)
Now take

z-1
w = 19 -- = 19 (z - 1) -lg (z + 1)

z+1

This set of orthogonal trajectories consists of two series of
orthogonal circles. w is the superposition of two point source
fields, a unit source being placed in z = + 1 and a unit sink at
z=-l.

Generalizing we may say, that the field of a number of sources
of strengths 8, at the points Ui together with a number of sinks
of strengths (j, at the points P, will be:

(z - UI )8. (z - U2)8, • ••
exp w = (z _ PI)'" (z - P2)"' • ••

a few examples of which will be dealt with presently.I)

1) E. L. MORGAN. JI. Frankl. Inst. 243, 309, (1947).
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exp w = Zn - 1.

The equipotential-line u = 0 is re­
presented by:

zn = 1 + exp (jv)

is the n-th root of a circle
sinus spiral (Ch. XVII, p. 225).

Fig. 184

Fig. 183

a. Two sources; one in z = + 1, one in z = - 1.

exp w = z2_1.

A special line of constant potential is the line u = 0, for which

z2 = 1 + exp (jv).

The right-hand side of this formula represents a circle, passing
through ° and the square root of this
is the isosceles lemniscate (fig. 183).

b. Distribute n equal sources evenly
over a circle. 'We may consider this
circle as the unit circle round the
origin and the locations Ui of the
sources are the n-th roots of 1. The
solution of the electrical problem
therefore IS:

and z
through 0, that means that z is a
See fig. 184 for n = 3. 1)

5. Two nwgnetic problems

The analytical solution of an electromagnetic problem in the
form z = f(w) is sometimes surprisingly simple. For instance, the
simple equation

exp (jw) = sinh z
is the analytical expression of the field depicted in fig. 185. 2)

A wire, carrying an electric current is placed midway between
two parallel surfaces of high permeability. The lines v = constant
are magnetic lines of force, the lines u = constant are equipotential
lines. Let us explore this field:

For u = ± n/2, exp (jw) = ± j exp (- v).

1) A method for illustrating these fields by experimental means is
described by A. D. MOORE, Jl. of Applied Physics 20, 790 (1949).

2) B. HAGUE. Electromagnetic problems in electrical engineering, p. 167.
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Hence sinh z is purely imaginary, but this means that

z=±j.~+real
2

195

and this represents the two horizontal lines at y = ± 7(;/2.
If z is small sinh z ~ z and we have the field of case f, p. 189:

that is to say circular lines of force and radial equipotential lines
in the neighbourhood of the origin.

Fig. 185

Now let x be large and positive, then sinh z ~ ! exp z., and the
field is:

jw= 19i+ z,

splitting up in real and imaginary parts:

u = y ; - v = 19 ! + x,

so that the equipotential lines (u = constant) are horizontal and
the lines of force (v = constant) vertical straight lines; the field is
homogeneous.

Now, what is the value of v in the points z = ± j . 7(;/2? For these
points:

sinhz= ±j
so that v = O.

Another point of the line v = 0 can be calculated on the real
axis, for which u = O. Along this axis the v scale is determined by:

exp ( - v) = sinh x

and the point v = 0 is found where sinh x = 1 .'. x = 0.9.
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Fig. 186 shows the case where two wires carrying currents in
opposite directions lie on a surface of infinite permeability, a
second surface of infinite permeability being present at a distance
n/2 above the first surface. This field results from the superposition
of two fields of the kind of fig. 185 and will be represented by:

. sinh (z + 8)
exp (Jw) = -.-------.

smh (z - 8)

Fig. 186

In the immediate neighbourhood of one of the wires, say the
one at - 8, we have

sinh (z + 8) 1"::1 Z+ 8 = r exp (j({J)

sinh (z - 8) 1"::1! exp (28)

and we calculate
U=({J; v=28-lg(2r}

which represents again a radial field.
Where x is large and positive,

sinh (z +8) 1"::1 i exp (x + 8 + jy) ; sinh (z - 8) 1"::1 i exp (x - 8+ jy)

from which follows:

U = 0 ; v = - 28 = constant

and this means that at great distances there is no field left.
In the point z = 0 we have exp (jw) = -1 that means: U = ± n;

v=O.
For the upper boundary plane, z = x + jn/2, the righthand side

of the equation is real, therefore U = 0 and the v-scale along this
plane is fixed by:

ex (_ v) = cosh (x + 8) .
P cosh (x - 8)
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6. Non-Laplacian orthogonal trajectories

It is not difficult to find sets of mutually orthogonal curves
that are no solutions of Laplace's equation and therefore are
not represented by z = t(w).

Consider, for instance, all evolventes of the unit circle. They
are all cut orthogonally by the tangents to that same circle. The
set of evolventes may be represented by:

z = (1- ju) exp U(u + v)}. (1)

from which we can now verify that azjav is not equal to jazjau as
was the case in all the examples so far dealt with in this chapter.

Nevertheless, we may ask how we can calculate the orthogonal
trajectories in those cases, where z is a function of u and v but
not a function of the combination (u + jv)

Jump from point u on curve v to a neighbouring point u + du on
curve v + dv; this jump will be represented by:

az az
dz = - du + .- dv

aU aV

If this jump is to have the direction of the normal, it must be
equal to azjau, multiplied by an imaginary number:

d . az d
Z=J'-' p.aU

By equating the two expressions for dz, we obtain a relation
between du, dv and dp. A second relation is obtained by a
transition to conjugate values. From these two equations dp
may be eliminated and what remains is a relation between u and
v, which by introduction into the original equation z = t (u, v)
leads to the equation of an orthogonal trajectory.

As an arbitrary constant of integration occurs in the relation
between u and v, we find as a rule an infinite set of orthogonal
trajectories.

Let us, as an example, find the orthogonal trajectories of the
set of evolventes of the unit circle, given above:

az = u exp U (u + v)} ; az = (j + u) exp U (u + v)}.
aU aV
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The condition for orthogonal direction is:

u du + (j + u) dv = ju. dp

from which

du = - dv ; (udp = dv)

integrated:

u + v = Const. = 1jJ

and introduced into (1):

z = (1 - ju) exp (j1jJ)

and this is indeed a tangent to the unit circle.



CHAPTER XV

KINKED CURVES

1. Discontinuous functions

Discontinuities and kinks will occur in curves if their formula
contains a function which is itself discontinuous. Such functions
have come into general use in this century in connection with
operational calculus. 1)

The staircase function y = Sc x equals the greatest whole number
comprised in x. Each time that x, during its continuous growth,
goes through a whole number, Sc x jumps up by unity.

The sawtooth function y = St x = x - Sc x grows linearly from 0
to 1 if x grows continuously from n to n + 1. The moment x passes
through n + 1, St x falls down ~o 0 again.

o~
+%

0 EB [fl-~

Fig. 187 Fig. 188 Fig. 189 Fig. 190

Heaviside's step-function y = Sk x is equal to zero for all values
of x from - 00 up to k and is equal to unity for all values of x
beyond k.

The meander function or signum function y = Sg x is ± 1, the
sign being the one sin x would adopt for the same value of x.

Fig. 187 shows the curve z = St u; it is described periodically
from 0 to 1.

Fig. 188 represents
z = i + i (St u -;- i)

the vertical line is again periodically described.

1) R. V. Churchill. Modern operational mathematics in Engineering,
New York en London 1944.
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The four points of fig. 189 can be represented by

z = exp (j. (n/2) Sc u) = jSCU

and the square shown in fig. (190) by a combination of fig. 188
and 189:

z = {I + j (St u _ -!) }. jSC U •

These functions may occasionally be useful; one gets however
the impression that all these things are merely witticisms when
compared with what we shall deal with in the following sections.

2. Irrational functions

Of much more importance are kinks that are not introduced
deliberately by the introduction of discontinuous functions. A
simple example is

z= Vu.
The curve follows the real axis as long as u> 0, but for 'U < 0

it follows the imaginary axis and because of the ambiguity of
the sign of the root we may say that this equation represents
the two axes of coordinates, the origin being a branch point.

All examples of "natural" kinks that we shall deal with are at
the same time branch points and this is in the last instance due
to the ambiguous sign of the square root or the manifold value
of higher roots.

As a second example we take the curve:

z = arc cos u

which follows the real axis as long as - 1 < u < + 1; the function
is multivalued with the period 2n. And what if u has values
beyond these limits? Let us calculate z:

u = cos z = cos (x + jy) = cos x cosh y + j sin x sinh y.

As u is real, either sin x or sinh y must be zero. The latter
supposition means that y = 0 and z is real, but that is the case
we met already for Iu I < 1. The former supposition means that

x=O(±n.n) ; cosx=1 ; coshy=u.

This case applies to u> 1 and:

z = ± j area cosh u (± n.2nj).
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We see, therefore, that the curve starts at z = 71,/2 for u = 0
(fig. 191), follows the real axis up to x = 0 where u = 1. Then it
branches off and goes up or down in vertical direction towards
infinity.

Apart from the angle 71,/2 which the curve possesses in point U= I,
it makes an angle 71, in the point u = ± 00.

A similar behaviour is shown by the curve z = arc sin u =

= arc cos (u + 71,/2).
It is congruent to the former one, but shifted in the direction

of the real axis by the amount 71,/2.

0 E E -00

-1 t 0 -1 U
U 0 U O~ .. +00

---Jr---,.. .. ---Jr---,.. z=lg u
0 E E

0;;0 "u +00

Fig. 191 Fig. 192

If we turn the figure for z = arc cos u over an angle of 71,/2, we
obtain the figure for:

z = area cosh u

which is real for all values of u> 1, but assumes purely imaginary
values for u < 1. The congruency with fig. 191 follows directly from:

u = cosh z = cos (jz)

... z = area cosh u = (1/j) arc cos u.

The function: z = 19 u is represented by a set of parallel
horizontal lines, because:

u = exp (z + n.271,j) as exp (271,j) = 1

and for any real value of u, z is multivalued with a period 271,j.
If u goes from 0 to 00, z not only moves along the x-axis, but
also along all horizontal lines at heights n.271,j (fig. 192)

19 (- u) = 71,j + 19 u because 19 (- 1) = 71,j.
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The values of z = 19 u for negative values of u are, therefore,
found from the values of z for the corresponding positive u-values
by adding nj+n. 2nj. If therefore, u goes from - 00 to 0, z moves
from right to left along a set of horizontal lines at heights
nj+n. 2nj above the x-axis (fig. 192). We may express the results
of fig. 192 by stating, that the function Ig u shows kinks over
angles n at infinity.

Before closing this section we wish to remark, that the function

z = area sinh u

shows no kinks at all, as z is real for all real values of u.

3. Schwarz'8 theorem

The sudden change in direction exhibited by the curves dealt
with in the last section, must have its counterpart in z. If we
differentiate the arc cos we find:

Iz= --===
VI-u2

and, indeed, Z is real as long as Iu I< I, z is imaginary for all
values of Iu I> 1. Integrating again:

z =/ I du =arc cos u
lI-u2

and we conclude that the kinks are found much more easily if
we write z iIi the form of an integral than in the form of a closed
function.

Now take the function:

z = / lV~u ~
. I
z=---

lVI-u
(1)

z is real for all u < I, beyond this value z is a third root of a

negative number. As 1Y'-I = exp (± j n/3)

].¥'I u = lVu-I . exp (±j. n/3),

from which we see that the curve changes its direction at u = 1
by an angle ± n/3, at the same point it branches again.
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Generalizing, we find Schwarz's theorem: The curve:

z = f (u - U-I....,.).,,-p·d_~:-U--U...,.2)-::-p·-.-•• (2)

will show abrupt changes in direction, viz. at UI over an angle
PIn, at U 2 over an angle P2n etc.

Fig. 194Fig. 193

4. Triangles and rectangles

According to Schwarz's theorem a triangle will be ge.nerated by:

z = f U -I'. (1-u) -I'. du

with vertices at u = 0, u =1 and u = 00, (fig. 193) If, more in
particular, we choose PI = P2 = 2/3,
an equilateral triangle will be
generated, or, rather, a network of
equilateral triangles.

The length of the sides of the triangle are found with the aid
of Euler's Beta-functions, defined by:

I
B (p, q) = f u l>-1 (I-U)Q-I du

o

This integral gives at once the side from u = 0 to u = 1, if we
put p = 1-PI ; q = I-P2 ; sidelength = B (1- PI ; 1-P2)'

In order to calculate the side u = 1 to u = 00 we introduce the
new parameter u' = l/u, running from 1 to 0 and this side
will be:

which equals B (1- P2 ; 1 - Pa).
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... 00 TOO

The side from u = - 00 to u = 0 is expressed in a Beta-function
by introducing 1 - I/u as new parameter and will be:

B (1 -'fla ; 1 - PI)'

These values of the Beta-functions are as a rule computed
with the help of r functions, making use of Binet's formula:

B (p q) = r (p) . r (q) with: r (p) = f Xr>-l e-X dx.
, r(p + q) 0

In the case of an equilateral triangle PI = P2 = Pa = 2/3 and
all three sides have the length:

B ( I .1 _ F2 (1/3) - 5 3
3 '3) - r(2/3) - . 5.

Hexagons will be generated by (fig. 194):

z = f U-1!3 (I - U)-1!3 du

and the length of each side will be B (i ; i) = 2.0.

A rectangle is described by the
"elliptic integral":

/('

-, o
/(

u

K'

Fig. 195 with e (eccentricity) < 1, or,
written inversely, by u = 8 n z

(sine amplitude z), the rectangle having corners at u = ± 1 and
at u = ± I/e.

The length of the semibase is the integral from 0 to 1, which
is called the complete elliptic integral, K(e), and which is tabulated
(e.g. in Jahnke-Emde's Funktionentafeln) for all values of e.
One can prove by transformation of the variable u that the
integral from I/e to 00 also equals K (e) and that the integral from

1 to I/e equals K (VI- e2 ) = K'.

For e = I/V2, K (VI e2 ) = K (e) and the base of the rectangle is
twice the height. In order to obtain a square, one has to take

e~0.I7, because, as may be seen from the tables, K (VI e2 )=2K(e)
in this case.
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For relatively small values of e the following approximate
relation exists between e and the ratio between the rectangle­
sides, n:

e = 4 exp (-nn)
K (VI=e2)

n= 2 K (e) ,

Fig. 196

J I'
+'=_=------.C7~--------'p.

so that we are in a position to choose e in accordance with the
shape of the rectangle to be analytically represented.

We have seen in Oh. VI that a
rectangle can also be represented
by Weierstrass' integral:

or, inversely, by Weierstrass' function u = P (z) with corners,
where u = PI' P2' P3 respectively (fig. 196).

v=o

Fig. 197
z=VW

5. Application to potential and streamline problems

Many potential- and streamline problems are connected with
boundary contours which show corners and in connection with
what we said in Oh. XIV concerning the solutions of these problems,
it is of the utmost importance to be able to express these boun­
daries by analytical forms.

If, for example, a right-angled corner
is a line of constant potential we
may infer that, as the right angle is

representerl by z = Vu, the solution of
Laplace's differential equation in this
case will be:

where the lines v = constant will be
equipotential lines and the lines u=constant lines of force or
conversely, if the lines v = constant are streamlines, the lines
u = constant will be equipotential lines (fig. 197). The line v = 0
is the corner itself; for v> 0 we write the solution:

z(u)= VJVV1-ju!v
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and we find a set oforthogonal hyperbolas. Compare fig. 177 p. 188.
A boundary like that in fig. 198 is represented by:

z = arc cos u or u = cos z . (3)

f dw f dw
z = w2/S (1- W)2/S or z = wI/S (1- w)l/s

w=snz or w=p(z)

as the solutions of the Laplace problem
within a rectangle as an equipotential con­
tour and to

u

Fig. 198

if triangular, resp. hexagonal boundaries
c~me into play.

In order to find x and y for certain given
values of u and v, it is necessary to split

the integral into real and imaginary parts:

and the Laplace-problem will be solved by: w = cos z and can
be analyzed along the lines of Ch. XIV.

We are led to

z=J(U+jV)(du+jdv)=x+jy. (4)

from which: x = J U du - J V dv ; y = J V du +U dv.

-00 +00

Fig. 199

Although the problem is solved as far
as its principle is concerned, the mathe­
matical difficulties encountered in the
practical construction of the lines of force
may still be considerable.

What is the formula for the figureu.'-- _

-... composed of the two right-angled corners,
oL-~u------ shown in fig. I99? We note an angle nj2

at u = 0, an angle n at the infinite point
oftherealaxis, say, at u= 1, anangle-nj2

at, say, u = Uo and again an angle n at the infinite point of the
imaginary axis. The formula:
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will comply with all these kinks. It can be integrated:

.VU V-- V~+ Vu;;=1 . VU
Z= 2 arc sm - + uo-l 19 V V V '

Uo uo-u- uo-l. u

207

(5)

an integral which fixes the location of the point Uo at

z=n+jnVuo 1

so that the widths of the two channels appear to be nand
n Vuo-l respectively. If, conversely, these widths are given,
their ratio determines the value of Uo.

u'

o'-----.....,."u·--....==-

Fig. 200 Fig. 201

---u=o

Completing u to w gives us the solution of Laplace's problem
in case both corners are at the same potential. It is more likely
however, that each corner has its 0wn potential or is formed by
separate streamlines (fig. 200). We have to make a break at
u = 1 and we know from what was said concerning this subject
in Ch. XIV, that the solution of Laplace's equation in this case
is obtained by substituting exp w + 1 for u in equ. (5) of the
boundary line. An analysis of the field may be made in the
way, shown in Ch. XIV.

The curve of fig. 201 may be represented by:

. . Vu-l
Z = J -------;u-

integrated:

Z = j {Vu-l - arc tan Vu-l} . (6)

For u = 1, z = 0, so that the origin is situated in the corner;
for all negative values of u, Z = - j nj2 + real and this gives the
bottom line of the figure.
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If the two parts are at different potentials or are different
streamlines, we have to make a break in the u scale at u = 0 by
the substitution u' = 19 u and the field will be represented by
(6) after passing from u to exp w:

z=j{Vexpw-l-arctan Vexpw-l}.

For large values of Iw I this reduces to

z = j exp (wj2)

and this is the simple configuration of fig. 181, p. 89, namely a
set of circular lines of force.

The reader may find more examples in: L. M. MILNE-THOMSON.
Theoretical Hydrodynamics (1938) and R. V. CHURCHILL. In­
troduction to Complex Variables (1948). For the application to
turbine blades shaped as logarithmic spirals we may refer to
KONIG: Zeitschr. f. angewandte Mathern. und Mechanik 2, Heft
6 (1922) and to SORENSEN in the same periodical, vol. 7, Heft 2
(1927).



CHAPTER XVI

SPIRALS

1. Archimedes' spiral and hyperbolic spiral

The two classical spirals are Archimedes' spiral and the hyper­
bolic spiral. The former is the locus of points for which the radius
vector is proportional to the argument and the latter is the locus
of points for which the radius vector is inversely proportional
to the argument. In formula:

Archimedes' spiral z = u exp (ju).

Hyperbolic spiral z = 1/u exp (ju).

We encountered already Archimedes'
spiral (p. 151) as the tractor of the circle
evolvente. The heart-shaped disc used on
sewing machines in connection with the
coiling of the spool consists of two spirals Fig. 202

of Archimedes' (fig. 202). A pin in contact
with the disc performs a uniform motion backwards and forwards
if the disc rotates with constant angular velocity. A property of

Fig. 203 Fig. 204

this disc is that all secants through 0 have the same length. This
property is shared with the circle and with the cardioid (Ch. XX).

Archimedes' spiral and the hyperbolic spiral are mutual inver-
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sions. The tangent construction of both curves is simple and
may be read from the formula for the tangent:

Archimedes' spiral

Hyperbolic spiral

: i = (ju + 1) exp ju (fig. 203)

: i = ju 2 -.!- exp ju. (fig. 204)
u

The "slope", that is the angle between radius vector and tangent
is in both cases arc tan u, although with opposite signs.

2. Logarithmic 8piral

Much more important than the two spirals considered in the
last section, is the logarithmic 8piral, being the locus of points
for which the radius vector is an exponential function of the
argument:

z = exp {(ja + 1) u} . (1)

z = exp { (ja - 1) u}

which is again a logarithmic spiral. We
shall meet with more examples of resur­
rection as we proceed.

The "slope" follows from (1):

i = (ja + 1) z

\

\

, , ,
,

Fig. 205

, ,

"', ,

,
\

\

\

0_,- ---&.'-.,f<-~

and appears to be constant and equal to
arc tan a. (comp. fig. 205).

It is said that insects approach a
burning candle along a logarithmic spiral

because they try to see the light at a constant angle with the
direction they fly in just as they do when they fly in the
sunshine along a straight line.

a curve which has been studied intensively by DESCARTES (1640),
OLE RI2JMER (1735) and JACOB BERNOULLI (1654-1705). The
last-named geometer remarked on behalf of the logarithmic spiral:
"although changed I always come back the same", by which is
meant that many of the derived curves are again logarithmic
spirals. We encountered already as examples of this peculiar
behaviour the pedal, the centroid and the orthoptic curve.

Another example is the inversion:
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The boundary of two crystals which grow with different
velocities will be a logarithmic spiral for that part of the boundary,
where the growth of the slower crystal is rectilinear, and of the
faster one curvilinear .The velocity of the latter is VI+ a2 times
that of the former (fig. 205). The same is observed to hold for the
boundary line between two bacteria colonies spreading with
different velocities.

Apply all tangents to the spiral from a fixed point R. From
all tangent points the line OR is seen to subtend the fixed angle
n- arc tan a, so that all these points are situated on a circle (fig. 206).

Fig. 206

The normal let down from 0 on the tangent in point u has the
a . exp (u)

length (fig. 208) n= 1~'
vI + a2

Application of two equal constant forces P to cords wound
over two logarithmic spirals as shown in fig. 207 will produce a
moment proportional to exp(u), if u is the angle of rotation of
the system. Inversely, the rotation u is proportional to the
logarithm of the moment and this property is used in the
construction of measuring devices with logarithmic scales.

We calculate in the usual way the arc-length 8 and the radius
of curvature e and find:

- 1/1+a2
)

8 = ~+ a2 • exp (u) ; e= r-a-' exp (u
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from which we obtain as the natural formula of the logarithmic
spiral:

8=a. e
and from the standpoint of natural geometry the logarithmic
spiral is the simplest curve.

The radius vector itself, Oz (fig. 208) has a length exp (u) and
the projection of e on this radius vector is also exp (u). The
centre of curvature, Z1' which is a point of the evolute, is therefore
found by drawing the perpendicular to Oz in the point 0 and
the formula for the evolute is simply: Z1 = j z/a.

~_--'-_-,Z,

Fig. 207 Fig. 208

All evolutes are logarithmic spirals, similar to the original
one, the n-th evolute being:

z" = U/a)" . z.

Conversely, all involutes are also similar logarithmic spirals,
the n-th involute being:

Z----n = (j/a)----n • z •

The logarithmic spiral can even coincide with its own evolute
(and with all higher evolutes and all involutes), namely, if:

Z1 = j/a z (u) = z (u +1:', u)

or j /a = exp { (ja + 1) 1:', u} .

Separating absolute value and argument function gives:

l/a =exp (1:',u) ; n/2=a1:',u+2nn.
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Elimination of !:::.u leads to a transcendental equation for a:

IJa = exp{ (t - 2n) nJa}.

There is a solution for each whole value of n, for n = 1 we find
by numerical calculation (fig. 209):

a = 3,6; arc tan a = 75° . (= "slope").

The corresponding curve is drawn in fig. 209; if z is the original
curve, Zl is the first evolute, Z2 the second
one and so on. This special spiral, called
after BERNOULLI, may be called an auto­
evolute.

Let us now solve the problem of the

Fig. 209 Fig. 210

caustic (fig. 210). Denoting the slope by #( = arc tan a), the lightray
reflected in point P of the logarithmic spiral will be represented by

Z = exp (ja + I)u . {l + A. exp (2j#)}

where A. is a parameter along the reflected ray, measuring the
distance with OP = exp (ju) as unit of length. In order to find
point C of the envelope we put

dz=O
that is: ~ A.

(ja + I) {I + A. exp (2j #)} + ~u . exp (2j#) = O.

Separating real and imaginary parts:

1 + A. cos 2# - aA. sin 2# + ~ A. cos 2# = 0
~u

a + ).sin 21" +aA. cos 2# + ~ A. sin 2# = 0
~u
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from which we solve:
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()).
).=1' - =-2, ()u .

As ). = 1, we see that OP = PC and the line OC is parallel to

the tangent in P. As exp (2 j p) = 11 + ~'!., the caustic is with), = 1 :
-Ja

z(C) = -1~. exp (fa + 1 )u.
-Ja

The caustic is again a logarithmic spiral, similar to the
original one.

Inversely, the anticaustic of the same original spiral will be
(fig. 210):

z(A) = 1 2 ja exp (fa:+ l)u.

3. Syntrepency

Let us now consider two, congruent logarithmic spirals with
vertices 01 and 02' and which are tangent in point T. Because
the common tangent must make equal angles with the radii
vectores, this point T must be situated on the line connecting the

Fig. 211

two vertices. Now let each curve rotate round its own vertex
but in such a way that the two remain tangent. The tangent
point will move along the line °1 °2, Let T~ and T~ (fig. 211)
become tangent points after a certain rotation. The change in
length of the first radius vector, r 1 when going from T to T~,

is proportional to the distance 81 between T and T f
, measureG
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along the first curve and a similar relation applies to the second
curve. Now, as the sum of the radii is constant, r1 and r2 change
by equal, though opposite, amounts and 81 will be equal to 8 2,

The two curves, therefore, will roll without sliding.
Cu~~~_ sh~~J:lg this property, vi~. rolling without sliding when

~otatiIlg roun~ ~two fixed points, are called ynt~nt. , If the
two curves are congruent or if they are symmetrically congruent,
they are called isotrepent. The logarithmic spiral therefore is
isotrepent. Other examples of isotrepent curves are the ellipse
(Ch. VII) and the hyperbola (Ch. VIII).

We may note that the angular velocities of the two wheels
are different and that even the ratio of these angular velocities
is not constant, so that syntrepent
wheels present a means to transform
uniform rotations into non-uniform
rotations or, conversely, to correct for
the non-uniformity of a rotation.

Fig. 212 shows how this gear-coupling
works. Fig. 213 shows the interesting
case known as R0mer's wheels. Each

Fig. 212 Fig. 213

wheel consists of eight pieces of logarithmic spirals, all with the
centre of the wheel as their apex and one of the spirals is drawn
more completely.

If we represent these spirals by the formula:

z = j" exp (± j a + 1) u

we have to adapt the value of a to the requirement that when
going from A to B the argument difference a~ u be 11:/4, if the
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radius vector changes in the ratio exp (.6,u) equal to V2. From
this we figure:

.6,u=lnV2; a=n/4lnV2=2.24 ; arc tan a=66°.
Returning to fig. 211 we may observe, that if we keep the first

spiral fixed and let the second spiral roll over the first one, the
point 02 will describe a circle round the point 01'

Fig. 214

In connection with this result we may remark, that if the
logarithmic spiral rolls over a steady circle, the apex will des­
cribe a circle evolvente. We prove this as follows. Considering
that for the spiral the arc length is:

8 = VI + a2 exp
and that the circular arc, covered by 8 will be 8/r, the place of
point °will be: (fig. 214)

z= exp [j VI;a
2

exp u] [r-jexp (u+ j arc tan a)].

Introducing the new parameter: v = VI +a
2

exp u and knowing
r

that exp (j arc tan a) = 1 /
1+~a , the curve can be written:V I-Ja

z=r[l_j_V_.]exPj(V)
I-Ja

= _r_. [l-j(a+v)] expj(a+v). exp (-ja)
I-Ja

which is, apart from the constant factor exp ~ ~ ja) the well­
I-Ja '
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known formula for the circle evolvente. The evolvente is derived
from a circle with radius rIV1+a2 ; the line from any instantaneous
position of 0 to the corresponding tangent point is tangent
to this circle (fig. 214).

4. Klothoid

The klothoid is a spiral represented by Fresnel's integral:

o

The letter s is used for the
parameter as it represents the
arc length. For:

z=ei8',lil=1
and the arc length is

f IzIds = s indeed.

The curve plays an impor- Fig. 215

tant role in the theory of
optical diffraction, and in treatises on optics it is mostly called
CORNU'S spiral.

Fresnel's integral is compilated in tables (e.g. JAHNKE-E~IDE,

Funktionentafeln p. 23). It converge~to the values

z = ± VJ. Vnj2 for s = ± 00 (points F, foci, in fig. 215).

8

Z = f ei8' ds.
o

The slope of the tangent is S2 and the tangent will be vertical
for those values of s, for which

S2 = (2n + 1) 7lj2.

We find therefore as values for s:

point A (fig. 215) : s = V71j2
point B : s = y3nj2

and the arc length from A to B is jlnj2. (V3-1).
In the same way the points where the tangent is horizontal

will be found by the condition:

S2 = 2n 7lj2.
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In the usual way we calculate for the radius of curvature:

e= 1/28,

so that the natural equation is simply:

e . 8 = constant.

It is this property that makes the curve of importance for
roadbuilders. When tracing a bend one should not change the
radius of curvature discontinuously as this involves discontinuities
in centrifugal forces. One must, on the contrary, try to change
the radius of curvature as a continuous function of the arc
length 8. The most natural solution, therefore, is to take lIe
proportional to 8 as is the case with the klothoid. One follows
the klothoid from 0 to the point C where the slope is 11:14 1) and
then takes the symmetrical curve in order to cover a total change

in direction to 11:12. In point C, 8 = vn74 and the total length of

the bend therefore is vn. Fig. 216 shows a cycle track, consisting

of four klothoid segments, the total length being 4. vnJ2.
Road builders might also choose a

curve for which

lIe = constant VB
or lIe = constant 82•

but these curves do not possess simple
Fig. 216 geometric properties.

The klothoid's simple natural equa­
tion makes it invariant with respect to the so-called bimetal
trans/ormation. A property of a bimetal is the change of its
curvature to a certain amount when being heated. The curve

lIe = / (8)
is transformed into:

lIe = / (8) + const.

and as a rule the transform and the original curve belong tc
different classes of curves. The circle:

lIe =a
1) Up to this point the klothoid is hardly distinguishable from the

lemniscate (Ch. XVII) and road builders prefer the use of the term lem­
niscate bends.
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Fig. 217

is transformed into another circle: lie = a + const. The klothoid:

lie = 2s

is transformed into itself:

lie = 2 (s + so) ;

the new curve coincides with the old one after a shift over a
distance so'

S. Miscellaneous spirals

Of importance for wave propagation theory are the hyperbolic,
tangent and the hyperbolic cotangent:

z = tanh ((ja + 1) u) and z = cotanh ((ja + 1) u)

two spirals which are mutually
inverse. If a homogeneous con­
ducting cable is shortcircuited
at the far end, the entrance
impedance is a hyperbolic
tangent of an argument which
itself is proportional to the
length of the cable and is,
besides, dependent on the pro­
perties of the cable. If the far
end of the cable is left open
the entrance impedance is a
hyperbolic cotangent. The same applies to acoustic or mechanioal
conducting devices and even to optical devices.

As exp {- (ja + 1) u} decreases rapidly with an increasing value
of the parameter u, both:

t h ((" + 1) ) = exp { (ja + 1) u} - exp {- (ja + 1) u}
an l

a u exp {(ja + 1) u} + exp {- (ja + 1) u}

and its inversion, the cotanh, approach very quickly to the
logarithmic spiral:

z = 1 =f 2 exp {- 2 (ja + 1) u}

of which the apex lies in the point +1 of the real axis.
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For small values of u, the tanh. starts from 0, the cotanh. from
infinity. Expanding the exponentials in power-series:

expx= 1 +x+ ...
we find for small values of u:

tanh=(ja+1)u; cotanh=1/(ja+1)u.
from which we deduce that the slope of the tangent in 0.

1,02. 0.1

Fig. 218

respectively of the asymptote amounts to arc tan a (fig. 217).

By Nielsen's spiral (fig. 218) we mean:

where: z=Ei(ju)=Ciu+j8iu
00. fSinu

81 u = 71:/2 - -u-du

00

C· f cosu dlU=- -- U
U

-U

Ei u = J (e-u/u) du.
00

The functions are tabulated in JARNKE-EMDE: Funktionen­
tafeln p. 19; they are called integral sine, integral cosine and
integral logarithm.

The derivative is:
Z= cosu + jsin u = expju

u u u
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0,1

and represents in itself the hyperbolic spiral. Further:

Ii 1= l/u ; 8 = f Iii du = In u.

The curve is vertical where cos u = 0, u = (2n + 1) n/2 and in
combination with the formula of the
arc length 8, we may calculate the
length of any arc between vertical
tangents, for example the arc between
1t = n/2 and u = 3n/2 is:

/:;,8 = In 3n/2 -In n/2 = In 3.

The slope itself T appears to be equal
to u and the radius of curvature:
e = d~/dT = d In u/du = l/u, from which
follows the natural equation:

(l = exp (-8).

From the theorem that (IT= 1 follows
at once that the arc length of the Fig. 219

osculating circle measured between
the osculating point and its lowest point is constant = 1.

Fig. 219 shows HANKEL'S spirals:

Zo = H o (u) = Jo (u) +jNo (u) ;

ZI = HI (u) = J I (u) + jNI (u).

The properties of which may be found with the help of the
properties of HANKEL, BESSEL and NEUMANN functions, tabulated
in JAHNKE-EMDE, Funktionentafeln p. 90.



CHAPTER XVII

LEMNISCATE

1. Geometrical properties
In the first chapter of this book we dealt with the orthogonal

hyperbola:

z=~ VI +ju; . . . .. (la)

its inversion:

z= (lb)

will be called the lemniscate. The constant p will be called the
parameter of the hyperbola and of the lemniscate; it is also the
radius of the inversion circle. The lemniscate (GREEK: lemniskos=
looped knot) is a discovery by JACOB BERNOULLI (1694). In order
to distinguish it from other looped knots this particular one is
often called the "isosceles" or the "orthogonal" lemniscate in
the same way as its inversion is called the orthogonal hyperbola.

Fig. 220

The most important geometrical property of the lemniscate is
the constancy of the product of the two radii vectores from any
point of the curve to two fixed points. These fixed points. the
foci, are the points ± p on the real axis. Indeed the product is:

2 ps l+ju(z-p) (z+p)=zs_ps= __. _p2=p2 __.
l-1u l-1U
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and as the last factor has an absolute value 1, the product of the
moduli is constant and equal to p2. The lemniscate therefore
is a member of the family of CASSINI'S ovals, compare p. 292.

The argument factor determines the sum of the arguments
of the two radii vectores (fig. 220):

. l+ju
exp J (!pt + !P2) = -1-. • • • • • • (2)

-Ju

Now the argument of the vector from the origin to any point
of the curve, P, is from (1)

(
1+')1/4

exp (j !po) = 1-~:'
so that:

!Pt + !P2 = 4 !Po'

The bisector of the angle F t PF2 will have an inclination 2!po
with respect to the major axis. If it cuts this axis in Q, l::,. OQP
will be isosceles. The line PQ not only bisects L F t PF2 but also
the angle between OP and the normal. This is due to the fact
that the normal makes an angle 3!po with the major axis, as is
seen from the differentiation of (1).

The normal will be vertical if the argument is one third of a
right angle, ± n/6. As it follows from (2) that

U = - tan 2 !Po'

the values of u in the points with vertical normal (horizontal

tangent) will be ± V3. With this value of u we calculate for the
radius vector

so that these points appear to be on the inversion circle.

The tops of the lemniscate are the points ± p V2 on the real

axis, the radius of curvature in these points is found to be t p V2.
The origin is a double point, u = 00 and by differentiating (1)

we can show that the tangents have slopes of ± 45°.
The area of the complete lemniscate (two loops together) is

readily calculated in the usual way; it is 2 p2.
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For the length of the curve we find from (1):

This is an elliptical integral which can be transformed into a
more familiar form by the substitution

xV2-x2

u = l-x2

by which:
• dx

s=pj
V(l-x2 ) (l-x2/2)

and this is the elliptical integral of the first kind, the values of
which are given in many collections of numerical tables (e.g.
JAHNKE-EMDE: Funktionentafeln p. 57).

When u runs from 0 to 00 we describe one half loop; x runs
from 0 to 1 and we have to take the so-called complete integral,
which amounts to 1.8541. The total perimeter of the double loop
will be 7.4164 p.

From

we find

i = ;2 (l_ju)-s/2

Iii = ds/du = :2 (1 + u.2)-S/4

and for the argument function of the tangent:

hence:

. (l_ jU)-S/4
exp(JT)= l+ju '

dT/du = i I~U2

and = ds/du _ 1. .102 (1 + 2)1/4e dT/du - , P y ,<, u.

In the neighbourhood of the double point we may neglect
1 with respect to u2, so that approximately:

s=PV2.U- 1/2 ; e=-}pV2u1/2
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and we find that approximately the product:

es = i p2 = constant

a property which holds strictly for the klothoid. This property
accounts for the importance of both the klothoid and the
lemniscate in designing the bends of roads. (cf. p. 218).

2. Sinus spirals
The lemniscate is a member of the family of the sinus spirals,

which are defined by:

Izl" = 1· (2 p)" cos nf{l

a definition which by the introduction of the parameter:

U=- tan nf{l

is transformed into:
2p 1

z=-----;-::-----,-----=---:-:-;-,--
" (1 + ju)l/"
V2

(4)

The sinus spirals are a set of by pairs mutually inverse curves,
the most important of which have been known to us a long time
already:

~n=1

( -1

~ -t
~ 2
( -2

circle
straight line
cardioid
parabola

: lemniscate
: orthogonal hyperbola.

The sinus spirals have a number of properties in common.
One of them is the proportionality between the inclination of
the normal and the argument, the former rotating 'lith a speed,
n + 1 times the speed of rotation of the argument. This property
follows from the differentiation of (4), for the lemniscate we
found indeed in the last section the factor 3.

SERRET (1842) found two general expressions for the length
and the area of sinus spirals, making use of Euler's gamma­
function r, defined by:

00

r(x) = f e-<. ;"'-ld;.
o
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In order to avoid lengthy analytical calculations we give
Serret's formulas here without proof:

Length of sinus spiral:

l- r 2 (1/2n)
-p r(l/n)

Area of sinus spiral:

2(n-2l r (2/n)
A=2 n on.np2

° r2 (I/n)

Applied to the lemniscate for which n=2, and taking into
account that

rw = 3.6256 ; rm = 0t ; r(l) = 1;

these formulas yield:

l = 7.4164 p,
A = 2p2.

As another general theorem we may mention that the peUat--­
of a sinus spiral is again a sinus spiral, viz. of the order n/n + 1,
for example,

Sinus spiral

n = 1 circle
- t parabola
- 1 straight line
± 00 point
- 2 hyperbola

2 lemniscate
- 2/3

Pedal

n = t cardioid
- 1 straight line

00 point
1 circle
2 lemniscate
2/3

- 2 hyperbola

The reader is invited to verify the inversion theorem of the
pedal (p. 152) with the help of this table.

For the application of sinus spirals in electrical potential
problems we may refer to p. 194.

3. Lemniscate and hyperbola

'Ve shall see in this section that the lemniscate and the hyperbola
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are in many ways related to each other. We have introduced
them already as inverse curves:

For these curves we find:

pV2
ZJ.em=

Vl-ju
(7)

zji=2j(1±ju)

where the + sign is valid for the hyperbola, the minus sign for
the lemniscate. As appears from this formula, a radius through 0
makes equal angles with hyperbola and lemniscate but on opposite
sides (fig. 221, points P and Q).

Fig. 221

We may remark in passing that this is a general property of
inverse curves. It can be considered as a consequence of the
conformal transformation and can be proved more directly as
follows:

i (djdu) (ljz') = - (z zOjzOZ)= Real. ZZ

from which the angle property can be read.
The angle at P and Q appears to be nj2 - 29'0' if 9'0 is the

argument of OP. The two tangents in P and Q, therefore, meet
in point S at an angle 49'0' The slope of QS is nj2 - 9'0 and QS,
therefore, is normal to the line OV, which has a slope - 9'.

The reflection property of the hyperbola is inverted into the
property of the lemniscate that the tangent to the lemniscate
in P makes equal angles with the circles OF1P and OF2P.
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By application of the general formula for the pedal to the
formula (7) for the hyperbola, we find the pedal:

which, apart from the factor t, is identical with the lemniscate
considered up to now (fig. 222).

Fig. 222

Draw the tangent to the hyperbola in V (fig. 222). The base point
of the normal, let down on this tangent from 0, is W. V and W
have opposite arguments. Multiply OW by the factor 2 and we
come to point P of the greater lemniscate. From congruent
triangles we conclude that OV = PV and that L WPV = 2rpo. The
slope of VP, therefore, equals 3 rpo, so that VP is the normal to
the lemniscate in point P. This normal obviously runs through
point V of the hyperbola. Compare also fig. 221.

4. Wave impedance and wave admittance.

The equations (1) and (7) are connected with the wave
impedance and the wave admittance of infinitely long electrical
lines, containing resistance, self induction and capacity. If the
current be denoted by i, the voltage by v, the electrical
equations are:

- ~v/~x = (R+ jwL) i

v = - (lfju'C) . ~i/~x,

where R is the resistance per unit of length, L the self-induction
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per unit of length, OJ the angular frequency and C the capacity
per unit of length. The equations are solved by:

v = Vo exp (yx) ; i = io exp (yx)

where y is the so called propagation constant.
Obviously e>je>x = y and by introducing this into the electrical

equations we find for y:

y2 = jwC (R + jwL)

and with this value from either of the equations for the wave
impedance z = vji:

z = YLjC. VI +RjjwL.
Now writing

YLjC = pjV2 ; u =-""' -RjwL

the wave impedance takes the form of the orthogonal hyperbola (1)
or (7). The inversion, the wave admittance, will be represented
by the lemniscate.

Analogous considerations apply to the impedance and admit­
tance of mechanical or acoustical devices and the geometrical
representation is of great help when working with these quantities.

5. Straight line guides

Generalized lemniscates are generated by JAMES WATT'S hinge
joint mechanism (1784). Two fixed points F1 and F 2 (fig. 223) at a
distance 2p carry rotary levers F1A and F 2B, each of a length b.
A and B are connected by a rod of length 2c which can freely

~
cpce

b b

E- _ 0

f, c oq>··p Fz

Fig. 223 Fig. 224

rotate round its ends. The path described by point P, the middle
of AB, is called Watt's lemniscate (fig. 224). In the neighbourhood
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B

of the double point we find fairly long stretches of the curve,
which are practically straight and Watt designed this con­
struction in order to transform rotary movements into straight
ones. We speak of straight line guides. CATALAN (1885) gave
the following derivation of the equation of Watt's lemniscate.

Complete the parallelogram ABCD (fig. 223)

L. FICO ~ L. F 2DO .'. FIC = F 2D

.'.L. FIAC~ 6. F 2BD .'. L FICA = L F 2DB.

But as F ICjjF2D, these angles must be right. This enables us
to calculate OP = Iz I as a function of the argument rp:

EF2= p sin rp ; ED = Vc2- p2 cos 2rp

Izl2= BD2 = b2 - (p sin rp ± VC2 - p2 cos2 rp)2; (9)

the + sign is valid if A and B are on opposite sides of the line
F 1 F 2 and (9) may be considered as the lemniscate's equation
in polar coordinates.

Let us now specialize by the choice c = p. Equ. (9) gives two
different results, depending on whether we use the -or the + sign.

For the - sign we arrive at the
trivial result

Izi =b

and P describes a circle.
In the case of the + sign we find:

Iz l2 = b2 - 4p 2 sin2 rp.

!' and this curve is called Booth's
Fig. 225 lemniscate.

Specializing one step further we take
b = p Vi The mechanism takes the form of fig. 225 and the
equation is:

Izj2 = 2p 2 cos 2rp

which we recognize as Bernoulli's lemniscate in the guise of a
sinus spiral.

In connection with this subject we will mention two more
straight line guides: the conchoid guide and Peaucellier's invertor.
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The conchoid guide is illustrated in fig. 226. A lever AB rotates
round A. A rod CBD can slide through a rotary sleeve at the
fixed point D. The stretch BC is constant and C describes a circle
conchoid; if we choose suitable conditions the path of C may be
very nearly straight.

Peaucellier's invertor consists of two levers of length a,
fig. 227, rotating round O. Between the ends A and B a rhomb is
spanned, consisting of four rods of length c. We shall prove that

A

Fig. 226 Fig. 227

P and Q belong together as inversions. As they both lie on the
bisector of / .... AOB they are in one line with O. Draw the circle
of radius c round A. Applying the theorem of constant power
for this circle, we have:

OP.OQ = OR.OS = (a - c) (a + c) = a2 - c2 = Const.,

which proves the inversion character of the two points P and Q.
If now we make P describe a circle passing through 0 by

connecting it by a rotary lever to some appropriately chosen
fixed point C, Q will describe the inversion of this circle and
that is a straight line.



CHAPTER XVIII

CYCLOID

1. Geometrical properties

The normal cycloid or for short the cycloid is the track described
by a point of a circle which rolls along a straight line. (Greek:
kyklos=wheel). Although the curve itself was known to the
Greeks, the most important properties have been discovered by
Galileo Galilei (1564-1642) and by Christiaan Huygens (1629­
1695-) in connection with mechanical problems.

Fig. 228

We shall conceive the circle to roll underneath and against
a horizontal straight line, called the directrix. We choose the
radius of the circle equal to pj4, where p is called the cycloid's
parameter. We choose, furthermore, the origin at a distance pj4
under the directrix. The movement of the point P can be
considered as the superposition of a uniform translation of the
centre of the rolling circle in a horizontal direction and a uniform
rotation round this centre; in formula:

z=tp{u+jexp (ju)}, . (1)

if we start the u scale at point A directly above the origin (fig. 1).
This point A and all its equivalents are cusps with vertical tangents,
as appears from the differentiation of (1).

The instantaneous tangent point R of the rolling circle and
the directrix is given by

z (R) = i p (u + j)
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and hence the vector from P to R is represented by:

z (R)-z (P) = t P{j-j exp (ju)}.

233

We may compare this result with the general equation for
the tangent:

i = t p {1- exp (ju) } (2)

which differs from it only by the factor j. This means, first, that
PR is normal to the tangent in P. This same result can be deduced
in a kinematical way, if we realize that R is the instantaneous
centre of rotation of the rolling circle, so that all points of the
circle will describe infinit,ely small parts of circles round R so
that the instantaneous direction of the moving point P must
be normal to RP.

Moreover, the absolute value of i equals the length PRo The
absolute value of the velocity and of PR as well is:

Ii I = t p V{1- exp (ju) } { 1- exp (- ju) } = t p sin uj2 . (3)

Although R is on the normal, the distance PR is not the
radius of curvature. If we calculate the latter by the general
formula, we find easily:

e=psinuj2. (4)

which means that the radius of curvature is cut into two equal
parts by the directrix. A beam of parallel light rays impinging
on a reflecting cycloidal surface along the line RP would be
focussed by the mirror in R. Although a cycloidical mirror would
show many optical deficiencies it would form an image without
plane curvature of an object, situated at infinity, the plane of
the image being the plane of the directrix. This property is shared
neither by the spherical nor by the parabolic mirror.

The arc length measured from the lowest point 1t=7I: of the
cycloid is:

'U

8 = f lildu =p cos uj2
"

and the total length of one arc amounts to 2p.

(5)
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Combination of (4) and (5) yields as the natural equation of
the cycloid:

This is the equation of a circle in Cartesian coordinates.
If, therefore, a cycloid rocks on a horizontal plane (fig. 229), the
centre of curvature belonging to the instantaneous point of support
describes a circle of radius p round the equilibrium position To
of the supporting point. As (fig. 229) the radius of curvature PK

equals p sin uJ2 and PTo= 8.= P cos uJ2, the angle KToP equals uJ2.
From the equation (2) for PR we may infer that this vector also
makes an angle uJ2 with the directrix, so that in fig. 129 ToK is
normal to the directrix.

Draw the top tangent TS parallel to the directrix. We shall
prove that S is halfway betweenP and To by the following
sequence of calculations.

KR = t p sin uJ2 ; KQ = t p sin2 uJ2 ; TTo= t p (1 - sin2 uJ2) =

= ~- P cos2 uJ2 ; ToS = t p cos uJ2 = 8J2.

Take (fig. 230) two points PI and P 2 on the cycloid differing by
n in the values of the parameter. Their normals will be mutually
orthogonal and by (4) and (5) we see that 8 for one point equals
e for the other point.

We shall conclude this section with the remark that the area
of the cycloid is calculated to 136 np2, that is, three times the
area of the rolling circle.
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2. The projections of the screw, trochoids

In defining the cycloid we made the centre of the rotating
circle move with uniform velocity in the direction of the x-axis.
Let it instead move now with the same velocity in the direction
normal to the x-y-plane. The latter rotating circle will at any
moment be projected on the former rotating circle by projecting

Fig. 230

rays having an inclination of nJ4. As in the latter case each point
of the circle describes a screw we may infer that the cycloid is
the projection of the screw (fig. 231).

If the projecting rays have an inclination which differs from
n!4 or if the pitch of the screw differs from 2n. pJ4, the projected
curve will be represented by the general formula:

z = { p {ku + j exp (ju)}.

This curve can also be interpreted as the path of a point of
a circle rolling with a certain amount of slip or, better still, as
the path of a point at a distance pJ4 from the centre of a circle
of radius kpJ4 which rolls without slip. These curves are called
trochoids (Greek: trochos = wheel). They exhibit a double point
in case k < 1, and maxima and minima only if k> 1.

3. Brachistochrone

JOHANN BERNOULLI found (1697), that the cycloid has the
property of being the brachistochrone, with which we mean to
say, that of all the curves, connecting two points A and B, the
cycloid is the one along which a material point, accelerated by
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gravity, will move from A to B in the shortest time. As we shall
presently see this mechanical property is a consequence of the
geometrical property that the directrix cuts the normal into two
equal parts, which fact we shall express by the formula (fig. 232):

YA - YP = t esin a . (6)

(That a equals uj2 is of no importance for this problem).

Fig. 231 Fig. 232

(8)

We can change from one kinematical track to a neighbouring
one by shifting the elements of the track in the direction of the
normal over a distance bn, where bn may vary along the track s.
The length of the element is then varied by (fig. 233):

bn
b dB = --48. (7)

e
The material point will move over ds with a velocity, found

from the principle of constant energy:

v = V2g . VYA '- YP

where YA is the ordinate of the starting point, at which the
velocity is supposed to be zero. As the variation in YP equals
bn . sin a, the variation of the velocity amounts to:

bv _ 1 on. sin a
--"2" ----.
V YA -YP

The variation in the time element necessary to
element dB will be:

bt = b ds = vtJ ds - ds . bv .
V v2

cover the arc
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Now suppose this to be negative, the original track would
then not have been the track of the shortest falling time. If it
were positive we could have taken lJn with opposite sign and
would have found a track on the opposite side of the original
track with shorter falling time. If the original track is to be the
brachistochrone it will be necessary that for all parts of it
lJt = 0, or that:

lJ ds lJv
(ii=v

Inserting here (7) and (8) we find for the condition:

YA - YP = } esin a

and this is just the property of the cycloid referred to above.

The energy-principle was applied, supposing that the falling
body assumes no rotational energy. If now we allow it to rotate
with angular velocity w, the equation expressing the energy
principle reads:

t mv2 + t J w 2 = mg (YA - Yp)

where J is the inertia moment. There are many cases where w
will be proportional to v, say w = vjr and we calculate:

~, V--- 'th' m
v = ~ IJ YA - YP WI IJ = IJ m + Jjr2 '

The only thing that has happened is an apparent change in g;
the cycloid remains however the brachistochrone.

If the motion starts without initial velocity each point of the

\~4K

~
A~7

Fig. 233 Fig. 234

plane lower than the starting point A can be reached by one
cycloid and the track will show a lowest point if the straight
line connecting A with the endpoint has a slope smaller than arc
tan 2/11:, that is 32.5.° (fig. 234)
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4. Tautochrone

Let us now figure out the actual amount of the falling time
for a particle moving along the cycloid. It is:

"
t= f7= flz~dU,

...
where

jzl=}psinuj2 v=V2Y·YYo y

so that:

y=tp cos u,

".
1/p f sin i u du

t = V2g' ycosuo-cos u·
...

The indefinite integraJ is known, viz.

1 . 1 + 2 cos u-cos Uo- ,;- arc Sin 1
v2 +cosu

as may be verified by differentiating back again. The arc sin
assumes the value nj2 for the starting point u = Uo' A remarkable
thing occurs, if we lay the end point of the integral in the bottom
point of the cycloid, u = n, for now the arc sin assumes the
value -nj2 irrespective of the value of U o' The definite integral
has therefore the value

irrespective of the choice of Uo' This property of constant falling
time was discovered by HUYGENS (1670) and because of this
property the cycloid is called the tautochrone or isochrone.

HUYGENS used this property in order to construct a pendulum
with a period strictly independent of the amplitude. As is generally
known, this is only approximately the case for a circular pendulum.
If a mass is allowed to slide backwards and forwards along a

cycloid, the total period will be 2n VPTfJ, irrespectiveofthe amplitude.
HUYGENS obtained this result by suspending a mass by a cord
unwound from the cycloid's evolute.
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Applying the general recipe for finding evolutes to form. (1)
of the cycloid, we arrive at:

t P {u - j exp (ju) + 2j}

which, apart from a constant shift t p (n + 2j), is identical with (1)
and therefore represents again a
cycloid. HUYGENS therefore com­
pelled the suspending cord of his
pendulum to oscillate between two
cycloid arcs (fig. 235).

If, as is the case with the cycloid,
the evolute is congruent with the
original curve, all higher evolutes Fig. 235

and also the first and the higher
involutes will be congruent with the original curve.

5. Path of electron in (;ombined electric and magnetic fields;
phygoids

Suppose an electron to be subject to an electric field in the
direction of the imaginary axis, which field imparts to it an acceler­
ation -g and at the same time subject to a magnetic fielrl in the
direction normal to the x-v-plane, this field imparting to it an
acceleration in the x-v-plane normal to and proportional to the
instantaneous velocity. The mechanical equation will be, denoting
by dots differentiations with respect to time:

z= - jg + j w Z [w is known as Larmor's frequency]

which can be solved by well-known methods, with the result:

z = t p fk w t + exp (j w t) }

where p is arbitrary, k = 4g(pw2.
The path is obviously a trochoid, degenerating into a normal

cycloid, if incidentally k = 1. In the cycloidal case, p = 4g(w2 ,

and we calculate for the velocity at the lowest point of the

path V2. g(w. If the velocity in the bottom point is greater than
this amount, the path will be a trochoid with double points
and loops.
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Paths showing a certain resemblance with these curves are
described by an aeroplane with stopped motor and fixed elevator.
The plane is subject to the gravitational acceleration - g and
to a lift normal to the velocity and proportional to the square
of the velocity. The equation of motion, therefore, is:

Z = - jg + jw IzIz
The solutions of this differential equation are called phygoids 1)

from Greek phyge = flight. A number of types is given in fig. 236,

Fig. 236

where the line y = 0 is chosen in such a way that on it the velocity
would be zero. As in the case of trochoids, we distinghuish
phygoids with loops (tumblers); with. cusps and phygoids of the
inflected type. The general formulas can be given with the aid
of elliptic functions and in order to avoid lengthy analytical
work we shall not enter into this problem here. Incidentally the
type with cusps consists of a series of semicircles of radius R,
represented by:

zjR=(lje)snudnu+jen2 u ; u=tViifll, e2 =t,
where sn ~~, en u and dn u are the elliptic functions of eccentricity
e, which can be found in tabular collections such as JAHNKE­

EMDE'S Funktionentafeln.
A few properties can be found by elementary methods. For

1) F. W. LANCHESTER. AerodoneticB, London 1908.
'V. F. DURAND. Aerodynamic Theory. Vol. 5, p. 86.
F. WILLERS. Graphische Integration, p. 104.
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the straight line solution, nr. 1, the total acceleration is zero:

0= -g +wv2

from which, together with

v2 = 2gh,

we find for the vertical distance of this line to the dead line
y = 0, the value h = Ij2w. The lift constant w is an experimental
datum, and cannot be made to disappear from the formulas.

The radius of the semicircles follows from the condition, that
in the bottom point the total acceleration shall be v2jR:

v2jR = - g +wv2 •

As v2 = 2gR we find for R: 3j2w that is, three times the value
of h, found above.

6. The cycloid as envelope and as caustic

We shall now demonstrate that the cycloid can be considered
as the envelope of all successive positions of the diameter of a
circle of radius pj2 rolling over a straight line.

~
":,'R

'=" , 5
, M

;' P4
q

Fig. 237 Fig. 238

Choosing the position of the ongm as shown in fig. 237, the
centre of the rolling circle will be at t p (u-j), if the circle has
rotated over an angle uj2. The diameter can be represented by:

z = - js exp (j uj2) + t p (u-j) ,

if s is the distance measured along the diameter. In order to find
the envelope we calculate

llzjlls = - j exp (j uj2) and llzjllu = t p + t s exp (J' uj2) ;

they are parallel if the ratios between the real and between the
imaginary parts are equal, which leads to:

s = - t p cos uj2,
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This is the tangent point of the diameter to the' envelope.
Substituting this value into the equation of the diameter yields
for the envelope:

z = t p { 7l + j exp (ju)}

and this again is the cycloid.
Fig. 238 shows a tooth bar and wheel transmission based on this

geometrical property of the cycloid.
The extremity Q (fig. 237) of the diameter describes a cycloid,

the linear dimensions of which are twice those of the envelope,
and a light ray coming from above will be reflected by this
larger cycloid in the direction of QP. We see, therefore, that the
envelope studied above, can be considered as the caustic of the
larger cycloid for a light source, at infinity.
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CHAPTER XIX

EPI- AND HYPOCYCLOIDS

1. Introduction

The generalisation of the normal cycloid leads to the curves
described by the points of a rolling circle which rolls on a stationary
circle (the pitch circle). If the rolling circle rolls on the outside
of the stationary circle the cycloids generated are epicycloids, if
it rolls on the inside of the stationary circle they are hypocycloids.
The normal cycloid may be considered as an epi- or a hypocycloid
for an infinite radius of the pitch circle.

The curves described by points not situated on the circle itself
but inside or outside it and moving together with the rolling
circle are called epi- and hypotrochoids. They are also termed
lenghthened or shortened cycloids according as to whether the
point under conSideration is situated outside or inside the rolling
circle.

These curves and many of their properties were already known
to the Greeks, who gave them
the above mentioned names. Both
kyklos and trochos mean wheel.
In their geocentric conception of
the universe the planets moved
along cycloids and trochoids. In
Western Europe OLE R0MER

(1644-1710), a Dane, drew atten­
tion to these curves in connection
with the problem of admissible
gear wheel tooth profiles (1674) (Ch. XXI).

The cycloids are particularly well suited for a treatment, which
uses complex notation. We shall give the rolling circle a radius
r and the pitch circle a radius nr. Let the point of contact of pitch
cIrcle and rolling circle move on the pitch circle with the angular
velocity w., then the centre of the rolling circle can be represented
by: (fig. 239)

ZM = (n + 1) r. exp (jw).
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if we choose it on the real axis at the moment when w = 0. The
angle over which a radius of the rolling circle has turned
relatively to its initial direction equals (n + l)w and point P
of the cycloid therefore is given by:

z = (n + 1) r. exp (jw) + r. exp (j (n + 1) w), (1)

a formula which holds both for epi- and hypocycloids, if only
we attribute a negative value to n in the case of hypocycloids.
The constant n can have any real value, even smaller than 1,
which only means that the rolling circle is larger than the pitch
circle. Hypocycloids with InJ < 1 are called pericycloids. However,

.. a I,Jericycloid is always identical with an e' cloid. Indeed, by

. introducing a new parameter w' = (1 + n) w, the formula (1),
in which in the case of a pericycloid - 1 < n < 0, is transformed
into:

z = (n + 1) {r e;cp j (w'/l + n) + (rln + 1) exp jw'}

and this is, apart from the factor (n + 1) an epicycloid described
by a circle r, rolling on a stationary circle of radius rl(n + 1), so
that the new ratio between the radii of stationary and rolling
circle is n' = lin + 1 and this a positive value.

For example, the cardioid (n= 1) is an epicycloid represented by

z = 2p exp (jw) + p exp (2jw)

but this can also be written as a pericycloid (n = - t)

z = 2 {p exp (j w'/2) + t p exp (jw')}

(with Wi = 2w.), this being the track of a point of a rolling circle
2p rolling on the inside of a stationary circle p.

For n equal to 0, the rolling circle is infinitely large and the
cycloid will be identical with the circle evolvente.

If n is a whole number, the cycloid will repeat itself after the
centre of the rolling circle has described one complete revolution
round the pitch circle. If n is a rational fraction alb, the cycloid
will consist of a arcs all of which will have been described after
b revolutions of the centre of the rolling circle round the pitch
circle.

In order to describe a trochoid the ratio between the two
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(2)

(Ch. VII)

amplitudes in (1) need not be the same as the ratio between the
arguments of the two exponentials, so that any curve:

z = p exp (jw) + q exp {j (n + 1) w} •

will be a trochoid. We see, therefore, that the ellipse

z = ~ (a +b) exp (ju) + ~ (a - b) exp (- jw)

is a trochoid, n = -- 2.

A curve:

z = ao+ a l exp (jnl w) +... +a, exp (jn,w)

will be called a trochoid of higher order or a hypertrochoid. The
constant ao is of no importance for the nature of the curve as
it only means a shifting of the origin.

A remarkable hypertrochoid is:

z = exp (jw) +1exp (3jw) + ~exp (5jw) +... in info =! Ig j cotan w/2.

which is the same curve as z=! Ig ju, namely a set of horizontal
parallel lines, compare p. 201.

We have still to prove the above equality of the series and
the right-hand member. To this end we write:

Ig (1 + z) = z - z2/2 + z3/3 - z4/4 in info

Ig (1 - z) = - z - z2/2 - z3/3 - z4/4 in info
-------------------subtract
! Ig (1 + z)/(1 - z) = z + z3/3 + z5/5 in info

and for z = exp (jw) this is equivalent with ! Ig j cotan w/2.

2. Natural equation, evoz.ute

The tangent of the cycloids is found by differentiation of (1):

z = j (n + 1) r {exp (jw) + exp (j (n + 1) w) } (3)

from which we find for an arc length element:

8= Iii = Vi7 = 2 (n+ 1) rcos (tn w)

and for the arc length, by integration with respect to w:

_4 n + 1 . (I )8- --rsm 2nw.
n
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n=oo normal cycloid 1= 8r
2 nephroid (fig. 243) 12r
1 cardioid (fig. 242) 16r

t double cardioid 24r
0 evolvente 00

-1 contact point 0
-2 diameter 4r

5 sandstar (fig. 241) ¥-r- 2

-3 deltoid (fig. 240) !~rs
-4 astroid (fig. 171, p. 178) 6r.

Hypocycloids

The length of one arc of the curve is found by introducing
the values ± nJn for the limits of the integral, which gives

1=8 n + 1
r

n
a formula which applies to a number of important curves, which
together with their lengths are collected in the following table:

Epicycloids

As to the direction of Z, it is interesting to compare it with the
vector from P to the contact point B of pitch circle and rolling
circle ZB = nr exp (jw). This vector is: (fig. 239)

zp - ZB = r {exp (jw) + exp j (n + 1) w}

and differs from Z by an imaginary constant. This vector, therefore,
is the normal and this result is evident from a kinematic point
of view, as the contact point B acts as the instantaneous centre
of rotation of the rolling circle.

By elementary methods we can find from fig. 239 that the length
of PB equals

2r cos (t n w).

Now, by using the general formula for it, we readily find the
radius of curvature of the cycloid to be:

e= 4 (n + IJn + 2) r cos (t nw),

from which we see that this radius is cut by the pitch circle in
the ratio (n+2)Jn. This ratio is indicated in fig. 240 to 243; for the
normal cycloid (n = 00) this ratio is 1, as we saw already in the
preceding chapter.
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Comparing the expressions found for the arc length s and the
radius of curvature e we find that their relation is

and this is the natural equation of the cycloids, which for the
normal cycloid (n = <:Xl) leads to:

S2 +e2 = constant.

Fig. 240 Fig. 241 Fig. 242 Fig. 243

By applying the well-known recipe for finding the equation
of the evolute we obtain:

Zevolute = n + 2 {(n + 1) r exp jw - r exp (j (n + 1) w)}.
n

This curve is similar to the original cycloid; the amplification
factor is (n + 2)/n. The minus sign before the second term means
that the evolute is shifted over a half arc length with respect
to the original curve. Compare fig. 240 to 243, where the evolutes
are inserted into the figures. For n = <:Xl (normal cycloid) the
evolute is congruent to the original curve. Of course, all higher
evolutes and also the first and higher evolventes are similar to
the original cycloid and this is one of the most striking properties
of this class of curves.

3. The cycloids as envelopes

Just as in the case of the normal cycloid we may ask whether
the general cycloid can be considered as the envelope of the
successive positions of the diameter of a rolling circle of radius 2r.
This appears indeed to be so. The centre of this rolling circle is
given by (fig. 244):

Z (C) = (n +2)r exp (fw)
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2r which, augmented by the length 4r of the
diameter, gives a value

l=8
n-t..!r

n

nr

Fig. 244

and the slope of the diameter, which was vertical in the position
w = 0 will now be n/2 + (1 + n/2) w.

Introducing the parameter s along the diameter, this will be
represented by:

z = (n + 2)r exp (jw) +js exp (j (1 + n/2) w) (4)

where the factor j in the second term stands for exp (j n/2).
In order to find the envelope we split up the equation:

dz=O

in its real and imaginary parts and calculate sand llS/llW for the
contact point of the diameter with the envelope. We find in this way:

s=rsin(tnw) ; llS/llw=-(n+2)rcosn-nw). (5)

Introducing s into (4), we find for the envelope precisely the
same cycloid as that represented by formula (1). Integrating the

slip velocity llS/llW from (5) between the
limits - n/n and + n/n we find for the
total slip:

for the length of the arc, in accordance with the result found
in the last section.

The classical cases of the generation of envelopes, treated in
Ch. XIII may all be considered as special cases of the present
subject. The sliding ladder enveloping the astroid may be con­
sidered as the diameter of a circle of radius r, rolling within a
circle of radius 2r. The nephroid is enveloped by the diameter of
a circle of radius r, rolling on a stationary circle of the same
radius r, while the cardioid is enveloped by the diameter of a
circle 2r rolling on a circle r.

4. Deltoid

The hypocycloid n = - 3 with three cusps owes its importance
to JACOB STEINER'S (1796-1863) studies. We saw already in
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Ch. IV that it is in a curious way connected with the triangle.
It is described by a point of a rolling circle of radius R/2 rolling
inside a stationary circle of radius 3R/2. But it is also possible
to consider it as the hypocycloid of the order n = - 3/2, in which
case it is described by a point of a rolling circle of radius R.
By this circle it is described three times (fig. 245). The opposite
points A and B of the rolling circle R
describe the same hypocycloid, but this same
hypocycloid is also generated as the envelope
of the positions of the diameter AB (tangent
point C). We see, therefore, that all tangents
of the cycloid have the same length 2R
between the two points of intersection with
the curve and that the middles M of these
tangent chords are all situated on a circle Fig. 245

of radius R/2. This circle will be called
Feuerbach's circle and its centre F Feuerbach's point. If M is
represented by R/2 exp (jw), the inclination of the tangent BA
will be - w/2.

If the rolling circle R proceeds over an angle D,w, the diameter
AB turns over an angle -D,w/2 and when M has arrived at the
position opposite its initial one on Feuerbach's circle, the
diameter, now in the position A/B/, will be normal to AB. These
two normal tangents will intersect on Feuerbach's circle:
Feuerbach'R circle is the locus of the points of intersection of
two mutually orthogonal tangents to the deltoid: Feuerbach's
circle is the orthoptic curve.

Point A is represented by the formula:

z (w) = t R exp (jw) +R exp (- j w/2). (1)

Point B can be represented by a similar formula, with a minus
sign before the second term, but it can also be considered as
represented by (1) for the value w + 2n of the parameter.

The direction of the tangent (argument L) in point A can be
calculated from (1), giving:

exp (jL) = ViR = exp j w/4 .. ', LA = w/4.

Obviously the direction of the tangent in point B (w + 2n)
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will be: LB = 00/4 + 11:/2, which shows that these two tangents
are orthogonal (and will meet on Feuerbach's circle) and, con­
versely, that the tangent points of two mutually orthogonal
tangents are the extremities of a third tangent (e.g. points C
and C' in fig. 245).

Point C, the tangent point of a tangent with slope L = - 00/2
will be represented by form. (1) for the value - 200 of the
parameter.

The contact point S of the rolling circle R and the stationary
circle l R is the instantaneous centre of rotation of the rolling
circle. The normals to the hypocycloid in A, Band C will therefore
all go through this point S.

5. The deltoid and the orthogonal complete quadrangle

Let us now take an arbitrary point Zo inside the cycloid (0 from
orthocentre) and try to find the tangents passing through O. Ifz
is a tangent to the cycloid it must have the same direction as
z - Zo if it is to pass through O. The condition therefore is:

(z - zo)/(z' - z~) =z/z'.
Introducing z and z from (1) this leads to:

exp (a/2 j (0) - ~~ exp (ioo) + 2~o exp (j 00/2) - 1 = O. (2)

This is an equation of the third order in exp (j 00/2), which means
that the cycloid is of class 3. Denote the three solutions for 00

by 001' 002 and OOa, then this equation must be identical with:

(exp i 00/2 - exp i 001/ 2) (exp i 00/2 - exp i 002/ 2)Xi. . (3)
X (exp j 00/2 - exp i OOa/2) = 0 ~

Equating the coefficients of the corresponding powers of
exp (j 00/2) of (2) and (3) gives us:

exp (i 001/2) + exp (i 002/ 2) + exp (i OOa/2) = 2 z~/R

exp (- j 001/2) + exp (- i 002/2) + exp (- i OOa/2) = 2Zo/R

exp j (001/2) • exp (i 002/2) • exp (i OOa/2) = 1.

The last equation teaches us:

! (001 + 002 + COa) = 0 (mod. 211:),
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or, in words: the sum of the inclinations of three concun;ent
tangents, ! I W; is zero, mod. 71:.

The second equation shows how Zo is built up from three
vectors ell e2, ea, each of length R/2 and having the directions
- w1/2; - w2/2 and - w3/2.

Denote the tangent points by C1 , C2, Ca' Now, as C1 is
characterized by the value WI of the parameter the point
exp (- jw1/2) will be the middle of the tangent in C1 and will

Fig. 246

lie on Feuerbach's circle and the three vectors ei = iRexp (- jw;/2),
have simple geometric meanings. The vector FO is the vector sum
of these three vectors, (fig. 246).

Now draw the tangents orthogonal to the tangents in C1 and
C2• They will be characterized by the W values WI + 271: and
W2 + 271:. Now again:

t (WI + 271:) +t (W2 + 271:) + tWa = 0 (mod. 271:)

and the corresponding tangents will again be concurrent (fig. 246
point Ba). In the same way we find that:

t (WI + 271:) +t w2 + t (wa + 271:) = 0 (mod. 271:)

tWl+t (w2 + 271:) +t (wa+ 271:) = 0 (mod. 271:)

leading to points B1 and B2•
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As exp (-l j (co; + 2n)) = - exp (- t j w;) = argument function
of point - e; the location of the points will be:

o : (el + e2 + ea)

B l : (+ el - e2 - ea)

B 2 : (- el + e2 - ea)

Ba : (- el - e2 + ea)

These four points form together with the six tangents a
complete orthogonal quadrangle, each point carrying three sides
of the quadrangle.

Another interesting point is point e:

lying symmetrically to 0 with respect to F and differing from
all three B-points by a vector of length 2 IeI= R. Point e, there­
fore, is the circumcentre of 6 Bl B2 Ba and the radius of the
circumcircle appears to be R. As 0 plays the same role as the three
points Bl B2 Ba the triangles OBl B 2, OB2 Ba and OBaBl will also
have circumcircles of radius R, the circumcentres lying opposite
the points B. with respect to F.

We have already seen that two orthogonal tangents have their
tangent points at the extremities of a third tangent. The sides
of the triangle Bl B2Ba, therefore, touch the cycloid in points
Dv D2, Da which lie on one tangent with el , e2, C3 respectively.

The middle of Bl B2 is represented by

Z = -! ZB, + ! ZB, = - ea

and will be a point of Feuerbach's circle. So are the middles
of B2Ba and BaB10 The middle of OBI lies also on this circle, as
it is represented by

! Zo + i ZB, = e l

and the same can be said of the middles of the sides OB2 and OBa.
As we know already, two mutually orthogonal tangents will

also intersect on Feuerbach's circle.
FEUERBACH'S circle, therefore, carries nine particular points

of the quadrangle and is therefore also known by the name of
"nine points circle". (fig. 246).
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The centre of gravity of D. BI B2 Ba is given by

253

so that it lies on the line 00 and divides it in the ratio 2 : 1; the
distance OF is also divided in the same ratio.

Conversely, it is possible to start from any triangle BI B 2Ba
for the construction of the corresponding cycloid. First find
Feuerbach's point F in the triangle and the three vectors from F
to the middles of the three sides. Let these vectors be
t R exp (j w1j2); t R exp (j w2j2) and Rj2 exp (j waj2) respectively.
Then turn the triangle round F, in other words, add an equal
amount to all w;'s until Iw; = O. The corresponding cycloid will
then be the curve represented by (1).

6. Projective properties 01 the deltoid

The condition WI + W 2 + Wa = 0 for the concurrency of the
tangents in three points characterized by the parameter values
WI' w2 and Wa reminds us of the condition

for the collinearity of three points on a cubic (Ch. VI).
Indeed, the deltoid being of the third class and fourth order

is the dual transform of a cubic of the fourth class.
All projective properties found for third order curves in Ch. VI

will be valid for the deltoid in the dual translation.
For example: the deltoid will occasionally be enveloped by

the lines connecting a linear point series with a projective
point involution on another straight line, the two carrier lines
being tangents to the cycloid. For let point 0 describe the
tangent WI' Draw in each position of 0 the two remaining tangents
W 2 and Wa passing through O. (WI + w2 + wa = 0) (mod. 4n).
The points of intersection of these two tangents with an
arbitrary fourth tangent W4 will cut out an involution on W4' if
o describes WI and this involution will be projective to the point
series 0 on WI' The double points of the involution correspond
to the points of intersection of WI with the cycloid, the two
"double rays" therefore are mutually orthogonal. The points



254 XIX. Epi- and hypocycloids

of intersection of W 2 and Wa with W 4 lie harmonically with respect
to these two points; the double points being characterized by:
W4' -1 WI' ! WI - W4 and by W4' 2n - wI!2, wl !2 - 2n - W 4•

Through each point of W4 belonging to a pair of the involution,
passes a third tangent. These tangents are respectively characte­
rized by

and will be concurrent (point 0') with the tangent.

which is independent of the choice of W 2 and Wa. As w' - W 4 =

W4 - WI' the tangents w' and WI make equal angles with W 4'

The point series 0' on w' and 0 on WI will be projective; they are
even congruent because the extremities of w' correspond to the
extremities of WI and because w' and WI have equal lengths.

Another theorem: Choose three concurrent tangents (point 0),
the tangent points being C1> C2, Ca' Draw from all points Ci

the remaining tangent, these three are concurrent.
We may consider this theorem to be proved by the dual

theorem of Ch. VI. We can, however, prove it also directly as
follows. For the three concurrent tangents we have:

For the tangents in points C1> C2 and Ca, we have respectively:

2wI + w~ = 0

2w2 + w~ = 0

2wa+w~= 0

and on adding we see that also

w~ +w~+w~ = 0

and this means that these three tangents are concurrent. Let
the point be 0', it is characterized by:

and it can be constructed along the lines found earlier for O.
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7. Roses

The curves represented by

z = 2r cos nw exp (jw)

255

are called roses. The modulus changes sinusoidally if the
argument w increases at an uniform rate, so that the curve
consists of a number -of leaves. By writing cos nw as a sum of
two exponentials the formula takes the form:

z = r {exp (i (1 +- n) w) + exp (j (1 - n)w) }

which shows that the roses are trochoids; they are often called
star-trochoids. As n is arbitrary and mw' may be substituted for
w, any trochoid:

z = A { exp (jv1 w) + exp (jv2w)}

will be a rose, n = (VI - v2)/(vl + v2 ).

Examples:

n= 1. z = r {exp (2jw) + 1} Fig. 247

This is a circle.

This curve is called the fourleaved clover (fig.
247).

n=2.

u=3.

z = r {exp (3jw) + exp (- jw)}

z = r { exp (4jw) + exp (- 2jw) }
Fig. 248

and this is the three-leaved clover or trefoil (fig. 248).
The clover curves are of frequent occurrence when plotting

tensor properties of ternary or quaternary cristals, for example
the piezo-electric characteristic of quartz is represented by a
three-leaved clover.

n = 1/3. z = r {(exp 0 jw) + exp i (jw)}

and this is a lima~on. Indeed, the lima~on in general is the
conchoidal transform of a circle for a pole lying on the circle.
If, therefore, this circle is represented by:

z = 2r cos wexp (jw)
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the equation for the lima/ion will be:

z = (2r cos w + 1) exp jw.

Now, shift the origin to the centre of the circle, that is to say,
subtract r, then the equation of the lima/ion becomes:

z=rexp (2jw) +lexp (jw)

and if, finally, we choose 1= r, this represents a rose, as the change
of the parameter from w to 2wj3 does not change the shape of
the curve (fig. 249).

Theorem: The roses are the pedals of the cycloids. Let the
cycloid be given by

z = (,u + 1) r exp (jw) + r exp (i (,u + 1) w) .

By applying the general formula of the pedal
we find:

Fig. 249 zv=(,uj2+1)r{expjw+expj(,u+l)w}

and this represents a rose with n = ,uj(,u + 2); tabulated for the
various cycloids:

Cycloid

circle

nephroid

caustic

deltoid

astroid

,u=0
1

2

-3

-4

Pedal

n = 0 circle

~ lima/ion
l two ears (fig. 249)

3 threeleaved clover

2 fourleaved clover



CHAPTER XX

CARDIOID AND LIMAf;ON

1. Various properties and applications of the cardioid

One of the most important epicycloids is the cardioid to which
we shall now devote a separate chapter. This curve was discovered
in the seventeenth century, HUYGENS (1629-1695) being one
of the scientists who was particularly interested in its prop Eltties.

Fig. 250

The cardioid is described by a point of a circle rolling on a
stationary circle, the pitch circle, of the same radius (p/2) as
the rolling circle (fig. 250); P will be called the parameter of the
cardioid. The curve has one cusp, which we shall call the focus
(F in fig. 250). Choosing the origin in the centre of the pitch circle,
the equation is:

z = p exp (ju) +t p exp (2ju) . (1)

If we commute the two terms and try to interpret z again as
representing a cycloid this leads to the conception of the cardioid
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as the pericycloid described by a point of a rolling circle of radius
p, rolling along the inside of a stationary circle of radius p/2.
The instantaneous tangent point of both circles is denoted by Rp

in fig. 250, while R. is the tangent point corresponding to the same
point P if we consider the cardioid as an epicycloid. As R. and
Rp act as instantaneous centres of rotation, they' must both be
situated on the normal to the cardioid in point P.

As the circle p travels twice completely round the pitch circle
during the generation of the cardioid, we find two points, P l and
P 2 corresponding to the same tangent point Rp and these points
lie diametrically opposite each other on the circle p. The two
normals, erected in P l and P 2, are in Rp perpendicular to each
other, so that we find the property that the pitch circle is the
locus of the points of intersection of two mutually perpendicular
normals to the cardioid.

From the fact that the arcs FR •• and P 2R •• are equal we
conclude that FP2 must be parallel to OM2 and must therefore
be part of the line P l P 2• In other words: Any chord drawn in the
cardioid and passing through the focus has a constant length
2p and cuts the cardioid in two points so situated that the
tangents to the cardioid in these points are mutually perpendicular.

One more property can be read from fig. 250. The chord P l P 2

is cut into two equal parts by the pitch circle and this leads to
the formulation of the conchoidal property of the cardioid: The
cardioid is the locus of the points generated by measuring constant
distances p in both directions on any ray of the pencil F, starting
from the second point of intersection of the ray with a circle
of radius p/2, F being situated on the circle.

The direct analytical proof of this conchoidal property is given
by shifting the origin to the focus:

z = } p + p exp (ju) + p/2 exp (2ju)

= (p cos u + p) exp ju.

(2)

(3)

See fig. 251, where p cos u is the intercept of the ray cut off by
the pitch circle; p is the prolongation of constant length beyond
the pitch circle.

We speak of cardioid microphones or cardioid aerial systems,
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if their sensitivity illstribution in space is represented by a
cardioid. For a monopole microphone or aerial this distribution
is uniform: p exp ju, for a dipole system it obeys the cosine law:
p. cos u. exp ju. The combination of the two produces a cardioidal
curve according to equ. 3.

Fig. 251

In general we find for the tangent to the cardioid form. (1):

Z= jp{ exp (ju) + exp (2ju)}

the argument factor of which is:

(' )_1/ if exp (iu) + exp (2ju)1 _ . (' ~ )
exp rr: - ~ _j { exp (_ ju) + exp (_ 2 ju)} - J exp J 2 U ,

which means that the slope of the normal in point P(·u) amounts
to I u.

The interpretation of equ. (1) that z is the addition of the vector
p exp ju, drawn from 0 to M (fig. 250) and the vector ~- p exp 2ju
from M to point P of the cardioid is once again shown in fig. 252.
If, now, we take into account that the normal in P has the slope
I u we may infer that a light ray incident horizontally from the
right hand side will be reflected, as shown in fig. 252, towards
the point F. This use of the cardioid for the production of an
anastigmatic image was invented by SIEDENTOPF (1908). He
called this apparatus the cardioid condensor.
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Equ. (3) shows that the argument of the vector FP equals u;
by measuring in fig. 251 the angle 2u at F we come to point
pi (2u) of the cardioid.

From (2) we find for pi:

z (2u) = t p {I + exp (2ju) p.
which shows that t p. Fp l is the square of FQ, so that the
triangles FplQ and FQO must be similar. The angle FP/Q,
therefore, is also u and the slope of QPI is 3u. As this is i times
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the value of the parameter in pI, P'Q must be a normal to the
cardioid.

Two points of the cardioid have mutually orthogonal tangents
(or mutually orthogonal normals) if their parameters differ by
n[3. As the argument of the vector FP equals the parameter,
three rays through F making angles n/3 with each other will
cut the cardioid in six points where the normals are either parallel
or mutually orthogonal (fig. 253). Two special cases are represented
in fig. 255 and 256, showing remarkable regularities. From fig. 253
we deduce that the three rays passing through F and making angles
of n/3 with each other cut the pitch circle in three points, lying
2n/3 arc degrees apart and forming an equilateral triangle. So
do the three points R, where two mutually orthogonal normals
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intersect and which are situated on the pitch circle opposite to
the three points mentioned above. Fig. 254 may be illustrative in
this repect.

Fig. 254

Fig. 253

Fig. 255 Fig. 256

Various properties of the cardioid have already been mentioned
in earlier chapters. Its evolute is similar and three times as small,
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whereas the involute is also similar but three times as large.
The total perimeter is 8p, the area is 3/2 n p2, that is, six time.s
the area of the pitch circle. Owing to the fact that the cardioid
is an algebraic curve of the fourth order it can be generated
synthetically as the intersection of two projective involutions.
And so on.

2. The cardioid as caustic

Owing to the fact that the cardioid is an epicycloid it has
the property that it envelops all positions of a diameter of a
circle of radius p, rolling on the pitch circle of radius p12.
Fig. 257. If the centre of this circle p, M, were fixed and the

Fig. 257

cardioid were allowed to rotate round 0 ,this diameter and the
cardioid might work as a transmission gear of a transformation ratio
2, the cardioid making twice as many rotations as the circle p.

We see by elementary reasoning that the line MP in M makes
an angle ul2 with the tangent MB of a circle of radius l p
having 0 as centre and this tangent makes the same angle with
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the line AM, where A is the top of the cardioid. If this circle
t p is a mirror, all rays coming from A will be reflected tangent
to the cardioid, so that the cardioid is the caustic of the circle.
This was proved already in Oh. XIII.

If two mutually perpendicular rays start from A they will be
reflected at points B a,nd D, situated diametrically opposite each
other on the circle t p (fig. 258) and after reflection meet again
in a point 0, again on the circle ~ p. The circle i p is part
of the orthoptic curve.

Fig.

The normals in the tangent points to the cardioid, PI and
P 2 will also be mutually perpendicular and intersect in point R p

of the pitch circle (compare fig. 250). Again by comparing
fig. 250 we know that P1P 2 passes through the focus F and
that P1M = MP2• M is, therefore, the centre of the rectangle
P1R p P 20 and lies on the diagonal ORp • As MRp must also be
equal to p, MRp must be the diameter of the pitch circle and
contain the point O. All these interrelations are shown in fig. 258.

3. Cardioid as inversion 01 parabola

Starting from equ.(2) in the form.:

z = t p {l + exp (ju) p
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we transform this by the parameter transformation

u = tan v/2

into the algebraic form:
-2p

z = (V+j)2

by which we discover that the cardioid is the inversion of the
parabola:

z = - ~- P (V __ j)2

with respect to an inversion circle of radius p. See fig. 259. F is

Fig. 259

focus for both parabola and cardioid. The pitch circle is inverted
into the directrix of the parabola. For v = ± 1 both curves assume
the values z = ± jp; they intersect on t,he imaginary axis. The
slope T in this point follows for both from

. ) I-j .
exp (2 JT = ± 1+ i = ± J

hence T = ± :7:/4.
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By this inversion relation it is easy to find properties of one
of the two curves by simply translating known properties of
the second one. It must be kept in mind that straight lines are
inverted to circles passing through F (F-circles) and the reverse
and that angles are left unchanged by the inversion.

Fig. 260

Fig. 260 shows the inversion of the well-known reflection law
of the parabola. A horizontal ray is reflected by the parabola
towards the focus F. The inversion of the horizontal ray is an
F-circle tangent to the horizontal axis and the inversion of a ray
through F is again a ray through F. Circle FP and ray FP make
equal angles with the normal to the cardioid in P.

Another theorem states that two mutually orthogonal tangents
to the parabola intersect in a point of the directrix. The inversion
of this theorem is (fig. 261) that two mutually orthogonal F­
circles tangent to the cardioid intersect in a point of the pitch
circle.

A third theorem states that the base of a perpendicular let
down from the focus on a tangent of the parabola lies on the
top-tangent. Inversely (fig. 262): the diametrically opposite point
to F of any tangent F-circle of the cardioid lies on the top
tangent F-circle (of radius p).
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We may note in passing that the centres M of all these circles
lie on the pitch circle (radius p/2).

There is another relation between the cardioid and the top
tangent F-circle. The cardioid is the pedal of the latter. This
was already shown in Oh. XI. This property is shown separately
in the lower part of fig. 262 and in the upper part it means that

Fig. 261 Fig. 262

T

PD is tangent to the circle p. This may be proved in another way
by observing that L TFD = L DFP, which is the inversion of
the parabola property that the perpendicular let down from F
onto the tangent (FD) bisects the angle between the two lines
connecting F with the top and the tangent point. Owing to
this equality of angles, arc FD and L PDF are both complements
of the same quantity and therefore PD must be a tangent to
the circle p.

Let us also try to find a new theorem for the parabola by
inverting the cardioid property shown in fig. 253, 254, 255 and 256.
It can be put as follows: Mutually orthogonal F -circles tangent
to the parabola will touch the parabola in six points which are
projected from the focus by rays making angles of n/3 with
each other.

4. Application to electrical circuit theory

Again, by virtue of its algebraic character, the cardioid will
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occur as impedance contour or as contour representing the complex
ratio of two voltages or currents, always with the angular
frequency w acting as parameter. Take for instance, the series
connection of a resistance R, a selfinduction L and a condensor C,
connected to a voltage U of the main. The ratio of the voltage
of the selfinduction to that of the main will be:

UL j co L w2LC
U R + jwL + IjjwC w2LC - jwRC - 1

Now give R the special value 2VL!C, then:

UL -I 1
U (j +V)2 with v = w VLC

1

2jw VW-w2W + 1

-I
(-Ijv +j)2

and this is:

and this is a cardioid (fig. 263). For the voltage on the condensor

we find, again for R= 2 VL!C :
Uc IfjwC
11 R + jwL + IfjwC

which is represented by the same cardioid, see fig. 263. The third
partial voltage, that of the resistance, is:

Fig. 263

UR R 2jv
U = R-jL + IfjwC = (v +j)2

and runs through the toptangent F-circle.
ULand Uc have opposite directions;

in general the parameter values v and
Ijv mark opposite points on the cardioid,
The part of the UL vector intercepted
between the toptangent F -circle and the
cardioid has the same absolute value as
Uc, a geometrical property of the car­
dioid not mentioned up to now.

Another reason why the cardioid appears in electrotechnics is
its being the square of the curve

z = Ij(v + j),
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which is a circle. Now the complex ratio of output- to input
voltage of an amplification can often be represented by this circle.
The result of the amplification by two steps in cascade is then
represented by a cardioid, if there is no back coupling.

5. Pascal'8 lima90n

Pascal's limaQon is in more than one respect the generali­
zation of the cardioid. We shall introduce the limaQon as a circle­
conchoid with the conchoidal origin on the circle itself. Let the
base circle again have the radius pJ2 and denote the arbitrary
constant prolongation of all rays by l. The limaQon is then
represented (compare equ.3, p.258) by the formula:

z = (p cos u + l) exp ju

and the cardioid is the special case where l = p.
Substituting exponentionals for the cosine, this can also be

written in the form:

z = t p + l exp (ju) + t p exp (2ju).

The first term drops if we take the centre of the base circle

Fig. 264

as the ongm and what remains is the equation of a trochoid
(fig. 264). The radius of both the pitch circle and the rolling circle
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is l/2 and the lima<;on is generated by a point inside the rolling
circle at a distance p/2 from its centre. As shown in fig. 264 many
properties of the cardioid are shared by the lima<;on. The chord
PIP2 passes through the focus F and all chords through F have
the constant length 2l. The normal in P goes through the instant­
aneous tangent point R of pitch circle and rolling circle and the
normals of the two "opposite" points PI and P2 intersect on the
base circle of radius p/2, but not at a right angle as was the case
for the cardioid.

A third way to consider the lima<;on as a generalization of the
cardioid is to conceive of it as a pedal' of a circle, but now the
origin does not lie on the circle itself as we assumed in the case
where the cardioid turned out to be the pedal. In our case the
circle is of radius l and has its centre M at a distance p from F
(fig. 265).

A fourth generalization occurs if we consider the lima<;on to
be the inversion of a conic

expju
Z= -~--'--~

P cos u + l

which is a parabola if l = p; it will be an ellipse for l > p (as in
the fig. 264 and 265), and a hyperbola if we choose l < p.

Let us ask now, where in the
figure of the lima<;on we find
the inversion of the second focus
of the ellipse. Let F' be the point
in question. A circle through F'
and F will be the inversion of a ray
through the second focus of the
ellipse. It is reflected by the ellipse
towards F and this reflected ray
remains a straight line through F
after inversion. All circles through
F and F' cut the lima<;on at the
same angle as does the straight Fig. 265

line from F to the point of inter-
section (fig. 265), and this property can be used for the con­
struction of the point F'.



270 xx. Cardoid and lima~on

The circle l of fig. 265 is the inversion of the major auxiliary
circle of the ellipse, which is the pedal of the ellipse for F as origin.
We see in this way that the roles of base curve and pedal have
been interchanged by the inversion. Compare the genera.! theorem
of p. 152. The circle pJ2 in fig. 265 is the inversion of one of
the directrices.



CHAPTER XXI

GEAR WHEEL TOOTH PROFILES

nr

Fig. 266

0,

1. Coupling of epi- and hypocycloids

In Ch. XIX we found that any epicycloid can be regarded
as the envelope of the positions of the diameter of a circle rolling
on the fixed circle.

We shall now generalise this result in such a way, that we
regard the diameter as a hypocycloid of the rolling circle and
try to find the envelope of the positions of a hypocycloid with
m arcs within a circle of radius mr rolling on a fixed circle nr.
The result will again be an epicycloid.

We can prove this without any calculations by considering
the circles nr and rnr both as pitch circles, and letting them rotate
round their centres 0 1 and O2 and by
introducing a circle r as shown in fig. 266.
This circle r when rolling on the pitch
circle nr would describe an epicycloid,
but if we, conversely, rotate the circle
nr together with the epicycloid, this will
cut the now stationary circle r in a point
P that will move over this circle with
constant angular velocity so long as the
circle nr rotates uniformly.

Circle r would generate a hypocycloid in circle mr if it rolled
on it on the inside. Conversely, if we keep circle r fixed but let
circle mr rotate together with the hypocycloid, the point of
intersection P of hypocycloid and circle r will move on the
circle r with constant velocity.

We see in this way that the epicycloid and the hypocycloid
will always have the point P in common. But as for both the
direction of the normal will be from P to the contact point A,
the two cycloids will always be tangent to each other.

If now we keep one of the pitch circles fixed and let the other
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one roll on it, it will be clear that the epicycloid envelops the
consecutive positions of the hypocycloid, q.e.d.

In technical terms, we have here devised a gear wheel tooth
coupling. The circle r will be called the contact curve. In practice
the teeth are constructed in such a way that the tops are parts
of epicycloids and the feet parts of hypocycloids; the contact
curve consists in this case of two arcs of two circles (fig. 273).

2. The general problem

The question arises whether other profiles of gear wheel teeth
apart from cycloidical ones are possible and we shall now proceed
to solve the general problem.

'What is required is the transformation of a rotation OJ round
the axis 0 1 into a proportional rotation -(r1!r2) OJ round the
axis 02' r1 and r2 being the radii of the two pitch circles, which
may eventually be immaterial and have only a geometrical
meaning. Their tangent point is A (fig. 267). The material teeth

Fig. 267

rotating together with t,he pitch circles will make contact at
the point C. The locus of the contact points C will be called the
contact curve c:

c= c1exp (jy), . (1)

where IcI and yare functions of the parameter OJ, the angle over
which the left circle is rotated.

Denote the profile of the left wheel in the position OJ = 0 by
ZI' taking 0 1 as origin; likewise denote the profile of the right
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wheel in the position w = 0 by %2' taking O2 as origin. Along the
contour of the profiles we adopt w-scales so that ZI(W) and
Z2(W) are the points making contact in the point C(w) after a
rotation w, respectively - (1'1/1'2) w of the wheels. Then:

c(w) = %1(W) exp (jw) - 1'1 = Z2(W) exp (- j (1'1/1'2) w) + 1'2' (2)

This equation enables us to calculate two of the three curves
c(w), %1(W) and %2(W) if one of them is known. However, we
cannot choose this third one arbitrarily as by (2) alone it is not
certain that the teeth are tangent to each other in the position w.
A second condition is provided by the so-called gear-tooth law
which requires that the velocity components of the two profiles
at the point C normal to the common tangent be the same. If
b1 and b2 (fig. 268) are the perpendiculars let down from 0 1 and O2

Fig. 268

(3)
exp (jy)

exp (-jy)

on the common normal at the point C, these velocity components
are proportional to wb1 and (1'1/1'2)wb2• Equality of these means
that b1/b2 = 1'1/1'2' which in its turn means, geometrically, that
the normal has to go through the tangent point A of the two
pitch circles. The condItion, that the instantaneous tangents of
the two profiles shall be perpendicular to the vector c takes the
following analytical form:

ZI exp (jw) _ Z2 exp (-j (1'1/1'2) w) __
z; exp '-jw) - z; exp (j (1']/1'2) w) -
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From (2.) and (3) we can eliminate two of the three functions
c, Zl and Z2 and find the condition to which either of these three
functions is subjected. On carrying out this elimination, we find

ZlZ; + z; Zl = r1 Zl exp (jw) + r1z; exp (-jw), (4)

d!c!/dw=r1siny, • • • (5)

Z2Z; + Z;Z2 = - r 2 z2 exp (-j (r1h) (0) -r2 z; exp (j (r1/r2) OJ). (6)

Admissible tooth shapes have to be in accordance with (4)
and (6) respectively. (6) is similar to (4) and actually takes the
form (4) on passing to the new variables z' and OJ', defined by
ZI = - Z2' OJ' = - (r1/r2)OJ.

From (5) we see that the contact curve may have any shape;
(5) only fixes the OJ-scale on this contact curve.

In designing a tooth-wheel coupling we may start by trying
to find a solution of (4), Le. an admissible tooth profile of the
left wheel. With the aid of (2) we then find the corresponding
shape of the right wheel teeth. If desired, (2) also teaches us the
shape of the corresponding contact curve. We shall now give a
number of examples.

3. Evolvente wheel teeth

Try to solve (4) by the equation of a circle evolvente:

Zl = kr1 (1 + jOJ) exp (- jw) exp( - ifp).. . . (7)

This curve emanates from a circle of radius kr1 at the point D
(fig. 269) and is bent downwards. Substituting (7) in (4) we find
that this solution is admissible, provided k = cos "P, which means
geometrically that the tangent at the point D goes through A.
From (2) we calculate for the contact curve

c = r1 (- sin "P + OJ cos "P) j exp( - j"P). (8)

This is a straight line going through A and making an angle
tp with the imaginary axis; in other words it is the tangent DA.
It is described at a velocity c= r1 cos "P = krp

The contact point falls on A (c = 0) if OJ = tan "P' If we wish
to use this position of the profile as a starting profile, we have
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to multiply (7) by exp(j tan "P). And if, moreover, we wish eo=O
to fall on the point A, we have to shift the w-scale over the
amount tan "P' These two operations applied to.. (7) give us for
the profile equation

Zl = kr1 {I + i(w + tan"P)} exp (- ieo) exp (- i"P),
from which, with (2), we find for the contact curve

c = kr1 • iw . exp (- i"P),

and for the engaging profile

- Z2= kra { 1- i(w r1/r2) - tan "P} exp (iwr1/r2) exp (i"P),
which is again a circle evolvente emanating from a circle of radius
kr2 (see fig. 269).

As the argument of the contact point C is constant, the normal
pressure exerted by one wheel on the other is invariable in
direction, which is of importance for smooth running. This,
combined with the ready way of machining evolvente teeth, has
made this profile very popular; "P is standardized at Hio or 20°.

Fig. 269 Fig. 270

4. Pin wheels

A circular pin, Zl = ao+ a1 exp {i/(eo)}, solves (4).

Equ. 4 is to be considered as a differential equation for I(w).
This I(w) determines the way in which the contact point moves
on the pin during the rotation.

If in particular ao = - r1, I(w) = w/2 (fig. 270). The engaging
profile consists of straight lines (Compare section 6).
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Fig. 271

5. Trochoids

Trochoids of the form

Zl = al exp (jnlw) + a2 exp (jn2w)

conform with (4), if n l = - a2/(a2 - r l }, n2 = - 1.
A special class is the one for which a2 = r 1 (n + I) In:

Zl= a l exp { - j(n + l}w} + n+ 1 rl exp (-jw),
n

the contact curve of which is the circle c = rl/n + al exp( -jnw}.
As an example fig. 271 shows the coupling

of an ellipse (considered as a trochoid,
" n = - 2) and a shortened nephroid (n = 2).

Both pitch circles have radius r l ; radius
contact curve = a l •

Further specifying al = r = rl/n, Zl is
the cycloid:

Zl = r exp {-j (n + I) w } +
+ (n + I) r exp (-jw)

with the contact circle

c= r { 1 + exp (- jnw) }.

An example of a higher order trochoid solving (4) is:

Zl = ((n + 1)/n} r l exp (-jw) + (rl/n) exp {-j (n + I) w} +

+p exp (-jw (n + 2)/2}.

which is a parallel of a trochoid.

6. Parallel curve.9

We can prove generally that a parallel curve of an admissible
tooth profile is again admissible; in other words, if Z is a solution
of (4), its parallel curve z(p}, defined by z(p} = Z + jp Vzlz',
is likewise a solution.

Indeed z(p} differs from z only by a real factor which is the
same for the conjugate functions and cancels out when introduced
into (4). What remains to be proved is that

jpz' ViIi" - jp z Vi"7i = 0,

which is obviously true.
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The contact curve changes generally also when passing to
parallel curves of the tooth profiles. The contact curve c(p) may
be derived from the original one, c, by

c(p) = c + jp Wexp (jw).

By (3) the second term on the right of the last equation is
- p exp(jy), so that

c(p) = c - p exp (jy) = (Icl- p) exp (jy).

The interpretation is that all moduli of c are increased by a
constant stretch - p; in other words, c(p) is the conchoidal
transform of c. In the case of cycloidal teeth c is a circle passing
through A, its conchoidal transform is a limaQon so that we find
the limaQon as contact curve for teeth in the shape of parallel
curves to cycloids. In the special case where p = - 2 r1/n, the
limaQon becomes a cardioid:

c=(r1/n) + (r1/n) exp (- jnw) + 2 (r1/n) exp (-j (n/2) w).

In the case of trochoidal teeth the contact curve is a circle,
not passing through the origin A; on introducing the parallel

Fig. 272

tooth shapes we are led to a contact curve in the form of the
general circle conchoid.

Lecocq's tooth wheel pump (1866) (fig. 272) is of this kind.
The teeth are circles which are considered to be the parallel curves
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Fig. 273

of points lying inside the pitch circle, these points being con­
sidered as hypotrochoids with n = - 1. The feet are parallel curves
of lima90ns, which can be considered as epitrochoids with n = + 1.
The contact curve consists of parts of two conchoids.

7. Slip
The point of contact moves over the two profiles at velocities

equal to the absolute values of ZI and Z2' The slip is the difference
between these two quantities:

Slip = lsi = VZl z~ - VZ2 z;
Now, from (3) we have:

VZl z~ = ± j exp (jy) z; exp (- jw),
and from (2):

z~ exp (- jw) = c· - jc· - jr1 ;

so that

~~ = ± j (c' - jc" - jr1 ) exp (iy).

In the same way we find

~; =± j (c' + j (r1h) c' - jr1 ) exp (iy),

so that we find for the slip

lsi = (h -+- r 2)/r2) Icl ; s = ± j ((r1 + r 2)h) c.
The sign of the slip is of importance if we are interested in

the frictional forces exerted by one wheel on the other. These
/ forces have opposite directions for the

- ---, '---- "'" two wheels and we shall reckon s so as
,/ - . i"A\,\,;t \ to give it the direction of the frictional

:' ~ force exerted on the wheel under con-
I

\

\ .. / sideration. Applying this rule we have
,,__,/' \", -' to assign the - sign to SI and the

I

I + sign to S2'

In order to keep the slip small, we
have to keep the dimensions of the

contact curve small and to make it pass through A. In the
case of evolvente and cycloidal teeth the contact curve passes
indeed through A; in order to keep it small we have to take a
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small pitch, choosing many teeth which are parts of evolventes
and cycloids. Fig. 273 shows the comparison of the contact curves
of evolvente and cycloidal teeth consisting of epicycloidal tops
and hypocycloidal feet.

As the contact curve of trochoidal teeth is a circle not passing
through A, the slip must be more serious in this case than in
the corresponding case of cycloidal teeth. By a conchoidal trans­
formation this contact curve may be attracted towards A, so
that we find profiles of low slip amongst the teeth in the shape
of parallels to the trochoids. Profiles of this kind are applied in
tooth wheel pumps like Lecocq's.



APPENDIX I

ANAL YTICAL FORMULAS

Euler's rule:

exp (± ju) = cos u ± j sin u.

Goniomet'ric f'unctions:

exp (ju) + exp (- ju)
COS~t= 2·

, . exp (ju) - exp (- ju)
Jsnu= 2 '

Hyperbolic functions:

h
exp u + exp (- u)

cos u= 2

inh exp u - exp (-u)
s u= 2

cosh2 U - sinh2 U = 1

d cosh u 'nh d sinh u h
du = Sl u; du = cos u

cos ju = cosh u sinju = j sinh u.

De Moivre:

exp (jnu) = cos (nu) + j sin (nu) = (cos u + j sin u)"

Logarithms :

exp (± jnj2) = ± j .• 19 ± j= ± jnj2

exp (jn. 2n) = 1 .. 19 1 = 0 + j .n2n

19 a = 19 a + j • n2n

exp (j . n) = -1 •• 19 (-1) = jn

19 (-a)=lga+jn

19 (-a)=lg a + i (2n + 1) n,



Analytical formulas

Roots:

VJ = ± t V2 (l + j)

V j=±tV2(l-j)..
VI = exp (j 21CkJn) , k = 1, 2, ... , n.

Decomposition:

z = Iz Iexp (jC) = x + jy

ZO = IzIexp (-m= x - jy

x = Re z = t (z + ZO) ; y = 1m z = t (z-ZO)

Iz! = VZ? ; exp g = VzJz· j C= (IJ2j) 19 (zJZO).

281



APPENDIX II

TABLE OF PLANE CURVES

Straight line:
ZI + Z2 U

general equation: z = ---
m+nu

in line coordinates: p·z + pz· - 2 = O.

natural equation: e= 00 •

Oircle:
• ZI + Z2 U

general equatIOn: z = +
Za Z4 U

special case: z = exp (ju)

. I 1speCla case: z = -1--'
-Ju

z -Za z-zthrough three points: u = _1__ -7 _2__3
ZI-Z Z2- Z

spanning angle L1: z- ZI = U exp (i L1)
Z-Z2

Apollonius' circle: z- ZI = a exp (ju)
Z-Z2

natural equation: e= constant.

Oonics:
• Z + Z U + Z u2

general equatIOn: z = 0 1 2
m+nu+ru2

exp (ju) < ellipse
Kepler orbits: z = Pecos u + 1 ; e = 1 parabola

> hyperbola.

Ellipse:

origin in centre: z = a cos u + jb sin u

a +b .) a-b (. )
z = -2- exp (Ju + -2- exp - JU

origininfocus: z=HVa+bexp (tju) ± Va bexp (-I jU)}2.



Table of plane curves

Parahola:

origin in focus: z = f p (u + j)2.
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('

Hyperbola:

origin in centre: z = a cosh u + jb sinh u

a + jb a-jb
z = -2- exp (u) +-2- exp (-u)

origin in focus: z = HVa+ jb exp (uJ2) ± Va jb exp (-UJ2)}2

orthogonal hyperbola: z = vTTlit.

Oubics:

I ~+~u+~~+~~
genera equation: z = + + 2 + 3• mo m 1 u mt u m 3U
special formula: z = p + jp ; p = Weierstrass' function.

Oircle evolvente:

z = (I-ju) exp (ju)

natural equation: s = t e2 •

N orwick spiral:

z = t (I-ju)2 exp (ju).

Semicubic parabola:

z = pu2 (I-ju).

Oatenary :

z=u+jcoshu

natural equation: e= I + S2.

Tractrix:
j - expu

z=u+ j+expu

natural equation: s = 19 VI e2 •

Oissoid:
u 2

z = t p 1+ ju



284

Strophoid:
l-u2

z = tp 1 + ju'

Archimedes' 8piral:

z=uexp(ju).

Hyperbolic spiral:

z = (l/u) exp (ju).

Appendix II

Logarithmic spiral:

z = exp {(1 + ja) u }.

Hyperbolic (co) tangent:

z = (co) tanh {(1 + ja) u }.

Cornu's spiral (= klothoid):
..

z = f exp (js2) ds.
o

natural equation: (2s = constant.

Common cycloid:

z = t p {u + j exp (ju) }

natural equation: (22 + S2 = p2.

Sinus spirals:

2p 1

z = V2 (l+ ju)l/n

n =! : cardioid ; n = - t parabola

n = 1 : circle ; n = - 1 straight line

n = 2 : lemniscate; n = - 2 orthog. hyperb.

Roses:

z = 2r cos (nu) exp (ju)

z = r {exp (j (1 + n) u) + exp (j (1 - n) u) }

n = 1 : circle

n = 2 : four leaved clover

n = 3 : three leaved clover.



Table of plane curves

01lcloid8 :

Z = (n + 1) r exp (ju) + r exp {j (n + 1) u }

8 2 0 2 b n
natural equation: 2" + ·b2 = 1 ; - = --2

a a n+
>-. 0 epicycloids

n :<::: hypocycloids

n = - 4 astroid

n = - 3 deltoid

n = - 2 diameter of circle

n = - 1 point

n = + 1 cardioid

n = + 2 nephroid,

Astroid :

Z = 3 exp (ju) + exp (- 3 ju)

Z = cos3 U + j sin3 u.

Oardioid:

z = p exp (ju) + t p exp (2ju)

2p
Z= (U+j)2'

Limar;on:

z = (e cos u + 1) exp (ju).

Trochoid8:

z = a 1 exp (j n1 u) + a2 exp (j n 2 u).
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APPENDIX III

TABLE OF OPERATIONS

Elementary operations:

Zl (u) = Z2 (v): points of intersection

Zl ± zz: vectoral addition and subtraction

Zl Zz: multiply moduli, add arguments

zl/zz: divide moduli, subtract arguments

Zz = 1'Zl: rctation over angle n/2, anticlockwise

p = 2 0 Zz - Zl 0: line vector of line through Zl and Zz
ZlZZ-Zlzz

Oriteria:

Zl z; - z~ Zz = 0: vectors Zl and Zz are parallel

Zl z; + z~ Zz = 0: vectors Zl and Zz are orthogonal

zl/zz = Z:llzl: similar triangles 0 Zl Zz and 0 Z:l Z4

Zl Z:l = Real . z~: Zz bisects angle Zl 0 Z:l.

1 1 1

Zl Zz Z:l = 0: The three points Zl' Zz and Z:l are collinear
z~ z; z;
1 1 1

Pl pz P3 = 0: The three lines Pl' pz and Ps are concurrent.
p~ P; P;

Derivatives :

t = z= itl exp (iT): tangent

n = jz = In I exp (jv): normal
1m {(z-z (P» . ZO} = 0: tangents from point P to curve Z

Re {(z- Z (P» . ZO} = 0: normals from point P onto curve z

8 = f Izi du,: arc length



Table of operations

1 o't' 1m (i· z) 1 i· z- i z·
e oS - lil3 2j (ii·)8/2:

lId z· d2 Z )

e= JdB . d S2 ( natural equation.

Q = f (s) )

curvature

287

Transformations:

v = f (u): transformation of parameter scale only

u' = - u: hyperbolic involution

u' = - l/u: elliptic involution.

w =! (z): conformal transformation

~
shifting the origin over - Zo

w = Zo + Z ; Zo = constant:
shifting the curve over Zo

w = z . exp (J. til) ,. til = constant: ~ rotation over angle tp
T T ~ anticlockwise

w = l/z·: inversion

_ZaZ+Zb Z·+ Z••
W -. •• collineation, projective transformation

zoz+zoz -2

p=2 .;] dz ;].!
Z uZ-ZuZ

_ dp dual transformation
Z - 2.;] d •

p up-p p

az+b
w = -_. a, b, c and d complex: circle transformation.

c;;:+d'

Derived curves:

z- s exp (j't'): involute

z + je exp (j't'): evolute

~ exp (j't'): radial
J
z ± ai: tractor

z ± j a ill i I: parallel curve

. liz
z ± a Vzo: conchoidal transform
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1 zz' - z' z
"2 z' : pedal

lzz'+z'z
"2 z' : contrapedal

2 z· .• Z2: negative pedalzz· - zz

dzz-t- .ds I

t _ S2 - I Z 1
2

anticaustic-d
dS(S2_l z I2)

t = d s+~: anticaustic for parallel rays

ds(s+x)

()z ()z' ()z' ()z
z=f(u,v) ; -·---·-=0: envelope.

()u ()v ()u ()v

Integrals involving Izi
s = f Izi du: arc length

S· = 2n f x Izi du ~

S' fl'" d surface of revolution
T= 2n y z u

z (g) = ~ f z IzIdu: centre of gravity of contour.

Integrals involv·ing I = 1m (z· z)

A = t f I du: area

Vi = t n f x I du ~ volume of revolution
V T = in f yIdu

z (G) = 3~ f z I du: centre of gravity of area

J =.1 f x2 I du ~

J
v 1faxial inertia moment
,,= 4 y2I du

J o= ! f zz· I du: polar inertia moment

J xv = t f xy I du: centrifugal inertia moment.



APPENDIX IV

TABLE OF DERIVED CURVES

circle

orthoptic curvepedal

cardioid
limar;on

evolute-I

point I

inverslon invoiute I

levolvente I
I

I
circle

straight
circle

parabola directrix

circleorthogonal I I I I I
I

lemniscate lemniscate
hyperbola

log spiral I log spiral I log sPiralllOg spiralI log spiral I log spiral
z~,exp{(I+ia)u}lzexp(-2u)i (ali) z lila). Z lial(ia-I)),zj!(I-i){I-iexp(-nI2)}.z



APPENDIX V

HISTORICAL NOTES

The fact that complex quantities can be represented by the
points of a plane has been discovered by several authors, presumably
independently of each other. Among the names of the oldest
ones we encounter those of \VESSEL, ARGAND and GAUSS. The
two first mentioned were not professional mathematicians, WESSEL
being a surveyer and ARGAND a book-keeper.

Without any doubt CASPAR WESSEL has the priority. He was
born (1745) at Josrud, in Norway and died in 1818. His paper:
"Om directionens analytiske betegning" (On the analytical
denotation of vectors) was presented to the Royal Danish Academy
of Sciences in 1797 and published in its Transactions, vol. V,
p.469 (1799). He used the geometrical representation of complex
numbers for the elucidation of the formulae of goniometry and
trigonometry. He even introduced hypercomplex numbers in
order to extend his considerations to spherical trigonometry.
Besides, he also offers the first example of what is the purpose
of the present book; he uses namely the complex calculus for the
deduction of geometrical results. The example in question is the
proof of a theorem due to ROGER COTES (1682-1716), stating
that the product of the distances of point P to all vertices of a
regular polygon described in a circle of radius r amounts to
a" - rll

, if P lies on one of the radii from the centre of the circle
to one of the vertices at a distance a from the centre.

Transposed into our notation, WESSEL'S proof runs as follows:
Choose point P on the real axis: Zp = a and let also one of the
vertices of the polygon be situated on the real axis: Zn = r. As
all the vertices Zl' Z2 ••• z" are roots of the equation zn - rn= 0,
the product (z - Zl) (z - Z2) (z - za) ... (z - zn) equals zn - rn.
If, now, Z is situated on the real axis, as is the case with Zp, this
product is real and equal to an - rn q.e.d.
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JEAN ROBERT ARGAND (Geneva 1768 - Paris 1822) reports
on the representation of a complex number by a point in the
plane, in a paper entitled: "Essai sur une maniere de representer
les quantites imaginaires dans les constructions geometriques"
(Annales de Mathematiques de Gergonne, vol. IV, p. 133 (1814)).
His paper is not nearly so clear and to the point as WESSEL'S.
Moreover, he does not give a single geometrical application of
his new discovery.

FRIEDRICH GAUSS'S contribution is inserted in his memoir:
"Theoria residuorum biquadraticorum commentatio secunda" of
1831 (Gesammelte Werke G6ttingen 1878, vol. II, p. 174 seq.).
GAUSS observes however that traces of the same idea are to be
found in his thesis of the year 1799 and it cannot be denied that
there is good reason for this observation. It seems, however, that
GAUSS has never used the complex notation for real points of the
plane as a means of dealing with plane geometry for its own
sake.

This was left to SIEBECK, in a paper "Ueber die graphische
Darstellung imaginarer Funktionen" published in Crelle's Journal
Vol. 55, p. 221 (1857). In this paper he represents in principle
a curve in the same way as is done in the present book, viz. by
Z = !(u), although his notation differs from ours. He deals with
a number of curves which he represents (transposed in our notation)
by:

straight line.

parabola

circle.

ellipse

hyperbola.

Z= zo+ zlu

Z = Zo + ZtU + zzu
2

Zl + zzu
z=--"----'------~

Za + z"u

Z = cos (u + ja)

Z= cos (a+ ju)

SIEBECK'S paper is in many respects a forerunner of the present
book and the present author is highly surprised that the work
started by SIEBECK was not followed up and completed in the
years after his publication.

Many years later we find the same method used again by
GASTON DARBOUX. His book: "Sur une classe remarquable de



292 Appendix V

Courbes et de Surfaces Algebriques" (1873) contains a chapter
headed: "Etude de certaines proprietes des imaginaires en
geometrie" in which he derives a number of properties of the
curves that since then are known as Darboux curves. A Darboux
curve is the locus of points for which the products of the distances
to two sets of fixed points are in a constant ratio. These curves
are represented in our notation by the equation;

(z - ZI) (z - Z2) (z - Z3) ••• = C exp (ju) (z - za) (z - Zb) (z - zc) •.•

and Darboux takes full advantage of the simplicity of this
representation. CASSINI'S ovals (product of distances to two fixed
points is constant):

(Z - ZI) (z - Z2) = C exp (ju)

and ApOLLONIUS' circle (ratio of distances to two fixed points
IS constant);

are special cases of Darboux curves.

The next paper that should be mentioned is that by J. BRILL;
"On the application of the theory of complex quantities to plane
geometry" (Messenger of Mathematics Vol. 16, p. 8, 1887). BRILL
tries to interpret algebraic identitIes as geometrical properties.
His first example is;

x (y - z) + y (z - x) + z (x - y) ='= o.

Now, take for x, y and Z complex numbers, denoting the vectors
from an arbitrarily chosen origin°to the three vertices of a triangle,
then the equation represents a (not so interesting) property of
the triangle, y - z etc being the sides. In this way BRILL derives
a number of properties of the triangle and of the parabola.

The subject was taken up again fairly recently by a number
of American authors. L. L. SMAIL (American mathematical Monthly
vol. 36, p. 504, 1929) and S. A. SCHELKUNOFF (Idem, vol. 37,
p. 301, 1930) gave the proof of a number of well-known properties
of rectilinear figures; in a later paper (School Science and Mathe­
matics, vol. 32, p. 284, 1932) SCHELKUNOFF also treats the circle
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by means of the complex calculus. All these papers, however,
are elementary compared with SIEBECK'S inemoir mentioned
above.

By this summary the author hopes to have done full justice
to this predecessors in the art. Further historical information
may be obtained from: RAMORINO, Giornale di matematica,
vol. 35 (1897) and vol. 36 (1898); A. McFARLANE, Bibliography
of Quaternions and allied Systems of Mathematics, Dublin, 1904;
J. L. COOLIDGE, Geometry of the complex Domain, Oxford, 1924.
The last book deals with the real representation of imaginary
and complex points, and although akin to it, its subject differs
from that of the present treatiae. Two other domains, are still
more closely related to ours, the application of the WESSEL-GAUSS
plane to the theory of complex functions (GAUSS, RIEMANN,
WEIERSTRASS) and the treatment by complex numbers of the
alternating current theory (HELMHOLTZ, 1878). We should be
carrying it too far, however, if we entered into a historical
analysis of these branches of science or investigated their inter­
action with our own subject: the geometry of the plane, considered
as the assemblage of complex numbers.
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BERNOULLI JAKOB 210, 213, 233
BERNOULLI JOHANN • 235
BESSEL function 221
beta function . 203
bimetal transform. 218
BINET'S formula 204
--, inertia moment 171
BLASCHKE W. 2
BLOCH O. 73
BLONDEL A. 73
BOOTH'S lemniscate. 230
BOUCHEROT'S circuit 63
brachistochrone . 235
branch point 200
BRIANCHON'S theorem. 81
BRILL J. • 292

cardioid 188, 162, 225, 226, 244,
257 seq., 285

--, as caustic 149, 180, 262
as conchoid . 258
as envelope • 262
as inversion. 24, 263, 289

--, as pedal 150, 226, 266, 289
, as sinus spiral . 225, 284

-- aerial. 258
-- condensor . 259
-- microphone 258
CARTESIAN ovals 123
CASSINI'S ovals . . 223, 292
CATALAN. 230
catenary . . 140, 283
--, as caustic . 180, 262
--, as evolute 142
catenoid 141
CAUCHY • 173, 190
caustic . 144
-- of circle. 149, 180, 181
-- of logarithmic spiral 213
central projection. 26

Page
absolute value 13
acceleration 30
acnodal class of cubics 84
acnode . 84
admittance. 62, 73, 228
algebraic curve. 73 seq.
anharmonic ratio, see cross ratio
anticaustic 144 seq., 183 seq., 214, 288
Al'OLLONIUS • • • 93
--, circle of 22, 61, 282, 292
--, theorem of . 100
ARCHIMEDES' spiral. . 209, 284

, as contrapedal 151
--, as pedal 150
--, as radial 32
--, as tractor 151
arc length 27, 268, 288
--, of astroid. . 179, 246
--, of cardioid 181, 246
--, of catenary. 140
--, of circle 28
--, of cycloid 233
--, of deltoid. 246
--, of ellipse. 114
--, of epicycloid 246
--, of evolute . 137
--, of evolvente 28, 138, 139, 246
--, of exponential curve . 28

, of hypercycloid 246
--, of klothoid ., . 217
--, of lemniscate 224
--, of logarithmic spiral 28, 211
--, of nephroid ..... 181, 246
--, of Nielsen's spiral. 221
--, of parabola. . 128
--, of sinus spiral 226
--, of tractrix 142
area. 161 seq., 288
--, of cardioid . 162, 262
--, of circle . 161
--, of cissoid . 163
--, of cycloid . 162, 234
--, of ellipse. . 94, 166

, of hyperbola . 123, 161
--, of lemniscate . 162, 223
--, of parabola. 128
--, of sinus spiral. 226
--, of strophoid 162
--, of triangle . . 52

ARGAND
argument
-- factor.
astroid.
asymptote
auto-evolute
auxiliary circle
axial inertia moment

Page
291

13
13

178, 285
117
213
93

. 175, 288
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84
173

Page
.3, 290
34, 88
35, 88

19
18
78
85

eccentric angle . 93
eccentricity. . . 101, 118, 204
ellipse 76, 93, 134, 162, 178, 183,

282, 291
276
173
173
173
174

93
104

--, as trochoid
-- CULMANN'S
-- of gyration
-- momental·
-- STEINER's.
ellipsograph
elliptic bar system

COTES R .
criterion of collinearity

of concurrency. .
-- of orthogonality.
-- of parallelism . .
cross ratio . 20, 24, 26, 44, 68,
crunodal class of cubics. . . .
crunode, see double point of curve
cubic . . . . .. 76, 77, 82, 283
--, see cissoid, cubical para·

bola, semicubical para­
bola, strophoid

cubical parabola . . . .
CULMANN'S ellipse. . .. 1

curvature, see radius of curvature
CUSELL J. F.. . . . . . . . . 174

JCusp. . . . . .. 31, 44, 74, 143
cuspidal class of cubics . . . . 86
cycloid ... 57, 162, 284, 232 seq.

, as anticaustic . 242
--, as caustic 242
--, as envetope . 241

DANDELIN, G. P. 108, 120, 126
DARBOUX G. . . 291
deficiency 11, 74, 76
deficient curves . 9
DE LANGE M. J. 73
deltoid. . . .. 57, 248 seq., 285
DE MOIVRE'S rule. 280
DE ROBERVAL .... 155, 157
DESARGUES G. 8
--, theorem 36, 42, 46, 82
DESCARTES R. 210
DIOCLES 155
directive circle .. 103, Ill, 119
directrix . . . . 109, 120, 126, 232
double point of curve. . . 44, 74
-- of involution . . . . . . 47
double quotient, see cross ratio
dual conceptions . . 41, 76
dual transform, see polar trans-

form
DURAND W. F. . 240

288
48

Page
31
93

291
149
147
150
289
226

32
.255, 284
.225, 284

22
277

centre of curvature . . . . .
of ellipse . . . . . . .

-- of gravity 36, 51, 167 seq.,
253,

-- of involution
centrifugal inertia moment 171,

175, 288
centroid . 169
CESARO E. 31
CEVA'S theorem. . 36, 41, 51
CHURCHILL R. V. . .. 199, 208
circle 3, 4, 16, 20, 29, 55, 59 seq.,

161, 172, 175, 188, 189, 225,
226, 282, 289,

as anticaustic. .
as caustic
as negative pedal .
as orthoptic curve. 160,
as pedal . . . 111, 122,
as radial .
as rose .
as sinus spiral

of Apollonius .
-- conchoid . . .
-- evolvente, see evolvente
--, polar transform of. .. 41
-- transformation. 22, 64, 287
circumcentre . . . . 53, 252
cissoid. . . . . . . 156, 163, 283
--, as pedal . . . . 86, 155, 289
-- class of cubics. . . . . . 86
class. . . . . . 29, 40, 41, 44, 74
COLEBROOK F. M.. . . 73
collinear configuration. 34, 41, 44
collineation. . . . . . 24, 287
complete quadrangle 46, 57
conchoidal class of cubics . . . 85
conchoidal transform 154, 277, 287
conchoid guide . . . . . . . . 231
concurrent lines. . . . 35, 41, 44
concyclic configuration . . 20, 24
confocal conics. 114, 187, 190, 191
conic 26, 40, 72, 76 seq., 134, 282
--, see ellipse, parabola, hyper-

bola
--, as inversion..... 153, 269
conjugate complex numbers 16
-- diameters . 98
-- directions. 118
-- hyperbolae 117
COOLIDGE J. L. . 293
CORNU'S spiral, see klothoid
cord construction 102, 113, 119,

127, 144
151, 288

151
contrapedal. . .
-- of Norwich spiral
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121
284

48
209, 221, 284

. 219, 284
243, 271, 285

248
247
247
243

288
7

91

136, 151, 287
142

139
212
287
238

10
4, 122, 188

222
104, 121, 215

114,204, 217,
220, 221, 240

Page
HUYGENS C. 174, 232, 238, 257
HEYLAND diagram 63
hyperbola 8, 76, 41, 107, 116 seq.,

134, 161, 191, 283, 291
--, see orthogonal hyperbola
hyperbolic bar system. . . 104,

cotangent. . 219,
-- involution .
-- spiral.
-- tangent.
hypocycloid
--, as caustic
--, as envelope .
--, as evolute
hypotrochoid .

impedance 22, 62, 66, 73, 123,
infinity, elements at. .
inflection point. . . . 31, 44,
inversion 7, 9, 22, 152, 209, 226,

231, 287
5intersection .

intrinsic equation, see natural
equation

involute
of catenary .

-- of circle, see evolvente
-- of evolvente .
-- of logarithmic spiral .
involution . . . 47, 70, 79, 98,
isochrone ...
isolated tracks
isosceles hyperbola
-- lemniscate.
isotrepent

JAHNKE-EMDE 84,

Page
190
240
224

49

FEUERBACH'S circle, --'s point
54, 249, 252

focus 101 seq., 118, 126, 257, 269
four leaved clover . 255, 284
four terminal network. 64
fourth order curve, see quartic
FRESNEL'S integral 217

elliptic coordinates
-- function. . 9,
-- integral 86, 114, 204, 205,
-- involution .
EMDE, see JAHNKE
envelope . . 176, 288
epicycloid 243, 271, 285
--, as caustic 248
--, as envelope . 247
--, as evolute 247
epitrochoid. . 243
equi-anharmonic configuration 83
EUCLID 93
EULER L. 3
--'s axis. 54
--'s functions 203
--'s rule . 3, 13, 14, 280
evolutEl 137, 151, 287
-- of circle. . 138
-- of epicycloid 247
-- of hypocycloid. 247
-- of logarithmic spiral 212
-- of Norwich spiral 139, 151
-- of parabola. . . 143
-- of tractrix 142
evolvente 136, 274, 283, 287, 289 seq.
--, as evolute . .. 139, 151
--, as negative pedal 150
--, as tractrix 151
exponential curve. 28, 1~1, 185

GALILEI G.. . . . . . 232
gamma function . 204, 225
gardener's construction 102
GAUSS F. 1, 290, 291, 293
gear tooth law 273
GRAVES . 114
GULDIN 167, 170

LAGUERRE E.. 7
LANCHESTER F. W. 240
LAPLACE. . 190
latus rectum 103
LECOCQ . 277
lemniscate 9, 188, 162, 194, 218

222 seq.
--, 8S inversion. . . 24, 222, 289
--, as pedal . . . . . . 226, 289
--, as sinus spiral . . . 225, 284
lim8c;on 181, 268 seq., 285
--, as conchoid. 154, 268, 277
--, as inversion..... 153, 269

HAGUE B...
IiANKEL's spiral ...
harmonic configuration

plete quadrangle
-- in conics . .
-- in involution
HELMHOLTZ
hexagon .
hexagramma mysticum

194
221

in com-
46
79

47, 67
293
204

80

KEPLER ..
--'s orbits
klothoid .
KONIG •..

. .... 106
121, 128, 282
217, 225, 284

208
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Page
154
220

24
139, 283
139, 151

FEUER-

... 53,
assemblages .
..... 45,

PAPPOS 44, 52, 167, 170
--' theorems. 41, 47
parabola 10, 76, 107, 289, 126 seq.,

192, 225, 226, 283, 291
--, as involute. . . . 143
--, as sinus spiral . 225, 284
--, as inversion. . . . 264
parabolic class of cubics . 83
-- involution : 49
parallel curves 139, 276, 279, 287
-- vectors . . . . . . . .. 18
parameter . . . 119, 127, 232
PASCAL 153
--'s theorem, -- line . . . 79
PEAUCELLIER'S invertor .... 231
pedal . . . . .. 150 seq., 288
-- of circle. .. 150, 153, 226
-- of evolvente . 150

of lemniscate 226
of logarithmic spiral .. 152
of orthogonal hyperbola

122, 226, 228
129, 154, 226

81
. .... 244

55
43
77

order . . . . .. 40, 41, 44, 73
orthocentre. . . . . . . . 53, 250
orthogonal complete quadrangle .

58, 250
--- hyperbola. 4, 122, 188, 289
--- -- as inversion . . 24, 222
-- -- as pedal . . . . . . 226
--- -- as sinus spiral 225, 284
-- involution . 50
--- trajectories 22, 67, 186 seq.
-- vectors . . 19
orthoptic curve. 159 seq.
-- of cardioid 263
-- of conics . 160
-- of deltoid . 249
-- of logarithmic spiral 159
-- of parabola 130
osculating circle 31

NICOMEDES' conchoid .
NIELSEN'S spiral ...
nine points circle, see

BACH'S circle
non conformal transform
Norwich spiral .
-- as involute .

of parabola
pentagon ....
pericycloid . . .
perpendicular . .
perspective point
-- ray pencils

173
293

82
65
93

93, III
199

117, 132
108

35, 41
44

208
93

93, 111
21
13

173
194
193

74

Page
269, 289

255
268

37
37
94

as anticaustic .
as caustic
as centroid .
as evolute .
as involute .
as orthoptic curve.
as pedal .

MAc CULLAGH J.
Jl,fAc F ARLANE .
MAC LAURIN'S theorem
MAC MILLAN E. M..
major axis .
major auxiliary circle .
meander function. . .
median . . . . . 51, 97,
MENAECHMUS ....
MENELAOS' theorem
metric properties . . .
MILl<""P; THOMSON L. M.
minor axis ... ' ..
minor auxiliary circle
MOBIus' rules..
modulus ....
momental ellipse
MOORE A. D ...
MORGAN E. L..
multicursal curve

----,

natural equation 31, 287
of catenary 141, 283
of circle. . 31
of cycloid. 234, 247, 284
of epicycloid ... 247, 285
of evolvente 31, 138, 139, 283
of hypocyclpid. . . . 247, 285
of logarithmic spiral 212
of klothoid . . . . . 218, 284

-- of NIELSEN'S spiral 221
-- of tractrix . 142, 283
negative pedal 152, 150, 153, 182, 288
negative sphere. ... 165, 167
NEIL'S parabola, see semicubical

parabola
nephroid. . . . 285
-- as caustic. . 181
NEUMANN function 221
NEWTON. . . . . 82, 106

---, as pedal . 153, 256,
---, as rose ..
--, as trochoid
line coordinates .
line vector. . .
LISSAJOUS diagram. 10,
logarithmic spiral 28, 210 seq.,

219, 284, 289
213
214
171

· 212, 289
· 212, 289
· 159, 289

153, 289
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Page

200
199

248

Page
91

199
19

292
203
235

174
199

229 seq.
162, 284
155, 289

85
129

. 164, 288
139

65
77

103, 214

tangent . . 26, 29, 44
tangential copoint. 89
tautochrone 238
tensional ellipse. . 95
theorem(s) of APOLLONIUS 100
-- of BRIANCHON. . 81
-- of CEVA. . . . . 36, 41, 51

of constant angle 59
-- of constant power 59
-- of DESARGUES 36, 42, 46, 82

of MAC LAURIN . 82
of MENELAOS .. 35, 41
of PAPPOS 41, 44, 52,167,170

SALMON'S invariant .
saw tooth function .
scalar product . . .
SCHELKUNOFF S. A..
SCHWARZ' theorem .
screw .
second order curves, see conics
semicubical parabola 76, 86, 143, 283
--, as evolute 143, 289
SERRET 225
SIEBECK . . . . 291
SIEDENTOPF 259
signum function 199
SIMSON'S theorem. 81
sinus spiral. 194, 225, 284
slip . . . . . 179, 278
SMAIL L. L. 292
SORENSEN . 208
sphere. . . . 164, 167
spirals. . . . 209 seq.
--, see ARCHIMEDES' spiral,

hyperbolic spiral, klot­
hoid, logarithmic spiral,
NORWICH spiral, sinus
spiral

square .
staircaRe function. . .
star trochoid, see rose
STEINER, J. .
--'s cycloid, see deltoid
--'s ellipse. . . . . .
step function. . . . . .
stJ:aight line guide
strophoid. . . 85, 156 seq.,
-- as pedal .
strophoidal class of cubics .
subnormal .
surface .
SYLVESTER .
symmetrical networks
synthetic generation.
syntrepency

240
275

175, 288
152, 287

39

7, 9.
· 42,

88 seq.,
· 45,

26,

32, 287
32
32

30, 287
141

30
233
U5
247
138

31, 138
247
137
218
224
2U
221
139
144

· 142, 166
173
293

15, 290
204

68
190, 293

210, 215, 243
.255, 284

. .... 256

78, 98, U8,
120, 126, 133

· 144, 290
· .8, 41

59
46
68

253
69

287
21

169, 171

p-function, see WEIERSTRASS'
function

phygoid .
pin wheels
polar inertia moment 171,
-- transform.. . 40,
-- triangle .
pole and polar 39,

polygon .....
PONCELET J. V.
power .
projective geometry.
-- point assemblages
-- properties 44, 68,
-- ray pencils . . .
-- transformation. .
PTOLEMAIOS' theorem.
pursuit curve.

quadrangle. . 46, 80
quadrilateral . 21, 81
quartic. . .. . 76, 78, 123
--', see cardioid, CARTESIAN

ovals, deltoid, lemniscate,
three leaved clover

radial .
-- of circle. . .
-- of evolvente .
radius of curvature .
-- --- of catenary.
-- -- of circle . .
-- -- of cycloid .
-- -- of ellipse. .
-- -- of epicycloid
-- -- of evolute .
-- -- of evolvente
-- -- of hypocycloid
-- -- of involute. .
-- ---- of .klothoid . .
-- -- of'lemniscate .
--- -- of logarithmic spiral.
-- --- of NIELSEN'S spiral .
--- -- of NORWICH spiral .
---- -- of parabola.
-- -- of tractrix
-- of gyration
RAMORINO ...
regular polygon .
rectangle ....
RIECKE'S diagram.
RIEMANN .
ROMER O .
rose ..
--, as pedal
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Page
79
21
81
56

56
229
228
293
205
290
240

65

Page
92
26
77
19

. 166, 288

9, 82,
. 1,

22, 66,

VAN DER WAERDEN B. L ..
velocity .....
velocity indicatrix
vector product .
volume .....

WALLACE'S line, --' theorem .
WATTJ.....
wave impedance
WEIERSTRASS .
--' function
\VESSEL, C.
WILLERS F..
WHITTAKER E. T.

of PASCAL ...
of PTOLEMAIOS
of SIMSON ..
of WALLACE

third order curves, see cubics
three leaved clover .. 284, 285
torus . . . . 165, 167
tractor. . . . . . . 142, 287
tractrix . . . 140, 142, 283
trefoil, see three leaved clover
triangle 35, 36, 51 seq., 82, 203, 292
trilinear pole and polar . . . . 36
trochoid . . . . 235, 239, 276, 285

unicursal curve. . . . . . . 9, 73
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MATHEMATICAL PUZZLES
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intricacy ..." The Observer. Over 110 puzzles. Full solutions. 150 illustrations. viii + 225pp.
5% x 8. T474 Paperbound $1.25

SYMBOLIC LOGIC and THE GAME OF LDGIC, Lewis Carroll. "Symbolic Logic" is not concerned
with modern symbolic logic, but is instead a collection of over 380 problems posed with
charm and imagination, using the syllogism, and a fascinating diagrammatic method of draw­
ing conClusions. In "'The Game of Logic," Carroll's whimsical imagination devises a logical
game played with 2 diagrams and counters (included) to manipulate hundreds of tricky syl·
logisms. The final section, "Hit or Miss" is a lagniappe of 101 additional puzzles in the
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ing up to $15 each. Symbolic Logic: Index, xxxi + 199pp. The Game of Logic: 96pp. Two
vols. bound as one. 5% x 8. T492 Paperbound $1.50

PILLOW PROBLEMS and A TANGLED TALE, Lewis Carroll. One of the rarest of all Carroll's
works, "Pillow Problems" contains 72 original ma,th pUZZles, all typically ingenious. Partic­
ularly fascinating are Carroll's answers which remain exactly as he thought them out,
reflecting his actual mental processes. The problems in "A Tangled Tale" are in story form,
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uses answers sent in by readers to discuss wrong approaches and misleading paths, and
grades them for insight. Both of these books were rarities .until this edition, "PillOW Prob­
lems" costing up to $25, and "A Tangled Tale" $15. Pillow Problems: Preface and introduc­
tion by Lewis Carroll. xx + 109pp. A Tangled Tale: 6 illustrations. 152pp. Two vols. bound
as one. 5% x 8. T493 Paperbound $1.50

DIVERSIONS AND DIGRESSIONS OF LEWIS CARROLL. A major new treasure for Carroll fans!
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pieces: "The New Belfry," "The Vision of the Three 1's," and much more. New 32-page
supplement of rare photographs taken by Carroll. Formerly titled "The Lewis Carroll Picture
Book." Edited by S. Collingwood. x + 375pp. 5% x 8. T732 Paperbound $1.50



TEACH YOURSELF books. For adult self-study, for refresher and supplementary study.

The most effective series of home study mathematics books on the market! With absolutely
no outside help, they will teach you as much as any similar college or high-school course,
or will helpfully supplement any such course. Each step leads directly to the next, each
question is anticipated. Numerous lucid examples and carefully-wrought practice problems
illustrate meanings. Not skimpy outlines, not surveys, not usual classroom texts, these 204­
to 380-page books are packed with the finest instruction you'll find anywhere for adult
self-study.

TEACH YOURSElF ALGEBRA, P. Abbott. formulas, coordinates, factors, graphs of quadratic
functions, quadratic equations, logarithms, ratio, irrational numbers, arithmetical, geomet­
rical series, much more. 1241 problems, solutions. Tables. 52 illus. 307pp. 67/8 x 4114.

Clothbound $2.00

TEACH YOURSELF GEOMETRY, P. Abbott. Solids, lines, points, surfaces, angle measurement,
triangles, theorem of Pythagoras, polygons, loci, the circle, tangents, symmetry, solid geometry,
prisms, pyramids, solids of revolution, etc. 343 problems, solutions. 268 i1lus. 334pp.
67/8 x 4114. Clothbound $2.00

TEACH YOURSElF TRIGONOMETRY, P. Abbott. Geometrical foundations, indices, logarithms
trlgonometrical ratios, relations between sides, angles of triangle, circular measure, trig:
ratios of angles of any magnitude, much more. Requires elementary algebra, geometry.
465 problems, solutions. Tables. 102 iIIus. 204pp. 67/8 x 4114. Clothbound $2.00

TEACH YOURSElF THE CALCULUS, P. Abbott. Variations in functions, differentiation, solids
of revolution, series, elementary differential equations, areas by integral calculus, much more.
Requires algebra, trigonometry. 970 problems, solutions. Tables. 89 illus. 380pp. 67/8 x 4114.

Clothbound $2.00

TEACH YOURSElF THE SLIDE RULE, B. Snodgrass. fractions, decimals, A-D scales, log-log
scales, trigonometrical scales, indices, logarithms. Commercial, precision, electrical, dual­
istic, Brighton rules. 80 problems, solutions. 10 iIIus. 207pp. 67/8 x 4'/4. Clothbound $2.00

See also: TEACH YOURSElF ELECTRICITY, C. W. Wilman; TEACH YOURSElF HEAT ENGINES,
E. De Ville; TEACH YOURSElF MECHANICS, P. Abbott.

* * *HOW DO YOU USE A SLIDE RULE? by A. A. Merrill. Not a manual for mathematicians and engin­
eers, but a lucid step-by-step explanation that rresents the fundamental rules clearly enough
to be understood by anyone who could benefi by the use of a slide rule in his work or
business. This work concentrates on the 2 most important operations: multiplication and
division. 10 easy lessons, each with a clear drawing, will save you countless hours In your
banking, business, statistical, and other work. first publication. Index. 2 Appendixes. 10
Illustrations. 78 problems, all with answers. vi +.36pp. 6118 x 9114. T62 Paperbound 60C

THEORY OF OPERATION OF THE SLIDE RULE, J. P. Ellis. Not a skimpy "instruction manual",
but an exhaustive treatment that will save you uncounted hours throughout your career. Sup­
plies full understanding of every scale on the Log Log Duplex Decitrig type of slide rule.
Shows the most time-saving methods, and provides practice useful in the widest variety of
actual engineering situations. Each operation introduced in terms of underlying logarithmic
theory. Summary of prerequisite math. fitst publication. Index. 198 figures. Over 450 prob­
lems with answers. Bibliography. 12 Appendices. Ix + 289pp. 5% x 8.

8727 Paperbound $1.50

ARITHMETICAL EXCURSIONS, AN ENRICHMENT OF ElEMENTARY MATHEMATICS, H. Bowers and
J. Bowers. for students Who want unusual methods of arithmetic never taught in school; for
adults who want to increase their number sense. Little known facts about the most simple
numbers, arithmetical entertainments and puzzles, figurate numbers, number chains, mysteries
and folklore of numbers, the "Hin-dog-abic" number system, etc. first pUblication. Index.
529 numbered problems and diversions, all with answers. Bibliography. 50 figures. xiv +
320pp. 5% x 8. 1770 Paperbound $1.65

APPLIED MATHEMATICS FOR RADIO AND COMMUNICATIONS ENGINEERS, C. E. Smith. No
extraneous material here!-only the theories, equations, and operations essential and Im­
mediately useful for radio work. Can be used as refresher, as handbook of applications and
tables, or as full home'study course. Ranges from simplest arithmetic through calculus, series,
and wave forms, hyperbolic trigonometry, simultaneous equations in mesh circuits, etc.
Supplies applications right along With each math topic discussed. 22 useful tables of func­
tions, formulas, logs, etc. Index. 166 exercises, 140 examples, all with answers. 95 diagrams.
Bibliography. x + 336pp. 5% x 8. S141 Paperbound $1.75



HIGHER MATHEMATICS FOR STUOENTS OF CHEMISTRY ANO PHYSICS, J. W. Mellor. Not abstract,
but practical, building its problems out of familiar laboratory material, this covers differential
calculus, coordinate, analytical geometry, functions, integral calculus, infinite series,
numerical equations, differential equations, Fourier's theorem, probability, theory of errors,
calculus of variations, determinants. "If the reader is not familiar with this book, it will
repay him to examine it," CHEM. & ENGINEERING NEWS. 800 problems. 189 figures. Bibliog­
raphy. xxi + 641pp. 5% x 8. S193 Paperbound $2.25

TRIGONOMETRY REFRESHER FOR TECHNICAL MEN, A. Albert Klaf. 913 detailed questions and
answers cover the most important aspects of plane and spherical trigonometry. They will help
you to brush up or to clear up difficulties in special areas. The first portion of this book
covers plane trigonometry, including angles, quadrants, trlgonometrical functions, graphical
representation, interpolation, equations, logarithms, solution of triangle, use of the slide
rule and similar topics. 188 pages then discuss application of plane trigonometry to special
problems In navigation, surveying, elasticity, architecture, and various fields of engineering.
Small angles, pe~riodlc functions, vectors, polar coordinates, de t Moivre's theorem are fully
examined. The third section of the book then discusses spherical trigonometry and the
solution of spherical triangles, with their applications to terrestrial and astronomical prob­
lems. Methods of saving time with numerical calculations, simplification of principal func­
tions of angle, much practical information make this a most useful book. 913 questions an·
swered. 1738 problems, answers to odd numbers. 494 figures. 24 pages of useful formulae,
functions. Index. x + 629pp. 5% x 8. T371 Paperbound $2.00

CALCULUS REFRESHER FOR TECHNICAL MEN, A. Albert Klaf. This book is unique in English
as a refresher for engineers,. technicians, students who either wish to brush up their
calculus or to clear up uncertainties. It is not an ordinarY text, but an' examination of
most important aspects of integral and differential calculus in terms of the 756 questions
most likely to occur to the technical reader. The first part of this book covers simple differ­
ential calculus, with constants, variables, functions, Increments, derivatives, differentiation,
logarithms, curvature of curves, and similar topics. The second part covers fundamental
ideas of integration, inspection, substitution, transformation, reduction, areas and volumes,
mean value, successive and partial integration, double and triple integration. Practical
aspects are stressed rather than theoretical. A 50-page section illustrates the ~application

of calculus to specific problems of civil and nautical engineering, electricity, stress and
strain, elasticity, industrial engineering, and similar fields.-756 questions answered. 566
problems, mostly answered. 36 pages of useful constants, formulae for ready reference.
Index. v + 431pp. 5% x 8. T370 Paperbound $2.00

TEXTBOOK OF ALGEBRA, G. Chrystal. One of the great mathematical textbooks, still about the
best source for complete treatments of the topics of elementary algebra; a chief reference
work for teachers and students of algebra in advanced high school and university courses, 0'
for the mathematician working on problems of elementary algebra or looking for a background
to more advanced topics. Ranges from basic laws and processes to extensive examination of
such topics as limits, infinite series, general properties of integral numbers, and probability
theory. Emphasis is on algebraic form, the foundation of analytical geometry and the key to
modern developments in algebra. Prior coUrse in algebra is desirable but not absolutely
necessary. Includes theory of quotients, distribution of products, arithmetical theory of surds,
theory of interest, permutations and combinations, general expansion theorems, recurring
fractiOnS, and mucn, much more. Two volume set. Index In each volume. Over 1500 exercises,
approximately half with answers. Total of xlviii + 1187pp. 5% x 8.

S750 Vol I Paperbound 12.35
S751 Vol II Paperbound 2.35

The set 4.70

COLLEGE ALGEBRA, H. B. Fine. Standard college text that gives a systematic and deductive
structure to algebra; comprehensive, connected, with emphasis on theory. Discusses the
commutative, associative, and distributive laws of number in unusual detail, and goes on
with undetermined coefficients, quadratic equations, progressions, logarithms, permutations,
probability, power series, and much more. Still most valuable elementary-intermediate text
on the science and structure of algebra. Index. 1560 problems, all With answers. x + 631pp.
5% x 8. T211 Paperbound $2.00

THE CONTINUUM AND OTHER TYPES OF SERIAL ORDER, E. V. Huntington. This famous book
gives a systematic elementary account of the modern theory of the continuum as a type of
serial order. Based on the Cantor-Dedekind ordinal theory. which requires no technical
knowledge of higher mathematics, it offers an easily followed analysis of ordered classes,
discrete and dense series, continuous series, Cantor's transfinite numbers. 2nd edition. Index.
viii + 82pp. 5% x 8. S129 Clothbound $2.75

S130 Paperbound $1.00

A TREATISE ON PLANE AND ADVANCED TRIGONOMETRY, E. W. Hobson. Extraordinarily wide
coverage, going beyond usual college level trig, one of the few works covering advanced
trig in full detail. By a great expositor with lII\erring anticipation and lucid clarification
of potentially difficult points. Includes circular functions; expansion of functions of multiple
angle; trig tables; relations between sides and angles of triangle; complex numbers; etc.
Many problems solved completely. "The best work on the SUbject." Nature. Formerly entitled
"A Treatise on Plane Trigonometry." 689 examples. 6 ligures. xvi + 383pp. 5% x 8.

S353 Paperbound $1.95



r
FAMOUS PROBLEMS OF ELEMENTARY GEOMETRY, Felix Klein. Expanded version of the 1894
Easter lectures at Gottingen. 3 problems of classical geometry, in an excellent mathematical
treatment by a famous mathematician: squaring the circle, trisecting angle, doubling cube.
Considered with full modern implications: transcendental numbers, pi, etc. Notes by R. Archi­
bald. 16 figures. xi + 92pp. 5% x 8. T348 Clothbound $1.50

T298 Paperbound $1.00

* * *ELEMENTARY MATHEMATICS FROM AN ADVANCED STANDPOINT, Felix Klein.

This classic text is an outgrowth of Klein's famous integration and survey course at Gottingen.
Using one field of mathematics to interpret, adjust, illuminate another, It covers basic
topics in each area, illustrating its discussion with extensive analysis. It is especially
valuable in considering areas of modern mathematics. "Makes the reader feel the inspiration
of ... a great mathematician, inspiring teacher ••• with deep insight into the founda­
tions and interrelations," BULLETIN, AMERICAN MATHEMATICAL SOCIETY.

Vol. 1. ARITHMETIC, ALGEBRA, ANALYSIS. Introducing the concept of function immediately,
it enlivens abstract discussion with graphical and geometrically perceptual methods. Partial
contents: natural numbers, extension of the notion of number, special properties, complex
numbers. Real equations with real unknowns, complex quantities. Logarithmic, exponential
functions, goniometric functions, infinitesimal calculus. Transcendence of e and pi, theory
of assemblages. Index. 125 figures. ix + 274pp • 5% x 8. 5150 Paperbound $1.75

Vol. 2. GEOMETRY. A comprehensive view which accompanies the space perception inherent
in geometry with analytic formulas which facilitate precise formulation. Partial contents:
Simplest geometric manifolds: line segment, Grassmann determinant principles, classification
of configurations of space, derivative manifolds. Geometric transformations: affine transforma­
tions, projective, higher point transformations, theory of the imaginary. Systematic discussion
of geometry and its foundations. Indexes. 141 illustrations. Ix + 214pp. 5:V. x 8.

5151 Paperbound $1.75

COOROINATE GEOMETRY, L. P. Eisenhart. Thorough, unified introduction. Unusual for ad­
vancing in dimension within each topic (treats together circle, sphere; polar coordinates,
3-dimensional coordinate systems; conic sections, quadric surfaces), affording exceptional
insight into subject. Extensive use made of determinants, though no previous knowledge
of them is assumed. Algebraic equations of 1st degree, 2 and 3 unknowns, carried further
than usual in algebra courses. Over 500 exercises. Introduction. Appendix. Index. Bibliog­
raphy. 43 illustrations. 310pp. 5% x 8. 5600 Paperbound $1.65

MONOGRAPHS ON TOPICS OF MODERN MATHEMATICS, edited by J. W. A. Young. Advanced
mathematics for persons who haven't gone beyond or have forgotten high school algebra.
9 monographs on foundation of geometry, modern pure geometry, non-Euclidean geometry,
fundamental propositions of algebra, algebraic equations, functions, calculus, theory of num­
bers, etc. Each monograph gives proofs of important results, and descriptions of leading
methods, to provide wide coverage. New introduction by Prof. M. Kline, N. Y. University.
100 diagrams. xvi + 416pp. 6l/. x 9l/4. 5289 Paperbound $2.00

MATHEMATICS, INTERMEDIATE TO ADVANCED
Geometry
THE FOUNDATIONS OF EUCLIDEAN GEOMETRY, H. G. Forder. The first rigorous account of
Euclidean geometry, establishing propositions without recourse to empiricism, and withol1t
multiplying hypotheses. Corrects many traditional weaknesses of Euclidean proofs, and
Investigates the problems imposed on the axiom system by the discoveries of Bolya and
Lobatchefsky. Some topics discussed are Classes and Relations; Axioms for Magnitudes;
Congruence and Similarity; Algebra of Points; Hessenberg's Theorem

i
· Continuity; EXistence

of Parallels; Reflections; Rotations; Isometries; etc. Invaluable for he light it throws on
foundations of math. lists: Axioms employed, Symbols, Constructions. 295pp. 5% x 8.

5481 Paperbound $2.00

ADVANCED EUCLIDEAN GEOMETRY, R. A. Johnson. For years the standard textbook on advanced
Euclidean geometry, requires only high school geometry and trigonometry. Explores in unusual
detail and gives proofs of hundreds of relatively recent theorems and corollaries, many
formerly available only in widely scattered journals. Covers tangent circles, the theorem of
Miquel, symmedian point, pedal triangles and circles', the Brocard configuration, and much
more. Formerly "Modern Geometry." Index. 107 diagrams. xiii + 319pp. 5% x 8.

5669 Paperbound $1.65



NON·EUCLIOEAN GEOMETRY, Roberto Bonola. The standard coverage of non·Euclidean geom·
etry. It examines from both a historical and mathematical point of view the geometries
which have arisen from a study of Euclid's 5th postulate upon parallel lines. Also included
are complete texts, translated, of Bolyai's THEORY OF ABSOLUTE SPACE, Lobachevsky's
THEORY OF PARALLELS. 180 diagrams. 431pp. 5% x 8. S27 Paperbound $1.95

ELEMENTS OF NON·EUCLIOEAN GEOMETRY, O. M. Y. Sommerville. Unique in proceeding step·
by-step, in the manner of traditional geometry. Enables the student with only a good
knowledge of high school algebra and geometry to grasp elementary hyperbolic, elliptic,
analytic non·Euclidean geometries; space curvature and its philosophical implications;
theory of radical axes; homothetic centres and systems of circles, parataxy and parallelism;
absolute measure; Gauss' proof of the defect area theorem; geodesic representation; much
more, all with exceptional clarity. 126 problems at chapter endings provide progressive
practice and familiarity. 133 figures. Index. xvi + 274pp. 5% x 8. S460 Paperbound $1.50

HIGHER GEOMETRY: AN INTRODUCTION TO ADVANCED METHODS IN ANALYTIC GEOMETRY, F. S.
Woods. Exceptionally thorough study of concepts and methods of advanced algebraic geometry
(as distinguished from differential geometry). Exhaustive treatment of 1·, 2-, 3-, and 4­
dimensional coordinate systems, leading to n·dimensional geometry in an abstract sense.
Covers projectivity, tetracyclical coordinates, contact transformation, pentaspherical coordi­
nates, much more. Based on M.I.T. lectures, requires sound preparation in analytic geometry
and some knowledge of determinants. Index. Over 350 exercises. References. 60 figures.
x + 423pp. 5% x 8. S737 Paperbound $2.00

ELEMENTS OF PROJECTIVE GEOMETRY, L. Cremona. Outstanding complete treatment of projec·
tive geometry by one of the foremost 19th century geometers. Detailed proofs of all funda·
mental principles, stress placed on the constructive aspects. Covers homology, law of duality,
anharmonic ratios, theorems of Pascal and Brianchon, foci, polar reciprocal figures, etc. Only
ordinary geometry necessary to understand this honored classic. Index. Over 150 fully worked
out examples and problems. 252 diagrams. xx + 302pp. 5% x 8. S668 Paperbound $1.75

A TREATISE ON THE DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES, L. P. Eisenhart.
Introductory treatise especially for the graduate student, for years a highly successful text·
book. More detailed and concrete in approach than most more recent books. Covers space
curves, osculating planes, moving axes, Gauss' method, the moving trihedral, geodesics,
conformal representation, etc. Last section deals with deformation of surfaces, rectilinear
congruences, cyclic systems, etc. Index. 683 problems. 30 diagrams. xii + 474pp. 53Al x 8.

S667 Paperbound $2.75

A TREATISE ON ALGEBRAIC PLANE CURVES, J. L. Coolidge. Unabridged reprinting of one of
few full coverages in English, offering detailed introduction to theory of algebraic plane
curves and their relations to geometry and analysis. Treats topological properties, Riemann·
Roch theorem, all aspects of wide variety Qf curves including real, covariant, polar, contain·
ing series of a given sort, elliptic, polygonal, rational, the pencil, two parameter nets, etc.
This volume will enable the. reader to appreciate the symbolic notation of Aronhold and
Clebsch. Bibliography. Index. 17 illustrations. xxiv + 513pp. 5% x 8. S543 Paperbound $2.45

AN INTRODUCTION TO THE GEOMETRY OF N DIMENSIONS, O. M. Y. Sommerville. An introduc·
tion presupposing no prior knowledge of the field, the only book in English devoted exclu·
sively to higher dimensional geometry. Discusses fundamental ideas of incidence, parallelism,
perpendicularity, angles between linear space; enumerative geometry; analytical geometry
from projective and metric points of view; polytopes; elementary ideas in analysis situs;
content of hyper·spacial figures. Bibliography. Index. 60 diagrams. 196pp. 5% x 8.

S494 Paperbound $1.50

GEOMETRY OF FOUR DIMENSIONS, H. P. Manning. Unique in English as a clear, concise intro·
duction. Treatment is synthetic, and mostly Euclidean, although in hyperplanes and hyper·
spheres at infinity, non·Euclidean geometry is used. Historical introduction. Foundations of
4-dimensional geometry. Perpendicularity, simple angles. Angles of planes, higher order.
Symmetry, order, motion; hyperpyramids, hypercones, hyperspheres; figures with parallel
elements; volume, hypervolume in space; regular polyhedroids. Glossary. 78 figures. ix +
348pp. 5¥a x 8. S182 Paperbound $1.95

ELEMENTARY CONCEPTS OF TOPOLOGY, P. Alexandroff. First English translation of the famous
brief introduction to topology for the beginner or for the mathematician not undertaking
extensive study. This unusually useful intuitive approach deals primarily with the concepts of
complex, cycle, and homology, and is wholly consistent with current investigations. Ranges
from basic concepts of set-theoretic topology to the concept of Betti groups. "Glowing
example of harmony between intuition and thought," David Hilbert. Translated by A. E. Farley.
Introduction by D. Hilbert. Index. 25 figures. 73pp. 5¥. x 8. S747 Paperbound $1.00

THE WORKS OF ARCHIMEDES, edited by T. L. Heath. All the known works of the great Greek
mathematician are contained in this one volume, including the recently discovered Method
of Archimedes. Contains: On Sphere & Cylinder, Measurement of a Circle, Spirals, Conoids,
Spheroids, etc. This is the definitive edition of the greatest mathematical intellect of the
ancient world. 186·page study by Heath discusses Archimedes and the history of Greek
mathematics. Bibliography. 563pp. 5% x 8. S9 Paperbound $2.00
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THE THIRTEEN BOOKS OF EUCLID'S ELEMENTS, edited by Sir Thomas Heath. Definitive edition
of one of the very greatest classics of Western world. Complete English translation of
Heiberg text, together with spurious Book XIV. Detailed l50·page introduction discussing
aspects of Greek and Medieval mathematics. Eucl id, texts, commentators, etc. Paralleling
the text is an elaborate critical apparatus analyzing each definition, proposition, postulate,
covering textual matters, mathematical analysis, commentators of all times, refutations, sup·
ports, extrapolations, etc. This is the FULL EUCLID. Unabridged reproduction of Cambridge U.
2nd edition. 3 volumes. Total of 995 figures, l426pp. 5~ x 8.

S88,89,90, 3 volume set, paperbound $6.00

THE GEOMETRY OF RENE DESCARTES. With this book Descartes founded analytical geometry.
Excellent Smith·Latham translation, plus original French text with D~scartes' own diagrams.
Contains Problems the Construction of Which Requires Only Straight Lines and Circles; On
the Nature of Curved Lines; On the Construction of Solid or Supersolid Problems. Notes.
Diagrams. 258pp. 53/. x 8. S68 Paperbound $1.50

See also: FOUNDATIONS OF GEOMETRY, B. Russell; THE PHILOSOPHY OF SPACE AND TIME,
H. Reichenbach; FAMOUS PROBLEMS OF ELEMENTARY GEOMETRY, F. Klein; MONOGRAPHS ON
TOPICS OF MODERN MATHEMATICS, ed. by J. W. Young.

Calculus and function theory

A COLLECTION OF MODERN MATHEMATICAL CLASSICS, edited by R. Bellman. 13 classic papers,
complete in their original languages, by Hermite. Hardy and Littlewood, Tchebychef, Fej~r,
Fredholm, Fuchs, Hurwitz, Weyl, van der Pol, Birkhoff, Kellogg, von Neumann, and Hilbert.
Each of these papers, collected here for the first time, triggered a burst of mathematical
activity, providing useful new generalizations or stimulating fresh investigations. Topics dis·
cussed include classical analYSis, periodic and almost periodic functions, analysis and number
theory, integral equations, theory of approximation, non·linear differential equations, and
functional analysis. Brief introductions and bibliographies to each paper. xii + 292pp. 6 x 9.

S730 Paperbound $2.00

MATHEMATICS OF MODERN ENGINEERING, E. G. Keller and R. E. Doherty. Written for the
Advanced Course in Engineering of the General Electric Corporation, deals with the engineer­
ing use of determinants, tensors, the Heaviside operational calculus, dyadics, the calculus
of variations, etc. Presents underlying principles fully, but purpose is to teach engineers to
deal with modern engineering problems, and emphasis is on the perennial engineering attack
of set·up and solve. Indexes. Over 185 figures and tables. Hundreds of exercises, problems,
and worked·out examples. References. Two volume set. Total of xxxiii + 623pp. 5:V. x 8.

S734 Vol I Paperbound $1.65
S735 Vol II Paperbound $1.65

The set $3.30

MATHEMATICAL METHODS FOR SCIENTISTS AND ENGINEERS, L. P. Smith. For scientists and
engineers, as well as advanced math students. Full investigation of methods and practical
description of conditions under which each should be used. Elements of real functions,
differential and integral calCUlus, space geometry, theory of residues, vector and tensor
analysis, series of Bessel functions, etc. Each method illustrated by completely-worked·out
examples, mostly from scientific literature. 368 graded unsolved problems. 100 diagrams.
x + 453pp. 50/. x 8'¥.. S220 Paperbound $2.00

Dover publishes books on art, music, philosophy, literature, languages, history, 80cial
sciences, psychology, handcrafts, orientalia, puzzles and entertainments, ches8, pets
and gardens, books explaining 8cience, intermediate and higher mathematics, math­
ematical physics, engineering, biological 8ciences, earth sciences, classic8 of 8cience, etc.
Write to:

Dept. catrr.
DotJer Publications, Inc.
180 Varick Street, N. Y. 14, N. Y.
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Tables of Indefinite Integrals (Tafeln der lJnbestimmten Integrale),
G. Petit Bois $1.65

Functions of a Complex Variable, James Pierpont $2.45

The Theory of Functions of Real VaTiables, J. Pierpont 2-vol. set $4.90

Introduction to the Theory of Linear Differential Equations, E. G. Poole $1.65

Collected Works of Bernhard Riemann (in German) $2.85

The Elements of Mathematical Logic, Paul Rosenbloom $1.45

Theory of Functions as Applied to Engineering Problems,
R. Rothe, F. Ollendorff, K. Pohlhausen $1.35

A Table of the Incomplete Elliptic Integral of the Third Kind,
Selfridge &- Maxfield Clothbound $7.50

Introduction to Relaxation Methods, F. S. Shaw $2.-15

Problems &- Worked Solutions in Vector Analysis, L. R. Shorter $2.00

Applied Mathematics for Radio &- Communication Engineers,
Carl E. Smith $1.75

Mathematical Methods for Scientists &- Engineers, Lloyd P. Smith $2.00

Elements of Non-Euclidean Geometry, D. M. Y. Sommerville $1.50

An Introduction to the Geometry of N Dimensions, D. Sommerville $1.50

Methods of Statistics, H. C. Tippett Clothbound $7.50

Theory of Determinants, Matrices, &- Invariants, H. W. Turnbull $2.00

Theory of Canonical Matrices, H. W. Tumbull &- A. C. Aitken $1.55

Elemen·ts of Number Theory, 1. M. Vinogradov $1.60

Theory of Functionals and of Integral and Integro-DifJerential EquatiollS,
Vito Volterra $1.75

Selected Papers on Noise and Stochastic Process, ed. by Nelson Wax $2.35

Partial Differential Equations of Mathematical Physics, A. C. Webster $2.00

The Theory of Groups &- Quantum Mechanics, H. Weyl $1.95

The Fourier Integral and Certain of Its Applications, Norbert Wiener $1.50

Practical Analysis; Graphical and Computational Methods, F. A. Willers $2.00

Allalysis with an Introduction to Tensor Analysis, A. P. Wills $1.75

Advanced Calculus, E. B. Wilson $2.-15

Higher Geometry; an Introduction to Advanced Methods of Analytical
Geometry, F. S. Woods $2.00

Trigonometrical Series, Antoni Zygmund $1.50

Available at your book dealer or write for free catalogues to Dept.
Ad Math 1, Dover Publications, Inc., 180 Varick St., N. Y. 14, N. Y.
Please indicate field of interest. Dover publishes over 100 new
selections each year on science, nwthematics, puzzles, art, phi·
losophy, languages, etc.



The Advanced Geometry
of Plane Curves
and Their Applications

by C. Zwikker
In this unusual book Dr. C. Zwikker, Chairman of the Science Department of the Tech­
nical University of Eindhoven and former Technical Director, light Division, of Philips,
presents a study of many important curves, their geometrical properties and their
applications-material which is not generally treated in textbooks on synthetic or
analytic Euclidean geometry. His wide coverage, which includes both algebraic and
transcendental curves, covers unusual properties of familiar curves and less well­
known curves.

In the cases of the line, circle, parabola, ellipse and hyperbola the author presupposes
only the most elementary facts and establishes a variety of new ones. The less familiar
curves, the Iima~on, cissoid, strophoid, spirals, the lemniscate, cycloid, epicycloid,
cardioid, and many others are carefully introduced and their basic and advanced prop­
erties are deduced. Connected with any given curve or family of curves are derived
curves such as the involute, evolute, pedal curve, envelope, and orthogonal trajectories,
and the author investigates these related curves to uncover numerous interesting
properties and remarkable relationships among curves.

For these curves Dr. Zwikker exhibits and explains important applications. These range
through the fields of optics, electric circuit design, hydraulics, hydrodynamics, classical
mechanics, electromagnetism, crystallography, gear design, road engineering, orbits of
subatomic particles and similar areas in physics and engineering. While the author's
approach is not primarily historical, during the course of his exposition he also imparts
a very large corpus of information about the discoverers and circumstances of dis­
covery of various curves. The entire presentation is clear and pithy.

Dr. Zwikker has represented the points of the curves by complex numbers, instead of
two real Cartesian coordinates and he explains this method in introductory chapters.
The use of complex numbers permits simple, direct and even elegant proofs.

"Of chief interest to mathematicians, but physicists and others will be fascinated ...
.-and intrigued by the fruitful use of non-Cartesian methods. Students . . . should
find the book stimulating," British Journal of Applied Physics.

Unabridged republication (with minor corrections) of 1950 edition. Formerly entitled
"Advanced Plane Geometry." Index. 273 figures. xii + 299pp. 5% x 8V2.

S1078 Paperbound $2.00

A DOVER EDITION DESIGNED FOR YEARS OF USE!

We have spared no pains to make this the best book possible. Our paper is opaque,
with minimal show-through; it will not discolor or become brittle with age. Pages are
sewn in signatures, in the method traditionally used for the best books. Books open
flat for easy reference. Pages will not drop out, as often happens with paperbacks
held together with glue. The binding will not crack and split. This is a permanent
book.
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