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PREFACE

A Meditation on the Origins of Science and the
Science of Origins

A new synthesis of scientific knowledge has emerged and continues to flourish. In recent years, the
answers to questions about our cosmic origins have not come solely from the domain of astrophysics.
Working under the umbrella of emergent fields with names such as astrochemistry, astrobiology, and
astro-particle physics, astrophysicists have recognized that they can benefit greatly from the
collaborative infusion of other sciences. To invoke multiple branches of science when answering the
question, Where did we come from? empowers investigators with a previously unimagined breadth
and depth of insight into how the universe works.

In Origins: Fourteen Billion Years of Cosmic Evolution, we introduce the reader to this new
synthesis of knowledge, which allows us to address not only the origin of the universe but also the
origin of the largest structures that matter has formed, the origin of the stars that light the cosmos, the
origin of planets that offer the likeliest sites for life, and the origin of life itself on one or more of
those planets.

Humans remain fascinated with the topic of origins for many reasons, both logical and emotional.
We can hardly comprehend the essence of anything without knowing where it came from. And of all
the stories that we hear, those that recount our own origins engender the deepest resonance within us.

Self-centeredness bred into our bones by our evolution and experience on Earth has led us naturally
to focus on local events and phenomena in the retelling of most origin stories. However, every
advance in our knowledge of the cosmos has revealed that we live on a cosmic speck of dust, orbiting
a mediocre star in the far suburbs of a common sort of galaxy, among a hundred billion galaxies in the
universe. The news of our cosmic unimportance triggers impressive defense mechanisms in the human
psyche. Many of us unwittingly resemble the man in the cartoon who gazes at the starry heavens and
remarks to his companion, “When I look at all those stars, I’m struck by how insignificant they are.”

Throughout history, different cultures have produced creation myths that explain our origins as the
result of cosmic forces shaping our destiny. These histories have helped us to ward off feelings of
insignificance. Although origin stories typically begin with the big picture, they get down to Earth
with impressive speed, zipping past the creation of the universe, of all its contents, and of life on
Earth, to arrive at long explanations of myriad details of human history and its social conflicts, as if
we somehow formed the center of creation.

Almost all the disparate answers to the quest of origins accept as their underlying premise that the
cosmos behaves in accordance with general rules, which reveal themselves, at least in principle, to
our careful examination of the world around us. Ancient Greek philosophers raised this premise to
exalted heights, insisting that we humans possess the power to perceive how nature operates, as well
as the underlying reality beneath what we observe: the fundamental truths that govern all else. Quite



understandably, they insisted that uncovering those truths would be difficult. Twenty-three hundred
years ago, in his most famous reflection on our ignorance, the Greek philosopher Plato compared
those who strive for knowledge to prisoners chained in a cave, unable to see objects behind them, and
who must attempt to deduce from the shadows of these objects an accurate description of reality.

With this simile, Plato not only summarized humanity’s attempts to understand the cosmos but also
emphasized that we have a natural tendency to believe that mysterious, dimly sensed entities govern
the universe, privy to knowledge that we can, at best, glimpse only in part. From Plato to Buddha,
from Moses to Mohammed, from a hypothesized cosmic creator to modern films about “the matrix,”
humans in every culture have concluded that higher powers rule the cosmos, gifted with an
understanding of the gulf between reality and superficial appearance.

Half a millennium ago, a new approach toward understanding nature slowly took hold. This attitude,
which we now call science, arose from the confluence of new technologies and the discoveries that
they fostered. The spread of printed books across Europe, together with simultaneous improvements
in travel by road and water, allowed individuals to communicate more quickly and effectively, so that
they could learn what others had to say and could respond far more rapidly than in the past. During
the sixteenth and seventeenth centuries, this hastened back-and-forth disputation and led to a new way
of acquiring knowledge, based on the principle that the most effective means of understanding the
cosmos relies on careful observations, coupled with attempts to specify broad and basic principles
that explain a set of these observations.

One more concept gave birth to science. Science depends on organized skepticism, that is, on
continual, methodical doubting. Few of us doubt our own conclusions, so science embraces its
skeptical approach by rewarding those who doubt someone else’s. We may rightly call this approach
unnatural; not so much because it calls for mistrusting someone else’s thoughts, but because science
encourages and rewards those who can demonstrate that another scientist’s conclusions are just plain
wrong. To other scientists, the scientist who corrects a colleague’s error, or cites good reasons for
seriously doubting his or her conclusions, performs a noble deed, like a Zen master who boxes the
ears of a novice straying from the meditative path, although scientists correct one another more as
equals than as master and student. By rewarding a scientist who spots another’s errors—a task that
human nature makes much easier than discerning one’s own mistakes—scientists as a group have
created an inborn system of self-correction. Scientists have collectively created our most efficient
and effective tool for analyzing nature, because they seek to disprove other scientists’ theories even as
they support their earnest attempts to advance human knowledge. Science thus amounts to a collective
pursuit, but a mutual admiration society it is not, nor was meant to be.

Like all attempts at human progress, the scientific approach works better in theory than in practice.
Not all scientists doubt one another as effectively as they should. The need to impress scientists who
occupy powerful positions, and who are sometimes swayed by factors that lie beyond their conscious
knowledge, can interfere with science’s self-correcting ability. In the long run, however, errors cannot
endure, because other scientists will discover them and promote their own careers by trumpeting the
news. Those conclusions that do survive the attacks of other scientists will eventually achieve the
status of scientific “laws,” accepted as valid descriptions of reality, even though scientists understand
that each of these laws may some day find itself to be only part of a larger, deeper truth.



But scientists hardly spend all their time attempting to prove one another mistaken. Most scientific
endeavors proceed by testing imperfectly established hypotheses against slightly improved
observational results. Every once in a while, however, a significantly new take on an important theory
emerges, or (more often in an age of technological advances) a whole new range of observations
opens the way to a new set of hypotheses to explain these new results. The greatest moments in
scientific history have arisen, and will always arise, when a new explanation, perhaps coupled with
new observational results, produces a seismic shift in our conclusions about the workings of nature.
Scientific progress depends on individuals in both camps: those who assemble better data and
extrapolate carefully from it; and those who risk much—and have much to gain if successful—by
challenging widely accepted conclusions.

Science’s skeptical core makes it a poor competitor for human hearts and minds, which recoil from
its ongoing controversies and prefer the security of seemingly eternal truths. If the scientific approach
were just one more interpretation of the cosmos, it would never have amounted to much; but science’s
big-time success rests on the fact that it works. If you board an aircraft built according to science—
with principles that have survived numerous attempts to prove them wrong—you have a far better
chance of reaching your destination than you do in an aircraft constructed by the rules of Vedic
astrology.

Throughout relatively recent history, people confronted with the success of science in explaining
natural phenomena have reacted in one of four ways. First, a small minority have embraced the
scientific method as our best hope for understanding nature, and seek no additional ways to
comprehend the universe. Second, a much larger number ignore science, judging it uninteresting,
opaque, or opposed to the human spirit. (Those who watch television greedily without ever pausing
to wonder where the pictures and sound come from remind us that the words “magic” and “machine”
share deep etymological roots.) Third, another minority, conscious of the assault that science seems to
make upon their cherished beliefs, seek actively to disprove scientific results that annoy or enrage
them. They do so, however, quite outside the skeptical framework of science, as you can easily
establish by asking one of them, “What evidence would convince you that you are wrong?” These
anti-scientists still feel the shock that John Donne described in his poem “The Anatomy of the World:
The First Anniversary,” written in 1611 as the first fruits of modern science appeared:

And new philosophy calls all in doubt,
The element of fire is quite put out,
The Sun is lost, and th’earth, and no man’s wit
Can well direct him where to look for it.
And freely men confess that this world’s spent,
When in the planets and the firmament
They seek so many new; they see that this [world]
Is crumbled out again to his atomies.
’Tis all in pieces, all coherence gone . . .

Fourth, another large section of the public accepts the scientific approach to nature while maintaining
a belief in supernatural entities existing beyond our complete understanding that rule the cosmos.



Baruch Spinoza, the philosopher who created the strongest bridge between the natural and the
supernatural, rejected any distinction between nature and God, insisting instead that the cosmos is
simultaneously nature and God. Adherents of more conventional religions, which typically insist on
this distinction, often reconcile the two by mentally separating the domains in which the natural and
the supernatural operate.

No matter what camp you may live in, no one doubts that these are auspicious times for learning
what’s new in the cosmos. Let us then proceed with our adventurous quest for cosmic origins, acting
much like detectives who deduce the facts of the crime from the evidence left behind. We invite you to
join us in search of cosmic clues—and the means of interpreting them—so that together we may
uncover the story of how part of the universe turned into ourselves.



Overture



The Greatest Story Ever Told
The world has persisted many a long year, having once been set going in the appropriate motions. From these everything
else follows.

—Lucretius

Some 14 billion years ago, at the beginning of time, all the space and all the matter and all the
energy of the known universe fit within a pinhead. The universe was then so hot that the basic forces
of nature, which collectively describe the universe, were merged into a single, unified force. When
the universe was a roaring 1030 degrees and just 10-43 seconds old—the time before which all of
our theories of matter and space lose their meaning—black holes spontaneously formed, disappeared,
and formed again out of the energy contained within the unified force field. Under these extreme
conditions, in what is admittedly speculative physics, the structure of space and time became severely
curved as it gurgled into a spongy, foamlike structure. During this epoch, phenomena described by
Einstein’s general theory of relativity (the modern theory of gravity) and quantum mechanics (the
description of matter on its smallest scales) were indistinguishable.

As the universe expanded and cooled, gravity split from the other forces. Soon thereafter, the strong
nuclear force and the electro-weak force split from each other, an event accompanied by an enormous
release of stored energy that induced a rapid, fifty-power-of-ten increase in the size of the universe.
The rapid expansion, known as the “epoch of inflation,” stretched and smoothed matter and energy so
that any variation in density from one part of the universe to the next became less than one part in a
hundred thousand.

Continuing onward with what is now laboratory-confirmed physics, the universe was hot enough for
photons to spontaneously convert their energy into matter-antimatter particle pairs, which
immediately thereafter annihilated each other, returning their energy back to photons. For reasons
unknown, this symmetry between matter and antimatter had been “broken” at the previous force
splitting, which led to a slight excess of matter over antimatter. The asymmetry was small but crucial
for the future evolution of the universe: for every 1 billion antimatter particles, 1 billion+1 matter
particles were born.

As the universe continued to cool, the electro-weak force split into the electromagnetic force and the
weak nuclear force, completing the four distinct and familiar forces of nature. While the energy of the
photon bath continued to drop, pairs of matter-antimatter particles could no longer be created
spontaneously from the available photons. All remaining pairs of matter-antimatter particles swiftly
annihilated, leaving behind a universe with one particle of ordinary matter for every billion photons
—and no antimatter. Had this matter-over-antimatter asymmetry not emerged, the expanding universe
would forever be composed of light and nothing else, not even astrophysicists. Over a roughly three-
minute period, the matter became protons and neutrons, many of which combined to become the
simplest atomic nuclei. Meanwhile, free-roving electrons thoroughly scattered the photons to and fro,
creating an opaque soup of matter and energy.

When the universe cooled below a few thousand degrees Kelvin —somewhat hotter than a blast
furnace—the loose electrons moved slowly enough to get snatched from the soup by the roving nuclei



to make complete atoms of hydrogen, helium, and lithium, the three lightest elements. The universe
had now become (for the first time) transparent to visible light, and these free-flying photons are
observable today as the cosmic microwave background. During its first billion years, the universe
continued to expand and cool as matter gravitated into the massive concentrations we call galaxies.
Within just the volume of the cosmos that we can see, a hundred billion of these galaxies formed, each
containing hundreds of billions of stars that undergo thermonuclear fusion in their cores. Those stars
with more than about ten times the mass of the Sun achieve sufficient pressure and temperature in their
cores to manufacture dozens of elements heavier than hydrogen, including the elements that compose
planets and the life upon them. These elements would be embarrassingly useless were they to remain
locked inside the star. But high-mass stars explode in death, scattering their chemically enriched guts
throughout the galaxy.

After 7 or 8 billion years of such enrichment, an undistinguished star (the Sun) was born in an
undistinguished region (the Orion arm) of an undistinguished galaxy (the Milky Way) in an
undistinguished part of the universe (the outskirts of the Virgo supercluster). The gas cloud from
which the Sun formed contained a sufficient supply of heavy elements to spawn a few planets,
thousands of asteroids, and billions of comets. During the formation of this star system, matter
condensed and accreted out of the parent cloud of gas while circling the Sun. For several hundred
million years, the persistent impacts of high-velocity comets and other leftover debris rendered
molten the surfaces of the rocky planets, preventing the formation of complex molecules. As less and
less accretable matter remained in the solar system, the planets’ surfaces began to cool. The planet we
call Earth formed in an orbit where its atmosphere can sustain oceans, largely in liquid form. Had
Earth formed much closer to the Sun, the oceans would have vaporized. Had Earth formed much
farther, the oceans would have frozen. In either case, life as we know it would not have evolved.

Within the chemically rich liquid oceans, by a mechanism unknown, simple anaerobic bacteria
emerged that unwittingly transformed Earth’s carbon dioxide–rich atmosphere into one with sufficient
oxygen to allow aerobic organisms to form, evolve, and dominate the oceans and land. These same
oxygen atoms, normally found in pairs (O2), also combined in threes to form ozone (O3) in the upper
atmosphere, which shields Earth’s surface from most of the Sun’s molecule-hostile ultraviolet
photons.

The remarkable diversity of life on Earth, and (we may presume) elsewhere in the universe, arises
from the cosmic abundance of carbon and the countless number of molecules (simple and complex)
made from it; more varieties of carbon-based molecules exist than of all other molecules combined.
But life is fragile. Earth’s encounters with large objects, left over from the formation of the solar
system, which were once common events, still wreak intermittent havoc upon our ecosystem. A mere
65 million years ago (less than 2 percent of Earth’s past), a 10-trillion-ton asteroid struck what is
now the Yucatán Peninsula and obliterated over 70 percent of Earth’s land-based flora and fauna-
including all the dinosaurs, the dominant land animals of that epoch. This ecological tragedy opened
an opportunity for small, surviving mammals to fill freshly vacant niches. A big-brained branch of
these mammals, one we call primates, evolved a genus and species—Homo sapiens—to a level of
intelligence that enabled them to invent methods and tools of science; to invent astrophysics; and to
deduce the origin and evolution of the universe.



Yes, the universe had a beginning. Yes, the universe continues to evolve. And yes, every one of our
body’s atoms is traceable to the big bang and to the thermonuclear furnaces within high-mass stars.
We are not simply in the universe, we are part of it. We are born from it. One might even say that the
universe has empowered us, here in our small corner of the cosmos, to figure itself out. And we have
only just begun.



Part I

The Origin of 
the Universe



CHAPTER 1

In the Beginning

In the beginning, there was physics. “Physics” describes how matter, energy, space, and time behave
and interact with one another. The interplay of these characters in our cosmic drama underlies all
biological and chemical phenomena. Hence everything fundamental and familiar to us earthlings
begins with, and rests upon, the laws of physics. When we apply these laws to astronomical settings,
we deal with physics writ large, which we call astrophysics.

In almost any area of scientific inquiry, but especially in physics, the frontier of discovery lives at
the extremes of our ability to measure events and situations. In an extreme of matter, such as the
neighborhood of a black hole, gravity strongly warps the surrounding space-time continuum. At an
extreme of energy, thermonuclear fusion sustains itself within the 15-million-degree cores of stars.
And at every extreme imaginable we find the outrageously hot and dense conditions that prevailed
during the first few moments of the universe. To understand what happens in each of these scenarios
requires laws of physics discovered after 1900, during what physicists now call the modern era, to
distinguish it from the classical era that includes all previous physics.

One major feature of classical physics is that events and laws and predictions actually make sense
when you stop and think about them. They were all discovered and tested in ordinary laboratories in
ordinary buildings. The laws of gravity and motion, of electricity and magnetism, and of the nature
and behavior of heat energy are still taught in high school physics classes. These revelations about the
natural world fueled the industrial revolution, itself transforming culture and society in ways
unimagined by generations that came before, and remain central to what happens, and why, in the
world of everyday experience.

By contrast, nothing makes sense in modern physics because everything happens in regimes that lie
far beyond those to which our human senses respond. This is a good thing. We may happily report that
our daily lives remain wholly devoid of extreme physics. On a normal morning, you get out of bed,
wander around the house, eat something, then dash out the front door. At day’s end your loved ones
fully expect you to look no different than you did when you left, and to return home in one piece. But
imagine yourself arriving at the office, walking into an overheated conference room for an important
10 A.M. meeting, and suddenly losing all your electrons—or worse yet, having every atom of your body
fly apart. That would be bad. Suppose instead that you’re sitting in your office trying to get some
work done by the light of your 75-watt desk lamp, when somebody flicks on 500 watts of overhead
lights, causing your body to bounce randomly from wall to wall until you’re jack-in-the-boxed out the
window. Or what if you go to a sumo wrestling match after work, only to see the two nearly spherical
gentlemen collide, disappear, and then spontaneously become two beams of light that leave the room
in opposite directions? Or suppose that on your way home, you take a road less traveled, and a
darkened building sucks you in feet first, stretching your body head to toe while squeezing you



shoulder to shoulder as you get extruded through a hole, never to be seen or heard from again.
If those scenes played themselves out in our daily lives, we would find modern physics far less

bizarre; our knowledge of the foundations of relativity and quantum mechanics would flow naturally
from our life experiences; and our loved ones would probably never let us go to work. But back in the
early minutes of the universe that kind of stuff happened all the time. To envision it, and to understand
it, we have no choice but to establish a new form of common sense, an altered intuition about how
matter behaves, and how physical laws describe its behavior, at extremes of temperature, density, and
pressure.

We must enter the world of E = mc2.
Albert Einstein first published a version of this famous equation in 1905, the year in which his

seminal research paper entitled “Zur Elektrodynamik bewegter Körper” appeared in Annalen der
Physik, the preeminent German journal of physics. The paper’s title in English reads “On the
Electrodynamics of Moving Bodies,” but the work is far better known as Einstein’s special theory of
relativity, which introduced concepts that forever changed our notions of space and time. Just twenty-
six years old in 1905, working as a patent examiner in Bern, Switzerland, Einstein offered further
details, including his best-known equation in another, remarkably short (two-and-a-half-page) paper
published later the same year in the same journal: “Ist die Trägheit eines Körpers von seinem
Energieinhalt abhängig?” or “Does the Inertia of a Body Depend on Its Energy Content?” To save you
the effort of locating the original article, of designing an experiment, and of thus testing Einstein’s
theory, the answer to the paper’s title is yes. As Einstein wrote,

If a body gives off the energy E in the form of radiation, its mass diminishes by E/c2. . . .The mass
of a body is a measure of its energy-content; if the energy changes by E, the mass changes in the
same sense.

Uncertain as to the truth of his statement, he then suggested,

It is not impossible that with bodies whose energy-content is variable to a high degree (e.g. with
radium salts) the theory may be successfully put to the test.*

There you have it: the algebraic recipe for all occasions when you want to convert matter into
energy, or energy into matter. E = mc2—energy equals mass times the square of the speed of light—
gives us a supremely powerful computational tool that extends our capacity to know and understand
the universe from as it is now, all the way back to infinitesimal fractions of a second after the birth of
the cosmos. With this equation, you can tell how much radiant energy a star can produce, or how much
you could gain by converting the coins in your pocket into useful forms of energy.

The most familiar form of energy—shining all around us, though often unrecognized and unnamed in
our mind’s eye—is the photon, a massless, irreducible particle of visible light, or of any other form of
electromagnetic radiation. We all live within a continuous bath of photons: from the Sun, the Moon,
and the stars; from your stove, your chandelier, and your nightlight; from hundreds of radio and
television stations; and from countless cell-phone and radar transmissions. Why, then, don’t we
actually see the daily transmuting of energy into matter, or of matter into energy? The energy of



common photons sits far below the mass of the least massive subatomic particles, when converted
into energy by E = mc2. Because these photons wield too little energy to become anything else, they
lead simple, relatively uneventful lives.

Do you long for some action with E = mc2? Start hanging around gamma-ray photons that have some
real energy—at least 200,000 times more than visible photons. You’ll quickly get sick and die of
cancer; but before that happens, you’ll see pairs of electrons, one made of matter, the other of
antimatter (just one of many dynamic particle-antiparticle duos in the universe) pop into existence
where photons once roamed. As you watch, you’ll also see matter-antimatter pairs of electrons
collide, annihilating each other and creating gamma-ray photons once again. Increase the photons’
energy by another factor of 2,000, and you now have gamma rays with enough energy to turn
susceptible people into the Hulk. Pairs of these photons wield enough energy, fully described by the
power of E = mc2, to create particles such as neutrons, protons, and their antimatter partners, each
nearly 2,000 times the mass of an electron. High-energy photons don’t hang out just anywhere, but
they do exist in many a cosmic crucible. For gamma rays, almost any environment hotter than a few
billion degrees will do just fine.

The cosmological significance of particles and energy packets that transform themselves into one
another is staggering. Currently, the temperature of our expanding universe, found by measuring the
bath of microwave photons that pervades all of space, is a mere 2.73 degrees Kelvin. (On the Kelvin
scale, all temperatures are positive: particles have the least possible energy at 0 degrees; room
temperature is about 295 degrees; and water boils at 373 degrees.) Like the photons of visible light,
microwave photons are too cool to have any realistic ambitions of turning themselves into particles
via E = mc2. In other words, no known particle has a mass so low that it can be made from the
meager energy of a microwave photon. The same holds true for the photons that form radio waves,
infrared, and visible light, as well as ultraviolet and X rays. More simply expressed, particle
transmutations all require gamma rays. Yesterday, however, the universe was a little bit smaller and a
little bit hotter than today. The day before, it was smaller and hotter still. Roll the clocks backward
some more—say, 13.7 billion years—and you land squarely in the post–big bang primordial soup, a
time when the temperature of the cosmos was high enough to be astrophysically interesting as gamma
rays filled the universe.

To understand the behavior of space, time, matter, and energy from the big bang to present day is one
of the greatest triumphs of human thought. If you seek a complete explanation for the events of the
earliest moments, when the universe was smaller and hotter than ever thereafter, you must find a way
to enable the four known forces of nature—gravity, electromagnetism, the strong and the weak nuclear
forces—to talk to one another, to unify and become a single meta-force. You must also find a way to
reconcile two currently incompatible branches of physics: quantum mechanics (the science of the
small) and general relativity (the science of the large).

Spurred by the successful marriage of quantum mechanics and electromagnetism during the mid-
twentieth century, physicists moved swiftly to blend quantum mechanics and general relativity into a
single and coherent theory of quantum gravity. Although so far they have all failed, we already know



where the high hurdles lie: during the “Planck era.” That’s the cosmic phase up to 10-43 second (one
ten-million-trillion-trillion-trillionth of a second) after the beginning. Because information can never
travel more rapidly than the speed of light, 3 x 108 meters per second, a hypothetical observer
situated anywhere in the universe during the Planck era could see no farther than 3 x 10-35 meter
(three hundred billion trillion-trillionths of a meter). The German physicist Max Planck, after whom
these unimaginably small times and distances are named, introduced the idea of quantized energy in
1900 and generally receives credit as the father of quantum mechanics.

Not to worry, though, so far as daily life goes. The clash between quantum mechanics and gravity
poses no practical problem for the contemporary universe. Astrophysicists apply the tenets and tools
of general relativity and quantum mechanics to extremely different classes of problems. But in the
beginning, during the Planck era, the large was small, so there must have been a kind of shotgun
wedding between the two. Alas, the vows exchanged during that ceremony continue to elude us, so no
(known) laws of physics describe with any confidence how the universe behaved during the brief
honeymoon, before the expanding universe forced the very large and very small to part ways.

At the end of the Planck era, gravity wriggled itself loose from the other, still-unified forces of
nature, achieving an independent identity nicely described by our current theories. As the universe
aged past 10-35 second, it continued to expand and to cool, and what remained of the once-unified
forces divided into the electro-weak force and the strong nuclear force. Later still, the electro-weak
force split into the electromagnetic and the weak nuclear forces, laying bare four distinct and familiar
forces—with the weak force controlling radioactive decay, the strong force binding together the
particles in each atomic nucleus, the electromagnetic force holding atoms together in molecules, and
gravity binding matter in bulk. By the time the universe aged a trillionth of a second, its
transmogrified forces, along with other critical episodes, had already imbued the cosmos with its
fundamental properties, each worthy of its own book.

While time dragged on for the universe’s first trillionth of a second, the interplay of matter and
energy continued incessantly. Shortly before, during, and after the strong and electro-weak forces had
split, the universe contained a seething ocean of quarks, leptons, and their antimatter siblings, along
with bosons, the particles that enable these particles to interact with one another. None of these
particle families, so far as we now know, can be divided into anything smaller or more basic.
Fundamental though they are, each family of particles comes in several species. Photons, including
those that form visible light, belong to the boson family. The leptons most familiar to the nonphysicist
are electrons and (perhaps) neutrinos; and the most familiar quarks are . . . well, there are no familiar
quarks, because in ordinary life we always find quarks bound together into particles such as protons
and neutrons. Each species of quark has been assigned an abstract name that serves no real
philological, philosophical, or pedagogical purpose except to distinguish it from the others: “up” and
“down,” “strange” and “charmed,” and “top” and “bottom.”

Bosons, by the way, derive their name from the Indian physicist Satyendranath Bose. The word
“lepton” comes from the Greek leptos, meaning “light” or “small.” “Quark,” however, has a literary
and far more imaginative origin. The American physicist Murray Gell-Mann, who in 1964 proposed
the existence of quarks, and who then thought that the quark family had only three members, drew the



name from a characteristically elusive line in James Joyce’s Finnegans Wake: “Three quarks for
Muster Mark!” One advantage quarks can claim: All their names are simple—something that
chemists, biologists, and geologists seem unable to achieve in naming their own stuff.

Quarks are quirky. Unlike protons, which each have an electric charge of +1, and electrons, each
with a charge of –1, quarks have fractional charges that come in units of 1/3. And except under the
most extreme conditions, you’ll never catch a quark all by itself; it will always be clutching on to one
or two other quarks. In fact, the force that keeps two (or more) of them together actually grows
stronger as you separate them—as if some sort of subnuclear rubber band held them together.
Separate the quarks sufficiently far, and the rubber band snaps. The energy stored in the stretched
band now summons E = mc2 to create a new quark at each end, leaving you back where you started.

During the quark-lepton era in the cosmos’s first trillionth of a second, the universe had a density
sufficient for the average separation between unattached quarks to rival the separation between
attached quarks. Under those conditions, allegiances between adjacent quarks could not be
established unambiguously, so they moved freely among themselves. The experimental detection of
this state of matter, understandably named “quark soup,” was reported for the first time in 2002 by a
team of physicists working at the Brookhaven National Laboratories on Long Island.

The combination of observation and theory suggests that an episode in the very early universe,
perhaps during one of the splits between different types of force, endowed the cosmos with a
remarkable asymmetry, in which particles of matter outnumbered particles of antimatter by only about
one part in a billion—a difference that allows us to exist today. That tiny discrepancy in population
could hardly have been noticed amid the continuous creation, annihilation, and recreation of quarks
and antiquarks, electrons and anti-electrons (better known as positrons), and neutrinos and
antineutrinos. During that era, the odd man out—the slight preponderance of matter over antimatter—
had plenty of opportunities to find other particles with which to annihilate, and so did all the other
particles.

But not for much longer. As the universe continued to expand and cool, its temperature fell rapidly
below 1 trillion degrees Kelvin. A millionth of a second had now passed since the beginning, but this
tepid universe no longer had a temperature or density sufficient to cook quarks. All the quarks quickly
grabbed dance partners, creating a permanent new family of heavy particles called hadrons (from the
Greek hadros, meaning “thick”). That quark-to-hadron transition quickly produced protons and
neutrons as well as other, less familiar types of heavy particles, all composed of various
combinations of quarks. The slight matter-antimatter asymmetry in the quark-lepton soup now passed
to the hadrons, with extraordinary consequences.

As the universe cooled, the amount of energy available for the spontaneous creation of particles
declined continuously. During the hadron era, photons could no longer invoke E = mc2 to manufacture
quark-antiquark pairs: their E could not cover the pairs’ mc2. In addition, the photons that emerged
from all the remaining annihilations continued to lose energy to the ever-expanding universe, so their
energies eventually fell below the threshold required to create hadron-antihadron pairs. Every billion
annihilations left a billion photons in their wake—and only a single hadron survived, mute testimony
to the tiny excess of matter over antimatter in the early universe. Those lone hadrons would ultimately



get to have all the fun that matter can enjoy: they would provide the source of galaxies, stars, planets,
and people.

Without the imbalance of a billion and one to a mere billion between matter and antimatter particles,
all the mass in the universe (except for the dark matter whose form remains unknown) would have
annihilated before the universe’s first second had passed, leaving a cosmos in which we could see (if
we had existed) photons and nothing else—the ultimate Let-there-be-light scenario.

By now, one second of time has passed.
At 1 billion degrees, the universe remains piping hot—still able to cook electrons, which, along

with their positron (antimatter) counterparts, continue to pop in and out of existence. But within the
ever-expanding, ever-cooling universe, their days (seconds, really) are numbered. What was formerly
true for hadrons now comes true for electrons and positrons: they annihilate each other, and only one
electron in a billion emerges, the lone survivor of the matter-antimatter suicide pact. The other
electrons and positrons died to flood the universe with a greater sea of photons.

With the era of electron-positron annihilation over, the cosmos has “frozen” into existence one
electron for every proton. As the cosmos continues to cool, with its temperature falling below 100
million degrees, its protons fuse with other protons and with neutrons, forming atomic nuclei and
hatching a universe in which 90 percent of these nuclei are hydrogen and 10 percent are helium, along
with relatively tiny numbers of deuterium, tritium, and lithium nuclei.

Two minutes have now passed since the beginning.
Not for another 380,000 years does much happen to our particle soup of hydrogen nuclei, helium

nuclei, electrons, and photons. Throughout these hundreds of millennia, the cosmic temperature
remains sufficiently hot for the electrons to roam free among the photons, batting them to and fro.

As we will shortly detail in Chapter 3, this freedom comes to an abrupt end when the temperature of
the universe falls below 3,000 degrees Kelvin (about half the temperature of the Sun’s surface). Right
about now, all the electrons acquire orbits around the nuclei, forming atoms. The marriage of
electrons with nuclei leaves the newly formed atoms within a ubiquitous bath of visible light photons,
completing the story of how particles and atoms formed in the primordial universe.

As the universe continues to expand, its photons continue to lose energy. Today, in every direction
astrophysicists look, they find a cosmic fingerprint of microwave photons at a temperature of 2.73
degrees, which represents a thousandfold decline in the photons’ energies since the time atoms first
formed. The photons’ patterns on the sky—the exact amount of energy that arrives from different
directions—retain a memory of the cosmic distribution of matter just before atoms formed. From
these patterns, astrophysicists can obtain remarkable knowledge, including the age and shape of the
universe. Even though atoms now form part of daily life in the universe, Einstein’s equation still has
plenty of work to do—in particle accelerators, where matter-antimatter particle pairs are created
routinely from energy fields; in the core of the Sun, where 4.4 million tons of matter are converted
into energy every second; and in the cores of all other stars.

E = mc2 also manages to apply itself near black holes, just outside their event horizons, where
particle-antiparticle pairs can pop into existence at the expense of the black hole’s formidable
gravitational energy. The British cosmologist Stephen Hawking first described the hijinks in 1975,
showing that the entire mass of a black hole can slowly evaporate by this mechanism. In other words,



black holes are not entirely black. The phenomenon is known as Hawking radiation, and serves as a
reminder of the continued fertility of Einstein’s most famous equation.

But what happened before all this cosmic fury? What happened before the beginning?
Astrophysicists have no idea. Rather, our most creative ideas have little or no grounding in

experimental science. Yet the religious faithful tend to assert, often with a tinge of smugness, that
something must have started it all: a force greater than all others, a source from which everything
issues. A prime mover. In the mind of such a person that something is, of course, God, whose nature
varies from believer to believer but who always bears the responsibility for starting the ball rolling.

But what if the universe was always there, in a state or condition that we have yet to identify—a
multiverse, for example, in which everything we call the universe amounts to only a tiny bubble in an
ocean of suds? Or what if the universe, like its particles, just popped into existence from nothing we
could see?

These rejoinders typically satisfy no one. Nonetheless, they remind us that informed ignorance
provides the natural state of mind for research scientists at the ever-shifting frontiers of knowledge.
People who believe themselves ignorant of nothing have neither looked for, nor stumbled upon, the
boundary between what is known and unknown in the cosmos. And therein lies a fascinating
dichotomy. “The universe always was,” gets no respect as a legitimate answer to “What was around
before the beginning?” But for many religious people, the answer, “God always was,” is the obvious
and pleasing answer to “What was around before God?”

No matter who you may be, engaging yourself in the quest to discover where and how everything
began can induce emotional fervor—as if knowing our beginnings would bestow upon you some form
of fellowship with, or perhaps governance over, all that comes later. So what is true for life itself is
true for the universe: knowing where you came from is no less important than knowing where you are
going.



CHAPTER 2

Antimatter Matters

Particle physicists have won the contest for the most peculiar, yet playful jargon of all the physical
sciences. Where else could you find a neutral vector boson exchanged between a negative muon and a
muon neutrino? Or a gluon exchange binding together a strange quark and a charmed quark? And
where else can you meet squarks, photinos, and gravitinos? Alongside these seemingly countless
particles with peculiar names, particle physicists must contend with a parallel universe of
antiparticles, collectively known as antimatter. Despite its persistent appearance in science fiction
stories, antimatter is real. And as you might suppose, it does tend to annihilate upon contact with
ordinary matter.

The universe reveals a peculiar romance between antiparticles and particles. They can be born
together out of pure energy, and they can annihilate as they reconvert their combined mass back into
energy. In 1932, the American physicist Carl David Anderson discovered the anti-electron, the
positively charged, antimatter counterpart to the negatively charged electron. Since then, particle
physicists have routinely made antiparticles of all varieties in the world’s particle accelerators, but
only recently have they assembled antiparticles into whole atoms. Since 1996, an international group
led by Walter Oelert of the Institute for Nuclear Physics Research in Jülich, Germany, has created
atoms of antihydrogen, in which an anti-electron happily orbits an antiproton. To make these first anti-
atoms, the physicists used the giant particle accelerator operated by the European Organization for
Nuclear Research (better known by its French acronym CERN) in Geneva, Switzerland, where so
many important contributions to particle physics have occurred.

The physicists use a simple creation method: make a bunch of anti-electrons and a bunch of
antiprotons, bring them together at a suitable temperature and density, and wait for them to combine to
form atoms. During their first round of experiments, Oelert’s team produced nine atoms of
antihydrogen. But in a world dominated by ordinary matter, life as an antimatter atom can be
precarious. The antihydrogen atoms survived for less than 40 nanoseconds (40 billionths of a second)
before annihilating with ordinary atoms.

The discovery of the anti-electron was one of the great triumphs of theoretical physics, for its
existence had been predicted just a few years earlier by the British-born physicist Paul A. M. Dirac.

To describe matter on the smallest size scales—those of atomic and subatomic particles—physicists
developed a new branch of physics during the 1920s to explain the results of their experiments with
these particles. Using newly established rules, now known as quantum theory, Dirac postulated from a
second solution to his equation that a phantom electron from the “other side” might occasionally pop
into the world as an ordinary electron, leaving behind a gap or hole in the sea of negative energies.
Although Dirac hoped to explain protons in this way, other physicists suggested that this hole would
reveal itself experimentally as a positively charged anti-electron, which had come to be known as a



positron for its positive electric charge. The detection of actual positrons confirmed Dirac’s basic
insight and established antimatter as worthy of as much respect as matter.

Equations with double solutions are not unusual. One of the simplest examples answers the question,
What number times itself equals nine? Is it 3 or –3? Of course, the answer is both, because 3 x 3 = 9
and –3 x –3 = 9. Physicists cannot guarantee that all the solutions of an equation correspond to events
in the real world, but if a mathematical model of a physical phenomenon is correct, manipulating its
equations can be as useful as (and somewhat easier than) manipulating the entire universe. As with
Dirac and antimatter, such steps often lead to verifiable predictions. If the predictions prove
incorrect, then the theory is discarded. But regardless of the physical outcome, a mathematical model
ensures that the conclusions you may draw from it are both logical and internally consistent.

Subatomic particles have many measurable features, of which mass and electric charge rank among
the most important. Except for the particle’s mass, which is always the same for a particle and its
antiparticle, the specific properties of each type of antiparticle will always be precisely opposite to
those of the particle for which it provides the “anti.” For example, the positron has the same mass as
the electron, but the positron has one unit of positive charge while the electron has one unit of
negative charge. Similarly, the antiproton provides the oppositely charged antiparticle of the proton.

Believe it or not, the chargeless neutron also has an antiparticle. It’s called—you guessed it—the
antineutron. An antineutron has an opposite zero charge with respect to the ordinary neutron. This
arithmetical magic derives from the particular triplet of fractionally charged particles (the quarks)
that form neutrons. The three quarks that compose a neutron have charges of – , – , and + , while
those in the antineutron have charges of , , and – . Each set of three quark charges adds up to zero
net charge, yet the corresponding components do have opposite charges.

Antimatter can pop into existence out of thin air. If gamma-ray photons have sufficiently high energy,
they can transform themselves into electron-positron pairs, thus converting all of their seriously large
energy into a small amount of matter, in a process whose energy side fulfills Einstein’s famous
equation E = mc2.

In the language of Dirac’s original interpretation, the gamma-ray photon kicked an electron out of the
domain of negative energies, creating an ordinary electron and an electron hole. The reverse process
can also occur. If a particle and an antiparticle collide, they will annihilate by refilling the hole and
emitting gamma rays. Gamma rays are the sort of radiation you should avoid.

If you somehow manage to manufacture a blob of antiparticles at home, you have a wolf by the ears.
Storage would immediately become a challenge, because your antiparticles would annihilate with any
conventional sack or grocery bag (either paper or plastic) in which you chose to confine or carry
them. A cleverer storage mechanism involves trapping the charged antiparticles within the confines of
a strong magnetic field, where they are repelled by invisible but highly effective magnetic “walls.” If
you embed the magnetic field in a vacuum, you can render the antiparticles safe from annihilation with
ordinary matter. This magnetic equivalent of a bottle will also be the bag of choice whenever you
must handle other container-hostile materials, such as the 100-million-degree glowing gases involved
in (controlled) nuclear fusion experiments. The greatest storage problem arises after you have created
entire anti-atoms, because anti-atoms, like atoms, do not normally rebound from a magnetic wall. You
would be wise to keep your positrons and antiprotons in separate magnetic bottles until you must



bring them together.
To generate antimatter requires at least as much energy as you can recover when it annihilates with

matter to become energy again. Unless you had a full tank of antimatter fuel before launch, a self-
generating antimatter engine would slowly suck energy from your starship. Perhaps the original Star
Trek television and film series embodied this fact, but if memory serves, Captain Kirk continually
asked for “more power” from the matter-antimatter drives, and Scotty invariably replied in his
Scottish accent that “the engines canna take it.”

Although physicists expect hydrogen and antihydrogen atoms to behave identically, they have not yet
verified this prediction experimentally, mainly because of the difficulty they face in keeping
antihydrogen atoms in existence, rather than having them annihilate almost immediately with protons
and electrons. They would like to verify that the detailed behavior of a positron bound to an
antiproton in an antihydrogen atom obeys all the laws of quantum theory, and that an anti-atom’s
gravity behaves precisely as we expect of ordinary atoms. Could an anti-atom produce antigravity
(repulsive) instead of ordinary gravity (attractive)? All theory points toward the latter, but the former,
if it should prove correct, would offer amazing new insights into nature. On atomic-size scales, the
force of gravity between any two particles is immeasurably small. Instead of gravity, electromagnetic
and nuclear forces dominate the behavior of these tiny particles, because both forces are much, much
stronger than gravity. To test for antigravity, you would need enough anti-atoms to make ordinary-
sized objects, so that you can measure their bulk properties and compare them to ordinary matter. If a
set of billiard balls (and, of course, the billiard table and the cue sticks) were made of antimatter,
would a game of anti-pool be indistinguishable from a game of pool? Would an anti–eight ball fall
into the corner pocket in exactly the same way as an ordinary eight ball? Would anti-planets orbit an
anti-star the way that ordinary planets orbit ordinary stars?

It’s philosophically sensible, and in line with all the predictions of modern physics, to presume that
the bulk properties of antimatter will prove to be identical to those of ordinary matter—normal
gravity, normal collisions, normal light, and so forth. Unfortunately, this means that if an anti-galaxy
were headed our way, on a collision course with the Milky Way, it would remain indistinguishable
from an ordinary galaxy until it was too late to do anything about it. But this fearsome fate cannot be
common in the universe today because if, for example, a single anti-star annihilated with a single
ordinary star, the conversion of their matter and antimatter into gamma-ray energy would be swift,
violent, and total. If two stars with masses similar to the Sun’s (each containing 1057 particles) were
to collide in our galaxy, their melding would produce an object so luminous that it would temporarily
outproduce all the energy of all the stars of 100 million galaxies and fry us to an untimely end. We
have no compelling evidence that such an event has ever occurred anywhere in the universe. So, best
we can judge, the universe is dominated by ordinary matter, and has been since the first few minutes
after the big bang. Thus total annihilation through matter-antimatter collisions need not rank among
your chief safety concerns on your next intergalactic voyage.

Still, the universe now seems disturbingly imbalanced: we expect particles and antiparticles to be
created in equal numbers, yet we find a cosmos dominated by ordinary particles, which seem to be
perfectly happy without their antiparticles. Do hidden pockets of antimatter in the universe account
for the imbalance? Was a law of physics violated (or was an unknown law of physics at work?)



during the early universe, forever tipping the balance in favor of matter over antimatter? We may
never know the answers to these questions, but for now, if an alien hovers over your front lawn and
extends an appendage as a gesture of greeting, toss it your eight ball before you get too friendly. If the
appendage and the ball explode, the alien probably consists of antimatter. (How it and its followers
will react to this result, and what the explosion will do to you, need not detain us here.) And if
nothing untoward occurs, you can proceed safely to take your new friend to your leader.



CHAPTER 3

Let There Be Light

At the time when the universe was just a fraction of a second old, a ferocious trillion degrees hot,
and aglow with an unimaginable brilliance, its main agenda was expansion. With every passing
moment the universe got bigger as more space came into existence from nothing (not easy to imagine,
but here, evidence speaks louder than common sense). As the universe expanded, it grew cooler and
dimmer. For hundreds of millennia, matter and energy cohabited in a kind of thick soup in which
speedy electrons continually scattered photons of light to and fro.

Back then, if your mission had been to see across the universe, you couldn’t have done so. Any
photons entering your eye would, just nanoseconds or picoseconds earlier, have bounced off electrons
right in front of your face. You would have seen only a glowing fog in all directions, and your entire
surroundings—luminous, translucent, reddish-white in color—would have been nearly as bright as
the surface of the Sun.

As the universe expanded, the energy carried by each photon decreased. Eventually, about the time
that the young universe reached its 380,000th birthday, its temperature dropped below 3,000 degrees,
with the result that protons and helium nuclei could permanently capture electrons, thus bringing
atoms into the universe. In previous epochs, every photon had sufficient energy to break apart a newly
formed atom, but now the photons had lost this ability, thanks to the cosmic expansion. With fewer
unattached electrons to gum up the works, the photons could finally race through space without
bumping into anything. That’s when the universe became transparent, the fog lifted, and a cosmic
background of visible light was set free.

That cosmic background persists to this day, the remnant of leftover light from a dazzling, sizzling
early universe. It’s a ubiquitous bath of photons, acting as much like waves as they do like particles.
Each photon’s wavelength equals the separation between one of its wiggly wave crests and the next—
a distance you could measure with a ruler, if you could get your hands on a photon. All photons travel
at the same speed in a vacuum, 186,000 miles per second (naturally called the speed of light), so
photons with shorter wavelengths have a larger number of wave crests passing a particular point each
second. Shorter-wavelength photons therefore pack more wiggles into a given interval of time, so
will have higher frequencies—more wiggles per second. Each photon’s frequency provides a direct
measure of its energy: the higher the photon frequency, the more energy that photon carries.

As the cosmos cooled, photons lost energy to the expanding universe. The photons born in the
gamma-ray and X-ray parts of the spectrum morphed into ultraviolet, visible light, and infrared
photons. As their wavelengths grew larger, they became cooler and less energetic, but they never
stopped being photons. Today, 13.7 billion years after the beginning, the photons of the cosmic
background have shifted down the spectrum to become microwaves. That’s why astrophysicists call it
the “cosmic microwave background,” though a more enduring name is the “cosmic background



radiation,” or CBR. One hundred billion years from now, when the universe has expanded and cooled
some more, future astrophysicists will describe the CBR as the “cosmic radio-wave background.”

The temperature of the universe drops as the size of the universe grows. It’s a physical thing. As
different parts of the universe move apart, the wavelengths of the photons in the CBR must increase:
the cosmos stretches these waves within the spandex fabric of space and time. Because every
photon’s energy varies in inverse proportion to its wavelength, all the free-traveling photons will lose
half their original energy for every doubling in size of the cosmos.

All objects with temperatures above absolute zero will radiate photons throughout all parts of the
spectrum. But that radiation always has a peak somewhere. The peak energy output of an ordinary
household light bulb lies in the infrared part of the spectrum, which you can detect as warmth on your
skin. Of course light bulbs also emit plenty of visible light, or we wouldn’t buy them. So you can feel
a lamp’s radiation as well as see it.

The peak output of the cosmic background radiation occurs at a wavelength of about 1 millimeter,
smack dab in the microwave part of the spectrum. The static that you hear on a walkie-talkie comes
from an ambient bath of microwaves, a few percent of which are from the CBR. The rest of the
“noise” comes from the Sun, cell phones, police radar guns, and so on. Besides peaking in the
microwave region, the CBR also contains some radio waves (which allow it to contaminate Earth-
based radio signals) and a vanishingly small number of photons with energies higher than those of
microwaves.

The Ukrainian-born American physicist George Gamow and his colleagues predicted the existence
of the CBR during the 1940s, consolidating their efforts in a 1948 paper that applied the then-known
laws of physics to the strange conditions of the early universe. The foundation for their ideas came
from the 1927 paper by Georges Edouard Lemaître, a Belgian astronomer and Jesuit priest, now
generally recognized as the “father” of big bang cosmology. But two U.S. physicists, Ralph Alpher
and Robert Herman, who had previously collaborated with Gamow, first estimated what the
temperature of the cosmic background ought to be.

In hindsight, Alpher, Gamow, and Herman had what today seems a relatively simple argument, one
which we have already made: the fabric of space-time was smaller yesterday than it is today, and
since it was smaller, basic physics requires that it was hotter. So the physicists turned back the clock
to imagine the epoch we have described, the time when the universe was so hot that all its atomic
nuclei were laid bare because photon collisions knocked all electrons loose to roam freely through
space. Under those conditions, Alpher and Herman hypothesized, photons could not have sped
uninterrupted across the universe, as they do today. The photons’ current free ride requires that the
cosmos grew sufficiently cool for the electrons to settle into orbits around the atomic nuclei. This
formed complete atoms and allowed light to travel without obstruction.

Although Gamow had the crucial insight that the early universe must have been much hotter than our
universe today, Alpher and Herman were the first to calculate what its temperature would be today: 5
degrees Kelvin. Yes, they got the number wrong—the CBR actually has a temperature of 2.73 degrees
Kelvin. But these three guys nevertheless performed a successful extrapolation back into the depths of
long-vanished cosmic epochs—as great a feat as any other in the history of science. To take some
basic atomic physics from a slab in the lab, and to deduce from it the largest-scale phenomenon ever



measured—the temperature history of our universe—ranks as nothing short of mind-blowing.
Assessing this accomplishment, J. Richard Gott III, an astrophysicist at Princeton University, wrote in
Time Travel in Einstein’s Universe: “Predicting that the radiation existed and then getting its
temperature correct to within a factor of 2 was a remarkable accomplishment—rather like predicting
that a flying saucer 50 feet in width would land on the White House lawn and then watching one 27
feet in width actually show up.”

When Gamow, Alpher, and Herman made their predictions, physicists were still undecided about
the story of how the universe began. In 1948, the same year that Alpher and Herman’s paper
appeared, a rival “steady state” theory of the universe appeared in two papers published in England,
one coauthored by the mathematician Hermann Bondi and the astrophysicist Thomas Gold, the other
by the cosmologist Fred Hoyle. The steady state theory requires that the universe, though expanding,
has always looked the same—a hypothesis with a deeply attractive simplicity. But because the
universe is expanding, and because a steady state universe would not have been any hotter or denser
yesterday than today, the Bondi-Gold-Hoyle scenario maintained that matter continuously pops into
our universe at just the right rate to maintain a constant average density in the expanding cosmos. In
contrast, the big bang theory (given its name in scorn by Fred Hoyle) requires that all matter come
into existence at one instant, which some find more emotionally satisfying. Notice that the steady state
theory takes the issue of the origin of the universe and throws it backward an infinite distance in time
—highly convenient for those who would rather not examine this thorny problem.

The prediction of the cosmic background radiation amounted to a shot across the bow of the steady
state theorists. The CBR’s existence would clearly demonstrate that the universe was once far
different—much smaller and hotter—from the way we find it today. The first direct observations of
the CBR therefore put the first nails in the coffin of the steady state theory (though Fred Hoyle never
fully accepted the CBR as disproving his elegant theory, going to his grave attempting to explain the
radiation as arising from other causes). In 1964, the CBR was inadvertently and serendipitously
discovered by Arno Penzias and Robert Wilson at the Bell Telephone Laboratories (Bell Labs, for
short) in Murray Hill, New Jersey. Little more than a decade later, Penzias and Wilson received the
Nobel Prize for their good luck and hard work.

What led Penzias and Wilson to their Nobel Prize? During the early 1960s, physicists all knew
about microwaves, but almost no one had created the capability of detecting weak signals in the
microwave portion of the spectrum. Back then, most wireless communication (e.g., receivers,
detectors, and transmitters) rode on radio waves, which have longer wavelengths than microwaves.
For these, scientists needed a shorter-wavelength detector and a sensitive antenna to capture them.
Bell Labs had one, a king-size, horn-shaped antenna that could focus and detect microwaves as well
as any apparatus on Earth.

If you’re going to send or receive a signal of any kind, you don’t want other signals to contaminate
it. Penzias and Wilson were trying to open up a new channel of communication for Bell Labs—so
they wanted to pin down how much contaminating “background” interference these signals would
experience—from the Sun, from the center of the galaxy, from terrestrial sources, from whatever.
They therefore embarked on a standard, important, and entirely innocent measurement, aimed at
establishing how easily they could detect microwave signals. Though Penzias and Wilson had some



astronomy background, they were not cosmologists but technophysicists studying microwaves,
unaware of the predictions made by Gamow, Alpher, and Herman. What they were decidedly not
looking for was the cosmic microwave background.

So they ran their experiment, and corrected their data for all known sources of interference. But they
found background noise in the signal that didn’t go away, and they couldn’t figure out how to get rid of
it. The noise seemed to come from every direction above the horizon, and it didn’t change with time.
Finally they looked inside their giant horn. Pigeons were nesting there, leaving a white dielectric
substance (pigeon poop) everywhere nearby. Things must have been getting desperate for Penzias and
Wilson: could the droppings, they wondered, be responsible for the background noise? They cleaned
it up, and sure enough, the noise dropped a bit. But it still wouldn’t go away. The paper they
published in 1965 in The Astrophysical Journal refers to the persistent puzzle of an inexplicable
“excess antenna temperature,” rather than the astronomical discovery of the century.

While Penzias and Wilson were scrubbing bird droppings from their antenna, a team of physicists at
Princeton University led by Robert H. Dicke was building a detector specifically designed to find the
CBR that Gamow, Alpher, and Herman had predicted. The professors, however, lacked the resources
of Bell Labs, so their work proceeded more slowly. The moment that Dicke and his colleagues heard
about Penzias and Wilson’s results, they knew that they’d been scooped. The Princeton team knew
exactly what the “excess antenna temperature” was. Everything fit the theory: the temperature, the fact
that the signal came from all directions in equal amounts, and that it wasn’t linked in time with Earth’s
rotation or Earth’s position in orbit around the Sun.

But why should anybody accept the interpretation? For good reason. Photons take time to reach us from
distant parts of the cosmos, so we inevitably look back in time whenever we look outward into space.
This means that if the intelligent inhabitants of a galaxy far, far away measured the temperature of the
cosmic background radiation for themselves, long before we managed to so do, they should have
found its temperature to be greater than 2.73 degrees Kelvin, because they would have inhabited the
universe when it was younger, smaller, and hotter than it is today.

Can such an audacious assertion be tested? Yup. Turns out that the compound of carbon and nitrogen
called cyanogen—best known to convicted murderers as the active ingredient of the gas administered
by their executioners—will become excited by exposure to microwaves. If the microwaves are
warmer than the ones in our CBR, they will excite the molecule a little more effectively than our
microwaves do. The cyanogen compounds thus act as a cosmic thermometer. When we observe them
in distant, and thus younger, galaxies, they should find themselves bathed in a warmer cosmic
background than the cyanogen in our Milky Way galaxy. In other words, those galaxies ought to live
more excited lives than we do. And they do. The spectrum of cyanogen in distant galaxies shows the
microwaves to have just the temperature we expect at these earlier cosmic times.

You can’t make this stuff up.
The CBR does far more for astrophysicists than to provide direct evidence for a hot early universe,

and thus for the big bang model. It turns out that the details of the photons that comprise the CBR
reach us laden with information about the cosmos both before and after the universe became
transparent. We have noted that until that time, about 380,000 years after the big bang, the universe



was opaque, so you couldn’t have witnessed matter making shapes even if you’d been sitting front-
row center. You couldn’t have seen where galaxy clusters were starting to form. Before anybody,
anywhere, could see anything worth seeing, photons had to acquire the ability to travel, unimpeded,
across the universe. When the time was right, each photon began its cross-cosmos journey at the point
where it smacked into the last electron that would ever stand in its way. As more and more photons
escaped without being deflected by electrons (thanks to electrons joining nuclei to form atoms) they
created an expanding shell of photons that astrophysicists call “the surface of last scatter.” That shell,
which formed during a period of about a hundred thousand years, marks the epoch when almost all the
atoms in the cosmos were born.

By then, matter in large regions of the universe had already begun to coalesce. Where matter
accumulates, gravity grows stronger, enabling more and more matter to gather. Those matter-rich
regions seeded the formation of galaxy superclusters, while other regions remained relatively empty.
The photons that last scattered off electrons within the coalescing regions developed a different,
slightly cooler spectrum as they climbed out of the strengthening gravity field, which robbed them of a
bit of energy.

The CBR indeed shows spots that are slightly hotter or slightly cooler than average, typically by
about one hundred-thousandth of a degree. These hot and cool spots mark the earliest structures in the
cosmos, the first clumping together of matter. We know what matter looks like today because we see
galaxies, galaxy clusters, and galaxy superclusters. To figure out how those systems arose, we probe
the cosmic background radiation, a remarkable relic from the remote past, still filling the entire
universe. Studying the patterns in the CBR amounts to a kind of cosmic phrenology: we can read the
bumps on the “skull” of the youthful universe and from them deduce behavior not only for an infant but
also for a grown-up.

By adding other observations of the local and the distant universe, astronomers can determine all
kinds of fundamental cosmic properties from the CBR. Compare the distribution of sizes and
temperatures of the slightly warmer and cooler areas, for instance, and we can infer the strength of
gravity in the early universe, and thus how quickly matter accumulated. From that we can then deduce
how much ordinary matter, dark matter, and dark energy the universe comprises (the percentages are
4, 23, and 73, respectively). From there, it’s easy to tell whether or not the universe will expand
forever, and whether or not the expansion will slow down or speed up as time passes.

Ordinary matter is what everyone is made of. It exerts gravity and can absorb, emit, and otherwise
interact with light. Dark matter, as we’ll see in Chapter 4, is a substance of unknown nature that
produces gravity but does not interact with light in any known way. And dark energy, as we’ll see in
Chapter 5, induces an acceleration of the cosmic expansion, forcing the universe to expand more
rapidly than it otherwise would. The phrenology exam now says that cosmologists understand how the
early universe behaved, but that most of the universe, then and now, consists of stuff they’re clueless
about.

Profound areas of ignorance notwithstanding, today, as never before, cosmology has an anchor. The
CBR carries the imprint of a portal through which all of us once passed.

The discovery of the cosmic microwave background added new precision to cosmology by verifying the



conclusion, originally derived from observations of distant galaxies, that the universe has been
expanding for billions of years. It was the accurate and detailed map of the CBR—a map first made
for small patches of the sky using balloon-borne instruments and a telescope at the South Pole, and
then for the entire sky by a satellite called the Wilkinson Microwave Anisotropy Probe (WMAP)—
that secured cosmology’s place at the table of experimental science. We shall hear much more from
WMAP, whose first results appeared in 2003, before our cosmological tale is done.

Cosmologists have plenty of ego: how else could they have the audacity to deduce what brought the
universe into being? But the new era of observational cosmology may call for a more modest, less
freewheeling stance among its practitioners. Each new observation, each morsel of data, can be good
or bad for your theories. On the one hand, the observations provide a basic foundation for cosmology,
a foundation that so many other sciences can take for granted because they achieve rich streams of
laboratory observations. On the other hand, new data will almost certainly dispatch some of the tall
tales that theorists dreamed up when they lacked the observations that would give them thumbs up or
down.

No science achieves maturity without precision data. Cosmology has now become precision
science.



CHAPTER 4

Let There Be Dark

Gravity, the most familiar of nature’s forces, offers us simultaneously the best and the least
understood phenomena in nature. It took the mind of Isaac Newton, the millennium’s most brilliant and
influential, to realize that gravity’s mysterious “action at a distance” arises from the natural effects of
every bit of matter, and that the attractive forces between any two objects can be described by a
simple algebraic equation. It took the mind of Albert Einstein, the twentieth century’s most brilliant
and influential, to show that we can more accurately describe gravity’s action-at-a-distance as a warp
in the fabric of space-time, produced by any combination of matter and energy. Einstein demonstrated
that Newton’s theory requires some modification to describe gravity accurately—in predicting, for
example, the amount by which light rays will bend when they pass by a massive object. Although
Einstein’s equations are fancier than Newton’s, they nicely accommodate the matter that we have
come to know and love. Matter that we can see, touch, feel, and occasionally taste.

Don’t know who’s next in the genius sequence, but we’ve now been waiting well over half a century
for somebody to tell us why the bulk of all the gravitational forces that we’ve measured in the
universe arises from substances that we have neither seen, nor touched, nor felt, nor tasted. Or maybe
the excess gravity doesn’t come from matter at all, but emanates from some other conceptual thing. In
any case, we are without a clue. We find ourselves no closer to an answer today than we were when
this “missing mass” problem was first identified in 1933 by astronomers who measured the velocities
of galaxies whose gravity affects their close neighbors, and more fully analyzed in 1937 by the
colorful Bulgarian-Swiss-American astrophysicist Fritz Zwicky, who taught at the California Institute
of Technology for more than forty years, combining his far-ranging insights into the cosmos with a
colorful means of expression and an impressive ability to antagonize his colleagues.

Zwicky studied the movement of galaxies within a titanic cluster of galaxies, located far beyond the
local stars of the Milky Way that trace out the constellation Coma Berenices (the “hair of Berenice,”
an Egyptian queen in antiquity). The Coma cluster, as it is called by those in the know, is an isolated
and richly populated ensemble of galaxies about 300 million light-years from Earth. Its many
thousands of galaxies orbit the cluster’s center, moving in all directions like bees circling their hive.
Using the motions of a few dozen galaxies as tracers of the gravity field that binds the entire cluster,
Zwicky discovered their average velocity to be shockingly high. Since larger gravitational forces
induce higher velocities in the objects that they attract, Zwicky deduced an enormous mass for the
Coma cluster. When we sum up all of its galaxies’ estimated masses, Coma ranks among the largest
and most massive galaxy clusters in the universe. Even so, the cluster does not contain enough visible
matter to account for the observed speeds of its member galaxies. Matter seems to be missing.

If you apply Newton’s law of gravity and assume that the cluster does not exist in an odd state of
expansion or collapse, you can calculate what the characteristic average speed of its galaxies ought to



be. All you need is the size of the cluster and an estimate of its total mass: The mass, acting over
distances characterized by the cluster’s size, determines how rapidly the galaxies must move to avoid
falling into the cluster’s center or escaping from the cluster entirely.

In a similar calculation, as Newton showed, you can derive the speed at which each of the planets at
its particular distance from the Sun must move in its orbit. Far from being magic, these speeds satisfy
the gravitational circumstance in which each planet finds itself. If the Sun suddenly acquired more
mass, Earth and everything else in the solar system would need larger velocities to stay in their
current orbits. With too much speed, however, the Sun’s gravity will be insufficient to maintain
everybody’s orbit. If Earth’s orbital speed were more than the square root of 2 times its current
speed, our planet would achieve “escape velocity” and, you guessed it, escape the solar system. We
can apply the same reasoning to much larger objects, such as our own Milky Way galaxy, in which
stars move in orbits that respond to the gravity from all the other stars, or in clusters of galaxies,
where each of the galaxies likewise feels the gravity from all the other galaxies. As Einstein once
wrote (more ringingly in German than in this English translation by one of us [DG]) to honor Isaac
Newton:

Look unto the stars to teach us
How the master’s thoughts can reach us
Each one follows Newton’s math
Silently along its path.

When we examine the Coma cluster, as Zwicky did during the 1930s, we find that its member
galaxies all move more rapidly than the escape velocity for the cluster, but only if we establish that
velocity from the sum of all the galaxy masses taken one by one, which we estimate from the galaxies’
brightnesses. The cluster should therefore swiftly fly apart, leaving barely a trace of its beehive
existence after just a few hundred million years, perhaps a billion, had passed. But the cluster is more
than 10 billion years old, nearly as old as the universe itself. And so was born what remains the
longest-standing mystery in astronomy.

Through the decades that followed Zwicky’s work, other galaxy clusters revealed the same problem.
So Coma could not be blamed for being odd. Then whom should we blame? Newton? No, his
theories had been examined for 250 years and passed all tests. Einstein? No. The formidable gravity
of galaxy clusters does not rise high enough to require the full hammer of Einstein’s general theory of
relativity, just two decades old when Zwicky did his research. Perhaps the “missing mass” needed to
bind the Coma cluster’s galaxies does exist, but in some unknown, invisible form. For a time,
astronomers renamed the missing-mass problem the “missing-light problem,” since the mass had been
strongly inferred from the excess of gravity. Today, with better determinations of the masses of galaxy
clusters, astronomers use the moniker “dark matter,” although “dark gravity” would be more precise.

The dark matter problem reared its invisible head a second time. In 1976, Vera Rubin, an astrophysicist
at the Carnegie Institution of Washington, discovered a similar “missing-mass” anomaly within spiral
galaxies themselves. Studying the speeds at which stars orbit their galaxy centers, Rubin first found
what she expected: within the visible disk of each galaxy, the stars farther from the center move at



greater speeds than stars close in. The farther stars have more matter (stars and gas) between
themselves and the galaxy center, requiring higher speeds to sustain their orbits. Beyond the galaxy’s
luminous disk, however, we can still find some isolated gas clouds and a few bright stars. Using these
objects as tracers of the gravity field “outside” the galaxy, where visible matter no longer adds to the
total, Rubin discovered that their orbital speeds, which should have fallen with increasing distance
out there in Nowheresville, in fact remained high.

These largely empty volumes of space—the rural regions of each galaxy—contain too little visible
matter to explain the orbital speeds of the tracers. Rubin correctly reasoned that some form of dark
matter must lie in these far-out regions, well beyond the visible edge of each spiral galaxy. Indeed,
the dark matter forms a kind of halo around the entire galaxy.

This halo problem exists under our noses, right in our own Milky Way galaxy. From galaxy to galaxy
and from cluster to cluster, the discrepancy between the mass in visible objects and the total mass of
systems ranges from a factor of just 2 or 3 up to factors of many hundreds. Across the universe, the
factor averages to about 6. That is, cosmic dark matter enjoys about six times the mass of all the
visible matter.

Over the past twenty-five years, further research has revealed that most of the dark matter cannot
consist of nonluminous ordinary matter. This conclusion rests on two lines of reasoning. First, we can
eliminate with near certainty all plausible familiar candidates, like the suspects in a police lineup:
Could the dark matter reside in black holes? No, we think that we would have detected this many
black holes from their gravitational effects on nearby stars. Could it be dark clouds? No, they would
absorb or otherwise interact with light from stars behind them, which real dark matter doesn’t do.
Could it be interstellar (or intergalactic) planets, asteroids, and comets, all of which produce no light
of their own? It’s hard to believe that the universe would manufacture six times as much mass in
planets as in stars. That would mean six thousand Jupiters for every star in the galaxy, or worse yet, 2
million Earths. In our own solar system, for example, everything that is not the Sun adds to a paltry
0.2 percent of the Sun’s mass.

Thus, as best we can figure, the dark matter doesn’t simply consist of matter that happens to be dark.
Instead, it’s something else altogether. Dark matter exerts gravity according to the same rules that
ordinary matter follows, but it does little else that might allow us to detect it. Of course, we are
hamstrung in this analysis by not knowing what the dark matter is. The difficulties of detecting dark
matter, intimately connected with our difficulties in perceiving what it might be, raise the question: If
all matter has mass, and all mass has gravity, does all gravity have matter? We don’t know. The name
“dark matter” presupposes the existence of a kind of matter that has gravity and that we don’t yet
understand. But maybe it’s the gravity that we don’t understand.

To study dark matter beyond deducing its existence, astrophysicists now seek to learn where the
stuff collects in space. If dark matter existed only at the outer edges of galaxy clusters, for example,
then the galaxies’ velocities would show no evidence of a dark matter problem, because the galaxies’
speeds and trajectories respond only to sources of gravity interior to their orbits. If the dark matter
occupied only the clusters’ centers, then the run of galaxy speeds as measured from the center of the
cluster out to its edge would respond to ordinary matter alone. But the speeds of galaxies in clusters
reveal that the dark matter permeates the entire volume occupied by the orbiting galaxies. In fact, the



locations of ordinary matter and dark matter loosely coincide with each other. Several years ago, a
team led by the American astrophysicist J. Anthony Tyson, then at Bell Labs and now at UC Davis
(he’s called “Cousin Tony” by one of us, though we have no family relationship) produced the first
detailed map of the distribution of dark matter’s gravity in and around a titanic cluster of galaxies.
Wherever we see big galaxies, we also find a higher concentration of dark matter within the cluster.
The converse is also true: regions with no visible galaxies have a dearth of dark matter.

The discrepancy between dark and ordinary matter varies significantly from one astrophysical
environment to another, but it becomes most pronounced for large entities such as galaxies and galaxy
clusters. For the smallest objects, such as moons and planets, no discrepancy exists. Earth’s surface
gravity, for example, can be explained entirely by what’s under our feet. So if you are overweight on
Earth, don’t blame dark matter. Dark matter also has no bearing on the Moon’s orbit around Earth, nor
on the movements of the planets around the Sun. But we do need it to explain the motions of stars
around the center of the galaxy.

Does a different kind of gravitational physics operate on the galactic scale? Probably not. More
likely, dark matter consists of matter whose nature we have yet to divine, and which clusters more
diffusely than ordinary matter does. Otherwise, we would find that one in every six pieces of dark
matter has a chunk of ordinary matter clinging to it. So far as we can tell, that’s not the way things are.

At the risk of inducing depression, astrophysicists sometimes argue that all the matter that we have
come to know and love in the universe—the stuff of stars, planets, and life—are mere buoys afloat in
a vast cosmic ocean of something that looks like nothing.

But what if this conclusion were entirely wrong? When nothing else seems to work, some scientists
will understandably, and quite rightly, question the fundamental laws of physics that underlies the
assumptions made by others who seek to understand the universe.

During the early 1980s, the Israeli physicist Mordehai Milgrom of the Weizmann Institute of Science
in Rehovot, Israel, suggested a change in Newton’s laws of gravity, a theory now known as MOND
(MOdified Newtonian Dynamics). Accepting the fact that standard Newtonian dynamics operates
successfully on size scales smaller than galaxies, Milgrom suggested that Newton needed some help
in describing gravity’s effects at distances the sizes of galaxies and galaxy clusters, within which
individual stars and star clusters are so far apart that they exert relatively little gravitational force on
each other. Milgrom added an extra term to Newton’s equation, specifically tailored to come to life at
astronomically large distances. Although he invented MOND as a computational tool, Milgrom didn’t
rule out the possibility that his theory could refer to a new phenomenon of nature.

MOND has had only limited success. The theory can account for the movement of isolated objects in
the outer reaches of many spiral galaxies, but it raises more questions than it answers. MOND fails to
predict reliably the dynamics of more complex configurations, such as the movement of galaxies in
binary and multiple systems. Furthermore, the detailed map of the cosmic background radiation
produced by the WMAP satellite in 2003 allowed cosmologists to isolate and measure the influence
of dark matter in the early universe. Because these results appear to correspond to a consistent model
of the cosmos based on conventional theories of gravity, MOND has lost many adherents.

During the first half million years after the big bang, a mere moment in the 14-billion-year sweep of



cosmic history, matter in the universe had already begun to coalesce into the blobs that would become
clusters and superclusters of galaxies. But the cosmos was expanding all along, and would double in
size during its next half million years. So the universe responds to two competing effects: gravity
wants to make stuff coagulate, but the expansion wants to dilute it. If you do the math, you rapidly
deduce that the gravity from ordinary matter could not win this battle by itself. It needed the help of
dark matter, without which we would be living—actually not living—in a universe with no structure:
no clusters, no galaxies, no stars, no planets, no people. How much gravity from dark matter did it
need? Six times as much as that provided by ordinary matter itself. This analysis leaves no room for
MOND’s little corrective terms in Newton’s laws. The analysis doesn’t tell us what dark matter is,
only that dark matter’s effects are real—and that, try as you may, you cannot credit ordinary matter for
it.

Dark matter plays another crucial role in the universe. To appreciate all that the dark matter has
done for us, go back in time to a couple of minutes after the big bang, when the universe was still so
immensely hot and dense that hydrogen nuclei (protons) could fuse together. This crucible of the early
cosmos forged hydrogen into helium, along with trace amounts of lithium, plus an even smaller
amount of deuterium, which is a heavier version of the hydrogen nucleus, with a neutron added to the
proton. This mixture of nuclei provides another cosmic fingerprint of the big bang, a relic that allows
us to reconstruct what happened when the cosmos was a few minutes old. In creating this fingerprint,
the prime mover was the strong nuclear force—the force that binds protons and neutrons within the
nucleus—and not gravity, a force so weak that it gains significance only as particles assemble
themselves by the trillions.

By the time the temperature dropped below a threshold value, nuclear fusion throughout the universe
had made one helium nucleus for every ten hydrogen nuclei. The universe had also turned about one
part in a thousand of its ordinary matter into lithium nuclei, and two parts in a hundred thousand into
deuterium. If dark matter did not consist of some noninteracting substance but was instead made of
dark ordinary matter—matter with normal fusion privileges—then because the dark matter packed six
times as many particles into the tiny volumes of the early universe as ordinary matter did, its presence
would have dramatically increased the fusion rate of hydrogen. The result would have been a
noticeable overproduction of helium, in comparison with the observed amount, and the birth of a
universe notably different to the one that we inhabit.

Helium is one tough nucleus, relatively easy to make but extremely difficult to fuse into other nuclei.
Because stars have continued to make helium from hydrogen in their cores, while destroying
relatively little helium through more advanced nuclear fusion, we may expect that the places where
we find the lowest amounts of helium in the universe should have no less helium than what the
universe produced during its first few minutes. Sure enough, galaxies whose stars have only
minimally processed their ingredients show that one in ten of their atoms consists of helium, just as
you would expect from the big bang birthday suit of the cosmos, so long as the dark matter then
present did not participate in the nuclear fusion that created nuclei.

So, dark matter is our friend. But astrophysicists understandably grow uncomfortable whenever they
must base their calculations on concepts they don’t understand, even though this wouldn’t be the first



time they’ve done so. Astrophysicists measured the energy output of the Sun, for instance, long before
anybody knew that thermonuclear fusion was responsible. Back in the nineteenth century, before the
introduction of quantum mechanics and the discovery of other deep insights into the behavior of
matter on its smallest scales, fusion didn’t even exist as a concept.

Unrelenting skeptics might compare the dark matter of today with the hypothetical, now defunct
“ether,” proposed centuries ago as the weightless, transparent medium through which light moved.
For many years, until a famous 1887 experiment in Cleveland performed by Albert Michelson and
Edward Morley, physicists assumed that the ether must exist, even though not a shred of evidence
supported this presumption. Known to be a wave, light was thought to require a medium through
which to move, much as sound waves move through air. Light turns out to be quite happy, however,
traveling through the vacuum of space, devoid of any supporting medium. Unlike sound waves,
however, which do consist of vibrations of the air, light waves propagate themselves.

But dark matter ignorance differs fundamentally from ether ignorance. While ether amounted to a
placeholder for our incomplete understanding, the existence of dark matter derives not from mere
presumption but from the observed effects of its gravity on visible matter. We’re not inventing dark
matter out of thin space; instead, we deduce its existence from observational facts. Dark matter is just
as real as the hundred-plus planets discovered in orbit around stars other than the Sun—almost all of
them found solely by their gravitational influence on their host stars. The worst that can happen is that
physicists (or others of deep insight) might discover that the dark matter does not consist of matter at
all, but of something else, yet they cannot argue it away. Could dark matter be the manifestation of
forces from another dimension? Or of a parallel universe intersecting ours? Even so, none of this
would change the successful invocation of dark matter’s gravity in the equations that we use to
understand the formation and evolution of the universe.

Other unrelenting skeptics might declare that “seeing is believing.” A seeing-is-believing approach
to life works well in many endeavors, including mechanical engineering, fishing, and perhaps dating.
It’s also good, apparently, for residents of Missouri. But it doesn’t make for good science. Science is
not just about seeing. Science is about measuring—preferably with something that’s not your own
eyes, which are inextricably conjoined with the baggage of your brain: preconceived ideas, post-
conceived notions, imagination unchecked by reference to other data, and bias.

Having resisted attempts to detect it directly on Earth for three quarters of a century, dark matter has
become a type of Rorschach test of the investigator. Some particle physicists say the dark matter must
consist of some ghostly class of undiscovered particles that interact with matter via gravity, but
otherwise interact with matter or light only weakly, or not at all. This sounds off-the-wall, but the
suggestion has precedent. Neutrinos, for instance, are well known to exist, though they interact
extremely weakly with ordinary light and matter. Neutrinos from the Sun—two neutrinos for every
helium nucleus made in the solar core—travel through the vacuum of space at nearly the speed of
light, but then pass through Earth as though it did not exist. The tally: night and day, 100 billion
neutrinos from the Sun enter, then exit each square inch of your body every second.

But neutrinos can be stopped. Every rare once in a while they interact with matter via nature’s weak
nuclear force. And if you can stop a particle, you can detect it. Compare neutrinos’ elusive behavior
with that of the Invisible Man (in his invisible phase)—as good a candidate for the dark matter as



anything else. He could walk through walls and doors as though they were not there. Although
equipped with these talents, why didn’t he didn’t just drop through the floor into the basement?

If we can build sufficiently sensitive detectors, the particle physicist’s dark-matter particles may
reveal themselves through familiar interactions. Or they may reveal their presence through forces
other than the strong nuclear force, the weak nuclear force, and electromagnetism. These three forces
(plus gravity) mediate all interactions between and among all known particles. So the choices are
clear. Either dark matter particles must wait for us to discover and to control a new force or class of
forces through which the particles interact, or else dark matter particles interact via normal forces,
but with staggering weakness.

MOND theorists see no exotic particles in their Rorschach tests. They think gravity, not particles, is
what needs fixing. And so they brought forth modified Newtonian dynamics—a bold attempt that
seems to have failed, but doubtless the precursor of other efforts to change our view of gravity rather
than our census of subatomic particles.

Other physicists pursue what they call TOEs or “theories of everything.” In a spin-off of one
version, our own universe indeed lies near a parallel universe, with which we interact only through
gravity. You’ll never run into any matter from that parallel universe, but you might feel its tug,
crossing into the spatial dimensions of our own universe. Imagine a phantom universe right next to
ours, revealed to us only through its gravity. Sounds exotic and unbelievable, but probably not any
more so than the first suggestions that Earth orbits the Sun, or that our galaxy is not alone in the
universe.

So, dark matter’s effects are real. We just don’t know what the dark matter is. It seems not to interact
through the strong force, so it cannot make nuclei. It hasn’t been found to interact through the weak
nuclear force, something even elusive neutrinos do. It doesn’t seem to interact with the
electromagnetic force, so it doesn’t make molecules, or absorb or emit or reflect or scatter light. It
does exert gravity, however, to which ordinary matter responds. That’s it. After all these years of
investigation, astrophysicists haven’t discovered it doing anything else.

Detailed maps of the cosmic background radiation have demonstrated that dark matter must have
existed during the first 380,000 years of the universe. We also need dark matter today in our own
galaxy and in galaxy clusters to explain the motions of objects they contain. But as far as we know, the
march of astrophysics has not yet been derailed or stymied by our ignorance. We simply carry dark
matter along as a strange friend, and invoke it where and when the universe requires it of us.

In what we hope is the not-so-distant future, the fun will continue as we learn to exploit dark matter
—once we figure out what the stuff is made of. Imagine invisible toys, cars that pass through one
another, or super stealth airplanes. The history of obscure and obtuse discoveries in science is rich
with examples of clever people who came later and who figured out how to exploit such knowledge
for their own gain or for the benefit of life on Earth.



CHAPTER 5

Let There Be More Dark

The cosmos, we now know, has both a light and a dark side. The light side embraces all familiar
heavenly objects—the stars, which group by the billions into galaxies, as well as the planets and
smaller cosmic debris that may not produce visible light but do emit other forms of electromagnetic
radiation, such as infrared or radio waves.

We have discovered that the dark side of the universe embraces the puzzling dark matter, detected
only by its gravitational influence on visible matter but otherwise of completely unknown form and
composition. A modest amount of this dark matter may be ordinary matter that remains invisible
because it produces no detectable radiation. But, as detailed in the previous chapter, the great bulk of
the dark matter must consist of non-ordinary matter, whose nature continues to elude us—except for
its gravitational force on matter we can see.

Beyond all issues concerning dark matter, the dark side of the universe has another, entirely different
aspect. One that resides not in matter of any kind, but in space itself. We owe this concept, along with
the amazing results that it implies, to the father of modern cosmology, none other than Albert Einstein
himself.

Ninety years ago, while the newly perfected machine guns of World War I slaughtered soldiers by
the thousands a few hundred miles to the west, Albert Einstein sat in his office in Berlin, pondering
the universe. As the war began, Einstein and a colleague had circulated an antiwar petition among his
peers, gathering two other signatures in addition to their own. This act set him apart from his fellow
scientists, most of whom had signed an appeal to aid Germany’s war effort, and ruined his
colleague’s career. But Einstein’s engaging personality and scientific fame allowed him to keep the
esteem of his peers. He continued his efforts to find equations that could accurately describe the
cosmos.

Before the war ended, Einstein achieved success—arguably his greatest of all. In November 1915,
he produced his general theory of relativity, which describes how space and matter interact: Matter
tells space how to bend, and space tells matter how to move. To replace Isaac Newton’s mysterious
“action at a distance,” Einstein viewed gravity as a local warp in the fabric of space. The Sun, for
example, creates a sort of dimple, bending space most noticeably at distances closest to it. The
planets tend to roll into this dimple, but their inertia keeps them from falling all the way in. Instead,
they move in orbits around the Sun that keep them at a nearly constant distance from the dimple in
space. Within a few weeks after Einstein published his theory, the physicist Karl Schwarzschild,
diverting himself from the horrors of life in the German army (which gave him a fatal disease soon
afterward), used Einstein’s concept to demonstrate that an object with sufficiently strong gravity will
create a “singularity” in space. At such a singularity, space bends completely around the object and
prevents anything, including light, from leaving its immediate vicinity. We now call these objects



black holes.
Einstein’s theory of general relativity led him to the key equation he had been seeking, one that links

the contents of space to its overall behavior. Studying this equation in the privacy of his office,
creating models of the cosmos in his mind, Einstein almost discovered the expanding universe, a
dozen years before Edwin Hubble’s observations revealed it.

Einstein’s basic equation predicts that in a universe in which matter has a roughly even distribution,
space cannot be “static.” The cosmos cannot just “sit there,” as our intuition insists that it should, and
as all astronomical observations until that time implied. Instead, the totality of space must always be
either expanding or contracting: space must behave something like the surface of an inflating or
deflating balloon, but never like the surface of a balloon with constant size.

This worried Einstein. For once, this bold theorist, who mistrusted authority and had never hesitated
to oppose conventional physics ideas, felt that he had gone too far. No astronomical observations
suggested an expanding universe, because astronomers had only documented the motions of nearby
stars and had not yet determined the faraway distances to what we now call galaxies. Rather than
announcing to the world that the universe must either be expanding or contracting, Einstein returned to
his equation, seeking a way to immobilize the cosmos.

He soon found one. Einstein’s basic equation allowed for a term with a constant but unknown value
that represents the amount of energy contained in every cubic centimeter of empty space. Because
nothing suggested that this constant term should have one value or another, in his first pass Einstein
had set it equal to zero. Now Einstein published a scientific article to demonstrate that if this constant
term, which cosmologists later named the “cosmological constant,” had a particular value, then space
could be static. Then theory would no longer conflict with observations of the universe, and Einstein
could regard his equation as valid.

Einstein’s solution encountered grave difficulties. In 1922, a Russian mathematician named
Alexander Friedmann proved that Einstein’s static universe must be unstable, like a pencil balanced
on its point. The slightest ripple or disturbance would cause space either to expand or to contract.
Einstein first proclaimed Friedmann mistaken, but then, in a generous act typical of the man,
published an article retracting that claim and pronouncing Friedmann correct after all. As the 1920s
ended, Einstein was delighted to learn of Hubble’s discovery that the universe is expanding.
According to George Gamow’s recollections, Einstein pronounced the cosmological constant his
“greatest blunder.” Except for a few cosmologists who continued to invoke a non-zero cosmological
constant (with a value different from the one that Einstein had used) to explain certain puzzling
observations, most of which later proved to be incorrect, scientists the world over sighed with relief
that space had proven to have no need of this constant.

Or so they thought. The great cosmological story at the end of the twentieth century, the surprise that
stood the world of cosmology on one ear and sang a different tune into the other, resides in the
stunning discovery, first announced in 1998, that the universe does have a non-zero cosmological
constant. Empty space does indeed contain energy, named “dark energy,” and possesses highly
unusual characteristics that determine the future of the entire universe.

To understand, and possibly even to believe, these dramatic assertions, we must follow the crucial



themes in cosmologists’ thinking during the seventy years following Hubble’s discovery of the
expanding universe. Einstein’s fundamental equation allows for the possibility that space can have
curvature, described mathematically as positive, zero, or negative. Zero curvature describes “flat
space,” the kind that our minds insist on as the only possibility, which extends to infinity in all
directions, like the surface of an infinite chalkboard. In contrast, a positively curved space
corresponds in analogy to the surface of a sphere, a two-dimensional space whose curvature we can
see by using the third dimension. Notice that the center of the sphere, the point that appears to remain
stationary as its two-dimensional surface expands or contracts, resides in this third dimension and
appears nowhere on the surface that represents all of space.

Just as all positively curved surfaces include only a finite amount of area, all positively curved
spaces contain only a finite amount of volume. A positively curved cosmos has the property that if you
journey outward from Earth for a sufficiently long time, you will eventually return to your point of
origin, like Magellan circumnavigating our globe. Unlike positively curved spherical surfaces,
negatively curved spaces extend to infinity, even though they are not flat. A negatively curved two-
dimensional surface resembles the surface of an infinitely large saddle: it curves “upward” in one
direction (front to back) and “downward” in another (side to side).

If the cosmological constant equals zero, we can describe the overall properties of the universe with just
two numbers. One of these, called the Hubble constant, measures the rate at which the universe is
expanding now. The other measures the curvature of space. During the second half of the twentieth
century, almost all cosmologists believed that the cosmological constant was zero, and saw measuring
the cosmic expansion rate and the curvature of space as their primary research agenda.

Both of these numbers can be found from accurate measurements of the speeds at which objects
located at different distances are receding from us. The overall trend between distance and velocity
—the rate at which the recession velocities of galaxies increase with increasing distance—yields the
Hubble constant, whereas small deviations from this general trend, which appear only when we
observe objects at the greatest distances from us, will reveal the curvature of space. Whenever
astronomers observe objects many billion light-years from the Milky Way, they look so far back in
time that they see the cosmos not as it is now but as it was when significantly less time had elapsed
since the big bang. Observations of galaxies located 5 billion or more light-years from the Milky Way
allow cosmologists to reconstruct a significant part of the history of the expanding universe. In
particular, they can see how the rate of expansion has changed with time—the key to determining the
curvature of space. This approach works, at least in principle, because the amount of space’s
curvature induces subtle differences in the rate at which the universal expansion had changed through
past billions of years.

In practice, astrophysicists remained unable to fulfill this program, because they could not make
sufficiently reliable estimates of the distances to galaxy clusters many billion light-years from Earth.
They had another arrow in their quiver, however. If they could measure the average density of all the
matter in the universe—that is, the average number of grams of material per cubic centimeter of space
—they could compare this number with the “critical density,” a value predicted by Einstein’s
equations that describe the expanding universe. The critical density specifies the exact density



required for a universe with zero curvature of space. If the actual density lies above this value, the
universe has positive curvature. In that case, assuming that the cosmological constant equals zero, the
cosmos will eventually cease expanding and start contracting. If, however, the actual density exactly
equals the critical density, or falls below it, then the universe will expand forever. Exact equality of
the actual and critical values of the density occurs in a cosmos with zero curvature, whereas in a
negatively curved universe, the actual density is less than the critical density.

By the mid-1990s, cosmologists knew that even after including all the dark matter they had detected
(from its gravitational influence on visible matter), the total density of matter in the universe only
came to about one quarter of the critical density. This result hardly seems astounding, although it does
imply that the cosmos will never cease expanding, and that the space in which all of us live must be
negatively curved. It hurt theoretically oriented cosmologists, however, because they had come to
believe that space must have zero curvature.

This belief rested on the “inflationary model” of the universe, named (unsurprisingly) at a time of a
steeply rising consumer price index. In 1979, Alan Guth, a physicist working at the Stanford Linear
Accelerator Center in California, hypothesized that during its earliest moments, the cosmos expanded
at an incredibly rapid rate—so rapidly that different bits of matter accelerated away from one
another, reaching speeds far greater than the speed of light. But doesn’t Einstein’s theory of special
relativity make the speed of light a universal speed limit for all motion? Not exactly. Einstein’s limit
applies only to objects moving within space and not the expansion of space itself. During the
“inflationary epoch,” which lasted only from about 10-37 second to 10-34 second after the big bang,
the cosmos expanded by a factor of about 1050.

What produced this enormous cosmic expansion? Guth speculated that all of space must have
undergone a “phase transition,” something analogous to what happens when liquid water quickly
freezes into ice. After some crucial tweaking by his colleagues in the Soviet Union, the United
Kingdom, and the United States, Guth’s idea became so attractive that it has dominated theoretical
models of the extremely early universe for two decades.

And what makes inflation such an attractive theory? The inflationary era explains why the universe,
in its overall properties, looks the same in all directions: everything that we can see (and a good deal
more than that) inflated from a single tiny region of space, converting its local properties into
universal ones. Other advantages, which need not detain us here, accrue to the theory, at least among
those who create model universes in their minds. One additional feature deserves emphasis, however.
The inflationary model makes a straightforward, testable prediction: space in the universe should be
flat, neither positively nor negatively curved, but just as flat as our intuition imagines it.

According to this theory, the flatness of space arises from the enormous expansion that occurred
during the inflationary epoch. Picture yourself, in analogy, on the surface of a balloon, and let the
balloon expand by a factor so large that you lose track of the zeros. After this expansion, the part of
the balloon’s surface that you can see will be flat as a pancake. So too should be all the space that we
can ever hope to measure—if the inflationary model actually describes the real universe.

But the total density of matter amounts to only about one quarter of the amount required to make



space flat. During the 1980s and 1990s, many theoretically minded cosmologists believed that
because the inflationary model must be valid, new data would eventually close the cosmic “mass
gap,” the difference between the total density of matter, which pointed toward a negatively curved
universe, and the critical density, seemingly required to achieve a cosmos with flat space. Their
beliefs carried them buoyantly onward, even as observationally oriented cosmologists mocked their
overreliance on theoretical analysis. And then the mocking stopped.

In 1998, two rival teams of astronomers announced new observations implying the existence of a non-
zero cosmological constant—not (of course) the very number that Einstein had proposed in order to
keep the universe static, but another, quite different value, one that implies that the universe will
expand forever at an ever-increasing rate.

If theorists had proposed this for yet another model universe, the world would have little noted nor
long remembered their effort. Here, however, reputable experts in observing the real universe, had
mistrusted one another, checked on their rivals’ suspicious activities, and discovered that they agreed
on the data and their interpretation. The observational results not only implied a cosmological
constant different from zero but also assigned to that constant a value that makes space flat.

What’s that you say? The cosmological constant flattens space? Aren’t you suggesting, like the Red
Queen in Alice in Wonderland, that we each believe six impossible things before breakfast? More
mature reflection may, however, convince you that if apparently empty space does contain energy (!),
that energy must contribute mass to the cosmos, just as Einstein’s famous equation, E = mc2, implies.
If you’ve got some E, you can conceive it as a corresponding amount of m, equal to E divided by c2.
Then the total density must equal the total of the density contributed by matter, plus the density
contributed by energy.

The new total density is what we must compare with the critical density. If the two are equal, space
must be flat. This would satisfy the inflationary model’s prediction of flat space, for it does not care
whether the total density in space arises from the density of matter, or the matter equivalent provided
by the energy in empty space, or a combination of the two.

The crucial evidence suggesting a non-zero cosmological constant, and thus the existence of dark energy,
came from astronomers’ observations of a particular type of exploding star or supernova, stars that
die spectacular deaths in titanic explosions. These supernovae, called either Type Ia or SN Ia’s, differ
from other types, which occur when the cores of massive stars collapse after exhausting all
possibilities of producing more energy by nuclear fusion. In contrast, SN Ia’s owe their origin to
white dwarf stars that belong to binary star systems. Two stars that happen to be born close to one
another will spend their lives performing simultaneous orbits around their common center of mass. If
one of the two stars has more mass than the other, it will pass more rapidly through its prime of life,
and in most cases will then lose its outer layers of gas, revealing its core to the cosmos as a shrunken,
degenerate “white dwarf,” an object no larger than Earth but containing as much mass as the Sun.
Physicists call the matter in white dwarfs “degenerate” because it has such a high density—more than
a hundred thousand times the density of iron or gold—that the effects of quantum mechanics act on



matter in bulk form, preventing it from collapsing under its enormous self-gravitational forces.
A white dwarf in mutual orbit with an aging companion star attracts gaseous material that escapes

from the star. This matter, still relatively rich in hydrogen, accumulates on the white dwarf, growing
steadily denser and hotter. Finally, when the temperature rises to 10 million degrees, the entire star
ignites in nuclear fusion. The resulting explosion—similar in concept to a hydrogen bomb but trillions
of times more violent—blows the white dwarf completely apart and produces a Type Ia supernova.

SN Ia’s have proven particularly useful to astronomers by possessing two separate qualities. First,
they produce the most luminous supernova explosions in the cosmos, visible across billions of light-
years. Second, nature sets a limit to the maximum mass that any white dwarf can have, equal to about
1.4 times the Sun’s mass. Matter can accumulate on a white dwarf’s surface only until the white
dwarf’s mass reaches this limiting value. At that point, nuclear fusion blasts the white dwarf apart—
and the blast occurs in objects with the same mass and the same composition, strewn throughout the
universe. As a result, all of these white dwarf supernovae attain nearly the same maximum energy
output, and they all fade away at almost the same rate after they achieve their maximum brightness.

These dual attributes allow SN Ia’s to provide astronomers with highly luminous, easily
recognizable “standard candles,” objects known to achieve the same maximum energy output
wherever they appear. Of course, the distance to the supernovae affects their brightnesses as we
observe them. Two SN Ia’s, seen in two faraway galaxies, will appear to reach the same maximum
brightness only if they have the same distance from us. If one has twice the distance of the other, it
will attain only one quarter of the other’s maximum apparent brightness, because the brightness with
which any object appears to us diminishes in proportion to the square of its distance.

Once astronomers learned how to recognize Type Ia supernovae, based on their detailed study of the
spectrum of light from each of these objects, they had a golden key with which to unlock the riddle of
determining accurate distance. After measuring (through other means) the distances to the closest of
the SN Ia’s, they could estimate much greater distances to other Type Ia supernovae, simply by
comparing the brightnesses of the relatively near and distant objects.

Throughout the 1990s, two teams of supernova specialists, one centered at Harvard and the other at
the University of California at Berkeley, refined this technique by finding how to compensate for the
small but real differences among the SN Ia’s, which the supernovae reveal to us through the details in
their spectra. In order to use their newly forged key to unlock the distances to faraway supernovae,
the researchers needed a telescope capable of observing distant galaxies with exquisite precision,
and they found one in the Hubble Space Telescope, refurbished in 1993 to correct its primary mirror
that had been ground to the wrong shape. The supernova experts used ground-based telescopes to
discover dozens of SN Ia’s in galaxies billions of light-years from the Milky Way. They then arranged
for the Hubble Telescope, for which they could obtain only a modest fraction of the total observing
time, to study these newfound supernovae in detail.

As the 1990s drew toward a close, the two teams of supernova observers competed keenly to
derive a new and expanded “Hubble diagram,” the key graph in cosmology that plots galaxies’
distances versus the speeds at which the galaxies are moving away from us. Astrophysicists calculate
these speeds through their knowledge of the Doppler effect (described in Chapter 13), which changes
the colors of the galaxies’ light by small amounts that depend on the velocities at which the galaxies



are receding from us.
Each galaxy’s distance and recession velocity specify a point on the Hubble diagram. For relatively

nearby galaxies these points march upward in lockstep, since a galaxy twice as distant from us as
another turns out to be receding twice as fast. The direct proportionality between galaxies’ distances
and recession velocities finds algebraic expression in Hubble’s law, the simple equation that
describes the basic behavior of the universe: v = Ho x d. Here v stands for recession velocity, d for
distance, and Ho is a universal constant, called Hubble’s constant, that describes the entire universe
at any particular time. Alien observers throughout the universe, studying the cosmos 14 billion years
after the big bang, will find galaxies receding at speeds that follow Hubble’s law, and all of them will
derive the same value for Hubble’s constant, though they will probably give it a different name. This
assumption of cosmic democracy underlies all of modern cosmology. We cannot prove that the entire
cosmos follows this democratic principle. Perhaps, far beyond the farthest horizon of our vision, the
cosmos behaves quite differently from what we see. But cosmologists reject this approach, at least
for the observable universe. In that case, v = Ho x d represents universal law.

With time, however, the value of Hubble’s constant can and does change. A new and improved
Hubble diagram, one that extended to include galaxies many billions of light-years away, will reveal
not only the value of today’s Hubble constant Ho (embodied in the slope of the line that runs through
the points representing galaxies’ distances and recession velocities) but also the way in which the
universe’s current rate of expansion differs from its value billions of years ago. The latter value
would be revealed by the details of the upper reaches of the graph, whose points describe the most
distant galaxies ever observed. Thus a Hubble diagram extending to distances of many billion light-
years would reveal the history of the expansion of the cosmos, embodied in its changing rate of
expansion.

In striving for this goal, the astrophysics community struck a mother lode of good fortune in having
two competing teams of supernova observers. The supernova results, first announced in February
1998, had an impact so great that no single group could have survived the natural skepticism of
cosmologists to the overthrow of their widely accepted models of the universe. Because the two
observing teams directed their skepticism primarily at each other, they brilliantly searched for errors
in the other team’s data or interpretation. When they pronounced themselves satisfied, despite their
human prejudices, that their competitors were careful and competent, the cosmological world had
little choice but to accept, albeit with some restraint, the news from the frontiers of space.

What was that news? Just that the most distant SN Ia’s turned out a bit fainter than expected. This
implies that the supernovae are somewhat farther away than they ought to be, which in turn shows that
something made the universe expand a bit more rapidly than it should. What provoked this additional
expansion? The only culprit that fits the facts is the “dark energy” that lurks in empty space—the
energy whose existence corresponds to a non-zero value for the cosmological constant. By measuring
the amount by which distant supernovae turned out to be fainter than expected, the two teams of
astronomers measured the shape and fate of the universe.

When the two supernova teams achieved consensus, the cosmos turned out to be flat. To understand, we



must engage in a bit of rough and tumble in Greek. A universe with a non-zero cosmological constant
requires one additional number to describe the cosmos. To the Hubble constant, which we write as
H0 to denote its value at the present time, and to the average density of matter, which alone
determines the curvature of space if the cosmological constant is zero, we must now add the density
equivalent provided by the dark energy, which, by Einstein’s formula E = mc2, must possess the
equivalent of mass (m) because it has energy (E). Cosmologists express the densities of matter and
dark energy with the symbols ΩM and ΩΛ, where Ω (the Greek capital letter omega) stands for the
ratio of the cosmic density to the critical density. ΩM represents the ratio of the average density of all
the matter in the universe to the critical density, while ΩΛ stands for the ratio of the density
equivalent provided by the dark energy to the critical density. Here Λ(Greek capital lambda)
represents the cosmological constant. In a flat universe, which has zero curvature of space, the sum of
ΩM and ΩΛalways equals 1, because the total density (of actual matter plus the matter equivalent
provided by the dark energy) exactly equals the critical density.

The observations of distant Type Ia supernovae measure the difference between ΩM and ΩΛ.
Matter tends to slow the expansion of the universe, as gravity pulls everything toward everything else.
The greater the density of matter, the more this pull will slow things down. Dark energy, however,
does something quite different. Unlike pieces of matter, whose mutual attraction slows the cosmic
expansion, dark energy has a strange property: it tends to make space expand, and thus accelerate the
expansion. As space expands, more dark energy comes into existence, so that the expanding universe
represents the ultimate free lunch. The new dark energy tends to make the cosmos expand still faster,
so the free lunch grows ever larger as time goes on. The value of ΩΛ is a measure of the size of the
cosmological constant and gives us the magnitude of dark energy’s expansionist ways. When
astronomers measured the relationship between galaxies’ distances and their recession velocities,
they found the result of the contest between gravity’s pulling things together and dark energy’s pushing
them apart. Their measurements implied that ΩΛ – ΩM = 0.46, plus or minus about 0.03. Since
astronomers had already determined that ΩM equals approximately 0.25, this result sets ΩΛ at about
0.71. Then the sum of ΩΛ and ΩM rises to 0.96, near the total predicted by the inflationary model.
Recent new results have sharpened these values and brought this sum even closer to 1.

Despite the agreement between the two competing groups of supernova experts, some cosmologists
remained cautious. It is not every day that a scientist abandons a long-held belief, such as the
conviction that the cosmological constant ought to be zero, and replaces it with a strikingly different
one, such as the conclusion that dark energy fills every cubic centimeter of empty space. Almost all
the skeptics who had followed the ins and outs of cosmological possibilities finally pronounced
themselves convinced after they had digested new observations from a satellite designed and
operated to observe the cosmic background radiation with unprecedented accuracy. That satellite, the
all-important WMAP described in Chapter 3, began to make useful observations in 2002, and by
early 2003 had accumulated sufficient data for cosmologists to make a map of the entire sky, seen in
the microwaves that carry most of the cosmic background radiation. Although earlier observations
had revealed the basic results to be derived from this map, they had observed only small portions of



the sky or shown much less detail. WMAP’s whole-sky map provided the capstone to the mapping
effort, and has determined, once and for all, the most important features of the cosmic background
radiation.

The most striking and significant aspect of this map, as was also true for the balloon-borne
observations and for WMAP’s predecessor, the COBE (COsmic Background Explorer) satellite, lies
in its near featurelessness. No measurable differences in the intensity of the cosmic background
radiation arriving from all different directions appear until we reach a precision of about one part in
a thousand in our measurements. Even then, the only discernible differences appear as a slightly
greater intensity, centered on one particular direction, that matches a corresponding slightly lesser
intensity, centered on the opposite direction. These differences arise from our Milky Way galaxy’s
motion among its neighbor galaxies. The Doppler effect causes us to receive slightly stronger
radiation from the direction of this motion, not because the radiation actually is stronger, but because
our motion toward the cosmic background radiation (CBR) slightly increases the energies of the
photons that we detect.

Once we compensate for the Doppler effect, the cosmic background radiation appears perfectly
smooth—until we attain an even higher precision of about one part in a hundred thousand. At that
level, tiny deviations from total smoothness appear. They track locations from which the CBR arrives
with a bit more, or a bit less, intensity. As previously noted, the differences in intensity mark
directions in which matter was either a little hotter and denser, or a little cooler and more rarefied,
than the average value 380,000 years after the big bang. The COBE satellite first saw these
differences; balloon-borne instruments and South Pole observations improved our measurements; and
then the WMAP satellite provided still better precision in surveying the entire sky, allowing
cosmologists to construct a detailed map of the intensity of the cosmic background radiation,
observed with unprecedented angular resolution of about one degree.

The tiny deviations from smoothness revealed by COBE and WMAP have more than passing interest
to cosmologists. First of all, they show the seeds of structure in the universe at the time when the
cosmic background radiation ceased to interact with matter. The regions revealed as slightly denser
than average at that time had a head start toward further contraction, and have won the competition to
acquire the most matter by gravity. Thus the primary result from the new map of the CBR’s intensity in
different directions is the verification of cosmologists’ theories of how the immense differences in
density from place to place throughout the cosmos that we see now owe their existence to tiny
differences in density that existed a few hundred thousand years after the big bang.

But cosmologists can use their new observations of the cosmic background radiation to discern
another, still more basic fact about the cosmos. The details in the map of the CBR’s intensity from
place to place reveal the curvature of space itself. This amazing result rests on the fact that the
curvature of space affects how radiation travels through it. If, for example, space has a positive
curvature, then when we observe the cosmic background radiation, we are in much the same situation
as an observer at the North Pole who looks along Earth’s surface to study radiation produced near the
Equator. Because the lines of longitude converge toward the pole, the source of radiation seems to
span a smaller angle than it would if space were flat.

To understand how the curvature of space affects the angular size of features in the cosmic



background radiation, imagine the time when the radiation finally ceased to interact with matter. At
that time, the largest deviations from smoothness that could have existed in the universe had a size that
cosmologists can calculate: the age of the universe at that time, multiplied by the speed of light—
about 380,000 light-years across. This represents the maximum distance at which particles could
have affected one another to produce any irregularities. At greater distances, the “news” from other
particles would not yet have arrived, so they cannot be blamed for any deviations from smoothness.

How large an angle would these maximum deviations span on the sky now? That depends on the
curvature of space, which we can determine by finding the sum of ΩM and ΩΛ. The more closely that
sum approaches 1, the more closely the space curvature will approach zero, and the larger will be the
angular size that we observe for the maximum deviations from smoothness in the CBR. This space
curvature depends only on the sum of the two Ωs, because both types of density make space curve in
the same way. Observations of the cosmic background radiation therefore offer a direct measurement
of ΩM + ΩΛ, in contrast to the supernova observations, which measure the difference between ΩM
and ΩΛ.

The WMAP data show that the largest deviations from smoothness in the CBR span an angle of
about 1 degree, which implies that ΩM + ΩΛ has a value of 1.02, plus or minus 0.02. Thus, within
the limits of experimental accuracy, we may conclude that ΩM + ΩΛ = 1, and that space is flat. The
result from observations of distant SN Ia’s may be stated as ΩΛ – ΩM = 0.46. If we combine this
result with the conclusion that ΩM + ΩΛ = 1, we find that ΩM = 0.27 and ΩΛ = 0.73, with an
uncertainty of a few percent in each number. As already noted, these are the astrophysicists’ current
best estimates for the values of these two key cosmic parameters, which tell us that matter—both
ordinary and dark—provides 27 percent of the total energy density in the universe, and dark energy
73 percent. (If we prefer to think of energy’s mass equivalent, E/c2, then dark energy furnishes 73
percent of all the mass.)

Cosmologists have long known that if the universe has a non-zero cosmological constant, the
relative influence of matter and dark energy must change significantly as time passes. On the other
hand, a flat universe remains flat forever, from its origin in the big bang to the infinite future that
awaits us. In a flat universe, the sum of ΩM and ΩΛ always equals 1, so if one of these changes, the
other must also vary in compensation.

During the cosmic epochs that followed soon after the big bang, the dark energy produced hardly
any effect on the universe. So little space existed then, in comparison to the eras that would follow,
that ΩΛ had a value just a bit above zero, while ΩM was only a tiny bit less than 1. In those bygone
ages, the universe behaved in much the same way as a cosmos without a cosmological constant. As
time passed, however, ΩM steadily decreased and ΩΛ just as steadily increased, keeping their sum
constant at 1. Eventually, hundreds of billions of years from now, ΩM will fall almost all the way to
zero and ΩΛ will rise nearly to unity. Thus, the history of flat space with a non-zero cosmological
constant involves a transition from its early years, when the dark energy barely mattered, through the
“present” period, when ΩM and ΩΛ have roughly equal values, and on into an infinitely long future,



when matter will spread so diffusely through space that ΩM must pursue an infinitely long slide
toward zero, even as the sum of the two Ωs remains equal to 1.

Observational deduction of how much mass exists in galaxy clusters now gives ΩM a value of about
0.25, while the observations of the CBR and distant supernovae imply a value close to 0.27. Within
the limits of experimental accuracy, these two values coincide. If the universe in which we live does
have a non-zero cosmological constant, and if that constant is responsible (along with the matter) for
producing the flat universe that the inflationary model predicts, then the cosmological constant must
have a value that makes ΩΛ equal to a bit more than 0.7, two and a half times the value of ΩM. In
other words, ΩΛ must now do most of the work in making (ΩM + ΩΛ) equal to 1. This means that
we have already passed through the cosmic era when matter and the cosmological constant
contributed the same amount (with each of them equal to 0.5) toward maintaining the flatness of
space.

Within less than a decade, the double-barreled blast from the Type Ia supernovae and the cosmic
background radiation has changed the status of dark energy from a far-out idea that Einstein once
toyed with to a cosmic fact of life. Unless a host of observations eventually prove to be
misinterpreted, inaccurate, or just plain wrong, we must accept the result that the universe will never
contract or recycle itself. Instead, the future seems bleak: a hundred billion years from now, when
most stars will have burnt themselves out, all but the closest galaxies will have vanished across our
horizon of visibility.

By then, the Milky Way will have coalesced with its nearest neighbors, creating one giant galaxy in
the literal middle of nowhere. Our night sky will contain orbiting stars, (dead and alive) and nothing
else, leaving future astrophysicists a cruel universe. With no galaxies to track the cosmic expansion,
they will erroneously conclude, as did Einstein, that we live in a static universe. The cosmological
constant and its dark energy will have evolved the universe to a point where they cannot be measured
or even dreamt of.

Enjoy cosmology while you can.



CHAPTER 6

One Universe or Many?

The discovery that we live in an accelerating universe, with an ever-increasing rate of expansion,
rocked the world of cosmology early in 1998, with the first announcement of the supernova
observations that point to this acceleration. Now that the accelerating universe has received
confirmation from detailed observations of the cosmic background radiation, and now that
cosmologists have had several years to wrestle with the implications of an accelerating cosmic
expansion, two great questions have emerged to bedevil their days and brighten their dreams: What
makes the universe accelerate? And why does that acceleration have the particular value that now
characterizes the cosmos?

The simple answer to the first question assigns all responsibility for the acceleration to the
existence of dark energy, or, equivalently, to a non-zero cosmological constant. The amount of
acceleration depends directly on the amount of dark energy per cubic centimeter: More energy
implies greater acceleration. Thus, if cosmologists could only explain where the dark energy comes
from, and why it exists in the amount that they find today, they could claim to have uncovered a
fundamental secret of the universe—the explanation for the cosmic “free lunch,” the energy in empty
space that continuously drives the cosmos toward an eternal, ever more rapid expansion and a far
future of enormous amounts of space, correspondingly enormous amounts of dark energy, and almost
no matter per cubic light-year.

What makes dark energy? From the deep realms of particle physics, cosmologists can produce an
answer: The dark energy arises from events that must occur in empty space, if we trust what we have
learned from the quantum theory of matter and energy. All of particle physics rests on this theory,
which has been verified so often and so exactly in the submicroscopic realm that almost all physicists
accept it as correct. An integral part of quantum theory implies that what we call empty space in fact
buzzes with “virtual particles,” which wink into and out of existence so rapidly that we can never pin
them down directly, but can only observe their effects. The continual appearance and disappearance
of these virtual particles, called the “quantum fluctuations of the vacuum” by those who like a good
physics phrase, gives energy to empty space. Furthermore, particle physicists can, without much
difficulty, calculate the amount of energy that resides in every cubic centimeter of the vacuum. The
straightforward application of quantum theory to what we call a vacuum predicts that quantum
fluctuations must create dark energy. When we tell the story from this perspective, the great question
about dark energy seems to be, Why did cosmologists take so long to recognize that this energy must
exist?

Unfortunately, the details of the actual situation turn this question into, How did particle physicists
go so far wrong? Calculations of the amount of dark energy that lurks in every cubic centimeter
produce a value about 120 powers of ten greater than the value that cosmologists have found from



observations of supernovae and the cosmic background radiation. In far-out astronomical situations,
calculations that prove correct to within a single factor of 10 are often judged at least temporarily
acceptable, but a factor of 10120 cannot be swept under the rug, even by physics Pollyannas. If real
empty space contained dark energy in anything like the amounts proposed by particle physics, the
universe would have long since puffed itself into so large a volume that our heads could never have
begun to spin, since a tiny fraction of a second would have sufficed to spread matter out to
unimaginable rarefaction. Theory and observation agree that empty space ought to contain dark
energy, but they disagree by a trillion to the tenth power about the amount of that energy. No earthly
analogy, nor even a cosmic one, can illustrate this discrepancy accurately. The distance to the farthest
galaxy that we know exceeds the size of a proton by a factor of 1040. Even this enormous number is
only the cube root of the factor by which theory and observation currently diverge concerning the
value of the cosmological constant.

Particle physicists and cosmologists have long known that quantum theory predicts an unacceptably
large value for the dark energy, but in the days when the cosmological constant was thought to be
zero, they hoped to discover some explanation that would, in effect, cancel positive with negative
terms in the theory and thereby finesse the problem out of existence. A similar cancellation once
solved the problem of how much energy virtual particles contribute to the particles that we do
observe. Now that the cosmological constant turns out to be non-zero, the hopes of finding such a
cancellation seem dimmer. If the cancellation does exist, it must somehow remove almost all of the
mammoth theoretical value we have today. For now, lacking any good explanation for the size of the
cosmological constant, cosmologists must continue to collaborate with particle physicists as they seek
to reconcile theories of how the cosmos generates dark energy with the value observed for the amount
of dark energy per cubic centimeter.

Some of the finest minds engaged in cosmology and particle physics have directed much of their
energy toward explaining this observational value, with no success at all. This provokes fire, and
sometimes ire, among theorists, in part because they know that a Nobel Prize—not to mention the
immense joy of discovery—awaits those who can explain what nature has done to make space as we
find it. But another issue stokes intense controversy as it cries out for explanation: Why does the
amount of dark energy, as measured by its mass equivalent, roughly equal the amount of energy
provided by all the matter in the universe?

We can recast this question in terms of the two Ωs that we use to measure the density of matter and
the density equivalent of dark energy: Why do ΩM and ΩΛ roughly equal one another, rather than one
being enormously larger than the other? During the first billion years after the big bang, ΩM was
almost precisely equal to 1, while ΩΛ was essentially zero. In those years, ΩM was first millions,
then thousands, and afterward hundreds of times greater than ΩΛ. Today, with ΩM = 0.27 and ΩΛ =
0.73, the two values are roughly equal, though ΩΛ is already notably larger than ΩM. In the far
future, more than 50 billion years from now, ΩΛ will be first hundreds, then thousands, after that
millions, and still later billions of times greater than ΩM. Only during the cosmic era from about 3
billion to 50 billion years after the big bang do the two quantities match one other even



approximately.
To the easygoing mind, the interval between 3 billion and 50 billion years embraces quite a long

period of time. So what’s the problem? From an astronomical viewpoint, this stretch of time amounts
to nearly nothing. Astronomers often take a logarithmic approach to time, dividing it into intervals that
increase by factors of 10. First the cosmos had some age; then it grew ten times older; then ten times
older than that; and so on toward infinite time, which requires an infinite number of ten-times jumps.
Suppose that we start counting time at the earliest moment after the big bang that has any significance
in quantum theory, 10-43 second after the big bang. Since each year contains about 30 million (3 x
107) seconds, we need about 60 factors of 10 to pass from 10-43 second to 3 billion years after the
big bang. In contrast, we require only a bit more than a single factor of 10 to stroll from 3 billion to
50 billion years, the only period when ΩM and ΩΛ are roughly equal. After that, an infinite number
of ten-times factors opens the way to the infinite future. From this logarithmic perspective, only a
vanishingly small probability exists that we should find ourselves living in a cosmic situation for
which ΩM and ΩΛ have even vaguely similar values. Michael Turner, a leading American
cosmologist, has termed this conundrum—the question of why we find ourselves alive at a time when
ΩM and ΩΛ are approximately equal—the “Nancy Kerrigan problem” in honor of the Olympic figure
skater, who asked, after enduring an assault by her rival’s boyfriend, “Why me? Why now?”

Despite their inability to calculate a cosmological constant whose value comes anywhere close to
the measure one, cosmologists do have an answer to the Kerrigan problem, but they differ sharply on
its significance and implications. Some embrace it; some accept it only reluctantly; some dance
around it; and some despise it. This explanation links the value of the cosmological constant to the
fact that we are here, alive on a planet that orbits an average star in an average galaxy. Because we
exist, this argument runs, the parameters that describe the cosmos, and in particular the value of the
cosmological constant, must have values that allow us to exist.

Consider, for example, what would happen in a universe with a cosmological constant much larger
than its actual value. A much greater amount of dark energy would make ΩΛ rise far above ΩM, not
after about 50 billion years but after only a few million years. By this time, in a cosmos dominated by
the accelerating effects of dark energy, matter would spread so rapidly apart that no galaxies, stars, or
planets could form. If we assume that the stretch of time from the first formation of clumps of matter to
the origin and development of life covers at least 1 billion years, we can conclude that our existence
limits the cosmological constant to a value between zero and a few times its actual value, while
ruling out of play the infinite range of higher values.

This argument gains more traction if we assume, as do many cosmologists, that everything we call
the universe belongs to a much larger “multiverse,” which contains an infinite number of universes,
none of which interact with any other: in the multiverse concept, the entire state of affairs embeds in
higher dimensions, so space in our universe remains completely inaccessible to any other universe,
and vice versa. This lack of even theoretically possible interactions puts the multiverse theory into
the category of apparently nontestable, and therefore nonverifiable, hypotheses—at least until wiser
minds find ways to test the multiverse model. In the multiverse, new universes are born at completely
random times, capable of swelling up by inflation into enormous volumes of space, and of doing so



without interfering in the least with the infinite number of other universes.
In the multiverse, each new universe springs into existence with its own physical laws and its own

set of cosmic parameters, including the rules that determine the size of the cosmological constant.
Many of these other universes have cosmological constants enormously larger than ours, and quickly
accelerate themselves into situations of near-zero density, no good for life. Only a tiny, perhaps an
infinitesimal fraction of all the universes in the multiverse offer conditions that allow life to exist,
because only this fraction have parameters that permit matter to organize itself into galaxies, stars,
and planets, and for those objects to last for billions of years.

Cosmologists call this approach to explaining the value of the cosmological constant the anthropic
principle, though the anthropic approach probably offers a better name. This approach toward
explaining a crucial question in cosmology has one great appeal: people love it or hate it, but rarely
feel neutral about it. Like many intriguing ideas, the anthropic approach can be bent to favor, or at
least seem to favor, various theological and teleological mental edifices. Some religious
fundamentalists find that the anthropic approach supports their beliefs because it implies a central
role for humanity: without someone to observe it, the cosmos—at least the cosmos that we know—
would not, could not, be here; hence a higher power must have made things just right for us. An
opponent of this conclusion would note this is not really what the anthropic approach implies; on a
theological level, this argument for the existence of God implies surely the most wasteful creator one
might imagine, who makes countless universes in order that in a tiny sector of just one of these, life
might arise. Why not skip the middleman and follow older creation myths that center on humanity?

On the other hand, if you choose to see God in everything, as Spinoza did, you cannot help but
admire a multiverse that effloresces universes without end. Like most news from the frontier of
science, the concept of a multiverse, and the anthropic approach, can be easily bent in different
directions to serve the needs of particular belief systems. As things stand, many cosmologists find the
multiverse quite enough to swallow without connecting it to any system of beliefs. Stephen Hawking,
who (like Isaac Newton before him) holds the Lucasian chair in astronomy at Cambridge University,
judges the anthropic approach an excellent resolution of the Kerrigan problem. Stephen Weinberg,
who won the Nobel Prize for his insights into particle physics, dislikes this approach but pronounces
himself in favor, at least for the time being, because no other reasonable solution has appeared.

History may eventually show that for now, cosmologists are concentrating on the wrong problem—
wrong in the sense that we don’t yet understand enough to attack it properly. Weinberg likes the
analogy with Johannes Kepler’s attempt to explain why the Sun has six planets (as astronomers then
believed), and why they move in the orbits that they do. Four hundred years after Kepler, astronomers
still know far too little about the origin of planets to explain the precise number and orbits of the
Sun’s family. We do know that Kepler’s hypothesis, which proposed that the spacing of the planets’
orbits around the Sun allows one of the five perfect solids to fit exactly between each pair of
adjoining orbits, has no validity whatsoever, because the solids do not fit particularly well, and (even
more important) because we have no good reason to explain why the planets’ orbits should obey such
a rule. Later generations may regard today’s cosmologists as latter-day Keplers, struggling valiantly
to explain what remains inexplicable by today’s understanding of the universe.

Not everyone favors the anthropic approach. Some cosmologists attack it as defeatist, ahistorical



(since this approach contradicts numerous examples of the success of physics in explaining, sooner or
later, a host of once mysterious phenomena), and dangerous, because the anthropic approach smacks
of intelligent-design arguments. Furthermore, many cosmologists find unacceptable, as grounds for a
theory of the universe, the assumption that we live in a multiverse that contains a multitude of
universes with which we can never interact, even in theory.

The debate over the anthropic principle highlights the skepticism that underlies the scientific
approach to understanding the cosmos. A theory that appeals to one scientist, typically the one who
thought it up, may seem ridiculous, or just plain wrong, to another. Both know that theories survive
and thrive when other scientists find them best at explaining most of the observational data. (As a
famous scientist once remarked, Beware of a theory that explains all the data—some of it will quite
likely turn out to be wrong.)

The future may not produce a quick resolution to this debate, but it will surely bring forth other
attempts to explain what we see in the universe. For example, Paul Steinhardt of Princeton University,
who could use some tutoring in creating catchy names, has produced a theoretical “ekpyrotic model”
of the cosmos in collaboration with Neil Turok of Cambridge University. Motivated by the section of
particle physics called string theory, Steinhardt envisions a universe with eleven dimensions, most of
which are “compactified,” more or less rolled up like a sock, so that they occupy only infinitesimal
amounts of space. But some of the additional dimensions have real size and significance, except that
we can’t perceive them because we remain locked into our familiar four. If you pretend that all of
space in our universe fills an infinite thin sheet (this model reduces the three dimensions of space to
two), you can imagine another, parallel sheet, and then picture the two sheets approaching and
colliding. The collision produces the big bang, and as the sheets rebound from one another, each
sheet’s history proceeds along familiar lines, giving birth to galaxies and stars. Eventually, the two
sheets cease to separate and start to approach one another again, producing another collision and
another big bang in each sheet. The universe thus has a cyclical history, repeating itself, at least in its
broadest outlines, at intervals of hundreds of billions of years. Since “ekpyrosis” means
“conflagration” in Greek (recall the more familiar word “pyromaniac”), the “ekpyrotic universe”
reminds all those with Greek at the tips of their brains of the great fire that gave birth to the cosmos
that we know.

This ekpyrotic model of the universe has emotional and intellectual appeal, though not enough to
win the hearts and minds of many of Steinhardt’s fellow cosmologists. Not yet, anyhow. Something
vaguely like the ekpyrotic model, if not this model itself, may someday offer the breakthrough that
cosmologists now await in their attempts to explain the dark energy. Even those who favor the
anthropic approach would hardly dig in their heels to resist a new theory that could provide a good
explanation for the cosmological constant without invoking an infinite number of universes, of which
ours happens to be one of the lucky ones. As one of R. Crumb’s cartoon characters once said: “What a
wonderful, wacky world we live in! Wooey!”



Part II

The Origin of Galaxies and 
Cosmic Structure



CHAPTER 7

Discovering Galaxies

Two and a half centuries ago, shortly before the English astronomer Sir William Herschel built the
world’s first seriously large telescope, the known universe consisted of little more than the stars, the
Sun and Moon, the planets, a few moons of Jupiter and Saturn, some fuzzy objects, and the galaxy that
forms a milky band across the night sky. Indeed, the word “galaxy” derives from the Greek galaktos,
or “milk.” The sky also held the fuzzy objects, scientifically named nebulae after the Latin word for
clouds—objects of indeterminate shape such as the Crab nebula in the constellation Taurus, and the
Andromeda nebula, which appears to live among the stars of the constellation Andromeda.

Herschel’s telescope had a mirror forty-eight inches across, an unprecedented size for 1789, the
year it was built. A complex array of trusses to support and point this telescope made it an ungainly
instrument, but when he aimed it at the heavens, Herschel could readily see the countless stars that
compose the Milky Way. Using his forty-eight-incher, as well as a smaller, more nimble telescope,
Herschel and his sister Caroline compiled the first extensive “deep sky” catalogue of northern
nebulae. Sir John—Herschel’s son—continued this family tradition, adding to his father’s and aunt’s
list of northern objects and, during an extended stay at the Cape of Good Hope at the southern tip of
Africa, cataloguing some 1,700 fuzzy objects visible from the Southern Hemisphere. In 1864, Sir John
produced a synthesis of the known deep sky objects: A General Catalogue of Nebulae and Clusters
of Stars, which included more than five thousand entries.

In spite of that large body of data, nobody at the time knew the true identity of the nebulae, their
distances from Earth, or the differences among them. Nevertheless, the 1864 catalogue made it
possible to classify the nebulae morphologically—that is, according to their shapes. In the “we call
’em as we see ’em” tradition of baseball umpires (who came into their own just about the time that
Herschel’s General Catalogue was published), astronomers named the spiral-shaped nebulae “spiral
nebulae,” those with a vaguely elliptical shape “elliptical nebulae,” and the various irregularly
shaped nebulae—neither spiral nor elliptical—“irregular nebulae.” Finally, they called the nebulae
that looked small and round, like a telescopic image of a planet, “planetary nebulae,” an act that has
permanently confused newcomers to astronomy.

For most of its history, astronomy has remained plainspoken, using descriptive methods of inquiry
that greatly resembled those used in botany. Using their lengthening compendia of stars and fuzzy
things, astronomers searched for patterns and sorted objects according to them. Quite a sensible step,
too. Most people, beginning in childhood, arrange things according to appearance and shape without
even being told to do so. But this approach can carry you only so far. The Herschels always assumed,
because many of their fuzzy objects span a patch of about the same size on the night sky, that all the
nebulae lay at about the same distance from Earth. So to them it was simply good, evenhanded
science to subject all the nebulae to the same rules of sorting.



Trouble is, the assumption that all nebulae lay at similar distances turned out to be badly mistaken.
Nature can be elusive, even devious. Some of the nebulae classified by the Herschels are no farther
away than the stars, so they are relatively small (if a trillion miles across can be called “relatively
small”). Others turned out to be much more distant, so they must be much larger than the fuzzy objects
relatively close to us if they are to appear the same size on the sky.

The take-home lesson is that at some point you’ve got to stop fixating on what something looks like
and start asking what it is. Fortunately, by the late nineteenth century, advances in science and
technology had empowered astronomers to do just that, to move beyond merely classifying the
contents of the universe. That shift led to the birth of astrophysics, the useful application of the laws
of physics to astronomical situations.

During the same era when Sir John Herschel published his vast catalogue of nebulae, a new scientific
instrument, the spectroscope, joined the search for nebulae. The sole job of a spectroscope is to break
light into a rainbow of its component colors. Those colors, and features embedded within them,
reveal not only fine details about the chemical composition of the light source but also, because of a
phenomenon called the Doppler effect, the motion of the light source toward or away from Earth.

Spectroscopy revealed something remarkable: the spiral nebulae, which happen to predominate
outside the swath of the Milky Way, are nearly all moving away from Earth, and at extremely high
speeds. In contrast, all the planetary nebulae, as well as most irregular nebulae, are traveling at
relatively low speeds—some toward us and some away from us. Had some catastrophic explosion
taken place in the center of the Milky Way, booting out only the spiral nebulae? If so, why weren’t any
of them falling back? Were we catching the catastrophe at a special time? In spite of advances in
photography that brought forth faster emulsions, enabling astronomers to measure the spectra of ever
dimmer nebulae, the exodus continued and these questions remained unanswered.

Most advances in astronomy, as in other sciences, have been driven by the introduction of better
technology. As the 1920s opened, another key instrument appeared on the scene: the formidable 100-
inch Hooker Telescope at the Mount Wilson Observatory near Pasadena, California. In 1923, the
American astronomer Edwin P. Hubble used this telescope—the largest in the world at that time—to
find a special breed of star, a Cepheid variable star, in the Andromeda nebula. Variable stars of any
type vary in brightness according to well-known patterns; Cepheid variables, named for the prototype
of the class, a star in the constellation Cepheus, are all extremely luminous and therefore visible over
vast distances. Because their brightness varies in recognizable cycles, patience and persistence will
yield an increasing number to the careful observer. Hubble had found a few of these Cepheid
variables within the Milky Way and estimated their distances; yet, to his astonishment, the Cepheid he
found in Andromeda was much dimmer than any of those.

The most likely explanation for this dimness was that the new Cepheid variable, and the Andromeda
nebula in which it lives, sits at a distance much greater than those to the Cepheids in the Milky Way.
Hubble realized that this placed the Andromeda nebula at so great a distance that it could not possibly
lie among the stars in the constellation Andromeda, nor anywhere within the Milky Way—and could
not have been kicked out, along with all its spiral sisters, during a catastrophe milk spill.

The implications were breathtaking. Hubble’s discovery showed that spiral nebulae are entire



systems of stars in their own right, as huge and as packed with stars as our own Milky Way. In the
phrase of the philosopher Immanuel Kant, Hubble had demonstrated that “island universes” by the
dozens must lie outside our own star system, for the object in Andromeda merely led the list of well-
known spiral nebulae. The Andromeda nebula was, in fact, the Andromeda galaxy.

By 1936, enough island universes had been identified and photographed through the Hooker and other
large telescopes that Hubble, too, decided to try his hand at morphology. His analysis of galaxy types
rested upon the untested assumption that variations from one shape to another among galaxies signify
evolutionary steps from birth to death. In his 1936 book Realm of the Nebulae, Hubble classified
galaxies by placing the different types along a diagram shaped like a musical tuning fork, whose
handle represents the elliptical galaxies, with rounded ellipticals at the far end of the handle and
flattened ellipticals near the point where the two tines join. Along one tine lie the ordinary spiral
galaxies: those nearest the handle have their spiral arms wound extremely tightly, while those toward
the tine’s end have increasingly loosely wound spiral arms. Along the other tine are spiral galaxies
whose central region displays a straight “bar,” but are otherwise similar to ordinary spirals.

Hubble imagined that galaxies start their lives as round ellipticals and become flatter and flatter as
they continue to take shape, ultimately revealing a spiral structure that slowly unfurls with the passage
of time. Brilliant. Beautiful. Even elegant. But just plain wrong. Not only were entire classes of
irregular galaxies omitted from this scheme, but astrophysicists would later learn that the oldest stars
in every galaxy were about the same age, implying that all the galaxies were born during a single era
in the history of the universe.

For three decades (with some research opportunities lost because of World War II), astronomers
observed and catalogued galaxies in accordance with Hubble’s tuning-fork diagram as ellipticals,
spirals, and barred spirals, with irregulars a minority subset, completely off the chart because of their
strange shapes. Of elliptical galaxies one might say, as Ronald Reagan did about California’s
redwoods, that when you’ve seen one, you’ve seen them all. Elliptical galaxies resemble one another
in possessing neither the spiral-arm patterns that characterize spirals and barred spirals, nor the giant
clouds of interstellar gas and dust that give birth to new stars. In these galaxies, star formation ended
many billion years ago, leaving behind spherical or ellipsoidal groups of stars. The largest elliptical
galaxies, like the largest spirals, each contain many hundred billion stars—perhaps even a trillion or
more—and have diameters close to a hundred thousand light-years. With the exception of
professional astronomers, no one has ever sighed over the fantastic patterns and complex star
formation histories of an elliptical galaxy for the excellent reason that, at least in comparison with
spirals, ellipticals have simple shapes and straightforward star formation: they all turned gas and dust
into stars until they could do so no more.

Happily, spirals and barred spirals furnish the visual excitement so lacking in ellipticals. The most
deeply resonant of all the galaxy images that we may ever see, a view of the entire Milky Way taken
from outside it, will stir our hearts and minds, just as soon as we manage to send a camera several
hundred thousand light-years above or below the central plane of our galaxy. Today, when our most
far-flung space probes have traveled a billionth of that distance, this goal may seem unattainable, and
indeed even a probe that could reach nearly the speed of light would require a long wait—far longer



than the current span of recorded history—to yield the desired result. For the time being, astronomers
must continue to map the Milky Way from inside, sketching the galactic forest by delineating its stellar
and nebular trees. These efforts reveal that our galaxy closely resembles our closest large neighbor,
the great spiral galaxy in Andromeda. Conveniently located about 2.4 million light-years away, the
Andromeda galaxy has provided a wealth of information about the basic structural patterns of spiral
galaxies, as well as about different types of stars and their evolution. Because all of the Andromeda
galaxy’s stars have the same distance from us (plus or minus a few percent), astronomers know that
the stars’ brightnesses correlate directly with their luminosities, that is, with the amounts of energy
they emit each second. This fact, denied to astronomers when they study objects in the Milky Way but
applicable to every galaxy beyond our own, has allowed them to draw key conclusions about stellar
evolution with greater ease than would be true for stars in the Milky Way. Two elliptical satellite
galaxies that orbit the Andromeda galaxy, each containing a few percent of the number of stars in the
main galaxy, have likewise furnished important information about the lives of stars, and the overall
galactic structure of elliptical galaxies. On a clear night far from city lights, a keen-eyed observer
who knows where to look can spot the fuzzy outline of the Andromeda galaxy—the most distant
object visible to the unaided eye, shining with light that left on its journey while our ancestors roamed
the gorges of Africa in search of roots and berries.

Like the Milky Way, the Andromeda galaxy lies midway along one tine of Hubble’s tuning-fork
diagram, because its spiral arms are neither particularly tightly nor loosely wound. If galaxies were
animals in a zoo, there would be one cage devoted to ellipticals but several animal houses for the
glorious spirals. To study a Hubble Telescope image of one of these beasts, typically (for the closer
ones) seen from 10 or 20 million light-years, is to enter a world of sight so rich in possibility, so
deep in separation from life on Earth, so complex in structure, that the unprepared mind may reel, or
may provide a defense by reminding its owner that none of this can thin the thighs or heal the fractured
bone.

Irregulars, the orphans of the galactic class system, comprise about 10 percent of all galaxies, with
the rest split between spirals and ellipticals, strongly favoring spirals. In contrast to ellipticals,
irregular galaxies typically contain a higher proportion of gas and dust than spirals do, and offer the
liveliest sites of ongoing star formation. The Milky Way has two large satellite galaxies, both
irregular, confusingly named the Magellanic Clouds because the first white men to notice them,
sailors on Magellan’s circumnavigation of Earth in 1520, thought at first they were seeing wisps of
clouds in the sky. This honor fell to Magellan’s expedition because the Magellanic Clouds lie so
close to the south celestial pole (the point directly above Earth’s South Pole) that they never rise
above the horizon for observers in the most populated Northern latitudes, including those in Europe
and most of the United States. Each of the Magellanic Clouds contains many billion stars, though not
the hundreds of billions that characterize the Milky Way and other large galaxies, and display
immense star-forming regions, most notably the “Tarantula nebula” of the Large Magellanic Cloud.
This galaxy also has the honor of having revealed the closest and brightest supernova to appear
during the past three centuries, Supernova 1987A, which must have actually exploded about 160,000
B.C. for its light to reach Earth in 1987.

Until the 1960s, astronomers were content to classify almost all galaxies as spiral, barred spiral,



ellipitical, or irregular. They had right on their side, since more than 99 percent of all galaxies fit one
of these classes. (With one galactic class called “irregular,” this result might seem to be a slam dunk.)
But during that fine decade, an American astronomer named Halton Arp became the champion of
galaxies that did not fit the simple classification scheme of the Hubble tuning-fork diagram plus
irregulars. In the spirit of “Give me your tired, your poor, your huddled masses,” Arp used the
world’s largest telescope, the 200-inch Hale Telescope at the Palomar Observatory near San Diego,
California, to photograph 338 extremely disturbed-looking systems. Arp’s Atlas of Peculiar
Galaxies, published in 1966, became a veritable treasure chest of research opportunities on what can
go bad in the universe. Although “peculiar galaxies”—defined as galaxies with such strange shapes
that even “irregular” fails to do them justice—form only a tiny minority of all galaxies, they carry
important information about what can happen to galaxies gone wrong. It turns out, for example, that
many embarrassingly peculiar galaxies in Arp’s atlas are the merged remnants of two once-separate
galaxies that have collided. This means that those “peculiar” galaxies are not different kinds of
galaxies at all, any more than a wrecked Lexus is a new kind of car.

To track how such a collision unfolds, you need a lot more than pencil and paper, because every star in
both galactic systems has its own gravity, which simultaneously affects all the other stars in the two
systems. What you need, in short, is a computer. Galaxy collisions are stately dramas, taking hundreds
of millions of years from beginning to end. Using a computer simulation, you can start, and pause as
you like, a collision of two galaxies, taking snapshots after 10 million years, 50 million years, 100
million years. At each time things look different. And when you step into Arp’s atlas—batta-bing—
here’s an early stage of a collision, and there’s a late stage. Here’s a glancing blow, and there’s a
head-on collision.

Although the first computer simulations were done in the early 1960s (and although the Swedish
astronomer Erik Holmberg made a clever attempt during the 1940s to recreate a galaxy collision on a
tabletop by using light as an analogue to gravity), it wasn’t until 1972 that Alar and Juri Toomre,
brothers who both teach at MIT, generated the first compelling portrait of a “deliberately simple-
minded” collision between two spiral galaxies. The Toomres’ model revealed that tidal forces—
differences in gravity from place to place—actually rip the galaxies apart. As one galaxy nears the
other, the gravitational force rapidly grows stronger at the leading edges of the collision, stretching
and warping both galaxies as they pass by or through each other. That stretching and warping accounts
for most of what’s peculiar in Arp’s atlas of peculiar galaxies.

How else can computer simulations help us to understand galaxies? Hubble’s tuning fork
distinguishes “normal” spiral galaxies from spirals that show a dense bar of stars across their centers.
Simulations show that this bar could be a transitory feature, not the distinguishing mark of a different
galactic species. Contemporary observers of barred spirals might simply be catching such galaxies
during a phase that will disappear in 100 million years or so. But since we can’t hang around long
enough to watch the bar disappear in real life, we have to watch it come and go on a computer, where
a billion years can unfold in a matter of minutes.

Arp’s peculiar galaxies proved to be the tip of an iceberg, a strange world of not-exactly-galaxies whose



outlines astronomers began to discern during the 1960s and came to understand a few decades later.
Before we can appreciate this emergent galactic zoo, we must resume the story of cosmic evolution
where we left it. We must examine the origin of all galaxies—normal, nearly normal, irregular,
peculiar, and knock-your-socks-off exotic—to see how they were born, and how the luck of the draw
has left us in our relatively calm location in space, adrift in the suburbs of a giant spiral galaxy, some
30,000 light-years from its center and twenty-thousands of light-years from its diffuse outer edge.
Thanks to the general order of things in a spiral galaxy, first imposed on the gas clouds that later gave
birth to stars, our Sun moves in a nearly circular orbit around the center of the Milky Way, taking 240
million years (sometimes called a “cosmic year”) for each trip. Today, twenty orbits after its birth,
the Sun should be good for another twenty or so before calling it quits. Meanwhile, let’s have a look
at where galaxies came from.



CHAPTER 8

The Origin of Structure

When we examine the history of matter in the universe, looking back through 14 billion years of
time as best we can, we quickly encounter a single trend that cries out for explanation. Throughout the
cosmos, matter has consistently organized itself into structures. From its nearly perfectly smooth
distribution soon after the big bang, matter has clumped itself together on all size scales, to produce
giant clusters and superclusters of galaxies, as well as the individual galaxies within those clusters,
the stars that congregate by the billions in every galaxy, and quite possibly much smaller objects—
planets, their satellites, asteroids, and comets—that orbit many if not most of those stars.

To understand the origin of the objects that now compose the visible universe, we must focus on the
mechanisms that turned the universe’s formerly diffuse matter into highly structured components. A
complete description of how structures emerged in the cosmos requires that we meld two aspects of
reality whose combination now eludes us. As seen in earlier chapters, we must perceive how
quantum mechanics, which describes the behavior of molecules, atoms, and the particles that form
them, fits with general relativity theory, which describes how extremely large amounts of matter and
space affect one another.

Attempts to create a single theory that would unite our knowledge of the sub-atomically small and
the astronomically large began with Albert Einstein. They have continued, with relatively little
success, right up to the present time and will endure into an uncertain future, until they achieve “grand
unification.” Among all the unknowns that irk them, modern cosmologists feel most acutely the lack of
a theory that triumphantly blends quantum mechanics with general relativity. Meanwhile, these
seemingly immiscible branches of physics—the science of the small and the science of the large—
care not a whit for our ignorance; instead, they co-exist with remarkable success inside the same
universe, mocking our attempts to understand them as a coherent whole. A galaxy with 100 billion
stars apparently pays no particular attention to the physics of the atoms and molecules that compose
its star systems and gas clouds. Neither do the even larger agglomerations of matter we call galaxy
clusters and superclusters, themselves containing hundreds, sometimes thousands of galaxies. But
these largest structures in the universe nonetheless owe their very existence to immeasurably small
quantum fluctuations within the primeval cosmos. To understand how these structures arose, we must
do the best we can in our current state of ignorance, passing from the minuscule domains governed by
quantum mechanics, which hold the key to the origin of structure, to those so large that quantum
mechanics plays no role, and matter obeys the laws laid down by general relativity.

To this end, we must seek to explain the structure-laden universe that we see today as arising from a
nearly featureless cosmos soon after the big bang. Any attempt to explain the origin of structure must
also account for the cosmos in its present state. Even this modest task has confounded astronomers
and cosmologists with a series of false starts and errors, from which we have now (so we may



fervently hope) removed ourselves to walk in the bright light of a correct description of the universe.
Throughout most of modern cosmology’s history, astrophysicists have assumed that the distribution

of matter in the universe can be described as both homogenous and isotropic. In a homogenous
universe, every location looks similar to every other location, like the contents of a glass of
homogenized milk. An isotropic universe is one that looks the same in every direction from any given
point in space and time. These two descriptions may seem the same, but they are not. For example, the
lines of longitude on Earth are not homogeneous, because they are farther apart in some regions and
closer together in others; they are isotropic in just two places, the North and South poles, where all
lines of longitude converge. If you stand at either the “top” or “bottom” of the world, the longitude
grid will look the same to you, no matter how far to the left or the right you turn your head. In a more
physical example, imagine yourself atop a perfect, cone-shaped mountain, and imagine that this
mountain is the only thing in the world. Then every view of Earth’s surface from that perch would
look the same. The same would be true if you happened to live in the center of an archery target, or if
you were a spider at the center of its perfectly spun web. In each of these cases, your view will be
isotropic, but decidedly not homogenous.

An example of a homogeneous but non-isotropic pattern appears in a wall of identical rectangular
bricks, laid in a bricklayer’s traditional, overlapping manner. On the scale of several adjoining bricks
and their mortar, the wall will be the same everywhere—bricks—but different lines of sight along the
wall will intersect the mortar differently, destroying any claim to isotropy.

Intriguingly (for those who love a certain kind of intrigue), mathematical analysis tells us that space
will turn out to be homogeneous only if it is everywhere isotropic. Another formal theorem of
mathematics tells us that if space is isotropic in just three places, then space must be isotropic
everywhere. Yet some of us shun mathematics as uninteresting and unproductive!

Although cosmologists were aesthetically motivated for assuming the homogeneity and isotropy of
the distribution of matter in space, they have come to believe in this assumption enough to establish it
as a fundamental cosmological principle. We might also call this the principle of mediocrity: Why
should one part of the universe be any more interesting than another? On the smallest scales of size
and distance, we easily recognize this assertion to be false. We live on a solid planet with an average
density of matter close to 5.5 grams per cubic centimeter (in Americanese, that’s about 340 pounds
per cubic foot). Our Sun, a typical star, has an average density of about 1.4 grams per cubic
centimeter. The interplanetary spaces between the two, however, have a significantly smaller average
density—smaller by a factor of about 1 billion trillion. Intergalactic space, which accounts for most
of the volume of the universe, contains less than one atom in every ten cubic meters. Here the average
density falls below the density of interplanetary space by another factor of 1 billion—enough to make
the mind feel good about the occasional accusation of being dense.

As astrophysicists expanded their horizons, they saw clearly that a galaxy such as our Milky Way
consists of stars that float through nearly empty interstellar space. The galaxies likewise group into
clusters that violate the assumption of homogeneity and isotropy. The hope remained, however, that as
astrophysicists charted visible matter on the largest scales, they would find that galaxy clusters have a
homogenous and isotropic distribution. For homogeneity and isotropy to exist within a particular
region of space, it must be large enough that no structures (or lack of structures) sit uniquely within it.



If you take a melon-ball sample of such a region, the requirements of homogeneity and isotropy imply
that the region’s overall properties must be similar in every way to the average properties of any
other scoop with the same size. What an embarrassment it would be if the left half of the universe
looked different from its right half.

How large a region must we examine to find a homogeneous and isotropic universe? Our planet
Earth has a diameter of 0.04 light-seconds. Neptune’s orbit spans 8 light-hours. The stars of the Milky
Way galaxy delineate a broad, flat disk about 100,000 light-years across. And the Virgo supercluster
of galaxies, to which the Milky Way belongs, extends some 60 million light-years. So the coveted
volume that can give us homogeneity and isotropy must be larger than the Virgo supercluster. When
astrophysicists made surveys of the galaxies’ distribution in space, they discovered that even on these
scales of size, as large as 100 million light-years, the cosmos reveals enormous, comparatively empty
gaps, bounded by galaxies that have arranged themselves into intersecting sheets and filaments. Far
from resembling a teeming, homogenous anthill, the distribution of galaxies on this scale resembles a
loofah sponge.

Finally, however, astrophysicists made still larger maps, and found their treasured homogeneity and
isotropy. Turns out, the contents of a 300-million-light-year scoop of the universe does indeed
resemble other scoops of the same size, fulfilling the long-sought aesthetic criterion for the cosmos.
But, of course, on smaller scales, everything has clumped itself into distinctly non-homogeneous and
non-isotropic distributions of matter.

Three centuries ago, Isaac Newton considered the question of how matter acquired structure. His
creative mind easily embraced the concept of an isotropic and homogeneous universe, but promptly
raised an issue that would not occur to most of us: How can you make any structure at all in the
universe without having all the matter of the universe joining it to create one gigantic mass? Newton
argued that since we observe no such mass the universe must be infinite. In 1692, writing to Richard
Bentley, the master of Trinity College at Cambridge University, Newton proposed that

if all the matter in the universe were evenly scattered throughout all the heavens, and every
particle had an innate gravity toward all the rest, and the whole space throughout which this matter
was scattered was but finite, the matter on the outside of the space would, by its gravity, tend
toward all the matter on the inside, and by consequence, fall down into the middle of the whole
space and there compose one great spherical mass. But if the matter was evenly disposed
throughout an infinite space, it could never convene into one mass; but some of it would convene
into one mass and some into another, so as to make an infinite number of great masses, scattered at
great distances from one to another throughout all that infinite space.

Newton presumed that his infinite universe must be static, neither expanding nor contracting. Within
this universe, objects were “convened” by gravitational forces—the attraction that every object with
mass exerts on all other objects. His conclusion about gravity’s central role in creating structure
remains valid today, even though cosmologists face a task more daunting than Newton’s. Far from
enjoying the benefits of a static universe, we must allow for the fact that the universe has been
expanding ever since the big bang, naturally opposing any tendency for matter to clump together by
gravity. The problem of overcoming the cosmic expansion’s anti-convening tendency becomes more



serious when we consider that the cosmos expanded most rapidly soon after the big bang, the era
when structures first began to form. At first glance, we could no more rely on gravity to form massive
objects out of diffuse gas than we could use a shovel to move fleas across a barnyard. Yet somehow
gravity has done the trick.

During the early days of the universe, the cosmos expanded so rapidly that if the universe had been
strictly homogenous and isotropic on all size scales, gravity would have had no chance of victory.
Today these would be no galaxies, stars, planets, or people, only a scattered distribution of atoms
everywhere in space—a dull and boring cosmos, devoid of admirers and objects of admiration. But
ours is a fun and exciting universe only because inhomogeneities and anisotropies appeared during
those earliest cosmic moments, which served as a kind of cosmic soup-starter for all concentrations
of matter and energy that would later emerge. Without this head start, the rapidly expanding universe
would have prevented gravity from ever gathering matter to build the familiar structures we take for
granted in the universe today.

What made these deviations, the inhomogeneities and aniso-tropies that provide the seeds for all the
structure in the cosmos? The answer arrives from the realm of quantum mechanics, undreamt of by
Isaac Newton but unavoidable if we hope to understand where we came from. Quantum mechanics
tells us that on the smallest scales of size, no distribution of matter can remain homogeneous and
isotropic. Instead, random fluctuations in the distribution of matter will appear, disappear, and
reappear in different amount, as matter becomes a quivering mass of vanishing and reborn particles.
At any particular time, some regions of space will have slightly more particles, and therefore a
slightly greater density, than other regions. From this counterintuitive, airy-fairy fantasy, we derive
everything that exists. The slightly denser regions had the chance to attract slightly more particles by
gravity, and with time the cosmos grew these denser regions into structures.

In tracing the growth of structure from times soon after the big bang, we can gain some insight from
two key epochs we have already met, the “era of inflation,” when the universe expanded at an
astounding rate, and the “time of decoupling,” about 380,000 years after the big bang, when the
cosmic background radiation ceased to interact with matter.

The inflationary era lasted from about 10-37 second to 10-33 second after the big bang. During that
relatively brief stretch of time, the fabric of space and time expanded faster than light, growing in a
billionth of a trillionth of a trillionth of a second from one hundred billion billion times smaller than
the size of a proton to about 4 inches. Yes, the observable universe once fit within a grapefruit. But
what caused the cosmic inflation? Cosmologists have named the culprit: a “phase transition” that left
behind a specific and observable signature in the cosmic background radiation.

Phase transitions are hardly unique to cosmology; they often occur in the privacy of your home. We
freeze water to make ice cubes, and boil water to produce steam. Sugary water grows sugar crystals
on a string dangling within the liquid. And wet, gooey batter turns into cake when baked. There’s a
pattern here. In every case, things look very different on the two sides of a phase transition. The
inflationary model of the universe asserts that when the universe was young, the prevailing energy
field went through a phase transition, one of several that would have occurred during these early
times. This particular episode not only catapulted the early, rapid expansion but also imbued the
cosmos with a specific fluctuating pattern of high- and low-density regions. These fluctuations then



froze into the expanding fabric of space, creating a kind of blueprint for where galaxies would
ultimately form. Thus in the spirit of Pooh-Bah, the character in Gilbert and Sullivan’s Mikado who
proudly traced his ancestry back to a “primordial atomic globule,” we can assign our origins, and the
beginnings of all structure, to the fluctuations on a sub-nuclear scale that arose during the inflationary
era.

What facts can we cite to support this bold assertion? Since astrophysicists have no way to see back
to the universe’s first 0.000000000000000000000000000000000001 of a second, they do the next
best thing, and use scientific logic to connect this early epoch to times they can observe. If the
inflationary theory is correct, the initial fluctuations produced during that era, the inevitable result of
quantum mechanics—which tells us that small variations from place to place will always arise within
an otherwise homogeneous and isotropic fluid—would have had the opportunity to become regions of
high and low concentrations of matter and energy. We can hope to find evidence for these variations
from place to place in the cosmic background radiation, which serves as a proscenium that separates
the current epoch from, and also connects it with, the first moments of the neonate universe.

As we have already seen, the cosmic background radiation consists of the photons generated during
the first minutes after the big bang. Early in the universe’s history, these photons interacted with
matter, slamming into any atoms that happened to form so energetically that no atoms could exist for
long. But the ongoing expansion of the universe in effect robbed the photons of energy, so that
eventually, at the time of decoupling, none of the photons had energies sufficient to prevent electrons
from orbiting around protons and helium nuclei. Since that time, 380,000 years after the big bang,
atoms have persisted—unless some local disturbance, such as the radiation from a nearby star,
disrupts them—while the photons, each with an ever-diminishing amount of energy, continue to roam
the universe, collectively forming the cosmic background radiation or CBR.

The CBR thus carries the imprint of history, a snapshot of what the universe was like at the time of
decoupling. Astrophysicists have learned how to examine this snapshot with ever-increasing
accuracy. First, the simple fact that the CBR exists, that their basic understanding of the history of the
universe is correct. And then, after years of improving their abilities to measure the cosmic
background radiation, their sophisticated balloon-borne and satellite instruments gave them a map of
the CBR’s tiny deviations from homogeneity. This map provides the record of the once minuscule
fluctuations whose size increased as the universe expanded during the few hundred thousand years
after the era of inflation, and which then grew, during the next billion years or so, into the large-scale
distribution of matter in the cosmos.

Remarkable though it may seem, the CBR provides us with the means for mapping the imprint of the
long-vanished early universe, and for locating—14 billion light-years away in all directions—the
regions of slightly greater density that would become galaxy clusters and superclusters. Regions with
greater-than-average density left behind slightly more photons than regions with lower densities. As
the cosmos became transparent, thanks to the loss of energy that left the photons unable to interact
with the newly formed atoms, each photon embarked on a journey that would carry it far from its
point of origin. Photons from our vicinity have traveled 14 billion light-years in all directions,
providing part of the CBR that far-distant civilizations at the end of the visible universe may even
now be examining, and “their” photons, having reached our instruments, tell us about what things



were like long ago and far away, in the times when structures had barely begun to form.
Through more than a quarter of a century following the first detection of the cosmic background

radiation in 1965, astro-physicists searched for anisotropies in the CBR. From a theoretical
viewpoint, they desperately needed to find them, because without the existence of CBR anisotropies
at the level of a few parts in a hundred thousand, their basic model of how structure appeared would
lose all claim to validity. Without the seeds of matter they betray, we would have no explanation for
why we exist. As happy fate would have it, the anisotropies appeared precisely on schedule. Just as
soon as cosmologists created instruments capable of detecting anisotropies at the appropriate level,
they found them, first with the COBE satellite in 1992, and later with far more precise instruments
mounted on balloons and on the WMAP satellite described in Chapter 3. The teeny fluctuations from
place to place in the amounts of microwave photons that form the CBR, now delineated with
impressive precision by WMAP, embody the record of cosmic fluctuations at a time 380,000 years
after the big bang. The typical fluctuation sits only a few hundred thousandths of a degree above or
below the average temperature of the cosmic background radiation, so detecting them is like finding
faint spots of oil on a mile-wide pond that make the water plus oil a tiny bit denser than average.
Small though these anisotropies were, they sufficed to get things started.

In the WMAP map of the cosmic background radiation, the larger hot spots tell us where gravity
would overcome the expanding universe’s dissipative tendencies and gather together enough matter to
manufacture superclusters. These regions today have grown to contain about 1,000 galaxies, each
with 100 billion stars. If we add the dark matter in such a supercluster, its total mass reaches the
equivalent of 1016 Suns. Conversely, the larger cool spots, with no head start against the expanding
universe, evolved to become nearly devoid of massive structures. Astrophysicists just call these
regions “voids,” a term that gains meaning from being surrounded by something that is not a void. So
the giant sheets and filaments of galaxies that we can trace on the sky not only form clusters at their
intersections but also trace walls and other geometric forms that give shape to the empty regions of
the cosmos.

Of course, the galaxies themselves did not simply appear, fully formed, from concentrations of
matter a tiny bit denser than average. From 380,000 years after the big bang until about 200 million
years later, matter continued to gather itself together, but nothing shone in the universe, whose first
stars were yet to be born. During this cosmic dark age, the universe contained only what it had made
during its first few minutes—hydrogen and helium, with traces of lithium. With no elements heavier
than these—no carbon, nitrogen, oxygen, sodium, calcium, or heavier elements—the cosmos
contained none of the now common atoms or molecules that can absorb light as a star begins to shine.
Today, in the presence of these atoms and molecules, the light from a newly formed star will exert
pressure upon them that pushes away massive quantities of gas that would otherwise fall into the star.
This expulsion limits the maximum mass of newborn stars to less than one hundred times the Sun’s
mass. But when the first stars formed, in the absence of atoms and molecules that would absorb
starlight, infalling gas consisted almost entirely of hydrogen and helium, providing only token
resistance to stars’ output. This allowed stars to form with much larger masses, up to many hundred,
perhaps even a few thousand, times the mass of the Sun.

High-mass stars live life in the fast lane, and the most massive live the most rapidly of all. They



convert their matter into energy at astonishing rates, as they manufacture heavy elements and die
explosive youthful deaths. Their life expectancies amount to no more than a few million years, less
than a thousandth of the Sun’s. We expect to find none of the most massive stars from that era alive
today, because the early ones burnt themselves out long ago, and today, with heavier elements
common throughout the universe, the highest-mass stars of old cannot form at all. Indeed, none of the
high-mass giants has ever been observed. But we assign them the responsibility for having first
introduced into the universe almost all of the familiar elements we now take for granted, including
carbon, oxygen, nitrogen, silicon, and iron. Call it enrichment. Call it pollution. But the seeds of life
began with the long-vanished first generation of high-mass stars.

During the first few billion years after the time of decoupling, gravitationally induced collapse
proceeded with abandon, as gravity drew matter together on nearly all scales. One of the natural
results of gravity at work was the formation of supermassive black holes, each with a mass millions
or billions of times the mass of the Sun. Black holes with that amount of mass are about the size of
Neptune’s orbit and wreak havoc on their nascent environment. Gas clouds drawn toward these black
holes want to gain speed, but they can’t, because there’s too much stuff in the way. Instead, they slam
into and rub against whatever came in just before them, descending toward their master in a swirling
maelstrom. Just before these clouds disappear forever, collisions within their superheated matter
radiate titanic quantities of energy, billions of times the Sun’s luminosity, all within the volume of a
solar system. Monstrous jets of matter and radiation spew forth, extending hundreds of thousands of
light-years above and below the swirling gas, as the energy punches through and escapes the funnel in
all ways it can. As one cloud falls, and another orbits-in-waiting, the luminosity of the system
fluctuates, getting brighter and dimmer over a matter of hours, days, or weeks. If the jets happen to be
aimed straight at you, the system will look even more luminous, and more variable in its output, than
those cases in which the jets point to the side. Viewed from any appreciable distance, all of these
black hole–plus–infalling-matter combinations will appear amazingly small and luminous in
comparison to the galaxies we see today. What the universe has created—the objects whose birth we
have just witnessed in words—are quasars.

Quasars were discovered during the early 1960s, as astronomers began to use telescopes equipped
with detectors sensitive to invisible domains of radiation, such as radio waves and X-rays. Their
galaxy portraits could therefore include information about the galaxies’ appearance in those other
bands of the electromagnetic spectrum. Combine this with further improvements in photographic
emulsions, and a new zoo of galaxy species emerged from the depths of space. Most remarkable
among them were objects that, in photographs, look like simple stars, but—quite unlike stars—
produce extraordinary amounts of radio waves. The working description for those objects was
“quasistellar radio source”—a term quickly shortened to quasar. Even more remarkable than the
radio emission from these objects were their distances: as a class, they turned out to be the most
distant objects known in the universe. For quasars to be that small and still visible at immense
distances meant that they had to be an entirely new kind of object. How small? No bigger than a solar
system. How luminous? Even the dim ones outshine your average galaxy in the universe.

By the early 1970s, astrophysicists had converged on supermassive black holes as the quasar



engine, gravitationally devouring everything in its grasp. The black hole model can account for how
small and bright quasars are, but says nothing of the black hole’s source of food. Not until the 1980s
would astrophysicists begin to understand the quasar’s environment, because the tremendous
luminosity of a quasar’s central regions prevents any sight of its much fainter surroundings.
Eventually, however, with new techniques to mask the light from the center, astrophysicists could
detect fuzz surrounding some of the dimmer quasars. As detection tactics and technologies improved
further, every quasar revealed fuzz; some even revealed a spiral structure. Quasars, it turned out, are
not a new kind of object but rather a new kind of galactic nucleus.

In April 1991, the National Aeronautics and Space Administration (NASA) launched one of the most
expensive astronomical instruments ever built: the Hubble Space Telescope. The size of a Greyhound
bus, directed by commands sent from Earth, the Hubble Telescope could profit from orbiting outside
our ever-blurring atmosphere. Once astronauts had installed lenses to correct for mistakes in the way
its primary mirror had been made, the telescope could peer into previously uncharted regions of
ordinary galaxies, including their centers. Upon gazing into those centers, it found the stars moving
inexcusably fast, given the gravity inferred from the visible light of other stars in the vicinity. Hmmm,
strong gravity, small area . . . must be a black hole. Galaxy after galaxy—dozens of them—had
suspiciously speedy stars in their cores. Indeed, whenever the Hubble Space Telescope had a clear
view of a galaxy’s center, they were there.

It now seems likely that every giant galaxy harbors a super-massive black hole, which could have
served as a gravitational seed around which the other matter collected or may have been
manufactured later by matter streaming down from outer regions of the galaxy. But not all galaxies
were quasars in their youth.

The growing roster of ordinary galaxies known to have a black hole at their center began to raise
eyebrows among investigators: A supermassive black hole that was not a quasar? A quasar that’s
surrounded by a galaxy? One can’t help but think of a new picture of how things work. In this picture,
some galaxies begin their lives as quasars. To be a quasar, which is really just the blazing visible
core of an otherwise run-of-the-mill galaxy, the system has to have not only a massive, hungry black
hole but also an ample supply of infalling gas. Once the supermassive black hole has gulped down all
the available food, leaving uneaten stars and gas in distant, safe orbits, the quasar simply shuts off.
You’ve then got a docile galaxy with a dormant black hole snoozing at its center.

Astronomers have found other new types of objects, classified as intermediate between quasars and
normal galaxies, whose properties also depend on the bad behavior of supermassive black holes.
Sometimes the streams of material falling into a galaxy’s central black hole flow slowly and steadily.
At other times episodically. Such systems populate the menagerie of galaxies whose nuclei are active
but not ferocious. Over the years, names for the various types accumulated: LINERs (low-ionization
nuclear emission-line regions), Seyfert galaxies, N galaxies, blazars. All of these objects are
generically called AGNs, the astrophysicist’s abbreviation for galaxies with “active” nuclei. Unlike
quasars, which appear only at immense distances, AGNs appear both at large distances and relatively
nearby. This suggests that AGNs fill in the range of galaxies that misbehave. Quasars long ago



consumed all their food, so we see them only when we look far back in time by observing far out in
space. AGNs, in contrast, had more modest appetites, so some of them still have food to eat even
after billions of years.

Classifying AGNs solely on the basis of their visual appearance alone would provide an incomplete
story, so astrophysicists classified AGNs by their spectra and by the full range of their
electromagnetic emissions. During the mid- to late 1990s, investigators improved their black hole
model, and found that they could characterize nearly all the beasts in the AGN zoo by measuring only
a few parameters: the mass of the object’s black hole, the rate at which it’s being fed, and our angle of
view on the accretion disk and its jets. If, for example, we happen to look “right down the barrel,”
along exactly the same direction as that of a jet emerging from the vicinity of a supermassive black
hole, we see a much brighter object than if we happen to have a side view from a much different
angle. Variations in these three parameters can account for nearly all the impressive diversity that
astrophysicists observe, giving them a welcome de-speciation of galaxy types and a deeper
understanding of the formation and evolution of galaxies. The fact that so much can be accounted for
—differences in shape, size, luminosity, and color—by so few variables represents an unheralded
triumph of late twentieth-century astrophysics. Because it took a lot of investigators and a lot of years
and a lot of telescope time, it’s not the sort of thing that gets announced on the evening news—but it’s
a triumph nonetheless.

Let us not conclude, however, that supermassive black holes can explain everything. Even though they
have millions or billions of times the Sun’s mass, they contribute almost nothing in comparison with
the masses of the galaxies in which they are embedded—typically far less than 1 percent of a large
galaxy’s total mass. When we seek to account for the existence of dark matter, or of other unseen
sources of gravity in the universe, these black holes are insignificant and may be ignored. But when
we calculate how much energy they wield—that is, when we compute the energy that they released as
part of their formation—we find that black holes dominate the energetics of galaxy formation. All the
energy of all the orbits of all the stars and gas clouds that ultimately compose a galaxy pales when
compared with what made the black hole. Without supermassive black holes lurking below, galaxies
as we know them might have never formed. The once luminous but now invisible black hole that lies
at the center of each giant galaxy provides a hidden link, the physical explanation for the
agglomeration of matter into a complex system of billions of stars in orbit around a common center.

The broader explanation for the formation of galaxies invokes not only the gravity produced by
supermassive black holes but also gravity in more conventional astronomical settings. What made the
billions of stars in a galaxy? Gravity did this too, producing up to hundreds of thousands of stars in a
single cloud. Most of a galaxy’s stars were born within relatively loose “associations.” The more
compact regions of starbirth remain identifiable “star clusters,” within which member stars orbit the
cluster’s center, tracing their paths through space in a cosmic ballet choreographed by the forces of
gravity from all the other stars within the cluster, even as the clusters themselves move on enormous
trajectories around the galactic center, safe from the destructive power of the central black hole.

Within a cluster, stars move at a broad range of speeds, some so rapidly that they risk escape from
the system altogether. This indeed occasionally occurs, as fast stars evaporate from the grip of a



cluster’s gravity to roam freely through the galaxy. These free-ranging stars, along with the “globular
star clusters” that contain hundreds of thousands of stars each, add to the stars that form the spherical
haloes of galaxies. Initially luminous, but today devoid of their brightest, short-lived stars, galaxy
haloes are the oldest visible objects in the universe, with birth certificates traceable to the formation
of galaxies themselves.

Last to collapse, and thus the last to turn into stars, we encounter the gas and dust that finds itself
pulled and pinned into the galactic plane. In elliptical galaxies, no such plane exists, and all of their
gas has already turned into stars. Spiral galaxies, however, have highly flattened distributions of
matter, characterized by a central plane within which the youngest, brightest stars form in spiral
patterns, testimony to great vibrating waves of alternating dense and rarefied gas that orbit the
galactic center. Like hot marshmallows that stick together upon contact, all of the gas in a spiral
galaxy that did not swiftly participate in making star clusters has fallen toward the galactic plane,
stuck to itself, and created a disk of matter that slowly manufactures stars. For past billions of years,
and for billions of years to come, stars will continue to form in spiral galaxies, with each generation
more enriched in heavy elements than the next. These heavy elements (by which astrophysicists mean
all elements heavier than helium) have been cast forth into interstellar space by outflows from aging
stars or as the explosive remains of high-mass stars, a species of supernova. Their existence renders
the galaxy—and thus the universe—ever more friendly to the chemistry of life as we know it.

We have outlined the birth of a classical spiral galaxy, in an evolutionary sequence that has played out
tens of billions of times, yielding galaxies in a host of different arrangements: In clusters of galaxies.
In long strings and filaments of galaxies. And in sheets of galaxies.

Because we look back in time as we look outward into space, we possess the ability to examine
galaxies not only as they are now but also as they appeared billions of years ago, simply by looking
up. The problem with turning this concept into observational reality resides in the fact that galaxies
billions of light-years away appear to us as extremely small and dim objects, so even our best
telescopes can barely resolve their outlines. Nevertheless, astrophysicists have made great progress
in this effort during the past few years. The breakthrough came in 1995, when Robert Williams, then
the director of the Space Telescope Science Institute at Johns Hopkins University, arranged for the
Hubble Telescope to point toward a single direction in space, near the Big Dipper, for ten days’
worth of observation. Williams deserves the credit because the telescope’s Time Allocation
Committee, which selects the observing proposals most worthy of actual telescope time, judged it
unworthy of support. After all, the region to be studied was deliberately chosen for having nothing
interesting to look at, and thus to represent a dull and boring patch of sky. As a result, no ongoing
projects could benefit directly from such a large commitment of the telescope’s highly oversubscribed
observing time. Happily, Williams, as the director of the Space Telescope Science Institute, had the
right to assign a few percent of the total—his “director’s discretionary time”—and invested his clout
on what became known as the Hubble Deep Field, one of the most famous astronomical photographs
ever taken.

The ten-day exposure, coincidentally made during the government shutdown of 1995, produced by
far the most researched image in the history of astronomy. Studded with galaxies and galaxylike



objects, the deep field offers us a cosmic palimpsest, in which objects at different distances from the
Milky Way have written their momentary signatures of light at different times. We see objects in the
deep field as they were, say, 1.3 billion, 3.6 billion, 5.7 billion, or 8.2 billion years ago, with each
object’s epoch determined by its distance from us. Hundreds of astronomers have seized upon the
wealth of data contained in this single image to derive new information about how galaxies have
evolved with time, and about how galaxies looked soon after they formed. In 1998, the telescope
secured a companion image, the Hubble Deep Field South, by devoting ten days of observation to
another patch of sky in the direction opposite to that of the first deep field, in the celestial southern
hemisphere. Comparison of the two images allowed astronomers to assure themselves that the results
from the first deep field did not represent an anomaly (for example, if the two images had been
identical in every detail, or statistically unlike each other in every way, one might have concluded that
the devil was at work), and to refine their conclusions about how different types of galaxies form.
After a successful servicing mission, in which the Hubble Telescope was outfitted with even better
(more sensitive) detectors, the Space Telescope Science Institute just couldn’t resist and, in 2004,
authorized the Hubble Ultra Deep Field, laying bare the ever more distant cosmos.

Unfortunately, the earliest stages of galaxy formation, which would be revealed to us by objects at
the greatest distances, confound even the Hubble Telescope’s best efforts, not least because the
cosmic expansion has shifted most of their radiation into the infrared region of the spectrum, not
accessible to the telescope’s instruments. For these most distant galaxies, astronomers await the
design, construction, launch, and successful operation of the Hubble’s successor, the James Webb
Space Telescope (JWST), named after the head of NASA during the Apollo era. (Cynics say that this
name, rather than one that honors a famous scientist, was chosen to assure that the telescope project
will not be canceled, since this would involve deleting an important official’s legacy.)

The JWST will have a mirror larger than Hubble’s, designed to unfurl itself like an intricate
mechanical flower, opening in space to provide a reflective surface much larger than any that can fit
inside one of our rockets. The new space telescope will also possess a suite of instruments far
superior to those of the Hubble Telescope, which were originally designed during the 1960s, built
during the 1970s, launched in 1991, and—even though significantly upgraded during the 1990s—still
lack such fundamental abilities as the capacity to detect infrared radiation. Some of this ability now
exists in the Spitzer InfraRed Telescope Facility (SIRTF), launched in 2003, which orbits the Sun
much farther from Earth than the Hubble does, thereby avoiding interference from the copious
amounts of infrared radiation produced by our planet. To achieve this goal, JWST will likewise have
an orbit much farther from Earth than the Hubble Telescope does, and will therefore be forever
inaccessible to servicing missions as they are currently conceived—NASA had better get this one
right the first time. If the new telescope goes into operation in 2011, as currently planned, it should
then provide spectacular new views of the cosmos, including images of galaxies more than 10 billion
light-years away, seen much closer to their time of origin than any revealed by the Hubble Deep
Fields. Working in tandem with the new space telescope, as they have with the old, large ground-
based instruments will study in detail the wealth of objects to be revealed by our next great step in
space-borne instrumentation.



Rich in possibility though the future may be, we should not neglect the astrophysicists’ impressive
accomplishments during the past three decades, which spring from their abilities to create new
instruments to observe the universe. Carl Sagan liked to say that you had to be made from wood not to
stand in awe of what the cosmos has done. Thanks to our improved observations, we now know more
than Sagan did about the amazing sequence of events that led to our existence: the quantum
fluctuations in the distribution of matter and energy on a scale smaller than the size of a proton that
spawned superclusters of galaxies, thirty million light-years across. From chaos to cosmos, this
cause-and-effect relationship crosses more than thirty-eight powers of ten in size and forty-two
powers of ten in time. Like the microscopic strands of DNA that predetermine the identity of a
macroscopic species and the unique properties of its members, the modern look and feel of the
cosmos was writ in the fabric of its earliest moments, and carried relentlessly through time and space.
We feel it when we look up. We feel it when we look down. We feel it when we look within.



Part III

The Origin 
of Stars



CHAPTER 9

Dust to Dust

If you look at the clear night sky far from city lights, you can immediately locate a cloudy band of
pale light, broken in places by dark splotches, that runs from horizon to horizon. Long known as the
(lower-case) “milky way” in the sky, this milk-white haze combines the light from a staggering
number of stars and gaseous nebulae. Those who observe the milky way with binoculars or a
backyard telescope will see the dark and boring areas resolve themselves into, well, dark and boring
areas—but the bright areas will turn from a diffuse glow into countless stars and nebulae.

In his small book Sidereus Nuncius (The Starry Messenger), published in Venice in 1610, Galileo
Galilei provided the first account of the heavens as seen through a telescope, including a description
of the milky way’s patches of light. Referring to his instrument as a spyglass, since the name telescope
(“far-seer” in Greek) had yet to be coined, Galileo could barely contain himself:

The milky way itself, which, with the aid of the spyglass, may be observed so well that all the
disputes that for so many generations have vexed philosophers are destroyed by visible certainty,
and we are liberated from wordy arguments. For the Galaxy is nothing else than a congeries of
innumerable stars distributed in clusters. To whatever region of it you direct your spyglass, an
immense number of stars immediately offer themselves to view, of which very many appear rather
large and very conspicuous but the multitude of small ones is truly unfathomable.*

Surely Galileo’s “immense number of stars,” which delineate the most densely packed regions of our
Milky Way galaxy, must locate the real astronomical action. Why, then, should anybody be interested
in the intervening dark areas with no visible stars? Based on their visual appearance, the dark areas
are probably cosmic holes, openings to the infinite and empty spaces beyond.

Three centuries would pass before anyone figured out that the dark patches in the milky way, far
from being holes, actually consist of dense clouds of gas and dust that obscure more distant star fields
and hold stellar nurseries deep within themselves. Following earlier suggestions by the American
astronomer George Cary Comstock, who wondered why faraway stars are much dimmer than their
distances alone would indicate, the Dutch astronomer Jacobus Cornelius Kapteyn in 1909 identified
the culprit. In two research papers, both titled “On the Absorption of Light in Space,”† Kapteyn
presented evidence that the dark clouds—his newfound “interstellar medium”—not only block the
light from stars but also do so unevenly across the rainbow of colors in a star’s spectrum: they absorb
and scatter, and therefore attenuate, light at the violet end of the visible spectrum more effectively
than they act on red light. This selective absorption preferentially removes more violet than red light,
making faraway stars appear redder than nearby ones. The amount of this interstellar reddening of
starlight increases in proportion to the total amount of material that the light encounters on its journey
to us.



Ordinary hydrogen and helium, the principal constituents of cosmic gas clouds, don’t redden light.
But molecules made of many atoms do so—especially those that contain the elements carbon and
silicon. When interstellar particles grow too large to be called molecules, with hundreds of thousand
or millions of individual atoms in each of them, we call them dust. Most of us know dust of the
household variety, although few of us care to learn that, in a closed home, dust consists mostly of
dead, sloughed-off human skin cells (plus pet dander, if you have one or more live-in mammals). As
far as we know, cosmic dust contains nobody’s epidermis. However, interstellar dust does include a
remarkable ensemble of complex molecules, which emit photons primarily in the infrared and
microwave regions of the spectrum. Astrophysicists lacked good microwave telescopes until the
1960s, and effective infrared telescopes until the 1970s. Once they had created these observational
instruments, they could investigate the true chemical richness of the stuff that lies between the stars.
During the decades that followed these technological advances, a fascinating, intricate picture of star
birth emerged.

Not all gas clouds will form stars at all times. More often than not, a cloud finds itself confused
about what to do next. Actually, astrophysicists are the confused ones here. We know that an
interstellar cloud “wants” to collapse under its own gravity to make one or more stars. But the
cloud’s rotation, as well as the effects of turbulent gas motions within the cloud, oppose that result.
So, too, does the gas pressure that you learned about in high school chemistry class. Magnetic fields
can also fight collapse. They penetrate the cloud and constrain the motions of any free-roaming
charged particles contained therein, resisting compression and thus impeding the ways in which the
cloud can respond to its own gravity. The scary part of this thought-exercise comes from the
realization that if no one knew in advance that stars exist, front-line research would offer plenty of
convincing reasons why stars could never form.

Like the several hundred billion stars in our Milky Way galaxy, named after the band of light that the
galaxy’s most densely populated regions paint across our skies, giant clouds of gas orbit our galaxy’s
center. The stars amount to tiny specks, only a few light-seconds across, that float in a vast ocean of
nearly empty space, occasionally passing close by one another like ships in the night. Gas clouds, on
the other hand, are huge. Typically spanning hundreds of light-years, they each contain as much mass
as a million Suns. As these giant clouds lumber through the galaxy, they often collide with one
another, entangling their gas- and dust-laden innards. Sometimes, depending on their relative speeds
and their angles of impact, the clouds stick together; at other times, adding injury to the insult of
collision, they rip each other apart.

If a cloud cools to a sufficiently low temperature (less than about 100 degrees above absolute zero),
its constituent atoms will stick together when they collide, rather than careening off one another as
they do at higher temperatures. This chemical transition has consequences for everybody. The
growing particles—now containing tens of atoms each—begin to scatter visible light to and fro,
strongly attenuating the light of the stars behind the cloud. By the time that the particles become full-
grown dust grains, they each contain billions of atoms. Aging stars manufacture similar dust grains
and blow them gently into interstellar space during their “red-giant” phases. Unlike smaller particles,
dust grains with billions of atoms no longer scatter the visible light photons from the stars behind
them; instead, they absorb those photons and then reradiate their energy as infrared, which can easily



escape from the cloud. As this occurs, the pressure from the photons, transmitted to the molecules that
absorb it, pushes the cloud in the direction opposite to the direction of the light source. The cloud has
now coupled itself to starlight.

Star birth occurs when the forces that make a cloud progressively denser eventually lead to its
gravitationally induced collapse, during which each part of the cloud pulls all the other parts much
closer. Since hot gas resists compression and collapse more effectively than cool gas does, we face
an odd situation. We must cool the cloud before it can ever heat itself by producing a star. In other
words, the creation of a star that possesses a 10-million-degree core, sufficiently hot for
thermonuclear fusion to begin, requires that the cloud must first achieve its coldest possible internal
conditions. Only at extremely cold temperatures, a few dozen degrees above absolute zero, can the
cloud collapse and allow star formation to begin in earnest.

What happens within a cloud to turn its collapse into newborn stars? Astrophysicists can only
gesticulate. Much as they would like to track the internal dynamics of a large, massive interstellar
cloud, the creation of a computer model that includes the laws of physics, all the internal and external
influences on the cloud, and all the relevant chemical reactions that can occur within it still lies
beyond our abilities. A further challenge resides in the humbling fact that the original cloud has a size
billions of times larger than that of the star we are trying to create—which in turn has a density 100
sextillion times the average density within in the cloud. In these situations, what matters most on one
scale of sizes may not be the right thing to worry about on another.

Nevertheless, relying on what we see throughout the cosmos, we can safely assert that within the
deepest, darkest, densest regions of an interstellar cloud, where temperatures fall to about 10 degrees
above absolute zero, gravity does cause pockets of gas to collapse, easily overcoming the resistance
offered by magnetic fields and other impediments. The contraction converts the cloud pockets’
gravitational energy into heat. The temperature within each of these regions—soon to become the core
of a newborn star—rises rapidly during the collapse, breaking apart all the dust grains in the
immediate vicinity as they collide. Eventually, the temperature in the central region of the collapsing
gas pocket reaches the crucial value of 10 million degrees on the absolute scale.

At this magic temperature, some of the protons (which are simply naked hydrogen atoms, shorn of
the electron that orbits them) move fast enough to overcome their mutual repulsion. Their high speeds
allow the protons to approach one another closely enough for the “strong nuclear force” to make them
bond. This force, which operates only at extremely short distances, binds together the protons and
neutrons in all nuclei. The thermonuclear fusion of protons—“thermo” because it occurs at high
temperatures, and “nuclear fusion” because it fuses particles into a single nucleus—creates helium
nuclei, each of which has a mass slightly less than the sum of the particles from which it fused. The
mass that disappears during this fusion turns into energy, in a balance described by Einstein’s famous
equation. The energy embodied in mass (always in an amount equal to the mass times the square of
the speed of light) can be converted into other forms of energy, such as additional kinetic energy
(energy of motion) of the fast-moving particles that emerge from nuclear fusion reactions.

As the new energy produced by nuclear fusion diffuses outward, the gas heats and glows. Then, at
the star’s surface, the energy formerly locked in individual nuclei escapes into space in the form of
photons, generated by the gas as the energy released through fusion heats it to thousands of degrees.



Even though this region of hot gas still resides within the cosmic womb of a giant interstellar cloud,
we may nonetheless announce to the Milky Way that . . . a star is born.

Astronomers know that stars range in mass from a mere one tenth of the Sun’s to nearly one hundred
times our star’s mass. For reasons not well understood, a typical giant gas cloud can develop a
multitude of cold pockets that all tend to collapse at about the same time to give birth to stars—some
puny and others giants. But the odds favor the puny: for every high-mass star, a thousand low-mass
stars are born. The fact that no more than a few percent of all the gas in the original cloud participates
in star birth presents a classic challenge in explaining star formation: What makes the star-forming
tail wag the largely unchanged dog of an interstellar gas cloud? The answer probably lies in the
radiation produced by newborn stars, which tends to inhibit further star formation.

We can easily explain the lower bound on the masses of newborn stars. Pockets of collapsing gas
with masses less than about one tenth of the Sun’s have too little gravitational energy to raise their
core temperatures to the 10 million degrees required for the nuclear fusion of hydrogen. In that case,
no nuclear-fusing star will be born; instead, we obtain a failed, would-be star—an object that
astronomers call a “brown dwarf.” With no energy source of its own, a brown dwarf fades steadily,
shining from the modest heat generated during the original collapse. The gaseous outer layers of a
brown dwarf are so cool that many of the large molecules normally destroyed in the atmospheres of
hotter stars remain alive and well within them. Their feeble luminosities make brown dwarfs
immensely difficult to detect, so to find them, astrophysicists must employ complex methods similar
to those they occasionally use to detect planets: searching for the faint infrared glow from these
objects. Only in recent years have astronomers discovered brown dwarfs in numbers sufficient to
classify them into more than one category.

We can also easily determine the upper mass limit to star formation. A star with a mass greater than
about a hundred times the Sun’s will have a luminosity so great—such an enormous outpouring of
energy in the form of visible light, infrared, and ultraviolet—that any additional gas and dust attracted
toward the star will be pushed away by the intense pressure of starlight. The star’s photons push on
the dust grains within the cloud, which in turn carry the gas away with them. Here starlight couples
irreversibly to dust. This radiation pressure operates so effectively that just a few high-mass stars
within a dark, obscuring cloud will have luminosities sufficient to disperse nearly all its interstellar
matter, laying bare to the universe dozens, if not hundreds, of brand-new stars—all siblings, really—
for the rest of the galaxy to see.

Whenever you gaze at the Orion nebula, located just below the three bright stars of Orion’s Belt, midway
along the Hunter’s somewhat fainter sword, you can see a stellar nursery of just this sort. Thousands
of stars have been born within this nebula, while thousands more await their birth, soon to create a
giant star cluster that becomes more and more visible to the cosmos as the nebula dissipates. The
most massive new stars, forming a group called the Orion Trapezium, are busy blowing a giant hole
in the middle of the cloud from which they formed. Hubble Telescope images of this region reveal
hundreds of new stars in this zone alone, each infant swaddled within a nascent protoplanetary disk
made of dust and other molecules drawn from the original cloud. And within each of these disks, a
planetary system is forming.



Ten billion years after the Milky Way formed, star formation continues today at multiple locations in
our galaxy. Even though most of the star formation that will ever occur in a typical giant galaxy like
ours has already taken place, we are fortunate that new stars continue to form, and will do so for
many billion years to come. Our good fortune lies in our ability to study the formation process and the
youngest stars, seeking clues that will reveal, in all its glory, the complete story of how stars pass
from cold gas and dust to luminous maturity.

How old are the stars? No star wears its age on its sleeve, but some show their ages in their spectra.
Among the various means that astrophysicists have devised to judge the ages of stars, spectra forms
the most reliable hinge for analyzing the different colors of starlight in detail. Every color—every
wavelength and frequency of the light waves we observe—tells a story about how matter made the
starlight, or affected that light as it left the star, or happened to lie along the line of sight between
ourselves and the star. Through close comparison with laboratory spectra, physicists have determined
the multitude of ways that different types of atoms and molecules affect the rainbow of colors in
visible light. They can apply this fertile knowledge to observations of stellar spectra, and deduce the
numbers of atoms and molecules that have affected light from a particular star, as well as the
temperature, pressure, and density of those particles. From years of comparing laboratory spectra
with the spectra of stars, together with laboratory studies of the spectra of different atoms and
molecules, astrophysicists have learned how to read an object’s spectrum like a cosmic fingerprint,
one that reveals what physical conditions exist within a star’s outer layers, the region from which
light streams directly outward into space. In addition, astrophysicists can determine how atoms and
molecules floating in interstellar space at much cooler temperatures may have affected the spectrum
of the starlight they observe, and can likewise deduce the chemical composition, temperature, density,
and pressure of this interstellar matter.

In this spectral analysis, each different type of atom or molecule has its own story to tell. The
presence of molecules of any type, for example, revealed by their characteristic effects on certain
colors in the spectrum, demonstrates that the temperature in a star’s outer layers must be less than
about 3,000o Celsius (about 5,000o Fahrenheit). At higher temperatures, molecules move so rapidly
that their collisions break them apart into individual atoms. By extending this type of analysis over
many different substances, astrophysicists can derive a nearly complete picture of the detailed
conditions in stellar atmospheres. Some hard-working astrophysicists are said to know far more
about the spectra of stars they love than they do about their own families. This may have its down
side for interpersonal relations even as it increases human understanding of the cosmos.

Of all nature’s elements—of all the different types of atoms that can create patterns in a star’s
spectrum—astrophysicists recognize and use one in particular to find the ages of the youngest stars.
That element is lithium, the third simplest and lightest in the periodic table, and familiar to some on
Earth as the active ingredient of some antidepressant medications. In the periodic table of the
elements, lithium occupies the position immediately after hydrogen and helium, which are deservedly
far more famous because they exist in immensely greater amounts throughout the cosmos. During its
first few minutes, the universe fused hydrogen into helium nuclei in great numbers, but made only
relatively tiny amounts of any heavier nucleus. As a result, lithium remained a rather rare element,
distinguished among astrophysicists by the cosmic fact that stars hardly ever make more lithium, but



only destroy it. Lithium rides down a one-way street because every star has more effective nuclear
fusion reactions to destroy lithium than to create it. As a result, the cosmic supply of lithium has
steadily decreased and continues to do so. If you want some, now would be a good time to acquire it.

For astrophysicists, this simple fact about lithium makes it a highly useful tool for measuring the
ages of stars. All stars begin their lives with their fair and proportionate share of lithium, left behind
by the nuclear fusion that occurred during the universe’s first half hour—and during the big bang
itself. And what is that fair share? About one in every 100 billion nuclei. After a newborn star begins
its life with this “richness” of lithium, things go downhill, lithiumwise, as nuclear reactions within the
star’s core slowly consume lithium nuclei. The steady and sometimes episodic mixing of matter in the
core with matter outside carries material outward, so that after thousands of years, the star’s outer
layers can reflect what previously happened in its core.

When astrophysicists look for the youngest stars, they therefore follow a simple rule: Look for the
stars with the greatest abundance of lithium. Each star’s number of lithium nuclei in proportion to, for
example, hydrogen (determined from careful study of the star’s spectrum), will locate the star at some
point along a graph that shows how stars’ ages correlate with lithium in their outer layers. By using
this method, astrophysicists can identify, with confidence, the youngest stars in a cluster, and can
assign each of those stars a lithium-based age. Because stars are efficient destroyers of lithium, older
stars show little if any of the stuff. Hence the method works well only for stars less than few hundred
million years old. But for these younger stars, the lithium approach works wonders. A recent study of
two dozen young stars in the Orion nebula, all of which have masses close to the Sun’s, show ages
that range between 1 and 10 million years. Some day astrophysicists may well identify still younger
stars, but for now, 1 million years represents about the best they can do.

Except for dispersing the cocoons of gas from which they formed, groups of newborn stars bother nobody
for a long time, as they quietly fuse hydrogen into helium in their cores and destroy their lithium
nuclei as part of their fusion reactions. But nothing lasts forever. Over many million years, in
response to the continual gravitational perturbations from enormous clouds that pass by, most would-
be star clusters “evaporate,” as its members scatter into the general pool of stars in the galaxy.

Nearly 5 billion years after our star formed, the identity of the Sun’s siblings has vanished, whether
or not those stars remain alive. Of all the stars in the Milky Way and other galaxies, those with low
masses consume their fuel so slowly that they live practically forever. Intermediate-mass stars such as
our Sun eventually turn into red giants, expanding their outer gas layers a hundredfold in size as they
slide toward death. These outer layers become so tenuously connected to the star that they drift into
space, exposing a core of spent nuclear fuels that powered the stars’ 10-billion-year lives. The gas
that returns to space will be swept up by passing clouds, to participate in later rounds of star
formation.

Despite their rarity, the highest-mass stars hold nearly all the evolutionary cards. Their high masses
give them the greatest stellar luminosities—some of them can boast a million times the Sun’s—and
because they consume their nuclear fuel far more rapidly than low-mass stars do, they have the
shortest lives of all stars, only a few million years, or even less. Continued thermonuclear fusion
within high-mass stars allows them to manufacture dozens of elements in their cores, starting with



hydrogen and proceeding to helium, carbon, nitrogen, oxygen, neon, magnesium, silicon, calcium, and
so on, all the way to iron. These stars forge still more elements in their final fires, which can briefly
outshine a star’s entire home galaxy. Astrophysicists call each of these outbursts a supernova, similar
in appearance (though quite different in their origin) to the Type Ia supernovae described in Chapter
5. A supernova’s explosive energy spreads both the previously made and the freshly minted elements
through the galaxy, blowing holes in its distribution of gas and enriching nearby clouds with the raw
materials to make new dust grains. The blast moves supersonically through these interstellar clouds,
compressing their gas and dust, possibly creating some of the high-density pockets needed to form
stars.

The greatest gift to the cosmos from these supernovae consists of all the elements other than
hydrogen and helium—elements capable of forming planets and protists and people. We on Earth live
on the product of countless stars that exploded billions of years ago, in epochs of Milky Way history
long before our Sun and its planets, condensing within the dark and dusty recesses of an interstellar
cloud—itself endowed with chemical enrichment furnished from previous generations of high-mass
stars.

How did we come to taste this delicious kernel of knowledge, the fact that all the elements beyond
helium were forged within stars? The authors’ award for the most underappreciated scientific
discovery of the twentieth century goes to the recognition that supernovae—the explosive death throes
of high-mass stars—provide the primary source for the origin and abundances of heavy elements in
the universe. This relatively unsung realization appeared in a lengthy research article, published in
1957 in the U.S. journal Reviews of Modern Physics under the title “The Synthesis of the Elements in
Stars,” and written by E. Margaret Burbidge, Geoffrey R. Burbidge, William Fowler, and Fred
Hoyle. In this paper, the four scientists created a theoretical and computational framework that freshly
interpreted and melded together forty years of musings by other scientists on two key topics: the
sources of stellar energy and the transmutation of chemical elements.

Cosmic nuclear chemistry, the quest to understand how nuclear fusion makes and destroys different
types of nuclei, has always been a messy business. The crucial questions have always included: How
do the various elements behave when various temperatures and pressures act upon them? Do the
elements fuse or do they split? How easily do they do this? Do these processes liberate new kinetic
energy or absorb existing kinetic energy? And how do the processes differ for each element in the
periodic table?

What does the periodic table of the elements mean to you? If you are like most former students, you
will remember a giant chart on the wall of your science class, tricked out with mysterious boxes in
which cryptic letters and symbols murmured tales of dusty laboratories to be avoided by young souls
in transition. But to those who know its secrets, this chart tells a hundred stories of cosmic violence
that brought its components into existence. The periodic table lists every known element in the
universe, arranged by the increasing number of protons in each element’s nuclei. The two lightest
elements are hydrogen, with one proton per nucleus, and helium, with two. As the four authors of the
1957 paper saw, under the right conditions of temperature, density, and pressure, a star can use
hydrogen and helium to create all the other elements in the periodic table.



The details of this creation process, and of other interactions that destroy nuclei rather than create
them, provide the subject matter for nuclear chemistry, which involves the calculation and use of
“collision cross sections” to measure how closely one particle must approach another before they are
likely to interact significantly. Physicists can easily calculate collision cross sections for cement
mixers, or double-wide mobile homes moving down the street on flatbed trucks, but they face greater
challenges in analyzing the behavior of tiny, elusive subatomic particles. A detailed understanding of
collision cross sections enables physicists to predict nuclear reaction rates and pathways. Often small
uncertainties in their tables of cross sections lead them into wildly erroneous conclusions. Their
difficulties resemble what would happen if you tried to navigate your way through one city’s subway
system with another city’s subway map as your guide: your basic theory would be correct, but the
details could kill you.

Despite their ignorance of accurate collision cross sections, scientists during the first half of the
twentieth century had long suspected that if exotic nuclear processes exist anywhere in the universe,
the centers of stars seemed likely places to find them. In 1920, the British theoretical astrophysicist
Sir Arthur Eddington published a paper entitled the “The Internal Constitution of the Stars,” in which
he argued that the Cavendish Laboratory in England, the leading center for atomic and nuclear physics
research, could not be the only place in the universe that managed to change some elements into
others:

But is it possible to admit that such a transmutation is occurring? It is difficult to assert, but
perhaps more difficult to deny, that this is going on . . . and what is possible in the Cavendish
Laboratory may not be too difficult in the sun. I think that the suspicion has been generally
entertained that the stars are the crucibles in which the lighter atoms which abound in the nebulæ
are compounded into more complex elements.

Eddington’s paper, which foreshadowed the detailed research of Burbidge, Burbidge, Fowler, and
Hoyle, appeared several years before the discovery of quantum mechanics, without which our
understanding of the physics of atoms and nuclei must be judged feeble at best. With remarkable
prescience, Eddington began to formulate a scenario for star-generated energy via the thermonuclear
fusion of hydrogen to helium and beyond:

We need not bind ourselves to the formation of helium from hydrogen as the sole reaction which
supplies the energy [to a star], although it would seem that the further stages in building up the
elements involve much less liberation, and sometimes even absorption, of energy. The position
may be summarised in these terms: the atoms of all elements are built of hydrogen atoms bound
together, and presumably have at one time been formed from hydrogen; the interior of a star seems
as likely a place as any for the evolution to have occurred.

Any model of the transmutation of the elements ought to explain the observed mix of elements found
on Earth and elsewhere in the universe. To do this, physicists needed to find the fundamental process
with which stars generate energy by turning one element into another. By 1931, with theories of
quantum mechanics rather well developed (although the neutron had not yet been discovered), the
British astrophysicist Robert d’Escourt Atkinson published an extensive paper, summarized as a



“synthesis theory of stellar energy and of the origin of the elements . . . in which the various chemical
elements are built up step by step from the lighter ones in stellar interiors, by the successive
incorporation of protons and electrons one at a time.”

In the same year, the American nuclear chemist William D. Harkins published a paper noting that
“elements of low atomic weight [the number of protons plus neutrons in each nucleus] are more
abundant than those of high atomic weight and that, on the average, the elements with even atomic
numbers [the numbers of protons in each atomic nucleus] are about 10 times more abundant than those
with odd atomic numbers of similar value.” Harkins surmised that the relative abundances of the
elements depend on nuclear fusion rather than on chemical processes such as combustion, and that the
heavy elements must have been synthesized from the light ones.

The detailed mechanism of nuclear fusion in stars could ultimately explain the cosmic presence of
many elements, especially those that you will obtain each time you add the two-proton, two-neutron
helium nucleus to your previously forged element. These constitute the abundant elements with “even
atomic numbers” that Harkins described. But the existence and relative numbers of many other
elements remained unexplained. Some other means of element buildup must have been at work in the
cosmos.

The neutron, discovered in 1932 by the British physicist James Chadwick while working at the
Cavendish Laboratories, plays a significant role in nuclear fusion that Eddington could not have
imagined. To assemble protons requires hard work, because protons naturally repel one another, as
do all particles with the same sign of electric charge. To fuse protons, you must bring them
sufficiently close (often by way of high temperatures, pressures, and densities) to overcome their
mutual repulsion for the strong nuclear force to bind them together. The chargeless neutron, however,
repels no other particle, so it can simply march into somebody else’s nucleus and join the other
assembled particles, held there by the same force that binds the protons. This step does not create
another element, which is defined by a different number of protons in each nucleus. By adding a
neutron, we make an “isotope” of the nucleus of the original element, which differs only in detail from
the original nucleus because its total electric charge remains unchanged. For some elements, the
freshly captured neutron proves to be unstable once it joins the nucleus. In that case, the neutron
spontaneously converts itself into a proton (which stays put in the nucleus), and an electron (which
escapes immediately). In this way, like the Greek soldiers who breached the walls of Troy by hiding
inside a wooden horse, protons can sneak into a nucleus in the guise of neutrons.

If the ongoing flow of neutrons stays high, each nucleus can absorb many neutrons before the first
one decays. These rapidly absorbed neutrons help to create an ensemble of elements whose origin is
identified with the “rapid neutron capture process,” and differ from the assortment of elements that
result when neutrons are captured slowly, where each successive neutron decays into a proton before
the nucleus captures the next one.

Both the rapid and the slow neutron capture processes are responsible for creating many of the
elements not otherwise formed through traditional thermonuclear fusion. The remaining elements in
nature can be made by a few other processes, including slamming high-energy photons (gamma rays)
into the nuclei of heavy atoms, which then break apart into smaller ones.

At the risk of oversimplifying the life cycle of a high-mass star, we may state that each star lives by



generating and releasing the energy in its interior that allows the star to support itself against gravity.
Without its production of energy through thermonuclear fusion, each stellar ball of gas would simply
collapse under its own weight. This fate weighs on stars that exhaust their supplies of hydrogen nuclei
(protons) in their cores. As already noted, after converting its hydrogen into helium, the core of a
massive star will next fuse helium into carbon, then carbon to oxygen, oxygen to neon, and so forth up
to iron. To successively fuse this sequence of heavier and heavier elements requires successively
higher temperatures for the nuclei to overcome their natural repulsion. Fortunately this happens all by
itself, because at the end of each intermediate stage, when the star’s energy source temporarily shuts
off, the inner regions collapse, the temperature rises, and the next pathway of fusion kicks in. Since
nothing lasts forever, the star eventually confronts one enormous problem: The fusion of iron does not
release energy, but instead absorbs it. This brings bad news to the star, which can now no longer
support itself against gravity by pulling a new energy-releasing process out of its nuclear fusion hat.
At this point, the star suddenly collapses, forcing its internal temperature to rise so rapidly that a
gigantic explosion ensues as the star blows its guts to smithereens.

Throughout each explosion, the availability of neutrons, protons, and energy allows the supernova to
create elements in many different ways. In their 1957 article, Burbidge, Burbidge, Fowler, and Hoyle
combined (1) the well-tested tenets of quantum mechanics; (2) the physics of explosions; (3) the latest
collision cross sections; (4) the varied processes that transmute elements into one another; and (5) the
basics of stellar evolutionary theory to implicate supernova explosions decisively as the primary
source of all the elements heavier than hydrogen and helium in the universe.

With high-mass stars as the source of heavy elements, and supernovae as the smoking gun of element
distribution, the fab four acquired the solution to one other problem for free: when you forge elements
heavier than hydrogen and helium in stellar cores, you do the rest of the universe no good unless you
somehow cast those elements forth into interstellar space, making them available to form worlds with
wombats. Burbidge, Burbidge, Fowler, and Hoyle unified our understanding of nuclear fusion in stars
with the element production visible throughout the universe. Their conclusions have survived decades
of skeptical analysis, so their publication stands as a turning point in our knowledge of how the
universe works.

Yes, Earth and all its life comes from stardust. No, we have not solved all of our cosmic chemical
questions. A curious contemporary mystery involves the element technetium, which, in 1937, was the
first element to be created artificially in Earthbound laboratories. (The word “technetium,” along
with others that use the prefix “tech-,” derive from the Greek technetos, which translates to
“artificial.”) We have yet to discover technetium on Earth, but astronomers have found it in the
atmospheres of a small fraction of the red giant stars in our galaxy. This would hardly surprise us,
were it not for the fact that technetium decays to form other elements, and does so with a half-life of a
mere 2 million years, far shorter than the age and life expectancy of the stars in which we observe it.
This conundrum has led to exotic theories that have yet to achieve consensus within the community of
astrophysicists.

Red giants with these peculiar chemical properties are rare, but sufficiently nettlesome for a cadre
of astrophysicists (mostly spectroscopists) who specialize in the subject to generate and distribute the
Newsletter of Chemically Peculiar Red Giant Stars. Not available on most newsstands, this



publication typically contains conference news and updates on research still in progress. To
interested scientists, these ongoing chemical mysteries have an allure as strong as the questions
related to black holes, quasars, and the early universe. But you hardly ever read about them. Why?
Because, quite typically, the media has predetermined what deserves coverage and what does not.
Apparently the news about the cosmic origins of every element in your body and your planet doesn’t
make the cut.

Here is your chance to redress the wrongs that contemporary society has inflicted upon you. Let’s
take a journey through the periodic table, pausing here and there to note the most intriguing facts about
the various elements, and to admire how the cosmos made them all from the hydrogen and helium that
emerged from the big bang.



CHAPTER 10

The Elemental Zoo

The periodic table of the elements, lovingly created by chemists and physicists during the past two
centuries, embodies organizing principles that explain the chemical behavior of all the elements that
we know in the universe, or may someday discover. For this reason, we ought to regard the periodic
table as a cultural icon, an exemplar of our society’s ability to organize its knowledge. The table
testifies to the enterprise of science as an international human adventure, conducted not only in
laboratories but also in particle accelerators, and at the space and time frontiers of the entire cosmos.

Amid this well-merited respect, every now and then an entry in the periodic table will strike even a
grown-up scientist as a strange beast in a zoo of one-of-a-kind animals conceived and executed by Dr.
Seuss. How else can we believe that sodium is a deadly, reactive metal that you can cut with a
butterknife, and that pure chlorine is an evil-smelling, deadly gas—yet when we combine sodium and
chlorine, we make sodium chloride, a harmless compound essential to life, better known as table
salt? What about hydrogen and oxygen, two of the most abundant elements on Earth and in the
universe? One is an explosive gas, while the other promotes violent combustion; yet adding the two
produces liquid water, which puts out fires.

Amid all the chemical interactions in the periodic table’s little shop of possibilities, we find the
elements most significant to the cosmos. These offer the chance to view the table through the lens of
an astrophysicist. We shall grasp that chance and dance our way across the table, saluting its most
distinguished entries and admiring its little oddities.

The periodic table emphasizes the fact that each of nature’s elements distinguishes itself from all
others by its “atomic number,” the number of protons (positive electric charges) in each nucleus of
that element. Complete atoms always have a number of electrons (negative electric charges) orbiting
the nucleus equal to the element’s atomic number, so the total atom has zero electric charge. Different
isotopes of a particular element have the same number of protons and electrons, but different numbers
of neutrons.

Hydrogen, with only one proton in each nucleus, is the lightest and simplest element, made entirely
during the first few minutes after the big bang. Out of the ninety-four naturally occurring elements,
hydrogen claims more than two thirds of all the atoms in human bodies and more than 90 percent of
all the atoms in the cosmos, including the Sun and its giant planets. The hydrogen inside the core of
the Sun’s most massive planet, Jupiter, feels so much pressure from the overlying layers that it
behaves more like an electromagnetically conductive metal than a gas, and helps to create the
strongest magnetic field among the Sun’s planets. The English chemist Henry Cavendish discovered
hydrogen in 1766 while experimenting with H2O (hydro-genes is the Greek word for water-forming,
whose gen appears in such English words as “genetic”), though his fame among astronomers rests on
his having been the first person to calculate Earth’s mass accurately by measuring the gravitational



constant G that appears in Newton’s famous equation for gravity. Every second of every day and
night, 4.5 billion tons of fast-moving hydrogen nuclei (protons) slam together to make helium nuclei
within the Sun’s 15-million-degree (Celsius) core. About 1 percent of the mass involved in this fusion
transforms itself into energy, leaving the other 99 percent in the form of helium.

Helium, the second most abundant element in the universe, can be found on Earth only in a few
underground pockets that trap this gas. Most of us know only helium’s whimsical side, available for
testing through over-the-counter purchases. When you inhale helium, its low density in comparison
with atmospheric gases increases the vibrational frequency within your windpipe, causing you to
sound like Mickey Mouse. The cosmos contains four times more helium than all other elements
combined (not counting hydrogen). One of the pillars of big bang cosmology is the prediction that
throughout the cosmos, no fewer than about 8 percent of all atoms are helium, which the well-mixed
primeval fireball manufactured during its immediate post-birth pangs. Since the thermonuclear fusion
of hydrogen within stars produces additional helium, some regions of the cosmos can accumulate
more than their initial 8 percent share of helium, but—just as the big bang model predicts—no one
has ever found a region of our galaxy or anybody else’s galaxy with less.

Some thirty years before they discovered and isolated helium on Earth, astrophysicists had detected
helium in the Sun by the telltale features that they saw in the Sun’s spectrum of light during the total
eclipse of 1868. They naturally named this previously unknown material helium after Helios, the
Greek sun god. With 92 percent of hydrogen’s buoyancy in air, but without the explosive
characteristics of hydrogen that destroyed the German Hindenburg dirigible, helium provides the gas
of choice for the outsized balloon characters of the Macy’s Thanksgiving Day parade, making the
famed department store second only to the U.S. military as the world’s top consumer of helium.

Lithium, the third simplest element in the universe, has three protons in each nucleus. Like hydrogen
and helium, lithium was made soon after the big bang, but unlike helium, which is often made in
subsequent nuclear reactions, lithium will be destroyed by every nuclear reaction that occurs in stars.
Hence we expect to find no object or region with lithium present in more than the relatively small
relative abundances—no more than 0.0001 percent of the total—produced in the early universe. As
predicted by our model of element formation during the first half hour, no one has yet found a galaxy
with more lithium than this upper limit. The combination of the upper limit on helium and the lower
limit on lithium furnishes us with a potent dual constraint to apply in testing the theory of big bang
cosmology. A similar test of the big bang model of the universe, which it has passed with flying
colors, compares the abundance of deuterium nuclei, each of which has one proton and one neutron,
with the amount of ordinary hydrogen. Fusion during the first few minutes produced both of these
nuclei, but made far more of simple hydrogen (just one proton).

Like lithium, the next two elements in the periodic table, beryllium and boron (with four and five
protons, respectively, in each nucleus) owe their origin mainly to thermonuclear fusion in the early
universe, and they appear only in relatively modest numbers throughout the cosmos. The scarcity on
Earth of the three lightest elements after hydrogen and helium makes them bad news for those who
accidentally ingest them, since evolution has proceeded essentially without encountering them.
Intriguingly, controlled doses of lithium do seem to relieve certain types of mental illness.

With carbon, element number six, the periodic table springs into glorious efflorescence. Carbon



atoms, with six protons in every nucleus, appear in more kinds of molecules than the sum of all non-
carbon-containing molecules combined. The cosmic abundance of carbon nuclei—forged in the cores
of stars, churned to their surfaces, and released in copious amounts into the Milky Way galaxy—joins
with carbon’s ease in forming chemical combinations to make carbon the best element on which to
base the chemistry and diversity of life. Just edging out carbon in abundance, oxygen (eight protons
per nucleus) also offers a highly reactive and abundant element, similarly forged within and released
from aging stars and stars that explode as supernovae. Both oxygen and carbon constitute major
ingredients for life as we know it. The same processes made and distributed nitrogen, element
number seven, which again appears in great quantities throughout the universe.

But what about life as we don’t know it? Could other life forms use a different element as the heart
of their complex shapes? How about life based on silicon, element number 14? Silicon sits directly
below carbon on the periodic table, which means (see how useful the table can be to those who know
its secrets) that silicon can create the same sorts of chemical compounds that carbon does, with
silicon taking the place of carbon. In the end, we expect carbon to prove superior to silicon, not only
because carbon has ten times the abundance of silicon in the cosmos but also because silicon forms
chemical bonds that are either substantially stronger or noticeably weaker than those that carbon
makes. In particular, the strength of the bonds between silicon and oxygen makes tough rocks, whereas
complex molecules based on silicon lack the hardiness to survive ecological stresses that carbon-
based atoms exhibit. These facts don’t stop science fiction writers from championing silicon, thus
keeping exobiological speculation on its toes and allowing us to wonder what the first truly alien life
form will be like.

In addition to forming an active ingredient in table salt, sodium (eleven protons per nucleus) glows
across this great land as hot sodium gas in most municipal street lamps. These lamps “burn” brighter,
longer, and use less energy than conventional incandescent bulbs do. They come in two varieties: the
common high-pressure lamps, which look yellow-white, and the rarer, low-pressure lamps, which
look orange. It turns out that while all light pollution hurts astronomy, low-pressure sodium lamps
inflict less harm because their contamination, much more narrowly confined in color, can be easily
accounted for and removed from telescope data. In a model of town-telescope cooperation, the entire
city of Tucson, Arizona, the closest large municipality to the Kitt Peak National Observatory, has, by
agreement with the local astronomers, converted all its streetlights to low-pressure sodium lamps—
which also turn out to be more efficient, and therefore save energy for the city.

Aluminum (twelve protons per nucleus) provides nearly 10 percent of Earth’s crust, yet remained
unknown to the ancients and unfamiliar to our grandparents because it combines so effectively with
other elements. Its isolation and identification occurred only in 1827, and aluminum did not enter
common household use until the late 1960s, when tin cans and tin foil yielded to aluminum cans and
aluminum foil. Because polished aluminum makes a near-perfect reflector of visible light,
astronomers today coat nearly all their telescope mirrors with a thin film of aluminum atoms.

Although titanium (thirteen protons per nucleus) has a density 70 percent greater than aluminum’s,
it’s more than twice as strong. Its strength and relative lightness make titanium—the ninth most
abundant element in Earth’s crust—a modern darling for many applications, such as military aircraft
components, that require a light, strong metal.



In most cosmic locations, oxygen atoms outnumber carbon. In stars, once every carbon atom has
latched onto one of the available oxygen atoms to form carbon monoxide or carbon dioxide
molecules, the leftover oxygen atoms bond with other elements, such as titanium. The spectra of the
light from red-giant stars are riddled with features created by titanium oxide (molecules of TiO),
which itself is no stranger to stars on Earth: star sapphires and rubies owe their radiant asterisms to
titanium oxide impurities within their crystal lattices, with aluminum oxide impurities adding extra
color. Furthermore, the white paint used for telescope domes features titanium oxide, which happens
to radiate infrared with high efficiency, a fact that greatly reduces the daytime heat accumulated
within the dome. At nightfall, with the dome open, the air temperature near the telescope falls more
rapidly to the temperature of the nighttime air, reducing atmospheric refraction and allowing the light
from stars and other cosmic objects to arrive with greater sharpness and clarity. Although not directly
named for a cosmic object, titanium derives its handle from the Titans of Greek mythology, as does
Titan, Saturn’s largest moon.

Carbon may be the most significant element in life, but by many measures, iron, element number 26,
ranks as the most important of all the elements in the universe. Massive stars manufacture elements in
their core, marching through the periodic table in the sequence of increasing number of protons per
nucleus, from helium to carbon to oxygen to neon, and so forward all the way to iron. With twenty-six
protons and at least as many neutrons in its nucleus, iron has a distinctive quality that derives from the
quantum mechanics rules that govern how protons and neutrons interact: Iron nuclei have the highest
binding energy per nuclear particle (proton or neutron). This means something quite simple. If you
seek to split iron nuclei (in what physicists call “fission”), you must provide them with additional
energy. On the other hand, if you combine iron atoms (a process called “fusion”), they will also
absorb energy. It takes energy to fuse iron nuclei and it takes energy to split them apart. For all other
elements, only one or the other half of this dual description applies.

Stars, however, are in the business of using E = mc2 to turn mass into energy, which they must do to
oppose their tendency to collapse under their own gravity. When stars fuse nuclei in their cores,
nature demands, and obtains, nuclear fusion that releases energy. By the time that a massive star fuses
most of the nuclei in its core into iron, it has exhausted all its options for using thermonuclear fusion
to generate energy, because any further fusion will require rather than release energy. Deprived of a
source of energy from thermonuclear fusion, the star’s core will collapse under its own weight, then
instantly rebound in a titanic explosion known as a supernova, outshining a billion suns for more than
a week. Such supernovae occur because of the special property of iron nuclei—their refusal either to
fuse or to split without an input of energy.

By describing hydrogen, helium; lithium, beryllium, and boron; carbon, nitrogen, and oxygen; and
aluminum, titanium, and iron, we have surveyed nearly all of the key elements that make the cosmos—
and life on Earth—go round.

Simply for the cosmic hell of it, let’s have a quick look at some far more obscure entries on the
periodic table. You will almost certainly never own any significant quantities of these elements, but
scientists find them not only intriguing riffs on nature’s bounty but also highly useful in special
circumstances. Consider, for example, the soft metal gallium (thirty-one protons per nucleus).
Gallium has such a low melting point that the heat from your hand will make it liquefy. Apart from



this parlor demo opportunity, gallium provides astrophysicists with the active ingredient in gallium
chloride, a variant on table salt (sodium chloride) that proves valuable in experiments that detect
neutrinos from the Sun’s core. To capture these elusive neutrinos, astrophysicists create a 100-ton vat
of liquid gallium chloride and set it deep underground (to screen out effects from less penetrating
particles), then watch it carefully for the results of any collisions between the neutrinos and the
gallium nuclei, which turn the nuclei into germanium nuclei, each of which has thirty-two protons.
Every transformation of gallium into germanium produces X-ray photons, which can be detected and
measured every time that a nucleus gets slammed. By using these gallium-chloride “neutrino
telescopes,” astrophysicists resolved what they had called the “solar neutrino problem,” the fact that
earlier types of neutrino detectors found neutrinos in smaller numbers than the theory of
thermonuclear fusion in the Sun’s core had predicted.

Every nucleus of the element technetium (atomic number 43) is radioactive, decaying after a few
moments or a few million years into other types of nuclei. Not surprisingly, we find technetium
nowhere on Earth except in particle accelerators, where we make it on demand. For reasons not yet
fully understood, technetium lives in the atmospheres of a select subset of red giant stars. As we noted
in the previous chapter, this would cause astrophysicists no alarm—except that technetium has a half-
life of a mere 2 million years, far, far shorter than the ages and life expectancies of the stars in which
we find it. This proves that the stars cannot have been born with the stuff, for if they had been, none
would be left by now. Astrophysicists also lack any known mechanism to create technetium in a star’s
core and to have it dredge itself up to the surface where they observe it, a matter of uneasy fact that
has spawned exotic explanations, still shy of consensus within the astrophysics community.

Along with osmium and platinum, iridium gives us one of the three densest elements on the periodic
table—two cubic feet of iridium (atomic number 77) weighs as much as a Buick, which makes it one
of the world’s best paperweights, able to defy all known office fans and window breezes. Iridium
also gives scientists the world’s most famous smoking gun. All over the world, a thin layer of
iridium-rich material appears at the geological layer that marks the famous K-T boundary, laid down
65 million years ago. Not coincidentally, most biologists believe, that boundary also marks the time
when every land species larger than a breadbox, including the legendary dinosaurs, went extinct.
Iridium is rare on Earth’s surface, but ten times more common in metallic asteroids. Whatever might
have been your favorite theory for destroying the dinosaurs, a ten-mile-wide killer asteroid from
outer space, capable of raising a worldwide blanket of light-blocking debris before slowly raining
downward several months later, now seems quite compelling.

It’s not clear how Albert would have felt about this, but physicists discovered a previously unknown
element in the debris from the first hydrogen bomb test in the Pacific (November 1952) and named it
einsteinium in his honor. Armageddium might have been more suitable.

While helium derives its name from the Sun itself, ten other elements in the periodic table draw
their names from objects that orbit the Sun:

Phosphorus, which means “light-bearing” in Greek, was the ancient name for the planet Venus when
it appeared before sunrise in the dawn sky.

Selenium comes from selene, the Greek word for the Moon, so named because this element was
always found in association with the element tellurium, which had already been named for Earth,



from the Latin tellus.
On January 1, 1801, the first day of the nineteenth century, the Italian astronomer Giuseppe Piazzi

discovered a new planet orbiting the Sun within the suspiciously large gap between Mars and Jupiter.
Maintaining the tradition of naming planets after Roman gods, Piazzi called the object Ceres after the
goddess of harvest, which also provides the root for our word “cereal.” The excitement in the
scientific community over Piazzi’s find caused the next element to be discovered to be named cerium
in its honor. Two years later, another planet was found, orbiting the Sun within the same gap as Ceres.
This object received the name Pallas, from the Roman goddess of wisdom; like cerium before it, the
next element discovered thereafter was named palladium in its honor. The naming party ended a few
decades later, after dozens more of these planets were discovered in much the same location, and
after closer analysis revealed that these objects are much, much smaller than the smallest known
planets. A new swath of real estate had come into view within the solar system, consisting of small,
craggy chunks of rock and metal. Ceres and Pallas turned out to be not planets but asteroids, objects
only a few hundred miles across. They live in the asteroid belt, now known to contain millions of
objects, of which astronomers have catalogued and named upward of fifteen thousand—somewhat
more than the number of elements in the periodic table.

The metal mercury, which assumes a viscous liquid form at room temperature, owes its name to the
speedy Roman messenger god. So too does the planet Mercury, the fastest-moving of all the planets in
the solar system.

Thorium’s name comes from Thor, the hammer-and-thunder-wielding Scandinavian god, who
corresponds to the lightning-bolt-wielding Jupiter in Roman mythology. By jove, recent Hubble Space
Telescope images of Jupiter’s polar regions reveal extensive electrical discharges deep within its
turbulent cloud layers.

Saturn, most people’s favorite planet, has no element named for it, but Uranus, Neptune, and Pluto
are famously represented. The element uranium, discovered in 1789, received its name in honor of
William Herschel’s planet, discovered by him just eight years earlier. All isotopes of uranium are
unstable, spontaneously but slowly decaying to lighter elements, a process accompanied by the
release of energy. If you can arrange to speed up the rate of decay with a “chain reaction” among
uranium nuclei, you have the explosive energy release required for a bomb. In 1945, the United States
exploded the first uranium bomb (familiarly called an atomic bomb or A-bomb) to be used in
warfare, incinerating the Japanese city of Hiroshima. With ninety-two protons packed in each nucleus,
uranium wins the prize as the largest and heaviest element to occur naturally, although trace amounts
of still larger and heavier elements appear in places where uranium ore is mined.

If Uranus merited an element, so did Neptune. Unlike uranium, however, which was identified soon
after its planet, neptunium was discovered in 1940 in the particle accelerator called the Berkeley
Cyclotron, ninety-seven years after the German astron-omer John Galle found Neptune in a spot on the
sky predicted as the most likely spot by the French mathematician Joseph Le Verrier, who studied
Uranus’ unexplained orbital behavior and deduced the existence of a farther planet. Just as Neptune
comes immediately after Uranus in the solar system, neptunium comes right after uranium in the
periodic table of the elements.

Particle physicists working at the Berkeley cyclotron discovered more than half a dozen elements



not found in nature, including plutonium, which immediately follows neptunium in the periodic table
and bears the name of Pluto, which the young astronomer Clyde Tombaugh found in 1930 on
photographs taken at Arizona’s Lowell Observatory. As with the discovery of Ceres 129 years
earlier, excitement ran high. Pluto was the first planet discovered by an American and, in the absence
of accurate observational data, was widely believed to be a planet of size and mass commensurate
with those of Uranus and Neptune. As our measurements of Pluto’s size improved, Pluto kept getting
smaller. Our knowledge of Pluto’s dimensions did not stabilize until the late 1970s, during the
Voyager missions to the outer solar system. We now know that cold, icy Pluto is by far the Sun’s
smallest planet, with the embarrassing distinction of being smaller than the solar system’s six largest
moons. As with the asteroids, astronomers later found hundreds of other objects in similar locations,
in this case in the outer solar system with orbits similar to Pluto’s. These objects signaled the
existence of a heretofore undocumented reservoir of small icy objects, now called the Kuiper Belt of
comets. A purist could argue that like Ceres and Pallas, Pluto slipped into the periodic table under
false pretenses.

Like uranium nuclei, plutonium nuclei are radioactive. These nuclei formed the active ingredient in
the atomic bomb dropped on the Japanese city of Nagasaki, just three days after the uranium bombing
of Hiroshima, bringing a swift end to World War II. Scientists can use small quantities of plutonium,
which produces energy at a modest, steady rate, to power radioisotope thermoelectric generators
(abbreviated as RTGs) for spacecraft that travel to the outer solar system, where the intensity of
sunlight falls below the level usable by solar panels. One pound of this plutonium will generate 10
million kilowatt-hours of heat energy, sufficient to power a household light bulb for eleven thousand
years, or a human being for just about as long. Still drawing on their plutonium power to send
messages to Earth, the two Voyager spacecraft launched in 1977 have now traveled far beyond
Pluto’s orbit. One of them, at nearly one hundred times Earth’s distance from the Sun, has begun to
enter true interstellar space by leaving the bubble that the Sun’s outflow of electrically charged
particles creates.

And so we end our cosmic journey through the periodic table of the chemical elements, right at the
edge of the solar system. For reasons we have yet to determine, many people don’t like chemicals,
which may explain the perennial movement to rid foods of them. Perhaps sesquipedalian chemical
names just sound dangerous. But in that case we should blame the chemists, and not the chemicals.
Personally, we are quite comfortable with chemicals. Our favorite stars, as well as our best friends,
are made of them.



Part IV

The Origin
of Planets



CHAPTER 11

When Worlds Were Young

In our attempts to uncover the history of the cosmos, we have continually discovered that the
segments most deeply shrouded in mystery are those that deal with origins—of the universe itself, of
its most massive structures (galaxies and galaxy clusters), and of the stars that provide most of the
light in the cosmos. Each of these origin stories fills a vital role, not only in explaining how an
apparently formless cosmos produced complex assemblages of different types of objects but also in
determining how and why, 14 billion years after the big bang, we now find ourselves alive on Earth
to ask, How did this all happen?

These mysteries arise in large part because during the cosmic “dark ages,” when matter was just
beginning to organize itself into self-contained units such as stars and galaxies, most of this matter
generated little or no detectable radiation. The dark ages have left us with only the barest
possibilities, still imperfectly explored, for observing matter during its early stages of organization.
This in turn implies that we must rely, to an uneasily large extent, on our theories of how matter ought
to behave, with relatively few points at which we can check these theories against observational data.

When we turn to the origin of planets, the mysteries deepen. We lack not only observations of the
crucial, initial stages of planetary formation but also successful theories of how the planets began to
form. To celebrate the positive, we note that the question, What made the planets?, has grown
considerably broader in recent years. Throughout most of the twentieth century, this question centered
on the Sun’s family of planets. During the past decade, having discovered more than a hundred
“exosolar” planets around relatively nearby stars, astrophysicists have acquired significantly more
data from which to deduce the early history of planets, and in particular to determine how these
astronomically small, dark, and dense objects formed along with the stars that give them light and life.

Astrnophysicists may now have more data, but they have no better answers than before. Indeed, the
discovery of exosolar planets, many of which move in orbits far different from those of the Sun’s
planets, has in many ways confused the issue, leaving the story of planet formation no closer to
closure. In simple summary, we can state that no good explanation exists of how the planets began to
build themselves from gas and dust, though we can easily perceive how the formation process, once
well underway, made larger objects from smaller ones, and did so within a rather brief span of time.

The beginnings of planet building pose a remarkably intract-able problem, to the point that one of
the world’s experts on the subject, Scott Tremaine of Princeton University, has elucidated (partly in
jest) Tremaine’s laws of planet formation. The first of these laws states that “all theoretical
predictions about the properties of exosolar planets are wrong,” and the second that “the most secure
prediction about planet formation is that it can’t happen.” Tremaine’s humor underscores the
ineluctable fact that planets do exist, despite our inability to explain this astronomical enigma.



More than two centuries ago, attempting to explain the formation of the Sun and its planets,
Immanuel Kant proposed a “nebular hypothesis,” according to which a swirling mass of gas and dust
that surrounded our star-in-formation condensed into clumps that became the planets. In its broad
outlines, Kant’s hypothesis remains the basis for modern astronomical approaches to planet
formation, having triumphed over the concept, much in vogue during the first half of the twentieth
century, that the Sun’s planets arose from a close passage of another star by the Sun. In that scenario,
the gravitational forces between the stars would have drawn masses of gas from each of them, and
some of this gas could then have cooled and condensed to form the planets. This hypothesis, promoted
by the famed British astrophysicist James Jeans, had the defect (or the appeal, for those inclined in
that direction) of making planetary systems extremely rare, because sufficiently close encounters
between stars probably occur only a few times during the lifetime of an entire galaxy. Once
astronomers calculated that almost all the gas pulled from the stars would evaporate rather than
condense, they abandoned Jeans’s hypothesis and returned to Kant’s, which implies that many, if not
most, stars should have planets in orbit around them.

Astrophysicists now have good evidence that stars form, not one by one but by the thousands and
tens of thousands, within giant clouds of gas and dust that may eventually give birth to about a million
individual stars. One of these giant stellar nurseries has produced the Orion nebula, the closest large
star-forming region to the solar system. Within a few million years, this region will have produced
hundreds of thousands of new stars, which will blow most of the nebula’s remaining gas and dust into
space, so that astronomers a hundred thousand generations from now will observe the young stars
unencumbered by the remnants of their starbirthing cocoons.

Astrophysicists now use radio telescopes to map the distribution of cool gas and dust in the
immediate vicinities of young stars. Their maps typically show that young stars do not sail through
space devoid of all surrounding matter; instead, the stars usually have orbiting disks of matter, similar
in size to the solar system, but made of hydrogen gas (and of other gases in lesser abundances)
sprinkled throughout with dust particles. The term “dust” describes groups of particles that each
contain several million atoms and have sizes much smaller than that of the period that ends this
sentence. Many of these dust grains consist primarily of carbon atoms, linked together to form
graphite (the chief constituent of the “lead” in a pencil). Others are mixtures of silicon and oxygen
atoms—in essence tiny rocks, with mantles of ice surrounding their stony cores.

The formation of these dust particles in interstellar space has its own mysteries and detailed
theories, which we may skip past with the happy thought that the cosmos is dusty. To make this dust,
atoms have come together by the millions; in view of the extremely low densities between the stars,
the likeliest sites for this process seem to be the extended outer atmospheres of cool stars, which
gently blow material into space.

The production of interstellar dust particles provides an essential first step on the road to planets. This
holds true not only for solid planets like our own but also for gas-giant planets, typified in the Sun’s
family by Jupiter and Saturn. Even though these planets consist primarily of hydrogen and helium,
astrophysicists have concluded from their calculations of the planets’ internal structure, along with
their measurements of the planets’ masses, that the gas giants must have solid cores. Of Jupiter’s total



mass, 318 times Earth’s, several dozen Earth masses reside in a solid core. Saturn, with ninety-five
times Earth’s mass, also has a solid core with one or two dozen times the mass of Earth. The Sun’s
two smaller gas-giant planets, Uranus and Neptune, have proportionately larger solid cores. In these
planets, with fifteen and seventeen times Earth’s mass, respectively, the core may contain more than
half of the planet’s mass.

For all four of these planets, and presumably for all of the giant planets recently discovered around
other stars, the planetary cores played an essential role in the formation process: First came the core,
and then came the gas, attracted by the solid core. Thus all planet formation requires that a large lump
of solid matter must form first. Of the Sun’s planets, Jupiter has the largest of these cores, Saturn the
next largest, Neptune the next, Uranus after that, and Earth ranks fifth, just as it does in total size. The
formation histories of all the planets pose a fundamental question: How does nature make dust
coagulate to form clumps of matter many thousand miles across?

The answer has two parts, one known and one unknown, with the unknown part, not surprisingly,
closer to the origin. Once you form objects half a mile across, which astronomers call planetesimals,
each of them will have sufficiently strong gravity to attract other such objects successfully. The mutual
gravitational forces among planetesimals will build first planetary cores and then planets at a brisk
pace, so that a few million years will take you from a host of clumps, each the size of a small town, to
entire new worlds, ripe to acquire either a thin coat of atmospheric gases (in the case of Venus, Earth,
and Mars) or an immensely thick one of hydrogen and helium (for the four gas-giant planets, which
orbit the Sun at distances large enough for them to accumulate huge quantities of these two lightest
gases). To astrophysicists, the transition from half-mile-wide planetesimals to planets reduces to a
series of well-understood computer models that produce a wide variety of planetary details, but
almost always yield inner planets that are small, rocky, and dense, as well as outer planets that are
large and (except for their cores) gaseous and rarefied. During this process, many of the
planetesimals, as well as some of the larger objects that they make, find themselves flung entirely out
of the solar system by gravitational interactions with still larger objects.

All this works rather well on a computer, but building the half-mile-wide planetesimals in the first
place still lies beyond astrophysicists’ present abilities to integrate their knowledge of physics with
their computer programs. Gravity can’t make planetesimals, because the modest gravitational forces
between small objects won’t hold them together effectively. Two theoretical possibilities exist for
making planetesimals from dust, neither of them highly satisfactory. One model proposes the
formation of planetesimals through accretion, which occurs when dust particles collide and stick
together. Accretion works well in principle, because most dust particles do stick together when they
meet. This explains the origin of dust bunnies under your couch, and if you imagine superdust bunnies
growing around the Sun, you can, with only minimal mental effort, let them grow to become chair-
sized, house-sized, block-sized, and before long the size of planetesimals, ready for serious
gravitational action.

Unfortunately, unlike the production of actual bunnies, the dust-bunny growth of planetesimals seems
to require far too much time. Radioactive dating of unstable nuclei detected in the oldest meteorites
implies that the formation of the solar system required no more than a few tens of millions of years,
and quite possibly a good deal less time than that. In comparison with the current age of the planets,



approximately 4.55 billion years, this amounts to a dram in the bucket, only 1 percent (or less) of the
total span of the solar system’s existence. The accretion process requires significantly longer than a
few tens of millions of years to make planetesimals from dust; so unless astrophysicists have missed
something important in understanding how dust accumulates to build large structures, we need another
mechanism to surmount the time barriers to planetesimal formation.

That other mechanism may consist of giant vortices that sweep up dust particles by the trillions,
whirling them quickly toward their happy agglomeration into significantly larger objects. Because the
contracting cloud of gas and dust that became the Sun and its planets apparently acquired some
rotation, it soon changed its overall shape from spherical to platelike, leaving the Sun-in-formation as
a relatively dense contracting sphere at the center, surrounded by a highly flattened disk of material in
orbit around that sphere. To this day, the orbits of the Sun’s planets, which all follow the same
direction and lie in nearly the same plane, testify to a disklike distribution of the matter that built the
planetesimals and planets. Within such a rotating disk, astrophysicists envision the appearance of
rippling “instabilities,” alternating regions of greater and lesser density. The denser parts of these
instabilities collect both gaseous material and dust that floats within the gas. Within a few thousand
years, these instabilities become swirling vortices that can sweep large amounts of dust into
relatively small volumes.

This vortex model for the formation of planetesimals shows promise, though it has not yet won the
hearts of those who seek explanations of how the solar system produced what young planets need.
Upon detailed examination, the model provides better explanations for the cores of Jupiter and Saturn
than for those of Uranus and Neptune. Because astronomers have no way to prove that the instabilities
needed for the model to work actually did occur, we must refrain from passing judgment ourselves.
The existence of numerous small asteroids and comets, which resemble planetesimals in their sizes
and compositions, support the concept that billions of years ago, planetesimals by the millions built
the planets. Let us therefore regard the formation of planetesimals as an established, if poorly
understood, phenomenon that somehow bridges a key gap in our knowledge, leaving us ready to
admire what happens when planetesimals collide.

In this scenario, we can easily imagine that once the gas and dust surrounding the Sun had formed a few
trillion planetesimals, this armada of objects collided, built larger objects, and eventually created the
Sun’s four inner planets and the cores of its four giant planets. We should not overlook the planets’
moons, smaller objects that orbit all of the Sun’s planets except the innermost, Mercury and Venus.
The largest of these moons, with diameters of a few hundred to a few thousand miles, appear to fit
nicely into the model that we have created, because they presumably also arose from planetesimal
collisions. Moon building ceased once collisions had built the satellite worlds to their present sizes,
no doubt (we may assume) because by that time the nearby planets, with their stronger gravity, had
taken possession of most of the nearby planetesimals. We should include in this picture the hundreds
of thousands of asteroids that orbit between Mars and Jupiter. The largest of these, a few hundred
miles in diameter, should likewise have grown through planetesimal collisions, and then have found
themselves stymied from further growth by gravitational interference from the nearby giant planet
Jupiter. The smallest asteroids, less than a mile across, may represent naked planetesimals, objects



that grew from dust but never collided with one another, once again thanks to Jupiter’s influence, after
attaining sizes ripe for gravitational interaction.

For the moons that orbit the giant planets, this scenario seems to work quite well. All four giant
planets have families of satellites that range in size from the large or extremely large (up to the size of
Mercury) down to the small or even minuscule. The smallest of these moons, less than a mile across,
may again be naked planetesimals, deprived of any further collisional growth by the presence of
nearby objects that had already grown much larger. In each of these four families of satellites, almost
all of the larger moons orbit the planet in the same direction and in nearly the same plane. We can
hardly refrain from explaining this result with the same cause that made the planets orbit in the same
direction and nearly the same plane: Around each planet, a rotating cloud of gas and dust produced
clumps of matter, which grew to planetesimal and then to moon sizes.

In the inner solar system, only our Earth has a sizable moon. Mercury and Venus have none, while
Mars’ two potato-shaped moons, Phobos and Deimos, each span only a few miles, and should
therefore represent the earliest stages of forming larger objects from planetesimals. Some theories
assign the origin of these moons to the asteroid belt, with their present orbits around Mars the result
of Mars’ gravitational success in capturing these two former asteroids.

And what of our Moon, more than two thousand miles in diameter, surpassed in size only by Titan,
Ganymede, Triton, and Callisto (and effectively tied with Io and Europa) among all the moons of the
solar system? Did the Moon also grow from planetesimal collisions, as the four inner planets did?

This seemed quite a reasonable supposition until humans brought lunar rocks back to Earth for
detailed examination. More than three decades ago, the chemical composition of the rock samples
returned by the Apollo missions imposed two conclusions, one on either side of the possibilities for
the Moon’s origin. On the one hand, the composition of these Moon rocks resembles that of rocks on
Earth so closely that the hypothesis that our satellite formed entirely apart from us no longer seems
tenable. On the other hand, the Moon’s composition differs from Earth’s just enough to prove that the
Moon did not entirely form from terrestrial material. But if the Moon did not form apart from Earth,
and was not made from Earth, how did it form?

The current answer to this conundrum, amazing though it may seem on its surface, builds upon a
once popular hypothesis that the Moon formed as the result of a giant impact, early in the history of
the solar system, that scooped material out of the Pacific Basin and flung it into space, where it
coalesced to form our satellite. Under the new view, which has already gained wide acceptance as
the best available explanation, the Moon did form as the result of a giant object that struck Earth, but
the object striking Earth was so large—about the size of Mars—that it naturally added some of its
material to the matter ejected from Earth. Much of the material thrown into space by the force of the
impact might have vanished from our immediate vicinity, but enough remained behind to coagulate
into our familiar Moon, made of Earth plus foreign matter. All of this occurred 4.5 billion years ago,
during the first 100 million years after the formation of the planets began.

If a Mars-sized object struck Earth in that bygone era, where is it today? The impact could hardly
have knocked the object into pieces so small that we cannot observe them: our finest telescopes can
find objects in the inner solar system as small as the planetesimals that built the planets. The answer
to this objection takes us to a new picture of the early solar system, one that emphasizes its violent,



collisional nature. The fact that planetesimals built a Mars-sized object, for example, did not
guarantee that this object would endure for long. Not only did this object collide with Earth, but the
good-sized pieces produced by that collision would also have continued to collide with Earth and the
other inner planets, with each other, and with the Moon (once it had formed). In other words,
collisional terror reigned over the inner solar system during its first several hundred million years,
and the pieces of giant objects that struck the planets as they formed themselves became part of these
planets. The Mars-sized object’s impact on Earth merely ranked among the largest in a rain of
bombardment, an epoch of destruction that brought planetesimals and much larger objects crashing
down on Earth and its neighbors.

Seen from another perspective, this death-dealing bombardment simply marked the formation
process’s final stages. The process culminated in the solar system we see today, little changed during
4 billion years and more: one ordinary star, orbited by eight planets (plus icy Pluto, more akin to a
giant comet than to a planet), hundreds of thousands of asteroids, trillions of meteoroids (smaller
fragments that strike Earth by the thousands every day), and trillions of comets—dirty snowballs that
formed at dozens of times Earth’s distance from the Sun. We must not forget the planets’ satellites,
which have moved, with few exceptions, in orbits with long-term stability ever since their birth, 4.6
billion years ago. Let’s take a closer look at the debris that continues to orbit our Sun, capable both of
bringing forth life and of destroying life on the worlds such as ours.



CHAPTER 12

Between the Planets

From a distance, our solar system looks empty. If you enclosed it within a sphere large enough to
contain the orbit of Neptune, then the Sun, together with all its planets and their moons, would occupy
little more than one trillionth of all the space in that sphere. This result, however, assumes that
interplanetary space is essentially empty. Viewed close up, however, the spaces between the planets
turn out to contain all manner of chunky rocks, pebbles, ice balls, dust, streams of charged particles,
and far-flung man-made probes. Interplanetary space is also permeated by immensely powerful
gravitational and magnetic fields, invisible but nonetheless quite capable of affecting the objects in
our neighborhood. These small objects and cosmic force fields present a serious ongoing threat to
anyone who attempts to travel from place to place in the solar system. The largest of these objects
likewise pose a threat to life on Earth, if they happen—as they certainly do on rare occasion—to
collide with our planet at speeds of many miles per second.

Local regions of space are so not-empty that Earth, during its 30-kilometer-per-second orbital
journey around the Sun, plows into hundreds of tons of interplanetary debris per day—most of it no
larger than a grain of sand. Nearly all of this matter burns in Earth’s upper atmosphere, slamming into
the air with so much energy that the incoming particles vaporize. Our frail species evolved beneath
this protective blanket of air. Larger, golf-ball-size pieces of debris heat rapidly but unevenly, and
often shatter into many smaller pieces before they vaporize. Still larger pieces singe their surfaces but
otherwise make their way, at least in part, down to the ground. You might think that by now, after 4.6
billion trips around the Sun, Earth would have “vacuumed” up all possible debris in its orbital path.
We have made progress in this direction: things were once much worse. During the first half billion
years after the formation of the Sun and its planets, so much junk rained down on Earth that the impact
energy generated a strongly heated atmosphere and a sterilized surface.

In particular, one hunk of space junk was so substantial that it led to the formation of the Moon. The
unexpected paucity of iron and other high-mass elements in the Moon, deduced from the lunar samples
that the Apollo astronauts brought to Earth, indicates that the Moon most likely consists of matter
spewn from Earth’s relatively iron-poor crust and mantle by a glancing collision with a wayward,
Mars-sized protoplanet. Some of the orbiting flotsam from this encounter coalesced to form our
lovely, low-density satellite. Apart from this newsworthy event about 4.5 billion years ago, the
period of heavy bombardment that Earth endured during its infancy was similar to that experienced by
all the planets and other large objects in the solar system. They each sustained similar damage, with
the airless, erosionless Moon and Mercury still preserving most of the craters produced during this
period.

In addition to the flotsam left from its epoch of formation, interplanetary space also contains rocks
of all sizes thrust from Mars, the Moon, and probably Earth as their surfaces reeled from high-energy



impacts. Computer studies of meteor strikes demonstrate conclusively that some surface rocks near
ground zero will be thrown upward with enough speed to escape the object’s gravitational tether.
From discoveries of Martian meteorites on Earth, we can conclude that about 1,000 tons of rocks
from Mars rain down on Earth each year. Perhaps the same amount of debris reaches Earth from the
Moon. Thus we did not have to go to the Moon to retrieve Moon rocks. A few dozen of them have
come to us on Earth, although they are not of our choosing, and we had not yet learned this fact during
the Apollo program.

If Mars ever harbored life—most likely billions of years ago when liquid water flowed freely on
the Martian surface—then unsuspecting bacteria, stowed away in the nooks and crannies (especially
in the crannies) of the rock ejected from Mars, could have traveled to Earth for free. We already
know that some varieties of bacteria can survive long periods of hibernation, as well as high doses of
the solar ionizing radiation to which they would be exposed en route to Earth. The existence of space-
borne bacteria is neither a crazy idea nor pure science fiction. The concept even has an important-
sounding name: panspermia. If Mars spawned life before Earth did, and if simple life traveled from
Mars on ejected rocks and seeded Earth, we may all be descendants of Martians. This fact might
seem to obviate environmental concerns over astronauts who sneeze on the Martian surface,
spreading their germs on the alien landscape. In reality, even if we are all Martian in origin, we
would dearly like to trace life’s trajectory from Mars to Earth, so these concerns retain vital
importance.

Most of the solar system’s asteroids live and work in the “main belt,” a flattened region around the
Sun between the orbits of Mars and Jupiter. By tradition, asteroid discoverers get to name their
objects as they choose. Often pictured by artists as a cluttered region of rocks floating in the plane of
the solar system, though in fact spread out over millions of miles at different distances from the Sun,
the objects in the asteroid belt have a total mass less than 5 percent of the Moon’s, which itself has
barely more than 1 percent of Earth’s mass. Sounds insignificant at first, but the asteroids quietly pose
a long-term cosmic threat to our planet. Accumulated perturbations of their orbits continually create a
deadly subset of asteroids, perhaps a few thousand in number, whose elongated paths carry them so
close to the Sun that they intersect the orbit of Earth, creating the possibility of collision. A back-of-
the-envelope calculation demonstrates that most of these Earth-crossing asteroids will strike Earth
within a few hundred million years. The objects larger than about a mile across carry enough energy
to destabilize Earth’s ecosystem and to put most of Earth’s land species at risk of extinction. That
would be bad.

Meanwhile, asteroids are not the only space objects that pose a risk to life on Earth. The Dutch
astronomer Jan Oort first recognized that within the cold depths of interstellar space, much farther
from the Sun than any planet, a host of frozen leftovers from the solar system’s earliest stages of
formation still orbit our star. This “Oort cloud” of trillions of comets extends to distances halfway to
the closest stars, thousands of times larger than the size of the Sun’s planetary system.

Oort’s Dutch-American contemporary Gerard Kuiper proposed that some of these frozen objects
once formed part of the disk of material from which the planets formed, and now orbit the Sun at
distances considerably greater than Neptune’s but much less than those of the comets in the Oort
cloud. Collectively, they compose what astronomers now call the Kuiper Belt, a comet-strewn swath



of circular real estate that begins just beyond the orbit of Neptune, includes Pluto, and extends several
times as far again outward from Neptune as Neptune’s distance from the Sun. The most distant known
object in the Kuiper Belt, named Sedna after an Inuit goddess, has two-thirds of Pluto’s diameter.
Without a nearby massive planet to perturb them, most of the Kuiper Belt comets will maintain their
orbits for billions of years. As in the asteroid belt, a subset of the Kuiper Belt objects travel on
eccentric orbits that cross the paths of other planets. The orbit of Pluto, which we may regard as an
extremely large comet, as well as the orbits of an ensemble of Pluto’s small siblings, called Plutinos,
cross Neptune’s path around the Sun. Other Kuiper Belt objects, perturbed from their usual large
orbits, occasionally plunge all the way into the inner solar system, crossing planetary orbits with
abandon. This subset includes Halley, the most famous comet of them all.

The Oort cloud is responsible for the long-period comets, those whose orbital periods far exceed a
human lifetime. Unlike Kuiper Belt comets, Oort cloud comets can rain down on the inner solar
system from any angle and from any direction. The brightest comet of the past three decades, comet
Hyakutake (1996), came from the Oort cloud, high above the plane of the solar system, and will not
return to our vicinity any time soon.

If we had eyes that could see magnetic fields, Jupiter would look ten times larger than the full Moon
in the sky. Spacecraft that visit Jupiter must be designed to remain unaffected by this powerful
magnetism. As the English chemist and physicist Michael Faraday discovered in 1831, if you move a
wire across a magnetic field, you will generate a voltage difference along the wire’s length. For this
reason, fast-moving metal space probes can have electrical currents induced within them. These
currents interact with the local magnetic field in a way that retards the space probe’s motion. This
effect might explain the mysterious slowing down of the two Pioneer spacecraft as they exit the solar
system. Both Pioneer 10 and Pioneer 11, launched during the 1970s, have not traveled quite so far
into space as our dynamical models of their motions predict. After taking into account the effects of
space dust encountered en route, along with recoils of the spacecraft arising from leaky fuel tanks,
this concept of magnetic interaction—in this case with the Sun’s magnetic field—may provide the
best explanation for the slowdown of the Pioneers.

Better detection methods and close-flying space probes have increased the number of known
planetary moons so rapidly that counting moons has become almost obsolete: they seem to multiply as
we speak. What matters now is whether any of these moons are fun places to visit or to study. By
some measures, the solar system’s moons are far more fascinating than the planets they orbit. Mars’
two moons, Phobos and Deimos, appear (not with those names) in Jonathan Swift’s classic Gulliver’s
Travels (1726). Problem is, these two small moons were not discovered until more than a hundred
years later; unless he was telepathic, Swift was presumably interpolating between Earth’s single
moon and Jupiter’s (then known) four.

Earth’s Moon has about 1/400 of the Sun’s diameter, but is also just about 1/400 as far from us as
the Sun, giving the Sun and the Moon the same size on the sky—a coincidence not shared by any other
planet-moon combination in the solar system, and one that grants earthlings uniquely photogenic total
solar eclipses. Earth has also locked onto the Moon’s period of rotation, leaving the Moon’s rotation
period equal to its period of revolution around Earth. The capture has arisen from Earth’s gravity,
which exerts greater amounts of force on the denser parts of the Moon’s interior and makes them



always face toward Earth. Wherever and whenever this happens, as it does for Jupiter’s four large
moons, the locked moon shows only one face to its host planet.

Jupiter’s system of moons stunned astronomers when they obtained their first good look. Io, the
large moon closest to Jupiter, has been tidally locked and structurally stressed by its gravitational
interactions with Jupiter and with the other large moons. These interactions pump enough energy into
Io (about the same size as our Moon) to melt some of its rocky interior, making Io the most
volcanically active object in the solar system. Jupiter’s second large moon, Europa, has enough H2O
that its internal heat, which arises from the same interactions that affect Io, has melted its subsurface
ice, leaving a liquid ocean below an icy covering.

Close-up images of the surface of Miranda, one of Uranus’ moons, reveal badly mismatched
patterns, as though the poor moon had been blown apart, and its pieces hastily glued back together.
The origin of these exotic features remains a mystery, but may also be due to something simple, like
the uneven upwelling of ice sheets.

Pluto’s lone moon, Charon, is so large and so close to Pluto that Pluto and Charon have tidally
locked onto each other—both objects have rotation periods equal to their periods of revolution
around their common center of mass. By convention, astronomers name planets’ moons after
significant Greek personalities in the life of the god whose name the planet bears, though they use the
Roman counterpart’s name for the planet itself (Jupiter rather than Zeus, for example). Because the
classical gods led complicated social lives, no shortage of characters exists from which to draw
names.

Sir William Herschel was the first person to discover a planet beyond those easily visible to the
naked eye, and he was ready to name this new planet after the king who might support his research.
Had Sir William succeeded, the planet list would read: Mercury, Venus, Earth, Mars, Jupiter, Saturn,
and George. Fortunately, clearer heads prevailed, so that some years later the new planet received the
classical name Uranus. But Herschel’s original suggestion to name the planet’s moons after characters
in William Shakespeare’s plays and Alexander Pope’s poem The Rape of the Lock remains the
tradition to this day. Among Uranus’ seventeen moons we find Ariel, Cordelia, Desdemona, Juliet,
Ophelia, Portia, Puck, and Umbriel, with two new moons, Caliban and Sycorax, discovered as
recently as 1997.

The Sun loses material from its surface at a rate of 200 million tons per second (which happens to
closely match the rate at which water flows through the Amazon Basin). The Sun loses this mass in
the “solar wind,” which consists of high-energy charged particles. Traveling up to 1,000 miles per
second, these particles stream through interplanetary space, where they are often deflected by
planetary magnetic fields. In response, these particles spiral down toward a planet’s north and south
magnetic poles, colliding with atmospheric gas molecules to produce colorful auroral glows. The
Hubble Space Telescope has spotted aurorae near the poles of both Saturn and Jupiter. On Earth, the
aurorae borealis and australis (the Northern and Southern lights) serve as intermittent reminders of
how sweet it is to have a protective atmosphere.

Earth’s atmosphere technically extends much farther above Earth’s surface than we generally
conceive. Satellites in “low-Earth orbit” typically travel at altitudes of 100 to 400 miles and



complete an orbit in about 90 minutes. Although no one can breathe at these altitudes, some
atmospheric molecules remain—enough to drain orbital energy slowly from unsuspecting satellites.
To combat this drag, satellites in low orbit require intermittent boosts, lest they fall back to Earth and
burn up in the atmosphere. The most sensible way to define the edge of our atmosphere is to ask
where the density of its gas molecules falls to the density of gas molecules in interplanetary space.
With this definition, Earth’s atmosphere extends thousands of miles into space. Orbiting high above
this level, 23,000 miles above Earth’s surface (one tenth of the distance to the Moon), are the
communications satellites that carry news and views around Earth. At this special altitude, a satellite
finds not only that Earth’s atmosphere is irrelevant but also that its speed in orbit, thanks to the
diminished pull from Earth at this greater distance from our planet, falls to the point that it takes
twenty-four hours to complete each revolution around our planet. Moving in orbits that precisely
match Earth’s rotation rate, these satellites appear to “hover” above a single point on the Equator, a
fact that makes them ideal for relaying signals from one part of Earth’s surface to another.

Newton’s law of gravity states that, although the gravity from a planet gets progressively weaker as
you travel farther from it, no distance will reduce the force of gravity all the way to zero, and that an
object with enormous mass can exert significant gravitational forces even at large distances. The
planet Jupiter, with its mighty gravitational field, bats out of harm’s way many comets that would
otherwise wreak havoc on the inner solar system. By doing so, Jupiter acts as a gravitational shield
for Earth, allowing long (50- to 100-million-year) stretches of relative peace and quiet on Earth.
Without Jupiter’s protection, complex life would have a hard time growing interestingly complex,
always living at the risk of extinction from a devastating impact.

We have exploited the gravitational fields of planets for nearly every probe sent into space. The
Cassini probe, for example, sent to Saturn for an encounter late in 2004, was launched from Earth on
October 15, 1997, and was gravitationally assisted twice by Venus, once by Earth (on a return flyby),
and once by Jupiter. Like a multi-cushion billiard shot, trajectories from one planet to another using
gravitational slingshots are common. Otherwise our tiny probes would not have enough speed and
energy to reach their destinations.

One of us is now accountable for a piece of the solar system’s interplanetary debris. In November
2000, the main-belt asteroid 1994KA, discovered by David Levy and Caroline Shoemaker, was
named “13123 Tyson.” A fun distinction, but there’s no particular reason to get big-headed about it; as
already noted, plenty of asteroids have familiar names such as Jody, Harriet, and Thomas. And plenty
of other asteroids have names such as Merlin, James Bond, and Santa. Rising through 20,000, the
count of asteroids with well-established orbits (the criterion for assigning them names and numbers)
may soon challenge our capacity to name them. Whether or not that day arrives, there is curious
comfort knowing that one’s own chunk of cosmic debris is not alone, as it litters the space between
the planets, joined by a long list of other chunks named for real and fictional people.

When last checked, asteroid 13123 Tyson was not headed toward us, and so cannot be blamed for
either ending or starting life on Earth.



CHAPTER 13

Worlds Unnumbered
Planets Beyond the Solar System

         Thro’ worlds unnumbered tho’ the God be known,
         ’Tis ours to trace him only in our own.
         He, who through vast immensity can pierce,
         See worlds on worlds compose one universe,
         Observe how system into system runs
         What other planets circle other suns,
         What varied Being peoples ev’ry star,
         May tell why Heav’n has made us as we are.

—Alexander Pope, An Essay on Man (1733)

Nearly five centuries ago, Nicolaus Copernicus resurrected a hypothesis that the ancient Greek
astronomer Aristarchus had first suggested. Far from occupying the center of the cosmos, said
Copernicus, Earth belongs to the family of planets that orbit the Sun.

Even though a majority of humans have yet to accept this fact, believing in their hearts that Earth
remains immobile as the heavens turn around her, astronomers have long offered convincing
arguments that Copernicus wrote the truth about the nature of our cosmic home. The conclusion that
Earth ranks as just one of the Sun’s planets immediately suggests that other planets fundamentally
resemble our own, and that they may well possess their own inhabitants, endowed as we are with
plans and dreams, work, play, and fantasy.

For many centuries, astronomers who used telescopes to observe hundreds of thousands of
individual stars lacked the ability to discern whether or not any of these stars have planets of their
own. Their observations did reveal that our Sun ranks as an entirely representative star, whose near
twins exist in great numbers throughout our Milky Way galaxy. If the Sun has a planetary family, so too
might other stars, with their planets equally capable of giving life to creatures of all possible forms.
Expressing this view in a manner that affronted papal authority brought Giordano Bruno to his death
at the stake in 1600. Today, a tourist can pick his way through the crowds at the outdoor cafés in
Rome’s Campo di Fiori to reach Bruno’s statue at its center, then pause for a moment to reflect on the
power of ideas (if not the power of those who hold them) to triumph over those who would suppress
them.

As Bruno’s fate helps to illustrate, imagining life on other worlds ranks among the most powerful
ideas ever to enter human minds. Were this not so, Bruno would have lived to a riper age, and NASA
would find itself shorter of funds. Thus speculation about life on other worlds has focused throughout
history, as NASA’s attention still does, on the planets that orbit the Sun. In our search for life beyond
Earth, however, a great frost has appeared: none of the other worlds in our solar system seem
particularly fit for life.

Although this conclusion hardly does justice to the myriad possible paths by which life might arise



and maintain itself, the fact remains that our initial explorations of Mars and Venus, as well as of
Jupiter and its large moons, have failed to produce any convincing signs of life. To the contrary, we
have found a great deal of evidence for conditions extremely hostile to life as we know it. Much more
searching remains to be done, and fortunately (for those who engage themselves mentally in this
effort) continues to be underway, especially in the hunt for life on Mars. Nevertheless, the verdict on
extraterrestrial life in the solar system shows enough likelihood of proving negative that supple minds
now usually look beyond our cosmic neighborhood, to the vast array of possible worlds that orbit
stars other than our Sun.

Until 1995, speculation about planets around other stars could proceed almost entirely unfettered by facts.
With the exception of a few pieces of Earth-sized debris in orbit around the remnants of exploded
stars, which almost certainly formed after the supernova explosion and barely qualified as planets,
astrophysicists had never found a single “exosolar planet,” a world orbiting a star other than the Sun.
At the end of that year came the dramatic announcement of the first such discovery; then, a few months
later, came four more; and then, with the floodgates open, finding new worlds proceeded ever more
swiftly. Today, we know of far more exosolar planets around other stars than of the now familiar
worlds that orbit the Sun—a tally that exceeds 100 and is almost certain to keep growing for years to
come.

To describe these newfound worlds, and analyze the implications of their existence in the search for
extraterrestrial life, we must confront a single hard-to-believe fact: Although astrophysicists assert
that they not only know that these planets exist but have also deduced their masses, their distances
from their parent stars, the times that the planets take to complete their orbits, and even the shapes of
those orbits, no one has ever seen or photographed a single one of these exosolar planets.

How can anybody deduce so much about planets they have never seen? The answer lies in detective
work familiar to those who study starlight. By separating that light into its spectrum of colors, and by
comparing those spectra among thousands of stars, those who specialize in observing starlight can
recognize different types of stars purely by the ratios of the intensities of the different colors that
appear in stellar spectra. Once upon a time, these astrophysicists photographed the stars’ spectra, but
today they use sensitive devices that register digitally how much starlight of each particular color
reaches us on Earth. Though the stars are many trillions of miles from us, their fundamental natures
have become an open book. Astrophysicists can now easily determine—purely by measuring the
spectrum of the colors of starlight—which stars most closely resemble the Sun, which are somewhat
hotter and more luminous, and which are cooler and intrinsically fainter than our star.

But they can also do more. Having grown familiar with the distribution of colors in the spectra of
various types of stars, astrophysicists can quickly identify a familiar pattern in the star’s spectrum,
which typically shows the partial or total absence of light at particular colors. They often recognize
such a pattern, but find that all the colors that form it have been slightly shifted toward either the red
or the violet end of the spectrum, so that all the familiar guideposts are now either somewhat redder
or somewhat more violet than the norm.

Scientists characterize these colors by their wavelengths, which measure the separation between
successive wave crests in the vibrating light waves. Because they correspond with the colors that our



eyes and brains perceive, specifying exact wavelengths simply names colors more precisely than we
do in normal speech. When astrophysicists spot a familiar pattern in the intensity of light measured for
thousands of different colors, but find that all the wavelengths in the pattern are (for example) 1
percent longer than usual, they conclude that the star’s colors have changed as the result of the
Doppler effect, which describes what happens when we observe an object either approaching us or
receding from us. If, for example, an object moves toward us, or we move toward it, we find that all
the wavelengths of the light that we detect are shorter than those we measure from an identical object
at rest with respect to ourselves. If the object recedes from us, or we recede from it, we find all the
wavelengths to be longer than those from an object at rest. The deviation from the at-rest situation
depends on the relative velocity between the light source and those who observe it. For speeds much
less than the speed of light (186,000 miles per second), the fractional change in all the wavelengths of
light, called the Doppler shift, equals the ratio of the speed of approach or recession to the speed of
light.

During the 1990s, two teams of astronomers, one in the United States and one centered in
Switzerland, devoted themselves to increasing the precision with which they could measure the
Doppler shifts of starlight. They did so not simply because scientists always prefer to make more
accurate measurements, but because they had a straightforward goal: to detect the existence of planets
by studying the light from stars.

Why this roundabout approach to the detection of exosolar planets? Because for now this method
offers the only effective way to discover them. If our solar system offers any guide to the distances at
which planets orbit stars, we must conclude that these distances amount to only a tiny fraction of the
distances between stars. The Sun’s closest neighbor stars are about half a million times farther from
us than the distance between the Sun and its innermost planet, Mercury. Even Pluto’s distance from the
Sun is less than one five-thousandth of the distance to Alpha Centauri, our closest star system. These
astronomically minuscule separations between the stars and their planets, combined with the faintness
with which a planet reflects light from its star, make it nearly impossible for us to actually see any
planets beyond the solar system. Imagine, for example, an astrophysicist on a planet around one of the
Alpha Centauri stars who turns her telescope toward the Sun and attempts to spot Jupiter, the Sun’s
largest planet. The Sun-Jupiter distance amounts to only one fifty-thousandth of the distance to the
Sun, and Jupiter shines with just one billionth of the Sun’s intensity. Astrophysicists like to compare
this to the problem of seeing a firefly next to a searchlight’s glare. We may do it some day, but for
now the quest to observe exosolar planets directly lies beyond our technological capabilities.

The Doppler effect offers another approach. If we study the star closely, we can carefully measure
any changes that appear in the Doppler shift of the light from that star. These changes must arise from
changes in the speed with which the star is either approaching us or receding from us. If the changes
prove to be cyclical—that is, if their amounts rise to a maximum, fall to a minimum, rise to the same
maximum again, and repeat this cycle over the same intervals of time—then the entirely reasonable
conclusion follows that the star must be moving in an orbit that takes it around and around some point
in space.

What could make a star dance like that? Only the gravitational force from another object, so far as
we know. No doubt that planets, by definition, have masses much less than the mass of a star, so they



exert only modest amounts of gravitational force. When they pull on a nearby star that possesses far
more mass than they do, they produce only small changes in the star’s velocity. Jupiter, for example,
changes the Sun’s velocity by about 40 feet per second, slightly more than the speed of a world-class
sprinter. As Jupiter performs its twelve-year orbit around the Sun, an observer located along the
plane of this orbit would measure Doppler shifts in the Sun’s light. These Doppler shifts would
demonstrate that at a particular time, the Sun’s velocity with respect to the observer would rise 40
feet per second above its average value. Six years later, the same observer would find that the Sun’s
velocity is 40 feet per second less than average. During the interim, this relative velocity would shift
smoothly between its two extreme values. After a few decades of observing this repetitive cycle, the
observer would justifiably conclude that the Sun has a planet moving in a twelve-year orbit that
causes the Sun to perform its own orbit, producing the velocity changes that arise naturally from this
motion. The size of the Sun’s orbit, in comparison to the size of Jupiter’s, exactly equals the inverse
of the ratio of the two objects’ masses. Since the Sun has one thousand times Jupiter’s mass, Jupiter’s
orbit around their mutual center of gravity is one thousand times larger than the Sun’s—testimony to
the fact that the Sun is a thousand times more difficult to budge than Jupiter.

Of course, the Sun has many planets, each of which simultaneously pulls on the Sun with its own
gravitational force. The Sun’s net motion therefore amounts to a superposition of orbital dances, each
with a different cyclical period of repetition. Because Jupiter, the Sun’s largest and most massive
planet, exerts the greatest amount of gravitational force on the Sun, the dance imposed by Jupiter
dominates this complex pattern.

When astrophysicists sought to detect exosolar planets by watching stars dance, they knew that to
find a planet roughly similar to Jupiter, orbiting its star at a distance comparable to Jupiter’s distance
from the Sun, they would have to measure Doppler shifts with an accuracy sufficient to reveal
velocity changes of approximately 40 feet per second. On Earth this sounds like a significant speed
(about 27 miles per hour), but in astronomical terms, we are talking about less than one millionth of
the speed of light, and about one thousandth of the typical speed with which stars happen to be
moving toward us or away from us. Thus to detect the Doppler shift produced by a change in velocity
equal to one millionth of the speed of light, astrophysicists must measure changes in wavelength—that
is, in star colors—of one part in a million.

These precision measurements yielded more than the detection of planets. First of all, because the
detection scheme lies in finding a cyclical repetition in the changes of a star’s velocity, the length of
each of these cycles directly measures the orbital period of the planet responsible for it. If the star
dances with a particular cycle of repetition, the planet likewise must be dancing with an identical
period of motion, though in a much larger orbit. This orbital period in turn reveals the distance of the
planet from the star. Isaac Newton long ago proved that an object orbiting a star will complete each
orbit more rapidly when closer to the star, more slowly when farther away: each orbital period
corresponds to a particular value of the average distance between the star and the orbiting object. In
the solar system, for instance, a one-year orbital period implies a distance equal to the Earth-Sun
distance, whereas a twelve-year period implies a distance 5.2 times larger, the size of Jupiter’s orbit.
So the research team could announce not only that they had found a planet but also that they knew both



the planet’s orbital period and its average distance from its star.
They could deduce still more about the planet. Moving at a particular distance from its star, a

planet’s gravity will pull on the star with a force that depends on the planet’s mass. More massive
planets exert greater force, and these forces make the star dance more rapidly. Once they knew the
planet-star distances, the team could then include the masses of the planets in the list of planetary
characteristics that they had determined through careful observation and deduction.

This deduction of a planet’s mass by observing the star’s dance comes with a disclaimer.
Astronomers have no way to tell whether they are studying a dancing star from a direction that
happens to coincide exactly with the plane of the planet’s orbit, or from a direction directly above the
plane of the orbit (in which case they will measure a zero velocity for the star), or (in almost all
cases) from a direction neither exactly along the plane nor directly perpendicular to it. The plane of
the planet’s orbit around the star coincides with the plane of the star’s motion in response to the
planet’s gravity. We therefore observe the full orbital speeds only if our line of sight to the star
happens to be the same as the plane of the planet’s orbit around the star. To imagine a loosely
analogous situation, put yourself at a baseball game, able to measure the speed of the pitched ball as
it comes toward you or moves away, but not the speed with which the ball crosses your field of
vision. If you are a talent scout, the best place for you to sit is behind home plate, in direct line with
the baseball’s motion. But if you observe the game from the first or third baselines, the ball thrown by
the pitcher will, for the most part, neither approach you nor recede from you, so your measurement of
the ball’s speed along your line of sight will be nearly zero.

Because the Doppler effect reveals only the speed with which a star moves toward us or away from
us, but not how rapidly the star crosses our line of sight, we usually cannot tell how nearly our line of
sight to the star lies in the plane of the star’s orbit. This fact implies that the masses that we deduce
for exosolar planets are all minimum masses; they will prove to be the planets’ actual masses only in
those cases when we do observe the star along its orbital plane. On the average, the actual mass of an
exosolar planet equals twice the minimum mass deduced from observing the star’s motions, but we
have no way to know which exosolar planet masses lie above this average ratio, and which below.

In addition to deducing the planet’s orbital period and orbital size, as well as the planet’s minimum
mass, astrophysicists who study star dances by the Doppler effect have one more success: they can
determine the shape of the planet’s orbit. Some of these orbits, like those of Venus and Neptune
around the Sun, have an almost perfect circularity; but others, like the orbits of Mercury, Mars, and
Pluto, have significant elongation, with the planet traveling much closer to the Sun at some points
along its orbit than at others. Because a planet moves more rapidly when it is closer to its star, the
star changes its velocity more rapidly at those times. If astronomers observe a star that changes its
velocity at a constant rate throughout its cyclical period, they conclude that these changes arise from a
planet moving in a circular orbit. If, on the other hand, they find that the changes sometimes occur
more rapidly and sometimes more slowly, they deduce that the planet has a noncircular orbit, and can
find the amount of the orbital elongation—the amount by which the orbit deviates from circularity—
by measuring the different rates at which the star changes its velocity throughout the orbital cycle.

Thus, in a triumph of accurate observations coupled with their powers of deduction, astrophysicists
who study exosolar planets can provide four key properties of any planet that they find: the planet’s



orbital period; its average distance from its star; its minimum mass; and its orbital elongation.
Astrophysicists achieve all this by capturing the colors of light from stars that lie hundreds of trillions
of miles from the solar system, and by measuring those changes with a precision better than one part
in a million—a high point in our attempts to probe the heavens in a search for Earth’s cousins.

Only one problem remains. Many of the exosolar planets discovered during the past decade orbit
their stars at distances much smaller than any of the distances between the Sun to its planets. This
issue looms larger because all the exosolar planets so far detected have masses comparable to that of
Jupiter, a giant planet that orbits the Sun at more than five times the Earth-Sun distance. Let us take a
moment to examine the facts, before we admire the astrophysicists’ explanations of how these planets
may have come to occupy orbits so much smaller than those familiar to us in our own planetary
system.

Whenever we use the star dance method to search for planets around other stars, we must remain
aware of the biases built into this method. First, planets close to their stars take much less time to
orbit than do planets far from their stars. Since astrophysicists have limited amounts of time with
which to observe the universe, they will naturally discover planets moving in, for example, six-month
periods far more quickly than they can detect planets that take a dozen years for each orbit. In both
cases, the astrophysicists must wait through at least a couple of orbits to be certain that they have
detected a repeatable pattern of the changes in the stars’ velocities. To find planets with orbital
periods comparable to Jupiter’s twelve years could therefore consume much of an individual’s
professional career.

Second, a planet will exert more gravitational force on its host star when close rather than when far.
These greater forces make the star dance more rapidly, producing larger Doppler shifts in their
spectra. Since we can detect larger shifts more easily than smaller ones, the closer-in planets attract
more attention, and do so more rapidly, than the farther-out planets do. At all distances, however, an
exosolar planet must have a mass roughly comparable to Jupiter’s (318 times Earth’s) to be detected
by the Doppler shift method. Planets with significantly less mass cannot make their stars dance with a
speed that rises above the threshold of detectability by today’s technology.

In hindsight, then, no surprise should have accompanied the news that the first exosolar planets to be
discovered all have masses comparable to Jupiter’s, and all orbit close to their stars. The surprise
lay in just how close many of these planets turned out to be—so close that they take not several
months or years to complete each orbit, as the Sun’s planets do, but only a few days. Astrophysicists
have now found more than a dozen planets that complete each orbit in less than a week, with the
record holder sweeping out each orbit in just over two and a half days. This planet, which orbits the
Sun-like star known as HD73256, has a mass at least 1.9 times Jupiter’s mass, and moves in a slightly
elongated orbit at an average distance from its star equal to only 3.7 percent of the Earth-Sun
distance. In other words, this giant planet possesses more than 600 times Earth’s mass at a distance
from its star less than one tenth that of Mercury.

Mercury consists of rock and metal, baked to temperatures of many hundred degrees on the side that
happens to face the Sun. In contrast, Jupiter and the Sun’s other giant planets (Saturn, Uranus, and
Neptune) are enormous balls of gas, surrounding solid cores that include only a few percent of each
planet’s mass. All theories of planet formation imply that a planet with a mass comparable to



Jupiter’s cannot be solid, like Mercury, Venus, and Earth, because the primordial cloud that formed
planets contained too little of the stuff that can solidify to make a planet with more than a few dozen
times the mass of Earth. The conclusion follows, as one more step in the great detective story that has
given us exosolar planets, that all exosolar planets so far discovered (since they have masses
comparable to Jupiter’s), must likewise be great balls of gas.

Two questions immediately arise from this startling conclusion: How did these Jupiter-like planets
ever come to orbit so close to their stars, and why doesn’t their gas quickly evaporate under the
intense heat? The second question has a relatively easy answer: The planets’ enormous masses can
retain even light gases heated to temperatures of hundreds of degrees, simply because the planets’
gravitational forces can overcome the tendency of the atoms and molecules in the gas to escape into
space. In the most extreme cases, however, this contest tips only narrowly in favor of gravity, and the
planets lie just outside the distance at which their stars’ heat would indeed evaporate their gases.

The first question, of how giant planets came to orbit so close to Sun-like stars, brings us to the
fundamental issue of how planets formed. As we have seen in Chapter 11, theorists have worked hard
to achieve some understanding of the planet-formation process in our solar system. They conclude
that the Sun’s planets accumulated themselves into being, growing from smaller clumps of matter into
larger ones within a pancake-shaped cloud of gas and dust. Within this flattened, rotating mass of
matter that surrounded the Sun, individual concentrations of matter formed, first at random, but then,
because they had a density greater than average, by winning the gravitational tug-of-war among
particles. In the final stages of this process, Earth and the other solid planets survived an intense
bombardment from the last of the giant chunks of material.

As this agglutinative process unfolded, the Sun began to shine, evaporating the lightest elements,
such as hydrogen and helium, from its immediate neighborhood, and leaving its four inner planets
(Mercury, Venus, Earth, and Mars) composed almost entirely of heavier elements such as carbon,
oxygen, silicon, aluminum, and iron. In contrast, each of the clumps of matter that formed at five to
thirty times Earth’s distance from the Sun remained sufficiently cool to retain much of the hydrogen
and helium in its vicinity. Because these two lightest elements are also the most abundant, this
retentive ability produced four giant planets, each with many times Earth’s mass.

Pluto belongs neither to the class of rocky, inner planets nor to the group of outer gas-giant planets.
Instead, Pluto, still uninspected by spacecraft from Earth, resembles a giant comet, made of a mixture
of rock and ice. Comets, which typically have diameters of 5 to 50 miles rather than Pluto’s 2,000
miles, rank among the first sizable clumps of matter to form within the early solar system; they are
rivaled in age by the oldest meteorites, which are fragments of rock, metal, or rock-and-metal
mixtures that happen to have struck Earth’s surface and to have been recognized by those who know
how to tell a meteorite from a garden-variety rock.

Thus the planets built themselves from matter much like that in comets and meteorites, with the giant
planets using their solid cores to attract and retain a much larger amount of gas. Radioactive dating of
the minerals in meteorites have shown that the oldest of them have ages of 4.55 billion years,
significantly greater than the oldest rocks found on the Moon (4.2 billion years) or on Earth (just less
than 4 billion years). The birth of the solar system, which therefore occurred about 4.55 billion B.C.,
quite naturally led to the segregation of planetary worlds into two groups: the relatively small, solid



inner planets and the much larger, more massive, mainly gaseous giant planets. The four inner planets
orbit the Sun at distances of 0.37 to 1.52 times the Earth-Sun distance, while the four giants remain at
the much greater distances, ranging from 5.2 to 30 times the Earth-Sun distance, which allowed them
to be giants.

This description of how the Sun’s planets formed makes such good sense that it almost seems a
shame that we have now found so many examples of objects with masses similar to Jupiter’s, moving
in orbit around their stars at distances much less than Mercury’s distance from the Sun. Indeed,
because the first exosolar planets to be discovered all had such small distances from their stars, for a
time it appeared as though our solar system might prove the exception, rather than the model of
planetary systems, as theorists had implicitly assumed in the days when they had nothing else on
which to base their conclusions. Understanding the bias imposed by the relative ease of discovering
close-in planets gave them some reassurance, and before long they had observed for sufficiently long
times, and with sufficient accuracy, to detect gas-giant planets at much greater distances from their
stars.

Today, the list of exosolar planets, ordered by distance from the star to the planet, begins with the
entry described above, of a planet that takes only 2.5 days to perform each orbit, and extends, through
well over a hundred entries, to the star 55 Cancri, where a planet with at least four times the mass of
Jupiter takes 13.7 years for each orbit. Astrophysicists can calculate from the orbital period that this
planet has a distance from its star equal to 5.9 times the Sun-Earth distance, or 1.14 times the distance
from the Sun to Jupiter. The planet ranks as the first to be found with a distance from its star greater
than the Sun-Jupiter distance, and therefore seems to provide a planetary system roughly comparable
to our solar system, at least so far as the star and its largest planet are concerned.

However, this is not quite so. The planet that orbits 55 Cancri at 5.9 times the Earth-Sun distance
represents not the first but the third to be discovered in orbit around this star. By now, astronomers
have accumulated sufficient data, and have grown so skilled at interpreting their Doppler shift
observations, that they can disentangle the complex star dance produced by two or more planets. Each
of these planets attempts to impose a dance in its own rhythm, with a repetitive period equal to the
span of the planet’s orbit around the star. By observing for a sufficiently long time, and by employing
computer programs that fear no calculation, planet hunters can tease from comingled dances the basic
steps induced by each orbiting world. In the case of 55 Cancri, a modest star visible in the
constellation called the Crab, they had already found two closer-in planets, with orbital periods of 42
days and 89 days and minimum masses of 0.84 and 0.21 Jupiter masses, respectively. The planet with
a minimum mass equal to “only” 0.21 Jupiter masses (67 Earth masses) ranks among the least
massive yet detected; but the record low mass for an exosolar planet has now fallen to 35 Earth
masses—still so many times greater than Earth’s that we should not hold our breath in anticipation
that astronomers will soon find Earth’s cousins.

Circle it as we may, we cannot avoid the problem, evident from the orbits of the planets around 55
Cancri, of explaining why and how many exosolar planets, with masses much like Jupiter’s, orbit
their stars at stunningly small distances. No planet with a Jupiter-like mass can form, experts will tell
you, much closer to a Sun-like star than three to four times the Earth-Sun distance. If we assume that
exosolar planets obey this dictum, they must have somehow moved to much smaller distances after



they had formed. This conclusion, if valid, raises at least three burning questions:

1. What made these planets move into smaller orbits after they had formed?
2. What stopped them from moving all the way into their stars and perishing?
3. Why did this occur in many other planetary systems, but not in our solar system?

These questions have answers, supplied by fertile minds once they had been properly stimulated by
the discovery of exosolar planets. We may summarize the scenario now favored by experts as
follows:

1. “Planetary migration” occurred because significant amounts of material left over from the
formation process continued to orbit the star within the orbits of the new-formed giant planets. This
material gets systematically flung by the big planet’s gravity to outer orbits, which in turn forces the
big planet to creep inward.

2. When the planets had approached much closer to their stars than their points of origin, the tidal
forces from the star locked the planet into place. These forces, comparable to the tidal forces from the
Sun and Moon that raise tides in Earth’s oceans, forced the planets’ rotational periods to equal their
orbital periods, as happened to the Moon from Earth’s tidal forces. They also prevented any further
approach of the planet to the star, for reasons that require sufficient involvement with celestial
mechanics to merit passing over here.

3. Presumably the luck of the draw determined which planetary systems formed with large amounts
of debris, capable of inducing planetary migration, and which, like our own, had relatively little
debris, so the planets remained at the distances at which they had formed. In the case of the planets
around 55 Cancri, it is possible that all three migrated significantly inward, with the outermost planet
having formed at several times its current distance from the star. Or it may be that the details of how
much debris lived inside the planet’s orbit, and how much outside, caused significant migration of the
two inner planets, while the third has remained in its original path.

Some work remains to be done, to put things politely, before astrophysicists can proclaim they have
explained how planetary systems form around stars. Meanwhile, those who hunt for exosolar planets
continue to pursue their dream of finding Earth’s twin, a planet similar to Earth in its size, mass, and
orbital distance from its parent star. When and if they find such a planet, they hope to examine it—
even from a distance of dozens of light-years—with sufficient precision to determine whether the
planet possesses an atmosphere and oceans similar to Earth’s, and perhaps whether life exists upon
that planet like our own.

In pursuit of this dream, astrophysicists know that they need instruments orbiting above our
atmosphere, whose blurring effects prevent us from making extremely precise measurements. One
experiment, NASA’s Kepler mission, aims at observing hundreds of thousands of nearby stars,
seeking the tiny diminution in starlight (about one hundredth of 1 percent) caused by the motion of an
Earthsized planet across our line of sight to a star. This approach can succeed only for the small
fraction of situations in which our view lies almost exactly along the planet’s orbital plane, but for
those cases, the interval between planetary transits equals the planet’s orbital period, which in turn
specifies the planet-star distance, and the amount of starlight diminution reveals the size of the planet.

However, if we hope to find out more than the planet’s bare physical characteristics, we must study



the planet by direct imaging and analysis of the spectrum of the light that the planet reflects into space.
NASA and ESA, the European Space Agency, have programs under way to achieve this goal within
two decades. To see another Earth-like planet, even as a pale blue dot close to a far brighter star,
could inspire another generation of poets, physicists, and politicians. To analyze the planet’s reflected
light, and thus to determine whether or not the planet’s atmosphere contains oxygen (a likely
indication of life) or oxygen plus methane (an almost completely definitive mark of life), would mark
the sort of accomplishment that the bards once sang, elevating mere mortals into heroes for the ages,
leaving us face to face (as F. Scott Fitzgerald wrote in The Great Gatsby) with something
commensurate with man’s capacity to wonder. For those who dream of finding life elsewhere in the
universe, our final section awaits.



Part V

The Origin
of Life



CHAPTER 14

Life in the Universe

Our survey of origins brings us, as we knew it would, to the most intimate and arguably the greatest
mystery of all: the origin of life, and in particular of forms of life with which we may someday
communicate. For centuries, humans have wondered how we might find other intelligent beings in the
cosmos, and with whom we might enjoy at least a modest conversation before we pass into history.
The crucial clues for resolving this puzzle may appear in the cosmic blueprint of our own beginnings,
which includes Earth’s origin within the Sun’s family of planets, the origin of the stars that provide
energy for life, the origin of structure in the universe, and the origin and evolution of the universe
itself.

If we could only read this blueprint in detail, it could direct us from the largest to the smallest
astronomical situations, from the unbounded cosmos to individual locations where different types of
life flourish and evolve. If we could compare the diverse forms of life that arose under various
circumstances, we could perceive the rules of life’s beginnings, both in general terms and in
particular cosmic situations. Today, we know of only one form of life: life on Earth, all of which
shares a common origin and uses DNA molecules as the fundamental means of reproducing itself.
This fact deprives us of multiple examples of life, relegating to the future a general survey of life in
the cosmos, unachievable until the day we begin to discover forms of life beyond our planet.

Things could be worse. We do know a great deal about life’s history on our planet, and must build
on this knowledge to derive basic principles about life throughout the universe. To the extent that we
can rely on these principles, they will tell us when and where the universe provides, or has provided,
the basic requirements for life. In all our attempts to imagine life elsewhere, we must resist falling
into the trap of anthropomorphic thinking, our natural tendency to imagine that extraterrestrial forms of
life must be much like our own. This entirely human attitude, which arises from our evolutionary and
personal experiences here on Earth, restricts our imagination when we attempt to conceive how
different life on other worlds may be. Only biologists familiar with the amazing variety and
appearance of different forms of life on Earth can confidently extrapolate what extraterrestrial
creatures might look like. Their strangeness almost certainly lies beyond the imaginative powers of
ordinary humans.

Some day—perhaps next year, perhaps during the coming century, perhaps long after that—we shall
either discover life beyond Earth or acquire sufficient data to conclude, as some scientists now
suggest, that life on our planet represents a unique phenomenon within our Milky Way galaxy. For
now, our lack of information on this subject allows us to consider an enormously broad range of
possibilities: We may find life on several objects in the solar system, which would imply that life
probably exists within billions of similar planetary systems in our galaxy. Or we may find that Earth
alone has life within our solar system, leaving the question of life around other stars open for the time



being. Or we may eventually discover that life exists nowhere around other stars, no matter how far
and wide we look. In the search for life in the universe, just as in other spheres of activity, optimism
feeds on positive results, while pessimistic views grow stronger from negative outcomes. The most
recent information that bears upon the chances for life beyond Earth—the discovery that planets are
moving in orbit around many of the Sun’s neighboring stars—points toward the optimistic conclusion
that life may prove relatively abundant in the Milky Way. Nevertheless, great issues remain to be
resolved before this conclusion can gain a firmer footing. If, for example, planets are indeed
abundant, but almost none of these planets provide the proper conditions for life, then the pessimistic
view of extraterrestrial life seems likely to prove correct.

Scientists who contemplate the possibilities of extraterrestrial life often invoke the Drake equation, after
Frank Drake, the American astronomer who created it during the early 1960s. The Drake equation
provides a useful concept rather than a rigorous statement of how the physical universe works. The
equation usefully organizes our knowledge and ignorance by separating the number that we dearly
seek to estimate—the number of places where intelligent life now exists in our galaxy—into a set of
terms, each of which describes a necessary condition for intelligent life. These terms include (1) the
number of stars in the Milky Way that survive sufficiently long for intelligent life to evolve on planets
around them; (2) the average number of planets around each of these stars; (3) the fraction of these
planets with conditions suitable for life; (4) the probability that life actually arises on these suitable
planets; and (5) the chance that life on such a planet evolves to produce an intelligent civilization, by
which astronomers typically mean a form of life capable of communicating with ourselves. When we
multiply these five terms, we obtain the number of planets in the Milky Way that possess an intelligent
civilization at some point in their history. To make the Drake equation yield the number that we seek
—the number of intelligent civilizations that exist at any representative time, such as the present—we
must multiply this product by a sixth and final term, the ratio of the average lifetime of an intelligent
civilization to the total lifetime of the Milky Way galaxy (about 10 billion years).

Each of the Drake equation’s six terms requires astronomical, biological, or sociological
knowledge. We now have good estimates of the equation’s first two terms, and seem likely to obtain a
useful estimate of the third before long. On the other hand, terms four and five—the probability that
life arises on a suitable planet, and the probability that this life evolves to produce an intelligent
civilization—require that we discover and examine various forms of life throughout the galaxy. For
now, anyone can argue almost as well as experts can about the value of these terms. What is the
probability, for example, that if a planet does have conditions suitable for life, then life will actually
begin on that planet? A scientific approach to this question cries out for the study of several planets
suitable for life for a few billion years to see how many do produce life. Any attempt to determine the
average lifetime of a civilization in the Milky Way likewise requires several billion years of
observation, once we have located a sufficiently large number of civilizations to provide a
representative sample.

Isn’t this a hopeless task? A full solution of the Drake equation indeed lies immensely far in the
future—unless we encounter other civilizations that have already solved it, perhaps using us as a data
point. But the equation nevertheless provides useful insights for what it takes to estimate how many



civilizations exist in our galaxy now. The six terms in the Drake equation all resemble one another
mathematically in their effect on the total outcome: each of them exerts a direct, multiplying effect on
the equation’s answer. If, for instance, you assume that one in three planets suitable for life actually
produces life, but later explorations reveal that this ratio actually equals 1 in 30, you will have
overestimated the number of civilizations by a factor of 10, assuming that your estimates for the other
terms prove correct.

Judging by what we now know, the first three terms in the Drake equation imply that billions of
potential sites for life exist in the Milky Way. (We restrict ourselves to the Milky Way out of modesty,
plus our awareness that civilizations in other galaxies will have a much more difficult time in
establishing contact with us, or we with them.) If you like, you can engage in soul-searching
arguments with your friends, family, and colleagues about the value of the remaining three terms, and
decide on numbers that will provide your own estimate for the total number of technologically
proficient civilizations in our galaxy. If you believe, for example, that most planets suitable for life do
produce life, and that most planets with life do evolve intelligent civilizations, you will conclude that
billions of planets in the Milky Way produce an intelligent civilization at some point in their time line.
If, on the other hand, you conclude that only one suitable planet in a thousand does produce life, and
only one life-bearing planet in a thousand evolves intelligent life, you will have only thousands, not
billions, of planets with an intelligent civilization. Does this enormous range of answers—potentially
even wider than the examples given here—imply that the Drake equation presents wild and unbridled
speculation rather than science? Not at all. This result simply testifies to the Herculean labor that
scientists, along with everyone else, face in attempting to answer an extremely complex question on
the basis of highly limited knowledge.

The difficulty that we face in estimating the values of the last three terms in the Drake equation
highlights the treacherous step that we take whenever we make a sweeping generalization from a
single example—or from none at all. We are hard pressed, for example, to estimate the average
lifetime of a civilization in the Milky Way when we do not even know how long our own will last.
Must we abandon all faith in our estimates of these numbers? This would emphasize our ignorance
while depriving us of the joy of speculation. If, in the absence of data or dogma, we seek to speculate
conservatively, the safest course (though one that might eventually prove to be erroneous) rests on the
notion that we are not special. Astrophysicists call this assumption the “Copernican principle” after
Nicolaus Copernicus, who, in the mid-1500s, placed the Sun in the middle of our solar system, where
it turned out to belong. Until then, despite a third-century B.C. proposal for a Sun-centered universe by
the Greek philosopher Aristarchus, the Earth-centered cosmos had dominated popular opinion during
most of the past two millennia. Codified by the teachings of Aristotle and Ptolemy, and by the
preachings of the Roman Catholic Church, this dogma led most Europeans to accept Earth as the
center of all creation. This must have appeared both self-evident from a look at the heavens and the
natural result of God’s plan for the planet. Even today, enormous segments of Earth’s human
population—quite likely a significant majority—continue to draw this conclusion from the fact that
Earth seemingly remains immobile while the sky turns around us.

Although we have no guarantee that the Copernican principle can guide us correctly in all scientific
investigations, it provides a useful counterweight to our natural tendency to think of ourselves as



special. Even more significant is that the principle has an excellent track record so far, leaving us
humbled at every turn: Earth does not occupy the center of the solar system, nor does the solar system
occupy the center of the Milky Way galaxy, nor the Milky Way galaxy the center of the universe. And
in case you believe that the edge is a special place, we are not at the edge of anything, either. A wise
contemporary attitude therefore assumes that life on Earth likewise follows the Copernican principle.
If so, how can life on Earth, its origins, and its components and structure provide clues about life
elsewhere in the universe?

In attempting to answer this question, we must digest an enormous array of biological information.
For every cosmic data point, gleaned by long observations of objects at enormous distances from us,
we know thousands of biological facts. The diversity of life leaves us all, but especially biologists,
awestruck on a daily basis. On this single planet Earth, there co-exist (among countless other life
forms), algae, beetles, sponges, jellyfish, snakes, condors, and giant sequoias. Imagine these seven
living organisms lined up next to each other in order of size. If you didn’t know better, you would be
challenged to believe that they all came from the same universe, much less the same planet. Try
describing a snake to somebody who has never seen one: “You gotta believe me. I just saw this
animal on planet Earth that (1) stalks its prey with infrared detectors, (2) swallows whole live
animals up to five times bigger than its head, (3) has no arms or legs or any other appendage, yet (4)
can slide along level ground almost as fast as you can walk!”

In contrast to the amazing variety of life on Earth, the constricted vision and creativity of Hollywood
writers who imagine other forms of life is shameful. Of course, the writers probably blame a public
that favors familiar spooks and invaders over truly alien ones. But with a few notable exceptions,
such as the life forms in The Blob (1958) and in Stanley Kubrick’s 2001: A Space Odyssey (1968),
Hollywood aliens all look remarkably humanoid. No matter how ugly (or cute) they may be, nearly
all of them have two eyes, a nose, a mouth, two ears, a head, a neck, shoulders, arms, hands, fingers, a
torso, two legs, two feet—and they can walk. From an anatomical view, these creatures are
practically indistinguishable from humans, yet they are supposed to live on other planets, the products
of independent lines of evolution. A clearer violation of the Copernican principle can hardly be
found.

Astrobiology—the study of the possibilities for extraterrestrial life—ranks among the most
speculative of sciences, but astrobiologists can already assert with confidence that life elsewhere in
the universe, intelligent or otherwise, will surely look at least as exotic as some of Earth’s own life
forms, and quite probably more so. When we assess the chances of life elsewhere in the universe, we
must attempt to shake from our brains the notions that Hollywood has implanted. Not an easy task, but
essential if we hope to reach a scientific rather than an emotional estimate of our chances of finding
creatures with whom we may someday have a quiet conversation.



CHAPTER 15

The Origin of Life on Earth

The search for life in the universe begins with a deep question: What is life? Astrobiologists will
tell you honestly that this question has no simple or generally accepted answer. Not much use to say
that we’ll know it when we see it. No matter what characteristic we specify to separate living from
nonliving matter on Earth, we can always find an example that blurs or erases this distinction. Some
or all living creatures grow, move, or decay, but so too do objects that we would never call alive.
Does life reproduce itself? So does fire. Does life evolve to produce new forms? So do certain
crystals that grow in watery solutions. We can certainly say that you can tell some forms of life when
you see them—who could fail to see life in a salmon or an eagle?—but anyone familiar with life in its
diverse forms on Earth will admit that many creatures will remain entirely undetected until the luck of
time and the skill of an expert reveal their living nature.

Since life is short, we must press onward with a rough-and-ready, generally appropriate criterion
for life. Here it is: Life consists of sets of objects that can both reproduce and evolve. We shall not
call a group of objects alive simply because they make more of themselves. To qualify as life, they
must also evolve into new forms as time passes. This definition therefore eliminates the possibility
that any single object can be judged to be alive. Instead, we must examine a range of objects in space
and follow them through time. This definition of life may yet prove too restrictive, but for now we
shall employ it.

As biologists have examined the different types of life on our planet, they have discovered a general
property of Earthlife. The matter within every living Earth creature mainly consists of just four
chemical elements: hydrogen, oxygen, carbon, and nitrogen. All the other elements together contribute
less than one percent of the mass of any living organism. The elements beyond the big four include
small amounts of phosphorus, which ranks as the most important, and is essential to most forms of
life, together with still smaller amounts of sulfur, sodium, magnesium, chlorine, potassium, calcium,
and iron.

But can we conclude that this elemental property of life on Earth must likewise describe other forms
of life in the cosmos? Here we can apply the Copernican principle in full vigor. The four elements
that form the bulk of life on Earth all appear on the short list of the universe’s six most abundant
elements. Since the other two elements on that list, helium and neon, almost never combine with
anything else, life on Earth consists of the most abundant and chemically active ingredients in the
cosmos. Of all the predictions that we can make about life on other worlds, the surest seems to be that
their life will be made of elements nearly the same as those used by life on Earth. If life on our planet
consisted primarily of four extremely rare elements in the cosmos, such as niobium, bismuth, gallium,
and plutonium, we would have an excellent reason to suspect that we represent something special in
the universe. Instead, the chemical composition of life on our planet inclines us toward an optimistic



view of life’s possibilities beyond Earth.
The composition of life on Earth fits the Copernican principle even more than one might initially

suspect. If we lived on a planet made primarily of hydrogen, oxygen, carbon, and nitrogen, then the
fact that life consists primarily of these four elements would hardly surprise us. But Earth is mainly
made of oxygen, iron, silicon, and magnesium, and its outermost layers are mostly oxygen, silicon,
aluminum, and iron. Only one of these elements, oxygen, appears on the list of life’s most abundant
elements. When we look into Earth’s oceans, which are almost entirely hydrogen and oxygen, it is
surprising that life lists carbon and nitrogen among its most abundant elements, rather than chlorine,
sodium, sulfur, calcium, or potassium, which are the most common elements dissolved in seawater.
The distribution of the elements in life on Earth resembles the composition of the stars far more than
that of Earth itself. As a result, life’s elements are more cosmically abundant than Earth’s—a good
start for those who hope to find life in a host of situations.

Once we have established that the raw materials for life are abundant throughout the cosmos, we
may proceed to ask: How often do these raw materials, along with a site on which these materials can
collect and a convenient source of energy such as a nearby star, lead to the existence of life itself?
Someday, when we have made a good survey of possible sites for life in our Sun’s neighborhood, we
shall have a statistically accurate answer to this question. In the absence of these data, we must take a
roundabout path to an answer and ask, How did life begin on Earth?

The origin of life on Earth remains locked in murky uncertainty. Our ignorance about life’s beginnings
stems in large part from the fact that whatever events made inanimate matter come alive occurred
billions of years ago and left no definitive traces behind. For times more than 4 billion years in the
past, the fossil and geological record of Earth’s history does not exist. Yet the interval in solar system
history between 4.6 and 4 billion years ago—the first 600 million years after the Sun and its planets
had formed—includes the era when most paleobiologists, specialists in reconstructing life that
existed during long-vanished epochs, believe that life first appeared on our planet.

The absence of all geological evidence from epochs more than 4 billion years ago arises from
motions of Earth’s crust, familiarly called continental drift but scientifically known as plate tectonics.
These motions, driven by heat that wells up from Earth’s interior, continually force pieces of our
planet’s crust to slide, collide, and ride by or over one another. Plate tectonic motions have slowly
buried everything that once lay on Earth’s surface. As a result, we possess few rocks older than 2
billion years, and none more than 3.8 billion years in age. This fact, together with the reasonable
conclusion that the most primitive forms of life had little chance of leaving behind fossil evidence,
has left our planet devoid of any reliable record of life during Earth’s first 1 or 2 billion years. The
oldest definite evidence we have for life on Earth takes us back “only” 2.7 billion years into the past,
with indirect indications that life did exist more than 1 billion years before then.

Most paleobiologists believe that life must have appeared on Earth at least 3 billion years ago, and
quite possibly more than 4 billion years ago, within the first 600 million years after Earth formed.
Their conclusion relies on a reasonable supposition about primitive organisms. At times a bit less
than 3 billion years ago, significant amounts of oxygen began to appear in Earth’s atmosphere. We
know this from Earth’s geological record independently of any fossil remains: oxygen promotes the



slow rusting of iron-rich rocks, which produces lovely red tones like those of the rocks in Arizona’s
Grand Canyon. Rocks from the pre-oxygen era show neither any such colors nor other telltale signs of
the element’s presence.

The appearance of atmospheric oxygen was the greatest pollution ever to occur on Earth.
Atmospheric oxygen does more than combine with iron; it also takes food from the (metaphorical)
mouths of primitive organisms by combining with all the simple molecules that could otherwise have
provided nutrients for early forms of life. As a result, oxygen’s appearance in Earth’s atmosphere
meant that all forms of life had to adapt or die—and that if life had not appeared by that time, it could
never do so thereafter, because the would-be organisms would have nothing to eat, for their potential
food would have rusted away. Evolutionary adaptation to this pollution worked well in many cases,
as all oxygen-breathing animals can testify. Hiding from the oxygen also did the trick. To this day,
every animal’s stomach, including our own, harbor billions of organisms that thrive in the anoxic
environment that we provide, but would die if exposed to air.

What made Earth’s atmosphere relatively rich in oxygen? Much of it came from tiny organisms
floating in the seas, which released oxygen as part of their photosynthesis. Some oxygen would have
appeared even in the absence of life, as UV from sunlight broke apart some of the H2O molecules at
the ocean surfaces, releasing hydrogen and oxygen atoms into the air. Wherever a planet exposes
significant amounts of liquid water to starlight, that planet’s atmosphere should likewise gain oxygen,
slowly but surely, over hundreds of millions or billions of years. There too, atmospheric oxygen
would prevent life from originating by combining with all possible nutrients that could sustain life.
Oxygen kills! Not what we usually say about this eighth element on the periodic table, but for life
throughout the cosmos, this verdict appears accurate: Life must begin early in a planet’s history, or
else the appearance of oxygen in its atmosphere will put the kibosh on life forever.

By a strange coincidence, the epoch missing from the geological record that includes the origin of life
also includes the so-called era of bombardment, which covers those critical first few hundred million
years after Earth had formed. All portions of Earth’s surface must then have endured a continual rain
of objects. During those several hundred thousand millennia, infalling objects as large as the one that
made the Meteor Crater in Arizona must have struck our planet several times in every century, with
much larger objects, each several miles in diameter, colliding with Earth every few thousand years.
Each one of the large impacts would have caused a local remodeling of the surface, so a hundred
thousand impacts would have produced global changes in our planet’s topography.

How did these impacts affect the origin of life? Biologists tell us that they might have triggered both
the appearance and the extinction of life on Earth, not once but many times. Much of the infalling
material during the era of bombardment consisted of comets, which are essentially large snowballs
laden with tiny rocks and dirt. Their cometary “snow” consists of both frozen water and frozen
carbon dioxide, familiarly called dry ice. In addition to their snow, grit, and rocks rich in minerals
and metals, the comets that bombarded Earth during its first few hundred million years contained
many different types of small molecules, such as methane, ammonia, methyl alcohol, hydrogen
cyanide, and formaldehyde. These molecules, along with water, carbon monoxide, and carbon
dioxide, provide the raw materials for life. They all consist of hydrogen, carbon, nitrogen, and



oxygen, and they all represent the first steps in building complex molecules.
Cometary bombardment therefore appears to have provided Earth with some of the water for its

oceans and with material from which life could begin. Life itself might have arrived in these comets,
though their low temperatures, typically hundreds of degrees below zero Fahrenheit, argue against the
formation of truly complex molecules. But whether or not life arrived with the comets, the largest
objects to strike during the era of bombardment might well have destroyed life that had arisen on
Earth. Life might have begun, at least in its most primitive forms, in fits and starts many times over,
with each new set of organisms surviving for hundreds of thousands or even millions of years, until a
collision with a particularly large object wreaked such havoc on Earth that all life perished, only to
appear again, and to be destroyed again, after the passage of a similar amount of time.

We can gain some confidence in the fits-and-starts origin of life from two well-established facts.
First, life appeared on our planet sooner rather than later, during the first third of Earth’s lifetime. If
life could and did arise within a billion years, perhaps it could do so in far less time. The origin of
life might require no more than a few million, or a few tens of millions, of years. Second, we know
that collisions between large objects and Earth have, at intervals of time measured in tens of millions
of years, destroyed most of the species alive on our planet. The most famous of these, the Cretaceous-
Tertiary extinction 65 million years ago, killed all the non-avian dinosaurs, along with enormous
numbers of other species. Even this mass extinction fell short of the most extensive one, the Permian-
Triassic mass extinction, that destroyed nearly 90 percent of all species of marine life and 70 percent
of all terrestrial vertebrate species, 252 million years ago, leaving fungi as the dominant forms of life
on land.

The Cretaceous-Tertiary and Permian-Triassic mass extinctions arose from the collisions of Earth
with objects one or two dozen miles across. Geologists have found an enormous 65-million-year-old
impact crater, coincident in time with the Cre-taceous-Tertiary extinction, that stretches across the
northern Yucatán Peninsula and the adjoining seabed. A large crater exists with the same age as the
Permian-Triassic extinction, discovered off the northwest coast of Australia, but this mass dying
might have arisen from something in addition to a collision, perhaps from sustained volcanic
eruptions. Even the single example of the Cretaceous-Tertiary dinosaur extinction reminds us of the
immense damage to life that the impact of a comet or asteroid can produce. During the era of
bombardment, Earth must have reeled not only from this sort of impact, but also from the much more
serious effects of collisions with objects 50, 100, or even 250 miles in diameter. Each of these
collisions must have cleared the decks of life, either completely or so thoroughly that only a tiny
percentage of living organisms managed to survive, and they must have occurred far more often than
collisions with ten-mile-wide objects do now. Our present knowledge of astronomy, biology,
chemistry, and geology points toward an early Earth ready to produce life, and a cosmic environment
ready to eliminate it. And wherever a star and its planets have recently formed, intense bombardment
by debris left over from the formation process may even now be eliminating all forms of life on those
planets.

More than 4 billion years ago, most of the debris from the solar system’s formation either collided
with a planet or moved into orbits where collisions could not occur. As a result, our cosmic
neighborhood gradually changed from a region of continual bombardment to the overall calm that we



enjoy today, broken only at multi-million-year intervals by collisions with objects large enough to
threaten life on Earth. You can compare the ancient and ongoing threat from impacts whenever you
look at the full moon. The giant lava plains that create the face of the “man in the Moon” are the result
of tremendous impacts some 4 billion years ago, as the era of bombardment ended, whereas the crater
named Tycho, fifty-five miles across, arose from a smaller, but still highly signficant, impact that
occurred soon after the dinosaurs disappeared from Earth.

We do not know whether life already existed 4 billion years ago, having survived the early impact
storm, or whether life arose on Earth only after relative tranquility began. These two alternatives
include the possibility that incoming objects seeded our planet with life, either during the era of
bombardment or soon afterward. If life began and died out repeatedly while chaos rained down from
the skies, the processes by which life originated seem robust, so that we might reasonably expect
them to have occurred again and again on other worlds similar to our own. If, on the other hand, life
arose on Earth only once, either as homegrown life or as the result of cosmic seeding, its origin may
have occurred here by luck.

In either case, the crucial question of how life actually began on Earth, either once or many times
over, has no good answer, though speculation on the subject has acquired a long and intriguing history.
Great rewards lie in store for those who can resolve this mystery. From Adam’s rib to Dr.
Frankenstein’s monster, humans have answered the question by invoking a mysterious élan vital that
imbues otherwise inanimate matter with life.

Scientists seek to probe more deeply, with laboratory experiments and examinations of the fossil
record that attempt to establish the height of the barrier between inanimate and animate matter, and to
find how nature breached this dike. Early scientific discussions about the origin of life imagined the
interaction of simple molecules, concentrated in pools or tide ponds, to create more complex ones. In
1871, a dozen years after the publication of Charles Darwin’s marvelous book The Origin of Species,
in which he speculated that “probably all of the organic beings which have ever lived on this Earth
have descended from some one primordial form,” Darwin wrote to his friend Joseph Hooker that

It is often said that all the conditions for the first production of a living organism are now present,
which could ever have been present. But if (and oh! what a big if!) we could conceive in some
warm little pond, with all sorts of ammonia and phosphoric salts, light, heat, electricity, &c.,
present, that a proteine [sic] compound was chemically formed ready to undergo still more
complex changes, at the present day such matter would be instantly absorbed, which would not
have been the case before living creatures were found.

In other words, when Earth was ripe for life, the basic compounds necessary for metabolism might
have existed in surplus, with nothing in existence to eat them (and, as we have discussed, no oxygen
to combine with them and spoil their chances to serve as food).

From a scientific perspective, nothing succeeds like experiments that can be compared with reality.
In 1953, seeking to test Darwin’s conception of the origin of life in ponds or tide pools, Stanley
Miller, who was then a U.S. graduate student working at the University of Chicago with the Nobel
laureate Harold Urey, performed a famous experiment that duplicated the conditions within a highly
simplified and hypothetical pool of water on the early Earth. Miller and Urey partly filled a



laboratory flask with water and topped the water with a gaseous mixture of water vapor, hydrogen,
ammonia, and methane. They heated the flask from below, vaporizing some of the contents and driving
them along a glass tube into another flask, where an electrical discharge simulated the effect of
lightning. From there the mixture returned to the original flask, completing a cycle that would be
repeated over and over during a few days, rather than a few thousand years. After this entirely modest
time interval, Miller and Urey found the water in the lower flask to be rich in “organic gunk,” a
compound of numerous complex molecules, including different types of sugar, as well as two of the
simplest amino acids, alanine and guanine.

Since protein molecules consist of twenty types of amino acids arranged into different structural
forms, the Miller-Urey experiment takes us, in a remarkably brief time, a significant part of the way
from the simplest molecules to the amino-acid molecules that form the building blocks of living
organisms. The Miller-Urey experiment also made some of the modestly complex molecules called
nucleotides, which provide the key structural element for DNA, the giant molecule that carries
instructions for forming new copies of an organism. Even so, a long path remains before life emerges
from experimental laboratories. An enormously significant gap, so far unbridged by human
experiment or invention, separates the formation of amino acids—even if our experiments produced
all twenty of them, which they do not—and the creation of life. Amino-acid molecules have also been
found in some of the oldest and least altered meteorites, believed to have remained unchanged for
nearly the entire 4.6-billion-year history of the solar system. This supports the general conclusion that
natural processes can make amino acids in many different situations. A balanced view of the
experimental results finds nothing totally surprising: The simpler molecules found in living organisms
form quickly in many situations, but life does not. The key question still remains: How does a
collection of molecules, even one primed for life to appear, ever generate life itself?

Since the early Earth had not weeks but many million years in which to bring forth life, the Miller-
Urey experimental results seemed to support the tide-pool model for life’s beginnings. Today,
however, most scientists who seek to explain life’s origin consider the experiment to have been
significantly limited by its techniques. Their shift in attitude arose not from doubting the test’s results,
but rather from recognizing a potential flaw in the hypotheses underlying the experiment. To
understand this flaw, we must consider what modern biology has demonstrated about the oldest forms
of life.

Evolutionary biology now relies on careful study of the similarities and differences between living
creatures in their molecules of DNA and RNA, which carry the information that tells an organism how
to function and how to reproduce. Careful comparison of these relatively enormous and complex
molecules has allowed biologists, among whom the great pioneer has been Carl Woese, to create an
evolutionary tree of life that records the “evolutionary distances” between various life forms, as
determined by the degrees to which these life forms have nonidentical DNA and RNA.

The tree of life consists of three great branches, Archaea, Bacteria, and Eucarya, that replace the
biological “kingdoms” formerly believed to be fundamental. The Eucarya includes every organism
whose individual cells have a well-defined center or nucleus that contains the genetic material
governing the cells’ reproduction. This characteristic makes Eucarya more complex than the other two



types, and indeed every form of life familiar to the non-expert belongs to this branch. We may
reasonably conclude that Eucarya arose later than Archaea or Bacteria. And because Bacteria lie
farther from the origin of the tree of life than the Archaea do—for the simple reason that their DNA
and RNA has changed more—the Archaea, as their name implies, almost certainly represent the
oldest forms of life. Now comes a shocker: Unlike the Bacteria and Eucarya, the Archaea consist
mainly of “extremophiles,” organisms that love to live, and live to love, in what we now call extreme
conditions: temperatures near or above the boiling point of water, high acidity, or other situations that
would kill other forms of life. (Of course, if the extremophiles had their own biologists, they would
classify themselves as normal and any life that thrives at room temperature as an extremophile.)
Modern research into the tree of life tends to suggest that life began with the extremophiles, and only
later evolved into forms of life that benefit from what we call normal conditions.

In that case, Darwin’s “warm little pond,” as well as the tide pools duplicated in the Miller-Urey
experiment, would evaporate into the mist of rejected hypotheses. Gone would be the relatively mild
cycles of drying and wetting. Instead, those who seek to find the places where life may have begun
would have to look to locales where extremely hot water, possibly laden with acids, surges from
Earth.

The past few decades have allowed oceanographers to discover just such places, along with the
strange forms of life they support. In 1977, two oceanographers piloting a deep sea submersible
vehicle discovered the first deep sea vents, a mile and a half beneath the calm surface of the Pacific
Ocean near the Galápagos Islands. At these vents, Earth’s crust behaves locally like a household
cooker, generating high pressure inside a heavy-duty pot with a lockable lid and heating water beyond
its ordinary boiling temperature without letting it reach an actual boil. As the lid partially lifts, the
pressurized, superheated water spews out from below Earth’s crust into the cold ocean basins.

The superheated seawater that emerges from these vents carries dissolved minerals that quickly
collect and solidify to surround the vents with giant, porous rock chimneys, hottest in their cores and
coolest at the edges that make direct contact with seawater. Across this temperature gradient live
countless life forms that have never seen the Sun and care nothing for solar heating, though they do
require the oxygen dissolved in seawater, which in turn comes from the existence of solar-driven life
near the surface. These hardy bugs live on geothermal energy, which combines heat left over from
Earth’s formation with heat continuously produced by the radioactive decay of unstable isotopes such
as aluminum-26, which lasts for millions of years, and potassium-40, which lasts for billions.

Near these vents, far below the depths to which any sunlight can penetrate, the oceanographers
found tube worms as long as a man, thriving amidst large colonies of bacteria and other small
creatures. Instead of drawing their energy from sunlight, as plants do with photosynthesis, life near
deep sea vents relies on “chemosynthesis,” the production of energy by chemical reactions, which in
turn depend on geothermal heating.

How does this chemosynthesis occur? The hot water gushing from the deep sea vents emerges laden
with hydrogen-sulfur and hydrogen-iron compounds. Bacteria near the vents combine these molecules
with the hydrogen and oxygen atoms in water molecules, and with the carbon and oxygen atoms of the
carbon dioxide molecules dissolved in sea water. These reactions form larger molecules—
carbohydrates—from carbon, oxygen, and hydrogen atoms. Thus the bacteria near deep sea vents



mimic the activities of their cousins far above, which likewise make carbohydrates from carbon,
oxygen, and hydrogen. One set of microorganisms draws the energy to make carbohydrates from
sunlight, and the other from chemical reactions at the ocean floors. Close by the deep sea vents, other
organisms consume the carbohydrate-making bacteria, profiting from their energy in the same way that
animals eat plants, or eat plant-eating animals.

In the chemical reactions near deep sea vents, however, more goes on than the production of
carbohydrate molecules. The iron and sulfur atoms, which are not included in the carbohydrate
molecule, combine to make compounds of their own, most notably crystals of iron pyrite, familiarly
called “fool’s gold,” known to the ancient Greeks as “fire stone” because a good blow from another
rock will strike sparks from it. Iron pyrite, the most abundant of all the sulfur-bearing minerals found
on Earth, might have played a crucial role in the origin of life by encouraging the formation of
carbohydratelike molecules. This hypothesis sprang from the mind of a German patent attorney and
amateur biologist, Günter Wächtershäuser, whose profession hardly excludes him from biological
speculation, any more than Einstein’s work as a patent attorney barred him from insights into physics.
(To be sure, Einstein had an advanced degree in physics, while Wächtershäuser’s biology and
chemistry are mainly self-taught.)

In 1994, Wächtershäuser proposed that the surfaces of iron pyrite crystals, formed naturally by
combining iron and sulfur that surged from deep sea vents early in Earth’s history, would have offered
natural sites where carbon-rich molecules could accumulate, acquiring new carbon atoms from the
material ejected by the nearby vents. Like those who hypothesize that life began in ponds or tide
pools, Wächtershäuser has no clear way to pass from the building blocks to living creatures.
Nevertheless, with his emphasis on the high-temperature origin of life, he may prove to be on the right
track, as he firmly believes. Referring to the highly ordered structure of iron pyrite crystals, on whose
surfaces the first complex molecules for life might have formed, Wächtershäuser has confronted his
critics at scientific conferences with the striking statement that “Some say that the origin of life brings
order out of chaos—but I say, ‘order out of order out of order!’” Delivered with German brio, this
claim acquires a certain resonance, though only time can tell how accurate it may be.

So which basic model for life’s origin is more likely to prove correct—tide pools at the ocean’s
edge, or superheated vents on the ocean floors? For now, the betting is about even. Experts on the
origin of life have challenged the assertion that life’s oldest forms lived at high temperatures, because
current methods for placing organisms at different points along the branches of the tree of life remain
the subject of debate. In addition, computer programs that trace out how many compounds of different
types existed in ancient RNA molecules, the close cousins of DNA that apparently preceded DNA in
life’s history, suggest that the compounds favored by high temperatures appeared only after life had
undergone some relatively low-temperature history.

Thus the outcome of our finest research, as so often occurs in science, proves unsettling to those
who seek certainty. Although we can state approximately when life began on Earth, we don’t know
where or how this marvelous event occurred. Paleobiologists have recently given the elusive
ancestor of all Earthlife the name LUCA, for the last universal common ancestor. (See how firmly
these scientists’ minds have remained fixed to our planet: they should call life’s progenitor LECA, for
the last Earthly common ancestor.) For now, naming this ancestor—a set of primitive organisms that



all shared the same genes—mainly underscores the distance that we still must travel before we can
pierce the veil that separates life’s origin from our understanding.

More than a natural curiosity as to our own beginnings hinges on the resolution of this issue. Different
origins for life imply different possibilities for its origin, evolution, and survival both here and
elsewhere in the cosmos. For example, Earth’s ocean floors may provide the most stable ecosystem
on our planet. If a jumbo asteroid slammed into Earth and rendered all surface life extinct, the oceanic
extremophiles would almost certainly continue undaunted in their happy ways. They might even
evolve to repopulate Earth’s surface after each extinction episode. And if the Sun were mysteriously
plucked from the center of the solar system and Earth drifted through space, this event would hardly
merit attention in the extremophile press, as life near deep sea vents might continue relatively
undisturbed. But in 5 billion years, the Sun will become a red giant as it expands to fill the inner solar
system. Meanwhile, Earth’s oceans will boil away and Earth itself will partially vaporize. Now that
would be news for any form of Earthlife.

The ubiquity of extremophiles on Earth leads us to a profound question: Could life exist deep within
many of the rogue planets or planetesimals that were ejected from the solar system during its
formation? Their “geo”thermal reservoirs could last for billions of years. What about the countless
planets that were forcibly ejected by every other solar system that ever formed? Could interstellar
space be teeming with life—formed and evolved deep within these starless planets? Before
astrophysicists recognized the importance of extremophiles, they envisioned a “habitable zone”
surrounding each star, within which water or another substance could maintain itself as a liquid,
allowing molecules to float, interact, and produce more complex molecules. Today, we must modify
this concept, so that far from being a tidy region around a star that receives just the right amount of
sunlight, a habitable zone can be anywhere and everywhere, maintained not by starlight heating but by
localized heat sources, often generated by radioactive rocks. So the Three Bears’ cottage was,
perhaps, not a special place among fairy tales. Anybody’s residence, even one of the Three Little
Pigs’, might contain a bowl of food at a temperature that is just right.

What a hopeful, even prescient fairy tale this may prove to be. Life, far from being rare and
precious, may be almost as common as planets themselves. All that remains is for us to go find it.



CHAPTER 16

Searching for Life 
in the Solar System

The possibility of life beyond Earth has created new job titles, applicable to only a few individuals
but potentially capable of sudden growth. “Astrobiologists” or “bioastron- omers” grapple with the
issues presented by life beyond Earth, whatever forms that life may take. For now, astrobiologists can
only speculate about extraterrestrial life or simulate extraterrestrial conditions, to which they either
expose terrestrial life forms, testing how they may survive harsh and unfamiliar situations, or subject
mixtures of inanimate molecules, creating a variant on the classic Miller-Urey experiment or a gloss
on Wächtershäuser’s research. This combination of speculation and experiment has led them to
several generally accepted conclusions, which—to the extent that they describe the real universe—
have highly significant implications. Astrobiologists now believe that the existence of life throughout
the universe requires:

1. a source of energy;
2. a type of atom that allows complex structures to exist;
3. a liquid solvent in which molecules can float and interact; and
4. sufficient time for life to arise and to evolve.

On this short list, requirements (1) and (4) present only low barriers to the origin of life. Every star
in the cosmos provides a source of energy, and all but the most massive 1 percent of these stars last
for hundreds of millions or billions of years. Our Sun, for example, has furnished Earth with a steady
supply of heat and light during the past 5 billion years, and will continue to do so for another 5
billion. Furthermore, we now see that life can exist entirely without sunlight, relying on geothermal
heating and chemical reactions for its energy. Geothermal energy arises in part from the radioactivity
of isotopes of elements such as potassium, thorium, and uranium, whose decay occurs over time
scales measured in billions of years—a time scale comparable to the lifetime of all Sun-like stars.

On Earth, life satisfies point (2), the requirement of a structure-building atom, with the element carbon.
Carbon atoms can each bind to one, two, three, or four other atoms, which makes them the crucial
element in the structure of all the life we know. In contrast, hydrogen atoms can each bind to only one
other atom, and oxygen to only one or two. Because carbon atoms can bind with as many as four other
atoms, they form the “backbone” for all but the simplest molecules within living organisms, such as
proteins and sugars.

Carbon’s ability to create complex molecules has made it one of the four most abundant elements,
together with hydrogen, oxygen, and nitrogen, in all forms of life on Earth. We have seen that although



the four most abundant elements in Earth’s crust have only one match with these four, the universe’s
six most abundant elements include all four of those in Earthlife, along with the inert gases helium and
neon. This fact could support the hypothesis that life on Earth began in the stars, or in objects whose
composition resembles those of the stars. In any case, the fact that carbon forms a relatively small
fraction of Earth’s surface but a large part of any living creature testifies to carbon’s pivotal role in
giving structure to life.

Is carbon essential to life throughout the cosmos? What about the element silicon, which often
appears in science fiction novels as the basic structural atom for exotic forms of life? Like carbon,
silicon atoms bond with as many as four other atoms, but the nature of these bonds leaves silicon far
less likely than carbon to provide the structural basis for complex molecules. Carbon bonds to other
atoms rather weakly, so that carbon-oxygen, carbon-hydrogen, and carbon-carbon bonds, for example,
break with relative ease. This allows carbon-based molecules to form new types as they collide and
interact, an essential part of any life form’s metabolic activity. In contrast, silicon bonds strongly to
many other types of atoms, and in particular to oxygen. Earth’s crust consists largely of silicate rocks
made primarily of silicon and oxygen atoms, bound together with sufficient strength to last for
millions of years, and therefore unavailable to participate in forming new types of molecules.

The difference between the way that silicon and carbon atoms bond to other atoms argues strongly
that we may expect to find most, if not all, extraterrestrial life forms built, as we are, with carbon, not
silicon, backbones for their molecules. Other than carbon and silicon, only relatively exotic types of
atoms, with cosmic abundances much lower than those of carbon or silicon, can bond to as many as
four other atoms. Purely on numerical grounds, the possibility that life uses atoms such as germanium
in the same way that Earthlife uses carbon seems highly remote.

Requirement number (3) specifies that all forms of life need a liquid solvent in which molecules can float
and interact. The word “solvent” emphasizes that a liquid allows this float-and-interact situation, in
what chemists call a “solution.” Liquids allow relatively high concentrations of molecules but do not
place tight restrictions on their motions. In contrast, solids lock atoms and molecules in place. They
actually can collide and interact, but they do so far more slowly than in liquids. In gases, molecules
will move even more freely than in liquids, and can collide with even less hindrance, but their
collisions and interactions occur far less often than they do in liquids, because the density within a
liquid typically exceeds that within a gas by a factor of 1,000 or more. “Had we but world enough
and time,” as Andrew Marvell wrote, we might find life originating in gases rather than liquids. In the
real cosmos, only 14 billion years old, astrobiologists do not expect to find life that began in gas.
Instead, they expect all extraterrestrial life, like all life on Earth, to consist of sacs of liquid, within
which complex chemical processes occur as different types of molecules collide and form new types.

Must that liquid be water? We live on a watery planet whose oceans cover nearly three quarters of
the surface. This makes us unique in our solar system, and possibly a highly unusual planet anywhere
in our Milky Way galaxy. Water, which consists of molecules made from two of the most abundant
elements in the cosmos, appears at least in modest amounts in comets, in meteoroids, and in most of
the Sun’s planets and their moons. On the other hand, liquid water in the solar system exists only on
Earth and beneath the icy surface of Jupiter’s large moon Europa, whose worldwide covered ocean



remains only a likelihood, not a verified reality. Could other compounds offer better chances for
liquid seas or ponds, within which molecules could have found their way to life? The three most
abundant compounds that can remain liquid within a significant range of temperatures are ammonia,
ethane, and methyl alcohol. Ammonia molecules each consist of three hydrogen atoms and one
nitrogen atom, ethane of two hydrogen atoms and two carbon atoms, and methyl alcohol of four
hydrogen atoms, one carbon atom, and one oxygen atom. When we consider the possibilities for
extraterrestrial life, we may reasonably consider creatures that use ammonia, ethane, or methyl
alcohol in the way that Earth life employs water—as the fundamental liquid within which life
presumably originated, and which supplies the medium within which molecules can float their way to
glory. The Sun’s four giant planets possess enormous amounts of ammonia, along with smaller
amounts of methyl alcohol and ethane, and Saturn’s large moon Titan may well have lakes of liquid
ethane on its frigid surface.

The choice of a particular type of molecule as life’s basic liquid immediately implies another
requirement for life: the substance must remain liquid. We would not expect life to originate in the
Antarctic ice cap, or in clouds rich in water vapor, because we need liquids to allow abundant
molecular interactions. Under atmospheric pressures like those at Earth’s surface, water remains
liquid between 0 and 100 degrees Celsius (32 to 212 degrees Fahrenheit). All three of the alternative
types of solvents remain liquid within temperature ranges that extend far below water’s. Ammonia,
for example, freezes at –78 degrees Celsius and vaporizes at –33 degrees. This prevents ammonia
from providing a liquid solvent for life on Earth, but on a world with a temperature 75 degrees colder
than ours, where water could never serve as a solvent for life, ammonia might well be the charm.

Water’s most significant distinguishing feature does not consist of its well-earned badge of “universal
solvent,” about which we learned in chemistry class, nor of the wide temperature range over which
water remains liquid. Water’s most remarkable attribute resides in the fact that while most things—
water included—shrink and become denser as they cool, water that cools below 4 degrees Celsius
expands, becoming progressively less dense as the temperature falls toward zero. And then, when
water freezes at 0 degrees Celsius, it turns into an even less dense substance than liquid water. Ice
floats, which is very good news for fish. During the winter, as the temperature of the outside air drops
below freezing, 4-degree water sinks to the bottom and stays there, because it is denser than the
colder water above, while a floating layer of ice builds extremely slowly on the surface, insulating
the warmer water below.

Without this density inversion below 4 degrees, ponds and lakes would freeze from the bottom up,
not from the top down. Whenever the outside air temperature fell below freezing, a pond’s upper
surface would cool and sink to the bottom as warmer water rose from below. This forced convection
would rapidly drop the water’s temperature to zero degrees as the surface began to freeze. Then
denser, solid ice would sink to the bottom. If the entire body of water did not freeze from the bottom
upward in a single season, the accumulation of ice at the bottom would allow full freezing to occur
over the course of many years. In such a world, the sport of ice fishing would yield even fewer results
than it does now, because all the fish would be dead—fresh-frozen. Ice anglers would find
themselves on a layer of ice that was either submerged below all remaining liquid water or atop a



completely frozen body of water. No longer would you need icebreakers to traverse the frozen Arctic
—either the entire Arctic Ocean would be frozen solid, or the frozen parts would all have sunk to the
bottom and you could just sail your ship without incident. You could slip and slide on lakes and ponds
without fear of falling through. In this altered world, ice cubes and icebergs would sink, so that in
April 1912, the Titanic would have steamed safely into the port of New York City, unsinkable (and
unsunken) as advertised.

On the other hand, our mid-latitude prejudice may be showing here. Most of Earth’s oceans are in no
danger of freezing, whether from the top down or the bottom up. If ice sank, the Arctic Ocean might
become solid, and the same might happen to the Great Lakes and the Baltic Sea. This effect could
have made Brazil and India greater world powers, at the expense of Europe and the United States, but
life on Earth could have persisted and flourished just as well.

Let us, for the time being, adopt the hypothesis that water has such significant advantages over its
chief rivals, ammonia and methyl alcohol, that most, if not all, forms of extraterrestrial life must rely
on the same solvent that Earthlife does. Armed with this supposition, along with the general
abundance of the raw materials for life, the prevalence of carbon atoms, and the long stretches of time
available for life to appear and to evolve, let us take a tour of our neighbors, recasting the age-old
question, Where’s the life? into the more modern one, Where’s the water?

If you were to judge matters by the appearance of some dry and unfriendly-looking places in our solar
system, you might conclude that water, while plentiful on Earth, ranks as a rare commodity elsewhere
in our galaxy. But of all the molecules that can be formed with three atoms, water is by far the most
abundant, largely because water’s two constituents, hydrogen and oxygen, occupy positions one and
three on the abundance list. This suggests that rather than asking why some objects have water, we
should ask why they don’t all possess large amounts of this simple molecule.

How did Earth acquire its oceans of water? The Moon’s near-pristine record of craters tells us that
impacting objects have struck the Moon throughout its history. We may reasonably expect that Earth
has likewise undergone many collisions. Indeed, Earth’s larger size and stronger gravity imply that
we should have been struck many more times, and by larger objects, than the Moon. So it has been,
from its birth all the way to the present. After all, Earth didn’t hatch from an interstellar void,
springing into existence as a preformed spherical blob. Instead, our planet grew within the
condensing gas cloud that formed the Sun and its other planets. In this process, Earth grew by
accreting enormous numbers of small solid particles, and eventually through incessant impacts from
mineral-rich asteroids and water-rich comets. How incessant? The early impact rate of comets may
have been sufficiently large to have brought us the water in all our oceans. Uncertainties (and
controversies) continue to surround this hypothesis. The water that we observed in comet Halley has
far greater amounts than Earth does of deuterium, an isotope of hydrogen that packs an extra neutron
into its nucleus. If Earth’s oceans arrived in comets, then those that hit Earth soon after the solar
system formed must have had a chemical composition notably different from today’s comets, or at
least different from the class of comet from which Halley is drawn.

In any case, when we add their contribution to the water vapor spewn into the atmosphere by
volcanic eruptions, we have no shortage of pathways by which Earth could have acquired its supply



of surface water.

If you seek a waterless, airless place to visit, you need look no farther than Earth’s Moon. The Moon’s
near-zero atmospheric pressure, combined with its two-week-long days when the temperature rises to
200 degrees Fahrenheit, causes any water to evaporate swiftly. During the two-week lunar night, the
temperature can drop to 250 degrees below zero, sufficient to freeze practically anything. The Apollo
astronauts who visited the Moon therefore brought all the water and air (and the air conditioning) that
they needed for their round-trip journey.

It would be odd, however, if Earth had acquired a great deal of water, while the nearby Moon got
almost none. One possibility, certainly true at least in part, is that water evaporated from the Moon’s
surface much more readily than from Earth’s because of the Moon’s lesser gravity. Another
possibility suggests that lunar missions may eventually not need to import water or the assortment of
products derived from it. Observations by the Clementine lunar orbiter, which carried an instrument
to detect the neutrons produced when fast-moving interstellar particles collide with hydrogen atoms,
support a long-held contention that deep-frozen ice deposits may lurk beneath craters near the Moon’s
north and south poles. If the Moon receives an average number of impacts per year from
interplanetary flotsam, then the mixture of these impactors should, from time to time, include sizable
water-rich comets, like those that strike Earth. How big could these comets be? The solar system
contains plenty of comets that could melt into a puddle the size of Lake Erie.

While we can’t expect a freshly laid lake to survive many sun-baked lunar days at temperatures of
200 degrees, any comet that happened to crash in the bottom of a deep crater near one of the Moon’s
poles (or happened to make a deep polar crater itself) would remain shrouded in darkness, because
deep craters near its poles are the only places on the Moon where the “Sun don’t shine.” (If you
thought that the Moon has a perpetual dark side, you have been badly misled by many sources,
probably including Pink Floyd’s 1973 album Dark Side of the Moon.) As light-starved Arctic and
Antarctic dwellers know, the Sun in those regions never rises high in the sky at any time of day or any
season of the year. Now imagine living at the bottom of a crater whose rim rises higher than the
highest altitude that the Sun ever reaches. With no air to scatter sunlight into the shadows, you would
live in eternal darkness.

But even in cold darkness, ice slowly evaporates. Just look at the cubes in your freezer’s ice tray
upon your return from a long vacation: their sizes will be distinctly smaller than when you departed.
However, if ice has been well mixed with solid particles (as occurs in a comet), it can survive for
thousands and millions of years at the bottom of the Moon’s deep polar craters. Any outpost that we
might establish on the Moon would benefit greatly from being located near this lake. Apart from the
obvious advantages of having ice to melt, to filter, and then to drink, we could also profit by
dissociating the water’s hydrogen from its oxygen atoms. We could use the hydrogen, plus some of the
oxygen, as active ingredients for rocket fuel, while keeping the rest of the oxygen for breathing. And
in our spare time between space missions, we might choose to go skating.

Although Venus has nearly the same size and mass as Earth, several attributes distinguish our sister



planet from all the other planets in the solar system, notably including its highly reflective, thick,
dense, carbon dioxide atmosphere, which exerts a hundred times the surface pressure of Earth’s
atmosphere. Except for bottom-dwelling marine creatures that live at similar pressures, all forms of
Earthlife would be crushed to death on Venus. But Venus’ most peculiar feature resides in the
relatively young craters uniformly scattered over its surface. This innocuous-sounding description
implies that a recent planetwide catastrophe reset the cratering clock—and thus our ability to date a
planet’s surface by its buildup of craters—by wiping out the evidence of all previous impacts. A
major erosive weather phenomenon such as a planetwide flood might also have done this. But so
could planetwide geologic (should we say Venusologic?) activity, such as lava flows, which could
have turned Venus’ entire surface into the American automotive dream—a totally paved planet.
Whatever events reset the cratering clock must have ceased abruptly. But important questions remain,
in particular about Venus’ water. If a planetwide flood did occur on Venus, where has all the water
gone? Did it sink below the surface? Did it evaporate into the atmosphere? Or did the flood consist of
a common substance other than water? Even if no flood occurred, Venus presumably acquired about
as much water as its sister planet Earth. What has happened to it?

The answer seems to be that Venus lost its water by growing too hot, a result attributable to Venus’
atmosphere. Although carbon dioxide molecules let visible light pass by, they trap infrared radiation
with great efficiency. Sunlight can therefore penetrate Venus’ atmosphere, even though atmospheric
reflection reduces the amount of sunlight that reaches the surface. This sunlight heats the planet’s
surface, which radiates infrared, and which cannot escape. Instead, the carbon dioxide molecules trap
it, as the infrared radiation heats the lower atmosphere and the surface below. Scientists call this
trapping of infrared radiation the “greenhouse effect” by loose analogy to their glass windows, which
admit visible light but block some of the infrared. Like Venus and its atmosphere, Earth produces a
greenhouse effect, essential for many forms of life, that raises our planet’s temperature by about 25
degrees Fahrenheit over what we would find in the absence of an atmosphere. Most of our greenhouse
effect arises from the combined effects of water and carbon dioxide molecules. Since Earth’s
atmosphere has only one ten-thousandth as many carbon dioxide molecules as the atmosphere of
Venus does, our greenhouse effect pales in comparison. Nevertheless, we continue to add more
carbon dioxide by burning fossil fuels, so we steadily increase the greenhouse effect, performing an
unintended global experiment to see just what deleterious effects arise from the additional trapping of
heat. On Venus, the atmospheric greenhouse effect, produced entirely by carbon dioxide molecules,
raises the temperature by hundreds of degrees, giving Venus’ surface furnacelike temperatures close to
500o Celsius (900o Fahrenheit)—the hottest in the solar system.

How did Venus reach this sorry state? Scientists apply the apt term “runaway greenhouse effect” to
describe what happened as the infrared radiation trapped by Venus’ atmosphere raised the
temperatures and encouraged liquid water to evaporate. The additional water in the atmosphere
trapped infrared even more effectively, increasing the greenhouse effect; this in turn caused even more
water to enter the atmosphere, ratcheting up the greenhouse effect still farther. Near the top of Venus’
atmosphere, solar UV radiation would break the water molecules apart into hydrogen and oxygen
atoms. Because of the high temperatures, the hydrogen atoms would escape, while the heavier oxygen
combined with other atoms, never to form water again. With the passage of time, all the water that



Venus once had on or near its surface has been essentially baked out of the atmosphere and lost to the
planet forever.

Similar processes occur on Earth, but at a much lower rate because we have much lower
atmospheric temperatures. Our mighty oceans now comprise most of Earth’s surface area, though their
modest depth gives them only about one five-thousandth of Earth’s total mass. Even this small fraction
of the total allows the oceans to weigh in at a hefty 1.5 quintillion tons, 2 percent of which is frozen at
any given time. If Earth should ever undergo a runaway greenhouse effect like the one that has
occurred on Venus, our atmosphere would trap larger amounts of solar energy, raising the air
temperature and making the oceans evaporate swiftly into the atmosphere as they sustained a rolling
boil. This would be bad news. Apart from the obvious ways that Earth’s flora and fauna would die,
an especially pressing cause of death would result from Earth’s atmosphere growing three hundred
times more massive as it thickens with water vapor. We would be crushed and baked by the air we
breathe.

Our planetary fascination (and ignorance) are hardly limited to Venus. With its long dry, still preserved
meandering riverbeds, floodplains, river deltas, networks of tributaries, and river-eroded canyons,
Mars must once have been a primeval Eden of water in motion. If any place in the solar system other
than Earth ever boasted a flourishing water supply, it was Mars. For reasons unknown, however,
today Mars has a bone-dry surface. Close examination of Venus and Mars, our sister and brother
planets, forces us to look at Earth anew and to wonder how fragile our surface supply of liquid water
may turn out to be.

Early in the twentieth century, imaginative observations of Mars by the noted American astronomer
Percival Lowell led him to suppose that colonies of resourceful Martians had built an elaborate
network of canals in order to redistribute water from Mars’ polar ice caps to the more populated
middle latitudes. To explain what he thought he saw, Lowell imagined a dying civilization that was
exhausting its supply of water, like Phoenix discovering that the Colorado River has its limits. In his
thorough yet curiously misguided treatise entitled Mars as the Abode of Life, published in 1909,
Lowell lamented the imminent end of the Martian civilization that he imagined he saw.

Indeed, Mars seems certain to dry up to the point that its surface can support no life at all. Slowly
but surely, time will snuff life out, if it has not done so already. When the last living ember dies away,
the planet will roll on through space as a dead world, its evolutionary career forever ended.

Lowell happened to get one thing right. If Mars ever had a civilization (or any kind of life at all) that
required water on the surface, it must have faced catastrophe, because at some unknown time in
Martian history, and for some unknown reason, all the surface water did dry up, leading to the exact
fate for life—though in the past, not the present—that Lowell described. What happened to the water
that flowed abundantly over Mars’ surface billions of years ago remains an outstanding mystery
among planetary geologists. Mars does have some water ice in its polar caps, which consist mainly of
frozen carbon dioxide (“dry ice”), and a tiny amount of water vapor in its atmosphere. Although the
polar caps contain the only significant amounts of water now known to exist on Mars, their total
content of ice falls far below the amount needed to explain the ancient records of flowing water on
Mars’ surface.



If most of Mars’ ancient water did not evaporate into space, its most likely hiding place lies
underground, with the water trapped in the planet’s subsurface permafrost. The evidence? Large
craters on the Martian surface are more likely than small craters to exhibit dried mud spills over their
rims. If the permafrost lies deep underground, to reach it would require a large collision. The deposit
of energy from such an impact would melt this subsurface ice upon contact, causing it to splash
upward. Craters with this mud-spill signature are more common in the cold, polar latitudes—just
where we might expect the permafrost layer to be closer to the Martian surface. According to
optimistic estimates of the Martian permafrost’s ice content, the melting of Mars’ subsurface layers
would release enough water to give Mars a planetwide ocean tens of meters deep. A thorough search
for contemporary (or fossil) life on Mars must include a plan to search in many locations, especially
below the Martian surface. So far as the chance of finding life on Mars is concerned, the great
question to be resolved asks, Does liquid water now exist anywhere on Mars?

Part of the answer leaps from our knowledge of physics. No liquid water can exist on the Martian
surface, because the atmospheric pressure there, less than 1 percent of the value on the surface of
Earth, does not allow it. As enthusiastic mountaineers know, water vaporizes at progressively lower
temperatures as the atmospheric pressure decreases. At the summit of Mount Whitney, where the air
pressure falls to half of its sea-level value, water boils not at 100 but at 75 degrees Celsius. On top of
Mount Everest, with air pressure only a quarter of its sea-level value, boiling occurs at about 50
degrees. Twenty miles high, where the atmospheric pressure equals only 1 percent of what you feel on
the sidewalks of New York, water boils at about 5 degrees Celsius. Rise a few miles higher, and
liquid water will “boil” at 0 degrees—that is, it will vaporize as soon as you expose it to the air.
Scientists use the word “sublimation” to describe the passage of a substance from solid to gas without
any intervening liquid stage. We all know sublimation from our youth, when the ice cream man
opened his magic door to reveal not only the delicacies inside but also the chunks of “dry” ice that
kept them cold. Dry ice offers the ice cream man a great advantage over familiar water ice: It
sublimates from solid to gas, leaving no messy liquid to clean up. An old detective story conundrum
describes the man who hanged himself by standing on a cake of dry ice until it sublimated, leaving
him suspended by a noose, and the detectives without a clue (unless they carefully analyzed the
atmosphere in the room) as to how he did it.

What happens to carbon dioxide on Earth’s surface happens to water on the surface of Mars. No
chance for liquid exists there, even though the temperature on a warm day of the Martian summer rises
well above 0 degrees Celsius. This seems to draw a sad veil over the prospects for life—until we
realize that liquid water could exist beneath the surface. Future missions to Mars, intimately bound up
with the possibility of finding ancient or even modern life on the red planet, will direct themselves
toward regions where they can drill into the Martian surface in a search for the flowing elixir of life.

Elixir though it may appear, water represents a deadly substance among the chemically illiterate, to
be avoided sedulously. In 1997, Nathan Zohner, a fourteen-year-old student at Eagle Rock Junior
High School in Idaho, conducted a now famous (among science popularizers) science fair experiment
to test antitechnology sentiments and associated chemical phobia. Zohner invited people to sign a
petition that demanded either strict control or a total ban of dihydrogen monoxide. He listed some of
the odious properties of this colorless and odorless substance:



• It is a major component in acid rain
• It eventually dissolves almost anything it comes in contact with
• It can kill if accidentally inhaled
• It can cause severe burns in its gaseous state
• It has been found in tumors of terminal cancer patients.

Forty-three out of fifty people approached by Zohner signed the petition, six were undecided, and one
was a great supporter of the molecule and refused to sign. Yes, 86 percent of the passersby voted to
ban dihydrogen monoxide (H2O) from the environment.

Maybe that’s what really happened to the water on Mars.

Venus, Earth, and Mars together provide an instructive tale about the pitfalls and payoffs from focusing
on water (or possibly other solvents) as the key to life. When astronomers considered where they
might find liquid water, they originally concentrated on planets that orbit at the proper distances from
their host stars to maintain water in liquid form—not too close in and not too far out. Thus we begin
with the tale of Goldilocks.

Once upon a time—somewhat more than 4 billion years ago—the formation of the solar system was
nearly complete. Venus had formed sufficiently close to the Sun for the intense solar energy to
vaporize what might have been its water supply. Mars formed so far away that its water supply
became forever frozen. Only one planet, Earth, had a distance “just right” for water to remain a
liquid, and whose surface would therefore become a haven for life. This region around the Sun where
water can remain liquid came to be known as the habitable zone.

Goldilocks liked things “just right,” too. One of the bowls of porridge in the Three Bears’ cottage
was too hot. Another was too cold. The third was just right, so she ate it. Upstairs, one bed was too
hard. Another was too soft. The third was just right, so Goldilocks slept in it. When the Three Bears
came home, they discovered not only missing porridge but also Goldilocks fast asleep in their bed.
(Don’t remember how the story ends, but it remains a mystery to us why the Three Bears—
omnivorous and occupying the top of the food chain—did not eat Goldilocks instead.)

The relative habitability of Venus, Earth, and Mars would intrigue Goldilocks, though the actual
history of these planets is somewhat more complicated than three bowls of porridge. Four billion
years ago, leftover water-rich comets and mineral-rich asteroids were still pelting the planetary
surfaces, although at a much lower rate than before. During this game of cosmic billiards, some
planets had migrated inward from where they had formed while others were kicked into larger orbits.
And among the dozens of planets that had formed, some moved on unstable orbits and crashed into the
Sun or Jupiter. Others were ejected from the solar system altogether. In the end, the few planets that
remained had orbits that were “just right” to survive billions of years.

Earth settled into an orbit with an average distance of 93 million miles from the Sun. At this
distance, Earth intersects a measly one two-billionth of the total energy radiated by the Sun. If you
assume that Earth absorbs all the energy received from the Sun, then our home planet’s average
temperature should be about 280 degrees Kelvin (45˚ F), which falls midway between winter and
summer temperatures. At normal atmospheric pressures, water freezes at 273 degrees Kelvin and



boils at 373 degrees, so we are well positioned with respect to the Sun for nearly all of Earth’s water
to remain happily in its liquid state.

Not so fast. In science you can sometimes get the right answer for the wrong reasons. Earth actually
absorbs only two thirds of the energy that reaches it from the Sun. The rest is reflected back into
space by Earth’s surface (especially by the oceans) and by its clouds. If we factor this reflection into
the equations, the average temperature for Earth drops to about 255 degrees Kelvin, well below the
freezing point of water. Something must be operating to raise our average temperature to something a
little more comfortable.

But wait once more. All theories of stellar evolution tell us that 4 billion years ago, when life was
forming out of Earth’s primordial soup, the Sun was a third less luminous than it is today, which
would have left Earth’s average temperature even farther below freezing. Perhaps Earth in the distant
past was simply closer to the Sun. Once the early period of heavy bombardment had ended, however,
no known mechanisms could have shifted stable orbits back and forth within the solar system.
Perhaps the greenhouse effect from Earth’s atmosphere was stronger in the past. We don’t know for
sure. What we do know is that habitable zones, as originally conceived, have only peripheral
relevance to whether life may exist on a planet within them. This has become evident from the fact
that we cannot explain Earth’s history on the basis of a simple habitable-zone model, and even more
from the realization that water or other solvents need not depend on the heat from a star to remain
liquid.

Our solar system contains two good reminders that the “habitable-zone approach” to looking for life
has severe limitations. One of them lies outside the zone where the Sun can keep water liquid, yet
nevertheless has a worldwide ocean of water. The other, far too cold for liquid water, offers the
possibility of another liquid solvent, poison to us but potentially prime for other forms of life. Before
long we should have the opportunity to investigate both of these objects with close-up robot
explorers. Let’s check out what we know now about Europa and Titan.

Jupiter’s moon Europa, which has about the same size as our Moon, shows crisscrossing cracks in the
surface that change on time scales of weeks or months. To expert geologists and planetary scientists,
this behavior implies that Europa has a surface made almost entirely of water ice, like a giant
Antarctic ice sheet girdling an entire world. And the changing appearance of the rifts and rills in this
icy surface leads to a startling conclusion: The ice apparently floats on a worldwide ocean. Only by
invoking liquid beneath the icy surface can scientists satisfactorily explain what they have seen,
thanks to the stunning successes of the Voyager and Galileo spacecraft. Since we observe changes on
the surface all around Europa, we may conclude that a worldwide ocean of liquid must underlie that
surface.

What liquid could this be, and why should that substance remain liquid? Impressively, planetary
scientists have reached two fairly firm additional conclusions: The liquid is water, and it remains
liquid because of tidal effects on Europa produced by the giant planet Jupiter. The fact that water
molecules are more abundant than ammonia, ethane, or methyl alcohol makes it the likeliest substance
to provide the liquid beneath Europa’s ice, and the existence of this frozen water likewise implies
that more water exists in the immediate neighborhood. But how can water remain a liquid, when the



solar-induced temperatures in Jupiter’s vicinity are only about 120o K (–150o Celsius)? Europa’s
interior remains relatively warm because tidal forces from Jupiter and the two large moons nearby, Io
and Ganymede, continuously flex the rocks within Europa as this moon changes its position with
respect to neighboring objects. At all times, the sides of Io and Europa closest to Jupiter feel a
stronger force of gravity from the giant planet than the sides farthest away. These differences in force
slightly elongate the solid moons in the direction facing Jupiter. But as the moons’ distances from
Jupiter change during their orbits, Jupiter’s tidal effect—the difference in force exerted on the near
side and the far side—also changes, producing small pulses in their already distorted shapes. This
changing distortion heats the moons’ interiors. Like a squash ball or a racquet ball continually being
smashed by impact, any system that undergoes continuing structural stress will have its internal
temperature rise.

With a distance from the Sun that would otherwise guarantee a forever-frozen ice world, Io’s stress
level earns it the title of the most geologically active place in the entire solar system—complete with
belching volcanoes, surface fissures, and plate tectonics. Some have analogized modern-day Io to the
early Earth, when our planet was still piping hot from its episode of formation. Inside Io, the
temperature rises to the point that volcanoes continually blast evil-smelling compounds of sulfur and
sodium many miles above the satellite’s surface. Io in fact has too high a temperature for liquid water
to survive, but Europa, which undergoes less tidal flexing than Io because it is farther from Jupiter,
heats more modestly, though still significantly. In addition, Europa’s worldwide ice cap puts a
pressure lid on the liquid below, preventing the water from evaporating and allowing it to exist for
billions of years without freezing. So far as we can tell, Europa was born with its water ocean and
ice above, and has maintained that ocean, close to the freezing point but still above it, through four
and a half billion years of cosmic history.

Astrobiologists therefore view Europa’s worldwide ocean as a prime target for investigation. No
one knows the ice cap’s thickness, which might range from a few dozen yards to half a mile or more.
Given the fecundity of life within Earth’s oceans, Europa remains the most tantalizing place in the
solar system to search for life outside of Earth. Imagine going ice-fishing there. Indeed, engineers and
scientists at the Jet Propulsion Laboratory in California have begun to envision a space probe that
lands, finds (or cuts) a hole in the ice, and drops a submersible camera to have a peek at primitive
life that may swim or crawl below.

“Primitive” pretty much sums up our expectations, because any would-be forms of life would have
only small amounts of energy at their disposal. Nevertheless, the discovery of enormous masses of
organisms at depths a mile or more beneath the basalts of Washington State, living mainly on
geothermal heat, suggests that we may someday find the Europan oceans alive with organisms unlike
any on Earth. But one pressing question remains: Would we call the creatures Europans or
Europeans?

Mars and Europa offer targets numbers one and two in the search for extraterrestrial life within the solar
system. A third great “Search Me” sign appears twice as far from the Sun as Jupiter and its moons.
Saturn has one giant moon, Titan, which ties with Jupiter’s champion, Ganymede, as the largest moon
in the solar system. Half again as large as our own Moon, Titan possesses a thick atmosphere, a



quality unequaled by any other moon (or by the planet Mercury, not much larger than Titan but much
closer to the Sun, whose heat evaporates any Mercurian gases). Unlike the atmospheres of Mars and
Venus, Titan’s atmosphere, many dozen times thicker than Mars’, consists primarily of nitrogen
molecules, just as Earth’s does. Floating within this transparent nitrogen gas are enormous numbers of
aerosol particles, a permananet Titanian smog, that forever shrouds the moon’s surface from our gaze.
As a result, speculation about life’s possibilities has enjoyed a field day on Titan. We have measured
the moon’s temperature by bouncing radio waves (which penetrate the atmospheric gases and
aerosols) from its surface. Titan’s surface temperature, close to 85o Kelvin (–188o Celsius), falls far
below those that allow liquid water to exist, but provides just the right temperature for liquid ethane,
a carbon-hydrogen compound familiar to those who refine petroleum products. For decades,
astrobiologists have imagined ethane lakes on Titan, chockful of organisms that float, eat, meet, and
reproduce.

Now, during the first decade of the twenty-first century, exploration has finally replaced speculation.
The Cassini-Huygens mission to Saturn, a collaboration of NASA with the European Space Agency
(ESA), left Earth in October 1997. Nearly seven years later, having received gravity boosts from
Venus (twice) Earth (once), and Jupiter (once), the spacecraft reached the Saturn system, where it
fired its rockets to achieve an orbit around the ringed planet.

The scientists who designed the mission arranged for the Huygens probe to detach itself from the
Cassini spacecraft late in 2004, to make the first descent through Titan’s satellite’s opaque clouds,
and to reach the moon’s surface, using a heat shield to avoid frictional burning from its rapid passage
through the upper atmosphere and a series of parachutes to slow the probe down in the lower
atmosphere. Six instruments aboard the Huygens probe were built to measure the temperature,
density, and chemical composition of Titan’s atmosphere, and to send images back to Earth via the
Cassini spacecraft. At this time, we can only await these data and images to see what they tell us
about the enigma that lies beneath the clouds of Titan. We are unlikely to see life itself, should any
exist on this faraway moon, but we can expect to determine whether or not conditions do favor the
existence of life by providing liquid pools and ponds in which life might originate and flourish. At the
very least, we may expect to learn the array of different types of molecules that exist on and near the
surface of Titan, which may shed new light on how the precursors of life arose on Earth and
throughout the solar system.

If we require water for life, must we restrict ourselves to planets and their moons, on whose solid
surfaces water can accumulate in quantity? Not at all. Water molecules, along with several other
household chemicals such as ammonia and methane and ethyl alcohol, appear routinely in cool
interstellar gas clouds. Under special conditions of low temperature and high density, an ensemble of
water molecules can be induced to transform and to funnel energy from a nearby star into an
amplified, high-intensity beam of microwaves. The atomic physics of this phenomenon resembles
what a laser does with visible light. But in this case, the relevant acronym is maser, for microwave
amplification by the stimulated emission of radiation. Not only does water occur practically
everywhere in the galaxy, but it also occasionally beams at you as well. The great problem faced by
would-be life in interstellar clouds arises not from a lack of raw materials but from the extremely low



densities of matter, which enormously reduce the rate at which particles collide and interact. If life
takes millions of years to arise on a planet such as Earth, it might take trillions of years to do so at
much lower densities—far more time than the universe has so far provided.

By completing our search for life in the solar system, we might seem to have finished our tour through the
fundamental questions linked to our cosmic origins. We cannot, however, leave this arena without a
look at the great origin issue that lies in the future: the origin of our contact with other civilizations.
No astronomical topic grips the public imagination more vividly, and none offers a better chance to
draw together the strands of what we have learned about the universe. Now that we know something
about how life might begin on other worlds, let’s examine the chances of satisfying a human desire as
deep as any, the wish to find other beings in the cosmos with whom we might talk things over.



CHAPTER 17

Searching for Life 
in the Milky Way Galaxy

We have seen that within our own solar system, Mars, Europa, and Titan offer the best hopes for
discovering extraterrestrial life, either alive or in fossil form. These three objects present by far the
best chances for finding water or another substance capable of providing a liquid solvent within
which molecules can meet to carry on life’s work.

Because only these three objects seem likely to have pools or ponds, most astrobiologists limit their
hopes of finding life in the solar system to the discovery of primitive forms of life on one or more of
them. Pessimists have a reasonable argument, some day to be upheld or refuted by actual exploration,
that even though we may well find conditions suitable for life on one or more of this favored
threesome, life itself may well prove entirely absent. Either way, the results of our searches on Mars,
Europa, and Titan will be laden with significance in judging the prevalence of life in the cosmos.
Optimists and pessimists already agree on one conclusion: If we hope to find advanced forms of life
—life that consists of creatures larger than the simple, single-celled organisms that appeared first and
remain dominant in Earthlife—then we must look far beyond the solar system, to planets that orbit
stars other than the Sun.

Once upon a time, we could only speculate about the existence of these planets. Now that well over
a hundred exosolar planets have been found, basically similar to Jupiter and Saturn, we may
confidently predict that only time and more precise observations separate us from the discovery of
Earth-like planets. The final years of the twentieth century seem likely to mark the moment in history
when we acquired real evidence for an abundance of habitable worlds throughout the cosmos. Thus
the first two terms in the Drake equation, which together measure the numbers of planets orbiting stars
that last for billions of years, now imply high rather than low values. The next two terms, however,
which describe the probability of finding planets suitable for life, and of life actually springing into
existence on such planets, remain nearly as uncertain as they did before the discovery of exosolar
planets. Even so, our attempts to estimate these probabilities seem to rest on firmer grounds than our
numbers for the final two terms: the probability that life on another world will evolve to produce an
intelligent civilization, and the ratio of the average amount of time that such a civilization will survive
to the lifetime of the Milky Way galaxy.

For the first five terms in the Drake equation, we can offer our planetary system and ourselves as a
representative example, though we must always invoke the Copernican principle to avoid measuring
the cosmos against ourselves, rather than the reverse. When we get to the equation’s final term,
however, and attempt to estimate the average lifetime of a civilization once it has acquired the



technological capacity to send signals across interstellar distances, we fail to reach an answer even if
we take Earth as a guide, since we have yet to determine how long our own civilization will last. We
have now possessed interstellar-signaling capacity for nearly a century, ever since powerful radio
transmitters began to send messages across Earth’s oceans. Whether we last as a civilization for the
next century, through the next millennium, or throughout a thousand centuries depends on factors far
beyond our capacity to foresee, though many of the signs seem unfavorable to our long-term survival.

Asking whether our own fate corresponds to the average in the Milky Way takes us into another
dimension of speculation, so the final term in the Drake equation, which affects the result as directly
as all the others, may be judged just plain unknown. If, in an optimistic assessment, most planetary
systems contain at least one object suitable for life, and if life originates on a sensibly high fraction
(say one tenth) of those suitable objects, and if intelligent civilizations likewise appear on, perhaps,
one tenth of the objects with life, then at some point in the history of the Milky Way’s 100 billion
stars, 1 billion locations could produce an intelligent civilization. This enormous number springs, of
course, from the fact that our galaxy contains so many stars, most of them much like our Sun. For a
pessimistic view of the situation, simply change each the numbers to which we assigned values from
one tenth to one chance in ten thousand. Then the billion locations become 1,000, lower by a factor of
1 million.

This makes a major difference. Suppose that an average civilization, qualifying as a civilization by
possessing interstellar communications ability, lasts for 10,000 years—approximately one part in a
million of the Milky Way’s lifetime. On the optimistic view, a billion places give birth to a
civilization at some point in history, so at any representative time, about 1,000 civilizations should be
flourishing. The pessimistic view, in contrast, implies that in each representative era about 0.001
civilization should exist, making ourselves a lone and lonely blip that temporarily rises high above
the average value.

Which estimate has the greater chance of coming close to the true value? In science, nothing
convinces so well as experimental evidence. If we hope to determine the average number of
civilizations in the Milky Way, the best scientific approach would measure how many civilizations
now exist. The most direct way to perform that feat would survey the entire galaxy, as the cast of
television’s Star Trek love to do, noting the number and type of each civilization that we encounter, if
indeed we find any. (The possibility of an alien-free galaxy makes for boring television, rarely
appearing on the small screen.) Unfortunately, this survey lies far outside our current technological
capability and budgetary constraints.

Besides, surveying the entire galaxy would take millions of years, if not longer. Consider what a
television program about interstellar space surveys would be like if it limited itself by what we know
of physical reality. A typical hour would show the crew complaining and bickering, aware that they
had come so far yet still had so far to go. “We’ve read all the magazines,” one of them might remark.
“We’re sick of each other, and you, Captain, are a great pain in the plethora.” Then, while other crew
members sang songs to themselves and still others entered private worlds of madness, a trailing long
shot would remind us that the distances to other stars in the Milky Way are millions of times greater
than the distances to other planets in the solar system.

Actually, this ratio describes only the distances to the Sun’s closer neighbors, already so distant that



their light takes many years to reach us. A full tour of the Milky Way would take us nearly ten
thousand times farther. Hollywood films depicting interstellar space flight deal with this all-important
issue by ignoring it (Invasion of the Body Snatchers, 1956 and 1978), assuming that better rockets or
improved understanding of physics will deal with it (Star Wars, 1977), or offering intriguing
approaches such as freeze-drying astronauts so that they can survive immensely long journeys (Planet
of the Apes, 1968).

All of these approaches have a certain appeal, and some offer creative possibilities. We may indeed
improve our rockets, which can now reach speeds of only about one ten-thousandth of the speed of
light, the fastest we can hope to travel according to our current knowledge of physics. Even at the
speed of light, however, travel to the nearest stars will take many years, and travel across the Milky
Way close to a thousand centuries. Freeze-drying astronauts has some promise, but so long as those on
Earth, who presumably will pay for the trip and remain unfrozen, the long passages of time before the
astronauts return argues against easy funding. Given our short attention spans, by far the better
approach to establishing contact with extraterrestrial civilizations—provided that they exist—
appears right here on Earth. All we need do is to wait for them to contact us. This costs far less and
can offer the immediate rewards that our society so eagerly craves.

Only one difficulty arises: Why should they? Just what about our planet makes us special to the point
that we merit attention from extraterrestrial societies, assuming that they exist? On this point more
than any other, humans have consistently violated the Copernican principle. Ask anyone why Earth
deserves scrutiny, and you are likely to receive a sharp, angry stare. Almost all conceptions of alien
visitors to Earth, as well as a sizable part of religious dogma, rest on the unspoken, obvious
conclusion that our planet and our species rank so high on the list of universal marvels that no
argument is needed to support the astronomically strange contention that our speck of dust, nearly lost
in its Milky Way suburb, somehow stands out like a galactic beacon, not only demanding but also
receiving attention on a cosmic scale.

This conclusion springs from the fact that the actual situation appears reversed when we view the
cosmos from Earth. Then planetary matters bulk large, while the stars seem tiny points of light. From
a quotidian point of view, this makes complete sense. Our success at survival and reproduction, like
that of every other organism, has little to do with the cosmos that surrounds us. Among all
astronomical objects, only the Sun, and to a much lesser extent the Moon, affect our lives, and their
motions repeat with such regularity that they almost seem part of the Earthbound scene. Our human
consciousness, formed on Earth from countless encounters with terrestrial creatures and events,
understandably renders the extraterrestrial scene as a far-distant backdrop to the important action at
center stage. Our error lies in assuming that the backdrop likewise regards ourselves as the center of
activity.

Because each of us adopted this erroneous attitude long before our conscious minds attained any
dominion or control over our patterns of thinking, we cannot eliminate it entirely from our approach
to the cosmos even when we choose to do so. Those who impose the Copernican principle must
remain ever vigilant against the murmurings of our reptilian brains, assuring us that we occupy the
center of the universe, which naturally directs its attention our way.

When we turn to reports of extraterrestrial visitors to Earth, we must recognize another fallacy of



human thought, as omnipresent and self-deceiving as our anti-Copernican prejudices. Human beings
trust their memories far more than reality can justify. We do so for the same survival value reasons
that we regard Earth as the center of the cosmos. Memories record what we perceive, and we do well
to pay attention to this record if we seek to draw conclusions for the future.

Now that we have better means of recording the past, however, we know better than to rely on
individual memories for all matters of importance to society. We transcribe congressional debates
and laws in print, videotape crime scenes, and make surreptitious audio recordings of criminal
activity, because we recognize these media as superior to our own brains for creating a permanent
record of past events. One great apparent exception to this rule remains. We continue to accept
eyewitness testimony as accurate, or at least probative, in legal proceedings. We do so despite test
after test that demonstrates that each of us, despite our best intentions, will fail to remember events
accurately, especially when those memories—as they usually do in cases important enough to go to
trial—deal with unusual and exciting occurrences. Our legal system accepts eyewitness testimony
from long traditition, because of its emotional resonance, and most of all because it often provides the
only direct evidence of past events. Nevertheless, every courtroom cry of “That’s the man who held
the pistol!” must be weighed against the many demonstrated cases where that was not the man, despite
the witness’s sincere belief to the contrary.

If we bear these facts in mind when we analyze reports of unidentified flying objects (UFOs), we
can immediately recognize an enormous potential for error. By definition, UFOs are bizarre
occurrences, which cause observers to discriminate among familiar and unfamiliar objects on the
rarely examined celestial backdrop, and typically require rapid conclusions about these objects
before they quickly disappear. Add to this the psychic charge arising from the observer’s belief in
having witnessed a tremendously unusual event, and we could hardly find a better textbook example
of a situation likely to generate an erroneous memory.

What can we do to obtain data on UFO reports more reliable than eyewitness accounts? In the
1950s, astrophysicist J. Allen Hynek, then a leading Air Force consultant on UFOs, liked to highlight
this issue by whipping a miniature camera from his pocket, insisting that if he ever saw a UFO, he
would use the camera to obtain valid scientific evidence, because he knew that eyewitness testimony
would not qualify. Unfortunately, improvements in technology since that time allow the creation of
fake images and video recordings barely distinguishable from honest ones, so that Hynek’s plan
would no longer allow us to put our faith in photographic evidence supporting a UFO sighting. In fact,
when we consider the interaction of memory’s fragile power with the inventiveness of human con
artists, we cannot easily devise a test to discriminate between fact and fancy for any individual UFO
sighting.

When we turn to the more modern phenomenon of UFO abductions, the ability of the human psyche
to trump reality becomes even more apparent. Although hard numbers cannot be easily obtained, in
recent years tens of thousands of people have apparently come to believe that they have been taken
aboard an alien spacecraft and subjected to examinations, often of the most humiliating variety. From
a calm perspective, stating this claim suffices to refute it as reality. Direct application of the principle
of Occam’s razor, which calls for the simplest explanation that fits the alleged facts, leads to the
conclusion that these abductions have been imagined, not undergone. Because nearly all of the



retellings place the abduction deep in the nighttime, and the majority in the midst of sleep, the likeliest
explanation involves the hypnagogic state, the boundary between sleep and waking. For many people,
this state brings visual and auditory hallucinations, and sometimes a “waking dream,” in which the
person feels conscious but unable to move. These effects pass through the filters of our brains to yield
seemingly real memories, capable of arousing unshakable belief in their certainty.

Compare this explanation of UFO abductions with an alternative, that extraterrestrial visitors have
singled out Earth and arrived in sufficient numbers to abduct humans by the thousands, though only
briefly, and apparently to examine them closely (but should they not have long ago learned whatever
they cared to—and could they not abduct sufficient corpses to learn human anatomy in detail?). Some
stories imply that aliens extract some useful substances from their abductees, or plant their seeds into
female victims, or alter their mind patterns to avoid later detection (but in that case could they not
eliminate abduction memories entirely?). These assertions cannot be dismissed categorically, any
more than we can rule out the possibility that alien visitors wrote these words, attempting to lull
human readers into a false sense of security that will further the aliens’ plans for world or cosmic
domination. Instead, relying upon our ability to analyze situations rationally, and to discriminate
between more likely and less likely explanations, we can assign an extremely low probability to the
abduction hypothesis.

One conclusion seems unassailable by UFO skeptics and believers alike. If extraterrestrial societies
do visit Earth, they must know that we have created worldwide capabilities for disseminating
information and entertainment, if not for distinguishing one from the other. To say that these facilities
would be open to any alien visitors caring to use them amounts to a gross understatement. They would
receive immediate permission (come to think of it, they might not need it), and could make their
presence felt in a minute—if they cared to. The absence of apparent extraterrestrials from our
television screens testifies either to their absence from Earth or to their unwillingness to reveal
themselves to our gaze—the “shyness” problem. The second explanation raises an intriguing
conundrum. If alien visitors to Earth choose not to be detected, and if they possess technology far
superior to ours, as their journeys across interstellar distances imply, why can they simply not
succeed in their plans? Why should we expect to have any evidence—visual sightings, crop circles,
pyramids built by ancient astronauts, memories of abductions—if the aliens prefer that we don’t?
They must be messing with our minds, enjoying their little game of cat and mouse. Quite probably
they are secretly manipulating our leaders too, a conclusion that snaps much of politics and
entertainment into immediate focus.

The UFO phenomenon highlights an important aspect of our consciousness. Believing though we do
that our planet forms the center of creation, and that our starry surroundings must decorate our world,
rather than the reverse, we nevertheless maintain a strong desire to connect with the cosmos,
manifested in mental activities as disparate as credence in extraterrestrial visitor reports and belief in
a benevolent deity that sends thunderbolts and emissaries to Earth. The roots of this attitude lie in the
days when a self-evident distinction existed between the sky above and Earth below, between the
objects we could touch and scratch and those that moved and shone but remained forever beyond our
reach. From these differences we drew distinctions between the earthly body and the cosmic soul, the
mundane and the marvelous, the natural and supernatural. The need for a mental bridge connecting



these two apparent aspects of reality has informed many of our attempts to create a coherent picture of
our existence. Modern science’s demonstration that we are stardust has thrown an enormous wrench
into our mental equipment, from which we are still struggling to recover. UFOs suggest new
messengers from the other part of existence, all-powerful visitors who well know what they are up to
while we remain ignorant, barely aware that the truth is out there. This attitude was captured well in
the classic film The Day the Earth Stood Still (1951), in which an alien visitor, far wiser than we,
comes to Earth to warn that our violent behavior may lead to our own destruction.

Our innate feelings about the cosmos manifest a dark side that projects our feelings about human
strangers onto nonhuman visitors. Many a UFO report contains phrases similar to “I heard something
odd outside, so I took my rifle and went to see what it was.” Films that depict aliens on Earth
likewise slip easily into a hostile mode, from the cold war epic Earth Versus the Flying Saucers
(1956), in which the military blasts away at alien spacecraft without pausing to ask their intentions, to
Signs (2002), in which the peace-loving hero, with no rifle at hand, uses a baseball bat to chastise his
trespassers—a method not likely to succeed against actual aliens capable of crossing interstellar
distances.

The greatest arguments against interpreting UFO reports as evidence for extraterrestrial visitors
reside in our planet’s unimportance, together with the vast distances between the stars. Neither can be
regarded as absolute bars to this interpretation, but in tandem they form a powerful argument. Must
we, then, conclude that because Earth lacks popular appeal, our hopes of finding other civilizations
must await the day when we can expend our own resources to embark on journeys to other planetary
systems?

Not at all. The scientific approach to establishing contact with other civilizations within the Milky
Way and beyond, should they exist, has always relied on letting nature work in our favor. This
principle redirects the question: What aspect of extraterrestrial civilizations would we find most
exciting? (answer: Visitors in the flesh) into the scientifically fruitful one: What seems to be the most
likely means of establishing contact with other civilizations? Nature, and the immense distances
between stars, supply the answer—use the cheapest, fastest means of communication avaiable, which
presumably holds the same rank elsewhere in the galaxy.

The cheapest and fastest way to send messages between the stars uses electromagnetic radiation, the
same medium that carries almost all long-range communication on Earth. Radio waves have
revolutionized human society by allowing us to send words and pictures around the world at 186,000
miles per second. These messages travel so rapidly that even if we beam them up to a stationary
satellite orbiting at an altitude of 23,000 miles, which relays them to another part of Earth’s surface,
they undergo a time delay on each leg of their journey much shorter than one second.

Over interstellar distances, the time lag grows longer, though it remains the shortest we can hope to
achieve. If we plan to send a radio message to Alpha Centauri, the star system closest to the Sun, we
must plan on a travel time of 4.4 years in each direction. Messages that travel for, say, twenty years
can reach several hundred stars, or any planets that orbit them. Thus if we are prepared to wait for a
round-trip of forty years, we could beam a message toward each of these stars, and eventually find
out whether we receive a reply from any of them. This approach assumes, of course, that if
civilizations exist close to any of these stars, they have a command of radio, and an interest in its



application, at least equal to ours.
The fundamental reason why we don’t adopt this approach in searching for other civilizations lies

not in its assumptions but in our attitudes. Forty years is a long time to wait for something that may
never happen. (Yet if we had beamed out messages forty years ago, by now we would have some
serious information about the abundance of radio-using civilizations in our region of the Milky Way.)
The only serious attempt in this direction occurred in the 1970s, when astronomers celebrated the
upgrading of the radio telescope near Arecibo, Puerto Rico, by using it to beam a message for a few
minutes in the direction of the star cluster M13. Since the cluster lies 25,000 light-years away, any
return message will be a long time coming, rendering the exercise more a demonstration than an
actual casting call. In case you think that discretion has inhibited our broadcasting (for it is good to be
shifty in a new country), recall that all of our post–World War II radio and television broadcasting, as
well as our powerful radar beams, have sent spherical shells of radio waves into space. Expanding at
the speed of light, the “messages” from the Honeymooners and I Love Lucy era have already washed
over thousands of stars, while Hawaii Five-O and Charlie’s Angels have reached hundreds. If other
civilizations really could disentangle individual programs from the cacaphony of Earth’s radio
emission—now comparable to or stronger than that from any solar system object, including the Sun—
there might be some truth to the playful speculation that the content of these programs explains why
we have heard nothing from our neighbors, because they find our programming either so appalling or
(dare we suggest) so overwhelmingly impressive that they choose not to reply.

A message might arrive tomorrow, laden with intriguing information and commentary. Herein lies the
greatest appeal of communication by electromagnetic radiation. Not only is it cheap (sending fifty
years of television broadcasts into space has cost lest than a single spacecraft mission), it is also
instantaneous—provided that we can receive and interpret another civilization’s emission. This also
provides a fundamental aspect of UFO excitement, but in this case we might actually receive
transmissions that could be recorded, verified as real, and studied for as long as it would take to
understand them.

In the search for extraterrestrial intelligence, shortened to SETI by the scientists who engage in it,
the focus remains on searching for radio signals, though the alternative of looking for signals sent with
light waves should not be rejected. Although light waves from another civilization must compete with
myriad natural sources of light, laser beams offer the opportunity to concentrate the light into a single
color or frequency—the same approach that allows radio waves to carry messages from different
radio or television stations. So far as radio waves go, our hopes for success in SETI rest with
antennas that can survey the sky, receivers that record what the antennas detect, and powerful
computers that analyze the receivers’ signals in a search for the unnatural. Two basic possibilities
exist: We might find another civilization by eavesdropping on its own communications, some of
which leaks into space in the same way that our radio and television broadcasts do; or we might
discover deliberately beamed signals, meant to attract the attention of previously uncatalogued
civilizations such as our own.

Eavesdropping clearly presents a more difficult task. A beamed signal concentrates its power in a
particular direction, so that detecting that signal becomes much easier if it should be deliberately sent



toward us, whereas signals that leak into space diffuse their power more or less evenly in all
directions and are therefore much weaker at a particular distance from their source than a beamed
signal. Furthermore, a beamed signal would presumably contain some easy warm-up exercises to tell
its recipients how to interpret it, whereas radiation that leaks into space presumably carries no such
user’s manual. Our own civilization has leaked signals for many decades, and has sent a beamed
signal in one particular direction for a few minutes. If civilizations are rare, any attempts to find them
ought to concentrate on eavesdropping and avoid the lure of hoping for deliberately beamed signals.

With ever better systems of antennas and receivers, SETI proponents have begun to eavesdrop on
the cosmos, hoping to find evidence for other civilizations. Precisely because we have no guarantee
that we shall ever hear anything by eavesdropping, those who engage in these activities have had
difficulty securing funding. In the early 1990s, the U.S. Congress supported a SETI program for a
year, until cooler heads pulled the plug. SETI scientists now draw their supports, in part, from
millions of people who download a screen saver (from the Web site setiathome.sl.berkeley.edu) that
co-opts home computers to analyze data for alien signals in their spare time. Even more funding has
come from wealthy individuals, most notably the late Bernard Oliver, a prominent Hewlett-Packard
engineer with a lifelong interest in SETI, and Paul Allen, the co-founder of Microsoft. Oliver spent
many years thinking about the basic problem in SETI, the difficulty of searching through billions of
possible frequencies at which other civilizations might be broadcasting. We divide the radio spectrum
into relatively wide bands, so that only a few hundred different frequencies exist for radio and
television broadcasts. In principle, however, alien signals might be confined so narrowly in
frequency that the SETI dial would need billions of entries. Powerful computer systems, which lie at
the heart of current SETI efforts, can meet this challenge by analyzing hundreds of millions of
frequencies simultaneously. On the other hand, they have not yet found anything suggestive of another
civilization’s radio communications.

More than fifty years ago, the Italian genius Enrico Fermi, perhaps the last great physicist to work
both as an experimentalist and as a theorist, discussed extraterrestrial life during lunch with his
colleagues. Agreeing that nothing particularly special distinguishes Earth as an abode for life, the
scientists reached the conclusion that life ought to be abundant in the Milky Way. In that case, Fermi
asked, in a query that ripples across the decades, where are they?

Fermi meant that if many places in our galaxy have seen the advent of technologically advanced
civilizations, surely we should have heard from one of them by now, by radio or laser messages if not
by actual visits. Even if most civilizations die out quickly, as ours may, the existence of large numbers
of civilizations implies that some of them should have sufficiently extended lifetimes to mount long-
term searches for others. Even if some of these long-lived civilizations do not care to engage in such
searches, others will. So the fact that we have no scientifically verified visits to Earth, nor reliable
demonstrations of signals produced by another civilization, may prove that we have badly
overestimated the likelihood that intelligent civilizations arise in the Milky Way.

Fermi had a point. Every day that passes adds a bit more evidence that we may be alone in our
galaxy. However, when we examine the actual numbers, the evidence looks weak. If several thousand
civilizations exist in the galaxy at any representative time, the average separation between
neighboring civilizations will be a few thousand light-years, a thousand times the distance to the



closest stars. If one or more of these civilizations has lasted for millions of years, we might expect
that by now they should have sent us a signal, or revealed themselves to our modest eavesdropping
efforts. If, however, no civilization attains anything like this age, then we shall have to work harder to
find our neighbors, because none of them may be engaged in a galaxywide attempt to find others, and
none of them may be broadcasting so powerfully that our present eavesdropping efforts can find them.

Thus we remain in a familiar human condition, poised at the edge of events that may not occur. The
most important news in human history could arrive tomorrow, next year, or never. Let us go forth into
a new dawn, ready to embrace the cosmos as it surrounds us, and as it reveals itself, shining with
energy and replete with mystery.



CODA

The Search for 
Ourselves in the Cosmos

Equipped with his five senses, man explores the universe around him and calls the adventure science.
—Edwin P. Hubble, 1948

Human senses display an astonishing acuity and range of sensitivity. Our ears can record the
thunderous launch of the space shuttle, yet they can also hear a male mosquito buzzing in the corner of
a room. Our sense of touch allows us to feel the crush of a bowling ball dropped on our big toe, or to
tell when a one-milligram bug crawls along our arm. Some people enjoy munching on habanero
peppers, while sensitive tongues can identify the presence of food flavors at a few parts per million.
And our eyes can register the bright sandy terrain on a sunny beach, yet have no trouble spotting a
lone match, freshly lit hundreds of feet away, across a darkened auditorium. Our eyes also allow us to
see across the room and across the universe. Without our vision, the science of astronomy would
never have been born and our capacity to measure our place in the universe would have remained
hopelessly stunted.

In combination, these senses allow us to decode the basics of our immediate environment, such as
whether it’s day or night, or when a creature is about to eat you. But little did anybody know, until the
last few centuries, that our senses alone offer only a narrow window on the physical universe.

Some people boast of a sixth sense, professing to know or see things that others cannot.
Fortunetellers, mind readers, and mystics top the list of those who claim mysterious powers. In doing
so, they instill widespread fascination in others. The questionable field of parapsychology rests on
the expectation that at least some people actually harbor this talent.

In contrast, modern science wields dozens of senses. But scientists do not claim that these are the
expression of special powers, just special hardware that converts the information gleaned by these
extra senses into simple tables, charts, diagrams, or images that our five inborn senses can interpret.

With apologies to Edwin P. Hubble, his remark quoted on page 291, while poignant and poetic,
should instead have been

Equipped with our five senses, along with telescopes and microscopes and mass spectrometers
and seismographs and magnetometers and particle detectors and accelerators and instruments that
record radiation from the entire electromagnetic spectrum, we explore the universe around us and
call the adventure science.

Think of how much richer the world would appear to us, and how much sooner we would have
discovered the fundamental nature of the universe, if we were born with high-precision, tunable
eyeballs. Dial up the radio-wave part of the spectrum and the daytime sky turns as dark as night,
except for some choice directions. Our galaxy’s center appears as one of the brightest spots on the



sky, shining brightly behind some of the principal stars of the constellation Sagittarius. Tune into
microwaves and the entire universe glows with a remnant from the early universe, a wall of light that
set forth on its journey to us 380,000 years after the big bang. Tune into X rays and you will
immediately spot the locations of black holes with matter spiraling into them. Tune into gamma rays
and see titanic explosions bursting forth from random directions about once a day throughout the
universe. Watch the effect of these explosions on the surrounding material as it heats up to produce X
rays, infrared, and visible light.

If we were born with magnetic detectors, the compass would never have been invented because no
one would ever need one. Just tune into Earth’s magnetic field lines and the direction of magnetic
North looms like Oz beyond the horizon. If we had spectrum analyzers within our retinas, we would
not have to wonder what the atmosphere is made of. Simply by looking at it we would know whether
or not it contains sufficient oxygen to sustain human life. And we would have learned thousands of
years ago that the stars and nebulae in our galaxy contain the same chemical elements as those found
here on Earth.

And if we were born with big, sensitive eyes and built-in Doppler motion detectors, we would have
seen immediately, even as grunting troglodytes, that the entire universe is expanding—that all distant
galaxies are receding from us.

If our eyes had the resolution of high-performance microscopes, nobody would have ever blamed
the plague and other sicknesses on divine wrath. The bacteria and viruses that made you sick would
have been in plain view as they crawled on your food or slid through open wounds in your skin. With
simple experiments, you could easily tell which of these bugs were bad and which were good. And
the carriers of postoperative infection problems would have been identified and solved hundreds of
years earlier.

If we could detect high-energy particles, we would spot radioactive substances from great
distances. No Geiger counters necessary. You could even watch radon gas seep through the basement
floor of your home and not have to pay somebody to tell you about it.

The honing of our five senses from birth through childhood allows us as adults to pass judgment on
events and phenomena in our lives, declaring whether or not they “make sense.” Problem is, hardly
any scientific discoveries of the past century have flowed from the direct application of our senses.
They came instead from the direct application of sense-transcendent mathematics and hardware. This
simple fact explains why, to the average person, relativity, particle physics, and eleven-dimensional
string theory make no sense. Add to this list black holes, wormholes, and the big bang. Actually, these
concepts don’t make much sense to scientists either, until we have explored the universe for a long
time with all senses that are technologically available. What eventually emerges is a newer and
higher level of “uncommon sense” that enables scientists to think creatively and to pass judgment in
the unfamiliar underworld of the atom or in the mind-bending domain of higher dimensional space.
The twentieth-century German physicist Max Planck made a similar observation about discovery of
quantum mechanics: “Modern physics impresses us particularly with the truth of the old doctrine
which teaches that there are realities existing apart from our sense-perceptions, and that there are
problems and conflicts where these realities are of greater value for us than the richest treasures of
the world of experience.”



Each new way of knowing heralds a new window on the universe—a new detector to add to our
growing list of nonbiological senses. Whenever this happens, we achieve a new level of cosmic
enlightenment, as though we were evolving into supersentient beings. Who could have imagined that
our quest to decode the mysteries of the universe, armed with a myriad of artificial senses, would
grant us insight into ourselves? We embark on this quest not from a simple desire but from a mandate
of our species to search for our place in the cosmos. The quest is old, not new, and has garnered the
attention of thinkers great and small, across time and across culture. What we have discovered, the
poets have known all along:

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time . . .

                              —T. S. Eliot, 1942



Glossary of Selected Terms

absolute (Kelvin) temperature scale: Temperature measured on a scale (denoted by K) on which
water freezes at 273.16 K and boils at 373.16 K, with 0 K denoting absolute zero, the coldest
theoretically attainable temperature.

acceleration: A change in an object’s speed or direction of motion (or both).
accretion: An infall of matter that adds to the mass of an object.
accretion disk: Material surrounding a massive object, typically a black hole, that moves in orbit

around it and slowly spirals inward.
AGN: Astronomical shorthand for a galaxy with an active nucleus, a modest way of describing

galaxies whose central regions shine thousands, millions, or even billions of times more brightly than
the central regions of a normal galaxy. AGNs have a generic similarity to quasars, but they are
typically observed at distances less than that of quasars, hence later in their lives than quasars
themselves.

amino acid: One of a class of relatively small molecules, made of thirteen to twenty-seven atoms of
carbon, nitrogen, hydrogen, oxygen, and sulfur, which can link together in long chains to form
protein molecules.

Andromeda galaxy: The closest large spiral galaxy to the Milky Way, approximately 2.4 million
light-years from our own galaxy.

antimatter: The complementary form of matter, made of antiparticles that have the same mass but
opposite sign of electric charge as the particles that they complement.

antiparticle: The antimatter complement to a particle of ordinary matter.
apparent brightness: The brightness that an object appears to have as an observer measures it,

hence a brightness that depends on the object’s luminosity and its distance from the observer.
Archaea: Representatives of one of the three domains of life, thought to be the oldest forms of life

on Earth. All Archaea are single-celled and thermophilic (capable of thriving at temperatures above
50–70º Celsius).

asteroid: One of the objects, made primarily of rock or of rock and metal, that orbit the Sun, mainly
between the orbits of Mars and Jupiter, and range in size from 1,000 kilometers in diameter down to
objects about 100 meters across. Objects similar to asteroids but smaller in size are called
meteoroids.

astronomer: One who studies the universe. Used more commonly in the past, at a time before
spectra were obtained of cosmic objects.

astrophysicist: One who studies the universe using the full toolkit enabled by the known laws of
physics. The preferred term in modern times.

atom: The smallest electrically neutral unit of an element, consisting of a nucleus made of one or
more protons and zero or more neutrons, around which orbit a number of electrons equal to the
number of protons in the nucleus. This number determines the chemical characteristics of the atom.



Bacteria: One of the three domains of life on Earth (formerly known as prokaryotes), single-celled
organisms with no well-defined nucleus that holds genetic material.

barred spiral galaxy: A spiral galaxy in which the distribution of stars and gas in the galaxy’s
central regions has an elongated, barlike configuration.

big bang: The scientific description of the origin of the universe, premised on the hypothesis that
the universe began in an explosion that brought space and matter into existence approximately 14
billion years ago. Today the universe continues to expand in all directions, everywhere, as the result
of this explosion.

black hole: An object with such enormous gravitational force that nothing, not even light, can
escape from within a specific distance from its center, called the object’s black hole radius.

black hole radius: For any object with a mass M, measured in units of the Sun’s mass, a distance
equal to 3M kilometers, also called the object’s event horizon.

blue shift: A shift to higher frequencies and shorter wavelengths, typically caused by the Doppler
effect.

brown dwarf: An object with a composition similar to a star’s, but with too little mass to become a
star by initiating nuclear fusion in its core.

carbohydrate: A molecule made only of carbon, hydrogen, and oxygen atoms, typically with twice
as many hydrogen as oxygen atoms.

carbon: The element that consists of atoms whose nuclei each have six protons, and whose
different isotopes each have six, seven, or eight neutrons.

carbon dioxide: Molecules of CO2, which each have one carbon atom and two oxygen atoms.
Cassini-Huygens spacecraft: The spacecraft launched from Earth in 1997 that reached Saturn in

July 2004, after which the Cassini orbiter surveyed Saturn and its moons and released the Huygens
probe to descend to the surface of Titan, Saturn’s largest satellite.

Celsius or Centigrade temperature scale: The temperature scale named for the Swedish
astronomer Anders Celsius (1701–1744), who introduced it in 1742, according to which water
freezes at zero degrees and boils at 100 degrees.

carbon dioxide (CO2): A type of molecule containing one carbon and two oxygen atoms.
catalyst: A substance that increases the rate at which specific reactions between atoms or

molecules occur, without itself being consumed in these reactions.
CBR: See cosmic background radiation.
cell: A structural and functional unit found in all forms of life on Earth.
chromosome: A single DNA molecule, together with the proteins associated with that molecule,

which stores genetic information in subunits called genes and can transmit that information when cells
replicate.

civilization: For SETI activities, a group of beings with interstellar communications ability at least
equal to our own on Earth.

COBE (COsmic Background Explorer) satellite: The satellite launched in 1989 that observed the
cosmic background radiation and made the first detection of small differences in the amount of this
radiation arriving from different directions on the sky.



comet: A fragment of primitive solar system material, typically a “dirty snowball” made of ice,
rock, dust, and frozen carbon dioxide (dry ice).

compound: A synonym for molecule.
constellation: A localized group of stars, as seen from Earth, named after an animal, planet,

scientific instrument, or mythological character, which in rare cases actually describes the star
pattern; one of eighty-eight such groups in the sky.

cosmic background radiation (CBR): The sea of photons produced everywhere in the universe
soon after the big bang, which still fills the universe and is now characterized by a temperature of
2.73 K.

cosmological constant: The constant introduced by Albert Einstein into his equation describing the
overall behavior of the universe, which describes the amount of energy, now called dark energy, in
every cubic centimeter of seemingly empty space.

cosmologist: An astrophysicist who specializes in the origin and large-scale structure of the
universe.

cosmology: The study of the universe as a whole, and of its structure and evolution.
cosmos: Everything that exists; a synonym for universe.
dark energy: Energy that is invisible and undetectable by any direct measurement, whose amount

depends on the size of the cosmological constant, and which tends to make space expand.
dark matter: Matter of unknown form that emits no electromagnetic radiation, that has been

deduced, from the gravitational forces it exerts on visible matter, to comprise the bulk of all matter in
the universe.

decoupling: The era in the universe’s history when photons first had too little energy to interact
with atoms, so that for the first time atoms could form and endure without being broken apart by
photon impacts.

DNA (deoxyribonucleic acid) molecule: A long, complex molecule consisting of two interlinking
spiral strands, bound together by thousands of cross links formed from small molecules. When DNA
molecules divide and replicate, they split lengthwise, splitting each pair of small molecules that form
their cross links. Each half of the molecule then forms a new replica of the original molecule from
smaller molecules that exist in the nearby environment.

Doppler effect: The change in frequency, wavelength, and energy observed for photons arriving
from a source that has a relative velocity of approach or recession along an observer’s line of sight to
the source. These changes in frequency and wavelength are a general phenomenon that occurs with
any type of wave motion. They do not depend on whether the source is moving or the observer is
moving; what counts is the relative motion of the source with respect to the observer along the
observer’s line of sight.

Doppler shift: The fractional change in the frequency, wavelength, and energy produced by the
Doppler effect.

double helix: The basic structural shape of DNA molecules.
Drake equation: The equation, first derived by the American astronomer Frank Drake, that

summarizes our estimate of the number of civilizations with interstellar communications capability
that exist now or at any representative time.



dry ice: Frozen carbon dioxide (CO2).
dust cloud: Gas clouds in interstellar space that are cool enough for atoms to combine to form

molecules, many of which themselves combine to form dust particles made of millions of atoms each.
dynamics: The study of the motion and the effect of forces on the interaction of objects. When

applied to the motion of objects in the solar system and the universe, this is often called celestial
mechanics.

eavesdropping: The technique of attempting to detect an extraterrestrial civilization by capturing
some of the radio signals used for the civilization’s internal communications.

eccentricity: A measure of the flatness of an ellipse, equal to the ratio of the distance between the
two “foci” of the ellipse to its long axis.

eclipse: The partial or total obscuration of one celestial object by another, as seen by an observer
when the objects appear almost or exactly behind each other.

electric charge: An intrinsic property of elementary particles, which may be positive, zero, or
negative; unlike signs of electric charge attract one another and like signs of electric charge repel one
another through electromagnetic forces.

electromagnetic force: One of the four basic types of forces, acting between particles with electric
charge, and diminishing in proportion to the square of the distance between the particles. Recent
investigations have shown that these forces and weak forces are different aspects of a single electro-
weak force.

electromagnetic radiation: Streams of photons that carry energy away from a source of photons.
electron: An elementary particle with one unit of negative electric charge, which in an atom orbits

the atomic nucleus.
electro-weak forces: The unified aspect of electromagnetic forces and weak forces, whose aspects

appear quite different at relatively low energies but become unified when acting at enormous energies
such as those typical of the earliest moments of the universe.

elements: The basic components of matter, classified by the number of protons in the nucleus. All
ordinary matter in the universe is composed of ninety-two elements that range from the smallest atom,
hydrogen (with one proton in its nucleus), to the largest naturally occurring element, uranium (with
ninety-two protons in its nucleus). Elements heavier than uranium have been produced in laboratories.

elementary particle: A fundamental particle of nature, normally indivisible into other particles.
Protons and neutrons are usually designated as elementary particles although they each consist of
three particles called quarks.

ellipse: A closed curve defined by the fact that the sum of the distances from any point on the curve
to two interior fixed points, called foci, has the same value.

elliptical galaxy: A galaxy with an ellipsoidal distribution of stars, containing almost no interstellar
gas or dust, whose shape seems elliptical in a two-dimensional projection.

energy: The capacity to do work; in physics, “work” is specified by a given amount of force acting
through a specific distance.

energy of mass: The energy equivalent of a specific amount of mass, equal to the mass times the
square of the speed of light.



energy of motion: See kinetic energy.
enzyme: A type of molecule, either a protein or RNA, that serves as a site at which molecules can

interact in certain specific ways, and thus acts as a catalyst, increasing the rate at which particular
molecular reactions occur.

escape velocity: For a projectile or spacecraft, the minimum speed required for an outbound object
to leave its point of launching and never return to the object, despite the object’s gravitational force.

Eukarya: The totality of organisms classified as eukaryotes.
eukaryote: An organism, either single-celled or multicellular, that keeps the genetic material in

each of its cells within a membrane-bounded nucleus.
Europa: One of Jupiter’s four large satellites, notable for its icy surface that may cover a

worldwide ocean.
event horizon: The poetic name given to an object’s black hole radius: the distance from a black

hole’s center that marks the point of no return, because nothing can escape from the black hole’s
gravitational force after passing inward through the event horizon. The event horizon may be
considered to be the “edge” of a black hole.

evolution: In biology, the ongoing result of natural selection, which under certain circumstances
causes groups of similar organisms, called species, to change over time so that their descendants
differ significantly in structure and appearance; in general, any gradual change of an object into
another form or state of development.

exosolar (also extrasolar): Pertaining to objects beyond the solar system. We prefer “exo” for its
correspondence with exobiology, the study of life forms with origins beyond Earth.

exosolar planet (also extrasolar planet): A planet that orbits a star other than the Sun.
extremophile: Organisms that thrive at high temperatures, typically between 70 and 100 degrees

Celsius.
Fahrenheit temperature scale: The temperature scale named for the German-born physicist

Gabriel Daniel Fahrenheit (1686–1736), who introduced it in 1724, according to which water freezes
at 32 degrees and boils at 212 degrees.

fission: The splitting of a larger atomic nucleus into two or more smaller nuclei. The fission of
nuclei larger than iron releases energy. This fission (also called atomic fission) is the source of
energy in all present-day nuclear power plants.

force: The capacity to do work or to produce a physical change; an influence that tends to
accelerate an object in the direction that the force is applied to the object.

fossil: A remnant or trace of an ancient organism.
frequency: Of photons, the number of oscillations or vibrations per second.
fusion: The combining of smaller nuclei to form larger ones. When nuclei smaller than iron fuse,

energy is released. Fusion provides the primary energy source for the world’s nuclear weapons, and
for all stars in the universe. Also called nuclear fusion and thermonuclear fusion.

galaxy: A large group of stars, numbering from several million up to many hundred billion, held
together by the stars’ mutual gravitational attraction, and also usually containing significant amounts of
gas and dust.

galaxy cluster: A large group of galaxies, usually accompanied by gas and dust and by a much



greater amount of dark matter, held together by the mutual gravitational attraction of the material
forming the galaxy cluster.
Galileo spacecraft: The spacecraft sent by NASA to Jupiter in 1990, which arrived in December

1995, dropped a probe into Jupiter’s atmosphere, and spent the next few years in orbit around the
giant planet, photographing the planet and its large satellites.

gamma rays: The highest-energy, highest-frequency, and shortest-wavelength type of
electromagnetic radiation.

gene: A section of a chromosome that specifies, by means of the genetic code, the formation of a
specific chain of amino acids.

genetic code: The set of “letters” in DNA or RNA molecules, each of which specifies a particular
amino acid and consists of three successive molecules like those that form the cross-links between
the twin spirals of DNA molecules.

genome: The total complement of an organism’s genes.
general theory of relativity: Introduced in 1915 by Albert Einstein, forming the natural extension

of special relativity theory into the domain of accelerating objects, this is a modern theory of gravity
that successfully explains many experimental results not otherwise explainable in terms of Newton’s
theory of gravity. Its basic premise is the “equivalence principle,” according to which a person in a
spaceship, for example, cannot distinguish whether the spaceship is accelerating through space, or
whether it is stationary in a gravitational field that would produce the same acceleration. From this
simple yet profound principle emerges a completely reworked understanding of the nature of gravity.
According to Einstein, gravity is not a force in the traditional meaning of the word. Gravity is the
curvature of space in the vicinity of a mass. The motion of a nearby object is completely determined
by its velocity and the amount of curvature that is present. As counterintuitive as this sounds, general
relativity theory explains all known behavior of gravitational systems ever studied and it predicts a
myriad of even more counterintuitive phenomena that are continually verified by controlled
experiment. For example, Einstein predicted that a strong gravity field should warp space and
noticeably bend light in its vicinity. It was later shown that starlight passing near the edge of the Sun
(as seen during a total solar eclipse) is found to be displaced from its expected position by an amount
precisely matching Einstein’s predictions. Perhaps the grandest application of the general theory of
relativity involves the description of our expanding universe where all of space is curved from the
collected gravity of hundreds of billions of galaxies. An important and currently unverified prediction
is the existence of “gravitons”—particles that carry gravitational forces and communicate abrupt
changes in a gravitational field like those expected to arise from a supernova explosion.

giant planet: A planet similar in size and composition to Jupiter, Saturn, Uranus, or Neptune,
consisting of a solid core of rock and ice surrounded by thick layers of mainly hydrogen and helium
gas, with a mass ranging from a dozen or so Earth masses up to many hundred times the mass of Earth.

gravitational forces: One of the four basic types of forces, always attractive, whose strength
between any two objects varies in proportion to the product of the objects’ masses, divided by the
square of the distance between their centers.

gravitational lens: An object that exerts sufficient gravitational force on passing light rays to bend
them, often focusing them to produce a brighter image than an observer would see without the



gravitational lens.
gravitational radiation (gravity waves): Radiation, quite unlike electromagnetic radiation except

for traveling at the speed of light, produced in relatively large amounts when massive objects move
past one another at high speeds.

greenhouse effect: The trapping of infrared radiation by a planet’s atmosphere, which raises the
temperature on and immediately above the planet’s surface.

habitable zone: The region surrounding a star within which the star’s heat can maintain one or more
solvents in a liquid state, hence a spherical shell around the star with an inner and an outer boundary.

halo: The outermost regions of a galaxy—occupying a volume much larger than the visible galaxy
does—within which most of a galaxy’s dark matter resides.

helium: The second lightest and second most abundant element, whose nuclei all contain two
protons and either one or two neutrons. Stars generate energy through the fusion of hydrogen nuclei
(protons) into helium nuclei.

hertz: A unit of frequency, corresponding to one vibration per second.
Hubble’s constant: The constant that appears in Hubble’s law and relates galaxies’ distances to

their recession velocities.
Hubble’s law: The summary of the universe’s expansion as observed today, which states that the

recession velocities of faraway galaxies equals a constant times the galaxies’ distances from the
Milky Way.

Hubble Space Telescope: The space-borne telescope launched in 1991 that has secured marvelous
visible light images of a host of astronomical objects, owing to the fact that the telescope can observe
the cosmos free from the blurring and absorbing effects inevitably produced by Earth’s atmosphere.

hydrogen: The lightest and most abundant element, whose nuclei each contain one proton and a
number of neutrons equal to zero, one, or two.

infrared: Electromagnetic radiation consisting of photons whose wavelengths are all somewhat
longer, and whose frequencies are all somewhat higher, than those of the photons that form visible
light.

initial singularity: The moment at which the expansion of the universe began, also called the big
bang.

inner planets: The Sun’s planets Mercury, Venus, Earth, and Mars, all of which are small, dense,
and rocky in comparison to the giant planets.

interstellar cloud: A region of interstellar space considerably denser than average, typically
spanning a diameter of several dozen light-years, with densities of matter that range from ten atoms
per cubic centimeter up to millions of molecules per cubic centimeter.

interstellar dust: Dust particles, each made of a million or so atoms, probably ejected into
interstellar space from the atmospheres of highly rarefied red-giant stars.

interstellar gas: Gas within a galaxy not part of any stars.
ion: An atom that has lost one or more of its electrons.
ionization: The process of converting an atom into an ion by stripping the atom of one or more

electrons.
irregular galaxy: A galaxy whose shape is irregular, that is, neither spiral (disklike) nor elliptical.



isotope: Nuclei of a specific element, all of which contain the same number of protons but different
numbers of neutrons.

JWST (James Webb Space Telescope): The space-borne telescope, planned to begin operations
during the 2010 decade, that will supersede the Hubble Space Telescope, carrying a larger mirror and
more advanced instruments into space.

Kelvin (absolute) temperature scale: The temperature scale named for Lord Kelvin (William
Thomson, 1824–1907) and created during the mid-nineteenth century, for which the coldest possible
temperature is, by definition, zero degrees. The temperature intervals on this scale (denoted by K) are
the same as those on the Celsius (Centigrade) temperature scale, so that on the Kelvin scale, water
freezes at 273.16 degrees and boils at 373.16 degrees.

kilogram: A unit of mass in the metric system, consisting of 1,000 grams.
kilohertz: A unit of frequency that describes 1,000 vibrations or oscillations per second.
kilometer: A unit of length in the metric system, equal to 1,000 meters and approximately 0.62 mile.
kinetic energy: The energy that an object possesses by virtue of its motion, defined as one half of

the object’s mass times the square of the object’s speed. Thus a more massive object, such as a truck,
has more kinetic energy than a less massive object, such as a tricycle, that moves at the same speed.

Kuiper Belt: The material in orbit around the Sun at distances extending from about 40 A.U.
(Pluto’s average distance) out to several hundred A.U., almost all of which is debris left over from
the Sun’s protoplanetary disk. Pluto is one of the largest objects in the Kuiper Belt.

Large Magellanic Cloud: The larger of the two irregular satellite galaxies of the Milky Way.
latitude: On Earth, the coordinate that measures north and south by specifying the number of degrees

from the Equator (zero degrees) toward the North Pole (90º north) or the South Pole (90º south).
life: A property of matter characterized by the abilities to reproduce and to evolve.
light (visible light): Electromagnetic radiation that consists of photons whose frequencies and

wavelengths fall within the band denoted as visible light, between infrared and ultraviolet.
light-year: The distance that light or other forms of electromagnetic radiation travel in one year,

equal to approximately 10 trillion kilometers or 6 trillion miles.
Local Group: The name given to the two dozen or so galaxies in the immediate vicinity of the

Milky Way galaxy. The Local Group includes the Large and Small Magellanic Clouds and the
Andromeda galaxy.

logarithmic scale: A method for plotting data whereby tremendous ranges of numbers can fit on the
same piece of paper. In official terms, the logarithmic scale increases exponentially (e.g., 1, 10, 100,
1,000, 10,000) rather than arithmetically (e.g., 1, 2, 3, 4, 5).

longitude: On Earth, the coordinate that measures east or west by specifying the number of degrees
from the arbitrarily defined “prime meridian,” the north-south line passing through Greenwich,
England. Longitudes range from zero to 180 degrees east or 180 degrees west of Greenwich, thus
including the 360 degrees that span Earth’s surface.

luminosity: The total amount of energy emitted each second by an object in all types of
electromagnetic radiation.

mass: A measure of an object’s material content, not to be confused with weight, which measures
the amount of gravitational force on an object. For objects at Earth’s surface, however, mass and



weight vary in direct proportion.
mass extinction: An event in the history of life on Earth, in some cases as the result of a massive

impact, during which a significant fraction of all species of organisms become extinct within a
geologically short interval of time.

megahertz: A unit of frequency, equal to 1 million vibrations or oscillations per second.
metabolism: The totality of an organism’s chemical processes, measured by the rate at which the

organism uses energy. A high-metabolism animal must consume energy (food) much more frequently
to sustain itself.

meteor: A luminous streak of light produced by the heating of a meteoroid as it passes through
Earth’s atmosphere.

meteor shower: A large number of meteors observed to radiate from a specific point on the sky, the
result of Earth’s crossing the orbits of a large number of meteoroids within a short time.

meteorite: A meteoroid that survives its passage through Earth’s atmosphere.
meteoroid: An object of rock or metal, or a metal-rock mixture, smaller than an asteroid, moving in

an orbit around the Sun, part of the debris left over from the formation of the solar system or from
collisions between solar-system objects.

meter: The fundamental unit of length in the metric system, equal to approximately 39.37 inches.
Milky Way: The galaxy that contains the Sun and approximately 300 billion other stars, as well as

interstellar gas and dust and a huge amount of dark matter.
model: A mental construct, often created with the aid of pencil and paper or of high-speed

computers, that represents a simplified version of reality and allows scientists to attempt to isolate
and to understand the most important processes occurring in a specific situation.

modified Newtonian dynamics (MOND): A variant theory of gravity proposed by the Israeli
physicist Mordehai Milgrom.

molecule: A stable grouping of two or more atoms.
mutation: A change in an organism’s DNA that can be inherited by descendants of that organism.
natural selection: Differential success in reproduction among organisms of the same species, the

driving force behind the evolution of life on Earth.
nebula: A diffuse mass of gas and dust, usually lit from within by young, highly luminous stars that

have recently formed from this material.
neutrino: An elementary particle with no electric charge and a mass much smaller than an

electron’s mass, characteristically produced or absorbed in reactions among elementary particles
governed by weak forces.

neutron: An elementary particle with no electric charge; one of the two basic components of an
atomic nucleus.

neutron star: The tiny remnants (less than twenty miles in diameter) of the core of a supernova
explosion, composed almost entirely of neutrons and so dense that its matter effectively crams two
thousand ocean liners into each cubic inch of space.

nitrogen: The element made up of atoms whose nuclei each have seven protons, and whose
different isotopes have nuclei with six, seven, eight, nine, or ten neutrons. Most nitrogen nuclei have
seven neutrons.



nuclear fusion: The joining of two nuclei under the influence of strong forces, which occurs only if
the nuclei approach one another at a distance approximately the size of a proton (10-13 centimeter).

nucleic acid: Either DNA or RNA.
nucleotide: One of the cross-linking molecules in DNA and RNA. In DNA, the four nucleotides are

adenine, cytosine, guanine, and thymine; in RNA, uracil plays the role that thymine does in DNA.
nucleus (pl. nuclei): (1) the central region of an atom, composed of one or more protons and zero

or more neutrons. (2) The region within a eukaryotic cell that contains the cell’s genetic material in
the form of chromosomes. (3) The central region of a galaxy.

Oort cloud: The billions or trillions of comets that orbit the Sun, which formed first as the protosun
began to contract, almost all of which move in orbits thousands or even tens of thousands of times
larger than Earth’s orbit.

organic: Referring to chemical compounds with carbon atoms as an important structural element;
carbon-based molecules. Also, having properties associated with life.

organism: An object endowed with the property of being alive.
oxidation: Combination with oxygen atoms, typified by the rusting of metals upon exposure to

oxygen in Earth’s atmosphere.
oxygen: The element whose nuclei each have eight protons, and whose different isotopes each have

seven, eight, nine, ten, eleven, or twelve neutrons in each nucleus. Most oxygen nuclei have eight
neutrons to accompany their eight protons.

ozone (O3): Molecules made of three oxygen atoms, which, at high altitudes in the Earth’s
atmosphere, shield Earth’s surface against ultraviolet radiation.

panspermia: The hypothesis that life from one locale can be transferred to another, e.g., from planet
to planet within the solar system; also called cosmic seeding.

photon: An elementary particle with no mass and no electric charge, capable of carrying energy.
Streams of photons form electromagnetic radiation and travel through space at the speed of light,
299,792 kilometers per second.

photosynthesis: The use of energy in the form of visible light or ultraviolet photons to produce
carbohydrate molecules from carbon dioxide and water. In some organisms, hydrogen sulfide (H2S)
plays the same role that water (H2O) does in most photosynthesis on Earth.

planet: An object in orbit around another star that is not another star and has a size at least as large
as Pluto, which ranks either as the Sun’s smallest planet or as a Kuiper Belt object too small to be a
planet.

planetesimal: An object much smaller than a planet, capable of building planets through numerous
mutual collisions.

plate tectonics: Slow motions of plates of the crust of Earth and similar planets.
primitive atmosphere: The original atmosphere of a planet.
prokaryote: A member of one of the three domains of life, consisting of single-celled organisms in

which the genetic material does not reside within a well-defined nucleus of the cell.
protein: A long-chain molecule made of one or more chains of amino acids.
proton: An elementary particle with one unit of positive electric charge found in the nucleus of



every atom. The number of protons in an atom’s nucleus defines the elemental identity of that atom.
For example, the element that has one proton is hydrogen, the one with two protons is helium, and the
element with ninety-two protons is uranium.

proton-proton cycle: The chain of three nuclear fusion reactions by which most stars fuse protons
into helium nuclei and convert energy of mass into kinetic energy.

protoplanet: A planet during its later stages of formation.
protoplanetary disk: The disk of gas and dust that surrounds a star as it forms, from and within

which individual planets may form.
protostar: A star in formation, contracting from a much larger cloud of gas and dust as the result of

its self-gravitation.
pulsar: An object that emits regularly spaced pulses of radio photons (and often of higher-energy

photons as well) as the result of the rapid rotation of a neutron star, which produces radiation as
charged particles accelerate in the intense magnetic field associated with the neutron star.

quantum mechanics: The description of particles’ behavior at the smallest scales of size, hence of
the structure of atoms and their interaction with other atoms and photons, as well as the behavior of
atomic nuclei.

quasar (quasi-stellar radio source): An object almost starlike in appearance, but whose spectrum
show a large red shift, as a result of the object’s immense distance from the Milky Way.

radiation: Short for electromagnetic radiation. In this nuclear age, the term has also come to mean
any particle or form of light that is bad for your health.

radio: Photons with the longest wavelengths and lowest frequencies.
radioactive decay: The process by which certain types of atomic nuclei spontaneously transform

themselves into other types.
red-giant star: A star that has evolved through its main sequence phase and has begun to contract

its core and expand its outer layers. The contraction induces a greater rate of nuclear fusion, raises
the star’s luminosity, and deposits energy in the outer layers, thereby forcing the star to grow larger.

red shift: A shift to lower frequencies and longer wavelengths in the spectrum of an object,
typically caused by the Doppler effect.

relativity: The general term used to describe Einstein’s special theory of relativity and general
theory of relativity.

replication: The process by which a “parent” DNA molecule divides into two single strands, each
of which forms a “daughter” molecule identical to the parent.

resolution: The ability of a light-collecting device such as a camera, telescope, or microscope to
capture detail. Resolution is always improved with larger lenses or mirrors, but this improvement
may be negated by atmospheric blurring.

revolution: Motion around another object; for example, Earth revolves around the Sun. Revolution
is often confused with rotation.

RNA (ribonucleic acid): A large, complex molecule, made of the same types of molecules that
constitute DNA, which performs various important functions within living cells, including carrying the
genetic messages embodied in DNA to the locations where proteins are assembled.

rotation: The spinning of an object on its own axis. For example, Earth rotates once every 23 hours



and 56 minutes.
runaway greenhouse effect: A greenhouse effect that grows stronger as the heating of a planet’s

surface increases the rate of liquid evaporation, which in turn increases the greenhouse effect.
satellite: A relatively small object that orbits a much larger and more massive one; more precisely,

both objects orbit their common center of mass, in orbits whose sizes are inversely proportional to
the objects’ masses.

self-gravitation: The gravitational forces that each part of an object exert on all the other parts.
SETI: The search for extraterrestrial intelligence.
shooting star: A popular name for a meteor.
skepticism: A questioning or doubting state of mind, which lies at the root of scientific inquiry into

the cosmos.
Small Magellanic Cloud: The smaller of the two irregular galaxies that are satellites of our Milky

Way.
solar system: The Sun plus the objects that orbit it, including planets, their satellites, asteroids,

meteoroids, comets, and interplanetary dust.
solar wind: Particles ejected from the Sun, mostly protons and electrons, which emerge

continuously from the Sun’s outermost layers, but do so in especially large numbers at the time of an
outburst called a solar flare.

solvent: A liquid capable of dissolving another substance; a liquid within which atoms and
molecules can float and interact.

space-time: The mathematical combination of space and time that treats time as a coordinate with
all the rights and privileges accorded space. It has been shown through the special theory of
relativity that nature is most accurately described using a space-time formalism. It simply requires
that all events are specified with space and time coordinates. The appropriate mathematics does not
concern itself with the difference.

special theory of relativity: First proposed in 1905 by Albert Einstein, this provides a renewed
understanding of space, time, and motion. The theory is based on two “Principles of Relativity”: (1)
the speed of light is constant for everyone no matter how you choose to measure it; and (2) the laws of
physics are the same in every frame of reference that is either stationary or moving with constant
velocity. The theory was later extended to include accelerating frames of reference in the general
theory of relativity. It turns out that the two Principles of Relativity that Einstein assumed have been
shown to be valid in every experiment ever performed. Einstein extended the relativity principles to
their logical conclusions and predicted an array of unusual concepts, including:
• There is no such thing as absolute simultaneous events. What is simultaneous for one observer may

have been separated in time for another observer.
• The faster you travel, the slower your time progresses relative to someone observing you.
• The faster you travel, the more massive you become, so the engines of your spaceship are less and

less effective in increasing your speed.
• The faster you travel, the shorter your spaceship becomes—everything gets shorter in the direction

of motion.
• At the speed of light, time stops, you have zero length, and your mass is infinite. Upon realizing the



absurdity of this limiting case, Einstein concluded that you cannot reach the speed of light.

Experiments invented to test Einstein’s theories have verified all of these predictions precisely. An
excellent example is provided by particles that have decay “half-lives.” After a predictable time, half
are expected to decay into another particle. When these particles are sent to speeds near the speed of
light (in particle accelerators), the half-life increases in the exact amount predicted by Einstein. They
also get harder to accelerate, which implies that their effective mass has increased.

species: A particular type of organism, whose members possess similar anatomical characteristics
and can interbreed.

spectrum (pl: spectra): The distribution of photons by frequency or wavelength, often shown as a
graph that presents the number of photons at each specific frequency or wavelength.

sphere: The only solid shape for which every point on the surface has the same distance from the
center.

spiral arms: The spiral features seen within the disk of a spiral galaxy, outlined by the youngest,
hottest, most luminous stars and by giant clouds of gas and dust within which such stars have recently
formed.

spiral galaxy: A galaxy characterized by a highly flattened disk of stars, gas, and dust, distinguished
by spiral arms within the disk.

star: A mass of gas held together by its self-gravitation, at the center of which nuclear fusion
reactions turn energy of mass into kinetic energy that heats the entire star, causing its surface to glow.

star cluster: A group of stars born at the same time and place, capable of enduring as a group for
billions of years because of the stars’ mutual gravitational attraction.

strong forces: One of the four basic types of forces, always attractive, that act between nucleons
(protons and neutrons) to bind them together in atomic nuclei, but only if they approach one another
within distances comparable to 10-13 cm.

sublimation: The transition from the solid to the gaseous state, or from gas to solid, without a
passage through the liquid state.

submillimeter: Electromagnetic radiation with frequencies and wavelengths between those of
radio and infrared.

supermassive black hole: A black hole with more than a few hundred times the mass of the Sun.
supernova (pl: supernovae): A star that explodes at the end of its nuclear-fusing lifetime, attaining

such an enormous luminosity for a few weeks that it can almost equal the energy output of an entire
galaxy. Supernovae produce and distribute elements heavier than hydrogen and helium throughout
interstellar space.

telescope (gamma, X ray, ultraviolet, optical (visible), infrared, microwave, radio):
Astronomers have designed special telescopes and detectors for each part of the spectrum. Some
parts of this spectrum do not reach Earth’s surface. To see the gamma rays, X rays, ultraviolet, and
infrared that is emitted by many cosmic objects, these telescopes must be lifted into orbit above the
absorbing layers of Earth’s atmosphere. The telescopes are of different designs but they do share
three basic principles: (1) They collect photons. (2) They focus photons. And (3) they record the
photons with some sort of detector.



temperature: The measure of the average kinetic energy of random motion within a group of
particles. On the absolute or Kelvin temperature scale, the temperature of a gas is directly
proportional to the average kinetic energy of the particles in the gas.

thermal energy: The energy contained in an object (solid, liquid, or gaseous) by virtue of its
atomic or molecular vibrations. The average kinetic energy of these vibrations is the official
definition of temperature.

thermonuclear: Any process that pertains to the behavior of the atomic nucleus in the presence of
high temperatures.

thermonuclear fusion: Another name for nuclear fusion, sometimes simply referred to as fusion.
thermophile: An organism that thrives at high temperatures, close to the boiling point of water.
tides: Bulges produced in a deformable object by the gravitational force from a nearby object,

which arise from the fact that the nearby object exerts different amounts of force on different parts of
the deformable object, since those parts have different distances from it.

UFOs (unidentified flying objects): Objects seen in the skies of Earth for which a natural
explanation cannot be easily assigned, revealing either a profound ignorance within the scientific
community or a profound ignorance within the observer.

ultraviolet radiation: Photons with frequencies and wavelengths between those of visible light
and X rays.

universe: Usually taken to mean everything that exists, though in modern theories what we call the
universe may prove to be only one part of a much larger “metaverse” or “multiverse.”

virus: A complex of nucleic acids and protein molecules that can reproduce itself only within a
“host” cell of another organism.

visible light: Photons whose frequencies and wavelengths correspond to those detected by human
eyes, intermediate between those of infrared and ultraviolet radiation.
Voyager spacecraft: The two NASA spacecraft, named Voyager 1 and Voyager 2, that were

launched from Earth in 1978 and passed by Jupiter and Saturn a few years later; Voyager 2 went on to
encounter Uranus in 1986 and Neptune in 1989.

wavelength: The distance between successive wave crests or wave troughs; for photons, the
distance that a photon travels while it oscillates once.

weak forces: One of the four basic types of forces, acting only among elementary particles at
distances of about 10-13 cm or less, and responsible for the decay of certain elementary particles into
other types. Recent investigations have shown that weak forces and electromagnetic forces are
different aspects of a single electro-weak force.

white dwarf: The core of a star that has fused helium into carbon nuclei, and therefore consists of
carbon nuclei plus electrons, squeezed to a small diameter (about the size of Earth) and a high density
(about 1 million times the density of water).

WMAP (Wilkinson Microwave Anisotropy Probe) satellite: The satellite launched in 2001 to
study the cosmic background radiation in much greater detail than the COBE satellite could achieve.

X rays: Photons with frequencies greater than those of ultraviolet but less than those of gamma
rays.
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1: This map of the mottled cosmic background radiation was produced by NASA’s Wilkinson
Microwave Anisotropy Probe (WMAP). The slightly hotter regions of the sky are coded red in the
image, and the slightly cooler regions blue. These deviations from an unchanging temperature
everywhere betray variations in the density of matter during the earliest years of the universe.
Superclusters of galaxies owe their origin to the slightly denser regions of this cosmic baby picture.





2: The Hubble Space Telescope’s Ultra Deep Field, obtained in 2004, revealed the faintest cosmic
objects ever recorded. Nearly every object in the image, no matter how small, is a galaxy, sitting
anywhere from 3 to 10 billion light-years away from us. Because their light has traveled for billions
of years before reaching the telescope, the galaxies appear not as they are today but as they once
were, from their origins through the subsequent stages of their evolution.





3: This giant cluster of galaxies, called A2218 by astronomers, lies about 3 billion light-years from
the Milky Way. Behind the galaxies in this cluster lie still more distant galaxies, whose light is bent
and distorted primarily by the gravity from the dark matter and the most massive galaxies lurking
within A2218. This bending produces the long, thin arcs of light visible in this image obtained by the
Hubble Space Telescope.





4: Another giant cluster of galaxies, A1689, about 2 billion light-years away, also bends light from
still more distant galaxies that happen to lie behind the cluster, producing short, bright arcs of light.
By measuring the details of these arcs, revealed in images obtained by the Hubble Space Telescope,
astronomers have determined that most of this cluster’s mass resides not in the galaxies themselves,
but in the form of dark matter.







5: The quasar catalogued as PKS 1127-145 lies about 10 billion light-years from the Milky Way. In
the top panel, a Hubble Space Telescope image in visible light, the quasar reveals itself as the bright
object at the lower right. The actual quasar, which occupies only the innermost portion of this object,
owes its enormous energy output to superheated matter falling into a titanic black hole. The bottom
panel shows the same region of the sky in an X-ray image obtained by the Chandra Observatory. A jet
of X-ray-emitting material more than a million light-years long spews forth from the quasar.





6: In this image of the Coma cluster of galaxies, nearly every faint object is in fact a galaxy made of
more than 100 billion stars. Located about 325 million light-years from the Milky Way, this cluster
spans a diameter of several million light-years and contains many thousand individual galaxies,
orbiting one another in a kind of ballet choreographed by the forces of gravity.





7: The central region of the Virgo cluster of galaxies, a mere 60 million light-years from the Milky
Way, shows dozens of galaxies of different types, including giant elliptical galaxies at the top left and
top right of the image. Spiral galaxies appear throughout this image, taken with the Canada-France-
Hawaii Telescope at the Mauna Kea Observatory. The Virgo cluster’s immense gravitational force,
and its proximity to the Milky Way, significantly affect the motion of the Milky Way through space.
Indeed, the Milky Way and the Virgo cluster form part of an even larger system of galaxies called the
Virgo supercluster.





8: This pair of interacting galaxies, named Arp 295 from their entry in Halton Arp’s Catalog of
Peculiar Galaxies, have drawn out long filaments of their own stars and gas, stretching across a
quarter-million light-years. The two galaxies lie about 270,000 light-years from the Milky Way.





9: A giant spiral galaxy similar to our own dominates this photograph taken by the Very Large
Telescope array in Chile. Our face-on view of this galaxy—about 100 million light-years from the
Milky Way and named NGC 1232—allows us to observe the yellowish light from relatively old stars
near the galaxy’s center, as well as the massive hot, young, bluish stars that dominate the surrounding
pinwheel of spiral arms. Astrophysicists also detect large numbers of interstellar dust grains within
these arms. A smaller companion to NGC 1232, known as a barred spiral galaxy because its central
regions have a barlike shape, appears to the left of the giant spiral.





10: This spiral galaxy, called NGC 3370 and about 100 million light-years away, closely resembles
our own Milky Way in size, shape, and mass. This Hubble Space Telescope image reveals the
complex spiral traced by the young, hot, highly luminous stars that outline the spiral arms. From rim to
rim, the galaxy spans about 100,000 light-years.





11: In March 1994, astronomers discovered Supernova 1994D in the spiral galaxy NGC 4526, one of
the thousands of galaxies in the Virgo cluster, about 60 million light-years from the Milky Way. In this
image obtained by the Hubble Space Telescope, the supernova appears as the bright object at the
lower left, below the belt of light-absorbing dust in the galaxy’s central plane. Apart from enriching
its environment with the chemical ingredients of life, Supernova 1994D is an example of the Type Ia
supernovae used to discover the acceleration of the cosmic expansion.





12: When we look at this spiral galaxy, NGC 4631, about 25 million light-years away, our line of
sight lies edge-on to the galaxy’s disk, so we cannot see the galaxy’s spiral-arm structure. Instead,
dust that lies within the disk obscures much of the light from the galaxy’s stars. The patch of red to the
left of center marks a stellar nursery. Above NGC 4631 lies a smaller, elliptical galaxy, an orbiting
companion to the giant spiral.





13: In this small irregular galaxy, called NGC 1569 and only 7 million light-years away, a burst of
star formation began about 25 million years ago and can still be seen, accounting for most of the
galaxy’s light. Two large star clusters are visible in the left center of this Hubble Space Telescope
image.





14: The Andromeda galaxy, the closest big galaxy to the Milky Way, lies about 2.4 million light-years
from us and spans a region of the sky several times larger than the full moon. In this image, taken by
amateur astron-omer Robert Gendler, one of the galaxy’s two elliptical satellites appears below and
to the left of its center, while a fainter one appears above and to the right of that center. All the other
small bright objects in this image are individual stars within the Milky Way, sitting practically on our
noses at less than 1/100 of the distance to the Andromeda galaxy.





15: Relatively close to the Milky Way, at about the same distance as the Andromeda galaxy (2.4
million light-years), lies the smaller spiral galaxy M33, whose largest star-forming region appears in
this Hubble Space Telescope image. The most massive stars to form in this region have already
exploded as supernovae, enriching their environment with heavy elements, while other massive stars
are producing intense ultraviolet radiation that blasts electrons from the atoms surrounding them.





16: The Milky Way has two large irregular satellite galaxies, called the Large and Small Magellanic
Clouds. This image of the Large Magellanic Cloud shows a large bar of stars at the left, with many
additional stars and star-forming regions to the right. The bright Tarantula Nebula, named for its shape
and seen at the upper center of the photograph, is the largest star-forming region in this galaxy.





17: This star-forming region, called the Papillon nebula for its resemblance to a butterfly, belongs to
the Large Magellanic Cloud, the Milky Way’s largest satellite galaxy. Young stars illuminate the
nebula from inside and excite hydrogen atoms so they emit a characteristic shade of red, captured in
this image by the Hubble Space Telescope.





18: A survey of the entire sky in infrared radiation reveals that we live inside the flattened disk of a
spiral galaxy, which extends in this image to the left and right of the Milky Way’s central region. Dust
particles absorb some of the light from this region, just as they do in faraway spiral galaxies. Below
the plane of our galaxy we can see the Milky Way’s two irregular satellite galaxies, the Large and
Small Magellanic Clouds.





19: When we look toward the center of our Milky Way galaxy, about 30,000 light-years from the solar
system, enormous dust-rich clouds block our view in visible light. Infrared light does a better job of
penetrating the dust, so this infrared image obtained from the Two Micron All Sky Survey project
reveals radiation that arises close to the galactic center, the particularly bright region in this image,
where a supermassive black hole may be steadily swallowing matter.





20: The Crab nebula lives about 7,000 light-years from the solar system, and was produced by an
exploding star whose light reached the Earth on July 4, 1054. In this image taken by the Canada-
France-Hawaii Telescope at the Mauna Kea Observatory, the reddish filaments consist primarily of
hydrogen gas, expanding away from the region of the explosion at the center. The whitish glow arises
from electrons moving at nearly the speed of light through intense magnetic fields. Supernova
remnants such as this one add their evolved material to interstellar clouds of gas and dust. These
clouds give birth to new stars that contain more “heavy” elements such as carbon, nitrogen, oxygen,
and iron than older stars do.





21: This expanding region of gas, named IC 443 by astronomers, is the remnant of a supernova, about
5,000 light-years from the solar system. The star exploded about 30,000 years before the supernova
remnant produced the light recorded in this image, obtained with the Canada-France-Hawaii
Telescope at the Mauna Kea Observatory.





22: These wisps of gas in the Trifid nebula, about 5,000 light-years away, were imaged by the high-
resolution optics of the Hubble Space Telescope. The gas in these pillars must be denser than their
surroundings, which have been stripped away by radiation from young, hot stars nearby.





23: This nebula, called NGC 2440, surrounds the fuel-exhausted but still hot core of what was once a
star. This “white dwarf” appears as a bright spot of light near the center of the nebula in this Hubble
Space Telescope image. Before long, the gas surrounding this object, about 3,500 light-years from the
solar system, will evaporate into space, leaving the white dwarf isolated as it slowly cools and
grows dimmer.





24: This spectacular object, discovered by the famous astronomer William Herschel in 1787, bears
the name Eskimo nebula for its resemblance to a face surrounded by the furry hood of a parka. The
nebula, about 3,000 light-years away, consists of gas expelled from an aging star and illuminated by
ultraviolet radiation from that star, whose surface has grown so hot that it emits more ultraviolet than
visible light. Like Herschel, astronomers call objects like these “planetary nebulae” because a small
telescope shows them only as featureless disks, similar to the images of planets. This Hubble Space
Telescope image removes the confusion by revealing a host of detail in the gases expanding away
from the central star.





25: Amidst a star-forming region in our galaxy, a relatively cool and dense cloud of gas and dust
absorbs starlight, creating the aptly named Horsehead nebula, photographed with the Canada-France-
Hawaii Telescope at the Mauna Kea Observatory. This dust cloud, about 1,500 light-years from the
solar system, forms part of a much larger dark and cool interstellar cloud, some of which creates the
dark area below the horse’s head.





26: This wide-angle photograph, taken by amateur astronomer Rick Scott in 2003, shows the bright
streak produced by one of the meteors observed during the annual Perseid meteor shower in mid-
August, a time when Earth encounters more space debris than usual. Moving at many miles per
second, each piece of debris plows through Earth’s atmosphere to the point that the meteoroid
vaporizes, either partially or totally. In this photograph, the Andromeda galaxy (left of the middle) can
be seen at a distance about 1 million trillion times greater than the altitude of the meteor,
approximately 40 miles above Earth’s surface.





27: Saturn, the Sun’s second largest planet, has a beautiful system of rings, photographed in all their
glory by the Hubble Space Telescope. Like the more modest ring systems around Jupiter, Uranus, and
Neptune, Saturn’s rings consist of swarms of millions of small particles orbiting the planet.







28a & b: Titan, the largest moon of Saturn, has a thick atmosphere made mainly of nitrogen
molecules, but also rich in smoglike particles that permanently block its surface from view in visible
light (upper image, photographed by the Voyager 2 spacecraft in 1981). Observed in its infrared
radiation, however (lower image, taken with the Canada-France-Hawaii Telescope at the Mauna Kea
Observatory), Titan reveals the outlines of surface features that may well be liquid pools, areas of
rock, and even glaciers of frozen hydrocarbons.





29: In December 2000, as the Cassini spacecraft passed by Jupiter en route to its Saturn rendezvous
in 2004, it photographed the outer layers of the Sun’s largest planet. Jupiter consists of a solid core,
surrounded by gaseous layers tens of thousands of miles thick. These gases, which are mainly
compounds of hydrogen with carbon, nitrogen, and oxygen, swirl in colorful patterns as the result of
Jupiter’s rapid rotation. The smallest features visible in this photograph are about forty miles across.







30a & b: Europa, one of Jupiter’s four large moons, has about the same diameter as our Moon, but its
surface displays long, straight lines that may represent worldwide cracks in its icy surface (top
panel). Having secured this global view of Europa, the Galileo spacecraft went in for a closer
inspection (bottom panel) from a distance of only 350 miles. This close-up of Europa’s surface shows
ice hills and straight rills, with what may be darker impact craters among them. Speculation runs high
that Europa’s surface ice layer, perhaps as much as half a mile thick, may cover a moonwide ocean,
capable of supporting primitive forms of life.





31: During the early 1990s, radio waves from the Magellan spacecraft orbiting Venus, which can
penetrate the planet’s optically opaque atmosphere, allowed astronomers to produce this radar image
of Venus’ surface. Numerous large craters appear in this image, while the broad bright-colored area is
the largest of Venus’ highlands.





32: In 1971, the Apollo 15 astronauts used the first vehicle on another world to explore the lunar
highlands, searching for clues to the Moon’s origin.





33: In October 2003, two large groups of sunspots, each several times larger than Earth, appeared on
the face of the Sun, captured here by amateur astronomer Juan Carlos Casado. Rotating along with our
star, these sunspots take nearly a month to cross the sun’s surface and come back around again,
typically fading away in about that time span. Sunspots owe their relative darkness to their cooler
temperatures (about 8,000˚ F. in comparison to the Sun’s average surface temperature of 10,000˚ F.).
The lower temperatures arise from the influence of magnetic fields, which are also associated with
violent solar eruptions, capable of emitting streams of charged particles that affect radio
communications on Earth and the health of astronauts.





34: This image of Mars, taken by the Hubble Space Telescope during the planet’s close approach to
Earth in 2003, shows the south polar cap (mostly frozen carbon dioxide) at the bottom. At the lower
right, the large circular feature is called the Hellas impact basin. Many smaller craters dot the lighter-
colored Martian highlands, while the large darker areas are the lowlands of Mars.





35: This photograph of the Martian surface, taken by the Spirit rover in January 2004, shows hills on
the horizon a few miles away. NASA has now named seven of these hills in honor of the astronauts
who died in the Columbia shuttle disaster on February 1, 2003. Like the two sites where the Viking
spacecraft landed in 1976, the locations where the Spirit and Opportunity rovers touched down in
2004 show rock-strewn plains with no visible signs of life.





36: A close-up view of the immediate surroundings of the Spirit rover shows what may be ancient
bedrock, as well as younger rocks rich in compounds that on Earth typically form underwater. The
prevailing reddish hue comes from iron oxides (rust) in the surface rocks and soils.





37: UCLA Professor of Biology Ken Nealson on location with one of the authors (NDT) in Death
Valley during the shooting of the PBS NOVA special Origins. As an expert in geologically stressed
microorganisms, Nealson knows that this hot, arid, and otherwise hostile environment serves as a
thriving ecosystem for bacteria that live just fine within the cracks of rocks, or on their underside,
shadowed from the oppressive sunlight. The reddish hue of Death Valley rocks greatly resembles that
of the Martian surface.





38: Bad Day on Earth. A view by space artist Don Davis of the collision between an asteroid and
Earth 65 million years ago, which precipitated the extinction of non-avian dinosaurs as well as 70
percent of land species, including all animals larger than a breadbox. The ecological niches left
vacant by the dinosaurs’ demise enabled mammals to evolve from tree shrews—that had been nothing
more than dino-hors d’oevres—to the many and varied mammal forms we see today.





39: This “black smoker” rock formation, shown in vertical cross section, was hauled from the Pacific
Ocean’s Juan de Fuca Ridge, and now sits on display in the Hall of Planet Earth at the American
Museum of Natural History in New York. Along mid-ocean ridges, water can seep through the crust
and become superheated, dissolving minerals along the way. Wherever the water spews back into the
ocean bottom, we find chimneylike structures, formed by the precipitation of minerals from the
cooling water. The porosity of these structures, and the chemical and temperature gradients they
sustain, allow an entire ecosystem to thrive on geothermal and geochemical energy sources, without
regard to the Sun as a source of life-sustaining energy. The newly discovered hardiness of some forms
of bacteria and other life forms on Earth has expanded the list of environments where we may hope to
find life in the universe.





40: Dr. Seth Shostak, of the SETI Insitute (Search for Extra-Terrestrial Intelligence), and one of the
authors (NDT) take a moment to pose between takes of Origins on location at the Arecibo Radio
Telescope in Puerto Rico. Shostak used this largest telescope in the world to “listen” for possible
intelligent signals produced by distant civilizations. The Arecibo telescope sits in a natural limestone
crater. Shostak and Tyson were filmed walking and talking under the wire-mesh dish—itself an
otherworldly environment.
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