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Maxwell Equations

∇ · E =
ρ

ε0

∇ ·B = 0

∇× E = −∂B

∂t

∇×B = µ0

(
J + ε0

∂E

∂t

)
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Recommended Books and Resources

There is more or less a well established route to teaching electromagnetism. A number

of good books follow this.

• David J. Griffiths, “Introduction to Electrodynamics”

A superb book. The explanations are clear and simple. It doesn’t go much beyond

what we do in this course, but if you’re looking for a book to cover the basics then this

is the first one to look at.

• Edward M. Purcell and David J. Morin “Electricity and Magnetism”

Another excellent book to start with. It has somewhat more detail in places than

Griffiths, but the beginning of the book explains both electromagnetism and vector

calculus in an intertwined fashion. If you need some help with vector calculus basics,

this would be a good place to turn. If not, you’ll need to spend some time disentangling

the two topics.

• J. David Jackson, “Classical Electrodynamics”

The most canonical of physics textbooks. This is probably the one book you can find

on every professional physicist’s shelf, whether string theorist or biophysicist. It will

see you through this course and next year’s course. The problems are famously hard.

But it does have div, grad and curl in polar coordinates on the inside cover.

• A. Zangwill, “Modern Electrodynamics”

A great book. It is essentially a more modern and more friendly version of Jackson.

Although, embarrassingly, Maxwell’s equations on the inside cover have a typo.

• Feynman, Leighton and Sands, “The Feynman Lectures on Physics, Volume II”

Feynman’s famous lectures on physics are something of a mixed bag. Some explanations

are wonderfully original, but others can be a little too slick to be helpful. And much of

the material comes across as old-fashioned. Volume two covers electromagnetism and,

in my opinion, is the best of the three.

A number of excellent lecture notes, including the Feynman lectures, are available

on the web. Links can be found on the course webpage:

http://www.damtp.cam.ac.uk/user/tong/em.html
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1. Introduction

There are, to the best of our knowledge, four forces at play in the Universe. At the very

largest scales — those of planets or stars or galaxies — the force of gravity dominates.

At the very smallest distances, the two nuclear forces hold sway. For everything in

between, it is force of electromagnetism that rules.

At the atomic scale, electromagnetism (admittedly in conjunction with some basic

quantum effects) governs the interactions between atoms and molecules. It is the force

that underlies the periodic table of elements, giving rise to all of chemistry and, through

this, much of biology. It is the force which binds atoms together into solids and liquids.

And it is the force which is responsible for the incredible range of properties that

different materials exhibit.

At the macroscopic scale, electromagnetism manifests itself in the familiar phenom-

ena that give the force its name. In the case of electricity, this means everything from

rubbing a balloon on your head and sticking it on the wall, through to the fact that you

can plug any appliance into the wall and be pretty confident that it will work. For mag-

netism, this means everything from the shopping list stuck to your fridge door, through

to trains in Japan which levitate above the rail. Harnessing these powers through the

invention of the electric dynamo and motor has transformed the planet and our lives

on it.

As if this wasn’t enough, there is much more to the force of electromagnetism for it

is, quite literally, responsible for everything you’ve ever seen. It is the force that gives

rise to light itself.

Rather remarkably, a full description of the force of electromagnetism is contained in

four simple and elegant equations. These are known as the Maxwell equations. There

are few places in physics, or indeed in any other subject, where such a richly diverse

set of phenomena flows from so little. The purpose of this course is to introduce the

Maxwell equations and to extract some of the many stories they contain.

However, there is also a second theme that runs through this course. The force of

electromagnetism turns out to be a blueprint for all the other forces. There are various

mathematical symmetries and structures lurking within the Maxwell equations, struc-

tures which Nature then repeats in other contexts. Understanding the mathematical

beauty of the equations will allow us to see some of the principles that underly the laws

of physics, laying the groundwork for future study of the other forces.
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1.1 Charge and Current

Each particle in the Universe carries with it a number of properties. These determine

how the particle interacts with each of the four forces. For the force of gravity, this

property is mass. For the force of electromagnetism, the property is called electric

charge.

For the purposes of this course, we can think of electric charge as a real number,

q ∈ R. Importantly, charge can be positive or negative. It can also be zero, in which

case the particle is unaffected by the force of electromagnetism.

The SI unit of charge is the Coulomb, denoted by C. It is, like all SI units, a parochial

measure, convenient for human activity rather than informed by the underlying laws

of the physics. (We’ll learn more about how the Coulomb is defined in Section 3.5).

At a fundamental level, Nature provides us with a better unit of charge. This follows

from the fact that charge is quantised: the charge of any particle is an integer multiple

of the charge carried by the electron which we denoted as −e, with

e = 1.60217657× 10−19 C

A much more natural unit would be to simply count charge as q = ne with n ∈ Z.

Then electrons have charge −1 while protons have charge +1 and neutrons have charge

0. Nonetheless, in this course, we will bow to convention and stick with SI units.

(An aside: the charge of quarks is actually q = −e/3 and q = 2e/3. This doesn’t

change the spirit of the above discussion since we could just change the basic unit. But,

apart from in extreme circumstances, quarks are confined inside protons and neutrons

so we rarely have to worry about this).

One of the key goals of this course is to move beyond the dynamics of point particles

and onto the dynamics of continuous objects known as fields. To aid in this, it’s useful

to consider the charge density,

ρ(x, t)

defined as charge per unit volume. The total charge Q in a given region V is simply

Q =
∫
V
d3x ρ(x, t). In most situations, we will consider smooth charge densities, which

can be thought of as arising from averaging over many point-like particles. But, on

occasion, we will return to the idea of a single particle of charge q, moving on some

trajectory r(t), by writing ρ = qδ(x − r(t)) where the delta-function ensures that all

the charge sits at a point.
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More generally, we will need to describe the movement of charge from one place to

another. This is captured by a quantity known as the current density J(x, t), defined

as follows: for every surface S, the integral

I =

∫
S

J · dS

counts the charge per unit time passing through S. (Here dS is the unit normal to

S). The quantity I is called the current. In this sense, the current density is the

current-per-unit-area.

The above is a rather indirect definition of the cur-

S

Figure 1: Current flux

rent density. To get a more intuitive picture, consider a

continuous charge distribution in which the velocity of a

small volume, at point x, is given by v(x, t). Then, ne-

glecting relativistic effects, the current density is

J = ρv

In particular, if a single particle is moving with velocity

v = ṙ(t), the current density will be J = qvδ3(x − r(t)).

This is illustrated in the figure, where the underlying charged particles are shown as

red balls, moving through the blue surface S.

As a simple example, consider electrons mov-

v

A

Figure 2: The wire

ing along a wire. We model the wire as a long

cylinder of cross-sectional area A as shown be-

low. The electrons move with velocity v, paral-

lel to the axis of the wire. (In reality, the elec-

trons will have some distribution of speeds; we

take v to be their average velocity). If there are

n electrons per unit volume, each with charge

q, then the charge density is ρ = nq and the current density is J = nqv. The current

itself is I = |J|A.

Throughout this course, the current density J plays a much more prominent role

than the current I. For this reason, we will often refer to J simply as the “current”

although we’ll be more careful with the terminology when there is any possibility for

confusion.
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1.1.1 The Conservation Law

The most important property of electric charge is that it’s conserved. This, of course,

means that the total charge in a system can’t change. But it means much more than

that because electric charge is conserved locally. An electric charge can’t just vanish

from one part of the Universe and turn up somewhere else. It can only leave one point

in space by moving to a neighbouring point.

The property of local conservation means that ρ can change in time only if there

is a compensating current flowing into or out of that region. We express this in the

continuity equation,

∂ρ

∂t
+∇ · J = 0 (1.1)

This is an important equation. It arises in any situation where there is some quantity

that is locally conserved.

To see why the continuity equation captures the right physics, it’s best to consider

the change in the total charge Q contained in some region V .

dQ

dt
=

∫
V

d3x
∂ρ

∂t
= −

∫
V

d3x ∇ · J = −
∫
S

J · dS

From our previous discussion,
∫
S

J · dS is the total current flowing out through the

boundary S of the region V . (It is the total charge flowing out, rather than in, because

dS is the outward normal to the region V ). The minus sign is there to ensure that if

the net flow of current is outwards, then the total charge decreases.

If there is no current flowing out of the region, then dQ/dt = 0. This is the statement

of (global) conservation of charge. In many applications we will take V to be all of

space, R3, with both charges and currents localised in some compact region. This

ensures that the total charge remains constant.

1.2 Forces and Fields

Any particle that carries electric charge experiences the force of electromagnetism. But

the force does not act directly between particles. Instead, Nature chose to introduce

intermediaries. These are fields.

In physics, a “field” is a dynamical quantity which takes a value at every point in

space and time. To describe the force of electromagnetism, we need to introduce two
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fields, each of which is a three-dimensional vector. They are called the electric field E

and the magnetic field B,

E(x, t) and B(x, t)

When we talk about a “force” in modern physics, we really mean an intricate interplay

between particles and fields. There are two aspects to this. First, the charged particles

create both electric and magnetic fields. Second, the electric and magnetic fields guide

the charged particles, telling them how to move. This motion, in turn, changes the

fields that the particles create. We’re left with a beautiful dance with the particles and

fields as two partners, each dictating the moves of the other.

This dance between particles and fields provides a paradigm which other forces in

Nature follow. It feels like there should be a deep reason that Nature chose to introduce

fields associated to all the forces. And, indeed, this approach does provide one over-

riding advantage: all interactions are local. Any object — whether particle or field —

affects things only in its immediate neighbourhood. This influence can then propagate

through the field to reach another point in space, but it does not do so instantaneously.

It takes time for a particle in one part of space to influence a particle elsewhere. This

lack of instantaneous interaction allows us to introduce forces which are compatible

with the theory of special relativity, something that we will explore in more detail in

Section 5

The purpose of this course is to provide a mathematical description of the interplay

between particles and electromagnetic fields. In fact, you’ve already met one side of

this dance: the position r(t) of a particle of charge q is dictated by the electric and

magnetic fields through the Lorentz force law,

F = q(E + ṙ×B) (1.2)

The motion of the particle can then be determined through Newton’s equation F = mr̈.

We explored various solutions to this in the Dynamics and Relativity course. Roughly

speaking, an electric field accelerates a particle in the direction E, while a magnetic

field causes a particle to move in circles in the plane perpendicular to B.

We can also write the Lorentz force law in terms of the charge distribution ρ(x, t)

and the current density J(x, t). Now we talk in terms of the force density f(x, t), which

is the force acting on a small volume at point x. Now the Lorentz force law reads

f = ρE + J×B (1.3)
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1.2.1 The Maxwell Equations

In this course, most of our attention will focus on the other side of the dance: the way

in which electric and magnetic fields are created by charged particles. This is described

by a set of four equations, known collectively as the Maxwell equations. They are:

∇ · E =
ρ

ε0
(1.4)

∇ ·B = 0 (1.5)

∇× E +
∂B

∂t
= 0 (1.6)

∇×B− µ0ε0
∂E

∂t
= µ0J (1.7)

The equations involve two constants. The first is the electric constant (known also, in

slightly old-fashioned terminology, as the permittivity of free space),

ε0 ≈ 8.85× 10−12 m−3Kg−1 s2C2

It can be thought of as characterising the strength of the electric interactions. The

other is the magnetic constant (or permeability of free space),

µ0 = 4π × 10−7 mKgC−2

≈ 1.25× 10−6 mKgC−2

The presence of 4π in this formula isn’t telling us anything deep about Nature. It’s

more a reflection of the definition of the Coulomb as the unit of charge. (We will explain

this in more detail in Section 3.5). Nonetheless, this can be thought of as characterising

the strength of magnetic interactions (in units of Coulombs).

The Maxwell equations (1.4), (1.5), (1.6) and (1.7) will occupy us for the rest of the

course. Rather than trying to understand all the equations at once, we’ll proceed bit

by bit, looking at situations where only some of the equations are important. By the

end of the lectures, we will understand the physics captured by each of these equations

and how they fit together.
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However, equally importantly, we will also explore the mathematical structure of the

Maxwell equations. At first glance, they look just like four random equations from

vector calculus. Yet this couldn’t be further from the truth. The Maxwell equations

are special and, when viewed in the right way, are the essentially unique equations

that can describe the force of electromagnetism. The full story of why these are the

unique equations involves both quantum mechanics and relativity and will only be told

in later courses. But we will start that journey here. The goal is that by the end of

these lectures you will be convinced of the importance of the Maxwell equations on

both experimental and aesthetic grounds.
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2. Electrostatics

In this section, we will be interested in electric charges at rest. This means that there

exists a frame of reference in which there are no currents; only stationary charges. Of

course, there will be forces between these charges but we will assume that the charges

are pinned in place and cannot move. The question that we want to answer is: what

is the electric field generated by these charges?

Since nothing moves, we are looking for time independent solutions to Maxwell’s

equations with J = 0. This means that we can consistently set B = 0 and we’re left

with two of Maxwell’s equations to solve. They are

∇ · E =
ρ

ε0
(2.1)

and

∇× E = 0 (2.2)

If you fix the charge distribution ρ, equations (2.1) and (2.2) have a unique solution.

Our goal in this section is to find it.

2.1 Gauss’ Law

Before we proceed, let’s first present equation (2.1) in a slightly different form that

will shed some light on its meaning. Consider some closed region V ⊂ R3 of space.

We’ll denote the boundary of V by S = ∂V . We now integrate both sides of (2.1) over

V . Since the left-hand side is a total derivative, we can use the divergence theorem to

convert this to an integral over the surface S. We have∫
V

d3x ∇ · E =

∫
S

E · dS =
1

ε0

∫
V

d3x ρ

The integral of the charge density over V is simply the total charge contained in the

region. We’ll call it Q =
∫
d3x ρ. Meanwhile, the integral of the electric field over S is

called the flux through S. We learn that the two are related by∫
S

E · dS =
Q

ε0
(2.3)

This is Gauss’s law. However, because the two are entirely equivalent, we also refer to

the original (2.1) as Gauss’s law.
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S

S’

S

Figure 3: The flux through S and S′ is

the same.

Figure 4: The flux through S vanishes.

Notice that it doesn’t matter what shape the surface S takes. As long as it surrounds

a total charge Q, the flux through the surface will always be Q/ε0. This is shown, for

example, in the left-hand figure above. The choice of S is called the Gaussian surface;

often there’s a smart choice that makes a particular problem simple.

Only charges that lie inside V contribute to the flux. Any charges that lie outside will

produce an electric field that penetrates through S at some point, giving negative flux,

but leaves through the other side of S, depositing positive flux. The total contribution

from these charges that lie outside of V is zero, as illustrated in the right-hand figure

above.

For a general charge distribution, we’ll need to use both Gauss’ law (2.1) and the

extra equation (2.2). However, for rather special charge distributions – typically those

with lots of symmetry – it turns out to be sufficient to solve the integral form of Gauss’

law (2.3) alone, with the symmetry ensuring that (2.2) is automatically satisfied. We

start by describing these rather simple solutions. We’ll then return to the general case

in Section 2.2.

2.1.1 The Coulomb Force

We’ll start by showing that Gauss’ law (2.3) reproduces the more familiar Coulomb

force law that we all know and love. To do this, take a spherically symmetric charge

distribution, centered at the origin, contained within some radius R. This will be our

model for a particle. We won’t need to make any assumption about the nature of the

distribution other than its symmetry and the fact that the total charge is Q.
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We want to know the electric field at some radius r >

S
R

r

Figure 5:

R. We take our Gaussian surface S to be a sphere of radius

r as shown in the figure. Gauss’ law states∫
S

E · dS =
Q

ε0

At this point we make use of the spherical symmetry of the

problem. This tells us that the electric field must point ra-

dially outwards: E(x) = E(r)r̂. And, since the integral is

only over the angular coordinates of the sphere, we can pull

the function E(r) outside. We have∫
S

E · dS = E(r)

∫
S

r̂ · dS = E(r) 4πr2 =
Q

ε0

where the factor of 4πr2 has arisen simply because it’s the area of the Gaussian sphere.

We learn that the electric field outside a spherically symmetric distribution of charge

Q is

E(x) =
Q

4πε0r2
r̂ (2.4)

That’s nice. This is the familiar result that we’ve seen before. (See, for example, the

notes on Dynamics and Relativity). The Lorentz force law (1.2) then tells us that a

test charge q moving in the region r > R experiences a force

F =
Qq

4πε0r2
r̂

This, of course, is the Coulomb force between two static charged particles. Notice that,

as promised, 1/ε0 characterises the strength of the force. If the two charges have the

same sign, so that Qq > 0, the force is repulsive, pushing the test charge away from

the origin. If the charges have opposite signs, Qq < 0, the force is attractive, pointing

towards the origin. We see that Gauss’s law (2.1) reproduces this simple result that we

know about charges.

Finally, note that the assumption of symmetry was crucial in our above analysis.

Without it, the electric field E(x) would have depended on the angular coordinates of

the sphere S and so been stuck inside the integral. In situations without symmetry,

Gauss’ law alone is not enough to determine the electric field and we need to also use

∇ × E = 0. We’ll see how to do this in Section 2.2. If you’re worried, however, it’s

simple to check that our final expression for the electric field (2.4) does indeed solve

∇× E = 0.
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Coulomb vs Newton

The inverse-square form of the force is common to both electrostatics and gravity. It’s

worth comparing the relative strengths of the two forces. For example, we can look

at the relative strengths of Newtonian attraction and Coulomb repulsion between two

electrons. These are point particles with mass me and charge −e given by

e ≈ 1.6× 10−19 Coulombs and me ≈ 9.1× 10−31 Kg

Regardless of the separation, we have

FCoulomb

FNewton

=
e2

4πε0

1

Gm2
e

The strength of gravity is determined by Newton’s constant G ≈ 6.7×10−11 m3Kg−1s2.

Plugging in the numbers reveals something extraordinary:

FCoulomb

FNewton

≈ 1042

Gravity is puny. Electromagnetism rules. In fact you knew this already. The mere act

of lifting up you arm is pitching a few electrical impulses up against the gravitational

might of the entire Earth. Yet the electrical impulses win.

However, gravity has a trick up its sleeve. While electric charges come with both

positive and negative signs, mass is only positive. It means that by the time we get to

macroscopically large objects — stars, planets, cats — the mass accumulates while the

charges cancel to good approximation. This compensates the factor of 10−42 suppression

until, at large distance scales, gravity wins after all.

The fact that the force of gravity is so ridiculously tiny at the level of fundamental

particles has consequence. It means that we can neglect gravity whenever we talk

about the very small. (And indeed, we shall neglect gravity for the rest of this course).

However, it also means that if we would like to understand gravity better on these very

tiny distances – for example, to develop a quantum theory of gravity — then it’s going

to be tricky to get much guidance from experiment.

2.1.2 A Uniform Sphere

The electric field outside a spherically symmetric charge distribution is always given by

(2.4). What about inside? This depends on the distribution in question. The simplest

is a sphere of radius R with uniform charge distribution ρ. The total charge is

Q =
4π

3
R3ρ
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Let’s pick our Gaussian surface to be a sphere, centered at

S

R

r

Figure 6:

the origin, of radius r < R. The charge contained within

this sphere is 4πρr3/3 = Qr3/R3, so Gauss’ law gives∫
S

E · dS =
Qr3

ε0R3

Again, using the symmetry argument we can write E(r) =

E(r)r̂ and compute∫
S

E · dS = E(r)

∫
S

r̂ · dS = E(r) 4πr2 =
Qr3

ε0R3

This tells us that the electric field grows linearly inside the sphere

E(x) =
Qr

4πε0R3
r̂ r < R (2.5)

Outside the sphere we revert to the inverse-square

R r

E

Figure 7:

form (2.4). At the surface of the sphere, r = R, the

electric field is continuous but the derivative, dE/dr,

is not. This is shown in the graph.

2.1.3 Line Charges

Consider, next, a charge smeared out along a line which

L

z

r

Figure 8:

we’ll take to be the z-axis. We’ll take uniform charge den-

sity η per unit length. (If you like you could consider a

solid cylinder with uniform charge density and then send

the radius to zero). We want to know the electric field due

to this line of charge.

Our set-up now has cylindrical symmetry. We take the

Gaussian surface to be a cylinder of length L and radius r.

We have ∫
S

E · dS =
ηL

ε0

Again, by symmetry, the electric field points in the radial

direction, away from the line. We’ll denote this vector in cylindrical polar coordinates

as r̂ so that E = E(r)r̂. The symmetry means that the two end caps of the Gaussian
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surface don’t contribute to the integral because their normal points in the ẑ direction

and ẑ · r̂ = 0. We’re left only with a contribution from the curved side of the cylinder,∫
S

E · dS = E(r) 2πrL =
ηL

ε0

So that the electric field is

E(r) =
η

2πε0r
r̂ (2.6)

Note that, while the electric field for a point charge drops off as 1/r2 (with r the radial

distance), the electric field for a line charge drops off more slowly as 1/r. (Of course, the

radial distance r means slightly different things in the two cases: it is r =
√
x2 + y2 + z2

for the point particle, but is r =
√
x2 + y2 for the line).

2.1.4 Surface Charges and Discontinuities

Now consider an infinite plane, which we E

E

z=0

Figure 9:

take to be z = 0, carrying uniform charge

per unit area, σ. We again take our Gaus-

sian surface to be a cylinder, this time with

its axis perpendicular to the plane as shown

in the figure. In this context, the cylin-

der is sometimes referred to as a Gaussian

“pillbox” (on account of Gauss’ well known

fondness for aspirin). On symmetry grounds, we have

E = E(z)ẑ

Moreover, the electric field in the upper plane, z > 0, must point in the opposite

direction from the lower plane, z < 0, so that E(z) = −E(−z).

The surface integral now vanishes over the curved side of the cylinder and we only

get contributions from the end caps, which we take to have area A. This gives∫
S

E · dS = E(z)A− E(−z)A = 2E(z)A =
σA

ε0

The electric field above an infinite plane of charge is therefore

E(z) =
σ

2ε0
(2.7)

Note that the electric field is independent of the distance from the plane! This is

because the plane is infinite in extent: the further you move from it, the more comes

into view.
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E+

−E

a

L

Figure 10: The normal component of the

electric field is discontinuous

Figure 11: The tangential component of

the electric field is continuous.

There is another important point to take away from this analysis. The electric field

is not continuous on either side of a surface of constant charge density. We have

E(z → 0+)− E(z → 0−) =
σ

ε0
(2.8)

For this to hold, it is not important that the plane stretches to infinity. It’s simple to

redo the above analysis for any arbitrary surface with charge density σ. There is no

need for σ to be uniform and, correspondingly, there is no need for E at a given point

to be parallel to the normal to the surface n̂. At any point of the surface, we can take

a Gaussian cylinder, as shown in the left-hand figure above, whose axis is normal to

the surface at that point. Its cross-sectional area A can be arbitrarily small (since, as

we saw, it drops out of the final answer). If E± denotes the electric field on either side

of the surface, then

n̂ · E|+ − n̂ · E|− =
σ

ε0
(2.9)

In contrast, the electric field tangent to the surface is continuous. To see this, we

need to do a slightly different calculation. Consider, again, an arbitrary surface with

surface charge. Now we consider a loop C with a length L which lies parallel to the

surface and a length a which is perpendicular to the surface. We’ve drawn this loop in

the right-hand figure above, where the surface is now shown side-on. We integrate E

around the loop. Using Stoke’s theorem, we have∮
C

E · dr =

∫
∇× E · dS

where S is the surface bounded by C. In the limit a→ 0, the surface S shrinks to zero

size so this integral gives zero. This means that the contribution to line integral must

also vanish, leaving us with

n̂× E+ − n̂× E− = 0

This is the statement that the electric field tangential to the surface is continuous.
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A Pair of Planes

E=0

E=0

−σ

+σ

E

Figure 12:

As a simple generalisation, consider a pair of infi-

nite planes at z = 0 and z = a, carrying uniform

surface charge density ±σ respectively as shown in

the figure. To compute the electric field we need

only add the fields for arising from two planes, each

of which takes the form (2.7). We find that the

electric field between the two planes is

E =
σ

ε0
ẑ 0 < z < a (2.10)

while E = 0 outside the planes

A Plane Slab

We can rederive the discontinuity (2.9) in the electric field by considering an infinite

slab of thickness 2d and charge density per unit volume ρ. When our Gaussian pillbox

lies inside the slab, with z < d, we have

2AE(z) =
2zAρ

ε0
⇒ E(z) =

ρz

ε0

Meanwhile, for z > d we get our earlier result (2.7). The electric field is now continuous

as shown in the figure. Taking the limit d→ 0 and ρ→∞ such that the surface charge

σ = ρd remains constant reproduces the discontinuity (2.8).

E

−d

+d

z

Figure 13: The Gaussian surface for a

plane slab

Figure 14: The resulting electric field
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A Spherical Shell

Let’s give one last example that involves surface charge and

E

E−

+

Figure 15:

the associated discontinuity of the electric field. We’ll con-

sider a spherical shell of radius R, centered at the origin,

with uniform surface charge density σ. The total charge is

Q = 4πR2σ

We already know that outside the shell, r > R, the electric

field takes the standard inverse-square form (2.4). What

about inside? Well, since any surface with r < R doesn’t

surround a charge, Gauss’ law tells us that we necessarily

have E = 0 inside. That means that there is a discontinuity at the surface r = R,

E · r̂|+ − E · r̂|− =
Q

4πR2ε0
=
σ

ε0

in accord with the expectation (2.9).

2.2 The Electrostatic Potential

For all the examples in the last section, symmetry considerations meant that we only

needed to consider Gauss’ law. However, for general charge distributions Gauss’ law is

not sufficient. We also need to invoke the second equation, ∇× E = 0.

In fact, this second equation is easily dispatched since ∇ × E = 0 implies that the

electric field can be written as the gradient of some function,

E = −∇φ (2.11)

The scalar φ is called the electrostatic potential or scalar potential (or, sometimes, just

the potential). To proceed, we revert to the original differential form of Gauss’ law

(2.1). This now takes the form of the Poisson equation

∇ · E =
ρ

ε0
⇒ ∇2φ = − ρ

ε0
(2.12)

In regions of space where the charge density vanishes, we’re left solving the Laplace

equation

∇2φ = 0 (2.13)

Solutions to the Laplace equation are said to be harmonic functions.
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A few comments:

• The potential φ is only defined up to the addition of some constant. This seem-

ingly trivial point is actually the beginning of a long and deep story in theoretical

physics known as gauge invariance. We’ll come back to it in Section 5.3.1. For

now, we’ll eliminate this redundancy by requiring that φ(r)→ 0 as r →∞.

• We know from our study of Newtonian mechanics that the electrostatic potential

is proportional to the potential energy experienced by a test particle. (See Section

2.2 of the Dynamics and Relativity lecture notes). Specifically, a test particle of

mass m, position r(t) and charge q moving in a background electric field has

conserved energy

E =
1

2
mṙ · ṙ + qφ(r)

• The Poisson equation is linear in both φ and ρ. This means that if we know

the potential φ1 for some charge distribution ρ1 and the potential φ2 for another

charge distribution ρ2, then the potential for ρ1 +ρ2 is simply φ1 +φ2. What this

really means is that the electric field for a bunch of charges is just the sum of

the fields generated by each charge. This is called the principle of superposition

for charges. This linearity of the equations is what makes electromagnetism easy

compared to other forces of Nature.

• We stated above that ∇×E = 0 is equivalent to writing E = −∇φ. This is true

when space is R3 or, in fact, if we take space to be any open ball in R3. But if our

background space has a suitably complicated topology then there are solutions to

∇×E = 0 which cannot be written in the form E = −∇φ. This is tied ultimately

to the beautiful mathematical theory of de Rahm cohomology. Needless to say, in

this starter course we’re not going to worry about these issues. We’ll always take

spacetime to have topology R4 and, correspondingly, any spatial hypersurface to

be R3.

2.2.1 The Point Charge

Let’s start by deriving the Coulomb force law yet again. We’ll take a particle of charge

Q and place it at the origin. This time, however, we’ll assume that the particle really is

a point charge. This means that the charge density takes the form of a delta-function,

ρ(x) = Qδ3(x). We need to solve the equation

∇2φ = −Q
ε0
δ3(x) (2.14)
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You’ve solved problems of this kind in your Methods course. The solution is essentially

the Green’s function for the Laplacian ∇2, an interpretation that we’ll return to in

Section 2.2.3. Let’s recall how we find this solution. We first look away from the

origin, r 6= 0, where there’s no funny business going on with delta-function. Here,

we’re looking for the spherically symmetric solution to the Laplace equation. This is

φ =
α

r

for some constant α. To see why this solves the Laplace equation, we need to use the

result

∇r = r̂ (2.15)

where r̂ is the unit radial vector in spherical polar coordinates, so x = rr̂. Using the

chain rule, this means that ∇(1/r) = −r̂/r2 = −x/r3. This gives us

∇φ = − α
r3

x ⇒ ∇2φ = −α
(
∇ · x
r3
− 3 x · x

r5

)
But ∇ · x = 3 and we find that ∇2φ = 0 as required.

It remains to figure out what to do at the origin where the delta-function lives.

This is what determines the overall normalization α of the solution. At this point, it’s

simplest to use the integral form of Gauss’ law to transfer the problem from the origin

to the far flung reaches of space. To do this, we integrate (2.14) over some region V

which includes the origin. Integrating the charge density gives

ρ(x) = Qδ3(x) ⇒
∫
V

d3x ρ = Q

So, using Gauss’ law (2.3), we require∫
S

∇φ · dS = −Q
ε0

But this is exactly the kind of surface integral that we were doing in the last section.

Substituting φ = α/r into the above equation, and choosing S to be a sphere of radius

r, tells us that we must have α = Q/4πε0, or

φ =
Q

4πε0r
(2.16)

Taking the gradient of this using (2.15) gives us Coulomb’s law

E(x) = −∇φ =
Q

4πε0r2
r̂
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The derivation of Coulomb’s law using the potential was somewhat more involved than

the technique using Gauss’ law alone that we saw in the last section. However, as we’ll

now see, introducing the potential allows us to write down the solution to essentially

any problem.

A Note on Notation

Throughout these lectures, we will use x and r interchangeably to denote position

in space. For example, sometimes we’ll write integration over a volume as
∫
d3x and

sometimes as
∫
d3r. The advantage of the r notation is that it looks more natural when

working in spherical polar coordinates. For example, we have |r| = r which is nice.

The disadvantage is that it can lead to confusion when working in other coordinate

systems, in particular cylindrical polar. For this reason, we’ll alternate between the

two notations, adopting the attitude that clarity is more important than consistency.

2.2.2 The Dipole

A dipole consists of two point charges, Q and −Q, a distance d apart. We place the

first charge at the origin and the second at r = −d. The potential is simply the sum

of the potential for each charge,

φ =
1

4πε0

(
Q

r
− Q

|r + d|

)
Similarly, the electric field is just the sum of the electric fields made by the two point

charges. This follows from the linearity of the equations and is a simple application of

the principle of superposition that we mentioned earlier.

It will prove fruitful to ask what the dipole looks like far from the two point charges,

at a distance r � |d|. We need to Taylor expand the second term above. The vector

version of the Taylor expansion for a general function f(r) is given by

f(r + d) ≈ f(r) + d · ∇f(r) +
1

2
(d · ∇)2f(r) + . . . (2.17)

Applying this to the function 1/|r + d| gives

1

|r + d|
≈ 1

r
+ d · ∇1

r
+

1

2
(d · ∇)2

1

r
+ . . .

=
1

r
− d · r

r3
− 1

2

(
d · d
r3
− 3(d · r)2

r5

)
+ . . .
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(To derive the last term, it might be easiest to use index notation for d · ∇ = di∂i).

For our dipole, we’ll only need the first two terms in this expansion. They give the

potential

φ ≈ Q

4πε0

(
1

r
− 1

r
− d · ∇1

r
+ . . .

)
=

Q

4πε0

d · r
r3

+ . . . (2.18)

We see that the potential for a dipole falls off as 1/r2. Correspondingly, the electric

field drops off as 1/r3; both are one power higher than the fields for a point charge.

The electric field is not spherically symmetric. The leading order contribution is

governed by the combination

p = Qd

This is called the electric dipole moment. By convention, it points from the negative

charge to the positive. The dipole electric field is

E = −∇φ =
1

4πε0

(
3(p · r̂)r̂− p

r3

)
+ . . . (2.19)

Notice that the sign of the electric field depends on where you sit in space. In some

parts, the force will be attractive; in other parts repulsive.

It’s sometimes useful to consider the limit d → 0 and Q → ∞ such that p = Qd

remains fixed. In this limit, all the . . . terms in (2.18) and (2.19) disappear since they

contain higher powers of d. Often when people talk about the “dipole”, they implicitly

mean taking this limit.

2.2.3 General Charge Distributions

Our derivation of the potential due to a point charge (2.16), together with the principle

of superposition, is actually enough to solve – at least formally – the potential due to

any charge distribution. This is because the solution for a point charge is nothing other

than the Green’s function for the Laplacian. The Green’s function is defined to be the

solution to the equation

∇2G(r; r′) = δ3(r− r′)

which, from our discussion of the point charge, we now know to be

G(r; r′) = − 1

4π

1

|r− r′|
(2.20)
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We can now apply our usual Green’s function methods to the general Poisson equation

(2.12). In what follows, we’ll take ρ(r) 6= 0 only in some compact region, V , of space.

The solution to the Poisson equation is given by

φ(r) = − 1

ε0

∫
V

d3r′ G(r; r′) ρ(r′) =
1

4πε0

∫
V

d3r′
ρ(r′)

|r− r′|
(2.21)

(To check this, you just have to keep your head and remember whether the operators

are hitting r or r′. The Laplacian acts on r so, if we compute ∇2φ, it passes through

the integral in the above expression and hits G(r; r′), leaving behind a delta-function

which subsequently kills the integral).

Similarly, the electric field arising from a general charge distribution is

E(r) = −∇φ(r) = − 1

4πε0

∫
V

d3r′ ρ(r′)∇ 1

|r− r′|

=
1

4πε0

∫
V

d3r′ ρ(r′)
r− r′

|r− r′|3

Given a very complicated charge distribution ρ(r), this equation will give back an

equally complicated electric field E(r). But if we sit a long way from the charge

distribution, there’s a rather nice simplification that happens. . .

Long Distance Behaviour

Suppose now that you want to know what the electric field
r’

r

V

Figure 16:

looks like far from the region V . This means that we’re inter-

ested in the electric field at r with |r| � |r′| for all r′ ∈ V . We

can apply the same Taylor expansion (2.17), now replacing d

with −r′ for each r′ in the charged region. This means we can

write

1

|r− r′|
=

1

r
− r′ · ∇1

r
+

1

2
(r′ · ∇)2

1

r
+ . . .

=
1

r
+

r · r′

r3
+

1

2

(
3(r · r′)2

r5
− r′ · r′

r3

)
+ . . . (2.22)

and our potential becomes

φ(r) =
1

4πε0

∫
V

d3r′ ρ(r′)

(
1

r
+

r · r′

r3
+ . . .

)
The leading term is just

φ(r) =
Q

4πε0r
+ . . .
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where Q =
∫
V
d3r′ ρ(r′) is the total charge contained within V . So, to leading order, if

you’re far enough away then you can’t distinguish a general charge distribution from

a point charge localised at the origin. But if you’re careful with experiments, you can

tell the difference. The first correction takes the form of a dipole,

φ(r) =
1

4πε0

(
Q

r
+

p · r̂
r2

+ . . .

)
where

p =

∫
V

d3r′ r′ρ(r′)

is the dipole moment of the distribution. One particularly important situation is when

we have a neutral object with Q = 0. In this case, the dipole is the dominant contri-

bution to the potential.

We see that an arbitrarily complicated, localised charge distribution can be char-

acterised by a few simple quantities, of decreasing importance. First comes the total

charge Q. Next the dipole moment p which contains some basic information about

how the charges are distributed. But we can keep going. The next correction is called

the quadrupole and is given by

∆φ =
1

2

1

4πε0

rirjQij

r5

where Qij is a symmetric traceless tensor known as the quadrupole moment, given by

Qij =

∫
V

d3r′ ρ(r′)
(
3r′ir

′
j − δijr′ 2

)
It contains some more refined information about how the charges are distributed. After

this comes the octopole and so on. The general name given to this approach is the mul-

tipole expansion. It involves expanding the function φ in terms of spherical harmonics.

A systematic treatment can be found, for example, in the book by Jackson.

A Comment on Infinite Charge Distributions

In the above, we assumed for simplicity that the charge distribution was restricted to

some compact region of space, V . The Green’s function approach still works if the

charge distribution stretches to infinity. However, for such distributions it’s not always

possible to pick φ(r)→ 0 as r →∞. In fact, we saw an example of this earlier. For an

infinite line charge, we computed the electric field in (2.6). It goes as

E(r) =
ρ

2πr
r̂
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where now r2 = x2 + y2 is the cylindrical radial coordinate perpendicular to the line.

The potential φ which gives rise to this is

φ(r) = − η

2πε0
log

(
r

r0

)
Because of the log function, we necessarily have φ(r) → ∞ as r → ∞. Instead, we

need to pick an arbitrary, but finite distance, r0 at which the potential vanishes.

2.2.4 Field Lines

The usual way of depicting a vector is to draw an arrow whose length is proportional

to the magnitude. For the electric field, there’s a slightly different, more useful way

to show what’s going on. We draw continuous lines, tangent to the electric field E,

with the density of lines proportional to the magnitude of E. This innovation, due

to Faraday, is called the field line. (They are what we have been secretly drawing

throughout these notes).

Field lines are continuous. They begin and end only at charges. They can never

cross.

The field lines for positive and negative point charges are:

+ −

By convention, the positive charges act as sources for the lines, with the arrows emerg-

ing. The negative charges act as sinks, with the arrows approaching.

It’s also easy to draw the equipotentials — surfaces of constant φ — on this same

figure. These are the surfaces along which you can move a charge without doing any

work. The relationship E = −∇φ ensures that the equipotentials cut the field lines at

right angles. We usually draw them as dotted lines:

+ −
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Meanwhile, we can (very) roughly sketch the field lines and equipotentials for the dipole

(on the left) and for a pair of charges of the same sign (on the right):

+ − + +

2.2.5 Electrostatic Equilibrium

Here’s a simple question: can you trap an electric charge using only other charges? In

other words, can you find some arrangements of charges such that a test charge sits in

stable equilibrium, trapped by the fields of the others.

There’s a trivial way to do this: just allow a negative charge to sit directly on top of

a positive charge. But let’s throw out this possibility. We’ll ask that the equilibrium

point lies away from all the other charges.

There are some simple set-ups that spring to mind that might achieve this. Maybe

you could place four positive charges at the vertices of a pyramid; or perhaps 8 positive

charges at the corners of a cube. Is it possible that a test positive charge trapped in

the middle will be stable? It’s certainly repelled from all the corners, so it might seem

plausible.

The answer, however, is no. There is no electrostatic equilibrium. You cannot trap

an electric charge using only other stationary electric charges, at least not in a stable

manner. Since the potential energy of the particle is proportional to φ, mathematically,

this is the statement that a harmonic function, obeying ∇2φ = 0, can have no minimum

or maximum.

To prove that there can be no electrostatic equilibrium, let’s suppose the opposite:

that there is some point in empty space r? that is stable for a particle of charge q < 0.

By “empty space”, we mean that ρ(r) = 0 in a neighbourhood of r?. Because the point

is stable, if the particle moves away from this point then it must always be pushed

back. This, in turn, means that the electric field must always point inwards towards

the point r?; never away. We could then surround r? by a small surface S and compute∫
S

E · dS < 0
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But, by Gauss’ law, the right-hand side must be the charge contained within S which,

by assumption, is zero. This is our contradiction: electrostatic equilibrium does not

exist.

Of course, if you’re willing to use something other than electrostatic forces then you

can construct equilibrium situations. For example, if you restrict the test particle to

lie on a plane then it’s simple to check that equal charges placed at the corners of a

polygon will result in a stable equilibrium point in the middle. But to do this you need

to use other forces to keep the particle in the plane in the first place.

2.3 Electrostatic Energy

There is energy stored in the electric field. In this section, we calculate how much.

Let’s start by recalling a fact from our first course on classical mechanics1. Suppose

we have some test charge q moving in a background electrostatic potential φ. We’ll

denote the potential energy of the particle as U(r). (We used the notation V (r) in the

Dynamics and Relativity course but we’ll need to reserve V for the voltage later). The

potential U(r) of the particle can be thought of as the work done bringing the particle

in from infinity;

U(r) = −
∫ r

∞
F · dr = +q

∫ r

∞
∇φ · dr = qφ(r)

where we’ve assumed our standard normalization of φ(r)→ 0 as r →∞.

Consider a distribution of charges which, for now, we’ll take to be made of point

charges qi at positions ri. The electrostatic potential energy stored in this configuration

is the same as the work required to assemble the configuration in the first place. (This

is because if you let the charges go, this is how much kinetic energy they will pick up).

So how much work does it take to assemble a collection of charges?

Well, the first charge is free. In the absence of any electric field, you can just put it

where you like — say, r1. The work required is W1 = 0.

To place the second charge at r2 takes work

W2 =
q1q2
4πε0

1

|r1 − r2|
Note that if the two charges have the same sign, so q1q2 > 0, then W2 > 0 which is

telling us that we need to put work in to make them approach. If q1q2 < 0 then W2 < 0

where the negative work means that the particles wanted to be drawn closer by their

mutual attraction.
1See Section 2.2 of the lecture notes on Dynamics and Relativity.
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The third charge has to battle against the electric field due to both q1 and q2. The

work required is

W3 =
q3

4πε0

(
q2

|r2 − r3|
+

q1
|r1 − r3|

)
and so on. The total work needed to assemble all the charges is the potential energy

stored in the configuration,

U =
N∑
i=1

Wi =
1

4πε0

∑
i<j

qiqj
|ri − rj|

(2.23)

where
∑

i<j means that we sum over each pair of particles once. In fact, you probably

could have just written down (2.23) as the potential energy stored in the configuration.

The whole purpose of the above argument was really just to nail down a factor of 1/2:

do we sum over all pairs of particles
∑

i<j or all particles
∑

i 6=j? The answer, as we

have seen, is all pairs.

We can make that factor of 1/2 even more explicit by writing

U =
1

2

1

4πε0

∑
i

∑
j 6=i

qiqj
|ri − rj|

(2.24)

where now we sum over each pair twice.

There is a slicker way of writing (2.24). The potential at ri due to all the other

charges qj, j 6= i is

φ(ri) =
1

4πε0

∑
j 6=i

qj
|ri − rj|

which means that we can write the potential energy as

U =
1

2

N∑
i=1

qiφ(ri) (2.25)

This is the potential energy for a set of point charges. But there is an obvious general-

ization to charge distributions ρ(r). We’ll again assume that ρ(r) has compact support

so that the charge is localised in some region of space. The potential energy associated

to such a charge distribution should be

U =
1

2

∫
d3r ρ(r)φ(r) (2.26)

where we can quite happily take the integral over all of R3, safe in the knowledge that

anywhere that doesn’t contain charge has ρ(r) = 0 and so won’t contribute.
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Now this is in a form that we can start to play with. We use Gauss’ law to rewrite

it as

U =
ε0
2

∫
d3r (∇ · E)φ =

ε0
2

∫
d3r [∇ · (Eφ)− E · ∇φ]

But the first term is a total derivative. And since we’re taking the integral over all of

space and φ(r) → 0 as r → ∞, this term just vanishes. In the second term we can

replace ∇φ = −E. We find that the potential energy stored in a charge distribution

has an elegant expression solely in terms of the electric field that it creates,

U =
ε0
2

∫
d3r E · E (2.27)

Isn’t that nice!

2.3.1 The Energy of a Point Particle

There is a subtlety in the above derivation. In fact, I totally tried to pull the wool over

your eyes. Here it’s time to own up.

First, let me say that the final result (2.27) is right: this is the energy stored in the

electric field. But the derivation above was dodgy. One reason to be dissatisfied is

that we computed the energy in the electric field by equating it to the potential energy

stored in a charge distribution that creates this electric field. But the end result doesn’t

depend on the charge distribution. This suggests that there should be a more direct

way to arrive at (2.27) that only talks about fields and doesn’t need charges. And there

is. You’ll see it in next year’s Electrodynamics course.

But there is also another, more worrying problem with the derivation above. To

illustrate this, let’s just look at the simplest situation of a point particle. This has

electric field

E =
q

4πε0r2
r̂ (2.28)

So, by (2.27), the associated electric field should carry energy. But we started our

derivation above by assuming that a single particle didn’t carry any energy since it

didn’t take any work to put the particle there in the first place. What’s going on?

Well, there was something of a sleight of hand in the derivation above. This occurs

when we went from the expression qφ in (2.25) to ρφ in (2.26). The former omits the

“self-energy” terms; there is no contribution arising from qiφ(ri). However, the latter

includes them. The two expressions are not quite the same. This is also the reason

that our final expression for the energy (2.27) is manifestly positive, while qφ can be

positive or negative.
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So which is right? Well, which form of the energy you use rather depends on the

context. It is true that (2.27) is the correct expression for the energy stored in the

electric field. But it is also true that you don’t have to do any work to put the first

charge in place since we’re obviously not fighting against anything. Instead, the “self-

energy” contribution coming from E ·E in (2.28) should simply be thought of — using

E = mc2 — as a contribution to the mass of the particle.

We can easily compute this contribution for, say, an electron with charge q = −e.
Let’s call the radius of the electron a. Then the energy stored in its electric field is

Energy =
ε0
2

∫
d3r E · E =

e2

32πε0

∫ ∞
a

dr
4πr2

r4
=

e2

8πε0

1

a

We see that, at least as far as the energy is concerned, we’d better not treat the electron

as a point particle with a → 0 or it will end up having infinite mass. And that will

make it really hard to move.

So what is the radius of an electron? For the above calculation to be consistent, the

energy in the electric field can’t be greater than the observed mass of the electron me.

In other words, we’d better have

mec
2 >

e2

8πε0

1

a
⇒ a >

e2

8πε0

1

mec2
(2.29)

That, at least, puts a bound on the radius of the electron, which is the best we can

do using classical physics alone. To give a more precise statement of the radius of the

electron, we need to turn to quantum mechanics.

A Quick Foray into Quantum Electrodynamics

To assign a meaning of “radius” to seemingly point-like particles, we really need the

machinery of quantum field theory. In that context, the size of the electron is called its

Compton wavelength. This is the distance scale at which the electron gets surrounded

by a swarm of electron-positron pairs which, roughly speaking, smears out the charge

distribution. This distance scale is

a =
~
mec

We see that the inequality (2.29) translates into an inequality on a bunch of fundamental

constants. For the whole story to hang together, we require

e2

8πε0~c
< 1
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This is an almost famous combination of constants. It’s more usual to define the

combination

α =
e2

4πε0~c
This is known as the fine structure constant. It is dimensionless and takes the value

α ≈ 1

137

Our discussion above requires α < 2. We see that Nature happily meets this require-

ment.

2.3.2 The Force Between Electric Dipoles

As an application of our formula for electrostatic energy, we can compute the force

between two, far separated dipoles. We place the first dipole, p1, at the origin. It gives

rise to a potential

φ(r) =
1

4πε0

p1 · r
r3

Now, at some distance away, we place a second dipole. We’ll take this to consist of a

charge Q at position r and a charge −Q at position r− d, with d� r. The resulting

dipole moment is p2 = Qd. The potential energy of this system is given by (2.25),

U =
Q

2

(
φ(r)− φ(r− d)

)
=

1

8πε0

(
Qp1 · r
r3

− Qp1 · (r− d)

|r− d|3

)
=

Q

8πε0

(
p1 · r
r3
− p1 · (r− d)

(
1

r3
+

3d · r
r5

+ . . .

))
≈ Q

8πε0

(
p1 · d
r3
− 3(p1 · r)(d · r)

r5

)
where, to get to the second line, we’ve Taylor expanded the denominator of the second

term. This final expression can be written in terms of the second dipole moment. We

find the nice, symmetric expression for the potential energy of two dipoles separated

by distance r,

U =
1

8πε0

(
p1 · p2

r3
− 3(p1 · r)(p2 · r)

r5

)
But, we know from our first course on dynamics that the force between two objects is

just given by F = −∇U . We learn that the force between two dipoles is given by

F =
1

8πε0
∇
(

3(p1 · r)(p2 · r)

r5
− p1 · p2

r3

)
(2.30)
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The strength of the force, and even its sign, depends on the orientation of the two

dipoles. If p1 and p2 lie parallel to each other and to r then the resulting force is

attractive. If p1 and p2 point in opposite directions, and lie parallel to r, then the force

is repulsive. The expression above allows us to compute the general force.

2.4 Conductors

Let’s now throw something new into the mix. A conductor is a region of space which

contains charges that are free to move. Physically, think “metal”. We want to ask

what happens to the story of electrostatics in the presence of a conductor. There are

a number of things that we can say straight away:

• Inside a conductor we must have E = 0. If this isn’t the case, the charges would

move. But we’re interested in electrostatic situations where nothing moves.

• Since E = 0 inside a conductor, the electrostatic potential φ must be constant

throughout the conductor.

• Since E = 0 and ∇ · E = ρ/ε0, we must also have ρ = 0. This means that the

interior of the conductor can’t carry any charge.

• Conductors can be neutral, carrying both positive and negative charges which

balance out. Alternatively, conductors can have net charge. In this case, any net

charge must reside at the surface of the conductor.

• Since φ is constant, the surface of the conductor must be an equipotential. This

means that any E = −∇φ is perpendicular to the surface. This also fits nicely

with the discussion above since any component of the electric field that lies tan-

gential to the surface would make the surface charges move.

• If there is surface charge σ anywhere in the conductor then, by our previous

discontinuity result (2.9), together with the fact that E = 0 inside, the electric

field just outside the conductor must be

E =
σ

ε0
n̂ (2.31)

Problems involving conductors are of a slightly different nature than those we’ve

discussed up to now. The reason is that we don’t know from the start where the charges

are, so we don’t know what charge distribution ρ that we should be solving for. Instead,

the electric fields from other sources will cause the charges inside the conductor to shift

around until they reach equilibrium in such a way that E = 0 inside the conductor. In
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general, this will mean that even neutral conductors end up with some surface charge,

negative in some areas, positive in others, just enough to generate an electric field inside

the conductor that precisely cancels that due to external sources.

An Example: A Conducting Sphere

To illustrate the kind of problem that we have to deal with, it’s probably best just to

give an example. Consider a constant background electric field. (It could, for example,

be generated by two charged plates of the kind we looked at in Section 2.1.4). Now

place a neutral, spherical conductor inside this field. What happens?

We know that the conductor can’t suffer an electric field inside it. Instead, the

mobile charges in the conductor will move: the negative ones to one side; the positive

ones to the other. The sphere now becomes polarised. These charges counteract the

background electric field such that E = 0 inside the conductor, while the electric field

outside impinges on the sphere at right-angles. The end result must look qualitatively

like this:

+

+

+

+

+

−

−

−

−

−

−

−

+

− +

+

We’d like to understand how to compute the electric field in this, and related, situations.

We’ll give the answer in Section 2.4.4.

An Application: Faraday Cage

Consider some region of space that doesn’t contain any charges, surrounded by a con-

ductor. The conductor sits at constant φ = φ0 while, since there are no charges inside,

we must have ∇2φ = 0. But this means that φ = φ0 everywhere. This is because, if it

didn’t then there would be a maximum or minimum of φ somewhere inside. And we

know from the discussion in Section 2.2.5 that this can’t happen. Therefore, inside a

region surrounded by a conductor, we must have E = 0.

This is a very useful result if you want to shield a region from electric fields. In

this context, the surrounding conductor is called a Faraday cage. As an application, if

you’re worried that they’re trying to read your mind with electromagnetic waves, then

you need only wrap your head in tin foil and all concerns should be alleviated.

2.4.1 Capacitors
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Let’s now solve for the electric field in some conductor problems.

+Q −Q

z

Figure 17:

The simplest examples are capacitors. These are a pair of con-

ductors, one carrying charge Q, the other charge −Q.

Parallel Plate Capacitor

To start, we’ll take the conductors to have flat, parallel surfaces

as shown in the figure. We usually assume that the distance d

between the surfaces is much smaller than
√
A, where A is the

area of the surface. This means that we can neglect the effects

that arise around the edge of plates and we’re justified in assuming that the electric

field between the two plates is the same as it would be if the plates were infinite in

extent. The problem reduces to the same one that we considered in Section 2.1.4. The

electric field necessarily vanishes inside the conductor while, between the plates we have

the result (2.10),

E =
σ

ε0
ẑ

where σ = Q/A and we have assumed the plates are separated in the z-direction. We

define the capacitance C to be

C =
Q

V

where V is the voltage or potential difference which is, as the name suggests, the dif-

ference in the potential φ on the two conductors. Since E = −dφ/dz is constant, we

must have

φ = −Ez + c ⇒ V = φ(0)− φ(d) = Ed =
Qd

Aε0

and the capacitance for parallel plates of area A, separated by distance d, is

C =
Aε0
d

Because V was proportional to Q, the charge has dropped out of our expression for the

capacitance. Instead, C depends only on the geometry of the set-up. This is a general

property; we will see another example below.

Capacitors are usually employed as a method to store electrical energy. We can see

how much. Using our result (2.27), we have

U =
ε0
2

∫
d3x E · E =

Aε0
2

∫ d

0

dz

(
σ

ε0

)2

=
Q2

2C

This is the energy stored in a parallel plate capacitor.
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Concentric Sphere Capacitor

Consider a spherical conductor of radius R1. Around this we

R2

+Q

−Q

R1

Figure 18:

place another conductor in the shape of a spherical shell with

inner surface lying at radius R2. We add charge +Q to the

sphere and −Q to the shell. From our earlier discussion of

charged spheres and shells, we know that the electric field be-

tween the two conductors must be

E =
Q

4πε0r2
r̂ R1 < r < R2

Correspondingly, the potential is

φ =
Q

4πε0r
R1 < r < R2

and the capacitance is given by C = 4πε0R1R2/(R2 −R1).

2.4.2 Boundary Value Problems

Until now, we’ve thought of conductors as carrying some fixed charge Q. These con-

ductors then sit at some constant potential φ. If there are other conductors in the

vicinity that carry a different charge then, as we’ve seen above, there will be some fixed

potential difference, V = ∆φ between them.

However, we can also think of a subtly different scenario. Suppose that we instead

fix the potential φ in a conductor. This means that, whatever else happens, whatever

other charges are doing all around, the conductor remains at a fixed φ. It never deviates

from this value.

Now, this sounds a bit strange. We’ve seen above that the electric potential of

a conductor depends on the distance to other conductors and also on the charge it

carries. If φ remains constant, regardless of what objects are around it, then it must

mean that the charge on the conductor is not fixed. And that’s indeed what happens.

Having conductors at fixed φ means that charge can flow in and out of the conductor.

We implicitly assume that there is some background reservoir of charge which the

conductor can dip into, taking and giving charge so that φ remains constant.

We can think of this reservoir of charge as follows: suppose that, somewhere in the

background, there is a huge conductor with some charge Q which sits at some potential

φ. To fix the potential of any other conductor, we simply attach it to one of this big
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reservoir-conductor. In general, some amount of charge will flow between them. The

big conductor doesn’t miss it, while the small conductor makes use of it to keep itself

at constant φ.

The simplest example of the situation above arises if you connect your conductor to

the planet Earth. By convention, this is taken to have φ = 0 and it ensures that your

conductor also sits at φ = 0. Such conductors are said to be grounded. In practice,

one may ground a conductor inside a chip in your cell phone by attaching it the metal

casing.

Mathematically, we can consider the following problem. Take some number of ob-

jects, Si. Some of the objects will be conductors at a fixed value of φi. Others will

carry some fixed charge Qi. This will rearrange itself into a surface charge σi such

that E = 0 inside while, outside the conductor, E = 4πσn̂. Our goal is to understand

the electric field that threads the space between all of these objects. Since there is no

charge sitting in this space, we need to solve the Laplace equation

∇2φ = 0

subject to one of two boundary conditions

• Dirichlet Boundary Conditions: The value of φ is fixed on a given surface Si

• Neumann Boundary Conditions: The value of ∇φ · n̂ is fixed perpendicular to a

given surface Si

Notice that, for each Si, we need to decide which of the two boundary conditions we

want. We don’t get to choose both of them. We then have the following theorem.

Theorem: With either Dirichlet or Neumann boundary conditions chosen on each

surface Si, the Laplace equation has a unique solution (up to an additive constant).

Proof: Suppose that there are two solutions, φ1 and φ2 with the same specified bound-

ary conditions. Let’s define f = φ1 − φ2. We can look at the following expression∫
V

d3r ∇ · (f∇f) =

∫
V

d3r ∇f · ∇f (2.32)

where the ∇2f term vanishes by the Laplace equation. But, by the divergence theorem,

we know that ∫
V

d3r ∇ · (f∇f) =
∑
i

∫
Si

f ∇f · dS
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However, if we’ve picked Dirichlet boundary conditions then f = 0 on the boundary,

while Neumann boundary conditions ensure that ∇f = 0 on the boundary. This means

that the integral vanishes and, from (2.32), we must have ∇f = 0 throughout space.

But if we have imposed Dirichlet boundary conditions somewhere, then f = 0 on that

boundary and so f = 0 everywhere. Alternatively, if we have Neumann boundary

conditions on all surfaces then ∇f = 0 everywhere and the two solutions φ1 and φ2

can differ only by a constant. But, as discussed in Section 2.2, this constant has no

physical meaning. �

2.4.3 Method of Images

For particularly simple situations, there is a rather cute method that we can use to

solve problems involving conductors. Although this technique is somewhat limited, it

does give us some good intuition for what’s going on. It’s called the method of images.

A charged particle near a conducting plane

Consider a conductor which fills all of space x < 0. We’ll ground this conductor so

that φ = 0 when x < 0. Then, at some point x = d > 0, we place a charge q. What

happens?

We’re looking for a solution to the Poisson equation with a delta-function source at

x = d = (d, 0, 0), together with the requirement that φ = 0 on the plane x = 0. From

our discussion in the previous section, there’s a unique solution to this kind of problem.

We just have to find it.

Here’s the clever trick. Forget that there’s a conductor at x < 0. Instead, suppose

that there’s a charge −q placed opposite the real charge at x = −d. This is called the

image charge. The potential for this pair of charges is just the potential

φ =
1

4πε0

(
q√

(x− d)2 + y2 + z2
− q√

(x+ d)2 + y2 + z2

)
(2.33)

By construction, this has the property that φ = 0 for x = 0 and it has the correct

source at x = (d, 0, 0). Therefore, this must be the right solution when x ≥ 0. A

cartoon of this is shown in the figures. Of course, it’s the wrong solution inside the

conductor where the electric field vanishes. But that’s trivial to fix: we just replace it

with φ = 0 for x < 0.
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Figure 19: A particle near a conducting

plane...

Figure 20: ...looks like a dipole

With the solution (2.33) in hand, we can now dispense with the image charge and

explore what’s really going on. We can easily compute the electric field from (2.33). If

we focus on the electric field in the x direction, it is

Ex = −∂φ
∂x

=
q

4πε0

(
x− d
|r− d|3/2

− x+ d

|r + d|3/2

)
x ≥ 0

Meanwhile, Ex = 0 for x < 0. The discontinuity of Ex at the surface of the conductor

determines the induced surface charge (2.31). It is

σ = Exε0|x=0 = − q

2π

d

(d2 + y2 + z2)3/2

We see that the surface charge is mostly concentrated on the plane at the point closest

to the real charge. As you move away, it falls off as 1/(y2 + z2)3/2. We can compute

the total induced surface charge by doing a simple integral,

qinduced =

∫
dydz σ = −q

The charge induced on the conductor is actually equal to the image charge. This is

always true when we use the image charge technique.

Finally, as far as the real charge +q is concerned, as long as it sits at x > 0, it feels

an electric field which is identical in all respects to the field due to an image charge −q
embedded in the conductor. This means, in particular, that it will experience a force

F = − q2

16πε0d2
x̂

This force is attractive, pulling the charge towards the conductor.
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A charged particle near a conducting sphere

We can play a similar game for a particle near a grounded, conducting sphere. The

details are only slightly more complicated. We’ll take the sphere to sit at the origin

and have radius R. The particle has charge q and sits at x = d = (d, 0, 0), with d > R.

Our goal is to place an image charge q′ somewhere inside the sphere so that φ = 0 on

the surface.

There is a way to derive the answer using conformal transformations. However,

here we’ll just state it. You should choose a particle of charge q′ = −qR/d, placed at

x = R2/d and, by symmetry, y = z = 0. A cartoon of this is shown in the figure.
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Figure 21: A particle near a conducting

sphere...

Figure 22: ...looks like a slightly different

dipole

The resulting potential is

φ =
q

4πε0

(
1√

(x− d)2 + y2 + z2
− R

d

1√
(x−R2/d)2 + y2 + z2

)

With a little algebra, you can check that φ = 0 whenever x2 + y2 + z2 = R2. With

a little more algebra, you can easily determine the induced surface charge and check

that, when integrated over the sphere, we indeed have qinduced = q′. Once again, our

charge experiences a force towards the conductor.

Above we’ve seen how to treat a grounded sphere. But what if we instead have an

isolated conductor with some fixed charge, Q? It’s easy to adapt the problem above.

We simply add the necessary excess charge Q− q′ as an image that sits at the origin of

the sphere. This will induce an electric field which emerges radially from the sphere.

Because of the principle of superposition, we just add this to the previous electric field

and see that it doesn’t mess up the fact that the electric field is perpendicular to the

surface. This is now our solution.

2.4.4 Many many more problems

There are many more problems that you can cook up involving conductors, charges and

electrostatics. Very few of them can be solved by the image charge method. Instead, you
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need to develop a number of basic tools of mathematical physics. A fairly comprehensive

treatment of this can be found in the first 100 or so pages of Jackson.

For now, I would just like to leave you with the solution to the example that kicked

off this section: what happens if you take a conducting sphere and place it in a constant

electric field? This problem isn’t quite solved by the image charge method. But it’s

solved by something similar: an image dipole.

We’ll work in spherical polar coordinates and chose the original, constant electric

field to point in the ẑ direction,

E0 = E0ẑ ⇒ φ0 = −E0z = −E0r cos θ

Take the conducting sphere to have radius R and be centered on the the origin. Let’s

add to this an image dipole with potential (2.18). We’ll place the dipole at the origin,

and orient it along the z axis like so:
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Figure 23: A conducting sphere between

charged plates...

Figure 24: ...looks like a dipole between

the plates

The resulting potential is

φ = −E0

(
r − R3

r2

)
cos θ

Since we’ve added a dipole term, we can be sure that this still solves the Laplace

equation outside the conductor. Moreover, by construction, φ = 0 when r = R. This

is all we wanted from our solution. The induced surface charge can again be computed

by evaluating the electric field just outside the conductor. It is

σ = − 1

ε0

∂φ

∂r
= E0

(
1 +

2R3

r3

)∣∣∣∣
r=R

cos θ = 3E0 cos θ

We see that the surface charge is positive in one hemisphere and negative in the other.

The total induced charge averages to zero.
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2.4.5 A History of Electrostatics

Perhaps the simplest demonstration of the attractive properties of electric charge comes

from rubbing a balloon on your head and sticking it to the wall. This phenomenon was

known, at least in spirit, to the ancient Greeks and is credited to Thales of Miletus

around 600 BC. Although, in the absence of any ancient balloons, he had to make do

with polishing pieces of amber and watching it attract small objects.

A systematic, scientific approach to electrostatics starts with William Gilbert, physi-

cist, physician and one-time bursar of St Johns College. (Rumour has it that he’d

rather have been at Oxford.) His most important work, De Magnete, published in 1600

showed, among other things, that many materials, not just amber, could be electri-

fied. With due deference, he referred to these as “electrics”, derived from the Greek

“ηλεκτρoν” (electron) meaning “amber”. These are materials that we now call “insu-

lators”.

There was slow progress over the next 150 years, much of it devoted to building ma-

chines which could store electricity. A notable breakthrough came from the experiments

of the little-known English scientist Stephen Grey, who was the first to appreciate that

the difficulty in electrifying certain objects is because they are conductors, with any

charge quickly flowing through them and away. Grey spent most of his life as an am-

ateur astronomer, although his amateur status appears to be in large part because he

fell foul of Isaac Newton who barred his entry into more professional scientific circles.

He performed his experiments on conductors in the 1720s, late in life when the lack of

any income left him destitute and pensioned to Chaterhouse (which was, perhaps, the

world’s fanciest poorhouse). Upon Newton’s death, the scientific community clamoured

to make amends. Grey was awarded the Royal Society’s first Copley medal. Then, pre-

sumably because they felt guilty, he was also awarded the second. Grey’s experiments

were later reproduced by the French chemist Charles François de Cisternay DuFay, who

came to the wonderful conclusion that all objects can be electrified by rubbing apart

from “metals, liquids and animals”. He does not, to my knowledge, state how much

rubbing of animals he tried before giving up. He was also the first to notice that static

electricity can give rise to both attractive and repulsive forces.

By the 1750s, there were many experiments on electricity, but little theory to explain

them. Most ideas rested on a fluid description of electricity, but arguments raged over

whether a single fluid or two fluids were responsible. The idea that there were both

positive and negative charges, then thought of as a surplus and deficit of fluid, was

introduced independently by the botanist William Watson and the US founding father
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Benjamin Franklin. Franklin is arguably the first to suggest that charge is conserved

although his statement wasn’t quite as concise as the continuity equation:

It is now discovered and demonstrated, both here and in Europe, that the

Electrical Fire is a real Element, or Species of Matter, not created by the

Friction, but collected only.

Benjamin Franklin, 1747

Still, it’s nice to know that charge is conserved both in the US and in Europe.

A quantitative understanding of the theory of electrostatics came only in the 1760s.

A number of people suggested that the electrostatic force follows an inverse-square

law, prominent among them Joseph Priestly who is better known for the discovery of

Oxygen and, of at least equal importance, the invention of soda water. In 1769, the

Scottish physicist John Robison announced that he had measured the force to fall off as

1/r2.06. This was before the invention of error bars and he seems to receive little credit.

Around the same time, the English scientist Henry Cavendish, discover of Hydrogen

and weigher of the Earth, performed a number of experiments to demonstrate the

inverse-square law but, as with his many of his other electromagnetic discoveries, he

chose not to publish. It was left to French physicist Charles Augustin de Coulomb to

clean up, publishing the results of his definitive experiments in 1785 on the force that

now carries his name.

In its final form, Coulomb’s law becomes transmuted into Gauss’ law. For once, this

was done by the person after whom it’s named. Gauss derived this result in 1835,

although it wasn’t published until 1867.
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3. Magnetostatics

Charges give rise to electric fields. Current give rise to magnetic fields. In this section,

we will study the magnetic fields induced by steady currents. This means that we are

again looking for time independent solutions to the Maxwell equations. We will also

restrict to situations in which the charge density vanishes, so ρ = 0. We can then set

E = 0 and focus our attention only on the magnetic field. We’re left with two Maxwell

equations to solve:

∇×B = µ0J (3.1)

and

∇ ·B = 0 (3.2)

If you fix the current density J, these equations have a unique solution. Our goal in

this section is to find it.

Steady Currents

Before we solve (3.1) and (3.2), let’s pause to think about the kind of currents that we’re

considering in this section. Because ρ = 0, there can’t be any net charge. But, of course,

we still want charge to be moving! This means that we necessarily have both positive

and negative charges which balance out at all points in space. Nonetheless, these

charges can move so there is a current even though there is no net charge transport.

This may sound artificial, but in fact it’s exactly what happens in a typical wire. In

that case, there is background of positive charge due to the lattice of ions in the metal.

Meanwhile, the electrons are free to move. But they all move together so that at each

point we still have ρ = 0. The continuity equation, which captures the conservation of

electric charge, is

∂ρ

∂t
+∇ · J = 0

Since the charge density is unchanging (and, indeed, vanishing), we have

∇ · J = 0

Mathematically, this is just saying that if a current flows into some region of space, an

equal current must flow out to avoid the build up of charge. Note that this is consistent

with (3.1) since, for any vector field, ∇ · (∇×B) = 0.
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3.1 Ampère’s Law

The first equation of magnetostatics,

∇×B = µ0J (3.3)

is known as Ampère’s law. As with many of these vector dif-

J

S

C

Figure 25:

ferential equations, there is an equivalent form in terms of inte-

grals. In this case, we choose some open surface S with boundary

C = ∂S. Integrating (3.3) over the surface, we can use Stokes’

theorem to turn the integral of ∇ × B into a line integral over

the boundary C,∫
S

∇×B · dS =

∮
C

B · dr = µ0

∫
S

J · dS

Recall that there’s an implicit orientation in these equations. The surface S comes

with a normal vector n̂ which points away from S in one direction. The line integral

around the boundary is then done in the right-handed sense, meaning that if you stick

the thumb of your right hand in the direction n̂ then your fingers curl in the direction

of the line integral.

The integral of the current density over the surface S is the same thing as the total

current I that passes through S. Ampère’s law in integral form then reads∮
C

B · dr = µ0I (3.4)

For most examples, this isn’t sufficient to determine the form of the magnetic field;

we’ll usually need to invoke (3.2) as well. However, there is one simple example where

symmetry considerations mean that (3.4) is all we need...

3.1.1 A Long Straight Wire

Consider an infinite, straight wire carrying current I. We’ll take it to point in the ẑ

direction. The symmetry of the problem is jumping up and down telling us that we

need to use cylindrical polar coordinates, (r, ϕ, z), where r =
√
x2 + y2 is the radial

distance away from the wire.

We take the open surface S to lie in the x − y plane, centred on the wire. For the

line integral in (3.4) to give something that doesn’t vanish, it’s clear that the magnetic

field has to have some component that lies along the circumference of the disc.
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But, by the symmetry of the problem, that’s actually the

S

C

I

ϕ z

r

Figure 26:

only component that B can have: it must be of the form

B = B(r)ϕ̂. (If this was a bit too quick, we’ll derive

this more carefully below). Any magnetic field of this

form automatically satisfies the second Maxwell equation

∇·B = 0. We need only worry about Ampère’s law which

tells us∮
C

B · dr = B(r)

∫ 2π

0

r dϕ = 2πrB(r) = µ0I

We see that the strength of the magnetic field is

B =
µ0I

2πr
ϕ̂ (3.5)

The magnetic field circles the wire using the ”right-hand rule”: stick the thumb of your

right hand in the direction of the current and your fingers curl in the direction of the

magnetic field.

Note that the simplest example of a magnetic field falls off as 1/r. In contrast, the

simplest example of an electric field – the point charge – falls of as 1/r2. You can trace

this difference back to the geometry of the two situations. Because magnetic fields

are sourced by currents, the simplest example is a straight line and the 1/r fall-off is

because there are two transverse directions to the wire. Indeed, we saw in Section 2.1.3

that when we look at a line of charge, the electric field also drops off as 1/r.

3.1.2 Surface Currents and Discontinuities

Consider the flat plane lying at z = 0 with a surface current density that we’ll call K.

Note that K is the current per unit length, as opposed to J which is the current per

unit area. You can think of the surface current as a bunch of wires, all lying parallel

to each other.

We’ll take the current to lie in the x-direction: K = Kx̂ as shown below.

z

x

y

K

From our previous result, we know that the B field should curl around the current in

the right-handed sense. But, with an infinite number of wires, this can only mean that
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B is oriented along the y direction. In fact, from the symmetry of the problem, it must

look like

z

x

y
B

B

with B pointing in the −ŷ direction when z > 0 and in the +ŷ direction when z < 0.

We write

B = −B(z)ŷ

with B(z) = −B(−z). We invoke Ampère’s law using the following open surface:

C

z

x

y

with length L in the y direction and extending to ±z. We have∮
C

B · dr = LB(z)− LB(−z) = 2LB(z) = µ0KL

so we find that the magnetic field is constant above an infinite plane of surface current

B(z) =
µ0K

2
z > 0

This is rather similar to the case of the electric field in the presence of an infinite plane

of surface charge.

The analogy with electrostatics continues. The magnetic field is not continuous

across a plane of surface current. We have

B(z → 0+)−B(z → 0−) = µ0K

In fact, this is a general result that holds for any surface current K. We can prove this

statement by using the same curve that we used in the Figure above and shrinking it
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until it barely touches the surface on both sides. If the normal to the surface is n̂ and

B± denotes the magnetic field on either side of the surface, then

n̂×B|+ − n̂×B|− = µ0K (3.6)

Meanwhile, the magnetic field normal to the surface is continuous. (To see this, you

can use a Gaussian pillbox, together with the other Maxwell equation ∇ ·B = 0).

When we looked at electric fields, we saw that the normal component was discontinu-

ous in the presence of surface charge (2.9) while the tangential component is continuous.

For magnetic fields, it’s the other way around: the tangential component is discontin-

uous in the presence of surface currents.

A Solenoid

A solenoid consists of a surface current that travels around a cylin- B

z

r

Figure 27:

der. It’s simplest to think of a single current-carrying wire winding

many times around the outside of the cylinder. (Strictly speaking,

the cross-sectional shape of the solenoid doesn’t have to be a circle –

it can be anything. But we’ll stick with a circle here for simplicity).

To make life easy, we’ll assume that the cylinder is infinitely long.

This just means that we can neglect effects due to the ends.

We’ll again use cylindrical polar coordinates, (r, ϕ, z), with the

axis of the cylinder along ẑ. By symmetry, we know that B will

point along the z-axis. Its magnitude can depend only on the radial

distance: B = B(r)ẑ. Once again, any magnetic field of this form immediately satisfies

∇ ·B = 0.

We solve Ampère’s law in differential form. Anywhere other than

C

Figure 28:

the surface of the solenoid, we have J = 0 and

∇×B = 0 ⇒ dB

dr
= 0 ⇒ B(r) = constant

Outside the solenoid, we must have B(r) = 0 since B(r) is constant

and we know B(r)→ 0 as r →∞. To figure out the magnetic field

inside the solenoid, we turn to the integral form of Ampère’s law

and consider the surface S, bounded by the curve C shown in the

figure. Only the line that runs inside the solenoid contributes to

the line integral. We have ∮
C

B · dr = BL = µ0INL
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where N is the number of windings of wire per unit length. We learn that inside the

solenoid, the constant magnetic field is given by

B = µ0IN ẑ (3.7)

Note that, since K = IN , this is consistent with our general formula for the disconti-

nuity of the magnetic field in the presence of surface currents (3.6).

3.2 The Vector Potential

For the simple current distributions of the last section, symmetry considerations were

enough to lead us to a magnetic field which automatically satisfied

∇ ·B = 0 (3.8)

But, for more general currents, this won’t be the case. Instead we have to ensure that

the second magnetostatic Maxwell equation is also satisfied.

In fact, this is simple to do. We are guaranteed a solution to ∇ ·B = 0 if we write

the magnetic field as the curl of some vector field,

B = ∇×A (3.9)

Here A is called the vector potential. While magnetic fields that can be written in the

form (3.9) certainly satisfy ∇ · B = 0, the converse is also true; any divergence-free

magnetic field can be written as (3.9) for some A.

(Actually, this previous sentence is only true if our space has a suitably simple

topology. Since we nearly always think of space as R3 or some open ball on R3,

we rarely run into subtleties. But if space becomes more interesting then the possible

solutions to ∇ ·B = 0 also become more interesting. This is analogous to the story of

the electrostatic potential that we mentioned briefly in Section 2.2).

Using the expression (3.9), Ampère’s law becomes

∇×B = −∇2A +∇(∇ ·A) = µ0J (3.10)

where, in the first equality, we’ve used a standard identity from vector calculus. This

is the equation that we have to solve to determine A and, through that, B.
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3.2.1 Magnetic Monopoles

Above, we dispatched with the Maxwell equation ∇ · B = 0 fairly quickly by writing

B = ∇×A. But we never paused to think about what this equation is actually telling

us. In fact, it has a very simple interpretation: it says that there are no magnetic

charges. A point-like magnetic charge g would source the magnetic field, giving rise a

1/r2 fall-off

B =
gr̂

4πr2

An object with this behaviour is usually called a magnetic monopole. Maxwell’s equa-

tions says that they don’t exist. And we have never found one in Nature.

However, we could ask: how robust is this conclusion? Are we sure that magnetic

monopoles don’t exist? After all, it’s easy to adapt Maxwell’s equations to allow for

presence of magnetic charges: we simply need to change (3.8) to read ∇·B = ρm where

ρm is the magnetic charge distribution. Of course, this means that we no longer get to

use the vector potential A. But is that such a big deal?

The twist comes when we turn to quantum mechanics. Because in quantum mechan-

ics we’re obliged to use the vector potential A. Not only is the whole framework of

electromagnetism in quantum mechanics based on writing things using A, but it turns

out that there are experiments that actually detect certain properties of A that are lost

when we compute B = ∇×A. I won’t explain the details here, but if you’re interested

then look up the “Aharonov-Bohm effect”.

Monopoles After All?

To summarise, magnetic monopoles have never been observed. We have a law of physics

(3.8) which says that they don’t exist. And when we turn to quantum mechanics we

need to use the vector potential A which automatically means that (3.8) is true. It

sounds like we should pretty much forget about magnetic monopoles, right?

Well, no. There are actually very good reasons to suspect that magnetic monopoles

do exist. The most important part of the story is due to Dirac. He gave a beautiful

argument which showed that it is in fact possible to introduce a vector potential A

which allows for the presence of magnetic charge, but only if the magnetic charge g is

related to the charge of the electron e by

ge = 2π~n n ∈ Z (3.11)

This is known as the Dirac quantization condition.
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Moreover, following work in the 1970s by ’t Hooft and Polyakov, we now realise that

magnetic monopoles are ubiquitous in theories of particle physics. Our best current

theory – the Standard Model – does not predict magnetic monopoles. But every theory

that tries to go beyond the Standard Model, whether Grand Unified Theories, or String

Theory or whatever, always ends up predicting that magnetic monopoles should exist.

They’re one of the few predictions for new physics that nearly all theories agree upon.

These days most theoretical physicists think that magnetic monopoles probably exist

and there have been a number of experiments around the world designed to detect them.

However, while theoretically monopoles seem like a good bet, their future observational

status is far from certain. We don’t know how heavy magnetic monopoles will be, but

all evidence suggests that producing monopoles is beyond the capabilities of our current

(or, indeed, future) particle accelerators. Our only hope is to discover some that Nature

made for us, presumably when the Universe was much younger. Unfortunately, here

too things seem against us. Our best theories of cosmology, in particular inflation,

suggest that any monopoles that were created back in the Big Bang have long ago been

diluted. At a guess, there are probably only a few floating around our entire observable

Universe. The chances of one falling into our laps seem slim. But I hope I’m wrong.

3.2.2 Gauge Transformations

The choice of A in (3.9) is far from unique: there are lots of different vector potentials

A that all give rise to the same magnetic field B. This is because the curl of a gradient

is automatically zero. This means that we can always add any vector potential of the

form ∇χ for some function χ and the magnetic field remains the same,

A′ = A +∇χ ⇒ ∇×A′ = ∇×A

Such a change of A is called a gauge transformation. As we will see in Section 5.3.1, it is

closely tied to the possible shifts of the electrostatic potential φ. Ultimately, such gauge

transformations play a key role in theoretical physics. But, for now, we’re simply going

to use this to our advantage. Because, by picking a cunning choice of χ, it’s possible

to simplify our quest for the magnetic field.

Claim: We can always find a gauge transformation χ such that A′ satisfies ∇·A′ = 0.

Making this choice is usually referred to as Coulomb gauge.

Proof: Suppose that we’ve found some A which gives us the magnetic field that

we want, so ∇ × A = B, but when we take the divergence we get some function

∇ ·A = ψ(x). We instead choose A′ = A +∇χ which now has divergence

∇ ·A′ = ∇ ·A +∇2χ = ψ +∇2χ
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So if we want ∇ ·A′ = 0, we just have to pick our gauge transformation χ to obey

∇2χ = −ψ

But this is just the Poisson equation again. And we know from our discussion in Section

2 that there is always a solution. (For example, we can write it down in integral form

using the Green’s function). �

Something a Little Misleading: The Magnetic Scalar Potential

There is another quantity that is sometimes used called the magnetic scalar potential,

Ω. The idea behind this potential is that you might be interested in computing the

magnetic field in a region where there are no currents and the electric field is not

changing with time. In this case, you need to solve ∇× B = 0, which you can do by

writing

B = −∇Ω

Now calculations involving the magnetic field really do look identical to those involving

the electric field.

However, you should be wary of writing the magnetic field in this way. As we’ll

see in more detail in Section 5.3.1, we can always solve two of Maxwell’s equations by

writing E and B in terms of the electric potential φ and vector potential A and this

formulation becomes important as we move onto more advanced areas of physics. In

contrast, writing B = −∇Ω is only useful in a limited number of situations. The reason

for this really gets to the heart of the difference between electric and magnetic fields:

electric charges exist; magnetic charges don’t!

3.2.3 Biot-Savart Law

We’re now going to use the vector potential to solve for the magnetic field B in the

presence of a general current distribution. From now, we’ll always assume that we’re

working in Coulomb gauge and our vector potential obeys ∇ ·A = 0. Then Ampère’s

law (3.10) becomes a whole lot easier: we just have to solve

∇2A = −µ0J (3.12)

But this is just something that we’ve seen already. To see why, it’s perhaps best to

write it out in Cartesian coordinates. This then becomes three equations,

∇2Ai = −µ0Ji (i = 1, 2, 3) (3.13)

and each of these is the Poisson equation.
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It’s worth giving a word of warning at this point: the expression ∇2A is simple in

Cartesian coordinates where, as we’ve seen above, it reduces to the Laplacian on each

component. But, in other coordinate systems, this is no longer true. The Laplacian

now also acts on the basis vectors such as r̂ and ϕ̂. So in these other coordinate

systems, ∇2A is a little more of a mess. (You should probably use the identity ∇2A =

−∇ × (∇ × A) + ∇(∇ · A) if you really want to compute in these other coordinate

systems).

Anyway, if we stick to Cartesian coordinates then everything is simple. In fact,

the resulting equations (3.13) are of exactly the same form that we had to solve in

electrostatics. And, in analogy to (2.21), we know how to write down the most general

solution using Green’s functions. It is

Ai(x) =
µ0

4π

∫
V

d3x′
Ji(x

′)

|x− x′|

Or, if you’re feeling bold, you can revert back to vector notation and write

A(x) =
µ0

4π

∫
V

d3x′
J(x′)

|x− x′|
(3.14)

where you’ve just got to remember that the vector index on A links up with that on J

(and not on x or x′).

Checking Coulomb Gauge

We’ve derived a solution to (3.12), but this is only a solution to Ampère’s equation

(3.10) if the resulting A obeys the Coulomb gauge condition, ∇ · A = 0. Let’s now

check that it does. We have

∇ ·A(x) =
µ0

4π

∫
V

d3x′ ∇ ·
(

J(x′)

|x− x′|

)
where you need to remember that the index of ∇ is dotted with the index of J, but the

derivative in ∇ is acting on x, not on x′. We can write

∇ ·A(x) =
µ0

4π

∫
V

d3x′ J(x′) · ∇
(

1

|x− x′|

)
= −µ0

4π

∫
V

d3x′ J(x′) · ∇′
(

1

|x− x′|

)
Here we’ve done something clever. Now our ∇′ is differentiating with respect to x′. To

get this, we’ve used the fact that if you differentiate 1/|x− x′| with respect to x then
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you get the negative of the result from differentiating with respect to x′. But since ∇′
sits inside an

∫
d3x′ integral, it’s ripe for integrating by parts. This gives

∇ ·A(x) = −µ0

4π

∫
V

d3x′
[
∇′ ·

(
J(x′)

|x− x′|

)
−∇′ · J(x′)

(
1

|x− x′|

)]
The second term vanishes because we’re dealing with steady currents obeying ∇·J = 0.

The first term also vanishes if we take the current to be localised in some region of space,

V̂ ⊂ V so that J(x) = 0 on the boundary ∂V . We’ll assume that this is the case. We

conclude that

∇ ·A = 0

and (3.14) is indeed the general solution to the Maxwell equations (3.1) and (3.2) as

we’d hoped.

The Magnetic Field

From the solution (3.14), it is simple to compute the magnetic field B = ∇×A. Again,

we need to remember that the ∇ acts on the x in (3.14) rather than the x′. We find

B(x) =
µ0

4π

∫
V

d3x′
J(x′)× (x− x′)

|x− x′|3
(3.15)

This is known as the Biot-Savart law. It describes the magnetic field due to a general

current density.

There is a slight variations on (3.15) which more often goes by the name of the Biot-

Savart law. This arises if the current is restricted to a thin wire which traces out a

curve C. Then, for a current density J passing through a small volume δV , we write

JδV = (JA)δx where A is the cross-sectional area of the wire and δx lies tangent to

C. Assuming that the cross-sectional area is constant throughout the wire, the current

I = JA is also constant. The Biot-Savart law becomes

B(x) =
µ0I

4π

∫
C

dx′ × (x− x′)

|x− x′|3
(3.16)

This describes the magnetic field due to the current I in the wire.

An Example: The Straight Wire Revisited

Of course, we already derived the answer for a straight wire in (3.5) without using this

fancy vector potential technology. Before proceeding, we should quickly check that the

Biot-Savart law reproduces our earlier result. As before, we’ll work in cylindrical polar
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coordinates. We take the wire to point along the ẑ axis and use

ϕ

x

x−x’

x’

r

I

Figure 29:

r2 = x2 + y2 as our radial coordinate. This means that the line

element along the wire is parametrised by dx′ = ẑdz and, for a point

x away from the wire, the vector dx′×(x−x′) points along the tangent

to the circle of radius r,

dx′ × (x− x′) = rϕ̂ dz

So we have

B =
µ0Iϕ̂

4π

∫ +∞

−∞
dz

r

(r2 + z2)3/2
=
µ0I

2πr
ϕ̂

which is the same result we found earlier (3.5).

3.3 Magnetic Dipoles

We’ve seen that the Maxwell equations forbid magnetic monopoles with a long-range

B ∼ 1/r2 fall-off (3.11). So what is the generic fall-off for some distribution of currents

which are localised in a region of space? In this section we will see that, if you’re

standing suitably far from the currents, you’ll typically observe a dipole-like magnetic

field.

3.3.1 A Current Loop

We start with a specific, simple example. Consider

I

B

Figure 30:

a circular loop of wire C of radius R carrying a

current I. We can guess what the magnetic field

looks like simply by patching together our result

for straight wires: it must roughly take the shape

shown in the figure However, we can be more ac-

curate. Here we restrict ourselves only to the mag-

netic field far from the loop.

To compute the magnetic field far away, we won’t

start with the Biot-Savart law but instead return to the original expression for A given

in (3.14). We’re going to return to the notation in which a point in space is labelled as

r rather than x. (This is more appropriate for long-distance distance fields which are

essentially an expansion in r = |r|). The vector potential is then given by

A(r) =
µ0

4π

∫
V

d3r′
J(r′)

|r− r′|
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Writing this in terms of the current I (rather than the current density J), we have

A(r) =
µ0I

4π

∮
C

dr′

|r− r′|
We want to ask what this looks like far from the loop. Just as we did for the electrostatic

potential, we can Taylor expand the integrand using (2.22),

1

|r− r′|
=

1

r
+

r · r′

r3
+ . . .

So that

A(r) =
µ0I

4π

∮
C

dr′
(

1

r
+

r · r′

r3
+ . . .

)
(3.17)

The first term in this expansion vanishes because we’re integrating around a circle.

This is just a reflection of the fact that there are no magnetic monopoles. For the

second term, there’s a way to write it in slightly more manageable form. To see this,

let’s introduce an arbitrary constant vector g and use this to look at∮
C

dr′ · g (r · r′)

Recall that, from the point of view of this integral, both g and r are constant vectors;

it’s the vector r′ that we’re integrating over. This is now the kind of line integral of a

vector that allows us to use Stokes’ theorem. We have∮
C

dr′ · g (r · r′) =

∫
S

dS · ∇ × (g (r · r′)) =

∫
S

dSi εijk∂
′
j(gkrlr

′
l)

where, in the final equality, we’ve resorted to index notation to help us remember what’s

connected to what. Now the derivative ∂′ acts only on the r′ and we get∮
C

dr′ · g (r · r′) =

∫
S

dSi εijkgkrj = g ·
∫
S

dS× r

But this is true for all constant vectors g which means that it must also hold as a vector

identity once we strip away g. We have∮
C

dr′ (r · r′) = S × r

where we’ve introduced the vector area S of the surface S bounded by C, defined as

S =

∫
S

dS

If the boundary C lies in a plane – as it does for us – then the vector S points out of

the plane.
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Now let’s apply this result to our vector potential (3.17). With the integral over r′,

we can treat r as the constant vector g that we introduced in the lemma. With the

first term vanishing, we’re left with

A(r) =
µ0

4π

m× r

r3
(3.18)

where we’ve introduced the magnetic dipole moment

m = IS

This is our final, simple, answer for the long-range behaviour of the vector potential

due to a current loop. It remains only to compute the magnetic field. A little algebra

gives

B(r) =
µ0

4π

(
3(m · r̂)r̂−m

r3

)
(3.19)

Now we see why m is called the magnetic dipole; this form of the magnetic field is

exactly the same as the dipole electric field (2.19).

I stress that the B field due to a current loop and E field due to two charges don’t

look the same close up. But they have identical “dipole” long-range fall-offs.

3.3.2 General Current Distributions

We can now perform the same kind of expansion for a general current distribution J

localised within some region of space. We use the Taylor expansion (2.22) in the general

form of the vector potential (3.14),

Ai(r) =
µ0

4π

∫
d3r′

Ji(r
′)

|r− r′|
=
µ0

4π

∫
d3r′

(
Ji(r

′)

r
+
Ji(r

′) (r · r′)
r3

+ . . .

)
(3.20)

where we’re using a combination of vector and index notation to help remember how

the indices on the left and right-hand sides match up.

The first term above vanishes. Heuristically, this is because currents can’t stop and

end, they have to go around in loops. This means that the contribution from one part

must be cancelled by the current somewhere else. To see this mathematically, we use

the slightly odd identity

∂j(Jjri) = (∂jJj) ri + Ji = Ji (3.21)

where the last equality follows from the continuity condition ∇ · J = 0. Using this,

we see that the first term in (3.20) is a total derivative (of ∂/∂r′i rather than ∂/∂ri)

which vanishes if we take the integral over R3 and keep the current localised within

some interior region.
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For the second term in (3.20) we use a similar trick, now with the identity

∂j(Jjrirk) = (∂jJj)rirk + Jirk + Jkri = Jirk + Jkri

Because J in (3.20) is a function of r′, we actually need to apply this trick to the

Jir
′
j terms in the expression. We once again abandon the boundary term to infinity.

Dropping the argument of J, we can use the identity above to write the relevant piece

of the second term as∫
d3r′ Ji rjr

′
j =

∫
d3r′

rj
2

(Jir
′
j − Jjr′i) =

∫
d3r′

1

2
(Ji (r · r′)− r′i(J · r))

But now this is in a form that is ripe for the vector product identity a × (b × c) =

b(a · c)− c(a · b). This means that we can rewrite this term as∫
d3r′ J (r · r′) =

1

2
r×

∫
d3r′ J× r′ (3.22)

With this in hand, we see that the long distance fall-off of any current distribution

again takes the dipole form (3.18)

A(r) =
µ0

4π

m× r

r3

now with the magnetic dipole moment given by the integral,

m =
1

2

∫
d3r′ r′ × J(r′) (3.23)

Just as in the electric case, the multipole expansion continues to higher terms. This

time you need to use vector spherical harmonics. Just as in the electric case, if you

want further details then look in Jackson.

3.4 Magnetic Forces

We’ve seen that a current produces a magnetic field. But a current is simply moving

charge. And we know from the Lorentz force law that a charge q moving with velocity

v will experience a force

F = qv ×B

This means that if a second current is placed somewhere in the neighbourhood of the

first, then they will exert a force on one another. Our goal in this section is to figure

out this force.
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3.4.1 Force Between Currents

y
z

x

I2

B

I1

1

d

Figure 31:

Let’s start simple. Take two parallel wires carrying cur-

rents I1 and I2 respectively. We’ll place them a distance d

apart in the x direction.

The current in the first wire sets up a magnetic field

(3.5). So if the charges in the second wire are moving with

velocity v, they will each experience a force

F = qv ×B = qv ×
(
µ0I1
2πd

)
ŷ

where ŷ is the direction of the magnetic field experienced by the second wire as shown

in the Figure. The next step is to write the velocity v in terms of the current I2 in the

second wire. We did this in Section 1.1 when we first introduced the idea of currents: if

there’s a density n of these particles and each carries charge q, then the current density

is

J2 = nqv

For a wire with cross-sectional area A, the total current is just I2 = J2A. For our

set-up, J2 = J2ẑ.

Finally, we want to compute the force on the wire per unit length, f . Since the

number of charges per unit length is nA and F is the force on each charge, we have

f = nAF =

(
µ0I1I2
2πd

)
ẑ× ŷ = −

(
µ0I1I2
2πd

)
x̂ (3.24)

This is our answer for the force between two parallel wires. If the two currents are

in the same direction, so that I1I2 > 0, the overall minus sign means that the force

between two wires is attractive. For currents in opposite directions, with I1I2 < 0, the

force is repulsive.

The General Force Between Currents

We can extend our discussion to the force experienced between two current distributions

J1 and J2. We start by considering the magnetic field B(r) due to the first current J1.

As we’ve seen, the Biot-Savart law (3.15) tells us that this can be written as

B(r) =
µ0

4π

∫
d3r′

J1(r
′)× (r− r′)

|r− r′|3
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If the current J1 is localised on a curve C1, then we can replace this volume integral

with the line integral (3.16)

B(r) =
µ0I1
4π

∮
C1

dr1 × (r− r1)

|r− r1|3

Now we place a second current distribution J2 in this magnetic field. It experiences a

force per unit area given by (1.3), so the total force is

F =

∫
d3r J2(r)×B(r) (3.25)

Again, if the current J2 is restricted to lie on a curve C2, then this volume integral can

be replaced by the line integral

F = I2

∮
C2

dr×B(r)

and the force can now be expressed as a double line integral,

F =
µ0

4π
I1I2

∮
C1

∮
C2

dr2 ×
(
dr1 ×

r2 − r1
|r2 − r1|3

)
In general, this integral will be quite tricky to perform. However, if the currents are

localised, and well-separated, there is a somewhat better approach where the force can

be expressed purely in terms of the dipole moment of the current.

3.4.2 Force and Energy for a Dipole

We start by asking a slightly different question. We’ll forget about the second current

and just focus on the first: call it J(r). We’ll place this current distribution in a

magnetic field B(r) and ask: what force does it feel?

In general, there will be two kinds of forces. There will be a force on the centre of

mass of the current distribution, which will make it move. There will also be a torque

on the current distribution, which will want to make it re-orient itself with respect to

the magnetic field. Here we’re going to focus on the former. Rather remarkably, we’ll

see that we get the answer to the latter for free!

The Lorentz force experienced by the current distribution is

F =

∫
V

d3r J(r)×B(r)
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We’re going to assume that the current is localised in some small region r = R and

that the magnetic field B varies only slowly in this region. This allows us to Taylor

expand

B(r) = B(R) + (r · ∇)B(R) + . . .

We then get the expression for the force

F = −B(R)×
∫
V

d3r J(r) +

∫
V

d3r J(r)× [(r · ∇)B(R)] + . . .

The first term vanishes because the currents have to go around in loops; we’ve already

seen a proof of this following equation (3.20). We’re going to do some fiddly manipula-

tions with the second term. To help us remember that the derivative ∇ is acting on B,

which is then evaluated at R, we’ll introduce a dummy variable r′ and write the force

as

F =

∫
V

d3r J(r)× [(r · ∇′)B(r′)]

∣∣∣∣
r′=R

(3.26)

Now we want to play around with this. First, using the fact that ∇ × B = 0 in the

vicinity of the second current, we’re going to show, that we can rewrite the integrand

as

J(r)× [(r · ∇′)B(r′)] = −∇′ × [(r ·B(r′))J(r)]

To see why this is true, it’s simplest to rewrite it in index notation. After shuffling a

couple of indices, what we want to show is:

εijkJj(r) rl ∂
′
lBk(r

′) = εijkJj(r) rl ∂
′
kBl(r

′)

Or, subtracting one from the other,

εijkJj(r) rl (∂′lBk(r
′)− ∂′kBl(r

′)) = 0

But the terms in the brackets are the components of ∇ × B and so vanish. So our

result is true and we can rewrite the force (3.26) as

F = −∇′ ×
∫
V

d3r (r ·B(r′)) J(r)

∣∣∣∣
r′=R

Now we need to manipulate this a little more. We make use of the identity (3.22) where

we replace the constant vector by B. Thus, up to some relabelling, (3.22) is the same

as ∫
V

d3r (B · r)J =
1

2
B×

∫
V

d3r J× r = −B×m
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where m is the magnetic dipole moment of the current distribution. Suddenly, our

expression for the force is looking much nicer: it reads

F = ∇× (B×m)

where we’ve dropped the r′ = R notation because, having lost the integral, there’s no

cause for confusion: the magnetic dipole m is a constant, while B varies in space. Now

we invoke a standard vector product identity. Using ∇·B = 0, this simplifies and we’re

left with a simple expression for the force on a dipole

F = ∇(B ·m) (3.27)

After all that work, we’re left with something remarkably simple. Moreover, like many

forces in Newtonian mechanics, it can be written as the gradient of a function. This

function, of course, is the energy U of the dipole in the magnetic field,

U = −B ·m (3.28)

This is an important expression that will play a role in later courses in Quantum

Mechanics and Statistical Physics. For now, we’ll just highlight something clever: we

derived (3.28) by considering the force on the centre of mass of the current. This is

related to how U depends on r. But our final expression also tells us how the energy

depends on the orientation of the dipole m at fixed position. This is related to the

torque. Computing the force gives us the torque for free. This is because, ultimately,

both quantities are derived from the underlying energy.

The Force Between Dipoles

As a particular example of the force (3.27), consider the case where the magnetic field

is set up by a dipole m1. We know that the resulting long-distance magnetic field is

(3.23),

B(r) =
µ0

4π

(
3(m1 · r̂)r̂−m1

r3

)
(3.29)

Now we’ll consider how this affects the second dipole m = m2. From (3.27), we have

F =
µ0

4π
∇
(

3(m1 · r̂)(m2 · r̂)−m1 ·m2

r3

)
where r is the vector from m1 to m2. Note that the structure of the force is identical

to that between two electric dipoles in (2.30). This is particularly pleasing because
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we used two rather different methods to calculate these forces. If we act with the

derivative, we have

F =
3µ0

4πr4
[
(m1 · r̂)m2 + (m2 · r̂)m1 + (m1 ·m2)r̂− 5(m1 · r̂)(m2 · r̂)r̂

]
(3.30)

First note that if we swap m1 and m2, so that we also send r → −r, then the force

swaps sign. This is a manifestation of Newton’s third law: every action has an equal

and opposite reaction. Recall from Dynamics and Relativity lectures that we needed

Newton’s third law to prove the conservation of momentum of a collection of particles.

We see that this holds for a bunch of dipoles in a magnetic field.

But there was also a second part to Newton’s third law: to prove the conservation

of angular momentum of a collection of particles, we needed the force to lie parallel to

the separation of the two particles. And this is not true for the force (3.30). If you set

up a collection of dipoles, they will start spinning, seemingly in contradiction of the

conservation of angular momentum. What’s going on?! Well, angular momentum is

conserved, but you have to look elsewhere to see it. The angular momentum carried

by the dipoles is compensated by the angular momentum carried by the magnetic field

itself.

Finally, a few basic comments: the dipole force drops off as 1/r4, quicker than the

Coulomb force. Correspondingly, it grows quicker than the Coulomb force at short

distances. If m1 and m2 point in the same direction and lie parallel to the separation

R, then the force is attractive. If m1 and m2 point in opposite directions and lie

parallel to the separation between them, then the force is repulsive. The expression

(3.30) tells us the general result.

3.4.3 So What is a Magnet?

Until now, we’ve been talking about the magnetic field

Figure 32:

associated to electric currents. But when asked to en-

visage a magnet, most people would think if a piece of

metal, possibly stuck to their fridge, possibly in the form

of a bar magnet like the one shown in the picture. How

are these related to our discussion above?

These metals are permanent magnets. They often in-

volve iron. They can be thought of as containing many

microscopic magnetic dipoles, which align to form a large

magnetic dipole M. In a bar magnet, the dipole M points between the two poles. The
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iron filings in the picture trace out the magnetic field which takes the same form that

we saw for the current loop in Section 3.3.

This means that the leading force between two magnets is described by our result

(3.30). Suppose that M1, M2 and the separation R all lie along a line. If M1 and M2

point in the same direction, then the North pole of one magnet faces the South pole

of another and (3.30) tells us that the force is attractive. Alternatively, if M1 and M2

point in opposite directions then two poles of the same type face each other and the

force is repulsive. This, of course, is what we all learned as kids.

The only remaining question is: where do the microscopic dipole moments m come

from? You might think that these are due to tiny electric atomic currents but this

isn’t quite right. Instead, they have a more fundamental origin. The electric charges

— which are electrons — possess an inherent angular momentum called spin. Roughly

you can think of the electron as spinning around its own axis in much the same way as

the Earth spins. But, ultimately, spin is a quantum mechanical phenomenon and this

classical analogy breaks down when pushed too far. The magnitude of the spin is:

s =
1

2
~

where, recall, ~ has the same dimensions as angular momentum.

We can push the classical analogy of spin just a little further. Classically, an electri-

cally charged spinning ball would give rise to a magnetic dipole moment. So one may

wonder if the spinning electron also gives rise to a magnetic dipole. The answer is yes.

It is given by

m = g
e

2m
s

where e is the charge of the electron and m is its mass. The number g is dimensionless

and called, rather uninspiringly, the g-factor. It has been one of the most important

numbers in the history of theoretical physics, with several Nobel prizes awarded to

people for correctly calculating it! The classical picture of a spinning electron suggests

g = 1. But this is wrong. The first correct prediction (and, correspondingly, first Nobel

prize) was by Dirac. His famous relativistic equation for the electron gives

g = 2

Subsequently it was observed that Dirac’s prediction is not quite right. The value of g

receives corrections. The best current experimental value is

g = 2.00231930419922± (1.5× 10−12)
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Rather astonishingly, this same value can be computed theoretically using the frame-

work of quantum field theory (specifically, quantum electrodynamics). In terms of

precision, this is one of the great triumphs of theoretical physics.

There is much much more to the story of magnetism, not least what causes the

magnetic dipoles m to align themselves in a material. The details involve quantum

mechanics and are beyond the scope of this course. However, we will return to a dis-

cussion of the classical properties of magnetic materials in next year’s Electrodynamics

course.

3.5 Units of Electromagnetism

More than any other subject, electromagnetism is awash with different units. In large

part this is because electromagnetism has such diverse applications and everyone from

astronomers, to electrical engineers, to particle physicists needs to use it. But it’s still

annoying. Here we explain the basics of SI units.

The SI unit of charge is the Coulomb. We mentioned in the introduction that the

fundamental unit of charge, carried by the electron and proton, is

e ≈ 1.6× 10−19 C

If you rub a balloon on your sweater, it picks up a charge of around 10−6 C or so.

A bolt of lightening deposits a charge of about 15 C. The total charge that passes

through an AA battery in its lifetime is about 5000 C.

The SI unit of current is the Ampere, denoted A. It is defined as one Coulomb of

charge passing every second. Although, strictly speaking, it’s the other way around: the

Ampere is taken to be one of the base units and the Coulomb is defined as the amount

of charge transported by a current of 1 A in a second. The current that runs through

single ion channels in cell membranes is about 10−12 A. The current that powers your

toaster is around 1 A to 10 A. There is a current in the Earth’s atmosphere, known as

the Birkeland current, which creates the aurora and varies between 105 A and 106 A.

Galactic size currents in so-called Seyfert galaxies (particularly active galaxies) have

been measured at a whopping 1018 A.

The official definition of the Ampere uses, perhaps fairly, Ampère’s law and, specif-

ically, the force between two parallel wires that we computed in Section 3.4.1. An

Ampere is the current that each wire must carry, when separated by a distance of 1 m,

in order to experience an attractive force-per-unit-length of 2 × 10−7 Nm−1. (Recall
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that a Newton is the unit of force needed to accelerate 1 Kg at 1 ms−1). From our

result (3.24), we see that if we plug in I1 = I2 = 1 A and d = 1 m then this force is

f =
µ0

2π
A2m−1

This definition is the reason that µ0 has the strange-looking value µ0 = 4π×10−7 mKgC−2.

This definition should also convince you that SI units are arbitrary and, viewed from

the perspective of fundamental physics, slightly daft.

The electric field is measured in units of NC−1. The electrostatic potential φ has

units of Volts, denoted V , where the 1 Volt is the potential difference between two

infinite, parallel plates which create an electric field of 1 NC−1. A nerve cell sits at

around 10−2 V . An AA battery sits at 1.5 V . The largest man-made voltage is 107 V

produced in a van der Graaf generator. This doesn’t compete well with what Nature

is capable of. The potential difference between the ends of a lightening bolt can be

108 V . The voltage around a pulsar (a spinning neutron star) can be 1015 V .

The unit of a magnetic field is the Tesla, denoted T . A particle of charge 1 C, passing

through a magnetic field of 1 T at 1 ms−1 will experience a force of 1 N . From the

examples that we’ve seen above it’s clear that 1 C is a lot of charge. Correspondingly,

1 T is a big magnetic field. Our best instruments (SQUIDs) can detect changes in

magnetic fields of 10−18 T . The magnetic field in your brain is 10−12 T . The strength

of the Earth’s magnetic field is around 10−5 T while a magnet stuck to your fridge has

about 10−3 T . The strongest magnetic field we can create on Earth is around 100 T .

Again, Nature beats us quite considerably. The magnetic field around neutron stars can

be between 106 T and 109 T . (There is an exception here: in “heavy ion collisions”,

in which gold or lead nuclei are smashed together in particle colliders, it is thought

that magnetic fields comparable to those of neutron stars are created. However, these

magnetic fields are fleeting and small. They are stretch over the size of a nucleus and

last for a millionth of a second or so).

As the above discussion amply demonstrates, SI units are based entirely on historical

convention rather than any deep underlying physics. A much better choice is to pick

units of charge such that we can discard ε0 and µ0. There are two commonly used

frameworks that do this, called Lorentz-Heaviside units and Gaussian units. I should

warn you that the Maxwell equations take a slightly different form in each.

To fully embrace natural units, we should also set the speed of light c = 1. (See

the rant in the Dynamics and Relativity lectures). However we can’t set everything
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to one. There is one combination of the fundamental constants of Nature which is

dimensionless. It is known as the fine structure constant,

α =
e2

4πε0~c

and takes value α ≈ 1/137. Ultimately, this is the correct measure of the strength of

the electromagnetic force. It tells us that, in units with ε0 = ~ = c = 1, the natural,

dimensionless value of the charge of the electron is e ≈ 0.3.

3.5.1 A History of Magnetostatics

The history of magnetostatics, like electrostatics, starts with the Greeks. The fact

that magnetic iron ore, sometimes known as “lodestone”, can attract pieces of iron was

apparently known to Thales. He thought that he had found the soul in the stone. The

word “magnetism” comes from the Greek town Magnesia, which is situated in an area

rich in lodestone.

It took over 1500 years to turn Thales’ observation into something useful. In the 11th

century, the Chinese scientist Shen Kuo realised that magnetic needles could be used

to build a compass, greatly improving navigation.

The modern story of magnetism begins, as with electrostatics, with William Gilbert.

From the time of Thales, it had been thought that electric and magnetic phenomenon

are related. One of Gilbert’s important discoveries was, ironically, to show that this is

not the case: the electrostatic forces and magnetostatic forces are different.

Yet over the next two centuries, suspicions remained. Several people suggested that

electric and magnetic phenomena were related, although no credible arguments were

given. The two just smelled alike. The following unisightful quote from Henry Elles,

written in 1757 to the Royal Society, pretty much sums up the situation: “There are

some things in the power of magnetism very similar to those of electricity. But I do

not by any means think them the same”. A number of specific relationships between

electricity and magnetism were suggested and all subsequently refuted by experiment.

When the breakthrough finally came, it took everyone by surprise. In 1820, the Dan-

ish scientist Hans Christian Ørsted noticed that the needle on a magnet was deflected

when a current was turned on or off. After that, progress was rapid. Within months,

Ørsted was able to show that a steady current produces the circular magnetic field

around a wire that we have seen in these lectures. In September that year, Ørsted’s

experiments were reproduced in front of the French Academy by Francois Arago, a talk
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which seemed to mobilise the country’s entire scientific community. First out of the

blocks were Jean-Baptiste Biot and Félix Savart who quickly determined the strength

of the magnetic field around a long wire and the mathematical law which bears their

name.

Of those inspired by the Arago’s talk, the most important was André-Marie Ampère.

Skilled in both experimental and theoretical physics, Ampère determined the forces

that arise between current carrying wires and derived the mathematical law which

now bears his name:
∮

B · dr = µ0I. He was also the first to postulate that there

exists an atom of electricity, what we would now call the electron. Ampère’s work was

published in 1827 a book with the catchy title “Memoir on the Mathematical Theory

of Electrodynamic Phenomena, Uniquely Deduced from Experience”. It is now viewed

as the beginning of the subject of electrodynamics.
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4. Electrodynamics

For static situations, Maxwell’s equations split into the equations of electrostatics, (2.1)

and (2.2), and the equations of magnetostatics, (3.1) and (3.2). The only hint that there

is a relationship between electric and magnetic fields comes from the fact that they are

both sourced by charge: electric fields by stationary charge; magnetic fields by moving

charge. In this section we will see that the connection becomes more direct when things

change with time.

4.1 Faraday’s Law of Induction

“I was at first almost frightened when I saw such mathematical force made

to bear upon the subject, and then wondered to see that the subject stood

it so well.”

Faraday to Maxwell, 1857

One of the Maxwell equations relates time varying magnetic fields to electric fields,

∇× E +
∂B

∂t
= 0 (4.1)

This equation tells us that if you change a magnetic field, you’ll create an electric field.

In turn, this electric field can be used to accelerate charges which, in this context, is

usually thought of as creating a current in wire. The process of creating a current

through changing magnetic fields is called induction.

We’ll consider a wire to be a conductor, stretched along B

S

C

Figure 33:

a stationary, closed curve, C, as shown in the figure. We will

refer to closed wires of this type as a “circuit”. We integrate

both sides of (4.1) over a surface S which is bounded by C,∫
S

(∇× E) · dS = −
∫
S

∂B

∂t
· dS

By Stokes theorem, we can write this as∫
C

E · dr = −
∫
S

∂B

∂t
· dS = − d

dt

∫
S

B · dS

Recall that the line integral around C should be in the right-handed sense; if the fingers

on your right-hand curl around C then your thumb points in the direction of dS. (This

means that in the figure dS points in the same direction as B). To get the last equality

above, we need to use the fact that neither C nor S change with time. Both sides
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of this equation are usually given names. The integral of the electric field around the

curve C is called the electromotive force, E , or emf for short,

E =

∫
C

E · dr

It’s not a great name because the electromotive force is not really a force. Instead

it’s the tangential component of the force per unit charge, integrated along the wire.

Another way to think about it is as the work done on a unit charge moving around the

curve C. If there is a non-zero emf present then the charges will be accelerated around

the wire, giving rise to a current.

The integral of the magnetic field over the surface S is called the magnetic flux Φ

through S,

Φ =

∫
S

B · dS

The Maxwell equation (4.1) can be written as

E = −dΦ

dt
(4.2)

In this form, the equation is usually called Faraday’s Law. Sometimes it is called the

flux rule.

Faraday’s law tells us that if you change the magnetic flux through S then a current

will flow. There are a number of ways to change the magnetic field. You could simply

move a bar magnet in the presence of circuit, passing it through the surface S; or you

could replace the bar magnet with some other current density, restricted to a second

wire C ′, and move that; or you could keep the second wire C ′ fixed and vary the current

in it, perhaps turning it on and off. All of these will induce a current in C.

However, there is then a secondary effect. When a current flows in C, it will create

its own magnetic field. We’ve seen how this works for steady currents in Section 3. This

induced magnetic field will always be in the direction that opposes the change. This

is called Lenz’s law. If you like, “Lenz’s law” is really just the minus sign in Faraday’s

law (4.2).
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We can illustrate this with a simple example. Con-
B

I

Figure 34: Lenz’s law

sider the case where C is a circle, lying in a plane. We’ll

place it in a uniform B field and then make B smaller

over time, so Φ̇ < 0. By Faraday’s law, E > 0 and the

current will flow in the right-handed direction around

C as shown. But now you can wrap your right-hand

in a different way: point your thumb in the direction

of the current and let your fingers curl to show you the

direction of the induced magnetic field. These are the circles drawn in the figure. You

see that the induced current causes B to increase inside the loop, counteracting the

original decrease.

Lenz’s law is rather like a law of inertia for magnetic fields. It is necessary that

it works this way simply to ensure energy conservation: if the induced magnetic field

aided the process, we’d get an unstable runaway situation in which both currents and

magnetic fields were increasing forever.

4.1.1 Faraday’s Law for Moving Wires

There is another, related way to induce cur-

y

z

x

B

C

v

Figure 35: Moving circuit

rents in the presence of a magnetic field: you can

keep the field fixed, but move the wire. Perhaps

the simplest example is shown in the figure: it’s

a rectangular circuit, but where one of the wires

is a metal bar that can slide backwards and for-

wards. This whole set-up is then placed in a

magnetic field, which passes up, perpendicular

through the circuit.

Slide the bar to the left with speed v. Each charge q in the bar experiences a Lorentz

force qvB, pushing it in the y direction. This results in an emf which, now, is defined

as the integrated force per charge. In this case, the resulting emf is

E = vBd

where d is the length of the moving bar. But, because the area inside the circuit

is getting smaller, the flux through C is also decreasing. In this case, it’s simple to
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compute the change of flux: it is

dΦ

dt
= −vBd

We see that once again the change of flux is related to the emf through the flux rule

E = −dΦ

dt

Note that this is the same formula (4.2) that we derived previously, but the physics

behind it looks somewhat different. In particular, we used the Lorentz force law and

didn’t need the Maxwell equations.

As in our previous example, the emf will drive a current around the loop C. And,

just as in the previous example, this current will oppose the motion of the bar. In this

case, it is because the current involves charges moving with some speed u around the

circuit. These too feel a Lorentz force law, now pushing the bar back to the right. This

means that if you let the bar go, it will not continue with constant speed, even if the

connection is frictionless. Instead it will slow down. This is the analog of Lenz’s law in

the present case. We’ll return to this example in Section 4.1.3 and compute the bar’s

subsequent motion.

(t)C

(t)

δS

S

C δ

(t+  t)

(t+  t)

Sc

Figure 36: Moving Circuits

The General Case

There is a nice way to include both the effects of time-

dependent magnetic fields and the possibility that the

circuit C changes with time. We consider the moving

loop C(t), as shown in the figure. Now the change in

flux through a surface S has two terms: one because B

may be changing, and one because C is changing. In a

small time δt, we have

δΦ = Φ(t+ δt)− Φ(t) =

∫
S(t+δt)

B(t+ δt) · dS−
∫
S(t)

B(t) · dS

=

∫
S(t)

∂B

∂t
δt · dS +

[∫
S(t+δt)

−
∫
S(t)

]
B(t) · dS +O(δt2)

We can do something with the middle terms. Consider the closed surface created by

S(t) and S(t + δt), together with the cylindrical region swept out by C(t) which we

call Sc. Because ∇ ·B = 0, the integral of B(t) over any closed surface vanishes. But
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∫
S(t+δt)

−
∫
S(t)

is the top and bottom part of the closed surface, with the minus sign

just ensuring that the integral over the bottom part S(t) is in the outward direction.

This means that we must have[∫
S(t+δt)

−
∫
S(t)

]
B(t) · dS = −

∫
Sc

B(t) · dS

For the integral over Sc, we can write the surface element as

dS = (dr× v)δt

where dr is the line element along C(t) and v is the velocity of a point on C. We find

that the expression for the change in flux can be written as

dΦ

dt
= lim

δt→0

δΦ

δt
=

∫
S(t)

∂B

∂t
· dS −

∫
C(t)

(v ×B) · dr

where we’ve taken the liberty of rewriting (dr× v) ·B = dr · (v×B). Now we use the

Maxwell equation (4.1) to rewrite the ∂B/∂t in terms of the electric field. This gives

us our final expression

dΦ

dt
= −

∫
C

(E + v ×B) · dr

where the right-hand side now includes the force tangential to the wire from both

electric fields and also from the motion of the wire in the presence of magnetic fields.

The electromotive force should be defined to include both of these contributions,

E =

∫
C

(E + v ×B) · dr

and we once again get the flux rule E = −dΦ/dt.

4.1.2 Inductance and Magnetostatic Energy

In Section 2.3, we computed the energy stored in the electric field by considering the

work done in building up a collection of charges. But we didn’t repeat this calculation

for the magnetic field in Section 3. The reason is that we need the concept of emf to

describe the work done in building up a collection of currents.

Suppose that a constant current I flows along some curve C. From the results of

Section 3 we know that this gives rise to a magnetic field and hence a flux Φ =
∫
S

B ·dS
through the surface S bounded by C. Now increase the current I. This will increase

the flux Φ. But we’ve just learned that the increase in flux will, in turn, induce an emf

around the curve C. The minus sign of Lenz’s law ensures that this acts to resist the

change of current. The work needed to build up a current is what’s needed to overcome

this emf.
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Inductance

If a current I flowing around a curve C gives rise to a flux Φ =
∫
S

B · dS then the

inductance L of the circuit is defined to be

L =
Φ

I

The inductance is a property only of our choice of curve C.

An Example: The Solenoid

A solenoid consists of a cylinder of length l and cross-sectional area A. B

Figure 37:

We take l �
√
A so that any end-effects can be neglected. A wire

wrapped around the cylinder carries current I and winds N times per

unit length. We previously computed the magnetic field through the

centre of the solenoid to be (3.7)

B = µ0IN

This means that a flux through a single turn is Φ0 = µ0INA. The

solenoid consists of Nl turns of wire, so the total flux is

Φ = µ0IN
2Al = µ0IN

2V

with V = Al the volume inside the solenoid. The inductance of the solenoid is therefore

L = µ0N
2V

Magnetostatic Energy

The definition of inductance is useful to derive the energy stored in the magnetic field.

Let’s take our circuit C with current I. We’ll try to increase the current. The induced

emf is

E = −dΦ

dt
= −LdI

dt

As we mentioned above, the induced emf can be thought of as the work done in moving

a unit charge around the circuit. But we have current I flowing which means that, in

time δt, a charge Iδt moves around the circuit and the amount of work done is

δW = EIδt = −LI dI
dt
δt ⇒ dW

dt
= −LI dI

dt
= −L

2

dI2

dt
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The work needed to build up the current is just the opposite of this. Integrating over

time, we learn that the total work necessary to build up a current I along a curve with

inductance L is

W =
1

2
LI2 =

1

2
IΦ

Following our discussion for electric energy in (2.3), we identify this with the energy U

stored in the system. We can write it as

U =
1

2
I

∫
S

B · dS =
1

2
I

∫
S

∇×A · dS =
1

2
I

∮
C

A · dr =
1

2

∫
d3x J ·A

where, in the last step, we’ve used the fact that the current density J is localised on

the curve C to turn the integral into one over all of space. At this point we turn to the

Maxwell equation ∇×B = µ0J to write the energy as

U =
1

2µ0

∫
d3x (∇×B) ·A =

1

2µ0

∫
d3x [∇ · (B×A) + B · (∇×A)]

We assume that B and A fall off fast enough at infinity so that the first term vanishes.

We’re left with the simple expression

U =
1

2µ0

∫
d3x B ·B

Combining this with our previous result (2.27) for the electric field, we have the energy

stored in the electric and magnetic fields,

U =

∫
d3x

(
ε0
2

E · E +
1

2µ0

B ·B
)

(4.3)

This is a nice result. But there’s something a little unsatisfactory behind our derivation

of (4.3). First, we had to approach the energy in both the electric and magnetic fields

in a rather indirect manner, by focussing not on the fields but on the work done to

assemble the necessary charges and currents. There’s nothing wrong with this, but it’s

not a very elegant approach and it would be nice to understand the energy directly

from the fields themselves. This is something that will be rectified in next year’s

Electrodynamics course.

Second, we computed the energy for the electric fields and magnetic fields alone and

then simply added them. We can’t be sure, at this point, that there isn’t some mixed

contribution to the energy such as E · B. It turns out that there are no such terms.

Again, we’ll postpone a proof of this until the next course.

– 72 –



4.1.3 Resistance

You may have noticed that our discussion above has been a little qualitative. If the

flux changes, we have given expressions for the induced emf E but we have not given

an explicit expression for the resulting current. And there’s a good reason for this: it’s

complicated.

The presence of an emf means that there is a force on the charges in the wire. And

we know from Newtonian mechanics that a force will cause the charges to accelerate.

This is where things start to get complicated. Accelerating charges will emit waves of

electromagnetic radiation, a process that you will cover in next year’s Electrodynamics

course. Relatedly, there will be an opposition to the formation of the current through

the process that we’ve called Lenz’s law.

So things are tricky. What’s more, in real wires and materials there is yet another

complication: friction. Throughout these lectures we have modelled our charges as if

they are moving unimpeded, whether through the vacuum of space or through a con-

ductor. But that’s not the case when electrons move in real materials. Instead, there’s

stuff that gets in their way: various messy impurities in the material, or sound waves

(usually called phonons in this context) which knock them off-course, or even other

electrons. All these effects contribute to a friction force that acts on the moving elec-

trons. The upshot of this is that the electrons do not accelerate forever. In fact, they

do not accelerate for very long at all. Instead, they very quickly reach an equilibrium

speed, analogous to the “terminal velocity” that particles reach when falling in grav-

itational field while experiencing air resistance. In many circumstances, the resulting

current I is proportional to the applied emf. This relationship is called Ohm’s law. It

is

E = IR (4.4)

The constant of proportionality R is called the resistance. The emf is E =
∫

E · dx. If

we write E = −∇φ, then E = V , the potential difference between two ends of the wire.

This gives us the version of Ohm’s law that is familiar from school: V = IR.

The resistance R depends on the size and shape of the wire. If the wire has length

L and cross-sectional area A, we define the resistivity as ρ = AR/L. (It’s the same

Greek letter that we earlier used to denote charge density. They’re not the same thing.

Sorry for any confusion!) The resistivity has the advantage that it’s a property of

the material only, not its dimensions. Alternatively, we talk about the conductivity

σ = 1/ρ. (This is the same Greek letter that we previously used to denote surface
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charge density. They’re not the same thing either.) The general form of Ohm’s law is

then

J = σE

Unlike the Maxwell equations, Ohm’s law does not represent a fundamental law of

Nature. It is true in many, perhaps most, materials. But not all. There is a very

simple classical model, known as the Drude model, which treats electrons as billiard

balls experiencing linear drag which gives rise to Ohm’s law. (You can read about

this in the Dynamics and Relativity notes). But a proper derivation of Ohm’s law

needs quantum mechanics and a more microscopic understanding of what’s happening

in materials. Needless to say, this is (way) beyond the scope of this course. So, at least

in this small section, we will take Ohm’s law (4.4) as an extra input in our theory.

When Ohm’s law holds, the physics is very different. Now the applied force (or,

in this case, the emf) is proportional to the velocity of the particles rather than the

acceleration. It’s like living in the world that Aristotle envisaged rather than the one

Galileo understood. But it also means that the resulting calculations typically become

much simpler.

An Example

Let’s return to our previous example of a slid-

y

z

x

C

v
B

Figure 38:

ing bar of length d and mass m which forms a

circuit, sitting in a magnetic field B = Bẑ. But

now we will take into account the effect of elec-

trical resistance. We take the resistance of the

sliding bar to be R. But we’ll make life easy for

ourselves and assume that the resistance of the

rest of the circuit is negligible.

There are two dynamical degrees of freedom

in our problem: the position x of the sliding bar and the current I that flows around the

circuit. We take I > 0 if the current flows along the bar in the positive ŷ direction. The

Lorentz force law tells us that the force on a small volume of the bar is F = IB ŷ× ẑ.

The force on the whole bar is therefore

F = IBd x̂

The equation of motion for the position of the wire is then

mẍ = IBd
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Now we need an equation that governs the current I(t). If the total emf around the

circuit comes from the induced emf, we have

E = −dΦ

dt
= −Bdẋ

Ohm’s law tells us that E = IR. Combining these, we get a simple differential equation

for the position of the bar

mẍ = −B
2d2

R
ẋ

which we can solve to see that any initial velocity of the bar, v, decays exponentially:

ẋ(t) = −ve−B2d2t/mR

Note that, in this calculation we neglected the magnetic field created by the current.

It’s simple to see the qualitative effect of this. If the bar moves to the left, so ẋ < 0, then

the flux through the circuit decreases. The induced current is I > 0 which increases B

inside the circuit which, in accord with Lenz’s law, attempts to counteract the reduced

flux.

In the above derivation, we assumed that the total emf around the circuit was pro-

vided by the induced emf. This is tantamount to saying that no current flows when the

bar is stationary. But we can also relax this assumption and include in our analysis an

emf E0 across the circuit (provided, for example, by a battery) which induces a current

I0 = E0d/R. Now the total emf is

E = E0 + Einduced = E0 −Bdẋ

The total current is again given by Ohms law I = E/R. The position of the bar is now

governed by the equation

mẍ = −Bd
R

(E0 −Bdẋ)

Again, it’s simple to solve this equation.

Joule Heating

In Section 4.1.2, we computed the work done in changing the current in a circuit C.

This ignored the effect of resistance. In fact, if we include the resistance of a wire then

we need to do work just to keep a constant current. This should be unsurprising. It’s

the same statement that, in the presence of friction, we need to do work to keep an

object moving at a constant speed.
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Let’s return to a fixed circuit C. As we mentioned above, if a battery provides an

emf E0, the resulting current is I = E0/R. We can now run through arguments similar

to those that we saw when computing the magnetostatic energy. The work done in

moving a unit charge around C is E0 which means that amount of work necessary to

keep a current I moving for time δt is

δW = E0Iδt = I2Rδt

We learn that the power (work per unit time) dissipated by a current passing through

a circuit of resistance R is dW/dt = I2R. This is not energy that can be usefully stored

like the magnetic and electric energy (4.3); instead it is lost to friction which is what

we call heat. (The difference between heat and other forms of energy is explained in

the Thermodynamics section in the Statistical Physics notes). The production of heat

by a current is called Joule heating or, sometimes, Ohmic heating.

4.1.4 Michael Faraday (1791-1867)

“The word “physicist” is both to my mouth and ears so awkward that

I think I shall never be able to use it. The equivalent of three separate

sounds of “s” in one word is too much.”

Faraday in a letter to William Whewell 2

Michael Faraday’s route into science was far from the standard one. The son

of a blacksmith, he had little schooling and, at the age of 14, was apprenticed to a

bookbinder. There he remained until the age of 20 when Faraday attended a series of

popular lectures at the Royal Institution by the chemist Sir Humphry Davy. Inspired,

Faraday wrote up these lectures, lovingly bound them and presented them to Davy as

a gift. Davy was impressed and some months later, after suffering an eye injury in an

explosion, turned to Faraday to act as his assistant.

Not long after, Davy decided to retire and take a two-year leisurely tour of Europe,

meeting many of the continent’s top scientists along the way. He asked Faraday to join

him and his wife, half as assistant, half as valet. The science part of this was a success;

the valet part less so. But Faraday dutifully played his roles, emptying his master’s

chamber pot each morning, while aiding in a number of important scientific discoveries

along the way, including a wonderful caper in Florence where Davy and Faraday used

Galileo’s old lens to burn a diamond, reducing it, for the first time, to Carbon.

2According to the rest of the internet, Faraday complains about three separate sounds of “i”. The

rest of the internet is wrong and can’t read Faraday’s writing. The original letter is in the Wren library

in Trinity College and is shown on the next page. I’m grateful to Frank James, editor of Faraday’s

correspondence, for help with this.
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Back in England, Faraday started work at the

Figure 39:

Royal Institution. He would remain there for over

45 years. An early attempt to study electricity and

magnetism was abandoned after a priority dispute

with his former mentor Davy and it was only after

Davy’s death in 1829 that Faraday turned his at-

tentions fully to the subject. He made his discovery

of induction on 28th October, 1831. The initial ex-

periment involved two, separated coils of wire, both

wrapped around the same magnet. Turning on a

current in one wire induces a momentary current in

the second. Soon after, he found that a current is

also induced by passing a loop of wire over a mag-

net. The discovery of induction underlies the elec-

trical dynamo and motor, which convert mechanical

energy into electrical energy and vice-versa.

Faraday was not a great theorist and the mathe-

matical expression that we have called Faraday’s law

is due to Maxwell. Yet Faraday’s intuition led him to make one of the most important

contributions of all time to theoretical physics: he was the first to propose the idea of

the field.

As Faraday’s research into electromagnetism increased, he found himself needing to

invent more and more words to describe the phenomena he was seeing. Since he didn’t

exactly receive a classical education, he turned to William Whewell, then Master of

Trinity, for some advice. Between them, they cooked up the words ‘anode’, ‘cathode’,

‘ion’, ‘dielectric’, ‘diamagnetic’ and ‘paramagnetic’. They also suggested the electric

charge be renamed ‘Franklinic’ in honour of Benjamin Franklin. That one didn’t stick.

The last years of Faraday’s life were spent in the same way as Einstein: seeking a

unified theory of gravity and electromagnetism. The following quote describes what is,

perhaps, the first genuine attempt at unification:

Gravity: Surely his force must be capable of an experimental relation to

Electricity, Magnetism and the other forces, so as to bind it up with them

in reciprocal action and equivalent effect. Consider for a moment how to

set about touching this matter by facts and trial . . .

Faraday, 19th March, 1849.
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As this quote makes clear, Faraday’s approach to this problem includes something

that Einstein’s did not: experiment. Ultimately, neither of them found a connection

between electromagnetism and gravity. But it could be argued that Faraday made the

more important contribution: while a null theory is useless, a null experiment tells you

something about Nature.

4.2 One Last Thing: The Displacement Current

We’ve now worked our way through most of the Maxwell equations. We’ve looked at

Gauss’ law (which is really equivalent to Coulomb’s law)

∇ · E =
ρ

ε0
(4.5)

and the law that says there are no magnetic monopoles

∇ ·B = 0 (4.6)

and Ampère’s law

∇×B = µ0J (4.7)

and now also Faraday’s law

∇× E +
∂B

∂t
= 0 (4.8)

In fact, there’s only one term left to discuss. When fields change with time, there is an

extra term that appears in Ampère’s law, which reads in full:

∇×B = µ0

(
J + ε0

∂E

∂t

)
(4.9)

This extra term is called the displacement current. It’s not a great name because it’s

not a current. Nonetheless, as you can see, it sits in the equation in the same place as

the current which is where the name comes from.

So what does this extra term do? Well, something quite remarkable. But before we

get to this, there’s a story to tell you.

The first four equations above (4.5), (4.6), (4.7) and (4.8) — which include Ampère’s

law in unmodified form — were arrived at through many decades of painstaking ex-

perimental work to try to understand the phenomena of electricity and magnetism. Of

course, it took theoretical physicists and mathematicians to express these laws in the

elegant language of vector calculus. But all the hard work to uncover the laws came

from experiment.
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The displacement current term is different. This was arrived at by pure thought

alone. This is one of Maxwell’s contributions to the subject and, in part, why his

name now lords over all four equations. He realised that the laws of electromagnetism

captured by (4.5) to (4.8) are not internally consistent: the displacement current term

has to be there. Moreover, once you add it, there are astonishing consequences.

4.2.1 Why Ampère’s Law is Not Enough

We’ll look at the consequences in the next section. But for now, let’s just see why the

unmodified Ampère law (4.7) is inconsistent. We simply need to take the divergence

to find

µ0∇ · J = ∇ · (∇×B) = 0

This means that any current that flows into a given volume has to also flow out. But

we know that’s not always the case. To give a simple example, we can imagine putting

lots of charge in a small region and watching it disperse. Since the charge is leaving the

central region, the current does not obey ∇ · J = 0, seemingly in violation of Ampère’s

law.

There is a standard thought experiment involving cir-

R

+Q −Q

Figure 40:

cuits which is usually invoked to demonstrate the need to

amend Ampère’s law. This is shown in the figure. The idea

is to cook up a situation where currents are changing over

time. To do this, we hook it up to a capacitor — which can

be thought of as two conducting plates with a gap between

them — to a circuit of resistance R. The circuit includes a

switch. When the switch is closed, the current will flow out

of the capacitor and through the circuit, ultimately heating

up the resistor.

So what’s the problem here? Let’s try to compute the magnetic field created by the

current at some point along the circuit using Ampère’s law. We can take a curve C that

surrounds the wire and surface S with boundary C. If we chose S to be the obvious

choice, cutting through the wire, then the calculation is the same as we saw in Section

3.1. We have ∫
C

B · dr = µ0I (4.10)

where I is the current through the wire which, in this case, is changing with time.
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Figure 41: This choice of surface sug-

gests there is a magnetic field

Figure 42: This choice of surface sug-

gests there is none.

Suppose, however, that we instead decided to bound the curve C with the surface

S ′, which now sneaks through the gap between the capacitor plates. Now there is no

current passing through S ′, so if we were to use Ampère’s law, we would conclude that

there is no magnetic field ∫
C

B · dr = 0 (4.11)

This is in contradiction to our first calculation (4.10). So what’s going on here? Well,

Ampère’s law only holds for steady currents that are not changing with time. And we’ve

deliberately put together a situation where I is time dependent to see the limitations

of the law.

Adding the Displacement Current

Let’s now see how adding the displacement current (4.9) fixes the situation. We’ll

first look at the abstract issue that Ampère’s law requires ∇ · J = 0. If we add the

displacement current, then taking the divergence of (4.9) gives

µ0

(
∇ · J + ε0∇ ·

∂E

∂t

)
= ∇ · (∇×B) = 0

But, using Gauss’s law, we can write ε0∇ · E = ρ, so the equation above becomes

∇ · J +
∂ρ

∂t
= 0

which is the continuity equation that tells us that electric charge is locally conserved.

It’s only with the addition of the displacement current that Maxwell’s equations become

consistent with the conservation of charge.
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Now let’s return to our puzzle of the circuit and capacitor. Without the displacement

current we found that B = 0 when we chose the surface S ′ which passes between

the capacitor plates. But the displacement current tells us that we missed something,

because the build up of charge on the capacitor plates leads to a time-dependent electric

field between the plates. For static situations, we computed this in (2.10): it is

E =
Q

ε0A

where A is the area of each plate and Q is the charge that sits on each plate, and we are

ignoring the edge effects which is acceptable as long as the size of the plates is much

bigger than the gap between them. Since Q is increasing over time, the electric field is

also increasing

∂E

∂t
=

1

ε0A

dQ

dt
=

1

ε0A
I(t)

So now if we repeat the calculation of B using the surface S ′, we find an extra term

from (4.9) which gives ∫
C

B · dr =

∫
S′
µ0ε0

∂E

∂t
= µ0I

This is the same answer (4.10) that we found using Ampère’s law applied to the surface

S.

Great. So we see why the Maxwell equations need the extra term known as the

displacement current. Now the important thing is: what do we do with it? As we’ll

now see, the addition of the displacement current leads to one of the most wonderful

discoveries in physics: the explanation for light.

4.3 And There Was Light

The emergence of light comes from looking for solutions of Maxwell’s equations in which

the electric and magnetic fields change with time, even in the absence of any external

charges or currents. This means that we’re dealing with the Maxwell equations in

vacuum:

∇ · E = 0 and ∇×B = µ0ε0
∂E

∂t

∇ ·B = 0 and ∇× E = −∂B

∂t

The essence of the physics lies in the two Maxwell equations on the right: if the electric

field shakes, it causes the magnetic field to shake which, in turn, causes the electric
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field to shake, and so on. To derive the equations governing these oscillations, we start

by computing the second time derivative of the electric field,

µ0ε0
∂2E

∂t2
=

∂

∂t
(∇×B) = ∇× ∂B

∂t
= −∇× (∇× E) (4.12)

To complete the derivation, we need the identity

∇× (∇× E) = ∇(∇ · E)−∇2E

But, the first of Maxwell equations tells us that ∇ ·E = 0 in vacuum, so the first term

above vanishes. We find that each component of the electric field satisfies,

1

c2
∂2E

∂t2
−∇2E = 0 (4.13)

This is the wave equation. The speed of the waves, c, is given by

c =

√
1

µ0ε0

Identical manipulations hold for the magnetic field. We have

∂2B

∂t2
= − ∂

∂t
(∇× E) = −∇× ∂E

∂t
= − 1

µ0ε0
∇× (∇×B) =

1

µ0ε0
∇2B

where, in the last equality, we have made use of the vector identity (4.12), now applied

to the magnetic field B, together with the Maxwell equation ∇ ·B = 0. We again find

that each component of the magnetic field satisfies the wave equation,

1

c2
∂2B

∂t2
−∇2B = 0 (4.14)

The waves of the magnetic field travel at the same speed c as those of the electric field.

What is this speed? At the very beginning of these lectures we provided the numerical

values of the electric constant

ε0 = 8.854187817× 10−12 m−3Kg−1 s2C2

and the magnetic constant,

µ0 = 4π × 10−7 mKgC−2

Plugging in these numbers gives the speed of electric and magnetic waves to be

c = 299792458 ms−1

But this is something that we’ve seen before. It’s the speed of light! This, of course, is

because these electromagnetic waves are light. In the words of the man himself
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“The velocity of transverse undulations in our hypothetical medium, calcu-

lated from the electro-magnetic experiments of MM. Kohlrausch and Weber,

agrees so exactly with the velocity of light calculated from the optical ex-

periments of M. Fizeau, that we can scarcely avoid the inference that light

consists in the transverse undulations of the same medium which is the

cause of electric and magnetic phenomena”

James Clerk Maxwell

The simple calculation that we have just seen represents one of the most important

moments in physics. Not only are electric and magnetic phenomena unified in the

Maxwell equations, but now optics – one of the oldest fields in science – is seen to be

captured by these equations as well.

4.3.1 Solving the Wave Equation

We’ve derived two wave equations, one for E and one for B. We can solve these

independently, but it’s important to keep in our mind that the solutions must also

obey the original Maxwell equations. This will then give rise to a relationship between

E and B. Let’s see how this works.

We’ll start by looking for a special class of solutions in which waves propagate in the

x-direction and do not depend on y and z. These are called plane-waves because, by

construction, the fields E and B will be constant in the (y, z) plane for fixed x and t.

The Maxwell equation ∇·E = 0 tells us that we must have Ex constant in this case.

Any constant electric field can always be added as a solution to the Maxwell equations

so, without loss of generality, we’ll choose this constant to vanish. We look for solutions

of the form

E = (0, E(x, t), 0)

where E satisfies the wave equation (4.13) which is now

1

c2
∂2E

∂t2
−∇2E = 0

The most general solution to the wave equation takes the form

E(x, t) = f(x− ct) + g(x+ ct)

Here f(x−ct) describes a wave profile which moves to the right with speed c. (Because,

as t increases, x also has to increase to keep f constant). Meanwhile, g(x+ct) describes

a wave profile moving to the left with the speed c.
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The most important class of solutions of this kind are those which oscillate with a

single frequency ω. Such waves are called monochromatic. For now, we’ll focus on

the right-moving waves and take the profile to be the sine function. (We’ll look at

the option to take cosine waves or other shifts of phase in a moment when we discuss

polarisation). We have

E = E0 sin
[
ω
(x
c
− t
)]

We usually write this as

E = E0 sin (kx− ωt) (4.15)

where k is the wavenumber. The wave equation (4.13) requires that it is related to the

frequency by

ω2 = c2k2

Equations of this kind, expressing frequency in terms of wavenumber, are called dis-

persion relations. Because waves are so important in physics, there’s a whole bunch of

associated quantities which we can define. They are:

• The quantity ω is more properly called the angular frequency and is taken to be

positive. The actual frequency f = ω/2π measures how often a wave peak passes

you by. But because we will only talk about ω, we will be lazy and just refer to

this as frequency.

• The period of oscillation is T = 2π/ω.

• The wavelength of the wave is λ = 2π/k. This is the property of waves that

you first learn about in kindergarten. The wavelength of visible light is between

λ ∼ 3.9 × 10−7 m and 7 × 10−7 m. At one end of the spectrum, gamma rays

have wavelength λ ∼ 10−12 m and X-rays around λ ∼ 10−10 to 10−8 m. At the

other end, radio waves have λ ∼ 1 cm to 10 km. Of course, the electromagnetic

spectrum doesn’t stop at these two ends. Solutions exist for all λ.

Although we grow up thinking about wavelength, moving forward the wavenum-

ber k will turn out to be a more useful description of the wave.

• E0 is the amplitude of the wave.
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So far we have only solved for the electric field. To determine the magnetic field,

we use ∇ · B = 0 to tell us that Bx is constant and we again set Bx = 0. We know

that the other components By and Bz must obey the wave equation (4.14). But their

behaviour is dictated by what the electric field is doing through the Maxwell equation

∇× E = −∂B/∂t. This tells us that

B = (0, 0, B)

with

∂B

∂t
= −∂E

∂x
= −kE0 cos(kx− ωt)

We find

B =
E0

c
sin(kx− ωt) (4.16)

We see that the electric E and magnetic B fields oscillate in phase, but in orthogonal

directions. And both oscillate in directions which are orthogonal to the direction in

which the wave travels.

k

B

E

Because the Maxwell equations are linear, we’re allowed to add any number of solu-

tions of the form (4.15) and (4.16) and we will still have a solution. This sometimes

goes by the name of the principle of superposition. (We mentioned it earlier when

discussing electrostatics). This is a particularly important property in the context of

light, because it’s what allow light rays travelling in different directions to pass through

each other. In other words, it’s why we can see anything at all.

The linearity of the Maxwell equations also encourages us to introduce some new

notation which, at first sight, looks rather strange. We will often write the solutions

(4.15) and (4.16) in complex notation,

E = E0 ŷ ei(kx−ωt) , B =
E0

c
ẑ ei(kx−ωt) (4.17)
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This is strange because the physical electric and magnetic fields should certainly be real

objects. You should think of them as simply the real parts of the expressions above.

But the linearity of the Maxwell equations means both real and imaginary parts of

E and B solve the Maxwell equations. And, more importantly, if we start adding

complex E and B solutions, then the resulting real and imaginary pieces will also solve

the Maxwell equations . The advantage of this notation is simply that it’s typically

easier to manipulate complex numbers than lots of cos and sin formulae.

However, you should be aware that this notation comes with some danger: whenever

you compute something which isn’t linear in E and B — for example, the energy stored

in the fields, which is a quadratic quantity — you can’t use the complex notation above;

you need to take the real part first.

4.3.2 Polarisation

Above we have presented a particular solution to the wave equation. Let’s now look

at the most general solution with a fixed frequency ω. This means that we look for

solutions within the ansatz,

E = E0 e
i(k·x−ωt) and B = B0 e

i(k·x−ωt) (4.18)

where, for now, both E0 and B0 could be complex-valued vectors. (Again, we only get

the physical electric and magnetic fields by taking the real part of these equations).

The vector k is called the wavevector. Its magnitude, |k| = k, is the wavenumber and

the direction of k points in the direction of propagation of the wave. The expressions

(4.18) already satisfy the wave equations (4.13) and (4.14) if ω and k obey the dispersion

relation ω2 = c2k2.

We get further constraints on E0, B0 and k from the original Maxwell equations.

These are

∇ · E = 0 ⇒ ik · E0 = 0

∇ ·B = 0 ⇒ ik ·B0 = 0

∇× E = −∂B

∂t
⇒ ik× E0 = iωB0

Let’s now interpret these equations:

Linear Polarisation

Suppose that we take E0 and B0 to be real. The first two equations above say that both

E0 and B0 are orthogonal to the direction of propagation. The last of the equations

– 86 –



above says that E0 and B0 are also orthogonal to each other. You can check that the

fourth Maxwell equation doesn’t lead to any further constraints. Using the dispersion

relation ω = ck, the last constraint above can be written as

k̂× (E0/c) = B0

This means that the three vectors k̂, E0/c and B0 form a right-handed orthogonal triad.

Waves of this form are said to be linearly polarised. The electric and magnetic fields

oscillate in fixed directions, both of which are transverse to the direction of propagation.

Circular and Elliptic Polarisation

Suppose that we now take E0 and B0 to be complex. The actual electric and magnetic

fields are just the real parts of (4.18), but now the polarisation does not point in a fixed

direction. To see this, write

E0 = α− iβ

The real part of the electric field is then

E = α cos(k · x− ωt) + β sin(k · x− ωt)

with Maxwell equations ensuring that α · k = β · k = 0. If we look at the direction of

E at some fixed point in space, say the origin x = 0, we see that it doesn’t point in

a fixed direction. Instead, it rotates over time within the plane spanned by α and β

(which is the plane perpendicular to k).

A special case arises when the phase of E0 is eiπ/4, so that |α| = |β|, with the further

restriction that α · β = 0. Then the direction of E traces out a circle over time in the

plane perpendicular to k. This is called circular polarisation. The polarisation is said

to be right-handed if β = k̂×α and left-handed if β = −k̂×α.

In general, the direction of E at some point in space will trace out an ellipse in the

plane perpendicular to the direction of propagation k. Unsurprisingly, such light is said

to have elliptic polarisation.

General Wave

A general solution to the wave equation consists of combinations of waves of different

wavenumbers and polarisations. It is naturally expressed as a Fourier decomposition

by summing over solutions with different wavevectors,

E(x, t) =

∫
d3k

(2π)3
E(k) ei(k·x−ωt)

Here, the frequency of each wave depends on the wavevector by the now-familiar dis-

persion relation ω = ck.
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4.3.3 An Application: Reflection off a Conductor

There are lots of things to explore with electromagnetic waves and we will see many ex-

amples in next year’s Electrodynamics course. For now, we look at a simple application:

we will reflect waves off a conductor. We all know from experience that conductors,

like metals, look shiny. Here we’ll see why.

Suppose that the conductor occupies the half of space
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Figure 43:

x > 0. We start by shining the light head-on onto the

surface. This means an incident plane wave, travelling in

the x-direction,

Einc = E0 ŷ ei(kx−ωt)

where, as before, ω = ck. Inside the conductor, we know

that we must have E = 0. But the component E · ŷ lies

tangential to the surface and so, by continuity, must also

vanish just outside at x = 0−. We achieve this by adding a reflected wave, travelling

in the opposite direction

Eref = −E0 ŷ ei(−kx−ωt)

So that the combination E = Einc + Eref satisfies E(x = 0) = 0 as it must. This

is illustrated in the figure. (Note, however, that the figure is a little bit misleading:

the two waves are shown displaced but, in reality, both fill all of space and should be

superposed on top of each other).

We’ve already seen above that the corresponding magnetic field can be determined

by ∇× E = −∂B/∂t. It is given by B = Binc + Bref , with

Binc =
E0

c
ẑ ei(kx−ωt) and Bref =

E0

c
ẑ ei(−kx−ωt) (4.19)

This obeys B ·n = 0, as it should be continuity. But the tangential component doesn’t

vanish at the surface. Instead, we have

B · ẑ|x=0− =
2E0

c
e−iωt

Since the magnetic field vanishes inside the conductor, we have a discontinuity. But

there’s no mystery here. We know from our previous discussion (3.6) that this corre-

sponds to a surface current K induced by the wave

K =
2E0

cµ0

ŷ e−iωt

We see that the surface current oscillates with the frequency of the reflected wave.
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Reflection at an Angle
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Figure 44:

Let’s now try something a little more complicated: we’ll send in

the original ray at an angle, θ, to the normal as shown in the

figure. Our incident electric field is

Einc = E0 ŷ ei(k·x−ωt)

where

k = k cos θ x̂ + k sin θ ẑ

Notice that we’ve made a specific choice for the polarisation of the electric field: it is

out of the page in the figure, tangential to the surface. Now we have two continuity

conditions to worry about. We want to add a reflected wave,

Eref = −E0 ζ̂ e
i(k′·x−ω′t)

where we’ve allowed for the possibility that the polarisation ζ̂, the wavevector k′ and

frequency ω′ are all different from the incident wave. We require two continuity condi-

tions on the electric field

(Einc + Eref) · n̂ = 0 and (Einc + Eref)× n̂ = 0

where, for this set-up, the normal vector is n̂ = −x̂. This is achieved by taking ω′ = ω

and ζ = ŷ, so that the reflected wave changes neither frequency nor polarisation. The

reflected wavevector is

k′ = −k cos θ x̂ + k sin θ ẑ

We can also check what becomes of the magnetic field. It is B = Binc + Bref , with

Binc =
E0

c
(k̂× ŷ) ei(k·x−ω

′t) and Bref = −E0

c
(k̂′ × ŷ) ei(k

′·x−ω′t)

Note that, in contrast to (4.19), there is now a minus sign in the reflected Bref , but

this is simply to absorb a second minus sign coming from the appearance of k̂′ in the

polarisation vector. It is simple to check that the normal component B · n̂ vanishes at

the interface, as it must. Meanwhile, the tangential component again gives rise to a

surface current.
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The main upshot of all of this discussion is relationship between k and k′ which tells

us something that we knew when we were five: the angle of incidence is equal to the

angle of reflection. Only now we’ve derived this from the Maxwell equations. If this

is a little underwhelming, we’ll derive many more properties of waves in next year’s

course on Electrodynamics.

4.3.4 James Clerk Maxwell (1831-1879)

Still those papers lay before me,

Problems made express to bore me,

When a silent change came oer me,

In my hard uneasy chair.

Fire and fog, and candle faded,

Spectral forms the room invaded,

Little creatures, that paraded

On the problems lying there.

James Clerk Maxwell, “A Vision of a Wrangler, of a University, of

Pedantry, and of Philosophy”

James Clerk Maxwell was a very smart man. Born in Edinburgh, he was a student,

first in his hometown, and later in Cambridge, at Peterhouse and then at Trinity.

He held faculty positions at the University of Aberdeen (where they fired him) and

Kings College London before returning to Cambridge as the first Cavendish professor

of physics.

Perhaps the first very smart thing that Maxwell did

Figure 45: Maxwell’s vor-

tices

was to determine the composition of Saturn’s rings. He

didn’t do this using a telescope. He did it using mathe-

matics! He showed that neither a solid nor a fluid ring

could be stable. Such rings could only be made of many

small particles. For this he was awarded the Adams Prize.

(These days you can win this prize for much much less!)

Maxwell’s great work on electromagnetism was accom-

plished between 1861 and 1862. He started by construct-

ing an elaborate mechanical model of electricity and mag-

netism in which space is filled by vortices of an incom-

pressible fluid, separated by tiny rotating particles that give rise to electricity. One of

his illustrations is shown above. Needless to say, we don’t teach this picture of space
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anymore. From this, he managed to distill everything that was known about electro-

magnetism into 20 coupled equations in 20 variables. This was the framework in which

he discovered the displacement current and its consequences for light.

You might think that the world changed when Maxwell published his work. In

fact, no one cared. The equations were too hard for physicists, the physics too hard

for mathematicians. Things improved marginally in 1873 when Maxwell reduced his

equations to just four, albeit written in quaternion notation. The modern version

of Maxwell equations, written in vector calculus notation, is due to Oliver Heaviside

in 1881. In all, it took almost 30 years for people to appreciate the significance of

Maxwell’s acheivement.

Maxwell made a number of other important contributions to science, including the

first theory of colour vision and the theory of colour photography. His work on ther-

modynamics and statistical mechanics deserves at least equal status with his work

on electromagnetism. He was the first to understand the distribution of velocities of

molecules in a gas, the first to extract an experimental prediction from the theory of

atoms and, remarkably, the first (with the help of his wife) to build the experiment and

do the measurement, confirming his own theory.

4.4 Transport of Energy: The Poynting Vector

Electromagnetic waves carry energy. This is an important fact: we get most of our

energy from the light of the Sun. Here we’d like to understand how to calculate this

energy.

Our starting point is the expression (4.3) for the energy stored in electric and mag-

netic fields,

U =

∫
V

d3x

(
ε0
2

E · E +
1

2µ0

B ·B
)

The expression in brackets is the energy density. Here we have integrated this only

over some finite volume V rather than over all of space. This is because we want to

understand the way in which energy can leave this volume. We do this by calculating

dU

dt
=

∫
V

d3x

(
ε0E ·

∂E

∂t
+

1

µ0

B · ∂B

∂t

)
=

∫
V

d3x

(
1

µ0

E · (∇×B)− E · J− 1

µ0

B · (∇× E)

)
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where we’ve used the two Maxwell equations. Now we use the identity

E · (∇×B)−B · (∇× E) = −∇ · (E×B)

and write

dU

dt
= −

∫
V

d3x J · E− 1

µ0

∫
S

(E×B) · dS (4.20)

where we’ve used the divergence theorem to write the last term. This equation is

sometimes called the Poynting theorem.

The first term on the right-hand side is related to something that we’ve already seen

in the context of Newtonian mechanics. The work done on a particle of charge q moving

with velocity v for time δt in an electric field is δW = qv ·E δt. The integral
∫
V
d3xJ ·E

above is simply the generalisation of this to currents: it should be thought of as the

rate of gain of energy of the particles in the region V . Since it appears with a minus

sign in (4.20), it is the rate of loss of energy of the particles.

Now we can interpret (4.20). If we write it as

dU

dt
+

∫
V

d3x J · E = − 1

µ0

∫
S

(E×B) · dS

then the left-hand side is the combined change in energy of both fields and particles in

region V . Since energy is conserved, the right-hand side must describe the energy that

escapes through the surface S of region V . We define the Poynting vector

S =
1

µ0

E×B

This is a vector field. It tells us the magnitude and direction of the flow of energy in any

point in space. (It is unfortunate that the canonical name for the Poynting vector is S

because it makes it notationally difficult to integrate over a surface which we usually

also like to call S. Needless to say, these two things are not the same and hopefully no

confusion will arise).

Let’s now look at the energy carried in electromagnetic waves. Because the Poynting

vector is quadratic in E and B, we’re not allowed to use the complex form of the waves.

We need to revert to the real form. For linear polarisation, we write the solutions in

the form (4.17), but with arbitrary wavevector k,

E = E0 sin(k · x− ωt) and B =
1

c
(k̂× E0) sin(k · x− ωt)
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The Poynting vector is then

S =
E2

0

cµ0

k̂ sin2(k · x− ωt)

Averaging over a period, T = 2π/ω, we have

S̄ =
E2

0

2cµ0

k̂

We learn that the electromagnetic wave does indeed transport energy in its direction of

propagation k̂. It’s instructive to compare this to the energy density of the field (4.3).

Evaluated on the electromagnetic wave, the energy density is

u =
ε0
2

E · E +
1

2µ0

B ·B = ε0E
2
0 sin2(k · x− ωt)

Averaged over a period T = 2π/ω, this is

ū =
ε0E

2
0

2

Then, using c2 = 1/ε0µ0,we can write

S̄ = cūk̂

The interpretation is simply that the energy S̄ is equal to the energy density in the

wave ū times the speed of the wave, c.

4.4.1 The Continuity Equation Revisited

Recall that, way back in Section 1, we introduced the continuity equation for electric

charge,

∂ρ

∂t
+∇ · J = 0

This equation is not special to electric charge. It must hold for any quantity that is

locally conserved.

Now we have encountered another quantity that is locally conserved: energy. In the

context of Newtonian mechanics, we are used to thinking of energy as a single number.

Now, in field theory, it is better to think of energy density E(x, t). This includes the

energy in both fields and the energy in particles. Thinking in this way, we notice that

(4.20) is simply the integrated version of a continuity equation for energy. We could

equally well write it as

∂E
∂t

+∇ · S = 0

We see that the Poynting vector S is to energy what the current J is to charge.
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5. Electromagnetism and Relativity

We’ve seen that Maxwell’s equations have wave solutions which travel at the speed

of light. But there’s another place in physics where the speed of light plays a promi-

nent role: the theory of special relativity. How does electromagnetism fit with special

relativity?

Historically, the Maxwell equations were discovered before the theory of special rel-

ativity. It was thought that the light waves we derived above must be oscillations of

some substance which fills all of space. This was dubbed the aether. The idea was that

Maxwell’s equations only hold in the frame in which the aether is at rest; light should

then travel at speed c relative to the aether.

We now know that the concept of the aether is unnecessary baggage. Instead,

Maxwell’s equations hold in all inertial frames and are the first equations of physics

which are consistent with the laws of special relativity. Ultimately, it was by studying

the Maxwell equations that Lorentz was able to determine the form of the Lorentz

transformations which subsequently laid the foundation for Einstein’s vision of space

and time.

Our goal in this final section is to view electromagnetism through the lens of relativity.

We will find that observers in different frames will disagree on what they call electric

fields and what they call magnetic fields. They will observe different charge densities

and different currents. But all will agree that these quantities are related by the same

Maxwell equations. Moreover, there is a pay-off to this. It’s only when we formulate

the Maxwell equations in a way which is manifestly consistent with relativity that we

see their true beauty. The slightly cumbersome vector calculus equations that we’ve

been playing with throughout these lectures will be replaced by a much more elegant

and simple-looking set of equations.

5.1 A Review of Special Relativity

We start with a very quick review of the relevant concepts of special relativity. (For

more details see the lecture notes on Dynamics and Relativity). The basic postulate of

relativity is that the laws of physics are the same in all inertial reference frames. The

guts of the theory tell us how things look to observers who are moving relative to each

other.

The first observer sits in an inertial frame S with spacetime coordinates (ct, x, y, z)

the second observer sits in an inertial frame S ′ with spacetime coordinates (ct′, x′, y′, z′).
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If we take S ′ to be moving with speed v in the x-direction relative to S the coordinate

systems are related by the Lorentz boost

x′ = γ
(
x− v

c
ct
)

and ct′ = γ
(
ct− v

c
x
)

(5.1)

while y′ = y and z′ = z. Here c is the speed of light which has the value,

c = 299792458 ms−1

Meanwhile γ is the ubiquitous factor

γ =

√
1

1− v2/c2

The Lorentz transformation (5.1) encodes within it all of the fun ideas of time dilation

and length contraction that we saw in our first course on relativity.

5.1.1 Four-Vectors

It’s extremely useful to package these spacetime coordinates in 4-vectors, with indices

running from µ = 0 to µ = 3

Xµ = (ct, x, y, z) µ = 0, 1, 2, 3

Note that the index is a superscript rather than subscript. This will be important

shortly. A general Lorentz transformation is a linear map from X to X ′ of the form

(X ′)µ = Λµ
νX

ν

Here Λ is a 4× 4 matrix which obeys the matrix equation

ΛTηΛ = η ⇔ Λρ
µηρσΛσ

ν = ηµν (5.2)

with ηµν the Minkowski metric

ηµν = diag(+1,−1,−1,−1)

The solutions to (5.2) fall into two classes. The first class is simply rotations. Given a

3× 3 rotation matrix R obeying RTR = 1, we can construct a Lorentz transformation

Λ obeying (5.2) by embedding R in the spatial part,

Λµ
ν =


1 0 0 0

0

0 R

0

 (5.3)

These transformations describe how to relate the coordinates of two observers who are

rotated with respect to each other.

– 95 –



The other class of solutions to (5.2) are the Lorentz boosts. These are the transfor-

mations appropriate for observers moving relative to each other. The Lorentz transfor-

mation (5.1) is equivalent to

Λµ
ν =


γ −γv/c 0 0

−γv/c γ 0 0

0 0 1 0

0 0 0 1

 (5.4)

There are similar solutions associated to boosts along the y and z axes.

The beauty of 4-vectors is that it’s extremely easy to write down invariant quantities.

These are things which all observers, no matter which their reference frame, can agree

on. To construct these we take the inner product of two 4-vectors. The trick is that

this inner product uses the Minkowski metric and so comes with some minus signs. For

example, the square of the distance from the origin to some point in spacetime labelled

by X is

X ·X = XµηµνX
ν = c2t2 − x2 − y2 − z2

which is the invariant interval. Similarly, if we’re given two four-vectors X and Y then

the inner product X · Y = XµηµνY
ν is also a Lorentz invariant.

5.1.2 Proper Time

The key to building relativistic theories of Nature is to find the variables that have

nice properties under Lorentz transformations. The 4-vectors X, labelling spacetime

points, are a good start. But we need more. Here we review how the other kinematical

variables of velocity, momentum and acceleration fit into 4-vectors.

Suppose that, in some frame, the particle traces out a worldline. The clever trick is to

find a way to parameterise this path in a way that all observers agree upon. The natural

choice is the proper time τ , the duration of time experienced by the particle itself.

If you’re sitting in some frame, watching some particle move with an old-fashioned

Newtonian 3-velocity u(t), then it’s simple to show that the relationship between your

time t and the proper time of the particle τ is given by

dt

dτ
= γ(u)
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The proper time allows us to define the 4-velocity and the 4-momentum. Suppose that

the particle traces out a path X(τ) in some frame. Then the 4-velocity is

U =
dX

dτ
= γ

(
c

u

)
Similarly, the 4-momentum is P = mU where m is the rest mass of the particle. We

write

P =

(
E/c

p

)
(5.5)

where E = mγc2 is the energy of the particle and p = γmu is the 3-momentum in

special relativity.

The importance of U and P is that they too are 4-vectors. Because all observers

agree on τ , the transformation law of U and P are inherited from X. This means that

under a Lorentz transformation, they too change as U → ΛU and P → ΛP . And it

means that inner products of U and P are guaranteed to be Lorentz invariant.

5.1.3 Indices Up, Indices Down

Before we move on, we do need to introduce one extra notational novelty. The minus

signs in the Minkowski metric η means that it’s useful to introduce a slight twist to

the usual summation convention of repeated indices. For all the 4-vectors that we

introduced above, we always place the spacetime index µ = 0, 1, 2, 3 as a superscript

(i.e. up) rather than a subscript.

Xµ =

(
ct

x

)
This is because the same object with an index down, Xµ, will mean something subtly

different. We define

Xµ =

(
ct

−x

)
With this convention, the Minkowski inner product can be written using the usual

convention of summing over repeated indices as

XµXµ = c2t2 − x · x

In contrast, XµXµ = c2t2 + x2 is a dumb thing to write in the context of special

relativity since it looks very different to observers in different inertial frames. In fact,

we will shortly declare it illegal to write things like XµXµ.
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There is a natural way to think of Xµ in terms of Xµ using the Minkowski metric

ηµν = diag(+1,−1,−1,−1). The following equation is trivially true:

Xµ = ηµνX
ν

This means that we can think of the Minkowski metric as allowing us to lower indices.

To raise indices back up, we need the inverse of ηµν which, fortunately, is the same

matrix: ηµν = diag(+1,−1,−1,−1) which means we have ηµρηρν = δµν and we can

write

Xν = ηνµXµ

From now on, we’re going to retain this distinction between all upper and lower indices.

All the four-vectors that we’ve met so far have upper indices. But all can be lowered

in the same way. For example, we have

Uµ = γ

(
c

−u

)
(5.6)

This trick of distinguishing between indices up and indices down provides a simple

formalism to ensure that all objects have nice transformation properties under the

Lorentz group. We insist that, just as in the usual summation convention, repeated

indices only ever appear in pairs. But now we further insist that pairs always appear

with one index up and the other down. The result will be an object which is invariant

under Lorentz transformations.

5.1.4 Vectors, Covectors and Tensors

In future courses, you will learn that there is somewhat deeper mathematics lying be-

hind distinguishing Xµ and Xµ: formally, these objects live in different spaces (some-

times called dual spaces). We’ll continue to refer to Xµ as vectors, but to distinguish

them, we’ll call Xµ covectors. (In slightly fancier language, the components of the vec-

tor Xµ are sometimes said to be contravariant while the components of the covector

Xµ are said to be covariant).

For now, the primary difference between a vector and covector is how they transform

under rotations and boosts. We know that, under a Lorentz transformation, any 4-

vector changes as

Xµ → X ′µ = Λµ
νX

ν
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From this, we see that a covector should transform as

Xµ → X ′µ = ηµρX
′ ρ

= ηµρΛ
ρ
σX

σ

= ηµρΛ
ρ
ση

σνXν

Using our rule for raising and lowering indices, now applied to the Lorentz transforma-

tion Λ, we can also write this as

Xµ → Λ ν
µ Xν

where our notation is now getting dangerously subtle: you have to stare to see whether

the upper or lower index on the Lorentz transformation comes first.

There is a sense in which Λ ν
µ can be thought of a the components of the inverse

matrix Λ−1. To see this, we go back to the definition of the Lorentz transformation

(5.2), and start to use our new rules for raising and lowering indices

Λρ
µηρσΛσ

ν = ηµν ⇒ Λρ
µΛρν = ηµν

⇒ Λρ
µΛ σ

ρ = δσµ

⇒ Λ σ
ρ Λρ

µ = δσµ

In the last line above, we’ve simply reversed the order of the two terms on the left.

(When written in index notation, these are just the entries of the matrix so there’s no

problem with commuting them). Now we compare this to the formula for the inverse

of a matrix,

(Λ−1)σρΛ
ρ
µ = δσµ ⇒ (Λ−1)σρ = Λ σ

ρ (5.7)

Note that you need to be careful where you place the indices in equations like this.

The result (5.7) is analogous to the statement that the inverse of a rotation matrix is

the transpose matrix. For general Lorentz transformations, we learn that the inverse

is sort of the transpose where “sort of” means that there are minus signs from raising

and lowering. The placement of indices in (5.7) tells us where those minus signs go.

The upshot of (5.7) is that if we want to abandon index notation all together then

vectors transform as X → ΛX while covectors – which, for the purpose of this sentence,

we’ll call X̃ – transform as X̃ → Λ−1X̃. However, in what follows, we have no intention

of abandoning index notation. Instead, we will embrace it. It will be our friend and

our guide in showing that the Maxwell equations are consistent with special relativity.
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A particularly useful example of a covector is the four-derivative. This is the rela-

tivistic generalisation of ∇, defined by

∂µ =
∂

∂Xµ
=

(
1

c

∂

∂t
,∇
)

Notice that the superscript on the spacetime 4-vector Xµ has migrated to a subscript

on the derivative ∂µ. For this to make notational sense, we should check that ∂µ does

indeed transform as covector. This is a simple application of the chain rule. Under a

Lorentz transformation, Xµ → X ′µ = Λµ
νX

ν , so we have

∂µ =
∂

∂Xµ
→ ∂

∂X ′µ
=

∂Xν

∂X ′µ
∂

∂Xν
= (Λ−1)νµ∂ν = Λ ν

µ ∂ν

which is indeed the transformation of a co-vector.

Tensors

Vectors and covectors are the simplest examples of objects which have nice transfor-

mation properties under the Lorentz group. But there are many more examples. The

most general object can have a bunch of upper indices and a bunch of lower indices,

T µ1...µnν1...νm . These objects are also called tensors of type (n,m). In order to qualify

as a tensor, they must transform under a Lorentz transformation as

T ′µ1...µnν1...νm = Λµ1
ρ1
. . .Λµn

ρnΛ σ1
ν1

. . .Λ σm
νm T ρ1...ρnσ1...σm (5.8)

You can always use the Minkowski metric to raise and lower indices on tensors, changing

the type of tensor but keeping the total number of indices n+m fixed.

Tensors of this kind are the building blocks of all our theories. This is because if you

build equations only out of tensors which transform in this manner then, as long as

the µ, ν, . . . indices match up on both sides of the equation, you’re guaranteed to have

an equation that looks the same in all inertial frames. Such equations are said to be

covariant. You’ll see more of this kind of thing in courses on General Relativity and

Differential Geometry.

In some sense, this index notation is too good. Remember all those wonderful things

that you first learned about in special relativity: time dilation and length contraction

and twins and spaceships so on. You’ll never have to worry about those again. From

now on, you can guarantee that you’re working with a theory consistent with relativity

by ensuring two simple things

• That you only deal with tensors.

• That the indices match up on both sides of the equation.

It’s sad, but true. It’s all part of growing up and not having fun anymore.
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5.2 Conserved Currents

We started these lectures by discussing the charge density ρ(x, t), the current density

J(x, t) and their relation through the continuity equation,

∂ρ

∂t
+∇ · J = 0

which tells us that charge is locally conserved.

The continuity equation is already fully consistent with relativity. To see this, we

first need to appreciate that the charge and current densities sit nicely together in a

4-vector,

Jµ =

(
ρc

J

)
Of course, placing objects in a four-vector has consequence: it tells us how these objects

look to different observers. Let’s quickly convince ourselves that it makes sense that

charge density and current do indeed transform in this way. We can start by considering

a situation where there are only static charges with density ρ0 and no current. So

Jµ = (ρ0, 0). Now, in a frame that is boosted by velocity v, the current will appear as

J ′µ = Λµ
νJ

ν with the Lorentz transformation given by (5.4). The new charge density

and current are then

ρ′ = γρ0 , J′ = −γρv

The first of these equations tells us that different observers see different charge densities.

This is because of Lorentz contraction: charge density means charge per unit volume.

And the volume gets squeezed because lengths parallel to the motion undergo Lorentz

contraction. That’s the reason for the factor of γ in the observed charge density.

Meanwhile, the second of these equations is just the relativistic extension of the formula

J = ρv that we first saw in the introduction. (The extra minus sign is because v here

denotes the velocity of the boosted observer; the charge is therefore moving with relative

velocity −v).

In our new, relativistic, notation, the continuity equation takes the particularly sim-

ple form

∂µJ
µ = 0 (5.9)

This equation is Lorentz invariant. This follows simply because the indices are con-

tracted in the right way: one up, and one down.
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5.2.1 Magnetism and Relativity

We’ve learned something unsurprising: boosted charge gives rise to a current. But,

combined with our previous knowledge, this tells us something new and important:

boosted electric fields must give rise to magnetic fields. The rest of this chapter will

be devoted to understanding the details of how this happens. But first, we’re going to

look at a simple example where we can re-derive the magnetic force purely from the

Coulomb force and a dose of Lorentz contraction.

To start, consider a bunch of positive charges

A

vv

u

Figure 46:

+q moving along a line with speed +v and a bunch of

negative charges −q moving in the opposite direction

with speed−v as shown in the figure. If there is equal

density, n, of positive and negative charges then the

charge density vanishes while the current is

I = 2nAqv

where A is the cross-sectional area of the wire. Now consider a test particle, also

carrying charge q, which is moving parallel to the wire with some speed u. It doesn’t

feel any electric force because the wire is neutral, but we know it experiences a magnetic

force. Here we will show how to find an expression for this force without ever invoking

the phenomenon of magnetism.

The trick is to move to the rest frame of the test particle. This means we have to

boost by speed u. The usual addition formula tells us that the velocities of the positive

and negative charges now differ, given by

v± =
v ∓ u

1∓ uv/c2

But with the boost comes a Lorentz contraction which means that the charge density

changes. Moreover, because the velocities of positive and negative charges are now

different, this will mean that, viewed from the rest frame of our particle, the wire is

no longer neutral. Let’s see how this works. First, we’ll introduce n0, the density of

charges when the particles in the wire are at rest. Then the charge density in the

original frame is

ρ = qn = γ(v)qn0

In this frame the wire is neutral because the positive and negative charges travel at

the same speed, albeit in opposite directions. However, in our new frame, the charge
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densities are

ρ± = qn± = qγ(v±)n0 =
(

1∓ uv

c2

)
γ(u)γ(v) qn0

where you’ve got to do a little bit of algebra to get to the last result. Since v− > v+,

we have n− > n+ and the wire carries negative charge. The overall net charge density

in the new frame is

ρ′ = qn′ = q(n+ − n−) = −2uv

c2
γ(u) qn

But we know that a line of electric charge creates an electric field; we calculated it in

(2.6); it is

E(r) = −2uv

c2
γ(u) qnA

2πε0r
r̂

where r is the radial direction away from the wire. This means that, in its rest frame,

the particle experiences a force

F ′ = −uγ(u)
nAq2v

πε0c2r

where the minus sign tells us that the force is towards the wire for u > 0. But if there’s

a force in one frame, there must also be a force in another. Transforming back to where

we came from, we conclude that even when the wire is neutral there has to be a force

F =
F ′

γ(u)
= −u nq

2Av

πε0c2r
= −uq µ0I

2πr
(5.10)

But this precisely agrees with the Lorentz force law, with the magnetic field given by

the expression (3.5) that we computed for a straight wire. Notice that if u > 0 then

the test particle – which has charge q – is moving in the same direction as the particles

in the wire which have charge q and the force is attractive. If u < 0 then it moves in

the opposite direction and the force is repulsive.

This analysis provides an explicit demonstration of how an electric force in one frame

of reference is interpreted as a magnetic force in another. There’s also something rather

surprising about the result. We’re used to thinking of length contraction as an exotic

result which is only important when we approach the speed of light. Yet the electrons

in a wire crawl along. They take around an hour to travel a meter! Nonetheless, we

can easily detect the magnetic force between two wires which, as we’ve seen above, can

be directly attributed to the length contraction in the electron density.
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The discussion above needs a minor alteration for actual wires. In the rest frame of

the wire the positive charges – which are ions, atoms stripped of some of their electrons

– are stationary while the electrons move. Following the explanation above, you might

think that there is an imbalance of charge density already in this frame. But that’s not

correct. The current is due to some battery feeding electrons into the wire and taking

them out the other end. And this is done in such a way that the wire is neutral in the

rest frame, with the electron density exactly compensating the ion density. In contrast,

if we moved to a frame in which the ions and electrons had equal and opposite speeds,

the wire would appear charged. Although the starting point is slightly different, the

end result remains.

5.3 Gauge Potentials and the Electromagnetic Tensor

Under Lorentz transformations, electric and magnetic fields will transform into each

other. In this section, we want to understand more precisely how this happens. At

first sight, it looks as if it’s going to be tricky. So far the objects which have nice

transformation properties under Lorentz transformations are 4-vectors. But here we’ve

got two 3-vectors, E and B. How do we make those transform into each other?

5.3.1 Gauge Invariance and Relativity

To get an idea for how this happens, we first turn to some objects that we met previ-

ously: the scalar and vector potentials φ and A. Recall that we introduced these to

solve some of the equations of electrostatics and magnetostatics,

∇× E = 0 ⇒ E = −∇φ
∇ ·B = 0 ⇒ B = ∇×A

However, in general these expressions can’t be correct. We know that when B and E

change with time, the two source-free Maxwell equations are

∇× E +
∂B

∂t
= 0 and ∇ ·B = 0

Nonetheless, it’s still possible to use the scalar and vector potentials to solve both of

these equations. The solutions are

E = −∇φ− ∂A

∂t
and B = ∇×A

where now φ = φ(x, t) and A = A(x, t).
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Just as we saw before, there is no unique choice of φ and A. We can always shift

A→ A +∇χ and B remains unchanged. However, now this requires a compensating

shift of φ.

φ→ φ− ∂χ

∂t
and A→ A +∇χ (5.11)

with χ = χ(x, t). These are gauge transformations. They reproduce our earlier gauge

transformation for A, while also encompassing constant shifts in φ.

How does this help with our attempt to reformulate electromagnetism in a way

compatible with special relativity? Well, now we have a scalar, and a 3-vector: these

are ripe to place in a 4-vector. We define

Aµ =

(
φ/c

A

)

Or, equivalently, Aµ = (φ/c,−A). In this language, the gauge transformations (5.11)

take a particularly nice form,

Aµ → Aµ − ∂µχ (5.12)

where χ is any function of space and time

5.3.2 The Electromagnetic Tensor

We now have all the ingredients necessary to determine how the electric and magnetic

fields transform. From the 4-derivative ∂µ = (∂/∂(ct),∇) and the 4-vector Aµ =

(φ/c,−A), we can form the anti-symmetric tensor

Fµν = ∂µAν − ∂νAµ

This is constructed to be invariant under gauge transformations (5.12). We have

Fµν → Fµν + ∂µ∂νχ− ∂ν∂µχ = Fµν

This already suggests that the components involve the E and B fields. To check that

this is indeed the case, we can do a few small computations,

F01 =
1

c

∂(−Ax)
∂t

− ∂(φ/c)

∂x
=
Ex
c

and

F12 =
∂(−Ay)
∂x

− ∂(−Ax)
∂y

= −Bz
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Similar computations for all other entries give us a matrix of electric and magnetic

fields,

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

 (5.13)

This, then, is the answer to our original question. You can make a Lorentz covariant

object consisting of two 3-vectors by arranging them in an anti-symmetric tensor. Fµν
is called the electromagnetic tensor. Equivalently, we can raise both indices using the

Minkowski metric to get

F µν = ηµρηνσFρσ =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0


Both Fµν and F µν are tensors. They are tensors because they’re constructed out of

objects, Aµ, ∂µ and ηµν , which themselves transform nicely under the Lorentz group.

This means that Fµν must transform as

F ′µν = Λµ
ρΛ

ν
σF

ρσ (5.14)

Alternatively, if you want to get rid of the indices, this reads F ′ = ΛFΛT . The observer

in a new frame sees electric and magnetic fields E′ and B′ that differ from the original

observer. The two are related by (5.14). Let’s look at what this means in a couple of

illustrative examples.

Rotations

To compute the transformation (5.14), it’s probably simplest to just do the sums that

are implicit in the repeated ρ and σ labels. Alternatively, if you want to revert to

matrix multiplication then this is the same as F ′ = ΛFΛT . Either way, we get the

same result. For a rotation, the 3 × 3 matrix R is embedded in the lower-right hand

block of Λ as shown in (5.3). A quick calculation shows that the transformation of the

electric and magnetic fields in (5.14) is as expected,

E′ = RE and B′ = RB
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Boosts

Things are more interesting for boosts. Let’s consider a boost v in the x-direction, with

Λ given by (5.4). Again, you need to do a few short calculations. For example, we have

−E
′
x

c
= F ′ 01 = Λ0

ρΛ
1
σF

ρσ

= Λ0
0Λ

1
1F

01 + Λ0
1Λ

1
0F

10

=
γ2v2

c2
Ex
c
− γ2Ex

c
= −Ex

c

and

−
E ′y
c

= F ′ 02 = Λ0
ρΛ

2
σF

ρσ

= Λ0
0Λ

2
2F

02 + Λ0
1Λ

2
2F

12

= −γEy
c

+
γv

c
Bz = −γ

c
(Ey − vBz)

and

−B′z = F ′ 12 = Λ1
ρΛ

2
σF

ρσ

= Λ1
0Λ

2
2F

02 + Λ1
1Λ

2
2F

12

=
γv

c2
Ey − γBz = −γ(Bz − vEy/c2)

The final result for the transformation of the electric field after a boost in the x-direction

is

E ′x = Ex

E ′y = γ(Ey − vBz) (5.15)

E ′z = γ(Ez + vBy)

and, for the magnetic field,

B′x = Bx

B′y = γ
(
By +

v

c2
Ez

)
(5.16)

B′z = γ
(
Bz −

v

c2
Ey

)
As we anticipated above, what appears to be a magnetic field to one observer looks like

an electric field to another, and vice versa.
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Note that in the limit v � c, we have E′ = E + v × B and B′ = B. This can be

thought of as the Galilean boost of electric and magnetic fields. We recognise E+v×B

as the combination that appears in the Lorentz force law. We’ll return to this force in

Section 5.5 where we’ll see how it’s compatible with special relativity.

5.3.3 An Example: A Boosted Line Charge

In Section 2.1.3, we computed the electric field due to a line with uniform charge density

η per unit length. If we take the line to lie along the x-axis, we have (2.6)

E =
η

2πε0(y2 + z2)

(
0
y
z

)
(5.17)

Meanwhile, the magnetic field vanishes for static electric charges: B = 0. Let’s see

what this looks like from the perspective of an observer moving with speed v in the

x-direction, parallel to the wire. In the moving frame the electric and magnetic fields

are given by (5.15) and (5.16). These read

E′ =
ηγ

2πε0(y2 + z2)

(
0
y
z

)
=

ηγ

2πε0(y′ 2 + z′ 2)

(
0
y′

z′

)

B′ =
ηγv

2πε0c2(y2 + z2)

(
0
z
−y

)
=

ηγv

2πε0c2(y′ 2 + z′ 2)

(
0
z′

−y′

)
(5.18)

In the second equality, we’ve rewritten the expression in terms of the coordinates of S ′
which, because the boost is in the x-direction, are trivial: y = y′ and z = z′.

From the perspective of an observer in frame S ′, the charge density in the wire is

η′ = γη, where the factor of γ comes from Lorentz contraction. This can be seen in

the expression above for the electric field. Since the charge density is now moving, the

observer in frame S ′ sees a current I ′ = −γηv. Then we can rewrite (5.18) as

B′ =
µ0I

′

2π
√
y′ 2 + z′ 2

ϕ̂′ (5.19)

But this is something that we’ve seen before. It’s the magnetic field due to a current

in a wire (3.5). We computed this in Section 3.1.1 using Ampére’s law. But here we’ve

re-derived the same result without ever mentioning Ampére’s law! Instead, our starting

point (5.17) needed Gauss’ law and we then used only the Lorentz transformation of

electric and magnetic fields. We can only conclude that, under a Lorentz transforma-

tion, Gauss’ law must be related to Ampére’s law. Indeed, we’ll shortly see explicitly

that this is the case. For now, it’s worth repeating the lesson that we learned in Section

5.2.1: the magnetic field can be viewed as a relativistic effect.
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5.3.4 Another Example: A Boosted Point Charge

Consider a point charge Q, stationary in an inertial frame S. We know that it’s electric

field is given by

E =
Q

4πε0r2
r̂ =

Q

4πε0[x2 + y2 + z2]3/2

(
x
y
z

)

while its magnetic field vanishes. Now let’s look at this same particle from the frame

S ′, moving with velocity v = (v, 0, 0) with respect to S. The Lorentz boost which

relates the two is given by (5.4) and so the new electric field are given by (5.15),

E′ =
Q

4πε0[x2 + y2 + z2]3/2

(
x
γy
γz

)

But this is still expressed in terms of the original coordinates. We should now rewrite

this in terms of the coordinates of S ′, which are x′ = γ(x− vt) and y′ = y and z′ = z.

Inverting these, we have

E′ =
Qγ

4πε0[γ2(x′ + vt′)2 + y′ 2 + z′ 2]3/2

(
x′ + vt′

y′

z′

)
(5.20)

In the frame S ′, the particle sits at x′ = (−vt′, 0, 0), so we see that the electric field

emanates from the position of the charge, as it should. For now, let’s look at the electric

field when t′ = 0 so that the particle sits at the origin in the new frame. The electric

field points outwards radially, along the direction

r′ =

(
x′

y′

z′

)

However, the electric field is not isotropic. This arises from the denominator of (5.20)

which is not proportional to r′ 3 because there’s an extra factor of γ2 in front of the x′

component. Instead, at t′ = 0, the denominator involves the combination

γ2x′ 2 + y′ 2 + z′ 2 = (γ2 − 1)x′ 2 + r′ 2

=
v2γ2

c2
x′ 2 + r′ 2

=

(
v2γ2

c2
cos2 θ + 1

)
r′ 2

= γ2
(

1− v2

c2
sin2 θ

)
r′ 2
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v

Figure 47: The isotropic field lines of a

static charge

Figure 48: The squeezed field lines of a

moving charge

where the θ is the angle between r′ and the x′-axis and, in the last line, we’ve just used

some simple trig and the definition of γ2 = 1/(1 − v2/c2). This means that we can

write the electric field in frame S ′ as

E′ =
1

γ2(1− v2 sin2 θ/c2)3/2
Q

4πε0r′ 2
r̂′

The pre-factor is responsible for the fact that the electric field is not isotropic. We see

that it reduces the electric field along the x′-axis (i.e when θ = 0) and increases the field

along the perpendicular y′ and z′ axes (i.e. when θ = π/2). This can be thought of as

a consequence of Lorentz contraction, squeezing the electric field lines in the direction

of travel.

The moving particle also gives rise to a magnetic field. This is easily computed using

the Lorentz transformations (5.16). It is

B =
µ0Qγv

4π[γ2(x′ + vt′)2 + y′ 2 + z′ 2]3/2

(
0
z′

−y′

)
5.3.5 Lorentz Scalars

We can now ask a familiar question: is there any combination of the electric and

magnetic fields that all observers agree upon? Now we have the power of index notation

at our disposal, this is easy to answer. We just need to write down an object that doesn’t

have any floating µ or ν indices. Unfortunately, we don’t get to use the obvious choice

of ηµνF
µν because this vanishes on account of the anti-symmetry of F µν . The simplest

thing we can write down is

1

2
FµνF

µν = −E2

c2
+ B2

Note the relative minus sign between E and B, mirroring a similar minus sign in the

spacetime interval.
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However, this isn’t the only Lorentz scalar that we can construct from E and B.

There is another, somewhat more subtle, object. To build this, we need to appreciate

that Minkowski spacetime comes equipped with another natural tensor object, beyond

the familiar metric ηµν . This is the fully anti-symmetric object known as the alternating

tensor,

εµνρσ =

{
+1 if µνρσ is an even permutation of 0123

−1 if µνρσ is an odd permutation of 0123

while εµνρσ = 0 if there are any repeated indices.

To see why this is a natural object in Minkowski space, let’s look at how it changes

under Lorentz transformations. The usual tensor transformation is

ε′µνρσ = Λµ
κΛ

ν
λΛ

ρ
αΛσ

βε
κλαβ

It’s simple to check that ε′µνρσ is also full anti-symmetric; it inherits this property from

εκλαβ on the right-hand side. But this means that ε′µνρσ must be proportional to εµνρσ.

We only need to determine the constant of proportionality. To do this, we can look at

ε′ 0123 = Λ0
κΛ

1
λΛ

2
αΛ3

βε
κλαβ = det(Λ)

Now any Lorentz transformations have det(Λ) = ±1. Those with det(Λ) = 1 make

up the “proper Lorentz group” SO(1, 3). (This was covered in the Dynamics and

Relativity notes). These proper Lorentz transformations do not include reflections or

time reversal. We learn that the alternating tensor εµνρσ is invariant under proper

Lorentz transformations. What it’s really telling us is that Minkowski space comes

with an oriented orthonormal basis. By lowering indices with the Minkowski metric,

we can also construct the tensor εµνρσ which has ε0123 = −1.

The alternating tensor allows us to construct a second tensor field, sometime called

the dual electromagnetic tensor (although “dual” is perhaps the most overused word in

physics),

F̃ µν =
1

2
εµνρσFρσ =


0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c
By −Ez/c 0 Ex/c

Bz Ey/c −Ex/c 0

 (5.21)

F̃ µν is sometimes also written as ?F µν . We see that this is looks just like F µν but with

the electric and magnetic fields swapped around. Actually, looking closely you’ll see

that there’s a minus sign difference as well: F̃ µν arises from F µν by the substitution

E→ cB and B→ −E/c.
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The statement that F̃ µν is a tensor means that it too has nice properties under

Lorentz transformations,

F̃ ′µν = Λµ
ρΛ

ν
σF̃

ρσ

and we can use this to build new Lorentz invariant quantities. Taking the obvious

square of F̃ doesn’t give us anything new, since

F̃ µνF̃µν = −F µνFµν

But by contracting F̃ with the original F we do find a new Lorentz invariant

1

4
F̃ µνFµν =

1

c
E ·B

This tells us that the inner-product of E and B is the same viewed in all frames.

5.4 Maxwell Equations

We now have the machinery to write the Maxwell equations in a way which is manifestly

compatible with special relativity. They take a particularly simple form:

∂µF
µν = µ0J

ν and ∂µF̃
µν = 0 (5.22)

Pretty aren’t they!

The Maxwell equations are not invariant under Lorentz transformations. This is

because there is the dangling ν index on both sides. However, because the equations

are built out of objects which transform nicely – F µν , F̃ µν , Jµ and ∂µ – the equations

themselves also transform nicely. For example, we will see shortly that Gauss’ law

transforms into Ampére’s law under a Lorentz boost, something we anticipated in

Section 5.3.3. We say that the equations are covariant under Lorentz transformations.

This means that an observer in a different frame will mix everything up: space

and time, charges and currents, and electric and magnetic fields. Although observers

disagree on what these things are, they all agree on how they fit together. This is what

it means for an equation to be covariant: the ingredients change, but the relationship

between them stays the same. All observers agree that, in their frame, the electric and

magnetic fields are governed by the same Maxwell equations.

Given the objects F µν , F̃ µν , Jµ and ∂µ, the Maxwell equations are not the only

thing you could write down compatible with Lorentz invariance. But they are by

far the simplest . Any other equation would be non-linear in F or F̃ or contain more

derivative terms or some such thing. Of course, simplicity is no guarantee that equations

are correct. For this we need experiment. But surprisingly often in physics we find

that the simplest equations are also the right ones.
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Unpacking the Maxwell Equations

Let’s now check that the Maxwell equations (5.22) in relativistic form do indeed coincide

with the vector calculus equations that we’ve been studying in this course. We just

need to expand the different parts of the equation. The components of the first Maxwell

equation give

∂iF
i0 = µ0J

0 ⇒ ∇ · E =
ρ

ε0

∂µF
µi = µ0J

i ⇒ − 1

c2
∂E

∂t
+∇×B = µ0J

In the first equation, which arises from ν = 0, we sum only over spatial indices i = 1, 2, 3

because F 00 = 0. Meanwhile the components of the second Maxwell equation give

∂iF̃
i0 = 0 ⇒ ∇ ·B = 0

∂µF̃
µi = 0 ⇒ ∂B

∂t
+∇× E = 0

These, of course, are the familiar equations that we’ve all grown to love over this course.

Here a few further, simple comments about the advantages of writing the Maxwell

equations in relativistic form. First, the Maxwell equations imply that current is con-

served. This follows because F µν is anti-symmetric, so ∂µ∂νF
µν = 0 automatically,

simply because ∂µ∂ν is symmetric. The first of the Maxwell equations (5.22) then

requires that the continuity equation holds

∂µJ
µ = 0

This is the same calculation that we did in vector notation in Section 4.2.1. Note that

it’s marginally easier in the relativistic framework.

The second Maxwell equation can be written in a number of different ways. It is

equivalent to:

∂µF̃
µν = 0 ⇔ εµνρσ∂νFρσ = 0 ⇔ ∂ρFµν + ∂νFρµ + ∂µFνρ = 0

where the last of these equalities follows because the equation is constructed so that it

is fully anti-symmetric with respect to exchanging any of the indices ρ, µ and ν. (Just

expand out for a few examples to see this).
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The gauge potential Aµ was originally introduced to solve the two Maxwell equations

which are contained in ∂µF̃
µν = 0. Again, this is marginally easier to see in relativistic

notation. If we write Fµν = ∂µAν − ∂νAµ then

∂µF̃
µν =

1

2
εµνρσ∂µFρσ =

1

2
εµνρσ∂µ(∂ρAσ − ∂σAρ) = 0

where the final equality holds because of the symmetry of the two derivatives, combined

with the anti-symmetry of the ε-tensor. This means that we could equally well write

the Maxwell equations as

∂µF
µν = µ0J

ν where Fµν = ∂µAν − ∂νAµ
In more advanced formulations of electromagnetism (for example, in the Lagrangian

formulation), this is the form in which the Maxwell equations arise.

5.5 The Lorentz Force Law

There’s one last aspect of electromagnetism that we need to show is compatible with

relativity: the Lorentz force law. In the Newtonian world, the equation of motion for

a particle moving with velocity u and momentum p = mu is

dp

dt
= q(E + u×B) (5.23)

We want to write this equation in 4-vector notation in a way that makes it clear how

all the objects change under Lorentz transformations.

By now it should be intuitively clear how this is going to work. A moving particle

experiences the magnetic force. But if we boost to its rest frame, there is no magnetic

force. Instead, the magnetic field transforms into an electric field and we find the same

force, now interpreted as an electric force.

The relativistic version of (5.23) involves the 4-momentum P µ, defined in (5.5), the

proper time τ , reviewed in Section 5.1.2, and our new friend the electromagnetic tensor

F µν . The electromagnetic force acting on a point particle of charge q can then be

written as

dP µ

dτ
= q F µνUν (5.24)

where the 4-velocity is

Uµ =
dXµ

dτ
= γ

(
c

u

)
(5.25)

and the 4-momentum is P = mU . Again, we see that the relativistic form of the

equation (5.24) is somewhat prettier than the original equation (5.23).
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Unpacking the Lorentz Force Law

Let’s check to see that the relativistic equation (5.24) is giving us the right physics.

It is, of course, four equations: one for each µ = 0, 1, 2, 3. It’s simple to multiply

out the right-hand side, remembering that Uµ comes with an extra minus sign in the

spatial components relative to (5.25). We find that the µ = 1, 2, 3 components of (5.24)

arrange themselves into a familiar vector equation,

dp

dτ
= qγ(E + u×B) ⇒ dp

dt
= q(E + u×B) (5.26)

where we’ve used the relationship dt/dτ = γ. We find that we recover the Lorentz

force law. Actually, there’s a slight difference from the usual Newtonian force law

(5.23), although the difference is buried in our notation. In the Newtonian setting, the

momentum is p = mu. However, in the relativistic setting above, the momentum is

p = mγu. Needless to say, the relativistic version is correct, although the difference

only shows up at high speeds.

The relativistic formulation of the Lorentz force (5.24) also contains an extra equation

coming from µ = 0. This reads

dP 0

dτ
=
q

c
γE · u (5.27)

Recall that the temporal component of the four-momentum is the energy P 0 = E/c.

Here the energy is E = mγc2 which includes both the rest-mass of the particle and its

kinetic energy. The extra equation in (5.24) is simply telling us that the kinetic energy

increases when work is done by an electric field

d(Energy)

dt
= qE · u

where I’ve written energy as a word rather than as E to avoid confusing it with the

electric field E.

5.5.1 Motion in Constant Fields

We already know how electric and magnetic fields act on particles in a Newtonian world.

Electric fields accelerate particles in straight lines; magnetic fields make particles go

in circles. Here we’re going to redo this analysis in the relativistic framework. The

Lorentz force law remains the same. The only difference is that momentum is now

p = mγu. We’ll see how this changes things.
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Constant Electric Field

Consider a vanishing magnetic field and constant electric field E = (E, 0, 0). (Note

that E here denotes electric field, not energy!). The equation of motion (5.26) for a

charged particle with velocity u = (u, 0, 0) is

m
d(γu)

dt
= qE → mγu = qEt

where we’ve implicitly assumed that the particle starts from rest at t = 0. Rearranging,

we get

u =
dx

dt
=

qEt√
m2 + q2E2t2/c2

Reassuringly, the speed never exceeds the speed of light. Instead, u → c as t → ∞ as

one would expect. It’s simple to integrate this once more. If the particle starts from

the origin, we have

x =
mc2

qE

(√
1 +

q2E2t2

m2c2
− 1

)

For early times, when the speeds are not too high, this reduces to

mx ≈ 1

2
qEt2 + . . .

which is the usual non-relativistic result for particles undergoing constant acceleration

in a straight line.

Constant Magnetic Field

Now let’s turn the electric field off and look at the case of constant magnetic field

B = (0, 0, B). In the non-relativistic world, we know that particles turn circles with

frequency ω = qB/m. Let’s see how relativity changes things.

We start by looking at the zeroth component of the force equation (5.27) which, in

the absence of an electric field, reads

dP 0

dτ
= 0

This tells us that magnetic fields do no work. We knew this from our course on

Newtonian physics, but it remains true in the relativistic context. So we know that

energy, E = mγc2, is constant. But this tells us that the speed (i.e. the magnitude of
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the velocity) remains constant. In other words, the velocity, and hence the position,

once again turn circles. The equation of motion is now

m
d(γu)

dt
= qu×B

Since γ is constant, the equation takes the same form as in the non-relativistic case

and the solutions are circles (or helices if the particle also moves in the z-direction).

The only difference is that the frequency with which the particle moves in a circle now

depends on how fast the particle is moving,

ω =
qB

mγ

If you wanted, you could interpret this as due to the relativistic increase in the mass

of a moving particle. Naturally, for small speeds γ ≈ 1 and we reproduce the more

familiar cyclotron frequency γ ≈ qB/m.

So far we have looked at situations in which E = 0 and in which B = 0. But we’ve

seen that E ·B = 0 and E2−B2 are both Lorentz invariant quantities. This means that

the solutions we’ve described above can be boosted to apply to any situation where

E ·B = 0 and E2 −B2 is either > 0 or < 0. In the general situation, both electric and

magnetic fields are turned on so E ·B 6= 0 and we have three possibilities to consider

depending on whether E2 −B2 is > 0 or < 0 or = 0.

5.6 Epilogue

This bring us to the end of our first course on electromagnetism. We have learned how

the Maxwell equations capture the electric and magnetic forces, the relationship be-

tween them, and the existence of electromagnetic waves. However, there are many more

phenomena still to discover in these equations. Prominent among them is the way in

which accelerated charges emit light, and a description of how electromagnetism works

inside different materials. Both of these will be covered in next year’s Electrodynamics

course.

The second strand running through these lectures is that, despite the complexity of

phenomena that they contain, the Maxwell equations themselves are extraordinarily

simple and elegant. Indeed, when viewed in the right way, in terms of the electromag-

netic tensor Fµν = ∂µAν − ∂νAµ, the equations are

∂µF
µν = µ0J

ν
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This formalism provides a blueprint for the other forces in Nature. Like electromag-

netism, all forces are described in terms of fields interacting with particles which carry

a type of conserved charge. Rather remarkably, the equations governing the weak and

strong nuclear force are essentially identical to the Maxwell equations above; all that

changes is the meaning of the tensor Fµν (and, for what it’s worth, the derivative is

also replaced by something called a “covariant derivative”). The resulting equations

are called the Yang-Mills equations and will described in some detail in courses in Part

III.

Gravity is somewhat different, but even there the ingredients that go into the equa-

tions are very similar to those seen here. And, as with electromagnetism, once you have

these ingredients the equations that govern our Universe turn out to be the simplest

ones that you can write down. Indeed, this is perhaps the most important lesson to

take from this course: the laws of physics are gloriously simple. You should learn them.
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